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Abstract

Unmeasured confounding is the principal threat to unbiased estimation of treatment “effects” (i.e., 

regression parameters for binary regressors) in nonexperimental research. It refers to unmeasured 

characteristics of individuals that lead them both to be in a particular “treatment” category and to 

register higher or lower values than others on a response variable. In this article, I introduce 

readers to 2 econometric techniques designed to control the problem, with a particular emphasis 

on the Heckman selection model (HSM). Both techniques can be used with only cross-sectional 

data. Using a Monte Carlo experiment, I compare the performance of instrumental-variable 

regression (IVR) and HSM to that of ordinary least squares (OLS) under conditions with treatment 

and unmeasured confounding both present and absent. I find HSM generally to outperform IVR 

with respect to mean-square-error of treatment estimates, as well as power for detecting either a 

treatment effect or unobserved confounding. However, both HSM and IVR require a large sample 

to be fully effective. The use of HSM and IVR in tandem with OLS to untangle unobserved 

confounding bias in cross-sectional data is further demonstrated with an empirical application. 

Using data from the 2006–2010 General Social Survey (National Opinion Research Center, 2014), 

I examine the association between being married and subjective well-being.
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Unmeasured confounding is an ever-present threat to causal inference in nonexperimental 

research. (The problem goes by several names depending on discipline, e.g., unmeasured 

heterogeneity, selection bias, endogeneity, and so forth.; in this article, these terms are used 

interchangeably with unmeasured confounding.) Unmeasured confounding refers to 

unmeasured characteristics of individuals that lead them both to be in a particular 

“treatment” category and to register higher or lower values than others on a response 

variable (Wooldridge, 2003). For example, those who cohabit before marrying have been 
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found to perceive their marriages as more unstable than those who have not (DeMaris & 

MacDonald, 1993). One reason may be that those who have more reservations about the 

prospective spouse are both more likely to cohabit first and more likely to register ambiguity 

about the permanence of their marriage afterward. Another example is peer delinquency, 

which has been found to be strongly predictive of one's own delinquency (Mears, Ploeger, & 

Warr, 1998; Warr, 1993). This may simply reflect that those with poor impulse control or 

little regard for the law are both more likely to choose delinquent friends and more likely to 

engage in delinquent acts.

The only way to ensure that all sources of unmeasured confounding are controlled in 

research is to randomly assign cases to “treatment” levels (Rosenbaum & Rubin, 1983; 

Schafer & Kang, 2008. I use treatment here only as a generic term for a binary explanatory 

variable, not to imply an experimental manipulation.)As this is either impractical or 

unethical in many instances, researchers must rely on statistical modeling to eliminate 

unmeasured confounds. A popular approach is to use fixed-effects regression modeling 

(Allison, 2005, 2009). This strategy presupposes the existence of an unmeasured selection 

factor in the cross-sectional model of a regressor's effect on a response. With more than one 

wave of data for the same respondents, the unmeasured confound can be elided from the 

model via a differencing process (see, for example, Allison, 2005, 2009; Wooldridge, 2002, 

for an explication of this approach). Although this technique is elegant, it requires panel 

data, which are more expensive and time-consuming to collect than cross-sectional samples. 

(See, however, Antonovics & Town, 2004; Gager, Sanchez, & DeMaris, 2009, for examples 

of fixed-effects regression using cross-sectional data on siblings.) Some data sets that are 

rich in social measures, including such national data sets as the General Social Survey (GSS; 

National Opinion Research Center, 2014), the American Community Survey (U.S. 

Department of Commerce, Economic and Statistics Administration, U.S. Census Bureau, 

2013), and the survey of Violence and Threats of Violence Against Women and Men in the 

United States 1994–1996 (Tjaden & Thoennes, 1999), are thereby automatically excluded.

In this article, I therefore consider the performance of two econometric techniques designed 

to eliminate unmeasured-confounding bias in cross-sectional data analysis: instrumental-

variable regression (hereinafter, IVR) and the Heckman selection model (hereinafter, HSM). 

In what follows, I present a “model” of unmeasured confounding in cross-sectional analysis 

to illustrate the nature of the problem. I then discuss IVR and HSM as remedies and report 

the results of a Monte Carlo study of the efficacy of IVR and HSM in eliminating the 

problem. I also examine the statistical power of these techniques to discover whether 

unmeasured confounding is influencing the analyses. Subsequently, I illustrate the utility of 

IVR and HSM with an empirical application from the GSS. Triangulating these methods 

with ordinary least squares regression (hereinafter, OLS), I examine the effect of marital 

status on subjective well-being. The estimation of causal effects is a primary goal of most 

research in the social and behavioral sciences (Allison, 2009; Davis, 1985; Rubin, 1974). 

Although the IVR and HSM approaches are typically couched in the context of causal 

inferences, one's estimates need not necessarily be given a causal interpretation. These 

techniques can also be used simply to facilitate unbiased estimation of a partial regression 
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coefficient for a binary regressor in one's model when there are measured and unmeasured 

confounders.

Explication of IVR and HSM

Unmeasured Confounding and Cross-Sectional Data

In this section of the article, I consider the operation of unmeasured confounding in cross-

sectional analyses. Let Yi be a continuous response variable and  be an unmeasured 

propensity for assignment to the treatment (vs. the control) condition for the ith case; Ci be a 

binary variable coded 1 if the case is exposed to the treatment condition and 0 otherwise; 

Xi1, Xi2, and Zi be measured covariates; and ai, εi, and υi be unmeasured random variables. 

For ease of presentation and subsequent simulation (discussed later), I assume that Xi1, and 

Xi2 are uncorrelated, although this requirement is not necessary. On the other hand, Zi , the 

“instrument” in the model for  must (as explained later) be uncorrelated with both Xi1, and 

Xi2. I further assume that Xi1, Xi2, and Zi are exogenous, that is, uncorrelated with ai , εi, and 

υi. I also assume that ai , εi, and υi are uncorrelated with each other and have zero means. 

Let q be a threshold value such that if , then Ci = 1; otherwise Ci = 0. The value of q 

determines the relative distribution of cases into categories of Ci. A model for the impact of 

unmeasured confounding is as follows:

(1)

(2)

The term ai is the unmeasured characteristic. Since ai is unobserved, it is not included in the 

estimation model for Yi and is therefore part of the equation error. When that model is 

estimated by OLS, treatment condition Ci is correlated with the error term, which is ζ2ai + 

υi. The reason for this correlation is that Ci is a function of ai (via ai's influence on ), and 

therefore it is correlated with ζ2ai. When a regressor is correlated with the error term in the 

same equation, it is said to be endogenous. An omitted regressor is the usual cause of 

endogeneity but is not the only reason for it. Endogeneity can also be caused by 

measurement error in regressors or by simultaneity (i.e., the response and the regressor 

mutually affect each other; Wooldridge, 2002). However, I focus only on the omitted-

regressor issue in this article, and therefore, the test for an unmeasured confound is referred 

to as a test for endogeneity. It is also the case that the error terms in the equations for  and 

for Yi , which are ζ1ai + εi and ζ2ai + υi, respectively, are correlated by virtue of their 

common dependence on ai. I refer to that correlation as “ρ (rho),” throughout this article. It 

is instructive to examine this correlation:
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Here it is clear that ρ is a function of the effects of the unobserved regressor on both the 

probability of being exposed to treatment and the response to that treatment. Because of the 

endogeneity problem, the estimate of d arrived at by OLS is biased and inconsistent for d 

(Wooldridge, 2002, 2003; also, see the development of the HSM later). In fact, in the 

absence of an actual treatment effect, the endogeneity problem can make it appear as though 

there is a treatment effect in the model for Yi . Figure 1 depicts the model represented by 

Equations 1 and 2. (In the figure, u1 = ζ2ai + υi and u2 = ζ1ai + εi.)

IVR and HSM Models

The IVR model employs one or more additional variables as instruments for the endogenous 

regressor, Ci. The variable Zi, in Equation 1 is an example. The requirements for an 

instrument are as follows (Bound, Jaeger, & Baker, 1995; Hernán & Robins, 2006; 

Wooldridge, 2002). First, it must have a causal effect on the treatment, Ci. Second, it must 

affect Yi only through its effect on Ci. That is, it has no direct effect on Yi , conditional on 

treatment and other covariates; this is known as the “exclusion restriction” (Hernán & 

Robins, 2006, p. 360). Third, it does not share common causes with the outcome variable, 

Yi ; that is, Zi is “exogenous” in the equation for Yi (Wooldridge, 2002, p. 82). These 

conditions are all depicted in the model shown in Equations 1 and 2 and Figure 1. The ideal 

instrument is, moreover, uncorrelated with any other regressors in the model as well as with 

any other unmeasured factors that affect Yi (Wooldridge, 2003). The best example of the 

ideal instrument is random assignment to treatment levels (Angrist & Pischke, 2009). As it 

is random, it is by definition uncorrelated with any other possible regressors or unmeasured 

variables. It is strongly predictive of actual treatment received (although, due to 

noncompliance and other irregularities, may not be perfectly correlated with it). And its only 

influence on the response is indirect, via the potential effect of the treatment itself. Some 

studies in which IVR has been used have been able to show approximately random 

influences on treatment assignment that come close to fulfilling these conditions. For 

example, Angrist (1990) used draft eligibility based on the random sequence number from 

the Vietnam-era draft lottery as an instrument for veteran status in examining the effect of 

veteran status on earnings. Lochner and Moretti (2004) used changes over time in the 

number of years of compulsory education mandated by states as an instrument for the effect 

of schooling on criminal activity. Nevertheless, much of the time, an instrument that is akin 

to random assignment is difficult to discover. Instead, we may have to settle for a surrogate 

that we hope approximates the conditions that have been outlined.

IVR is typically accomplished using two-stage least squares (2SLS). In the first stage, the 

binary treatment indicator, Ci , is regressed on the instruments and other covariates using 

OLS regression. Then, the fitted value for Ci , Ĉi , is generated using that same equation. In 

the second stage, Yi is regressed on Ĉi and the other covariates (but not Zi) to get a consistent 

estimate of the effect of Ci. Because Zi and the other covariates are uncorrelated with ζ2ai + 

υi, Ĉi—a linear function of the other covariates and Zi—is also uncorrelated with ζ2ai + υi, 

and the endogeneity problem has been eliminated. The resulting estimate of d, d̂, should then 

be consistent for d.
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The HSM was originally proposed by Heckman (1978) and is to be distinguished from his 

incidentally truncated version of the model, which is referred to as the Heckit procedure 

(Heckman, 1979; Wooldridge, 2002). The latter adjusts for sample selection (i.e., 

nonrandom exclusion of cases based on missingness on Yi). The HSM, instead, adjusts for 

nonrandom selection into the treatment group. The HSM assumes the following variation on 

Equations 1 and 2:

(3)

(4)

Here ωi1 = ζ1ai + εi and ωi2 = ζ2ai + υi, whereas Ci = 1 if , and 0 otherwise. HSM 

further assumes that ωi1 and ωi2 are jointly distributed as bivariate normal, with 0 means and 

correlation ρ. This is a critical assumption for identification of the model; its violation may 

lead to serious bias in the estimate of a treatment effect. The variance of ωi2 is allowed to be 

a free parameter, while the variance of ωi1 is constrained to equal 1 for estimation purposes 

(Greene, 2003). Zi in Equation 3, referred to hereinafter as the unique regressor, is an 

additional covariate that only causes assignment to the treatment condition but not Yi.

Because of the joint distribution of the error terms, the expectation of Yi conditional on Ci 

equaling 1 is

(5)

where σ2 is the standard deviation of ωi2, ϕ(.) is the standard normal density function, and 

Φ(.) is the standard normal distribution function. That is, compared with the control group, 

the conditional mean of Yi for those in the treatment group is shifted by d plus an additional 

term. That term (the last term in Equation 5), called the inverse Mills ratio (IMR), is a 

nonlinear function of the set of regressors for . Attempts to estimate Equation 5 via OLS 

result in an inconsistent estimate of d, due to the omission of this term. Notice that the 

coefficient of this term is a function of ρ, the correlation between ωi1 and ωi2. And as shown 

previously, ρ is a function of the effects of unmeasured heterogeneity on both treatment and 

response. Therefore, incorporation of ρ into the equation for Yi controls for the unmeasured 

heterogeneity. HSM estimates the treatment effect by including the IMR in the likelihood 

function for the data and employing maximum-likelihood estimation to arrive at a consistent 

estimate of d. Alternatively, Equation 5 can be estimated via a two-step procedure. First a 

probit model is employed to estimate Equation 3 using Ci as the binary response. Then, an 

estimate of the IMR is computed using the probit coefficients, and Equation 5 is estimated 

after adding the IMR as an extra regressor (Greene, 2003; Maddala, 1983).

Differences Between IVR and HSM

IVR solves the endogeneity problem by eliminating it: Ĉi, the instrument employed as Ci's 

surrogate in the substantive model, is no longer endogenous. HSM, on the other hand, solves 
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the problem by employing the IMR to control for endogeneity in the substantive equation. 

This control is accomplished via the inclusion of ρ in its regression coefficient. In IVR, the 

instrument is a surrogate for the treatment indicator in the substantive equation. On the other 

hand, in HSM, the treatment indicator is included in the substantive equation. Additionally, 

HSM makes the strong assumption of bivariate normality for the joint distribution of the 

errors in the equations for  and Yi . IVR imposes only the less restrictive assumption that 

both errors are independent realizations of a random variable with zero mean and finite 

variance (Greene, 2003; Wooldridge, 2002).

Perhaps the most important difference is in the necessity for Zi in Equation 1 versus 

Equation 3. In IVR, the instrument must have a causal effect on Ci. IVR uses a linear 

combination of the substantive-model covariates plus an additional instrumental variable as 

a proxy for treatment. Should the instrumental variable have no partial effect on Ci 

controlling for the other covariates, Ĉi will be more or less exactly collinear with the 

covariates in the substantive model. Extreme multicollinearity will then render the estimates 

of Equation 2 nonviable. In HSM, Zi , has a different role. Its primary function is to provide 

a unique regressor in the equation for Ci to ensure that Equation 5 is identified other than 

through the nonlinear transformation effected by the IMR. If the same regressor set is used 

for Equation 3 as for Equation 4, then identification may become an issue. Wooldridge 

(2002) pointed out that if the right-hand-side of the model for Ci exhibits little variation in 

the sample, the IMR can be well approximated by a linear function of the regressor set. If 

the regressor set is the same in selection and substantive equations, this can result in 

substantial collinearity between the IMR and the covariates in the substantive equation. 

However, Nawata (2004) has shown that HSM's “cousin,” the Heckit model, performs 

reasonably well even when the regressor set is identical for the selection and substantive 

equations, provided that maximum-likelihood estimation is employed.

Tests for Endogeneity

Associated with IVR is the Hausman test for endogeneity (Hausman, 1978, 1983). The test 

is based on a comparison of the OLS and IVR estimates of the coefficients in Equation 2. If 

Ci is uncorrelated with the error term in that equation, then the OLS and 2SLS estimates 

should differ only by sampling error in large samples. As the original form of the statistic is 

unwieldy, Hausman (1983) recommended a regression-based version that is asymptotically 

equivalent. If Ci is endogenous, then the error terms in the regression models for Ci and for 

Yi will be correlated, with p denoting that correlation (see Wooldridge, 2002, for the relevant 

mathematical development). What is required is a test for whether ρ is nonzero. To 

accomplish this, one simply saves the residual term from the first-stage regression for Ci in 

the 2SLS procedure. This term is then included in a regression of Yi on the original Ci (not 

Ĉi) and the other covariates in Equation 2. The coefficient of this term, β̂, is the estimated 

unstandardized regression coefficient for the regression of εi (from Equation 1) on υi (from 

Equation 2). The usual OLS t statistic for this coefficient is the test in question (Hausman, 

1983; Wooldridge, 2002). Note that β̂, not being itself a correlation coefficient, is not 

constrained to fall in the [−1, 1] interval. A similar test is available in the HSM model, with 

the same rationale: endogeneity implies a nonzero value of ρ. As an estimate of ρ is 
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available via the maximization of the likelihood function, dividing ρ̂ by its standard error 

provides a t test for the presence of endogeneity.

Monte Carlo Results for IVR and HSM

Prior Simulation Results

Several Monte Carlo studies of the HSM and Heckit models, as well as the IVR, have been 

heretofore conducted. As the mathematics and distributional assumptions for HSM and 

Heckit are identical, they are both discussed in this review. Stolzenberg and Relles (1990, 

1997) conducted simulations of the Heckit model. They found that, on average, Heckit 

performed no better than OLS, worsening estimates as often as improving them. 

Nevertheless, the technique appeared to consistently reduce estimator bias when substantive- 

and selection-model errors were highly correlated, and the regressors in the substantive 

equation were highly correlated with those in the selection equation. Alluded to earlier, 

Nawata's (2004) study compared two-step and maximum-likelihood estimation (MLE) of 

Heckit and found the MLE version to perform well in all conditions. Moreover, it proved 

superior to the two-step alternative, especially with small N or identical regressor variables 

in both equations. Both Angrist (1991) and Staiger and Stock (1997) undertook small Monte 

Carlo studies of instrumental-variables techniques (Angrist's involved bivariate probit 

instead of linear regression, however). They found that IVR was generally robust to 

nonnormality of errors and performed reasonably well even in moderate-sized samples. 

Nevertheless, IVR estimates were particularly poor when the instruments were only weakly 

correlated with the endogenous regressor. In this case, large sample size did not improve the 

situation (Staiger & Stock, 1997). Both Bhattacharya, Goldman, and McCaffrey (2006) and 

Chiburis, Das, and Lokshin (2012) employed Monte Carlo experiments to examine 

instrumental-variable and Heckman-selection techniques for a binary response variable. 

They found the Heckman model (applied as a bivariate probit regression) estimated via 

maximum likelihood to be generally superior to all other choices. However, all models 

exhibited biased estimation of treatment effects under conditions of nonnormal equation 

errors, especially when combined with a low probability of assignment to the treatment 

group. Chiburis et al. (2012) recommended presenting both linear instrumental-variable and 

bivariate probit estimates whenever there are covariates in the model besides treatment (or 

its proxy). They also recommended employing confidence intervals via bootstrapping for the 

treatment-effect estimate with sample sizes below 10,000 (Chiburis et al., 2012).

The Current Simulation

A simulation was conducted in the current study primarily to examine how IVR and HSM 

would perform under ideal conditions, as well as under conditions in which important 

assumptions were violated. Only a few prior simulations (previously reviewed) have been 

conducted in which IVR and HSM were evaluated together. Moreover, very few 

additionally have examined the performance of the test of endogeneity associated with each 

technique. The current simulation was based on the theoretical model portrayed in Equations 

1 and 2. It seemed critical to examine a number of conditions that might affect the ability of 

IVR and HSM to produce viable estimates of the treatment effect. First, the variables Xi1, 

Xi2, Zi, and ai were all created as normal random variables with mean 0 and variance 1, 
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while α1 and α2 were fixed at .5 and −2, respectively. Second, I manipulated the parameters 

q, d, g3, ζ1, and ζ2, along with the distributions of εi and υi, in Equations 1 and 2 in order to 

vary the treatment and error distributions, as well as the selection, instrument/unique 

regressor, and treatment effects. (The parameters g1, g2, b1, and b2 were fixed at 1.7, −2.3, 1, 

and 2, respectively, for all simulation conditions.) Finally, I varied the sample size in each 

simulation condition.

The distribution into the treatment condition (Ci = 1) was varied, as it has been shown to 

have a meaningful effect on the power of tests for d (Chiburis et al., 2012). I chose two 

values for the percentage of cases in the treatment condition: 50% and 15% (how this was 

accomplished is discussed later).

Next, I chose two different distributions for the pair of error terms, εi and υi, to examine how 

normality (an assumption of the HSM) versus nonnormality of errors would affect estimates. 

The performance of the Heckman model, in particular, has been found to be seriously 

degraded in the presence of nonnormal errors (Bhattacharya et al., 2006). The error 

distributions were chosen to be either standard normal or exponential. Standard normal 

errors are symmetric and have mean zero and variance 1. Exponential errors are right-

skewed with a variance that exceeds the mean. In the estimation process, the equation errors 

would be ζ1ai + εi and ζ2ai + υi. With εi and υi both specified as standard normal, ζ1ai + εi 

and ζ2ai + υi would also each be normally distributed, by theorem (Hoel, Port, & Stone, 

1971). In order to create markedly nonnormal errors, I gave εi an exponential distribution 

with mean 2 and variance 4, but gave υi an exponential distribution with mean −2 and 

variance 4. Both error terms were then centered so that they had means of zero. The 

resulting distributions for ζ1ai + εi and ζ2ai + υi were skewed, but in opposite directions, 

with ζ1ai + εi right-skewed (skew = 1.37 in a random sample of 500 observations) and ζ2ai + 

υi left-skewed (skew = −1.14 in a random sample of 500 observations).

Selection bias (i.e., confounding) was chosen to be either present or absent. For it being 

present, ζ1 was set at .75 and ζ2 at 1.5. For it being absent, both ζ1 and ζ2 were set to 0. The 

instrument effect/unique regressor effect was chosen to be either present, by setting g3 to 

1.75, or absent, by setting g3 to 0. Similarly, the treatment effect was chosen to be either 

present, setting d to 1.25, or absent, setting d to 0. To judge the effect sizes of these 

parameters, we can draw on Cohen's (1988) formulation for the standardized effect size, 

defined as the difference in mean response for treatment vs. control conditions divided by 

the standard deviation of the response. In a similar vein, dividing the parameter values by 

the standard deviation of either  (3.578; see online supplemental materials) or Yi (3.132; 

see online supplemental materials) results in standardized effect sizes of .21 for ζ1, .48 for 

ζ2, .49 for g3, and .40 for d. According to Cohen's classification scheme, these all fall 

somewhere between small and medium effect sizes. Finally, three sample sizes were chosen 

to reflect small, medium, and large samples: 50, 250, and 2,000.

It should be noted that the settings for the error distributions, in combination with those for 

selection effects, resulted in three theoretical, or “population,” values for ρ: 0 with no 

selection, .5 with selection and normal errors, and .21 with selection and nonnormal errors 

(see the online supplemental materials for the derivation of the two latter values). The error 
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distributions also determined the values chosen for q to render a 50–50, versus a 15–85 split 

on the percentage of cases falling into each treatment level. For normally distributed errors, 

because  is a linear combination of normal random variables, it, too, has a normal 

distribution, by theorem (Hoel et al., 1971). A 50–50 split was achieved by setting q to .5, 

the mean of . A 15–85 split was achieved by setting q to 1.036 (the 85th percentile of a 

standard normal distribution) standard deviations above the mean of . The standard 

deviation of  varied depending on whether instrument/unique regressor and/or 

unmeasured confounding was present. For example, when they were both present, the 

theoretical standard deviation of  was 3.578 (see the online supplemental material for the 

derivation of this value; the accuracy of these settings was verified with 2,000 random 

observations.) For the nonnormal-errors conditions, cutoffs for q were constructed 

empirically, as the cumulative distribution function in this case is not readily available. 

Hence, using an N of 2,000, I examined the sample distribution of  under the various 

simulation conditions and chose cutoffs based on averaging the 50th (for a 50–50 split) or 

the 85th (for a 15–85 split) percentile over eight replications of the distribution.

There are several limitations of the current simulation that should be kept in mind. First, the 

models employed in the simulation are particularly pristine. Model covariates, as well as the 

instrument/unique regressor and the unmeasured confound, are all normally distributed. The 

instrument/unique regressor, and the covariates are all uncorrelated with each other and 

exogenous to the equation errors. The model R2s are quite high relative to values commonly 

observed in psychological research: .88 for the selection model and .67 for the substantive 

equation (see the online supplemental material for these computations). Similarly, the 

treatment, selection, and instrument/unique regressor effects, when present, are reasonably 

strong. Real-world empirical analyses are not typically characterized by such favorable 

conditions. However, the key point of the simulation is to reveal how these techniques 

perform when their assumptions are met versus when they are egregiously violated.

The various parameter combinations of the simulation resulted in two treatment distributions 

× two error distributions × two selection conditions × two instrument/unique regressor 

conditions × two treatment conditions × three sample sizes = 96 different simulation 

conditions. For each simulation condition, I drew 2,000 samples, a number of replications 

that is typical for Monte Carlo studies (Fan, Felsovalyi, Sivo, & Keenan, 2002). I then 

estimated Equation 2 via OLS, IVR, and HSM in each one, while also testing for 

endogeneity with the tests embedded in IVR and HSM. Maximum-likelihood estimation was 

used instead of the two-step procedure throughout for estimation of the HSM model, due to 

its superior performance in prior simulations (Bhattacharya et al., 2006; Chiburis et al., 

2012; Nawata, 2004). SAS Version 9.1 was used throughout, with PROC REG, PROC 

SYSLIN and PROC QLIM employed to test, respectively, OLS, IVR, and HSM models. 

(SAS code for SYSLIN and QLIM, as well as for the IVR test of endogeneity, is shown in 

the online supplemental material.).

Criteria for Evaluating the Estimates and Tests

The 2,000 replications of each simulation condition provided an estimate of the sampling 

distribution of d ̂ under OLS, IVR, and HSM. They also enabled estimation of the power of 
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the tests for endogeneity under IVR and HSM. Estimates of d were evaluated by examining 

three different criteria over the 2,000 replications: the mean of d̂, the mean-square error 

(MSE) of d̂, and the power of the test for the treatment effect. The mean of d̂ affords an 

assessment of the degree to which it is characterized by bias; the closer this mean is to d, the 

less biased it is. Although unbiased estimators are desirable, the more important criterion in 

many contexts is MSE. The MSE for d̂ is defined as E(d ̂ – d)2 (Bickel & Doksum, 1977). 

MSE equals the average square distance between the estimator and the parameter it is meant 

to estimate and thus reflects how close the estimator is, on average, to the actual parameter. 

An unbiased estimator merely assures that, over repeated samples from the same population, 

the estimator is, on average, equal to the parameter. On the other hand, a small MSE 

suggests that, in any given sample, the estimator is close to the actual parameter value. MSE 

is equal to the variance of an estimator plus the square of its bias (Bickel & Doksum, 1977). 

For consistent estimators, MSE converges to zero as the sample size increases without 

bound. Smaller values of MSE indicate a more accurate estimate in any given sample.

The power of a test is the probability that it will lead to rejection of the null hypothesis 

under the condition that the parameter equals a particular value (Bickel & Doksum, 1977). 

Power values of .80 or higher are considered desirable when the null hypothesis is false 

(Cohen, 1988). When the null hypothesis is true, power is synonymous with the alpha level 

for the test, which is nominally .05 (Bickel & Doksum, 1977), p. 167). For a particular test 

of the treatment effect or test of endogeneity, power was figured as the proportion of the 

2,000 tests having a p value less than or equal to .05. I refer to this proportion as the 

rejection rate. Several of the HSM tests with N = 50 produced estimates of zero for the 

standard error of ρ̂. In that case, the test of endogeneity was a missing value. In such cases, 

the test was considered nonsignificant. This was exclusively a small-sample problem. It was 

at its worst under the condition of treatment and unique regressor effects but no unmeasured 

confounding, 15% in the treatment group, normal errors, and N = 50. In this scenario, fully 

78% of the tests of endogeneity were missing. However, the problem cleared up with greater 

sample size, such that at most .65% of tests were missing at N = 250 and none were missing 

at N = 2,000.

Outcome of the Simulation

To conserve space, I show only the MSE and power results below, as the bias of the 

treatment estimator is incorporated into the MSE measure. (The bias results, in the form of 

figures displaying treatment-estimate means, are available in the online supplement to this 

article.) Figures 2 through 4 present trellis plots of the MSE results for the conditions in 

which a treatment effect is actually present (figures for the conditions in which the treatment 

effect is absent are virtually identical to these and so are not shown here but are available in 

the online supplemental material). Each figure depicts the MSE values for—from left to 

right—OLS, IVR, and HSM estimates of the treatment effect under particular conditions of 

the simulation. Each “cell” of the trellis plot shows the MSE values for a particular 

simulation condition defined by treatment and error distributions as well as the presence or 

absence of the confound and the instrument. The first row of the column headings indicates 

distribution into treatment categories as being either symmetric (i.e., a 50–50 split; “Sym 

T”) or asymmetric (i.e., a 15–85 split; “Asym T”), and equation errors as being either 
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normal (“Norm E”) or exponential (“Exp E”). The second-row heading indicates conditions 

in which the instrument is absent (“Inst A”; its coefficient is set to zero in the equation for 

 or present (“Inst P”; its coefficient is set to 1.75 in the equation for ). It also indicates 

whether the confound (ai) is absent (“Cnfd A”; both ζ1 and ζ2 set to 0) or present (“Cnfd P”; 

ζ1 set at .75 and ζ2 at 1.5). Thus the top row of figures represents the worst case simulation 

conditions where the treatment and error distributions were asymmetric, and the bottom row 

represents the ideal case where the treatment and error distributions were symmetric. MSE 

values greater than 2 were recoded to 2 in all figures. This was done to prevent large MSEs 

from distorting the scale of the plots.

Mean Square Error

Figure 2 shows MSE values for a sample size of 50. The most important conditions are those 

in which the confound is present and are shown in the third and fourth columns of the plot. 

MSEs are uniformly high in all conditions in these columns. The best performance from all 

three estimators is found in the bottom-rightmost plot, representing ideal conditions: an 

effective instrument, a symmetric treatment distribution, and normally distributed errors. 

Even here, however, MSE values are greater than 1 for all three estimators. OLS 

outperforms IVR, whose MSE is close to 2. HSM affords no improvement over OLS. In fact, 

OLS outperforms both IVR and HSM in all other conditions of the simulation at this sample 

size, as is readily gleaned from the plots.

Figure 3 presents plots for a sample size of 250. The third and fourth columns show that 

HSM, under some conditions, affords some advantage over the OLS estimator. In the 

bottom rightmost cell of the figure, illustrating ideal conditions, HSM shows a clear 

advantage over OLS in MSE values. IVR is also superior to OLS here, although not as good 

as HSM. In fact, HSM is superior to OLS in all conditions of the fourth column except the 

topmost. The latter is that in which both asymmetry of treatment distribution and 

nonnormality of equation errors are present. There OLS is clearly superior to the other 

estimators. When the instrument is absent (third column of the figure), HSM outperforms 

OLS in the two conditions involving normal errors; otherwise, OLS is superior to HSM. The 

degradation in the performance of IVR under instrument ineffectiveness comes as no 

surprise.

Figure 4 shows MSE plots for a sample size of 2,000. Here we begin to see a pronounced 

advantage of using IVR and HSM when there is an effective instrument. The fourth column 

of Figure 4 shows that both IVR and HSM improve on OLS regardless of treatment or error 

distributions. However, under asymmetry of treatment distribution and error nonnormality, 

IVR and HSM are only slightly better than OLS. Otherwise, IVR and HSM have 

substantially smaller MSEs than the OLS estimator, with HSM slightly superior to IVR in 

all conditions. The third column shows the effect of unmeasured heterogeneity on estimators 

when the instrument is ineffective. Without an instrument, the performance of IVR is 

especially poor. The HSM estimator, on the other hand, has a smaller MSE than OLS in all 

conditions except that in which asymmetry of treatment and nonnormal errors are both 

operating. It is also noteworthy that, at this sample size, even without unobserved 
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heterogeneity (the first two columns), the HSM estimator is virtually as accurate as OLS 

provided that errors are normally distributed.

Statistical Power

Figures 5 through 10 present plots of power values for tests of the treatment effect based on 

OLS, IVR, and HSM estimators (labeled OLS, IVR, and HSM, respectively), as well as for 

tests of endogeneity based on IVR and HSM (labeled IVE and HME, respectively). From left 

to right, the bars represent the values for OLS, IVR, HSM, IVE, and HME. Column 

headings indicating treatment conditions are identical to those in Figures 2–4. Two 

additional horizontal bars on the plots are drawn to indicate the criterion values of .80 and .

05, as discussed earlier. Figures 5,7, and 9 show power values when there is a treatment 

effect present, while Figures 6, 8, and 10 show comparable values (i.e., power values for 

detecting the unmeasured confound, rejection rates for the null hypothesis of no treatment 

effect) when there is no treatment effect present.

Figures 5 and 6 present results for a sample size of 50. The third and fourth columns of 

Figure 5 show the key conditions: cases in which both a treatment effect and an unmeasured 

confound are operating. The first thing to notice is that power for detecting unmeasured 

heterogeneity is uniformly low. Neither of the tests of endogeneity reaches even the .50 

value, let alone the criterion of .80, although HSM's test has greater power than that of IVR. 

Similarly, power values for the test of a treatment effect in columns 3 and 4 suggest that, 

although HSM has substantially more power than IVR, neither technique reaches the .80 

criterion. HSM comes closest, at a value of about .60 for the conditions in which error 

distributions are normal, whether the instrument is present or not. Figure 6 shows the 

situation in which no treatment effect is actually present. Columns 3 and 4 of the figure 

again reveal the key results. Power is uniformly low (<.50) for detecting endogeneity in any 

case. On the other hand, the rejection rate for tests of the treatment effect should be held at .

05. In this regard, IVR is superior to HSM: its Type I error rates for the test of a treatment 

effect are lower than those of HSM in all conditions of the simulation.

Figures 7 and 8 present results for N = 250. Tests for endogeneity are clearly better at this 

sample size, as a glance at the third and fourth columns of Figure 7 shows. Thus, when both 

treatment effect and unmeasured confound are present, the test in HSM has power >.80 for 

detecting endogeneity in the ideal case of symmetric treatment distribution and normal 

errors (bottom rightmost cell of the figure). Otherwise power approaches .70 for the 

Heckman endogeneity test as long as the errors are normally distributed, with or without an 

instrument present. However, the IVR's test of endogeneity never reaches even this level of 

power. With an effective instrument, symmetric treatment distribution, and normally 

distributed errors, HSM also turns in adequate power for a test of the treatment effect, as is 

seen in the bottom rightmost cell of the figure. Otherwise, the performance of IVR and HSM 

with respect to power for detecting a treatment effect in the presence of a confound at this 

sample size is not particularly impressive. Figure 8 shows what happens when there is no 

actual treatment effect. In column 4 of the plot, once again HSM's test of endogeneity has 

adequate power only with a symmetric treatment distribution and normal errors. The power 

of IVR's test of endogeneity, however, is never adequate. On the other hand, columns 3 and 
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4 reveal, once again, that IVR is better than HSM at holding down the rejection rate of the 

test for a treatment effect to approximately the .05 level when the treatment effect is nil.

Figures 9 and 10 show that IVR and HSM turn in improved performance with respect to 

power with a large enough sample size, in this case, an N of 2,000. As column 4 of Figure 9 

shows, power for detecting an unmeasured confound is adequate for both IVR and HSM 

provided there is an instrument present and asymmetric treatment is not combined with 

nonnormal errors. As in other cases, power in the Heckman procedure is generally superior 

to its counterpart from IVR. In the ideal condition (bottom rightmost cell) in which 

distribution into treatment is symmetric and errors are normal, both IVR and HSM have 

power values of 1.00 for detecting endogeneity. The third column of the figure makes it 

clear that, even with an ineffective instrument, HSM has good power to detect endogeneity 

when the errors are normal. Power values are 1.00 regardless of the treatment distribution. 

Tests for the treatment effect have good power in most conditions provided the instrument is 

effective (column 4). However, when treatment skew is combined with nonnormal errors, 

only HSM's power for detecting a treatment effect approaches adequacy. When the 

instrument is not effective (column 3), only HSM has good power to detect a treatment 

effect. But this only holds when treatment skew is not combined with nonnormal errors. 

Finally, Figure 10 depicts power results when there is no actual treatment effect. Columns 3 

and 4 show that the Heckman approach has good power to detect endogeneity provided the 

error distributions are normal. If there is an effective instrument, HME is also good at 

detecting endogeneity with nonnormal errors provided that the treatment distribution is not 

also skewed. The test of endogeneity provided by IVR is only adequate with an effective 

instrument and only in the ideal scenario of symmetric treatment distribution and normal 

errors. As before, however, the IVR is superior to the HSM at keeping the rejection rate for 

the test of a treatment effect down to approximately the .05 level. This is particularly 

noticeable in the first and third rows of the third and fourth column figures, that is, 

conditions in which the error distributions are nonnormal.

In sum, both techniques introduced here should be considered large-sample techniques. As 

the figures show, the performance of IVR and HSM was uniformly poor with an N of 50 and 

only somewhat better with an N of 250. Only with an N of 2,000 did the techniques really 

show clear advantages over OLS with respect to either MSE or power. And my results are 

consistent with other simulations (Bhattacharya et al., 2006; Chiburis et al., 2012) in 

showing the superiority of HSM over IVR. It outperformed IVR with respect to both MSE 

and power except when there was no treatment effect. In that case, IVR was superior in 

keeping the rejection rate for the test of a treatment effect close to the .05 level. On the other 

hand, when error nonnormality was combined with a skewed distribution of the treatment 

variable, neither technique performed well.

Of the two, the HSM should nevertheless be given more weight in both the detection of 

endogeneity and in the test for a treatment effect in the presence of endogeneity, based on 

these simulation results. However, the HSM should be used with caution. Many 

methodologists would not recommend using any procedure based on power that did not also 

control Type I error. As was evident, with smaller sample sizes or in conditions in which 

equation errors were markedly nonnormal, HSM was noticeably deficient in this regard. 
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This finding suggests that use of the Heckman procedure comes at a potentially higher 

danger of rejecting a true null hypothesis than is desirable. Next, I illustrate how to apply 

these techniques to a substantive research problem.

An Empirical Application Using the GSS

Research Question

To illustrate the application of IVR and HSM, I used data from the General Social Survey 

(GSS). This is a national probability-sample survey of U.S. noninstitutionalized adults that 

has been conducted approximately every other year since 1972. Each year's sample is an 

independently sampled cross-section of the population (although a panel component was 

added in 2008). Triangulating IVR and HSM with OLS, I hoped to demonstrate how 

researchers can utilize these techniques to discern whether unmeasured heterogeneity is 

confounding their analyses. The research question here is the extent to which marriage 

affects psychological well-being.

Does marriage lead to greater psychological well-being, compared with being unmarried? 

This issue has been investigated in countless studies (Brown 2000; Brown, Bulanda, & Lee, 

2005; Frech & Williams, 2007; Gove, Hughes, & Style, 1983; Horwitz, White, & Howell-

White, 1996; Kim & McKenry, 2002; Lamb, Lee, & DeMaris, 2003; Marks, 1996; Simon, 

2002; Zimmermann & Easterlin, 2006). There are reasons to suspect that it does. Marriage 

entails what Cherlin (2009, p. 138) refers to as “enforceable trust.” It involves a public 

commitment to enter into a potentially lifelong, caring relationship with one's partner. As it 

is a legally enforceable commitment, it requires substantially more effort to sunder than, say, 

a cohabiting relationship. Therefore, the married can be relatively secure in their spouse's 

obligation to support them both financially and emotionally in times of need. They also have 

regular access to a confidant, a companion, and a sexual partner. All of these elements may 

contribute to a feeling of subjective well-being (Horwitz et al., 1996; Kim & McKenry, 

2002; Marks, 1996). On the other hand, any apparent marriage effect on well-being could 

well be the result of selection bias. In particular, those who are initially more 

psychologically healthy may be more attractive marriage partners than others. Therefore, 

preexisting subjective well-being may facilitate both getting and staying married, along with 

subsequent well-being (Horwitz et al., 1996; Lamb et al., 2003; Simon, 2002).

The association between marital status and psychological well-being is well documented. 

Cross-sectional studies typically find that the married are happier, more satisfied with life, 

and in better mental health than the unmarried (e.g., Brown et al., 2005; Gove et al., 1983). 

Longitudinal studies are further able to show that becoming married is associated with a 

reduction in depressive symptomatology or an increase in happiness (Frech & Williams, 

2007; Horwitz et al., 1996; Kim & McKenry, 2002; Lamb et al., 2003; Simon, 2002; 

Zimmermann & Easterlin, 2006). Moreover, loss of the spouse is associated with an increase 

in depression and alcohol problems (Simon, 2002) or a decrease in life satisfaction 

(Zimmermann & Easterlin, 2006). Some researchers have found that the marriage advantage 

is stronger for men (Gove et al., 1983). However, others have found that both sexes benefit 

equally from entry into marriage, and both suffer equally from exiting marriage (Horwitz et 

al., 1996; Simon, 2002). Although some evidence for the selection of the psychologically 
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better adjusted into marriage has been uncovered, it does not typically account for the entire 

marriage advantage (Horwitz et al., 1996; Simon, 2002). Other studies have found no 

evidence for a selection of the psychologically healthier into marriage (Kim & McKenry, 

2002; Lamb et al., 2003; Zimmermann & Easterlin, 2006). And at least one study found an 

inverted selection effect for women, based on enduring personal characteristics measured in 

their teen years. In Marks' (1996) analysis of the Wisconsin Longitudinal Study, separated/ 

divorced and never-married women in later years of the survey were more intelligent and 

open to new experience than married women.

Current Example

To investigate the effect of marital status on well-being, I used data from the 2006, 2008, 

and 2010 GSS. I limited the sample to respondents who were married, never married, 

divorced, or separated. I excluded widowed individuals, as others have done (Simon, 2002; 

Zimmermann & Easterlin, 2006) because arguments about selection into marriage have 

emphasized unmeasured characteristics leading to the ability to get and stay married (e.g., 

Horwitz et al., 1996). As widowhood is a nonvoluntary transition out of marriage, such a 

selection process would not apply to the widowed. In all likelihood, any effect of marriage 

on well-being would be underestimated in this study because many of those identified as 

never married or divorced/separated are cohabiting unmarried with an intimate partner. 

However, studies have shown that cohabitation does not provide the same level of 

psychological benefits that marriage does (Brown, 2000; Brown et al., 2005; Lamb et al., 

2003; but see Zimmermann & Easterlin, 2006, who found no difference between the 

cohabitation vs. marriage advantage in mental health in a German sample). Therefore, it 

makes sense to distinguish the legally married from everyone else. I further employed 

listwise deletion to address missing data by excluding any respondents who were missing on 

any of the study variables. A total of 2,621 respondents were available in the final sample.

The outcome variable was the sum of three items from the GSS tapping well-being. The first 

was “Taken all together, how would you say things are these days—would you say that you 

are very happy, pretty happy, or not too happy?” Responses of very, pretty, and not too 

happy were coded 1, 2, and 3, respectively. The second question was “In general, do you 

find life exciting, pretty routine, or dull?” Responses of exciting, pretty routine, and dull 

were coded 1, 2, and 3, respectively. The third question was “Would you say your own 

health, in general is excellent, good, fair, or poor?” Responses of excellent, good, fair, and 

poor were coded from 1 to 4, respectively. Because these items were in different metrics, 

they were standardized first, and then summed, with higher scores reflecting greater 

subjective life distress. Cronbach's alpha for the scale was .52.

The “treatment” indicator is a dummy variable for being married versus being unmarried. As 

the simulation showed, IVR and HSM produced the best results under a symmetric 

treatment distribution. In the present case, 51% of respondents were currently married and 

49% were not. This qualifies as an approximately symmetric distribution. If the treatment 

variable is originally binary, there may be little the analyst can do to correct excessive skew. 

But if the treatment originally has several treatment conditions, the analyst may be able to 

collapse categories to achieve a more symmetric treatment indicator. Optimum results in the 
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simulation also obtained when the errors in Equations 1 and 2 were normally distributed. 

The error distribution in the equation for the unmeasured propensity for assignment to 

treatment (Equation 1) cannot be examined. However, the error distribution for the 

substantive model can be examined (see later discussion). And to ensure that such 

distribution is approximately normal, the analyst can first check the distribution of the 

outcome variable. The life distress scale was somewhat right-skewed, with a skewness 

coefficient of .31. Greater symmetry could be achieved by transforming the scale. As the 

metric of the scale is arbitrary, any monotonic transformation could be used. I chose to 

utilize a transformation from the family of power transformations (Hoaglin, Mosteller, & 

Tukey, 1983). After experimenting with a few transformations, I found that raising (life 

distress + 3.5) to the power of .85 provided a good approximation to symmetry (skew 

coefficient = .02). Because the metric of life distress is not particularly meaningful in its 

original form, that the coefficient for the treatment effect in the transformed version also has 

no interpretable metric is not particularly consequential. Transforming the response variable 

inevitably implies a transformation of the associated model. As a result, coefficients for the 

regression of the transformed response may not lend themselves to ready interpretation. If 

preserving the original metric is especially important, transformation may not be an option. 

See Cook and Weisberg (1999), however, for additional suggestions regarding 

transformations to achieve normality.

Control variables for the analysis included age, education (in years of schooling completed), 

a dummy variable for female gender, income (ordinally scaled from 1 for under $1,000 to 25 

for $150,000 or over), and dummy variables for being Black or of another race (with White 

as the reference group). I examined the GSS in the hopes of finding a good instrumental 

variable for marital status. Recall that the ideal instrument would be a regressor that has an 

effect on the substantive outcome only via its effect on treatment status, and otherwise has 

no effect on the outcome controlling for treatment status. It should also be uncorrelated with 

any other covariate in the analysis, as well as uncorrelated with the equation error. The 

search for an ideal instrumental variable proved fruitless; no random events that might 

influence marital status were available in the data set. However, a unique predictor of 

marital status was also required for the HSM, and it did not have to meet such stringent 

requirements. I therefore decided to use for both purposes the variable parent absence. This 

was based on the question “Were you living with both your own mother and father around 

the time you were 16? IF NO: With whom were you living around that time?” Parent 

absence was coded 0 if the respondent answered “own mother and father” and 1 if the 

respondent gave any other response. Thirty-three percent of respondents were not living 

with both biological parents, and of these, 80% were living with either their father or their 

mother (with or without a stepparent). Most parent absence was probably the result of a 

divorce or separation. In all likelihood, exposure to marital dissolution at this stage of 

respondents' development negatively impacted their view of marriage. They should therefore 

be less likely to marry, compared with those growing up in an intact home.

Table 1 presents the results of OLS, IVR, and HSM models applied to the data. As 

Wooldridge (2003) noted, the requirement that the instrument (or unique predictor of 

treatment for the HSM model) be a predictor of treatment is easily checked. Model 1 shows 
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the OLS estimates for the regression of being married on model covariates and parent 

absence. As is evident, net of the other covariates, parental absence is associated with a 

significantly lower likelihood of being married (p = .002). The size of this effect can be 

calculated, as demonstrated earlier, by dividing it by the standard deviation of the response, 

which is the square root of 0.51 × 0.49, or 0.50. The effect size for parental absence is 

therefore −0.06/0.50 = −0.12. In Cohen's parlance, this is a small effect, and, in fact, 

considerably smaller than the effect size of .49 for the instrument in the simulation. 

Nevertheless, the requirement in question is satisfied. However, as Morgan and Winship 

(2007) made clear, the exclusion restriction is not empirically testable. Despite that, it is 

worth investigating whether the instrumental variable is a predictor of the outcome when 

treatment is controlled. As the instrument is also used in the HSM as a unique predictor of 

treatment status, it is desirable that it does not also belong in the substantive model. 

Otherwise, that model is misspecified by its exclusion. Model 2 shows the OLS estimates 

for the regression of life distress on marital status and model covariates, as well as parent 

absence. It appears that parent absence can safely be excluded from this model, as its effect 

is not significant (p > .2).

Model 3 presents the OLS results for the substantive model, regressing life distress on 

marital status and controls. Being married (the “treatment”) is associated with a significantly 

lower level of life distress, compared with being unmarried, consistent with past research. 

And this effect is invariant with respect to gender. A test for the interaction of being married 

with gender (not shown) proved to be nonsignificant (p> .3); moreover the effect of being 

married was negative and significant among both women and men (also not shown). At this 

point, one should examine the equation errors to see whether they are approximately normal. 

Figure 11 shows the residuals from this model. According to the Cramer-von Mises or 

Anderson-Darling tests for normality provided in PROC UNIVARIATE in SAS (not shown; 

see D'Agostino & Stephens, 1986), the distribution is significantly nonnormal. Nevertheless, 

the plot suggests a reasonably symmetric distribution (skewness = −.06; not shown) that 

approximates a normal shape. Therefore, the performance of IVR and HSM may not be too 

seriously degraded.

Model 4 presents the IVR regression for life distress. The endogeneity test is nonsignificant 

(p > .2), suggesting that unmeasured heterogeneity is not at work. The positive sign of β̂ 

indicates that if it were present, it would be opposite to expectation: those who are more 

likely to marry are also those who are potentially more distressed. Controlling for any 

unmeasured heterogeneity, the married are marginally less distressed than others. Model 5 

shows the HSM estimates. In this case, there is more evidence of unmeasured confounding, 

as ρ̂ is marginally significant (p < .09). Again, and consistent with other research (Marks, 

1996), its positive sign suggests inverted selectivity: those more likely to marry are also 

more prone to life distress. Controlling for the unmeasured heterogeneity, being married is 

significantly associated with a lower average level of distress (p < .02). That there is a 

marriage advantage net of control variables for selection into marriage is consistent with 

most prior research (Brown 2000; Brown et al., 2005; Frech & Williams, 2007; Gove et al., 

1983; Horwitz et al., 1996; Kim & McKenry, 2002; Lamb et al., 2003; Marks, 1996; Simon, 

2002; Zimmerman & Easterlin, 2006).
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Causal Inference: Issues and Controversies

The current findings agree with much previous research in suggesting that being married is 

associated with greater subjective well-being. We could simply leave it at that. That is, we 

can be content with demonstrating a partial association between marriage and subjective 

well-being, net of measured covariates as well as unmeasured confounding. And we can 

leave it to others to ferret out whether the effect of marriage is actually causal, as opposed to 

just an association that might yet be accounted for by some other factor. We could also say 

that our results are consistent with marriage having a causal effect on subjective well-being. 

However, the estimation of causal effects is a primary goal of most research in the social and 

behavioral sciences (Allison, 2009; Angrist & Pischke, 2009; Davis, 1985; Rubin, 1974). 

Therefore, we might wish to declare that −0.58 (Model 3 in Table 1) or −1.51 (Model 5 in 

Table 1) is an estimate of the causal effect of marriage on subjective well-being. This much 

stronger statement would be both controversial and unwarranted, for several reasons. First, 

consider what is meant by a “causal effect.”

Rubin's causal paradigm is commonly accepted across the sciences as the reigning definition 

of a causal effect (Angrist & Pischke, 2009; Morgan & Winship, 2007; Rubin, 2010; Schafer 

& Kang, 2008). In words, it is the difference, for a given individual, of that person's 

response under the treatment condition versus that same person's response under the control 

condition. As a person can only be in one or the other condition, a causal effect is 

unobservable, as is the average causal effect (ACE), which is the average of all such causal 

effects for the population of interest (Rubin, 2010; Schafer & Kang, 2008). Unbiased 

estimation of the ACE is possible, however, under some stringent conditions. First, the 

stable unit treatment value condition requires that there be no hidden versions of treatments. 

That is, there is only one version of the treatment that is uniformly applied to all units 

(Rubin, 2010). Additionally, the condition stipulates that there must be no interference 

between treatments. This means that any given person's response to the treatment or control 

condition is unaffected by the treatment/control condition received by any other unit (Rubin, 

2010). For the treatment of marriage, these conditions would appear to be satisfied. Second, 

the strong ignorability condition requires that the mechanism through which people are 

assigned to treatment or control conditions is independent of the potential responses to these 

conditions, given measured covariates (Rubin, 2010; Schafer & Kang, 2008). That is, there 

is no unmeasured propensity for those who would respond more or less favorably to 

treatment to be assigned to the treatment, as opposed to the control, condition. In addition to 

including important covariates, addressing unmeasured confounding—via, say the IVR or 

HSM—is a strategy for attempting to ensure strong ignorability. In the current application, 

IVR and HSM produced no evidence for selection of the psychologically healthier people 

into marriage. The marginal evidence found for selection of the psychologically less healthy 

into marriage, on the other hand, would, if anything, only suppress a marriage advantage.

Unfortunately, there are still several reasons for caution in attributing a causal interpretation 

to the “marriage advantage” in the present application. First, as we have seen through 

simulation results, IVR and HSM are very susceptible to the failure of their assumptions. 

The “instrument” used here is not equivalent to random assignment, for example. The error 

term in the substantive equation is not really normally distributed. The tenability of joint 
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normality for the equation errors of the selection and substantive models in HSM is even 

more in question. However, even were the assumptions for IVR and HSM met, there are 

several other reasons for caution. First, the causal priority of marital status over subjective 

well-being must be tenable. That getting married would bring about an improvement in 

well-being is at least theoretically reasonable. This argument is strengthened to the extent 

that mechanisms can be found that help to bring about the effect (Morgan & Winship, 2007; 

Shadish, Cook, & Campbell, 2002). For example, marriage supposedly results in a greater 

household income and the availability of a confidant and supportive mate. It also confers 

greater benefits than unmarried cohabitation because it is perceived as a more permanent 

arrangement (Horwitz et al., 1996). Studies have found evidence that having greater 

household income and the availability of a confidant account for some portion of the 

marriage advantage (Marks, 1996). And others have found that cohabitors' greater 

relationship instability accounts for their disadvantage vis a` vis married couples in 

depressive symptomatology (Brown, 2000). Nevertheless, reverse causation must be ruled 

out: subjective well-being should not be the cause of marital status. It is highly unlikely that 

current perceptions of happiness or health status cause current marital status. However, one 

could argue that preexisting happiness or health status does, because it affects one's 

attractiveness as a marital partner. Yet, this is the social selection argument that I was not 

able to find any evidence for using IVR and HSM. And the lack of support for such 

selectivity has been echoed by several other studies (Kim & McKenry, 2002; Lamb et al., 

2003; Marks, 1996; Zimmermann & Easterlin, 2006).

If the causal priority of marital status over well-being is established, and if there is little 

evidence for unmeasured heterogeneity, what other limitations remain? There are two 

important ones. First, there is considerable measurement error in the response variable, life 

distress. Only slightly over half the variance in this measure is attributable to a stable trait. 

Although measurement error in the response does not necessarily bias the treatment effect 

estimate, it has other repercussions. In order to estimate the causal impact of marriage on 

well-being, we require a reliable and valid measure of psychological well-being. The poor 

reliability of the life distress measure used in this demonstration is a drawback in that 

regard.

Second, the use of listwise deletion to address missing-data problems has resulted in a very 

select sample. Excluding widows and widowers, there were a total of 7,854 respondents in 

the 2006–2010 years of the GSS. Only a third of those respondents were included in the 

current analysis. If the included respondents are a random subset of the 7,854, then the data 

would be missing completely at random, or MCAR, and the treatment estimate arrived at 

using listwise deletion would be unbiased (Allison, 2002). However, it is unlikely that the 

missing data are MCAR. If the probability of missingness on any variables is a function of 

the other observed measures included in the analysis, but not of the missing values 

themselves, then the data are said to be missing at random, or MAR (Allison, 2002; 

Fitzmaurice, Laird, & Ware, 2004). If this situation obtains, replacing missing data using 

multiple imputation would result in unbiased estimates of regression effects. Listwise 

deletion is robust to violation of MAR for the independent variables (see Allison's, 2002, for 

proof of this) but not for the dependent variable. Hence, if missing data on the response are 

only MAR, but not MCAR, then the treatment estimate based on listwise deletion is biased 
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(Allison, 2002). In the worst case, if MAR is violated, such as when the probability of being 

missing is a function of the missing values themselves, then the missing data are said to be 

not missing at random, or NMAR (Fitzmaurice et al., 2004). This would obtain if, say, the 

likelihood of being missing on the life distress measure is greater for those who are more 

distressed. In that case, the missing-data mechanism itself must be modeled in order to 

achieve a good estimate of the treatment effect. Although there are techniques for modeling 

the missing-data mechanism, for example by employing the Heckit procedure (Greene, 

2003; Heckman, 1979), they have not been employed here.

Conclusion

In this article, I have attempted to evaluate the efficacy of IVR and HSM methods to 

counteract unmeasured confounding in cross-sectional studies. Via simulation, I have shown 

that the methods can indeed provide good estimates of a treatment effect in the presence of 

unmeasured confounding when their assumptions are met. However, they can also go 

seriously awry when those assumptions are violated. I have also demonstrated how these 

techniques can be triangulated with OLS to detect and control for endogeneity in an actual 

substantive application. Of the two approaches presented here, HSM is clearly to be 

preferred over IVR. It outperformed IVR in the simulation with respect to both power and 

MSE in all conditions except when no treatment effect was present, and the sample was 

moderate or large. In these cases, IVR was superior at holding the rejection rate down to the 

nominal alpha level for the test of a treatment effect. I recommend that HSM be used as the 

primary technique, with IVR estimated for comparison purposes. Whether the regression 

estimate of the “treatment effect” is to be given a causal interpretation is up to the individual 

researcher. In most cases, when the treatment has not been randomly assigned, such an 

inference would be unwarranted. However, to provide an unbiased estimate of a partial 

association or to marshal evidence that is consistent with a causal effect of the treatment 

variable is nevertheless a contribution to knowledge. Despite the limitations of cross-

sectional data in this enterprise, IVR and HSM can provide psychological researchers with 

additional tools for this purpose.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Unmeasured confounding in cross-sectional data.
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Figure 2. 
Simulation results for N = 50 with treatment effect present. Sym T = symmetric treatment 

condition; Asym T = asymmetric treatment condition; Norm E = normal errors; Exp E = 

exponential errors; Cnfd P = confound present; Cnfd A = confound absent; Inst P = 

instrument present; Inst A = instrument absent; MSE = mean square error; OLS = ordinary 

least squares; IVR = instrumental-variable regression; HSM = Heckman selection model.
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Figure 3. 
Simulation results for N = 250 with treatment effect present. Sym T = symmetric treatment 

condition, Asym T = asymmetric treatment condition; Norm E = normal errors; Exp E = 

exponential errors; Cnfd P = confound present; Cnfd A = confound absent; Inst P = 

instrument present; Inst A = instrument absent; MSE = mean square error; OLS = ordinary 

least squares; IVR = instrumental-variable regression; HSM = Heckman selection model.
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Figure 4. 
Simulation results for N = 2,000 with treatment effect present. Sym T = symmetric treatment 

condition; Asym T = asymmetric treatment condition; Norm E = normal errors; Exp E = 

exponential errors; Cnfd P = confound present; Cnfd A = confound absent; Inst P = 

instrument present; Inst A = instrument absent; MSE = mean square error; OLS = ordinary 

least squares; IVR = instrumental-variable regression; HSM = Heckman selection model.
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Figure 5. 
Simulation results for N = 50 with treatment effect present. Sym T = symmetric treatment 

condition; Asym T = asymmetric treatment condition; Norm E = normal errors; Exp E = 

exponential errors; Cnfd P = confound present; Cnfd A = confound absent; Inst P = 

instrument present; Inst A = instrument absent; MSE = mean square error; OLS = ordinary 

least squares; IVR = instrumental-variable regression; HSM = Heckman selection model; 

IVE = endogeneity based on IVR; HME = endogeneity based on HSM.
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Figure 6. 
Simulation results for N = 50 with treatment effect absent. Sym T = symmetric treatment 

condition, Asym T = asymmetric treatment condition, Norm E = normal errors, Exp E = 

exponential errors, Cnfd P = confound present, Cnfd A = confound absent, Inst P = 

instrument present, Inst A = instrument absent. MSE = mean square error, OLS = ordinary 

least squares; IVR = instrumental-variable regression; HSM = Heckman selection model; 

IVE = endogeneity based on IVR; HME = endogeneity based on HSM.
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Figure 7. 
Simulation results for N = 250 with treatment effect present. Sym T = symmetric treatment 

condition, Asym T = asymmetric treatment condition, Norm E = normal errors, Exp E = 

exponential errors, Cnfd P = confound present, Cnfd A = confound absent, Inst P = 

instrument present, Inst A = instrument absent. MSE = mean square error; OLS = ordinary 

least squares; IVR = instrumental-variable regression; HSM = Heckman selection model; 

IVE = endogeneity based on IVR; HME = endogeneity based on HSM.
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Figure 8. 
Simulation results for N = 250 with treatment effect absent. Sym T = symmetric treatment 

condition, Asym T = asymmetric treatment condition, Norm E = normal errors, Exp E = 

exponential errors, Cnfd P = confound present, Cnfd A = confound absent, Inst P = 

instrument present, Inst A = instrument absent. MSE = mean square error; OLS = ordinary 

least squares; IVR = instrumental-variable regression; HSM = Heckman selection model; 

IVE = endogeneity based on IVR; HME = endogeneity based on HSM.
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Figure 9. 
Simulation results for N = 2,000 with treatment effect present. Sym T = symmetric treatment 

condition, Asym T = asymmetric treatment condition, Norm E = normal errors, Exp E = 

exponential errors, Cnfd P = confound present, Cnfd A = confound absent, Inst P = 

instrument present, Inst A = instrument absent. MSE = mean square error; MSE = mean 

square error; OLS = ordinary least squares; IVR = instrumental-variable regression; HSM = 

Heckman selection model; IVE = endogeneity based on IVR; HME = endogeneity based on 

HSM.
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Figure 10. 
Simulation results for N = 2,000 with treatment effect absent. Sym T = symmetric treatment 

condition, Asym T = asymmetric treatment condition, Norm E = normal errors, Exp E = 

exponential errors, Cnfd P = confound present, Cnfd A = confound absent, Inst P = 

instrument present, Inst A = instrument absent. MSE = mean square error; MSE = mean 

square error; OLS = ordinary least squares; IVR = instrumental-variable regression; HSM = 

Heckman selection model; IVE = endogeneity based on IVR; HME = endogeneity based on 

HSM.
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Figure 11. 
Residuals from ordinary least squares (OLS) regression of life distress on model predictors.
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