
Combating Spam in Tagging Systems

Georgia Koutrika, Frans Adjie Effendi,
Zoltán Gyöngyi, Paul Heymann, Hector Garcia-Molina

Computer Science Department
Stanford University

koutrika@stanford.edu

ABSTRACT
Tagging systems allow users to interactively annotate a pool
of shared resources using descriptive strings, which are called
tags. Tags are used to guide users to interesting resources
and help them build communities that share their expertise
and resources. As tagging systems are gaining in popularity,
they become more susceptible to tag spam: misleading tags
that are generated in order to increase the visibility of some
resources or simply to confuse users. Our goal is to under-
stand this problem better. In particular, we are interested
in answers to questions such as: How many malicious users
can a tagging system tolerate before results significantly de-
grade? What types of tagging systems are more vulnerable
to malicious attacks? What would be the effort and the im-
pact of employing a trusted moderator to find bad postings?
Can a system automatically protect itself from spam, for in-
stance, by exploiting user tag patterns? In a quest for an-
swers to these questions, we introduce a framework for mod-
eling tagging systems and user tagging behavior. We also
describe a method for ranking documents matching a tag
based on taggers’ reliability. Using our framework, we study
the behavior of existing approaches under malicious attacks
and the impact of a moderator and our ranking method.

1. INTRODUCTION
Tagging systems allow users to interactively annotate a pool
of shared resources using descriptive strings, which are called
tags. For instance, in Flickr [4], a system for sharing pho-
tographs, a user may tag a photo of his Aunt Thelma with
the strings “Thelma”, “Aunt”, and “red hair”. In Del.icio.us
[3], users annotate web pages of interest to them with de-
scriptive terms. In these and other tagging systems, tags are
used to guide users to interesting resources. For instance,
users may be able to query for resources that are annotated
with a particular tag. They may also be able to look at
the most popular tags, or the tags used by their friends, to
discover new content they may not have known they were
interested in. Tagging systems are gaining in popularity
since they allow users to build communities that share their

expertise and resources.

In a way, tags are similar to links with anchor text on the
web. That is, if page p contains a link to page q with the
anchor text “Aunt Thelma”, this implies that somehow page
q is related to Aunt Thelma. This would be analogous to
tagging page q with the words “Aunt Thelma” (in a tag-
ging system where web pages were the resources). However,
a tagging system is different from the web. The latter is
comprised of pages and links, while the former is comprised
of resources, users and tags. These resources can be more
than web pages, e.g., they can be photos, videos, slides, etc.
Typically, in a tagging system, there is a well defined group
of users and resources that can be tagged.

As we know, the web is susceptible to search engine spam,
that is to content that is created to mislead searching engines
into giving some pages a higher ranking than they deserve
[13]. Web spam is a big problem for search engines, as well
as a big opportunity for “search engine optimization” com-
panies that for a fee generate spam to boost the customer’s
pages. In an analogous fashion, tagging systems are sus-
ceptible to tag spam: misleading tags that are generated to
make it more likely that some resources are seen by users, or
generated simply to confuse users. For instance, in a photo
system, malicious users may repeatedly annotate a photo of
some country’s president with the tag “devil”, so that users
searching for that word will see a photo of the president.
Similarly, malicious users may annotate many photos with
the tag “evil empire” so that this tag appears as one of the
most popular tags. In a system that annotates web pages,
one shoe company may annotate many pages (except the
page of its competitor) with the string “buy shoes”, so that
users looking to buy shoes will not easily find the competi-
tor’s page.

Given the increasing interest in tagging systems, and the
increasing danger from spam, our goal is to understand the
problem better and to try to devise schemes that may com-
bat spam. In particular, we are interested in answers to
questions like the following:

• How many malicious users can a tagging system tolerate
before results significantly degrade? One or two bad guys
are unlikely to bias results significantly, but what if 1%
of the users are malicious? What if 10% are malicious?
What if the malicious users collude? The answers to
these questions, even if approximate, may give us a sense

1



of how serious a problem tag spam is or could be. The
answers may also help us in deciding how much effort
should be put into the process of screening bad users
when they register with the system.

• What types of tagging systems are more prone to spam?
Is a tagging system with a large number of resources less
susceptible to spam than a system with a limited number
of resources? A popular system attracts more users and
possibly more spammers. Is popularity a blessing or a
curse for tagging systems? Revealing and understanding
weaknesses of existing systems is a step towards design-
ing more robust systems.

• What is the impact of encouraging users to tag docu-
ments already tagged? Does encouraging people to post
more tags help a system better cope with spam? In other
words, assume users are discouraged from tagging a doc-
ument with a tag, if it already has that tag. Will things
then be easier for spammers?

• What can be done to reduce the impact of malicious
users? For example, one could use a moderator that
periodically checks the tags of users to see if they are
“reasonable.” This is an expensive and slow process;
how effective can it be? How much effort would the
moderator need to place in order to achieve a positive
impact? How many users, documents or tag postings
would it need to check?

• Is there a way to use correlations to identify misused
tags? For instance, if we notice that a user always adds
tags that do not agree with the tags of the majority of
users, we may want to give less weight to the tags of that
user. Would this make the system more resilient to bad
users? What would be the downside of using correlations
to detect bad users?

As the reader may suspect, answering these questions is ex-
tremely hard for a number of reasons. First, the notion of a
“malicious tag” is very subjective: for instance, one person
may consider the tag “ugly” on Aunt Thelma’s photo to be
inappropriate, while another person may think it is perfect!
There are of course behaviors that most people would agree
are inappropriate, but defining such behaviors precisely is
not easy. Second, malicious users can mount many different
“attacks” on a tagging system. For instance, if they know
that correlations are being used to detect attacks, they can
try to disguise their incorrect tags by posting some fraction
of reasonable tags. What bad users do depends on their
sophistication, on their goals, and on whether they collude.
Bad users being a moving target, it is hard to know what
we need to protect against.

Given these difficulties, our approach here is to define an
ideal tagging system where malicious tags and malicious user
behaviors are well defined. In particular, we generate tags
with a synthetic model, where some fraction of the tags are
malicious, and there are no ambiguous tags. Based on this
model, we study how tag spam affects tag-based search and
retrieval of resources in a tagging system. Of course, our
query answering algorithms will not directly know which
tags are misused, but when we evaluate query answering
schemes we will know which answers were correct and which
were not. Similarly, we will assume that malicious users use
a particular, fixed strategy for their tagging. Again, the

protection schemes will be unaware of the malicious user
policy. A proper understanding of tag spamming can guide
the development of appropriate countermeasures. For this
purpose, we start with simple user models and see how a
system behaves under naive attacks and how it can protect
itself against them. Once we introduce safeguards against
these naive bad users, the bad users may respond with more
sophisticated attacks. But these sophisticated attacks can
only be defined once we know the safeguards.

Given that we are using an ideal model, our results will
not be useful for predicting how any one particular tagging
system may perform. Nevertheless, our results can yield
insights into the relative merits of the various protection
schemes we study. That is, if scheme A is significantly bet-
ter than scheme B at protecting against tag spam in the
ideal system, then it is reasonable to expect that system
A will perform better in practice. Similarly, understanding
the level of disruption malicious users can introduce in an
ideal system, may provide insights into what they can do in
a real system: That is, one can interpret the ideal results
as an “upper bound” on disruption, since in a real system
the distinction between an incorrect result and a correct one
will be less clear cut.

In summary, the contributions of this paper are:

• We define an ideal tagging system that we believe is use-
ful for comparing query answering schemes and we model
user tagging behavior (Section 3).

• We propose a variety of query schemes and moderator
strategies to counter tag spam (Sections 4 and 5).

• We define a metric for quantifying the “spam impact”
on results (Section 6).

• We compare the various schemes under different models
for malicious user behavior. We try to understand weak-
nesses of existing systems and the magnitude of the tag
spam problem. We also make predictions about which
schemes will be more useful in practice (Section 7).

2. RELATED WORK
We are witnessing a growing number of tagging services on
the web, which enable people to share and tag different kinds
of resources, such as: photos (Flickr [4]), URLs (Del.icio.us
[3]), blogs (Technorati [8]), people (Fringe [10]), research
papers (CiteULike [2]), slideshows (Slideshare [7]), and so
forth. Reference [1] provides links to several systems. Com-
panies are also trying to take advantage of the social tagging
phenomenon inside the enterprise [17, 9, 20, 5].

The increasing popularity of tagging systems has motivated
a number of studies [25, 22, 11, 18, 19] that mainly focus on
understanding tag usage and evolution. An experimental
study of tag usage in My Web 2.0 has shown that people
naturally select some popular and generic tags to label Web
objects of interest [25]. In general, three factors seem to
influence personal tagging behavior [22]: people’s personal
tendency to apply tags based on their past tagging behav-
iors, community influence of the tagging behavior of other
members, and the tag selection algorithm used by the sys-
tem for recommending “good” tags for a document to the
candidate tagger. Community influence has been shown in

2



experimental studies of Del.icio.us [11] and Flickr [19]. In
this paper, we take a first step towards understanding the
magnitude and implications of spamming in tagging sys-
tems. Although spamming is directly related to tag usage,
existing studies have not explicitly dealt with it. We believe
that this fact underlines the importance and uniqueness of
our study.

Harvesting social knowledge in a tagging system can lead
to automatic suggestions of high quality tags for an object
based on what other users use to tag this object (tag rec-
ommendation [25]), characterizing and identifying users or
communities based on their expertise and interests (user/
community identification [17]), building hierarchies of tags
based on their use and correlations (ontology induction [21]),
and so forth. We argue that leveraging social knowledge
may help fighting spam. The Coincidence-based query an-
swering method, which we will describe in Section , exploits
user correlations to that end. To the best of our knowledge,
only reference [25] takes into account spam by proposing a
reputation score for each user based on the quality of the
tags contributed by the user. Reputation scores are used for
identifying good candidate tags for a particular document,
i.e., for automatic tag selection. This problem is somehow
the inverse of ours, tag-based searching, i.e., finding good
documents for a tag.

A tagging system is comprised of resources, users and tags.
These elements have been studied independently in the past.
Link analysis exploits the relationship between resources
through links and is a well-researched area [16]. Analy-
sis of social ties and social networks is an established sub-
field of sociology [23] and has received attention from physi-
cists, computer scientists, economists, and other types of re-
searchers. Recently, the aggregation and semantic aspects of
tags have also been discussed [17, 25]. To what extent exist-
ing approaches may be carried over to tagging systems and,
in particular, help tackle tag spam is an open question. For
instance, link analysis has been suggested to help fight web
spam [14, 24] by identifying trusted resources and propagat-
ing trust to resources that are linked from trusted resources.
An alternative way is to identify spam pages [15]. However,
in a tagging system, documents are explicitly connected to
people rather than other documents. Moreover, due to this
association, tags have the potential to be both more compre-
hensive and more accurate than anchor-text based methods.
Alternatively, tagging systems could utilize the information
and trust in the social network, as in [12]. Again, they may
still need to take into account the links from users to re-
sources to reason about the importance and trust of users
and resources and make the system more resilient to spam.

3. TAGGING FRAMEWORK
In this section, we present our ideal tagging system model.
In this model, we assume that malicious tags and malicious
user behaviors are well defined. In particular, we assume
that users use a particular, fixed strategy for their tagging
and we provide models of user tagging behavior.

3.1 System Model
A tagging system is made up of a set D of documents (e.g.,
photos, web pages, etc), which comprise the system resources,
a set T of available tags, which constitute the system vocab-

ulary, a set U of users, who participate in the system by as-
signing tags to documents, and a posting relation P , which
keeps the associations between tags, documents and users.
We call the action of adding one tag to a document a post-
ing. Given our goals, we do not need to know the content of
the documents nor the text associated with each tag. All we
need is the association between tags, documents and users.
Therefore, all entities, i.e., documents, tags and users, are
just identifiers. We use the symbols d, t and u to denote a
document in D, a tag in T and a user in U , respectively. We
consider that a posting is a tuple [u, d, t] in P that shows
that user u assigned tag t to document d. Note that we have
no notion of when documents were tagged, or in what order.
Such information could be useful, but is not considered in
this paper.

To capture the notion that users have limited resources, we
introduce the concept of a tag budget, i.e., a limit on how
many postings a user can add. For simplicity, we assume
that any given user makes exactly p postings.

Each document d ∈ D has a set S(d) ⊆ T of tags that
correctly describe it. For example, for a photo of a dog,
“dog”, “puppy”, “cute” may be the correct tags, so they
belong to the set S(d). All other tags (e.g., “cat”, “train”)
are incorrect and are not in S(d). We are using strings
like “dog” and “cat” in the example above, but we are not
interpreting the strings, they are just tag identifiers for us.

3.2 Basic Tagging Model
To populate a particular instance of a tagging system, we
need to: (i) populate the S(d) sets and (ii) generate the
actual postings of users. The members of each S(d) are
randomly chosen from T . In order to populate the posting
relation, we need to define bad and good user tagging models
to simulate user tagging behavior. For our purposes, we
assume that there is a clear distinction between malicious
and good users and that both good and malicious users use
a particular, fixed strategy for tagging. That is, we consider
good users in set G and bad (malicious) users in set B, such
that U = G∪B and G∩B = ⊘. In the subsequent subsections,
we define several models of good and bad taggers.

Assuming that users randomly pick documents (uniform
document distribution) and tags (uniform tag distribution)
for their postings, we define the following random models
for good and bad users.

Random Good-User Model:
for each user u ∈ G do

for each posting j = 1 to p do
select at random a document d from D;
select at random a tag t from S(d);
record the posting: user u tags d with t.

Random Bad-User Model:
for each user u ∈ B do

for each posting j = 1 to p do
select at random a document d from D;
select at random an incorrect tag t from T − S(d);
record the posting: user u tags d with t.

3



The random bad user model assumes that each user acts
independently, that is, the bad users are “lousy taggers” but
not malicious. However, in some cases malicious users may
collude and mount more organized attacks. We consider a
particular form of targeted attack behavior assuming that
colluding users attack a particular document da with some
probability r. This model is defined as follows.

Targeted Attack Model:
select a particular document da from D;
select a particular incorrect tag ta from T − S(da);
for each user u ∈ B do

for each posting j = 1 to p do
with probability r record the posting:

user u tags da with ta;
else:

select at random a document d from D;
select at random an incorrect tag t from T − S(d);
record the posting: user u tags d with t.

Observe that for r = 0, the targeted attack model coincides
with the random bad user model. Also note that both good
and bad users may submit duplicate tags: Even if document
d already has tag t, a user can tag d with t (and even if
the first t tag was added by the same user). Some systems
may disallow such duplicate tags. We have experimented
with a no-duplicates-per-user policy but do not report the
results here (the conclusions are not significantly different).
Moreover, a person may sign in the system using different
usernames and express a number of duplicate opinions.

One can extend this basic tagging model we have presented
in many directions, e.g., changing the distributions that are
used to select tags, queries, documents, and so on; or by
introducing non-determinism in parameters such as the tag
budget or the size of the S(d) sets; or by defining addi-
tional good/bad user models. We have experimented with a
number of these variations. In the following subsection, we
discuss one interesting variation considering tag popularity.

3.3 Skewed Tag Distribution
People naturally select some popular and generic tags to
label web objects of interest [25]. For example, the word
“dog” is more likely to be used as a tag than “canine”, even
though they may be both appropriate. In a tagging system,
popular and less frequent tags co-exist peacefully. There-
fore, we consider that there is a set A ⊆ T of popular tags.
In particular, we assume that popular tags may occur in the
postings m times more often than unpopular ones. However,
when we generate the appropriate S(d) set per document d,
we disregard popularity, because an unpopular tag like “ca-
nine” has the same likelihood to be relevant to a document
as a popular tag like “dog”. So, members of each S(d) are
chosen randomly from T .

A Biased Good User selects a correct tag for a document d
taking into account tag popularity. For instance, for a cat
photo, the set of correct tags may be S(d)={“cat”, “feline”},
with “cat” being more popular than “feline”. Thus, “cat”
is more likely to be selected for a posting. This good user
model is defined as follows:

Biased Good-User Model:

for each user u ∈ G do
for each posting j = 1 to p do

select at random a document d from D;
select a tag t from S(d) w.r.t. tag popularity;
record the posting: user u tags d with t.

Then, for bad users, we consider three different models.

Biased Bad Users may try to disguise themselves by acting
like normal users, i.e., using more often popular tags and less
frequently unpopular ones, but for mislabeling documents.
This bad user model is defined below.

Biased Bad-User Model (The Imitator):
for each user u ∈ B do

for each posting j = 1 to p do
select at random a document d from D;
select a tag t from T − S(d) w.r.t. tag popularity;
record the posting: user u tags d with t.

Extremely Biased Bad Users use only popular tags for the
wrong documents. For instance, in a particular tagging sys-
tem, the tag “travel” may be very popular. This means that
this tag will also appear in tag searches often. Then, these
bad users may use this tag to label particular documents
in order to make them more “viewable.” This behavior is
captured by the following model.

Extremely Biased Bad-User Model (The Exploiter):
for each user u ∈ B do

for each posting j = 1 to p do
select at random a document d from D;
select a popular tag t from T − S(d);
record the posting: user u tags d with t.

Outlier Bad Users use tags that are not very popular among
good users. For instance, in a publications tagging system,
these users may try to promote their pages selling particular
products, so they may use tags such as “offer” or “buy”,
which are not popular among good users. This model is
defined as follows.

Outlier Bad-User Model (The Atypical):
for each user u ∈ B do

for each posting j = 1 to p do
select at random a document d from D;
select an unpopular tag t from T − S(d);
record the posting: user u tags d with t.

4. TAG SEARCH
In a tagging system, users may be able to query for resources
that are annotated with a particular tag. Given a query
containing a single tag t, the system returns documents as-
sociated with this tag. We are interested in the top K docu-
ments returned, i.e., documents contained in the first result
pages, which are those typically examined by searchers. So,
although all search algorithms can return more than K re-
sults, for the purposes of our study, we consider that they
generate only the top K results.

4



4.1 Existing Search Models
The most commonly used query answering schemes are the
Boolean (e.g., Slideshare [7]) and the Occurrence-based (e.g.,
Rawsugar [6]). In Boolean searches, the query results con-
tain K documents randomly selected among those associated
with the query tag, i.e.,:

Boolean Search:
return random K documents assigned t in P .

In Occurrence-based searches, the system ranks each doc-
ument based on the number of postings that associate the
document to the query tag and returns the top ranked doc-
uments. This search model is described as follows:

Occurrence-Based Search:
rank documents by decreasing number of
postings in P that contain t;
return top K documents.

We have also experimented with variants of this ranking
model, such as ordering documents based on the number
of a tag’s occurrences in a document’s postings divided by
the total number of this document’s postings, i.e., based
on tag frequency. In this paper, we consider only the ba-
sic occurrence-based ranking scheme, since our experiments
have shown that variants of this model exhibit a similar be-
havior with respect to spamming.

4.2 Coincidences
Common search techniques in tagging systems do not take
into account spamming. In particular, in Boolean search,
a document that has been maliciously assigned a specific
tag may be easily included in the results for this tag. The
underlying principle of Occurrence-based search is that a
document is relevant to a tag depending on the number of
postings that claim so. Although this seems to be quite
reasonable and to make searches more “spam-proof”, still
bad users may easily promote their documents to the top
results as the following example shows.

Example. Consider the following postings:

user document tag

1 d1 a
2 d1 a
3 d1 b
4 d1 b
5 d1 b
3 d2 a
3 d2 c
4 d2 c

We assume that correct tags for document d1 and d2 belong
to the sets {b, c} and {a, c}, respectively. Different users may
assign the same tag to the same document. For instance,
users 3, 4 and 5 have all assigned tag b to document d1.
Since we use a small number of documents and postings
in order to keep the example compact, let’s assume that the
system returns the top K=1 document for a query tag. Users

1 and 2 are malicious, since tag a is not a correct tag for d1,
but the system does not know this information. For tag a,
based on occurrences, the system will erroneously return d1.

The example above shows that the raw number of postings
made by users in a tagging system is not a safe indication of
a document’s relevance to a tag. Postings’ reliability is also
important. We observe that user 3’s posting that associates
d2 with tag a seems more trustable than postings made by
users 1 and 2, because that user’s postings are generally
in accordance with other people’s postings: the user agrees
with user 4 in associating d2 with tag c and with users 4 and
5 in associating d1 with b.

Based on the above intuition, we propose an approach to
tag search that takes into account not only the number of
postings that associate a document with a tag but also the
“reliability” of taggers that made these postings.

In order to measure the reliability of a user, we define the
coincidence factor c(u) of a user u as follows:

c(u) =
∑

d,t:∃P(u,d,t)

∑

ui∈U

ui 6=u

| P(ui, d, t) | (1)

where P(ui, d, t) represents the set of postings by user ui

that associate d with t.

Example (cont’ed). The coincidence factors for the users
are: c(1) = 1, c(2) = 1, c(3) = 3, c(4) = 3 and c(5) = 2.

The coincidence factor c(u) shows how often u’s postings
coincide with other users’ postings. If c(u)=0, then u never
agrees with other people in assigning tags to documents.
Our hypotheses is that the coincidence factor is an indication
of how “reliable” a tagger is. A high factor signifies that a
user agrees with other taggers to a great extent; thus, the
user’s postings are more “reliable.” The lower c(u) is, the
less safe this user’s postings become.

Given a query tag t, coincidence factors can be taken into
account for ranking documents returned for a specific query
tag. Then, the rank of a document d with respect to t is
computed as follows:

rank(d, t) =

∑

∀u∈users(d,t) c(u)

co

(2)

where users(d, t) is the set of users that have assigned t to
d and co is the sum of coincidence measures of all users.
The latter is used for normalization purposes so that a rank
ranges from 0 to 1.

Example (cont’ed). The sum of coincidence measures of all
users is co = c(1) + c(2) + c(3) + c(4) + c(5) = 10. Then, the
document ranks with respect to each of the posted tags are:

rank(d1, a) = (c(1) + c(2))/co = 2/10

rank(d1, b) = (c(3) + c(4) + c(5))/co = 8/10

5



rank(d2, a) = c(3)/co = 3/10

rank(d2, c) = (c(3) + c(4))/co = 6/10.

In words, a document’s importance with respect to a tag
is reflected in the number and reliability of users that have
associated t with d. A document is ranked high if it is tagged
with t by many reliable taggers. Documents assigned a tag
by few less reliable users will be ranked low.

Example (cont’ed). For tag a, document d2 gets the highest
rank, rank(d2, a) = 3/10 compared to rank(d1, a) = 2/10,
and comprises the system answer.

5. TRUSTED MODERATOR
In order to reduce the impact of bad postings, a trusted mod-
erator can periodically check user postings to see if they are
“reasonable.” This moderator is a person that can “concep-
tually” identify good and bad tags for any document in the
collection. Search engine companies typically employ staff
members who specialize in web spam detection, constantly
scanning web pages in order to fight web spam [14]. Such
spam detection processes could be used in tagging systems
too. The moderator examines a fraction f of the documents
in D. For each incorrect posting found, the moderator could
simply remove this posting. But she can go a step further
and remove all postings contributed by the user that made
the incorrect posting, on the assumption that this user is
bad. The moderator function could be described as follows:

Trusted Moderator:
let Df ⊆ D containing a fraction f of D’s documents;
for each document d ∈ Df do

for each incorrect posting [u, d, t]
eliminate all entries [u, *, *].

6. SPAM FACTOR
We are interested in measuring the impact of tag spam on
the result list. For this purpose, we define a metric called
SpamFactor(t) as follows. Given a query tag t, the system
returns a sequence DK of K documents ranked, i.e.,:

DK = [d1, d2, ...dK]
where rank(di−1, t) ≥ rank(di, t), 2 ≤ i ≤ K.

Then, SpamFactor(t) for tag t is given by the formula:

SpamFactor(t) =

∑

∀di∈DK
w(di) ∗

1
i

HK

(3)

where

w(di) =

{

1 if di is a bad document;
0 if di is a good document.

and HK is the Kth harmonic number, i.e., it is the sum of
the reciprocals of the first K natural numbers, i.e.,

HK =
∑

i∈[1..K]

1

i
(4)

In what follows, we explain each part of the definition above.
A document d is “bad” if it is included in the results for tag

query t, but t is not a correct tag for d, i.e., t /∈ S(d). Spam-
Factor measures the spam in the result list introduced by
bad documents. This is captured by the factor w(di) in the
formula, which returns 1 if di is a bad document and 0 oth-
erwise. SpamFactor is affected by both the number of bad
documents and their position in the list. The higher the
position of a bad document in the result list is, the higher
the numerator in formula (3) is. The maximum numerator
value is 1 + 1

2
+ . . . + 1

K
. This is the Kth harmonic number

and it is used as denominator in the calculation of Spam-
Factor in order to normalize values between 0 and 1. Higher
SpamFactor represents greater spam in the results. In order
to illustrate the significance of different SpamFactor values,
we consider the following example.

Example. Consider the following postings:

user document tag

1 d1 a
1 d1 c
3 d1 c
2 d1 a
2 d1 b
1 d2 a
2 d2 a
3 d2 a
3 d2 c
4 d2 c
3 d3 a
6 d3 a
1 d3 b
5 d3 b
6 d3 b
4 d4 b
5 d4 b
5 d4 c
5 d5 a
5 d5 c
1 d5 b

The sets of correct tags for the documents in this example
are: S(d1) = {a, b, c}, S(d2) = {a, c, d}, S(d3) = {a, c},
S(d4) = {b} and S(d5) = {b}. We assume that the system
returns the top K = 4 documents for a query tag based on
the number of occurrences. For query tag a, the system
returns d2, d1, d3 and d5 in that order. Only d5 is a bad
document and it is at the bottom of the result list. So, for
this tag, the spam introduced by malicious users is limited.
This is indicated by the low value of SpamFactor, which
is SpamFactor(a) = 0.12. The results for query tag b are
d3, d4, d1 and d5. In this case, d3 is a bad document, and
it is ranked first. This fact results in higher SpamFactor,
i.e., SpamFactor(b) = 0.48. Finally, for tag c, the system
returns d1, d2, d4 and d5. There are two bad documents
in the results, i.e., d4 and d5, but these are found at the
bottom of the results. So, it is SpamFactor(c) = 0.28, i.e.,
it is between SpamFactor(a) and SpamFactor(b).

7. EXPERIMENTS
7.1 Experimental Framework

6



Table 1: Parameters used in Experiments

Symbol Description Value
|D| number of docs. in D 10,000
|T | size of the vocabulary T 500
|U| number of users in U 1,000
|B| number of malicious users 10%
p tag budget per user 10
s size of S(d) 25
f frac. docs. checked by moderator 5%
K number of docs. in results 10
r probability of targeted attack 0
|A| number of popular tags 0

We have developed a simulator in Java that simulates the
behavior of a tagging system based on the model described
in this paper. We have conducted many experiments un-
der several modifications of the parameters involved. Table
1 summarizes all parameters considered and their default
values.

The objectives of our study can be summarized in the follow-
ing: (a) understand the magnitude of tag spam problem and
the weaknesses of existing systems, (b) evaluate the effort
and effectiveness of a moderator for eliminating spam, (c)
evaluate the effectiveness of safeguards we described against
the types of malicious attacks we study.

This section is organized into four parts: The first one illus-
trates how spam factor changes depending on the number
of bad documents and their positions in the results. The
second one describes the impact of random attacks on tag
searches and the effectiveness of a moderator. The third
one evaluates the severity of targeted attacks. The last part
studies malicious attacks that exploit tag popularity in the
system.

7.2 SpamFactor Variation
In the results that follow we will encounter a variety of spam
factor values. In order to get a sense of how these factors
translate to the “desirability” of an answer, we illustrate
how spam factor changes depending on the number of bad
documents and their positions in the results. Figure 1 shows
SpamFactor for a top K=10 result list. For instance, hav-
ing two documents at the top two positions in the results
(SpamFactor = 0.51) is worse than having four documents
in the last positions (SpamFactor = 0.163). Even for the
same number of bad documents, SpamFactor depends on the
document positions in the results. For instance, SpamFactor
for results containing three bad documents ranges approxi-
mately from 0.11 to 0.62. SpamFactor ≤ 0.1 indicates that
at most two bad documents exist at low positions in the re-
sults, which may be considered as tolerable spam. Greater
values of SpamFactor indicate the existence of more bad
documents in higher positions in the list. Therefore, such
values will be considered excessive in our analysis.

7.3 Random Attacks
For these experiments, we have used a set of 1, 000 tag
queries that follow a uniform distribution.

7.3.1 Existing Tag Searches

Figure 1: Spam Factor Variation

Figure 2: Impact of the number of bad users

In this subsection, we simulate and study how vulnerable
existing tag searches may be to malicious attacks.

Number of malicious users |B|. Figure 2 illustrates the
effect of varying the number of bad users in the system
on Boolean and Occurrence-based tag searches. SpamFac-
tor grows linearly, because the number of bad postings in-
creases linearly with |B| while the number of good postings
decreases. As |B| approaches |U|, all algorithms converge
because the system gets overloaded with bad documents.
For presentation reasons, Figure 2 shows SpamFactor for
|B| ranging up to 20% of |U|.

In subsection 7.2, we argue that SpamFactor less than 0.1
is “tolerable” in the sense that the spam documents will be
few and towards the bottom of the result list. Thus, looking
at Figure 2, we conclude that for Boolean and Occurrence-
based searches, a very small percentage of malicious users
(e.g., < 2% of |U|) with limited tagging power (p=10) as
compared to the document collection size (D=10,000) does
not bias results significantly. Excessive SpamFactor is ob-
served for growing bad user populations (> 12%).

Consequently, a moderate number of bad users in the sys-
tem may significantly degrade results especially for Boolean
searches. This observation is critical because in practice
many users may accidentally assign incorrect tags (lousy
taggers), therefore unintentionally generating spam. The
“good news” are that SpamFactor increases linearly, but
this is due to the fact that users pick randomly documents
and tags and they do not collude.

7



Figure 3: Impact of the tag budget

Tag budget per user p. In the previous experiment, users
had limited tag budget. The current one shows how tag
search results are affected by modifying tag budget from 2
to 500 for a moderate bad user population (|B| = 10% of the
overall user population). Interestingly, as Figure 3 shows,
Boolean and Occurrence-based results are not affected in
the same way: SpamFactor increases for the former and
decreases for the latter for reasons explained below.

In this experiment, there are |D| = 10, 000 documents and
|T | = 500 possible tags. The number of correct tags per
document is s=25. Consequently, there are 250,000 possible
correct < d, t > pairs for good users to use and 4,750,000
possible bad pairs as bad users’ options. Since we assume
that tags are used following a uniform distribution, the prob-
ability that a good pair is selected is 1/250,000, while the
probability that a bad pair is selected is 1/4,750,000. There-
fore, the chance that two good users will choose the same
good pair is much higher than that of two bad users select-
ing the same bad pair. This means that there will be more
duplicate good < d, t > pairs than bad pairs. This fact helps
Occurrence-based search select good documents at the top
of the result list. As the tag budget increases, more often
users will pick the same good pair, thus the number of occur-
rences of good pairs increases causing more good documents
to surface in the results and Occurrence-based SpamFactor
to further decrease. On the other hand, Boolean Spam-
Factor increases with tag budget due to random generation
of results. With tag budget growing, distinct bad postings
proliferate, thus the probability that a bad document will
be randomly picked gets higher.

Consequently, active users are beneficial only for Occurrence-
based searches because they can provide more evidence on
the goodness of documents.

Size of the vocabulary |T |. Figure 4 shows SpamFactor
as a function of the vocabulary size. As |T | increases and the
overall tagging power of good users is constant, the number
of tags in the system for which there will be only incorrect
postings grows. Given that user queries in the experiment
contain random tags, the number of “bad” tag occurrences
in the query set will grow. Based on the above, SpamFac-
tor for Occurrence-based searches deteriorates and tends to
converge to Boolean SpamFactor. The latter is not sub-
stantially affected, because Boolean search randomly picks
postings that match a query tag. Hence, since the total

Figure 4: Impact of the vocabulary size

number of bad postings in the system does not change with
|T |, there is no substantial difference in SpamFactor.

Consequently, occurrence-based tag searches with unrestricted
vocabulary are more vulnerable to spam.

Number of users |U|. This experiment measures Spam-
Factor as a function of the number of users in the system,
ranging from 200 to 4200. Since the percentage of bad users
is constant, one might not expect significant variation in
SpamFactor. Figure 5 reveals a different situation. For
a “small” number of users, both Boolean and Occurrence-
based results degrade as more users enter the system. For
example, with 200 users each making 10 postings, there will
be only 2,000 postings, while the number of documents is
10,000. Given the small number of postings, the actual pool
of documents that match a particular query tag is under-
sized. Hence, good candidate documents for the result list
will be rarer and bad documents will also surface. As |U| in-
creases, so does the number of malicious postings, increasing
the number of bad documents in the results. Also, few, if
any, duplicate < d, t > pairs exist in a small number of post-
ings, making Occurrence-based search to behave similarly to
Boolean search. Therefore, the initial parts of Boolean and
Occurrence-based SpamFactor curves almost coincide.

As |U| keeps increasing, good re-occurring postings multi-
ply. There is a point in the figure (|U| = 600), where
a sufficient number of (re-occurring) postings is collected.
From this point forward, Occurrence-based results increas-
ingly get better. A second interesting point in the figure is
around |U| = 2400, where SpamFactor returns to its start-
ing value (∼ 0.07), thus the effect of insufficient number of
postings in the system is canceled. In order to find this
turning point, given that the percentage of good users in
the system is g = 90%, a rule of thumb is the following:
g ∗ |U| ∗p ≥ 2∗ |D|. In words, the estimated number of good
postings in the system should be at least equal to twice the
number of documents. Boolean results significantly degrade
as more users enter in the system, because the probability
that a bad document will be picked gets higher.

Consequently, enlarging the system’s user base is good for
Occurrence-based searches because more users can help iden-
tify good documents. As a rule of thumb, the estimated
number of good postings should be at least twice the number
of documents in the system. This lower bound is required

8



Figure 5: Impact of the number of users

in order to cancel side-effects due to sparse postings.

Number of documents |D|. Figure 6 shows SpamFac-
tor for |D| ranging up to 15,000. The number of bad and
good postings is constant throughout the experiment. We
observe that SpamFactor is initially very high. The reason
is that for relatively small document collections compared to
the number of malicious users, e.g., 100 documents and 100
bad users, and using the random bad user model, it is more
likely that bad users will have most documents spammed.
Thus, it is very probable that a document will be picked
based on bad posting evidence. As |D| grows, the influence
of malicious users is confined, because good and bad post-
ings are uniformly distributed over more documents. Since,
good postings outnumber malicious ones (9,000 vs.1,000),
it becomes more probable to select a document based on
good postings. For this reason, Boolean SpamFactor de-
creases, initially very quickly then slowly, until it stabilizes.
Occurrence-based SpamFactor exhibits the same initial be-
havior but then slowly increases and converges to Boolean
SpamFactor. The reason for this degradation is that fewer
re-occurring good postings are generated with |D| growing.
So, the minimum SpamFactor based on occurrences is ob-
served at around |D| = 600. Given that the percentage of
good users in the system is g = 90%, a rule of thumb is
that g ∗ |U| ∗ p ≥ 15 ∗ |D|. In words, in order to minimize
SpamFactor, there should be a sufficiently large number of
good postings per document (greater than 15).

Consequently, a balance must be kept: Small document col-
lections, compared to the set of users, are more susceptible
to spamming because it is easier to assign bad tags to a
greater percentage of documents in the collection. On the
other hand, it is difficult to gather duplicate good postings
for large document collections.

Size of S(d) s. In the real world, the set of correct tags per
document is usually just a very small subset of the entire vo-
cabulary and cannot be freely varied to an arbitrarily large
set; there are usually just few words that properly describe
a document and the rest of other words in dictionary are
less pertinent. In this experiment (Figure 7), s varies be-
tween 10 and 200. Given s correct tags and |D| documents,
there are s ∗ |D| possible correct < d, t > pairs. Increasing
s causes the number of possible correct < d, t > pairs to
increase and, since |T | is constant, the number of possible
bad pairs decreases. Since, we assume that tags are used

Figure 6: Impact of the number of documents

Figure 7: Impact of the number of correct tags

following a uniform distribution, the probability that a par-
ticular good pair is selected by two good users shrinks. This
fact explains why Occurrence-based SpamFactor increases
and approaches Boolean SpamFactor. On the other hand,
Boolean SpamFactor slowly decreases because the number
of distinct bad pairs decrease, thus the probability that a
bad document will be randomly picked is lower.

Consequently, collections of documents with well-defined se-
mantics, i.e., documents that can be correctly described us-
ing a small number of tags, are more tolerant to spam.

7.3.2 Trusted Moderator
In the subsequent paragraphs, we present experimental re-
sults regarding the effort and effectiveness of a trusted mod-
erator supporting a system that uses either Boolean (Boolean+
TM) or Occurrence-based searching (Occurrence + TM).

Fraction of documents examined f . Figure 8 presents
SpamFactor as a function of the percentage f of documents
examined by the moderator, for f ranging from 1% to 50%
and |B| = 10%. We observe that spam postings are com-
pletely removed from the system by scanning almost half the
document collection, but this is impractical. A substantial
reduction in spam is achieved after 10% of the documents
have been examined. At this point, SpamFactor is around
0.04. Referring to Figure 1, this value indicates the existence
of only one bad document in a low position in the results.
The gain of having a moderator decreases with f growing.
For example, increasing f from 10% to 20% achieves a slower
reduction in SpamFactor than increasing f from 1% to 10%.
This means that the moderator needs to invest increasingly

9



Figure 8: f Impact on Moderator

Figure 9: Impact of the number of bad users on

Moderator

more effort in order to achieve a steady improvement on
SpamFactor. In other words, as bad postings are eliminated
from the system, it becomes more difficult to discover the
remaining ones.

Consequently, a trusted moderator greatly helps reducing
the spam in the system but it takes a significant effort in
order to achieve a positive impact. Also, aiming at pro-
gressively better results means that the moderator needs to
place increasingly more effort.

Number of malicious users |B|. Figure 9 shows that,
with the help of a moderator, SpamFactor increases only
sub-linearly with the number of bad users. The modera-
tor’s intervention results in the removal of the same bad
users from the system, so the new SpamFactor curves for
both Boolean and Occurrence-based searches almost coin-
cide. Interestingly, with |B| growing, the moderator achieves
proportionally the same improvement in SpamFactor. This
is due to the fact that based on the random user models, bad
postings are uniformly distributed to all documents. Exam-
ining the same percentage of documents, the moderator can
identify approximately the same fraction of bad postings.

Consequently, the moderator’s relative effectiveness is inde-
pendent of the number of bad users in the system.

Tag budget per user p. Figure 10 shows SpamFactor
for the moderated and unmoderated results as a function
of tag budget. The use of a moderator has a dramatic im-
pact on Boolean searches: although SpamFactor for the un-

Figure 10: Impact of the tag budget on Moderator

moderated searches deteriorates with tag budget, moder-
ated SpamFactor improves. In addition, the gain of having
a moderator for Boolean searches grows with tag budget.
This is due to the fact that when users contribute more
tags, more bad postings can be found for the same fraction
of documents.

Consequently, the moderator’s impact is not always the same
on all search schemes.

Number of users |U|. Figure 11 shows the impact of vary-
ing |U| on SpamFactor when a trusted moderator is used.

For Boolean results, the moderator can cut SpamFactor al-
most by a factor of 2. This improvement does not change
with the number of users in the system, because with |U|
growing, bad postings are uniformly distributed over all doc-
uments. Thus, the number of bad postings coming from dif-
ferent users found in the same fraction of documents does
not change significantly. This effect is different from what
we observed for the moderated Boolean results in Figure 10,
despite the fact that both |U| and p affect the posting re-
lation in the same way: increasing either of them produces
more postings. However, with p growing, once a moderator
finds a bad posting, then a possibly larger number of bad
postings is eliminated at once by removing the correspond-
ing tagger.

On the other hand, the moderator’s relative effectiveness for
Occurrence-based searches slowly decreases with |U|. The
reason is that, after a certain point in the figure, unmoder-
ated Occurrence-based results greatly benefit from the in-
creasing number of users in the system thus reducing the
gap between the moderated and unmoderated curves.

Consequently, the moderator’s relative effectiveness is not
affected by the number of users in the system for Boolean
searches but is limited for Occurrence-based searches.

Number of documents |D| and size of S(d) s. Fig-
ures 12 and 13 show the effect of growing collection size and
number of correct tags per document, respectively, on the
moderator effectiveness. The shape of the curves for the
moderated results are similar to the curves for the unmod-
erated results, but at a lower position (lower SpamFactor).

Consequently, the moderator’s relative effectiveness is not

10



Figure 11: Impact of the number of users on Mod-

erator

Figure 12: Impact of the number of documents on

Moderator

affected by the number of documents in the system or the
number of correct tags per document.

7.3.3 Coincidences
In this subsection, we present experimental results show-
ing the effectiveness of using coincidences of postings for
reducing spam impact on search results. Since our previous
experimental findings have shown that Boolean searches do
not cope well with spam, in the following figures, we com-
pare Coincidence-based vs. Occurrence-based results with
and without using a moderator. We assume a reasonable
amount of effort, i.e., that the moderator examines 500 doc-
uments (f = %5).

Figure 13: Impact of the number of correct tags on

Moderator

Figure 14: Impact of the number of bad users on

Coincidences

Number of malicious users |B|. Figure 14 illustrates
SpamFactor as a function of the number of bad users in the
system. Using coincidences works substantially better than
using occurrences, cutting spam by a factor of 2. The reason
behind this improvement is that coincidence factors are com-
puted taking into account not only the postings that asso-
ciate a document to a query tag, but also information about
the users that have made these postings. Thus, they exploit
a greater number of postings in order to generate results
for a tag. This leads to more informed decisions regarding
which documents to return and justifies low Coincidence-
based SpamFactor. However, as bad users proliferate, effec-
tiveness of this scheme also deteriorates. A high coincidence
factor could actually correspond to a bad user. Still, using
coincidence factors retains its factor-of-2 advantage.

Consequently, relying not only postings that associate a doc-
ument to a query tag but also considering information about
the users that have made these postings can help reduce
substantially spam impact. Of course, when bad users pro-
liferate all countermeasures become gradually ineffective.

Tag budget per user p. Figure 15 shows that Coincidence-
based SpamFactor rapidly decreases with p increasing. As
we have explained in Section 7.3.1, when users provide more
postings in the system, duplicate good postings accumu-
late, helping Occurrence-based searches to generate better
results. The difference in SpamFactor between Occurrence-
based and Coincidence-based searches lies in the way they
exploit this increase. The former counts the number of
tag occurrences in a document’s postings in order to de-
cide whether a document will be included in the results.
This number slowly increases as postings are uniformly col-
lected for all documents. On the other hand, the coincidence
factors are computed by taking into account common post-
ings over the whole collection. Thus, increasing tag budget
boosts coincidence factors.

Consequently, when users contribute many tags in the sys-
tem, it becomes easier to discover more user correlations for
judging tagging behavior.

Size of the vocabulary |T |. Figure 16 shows that Coincidence-
based SpamFactor increases at a slower rate than Occurrence-
based SpamFactor. This is due to the fact that coincidences
take into account not only local information regarding the

11



Figure 15: Impact of the tag budget on Coincidences

Figure 16: Impact of the vocabulary size

query tag, but also global information regarding the users
that have made the postings.

Consequently, coincidence-based tag searches with unrestricted
vocabulary are more vulnerable to spam.

Number of users |U|. Figure 17 shows SpamFactor as
a function of the number of users in the system. We have
discussed in Section 7.3.1 that for relatively small user pop-
ulations, i.e., (|U| < 600), there are not many duplicate
postings. That is the reason we have seen Occurrence-based
results initially degrading. In this case, coincidence fac-
tors for all users will be almost the same, since each user
agrees with no one else. Therefore, Coincidence-based re-
sults demonstrate a stable SpamFactor for small user pop-
ulations. As more users enter the system, more common
good postings are generated and coincidence factors of good
users are boosted. This effect explains why subsequently
Coincidence-based SpamFactor decreases faster than Occurrence-
based one.

Consequently, several user correlations can be discovered
when there is a sufficiently large number of users and post-
ings in the system. As a rule of thumb, the number of post-
ings should be at least twice the number of documents in the
system (both for Occurrence-based and Coincidence-based
searches).

Number of documents |D|. Figure 18 plots SpamFactor
as a function of the document collection size. We observe
that initially both Coincidence-based and Occurrence-based
SpamFactor are high but improve very quickly. The ex-

Figure 17: Impact of the number of users on Coin-

cidences

Figure 18: Impact of the number of documents on

Coincidences

planation is the same as the one given for Figure 6, so we
do not repeat it here. The interesting part of this figure is
that, after this initial phase, a different situation arises from
what we have observed in previous figures: Coincidence-
based SpamFactor degrades faster than Occurrence-based
SpamFactor. The reason for this degradation is that fewer
re-occurring good postings are generated with |D| grow-
ing. This degradation has a greater effect on the coinci-
dence factors that take into account more postings than
Occurrence-based search for generating an answer. The
minimum SpamFactor based on coincidences is observed at
around |D| = 800. Given that |U| = 1, 000, the percentage
of good users in the system is g = 90% and p = 10, a rule of
thumb is that g∗|U|∗p ≥ 11∗|D|. Thus, for coincidences, in
order to minimize SpamFactor, there should be a sufficient
number of good postings per document, but the lower bound
is smaller than the bound for occurrences (see Section 7.3.1
).

Consequently, we have seen that a sufficient number of good
postings is required in order to minimize spam impact. How-
ever, using coincidences this number can be significantly
lower than when using occurrences.

Size of S(d) s. Figure 19 shows the effect of varying the
number of correct tags per document for Coincidence-based
SpamFactor. We observe that after a point the coincidence
factor for each user is no longer a good indicator of good
user tagging behavior because the number of re-occurring
postings decreases with s growing. Using a trusted mod-

12



Figure 19: Impact of the number of correct tags on

Coincidences

erator to filter out some bad postings and then using the
Occurrence-based algorithm gives better results. Only mod-
erated coincidence-based SpamFactor is the lowest.

Consequently, it is easier to discover correlations among post-
ings for collections of documents with well-defined seman-
tics, i.e., documents that can be correctly described using a
small number of tags.

7.3.4 Targeted Attacks
In this subsection, we study the effect of colluding users.
Figure 20 shows SpamFactor as a function of the probabil-
ity r that bad users attack the same document (Targeted at-
tack model). If r = 0, then we observe the random bad user
tagging behavior, while r = 1 means that all users attack
the same document. With r growing, targeted bad postings
proliferate resulting in an amplified SpamFactor for the tag
used in the targeted attacks. However, the number of bad
postings for the rest of the documents and tags is reduced.
Consequently, Boolean and Occurrence-based SpamFactor
decrease with r. Coincidence-based SpamFactor initially de-
grades fast with r, because coincidence factors of bad users
are boosted, which means that all bad postings (apart from
the targeted attack ones) are promoted in searches. How-
ever, as r increases, the number of different bad postings
decreases, so the influence of bad users is restricted to fewer
documents and tags. Therefore, Coincidence-based Spam-
Factor starts shrinking after a certain point.

Consequently, under targeted attacks, there is little one can
do to protect searches for the attacked tag, but all other
searches actually fare better. Moreover, we see that while
using coincidences was a good strategy with “lousy but not
malicious” users, it is not such a good idea with colluding
bad users. However, with focused attacks, it may be eas-
ier for a moderator to locate spammed documents. For in-
stance, the moderator may examine documents that have an
unusually high number of tags, or postings by users with un-
usually high coincidence factors. We expect such a focused
moderator approach to work very well in this scenario.

7.3.5 Attacks Based on Tag Popularity
In this subsection, we study how vulnerable tag searches are
to malicious attacks that exploit tag popularity in a tagging
system. We studied all meaningful combinations of good and
bad user models: (Good = random, Bad = random), (Good

Figure 20: Impact of targeted attacks

= biased, Bad = random), (Good = biased, Bad = biased),
(Good = biased, Bad = extremely biased) and (Good =
biased, Bad = outlier). Also, we considered two different
searcher models: A naive searcher may use any tag in his
searches. We simulate this behavior with a set of random
queries. A community member may query popular tags more
often. We simulate this behavior by a set of queries that
follow the biased tag distribution.

Number of popular tags |A|. For each combination of
good/bad user models, we study the effect of varying |A| on
SpamFactor. We consider that popular tags may occur in
the postings m = 2 times more often than unpopular ones.
Figure 21 summarizes the corresponding experimental re-
sults. Random good and bad user models do not generate
popular tags and thus do not depend on |A|. Moreover, for
|A| = 0% and |A| = 100%, the biased tag distribution be-
comes random. Thus, the biased (good/bad) user models
become random (good/bad) user models. Therefore, Spam-
Factor curves corresponding to all combinations but the ones
that involve the Extremely Biased and the Outlier bad user
models coincide at these two points. For the Extremely Bi-
ased behavior, SpamFactor is 0 for |A| = 0%, because there
are no popular tags to use in bad postings. For the Outlier
model, SpamFactor is 0 for |A| = 100%, since there are no
unpopular tags to use.

Some general observations can be made on Figure 21. Com-
paring Figures 21(a) and 21(c), corresponding to random
searches, to Figures 21(b) and 21(d) for biased searches,
we observe that random searches are more vulnerable to
spam. In particular, for random searches, random and out-
lier malicious attacks are the worst sources of spam. More-
over, comparing Figures 21(a) and 21(b), corresponding to
Occurrence-based searches, to Figures 21(c) and 21(d) for
Coincidence-based searches, we observe that: For any com-
bination of user models, using coincidences cuts SpamFactor
almost by a factor of 2.

Let us discuss each bad user model in more detail.

For the Outlier model, we observe that for all types of searches
except for community searches based on occurrences (Figure
21(b)), SpamFactor curves are similar. In particular, with
|A| growing, two conflicting phenomena take place: On one
hand, unpopular tags receive increasingly more spam post-
ings. This results in re-occurring bad postings multiplying,

13



and thus in SpamFactor increasing. This effect is more ob-
servable in occurrence-based searches than in coincidence-
based searches, due to the fact that the former count only
the mere number of postings that match a document to a
tag. On the other hand, with |A| growing, unpopular tags
become fewer. Consequently, spam is confined to a smaller
set of tags, while the “healthy” tags proliferate. These two
conflicting phenomena reach a balance point, where max-
imum SpamFactor is observed. From this point forward,
SpamFactor decreases to zero. In comparison, SpamFactor
for community occurrence-based searches always decreases,
because these searches consider spam postings only when
unpopular tags are queried and this happens less often as
|A| increases.

Regarding the Random bad user model, when good users
are biased, we observe the following: As biased good users
mostly use popular tags, for small |A|, there will be a large
number of re-occurring good postings. As |A| increases,
fewer re-occurring good postings are generated causing Spam-
Factor to increase. At the same time, as biased good users
mostly use popular tags, for small |A|, a large subset of tags
may be extensively misused by bad users. As |A| increases,
the size of this subset decreases. Thus, the influence of bad
users is confined and eventually SpamFactor starts to de-
crease. Therefore, since random searches may contain any
tag, SpamFactor initially increases and then decreases with
|A| (Figures 21(a) and 21(c)). For biased searches, the level
of spam is the same irrespectively of the number of popular
tags in the system (Figures 21(b) and 21(d)).

The combination of good and bad biased tagging behaviors
has a similar impact on a tagging system as the combina-
tion of random tagging behaviors. On the other hand, as
expected, Extremely Biased users generate more spam as
|A| grows, since their postings are distributed over more
tags. However, with |A| approaching 100%, the Extremely
Biased model resembles more the random bad model and
thus the corresponding SpamFactors converge. Moreover,
coincidence factors prove more spam tolerant, since Spam-
Factor grows sub-linearly.

Overall, the existence of popular tags provides many possi-
bilities for malicious users to misuse tags and spam searches.
Naive or first-time users are most vulnerable. Random noise
in postings as well as misused unpopular tags constitute the
worst sources of spam for naive searches. Bad users mim-
icking good users and using popular tags for their postings
can have a smaller impact on the system, in the worst case
being as disruptive as lousy taggers (given a moderate num-
ber of bad users in the system). Community members may
be less confused by spam postings, since they more often
query tags contributed by their community. In any case, us-
ing user coincidence factors can overall help reducing spam
under different bad user attacks.

8. CONCLUSIONS AND FUTURE WORK
Given the increasing popularity of tagging systems and the
increasing danger from spam, we have proposed an ideal
tagging system where malicious tags and malicious user be-
haviors are well defined, and we described and studied a va-
riety of query schemes and moderator strategies to counter
tag spam. We have seen that existing tagging systems, e.g.,

(a) Occurrence-based naive searches

(b) Occurrence-based community searches

(c) Coincidence-based naive searches

(d) Coincidence-based community
searches

Figure 21: Impact of the number of popular tags

14



ones using the number of occurrences of a tag in a docu-
ment’s postings for answering tag queries, are threatened
not only by malicious users but also by “lousy” ones. A
countermeasure like our coincidences algorithm can be de-
feated by focused spam attacks. As a countermeasure for
that situation, we proposed a focused moderator to detect
the focused attacks. This is just an example of the measure-
counter-measure battles that must be constantly fought to
combat spam. Undoubtedly, the bad guys will counter-
attack this proposal, and so on. We hope that the model
we have proposed here, and the results it yields, can provide
useful insights on how to wage these ongoing “spam wars.”
We also believe that our approach helps one quantify (or at
least bound) the dangers of tag spam and the effectiveness
of counter-measures.

There are also other interesting aspects of the problem and
possible future directions to look into. For instance, if tags
are related, e.g., there is a tag hierarchy, can we devise smart
algorithms that take into account tag relationships? If we
track the time at which postings are made, can we better
deal with spammers? For example, would it help to give
more weight to recent tags as opposed to older tags? Also,
if users can also use negative tags, e.g., this document is not
about “cars”, what would be the impact on searches?

9. ACKNOWLEDGEMENTS
We would like to thank Manuel Deschamps for taking part
in the initial stages of the simulator development.

10. REFERENCES
[1] 3spots: url: http://3spots.blogspot.com/2006/01/all-

social-that-can-bookmark.html.

[2] CiteUlike: url: http://www.citeulike.org/.

[3] Del.icio.us: url: http://del.icio.us/.

[4] Flickr: url: http://www.flickr.com/.

[5] Ibm’s dogear: url:
http://domino.research.ibm.com /comm/research-
projects.nsf/pages/dogear.index.html.

[6] Rawsugar: url: http://rawsugar.com/.

[7] Slideshare: url: http://slideshare.net/.

[8] technorati: url: http://www.technorati.com/.

[9] L. Damianos, J. Griffith, and D. Cuomo. Onomi:
Social bookmarking on a corporate intranet. In
Collaborative Web Tagging Workshop in conjunction
with the 15th WWW Conference, 2006.

[10] S. Farrell and T. Lau. Fringe contacts: People tagging
for the enterprise. In Collaborative Web Tagging
Workshop in conjunction with the 15th WWW
Conference, 2006.

[11] S. Golder and B. A. Huberman. Usage patterns of
collaborative tagging systems. Journal of Information
Science, 32(2):198–208, 2006.

[12] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins.
Propagation of trust and distrust. In 13th WWW
Conference, pages 403–412, 2004.

[13] Z. Gyöngyi and H. Garcia-Molina. Web spam
taxonomy. In 1st Intl. Workshop on Adversarial
Information Retrieval on the Web (AIRWeb), pages
39–47, 2005.

[14] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen.
Combating spam with TrustRank. In 30th Intl.

Conference on Very Large Databases (VLDB), pages
576–587, 2004.

[15] Z. Gyongyi, P. Berkhin, H. Garcia-Molina, and
J. Pedersen. Link spam detection with mass
estimation. In 32nd International Conference on Very
Large Databases (VLDB), pages 439–450, 2006.

[16] M. Henzinger. Link analysis in web information
retrieval. IEEE Data Engineering Bulletin, 23(3):3–8,
2000.

[17] A. John and D. Seligmann. Collaborative tagging and
expertise in the enterprise. In Collaborative Web
Tagging Workshop in conjunction with the 15th
WWW Conference, 2006.

[18] R. Kumar, J. Novak, and A. Tomkins. Structure and
evolution of online social networks. In KDD, pages
611–617, 2006.

[19] C. Marlow, M. Naaman, D. Boyd, and M. Davis.
Position paper, tagging, taxonomy, flickr, article,
toread. In Hypertext, pages 31–40, 2006.

[20] D. Millen, J. Feinberg, and B. Kerr. Social
bookmarking in the enterprise. Social Computing,
3(9), 2005.

[21] P. Schmitz. Inducing ontology from flickr tags. In
Collaborative Web Tagging Workshop in conjunction
with the 15th WWW Conference, 2006.

[22] S. Sen, S. Lam, A. Rashid, D. Cosley, D. Frankowski,
J. Osterhouse, F. Maxwell Harper, and J. Riedl.
Tagging, communities, vocabulary, evolution. In
CSCW’06, 2006.

[23] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University
Press, Cambridge, 1994.

[24] B. Wu, V. Goel, and B. Davison. Topical trustrank:
Using topicality to combact web spam. In WWW,
pages 63–72, 2006.

[25] Z. Xu, Y. Fu, J. Mao, and D. Su. Towards the
semantic web: Collaborative tag suggestions. In
Collaborative Web Tagging Workshop in conjunction
with the 15th WWW Conference, 2006.

15


