This paper was presented as part of the 14th IEEE Global Internet Symposium (Gl) 2011 at IEEE INFOCOM 2011

CombiHeader: Minimizing the Number of Shim
Headers in Redundancy Elimination Systems

Sumanta Saha, Andrey Lukyanenko, Antti Yla-Jaaski
Aalto University, School of Science, Finland

Abstract—Redundancy elimination has been used in many
places to improve network performance. The algorithms for
doing this typically split data into chunks, fingerprint them,
and compare the fingerprint with cache to identify similar
chunks. Then these chunks are removed from the data and
headers are inserted instead of them. However, this approach
presents us with two crucial shortcomings. Depending on the
size of chunks, either many headers need to be inserted, or
probability of missing similar regions is increased. Algorithms
that try to overcome missed similarity detection by expanding
chunk boundary suffers from excessive memory access due to
byte-by-byte comparison. This situation leads us to propose
a novel algorithm, CombiHeader, that allows near maximum
similarity detection using smaller chunks sizes while using chunk
aggregation technique to transmit very few headers with few
memory accesses. CombiHeader uses a specialized directed graph
to track and merge adjacent popular chunks. By generating
different generations of CombiNodes, CombiHeader can detect
different lengths of similarity region, and uses the smallest
number of headers possible.

Experiments show that CombiHeader uses less than 25%
headers than general elimination algorithms, and this number
improves with the number of hits. The required memory access
to detect maximal similarity region is in the range of 1%-5%
of comparable algorithms for certain situations. CombiHeader
is implemented as a pluggable module, which can be used with
any existing redundancy elimination algorithm.

KEYWORDS: redundancy elimination, RE, optimization

I. INTRODUCTION

From commercial products [1-3] to academic research
works [4-6], redundancy elimination (RE) in network traffic at
a level lower than conventional object-level caches has gained
a lot of attention in recent years. Application independent
RE allows to detect similarity within the network traffic at
a much granular level than that of conventional object level
caches. Thus, it opens a window of opportunity to detect
intrinsic similarity between two completely different objects.
While mostly used in localized single point gateways such as
WAN access points, recent works [6—8] have shown that it has
wider scope of use in different scenarios and deployments of
network. This discovery has triggered the invention of several
new algorithms for redundancy elimination at different parts
of the network.

A typical RE algorithm inspects the contents of an IP packet
and generates content dependent chunks from it. This chunking
is done mostly using the famous Rabin fingerprinting [9]
method. These chunks are then fingerprinted for easy searching
and retrieval. At a later time, the incoming packets are also
fingerprinted and checked for containment in the existing

978-1-4244-9920-5/11/$26.00 ©2011 |EEE

cache. If some parts of the new packets are found in the cache,
they are stripped off and a shim header is inserted in place.
These stripped packet are then transported as far as possible
before finally reconstructing them at a downstream network
element with the help of the shim header.

One very important parameter in any RE algorithm is
the average chunk size. While smaller chunk sizes allow
better similarity detection, bigger chunk sizes allow inserting
fewer shim headers in the outgoing packet resulting in better
compression rate. Most of the previous work [6, 7, 10] just
use a small chunk size to report high similarity detection.
However, they fail to mention the increasing number of
headers to transmit, and the added complexity in the operation.
While the importance of choosing the right chunk size is
well understood and analyzed in [11] and [8], no work so
far has proposed any solution to combine the advantages of
using small chunk size (better similarity detection) with that
of bigger ones (better compression rate). Works in [11, 12]
offer multiresolution chunks, however, do not allow adaptive
change of chunk sizes. Similar works were done for content
syncing [13, 14], which operate only on offline disk files and
does not apply to real time traffic. In this paper, we propose
an algorithm, CombiHeader, which allows any RE algorithm
to use smaller chunk sizes and thus detect maximal similarity
while transmitting much fewer shim headers to downstream
elements by adapting the chunk size in real time based on
popularity index.

Most of the current solutions either uses a fixed size
chunk—inserting many shim headers to the outgoing packet,
or uses a byte-by-byte comparison to maximize the matching
region—generating numerous memory accesses. On the other
hand, CombiHeader utilizes a highly optimized data structure
to adaptively decide on the chunk size. For traffic flows with
around 70% similarity, CombiHeader reduces shim headers
upto 80% compared to general RE solutions, thus reducing
the encoding and decoding processing. CombiHeader also
uses very few memory accesses to enlarge the chunks to its
maximum matching size. While a byte-by-byte comparison to
expand a 1024-byte chunk to a 1374-byte similarity region
takes around 351 memory access and one shim header, Com-
biHeader running with 256-byte chunk size requires only nine
memory accesses and one shim header, in the best case. This
is around 2% of the actual number of accesses. CombiHeader
also provides an efficient parameter to tune and control the
memory usage of the algorithm.

809

II. BACKGROUND AND MOTIVATION

With the goal of improving the achievable compression rate
of an RE algorithm, we will discuss in slightly more detail the
present redundancy elimination techniques and the motivation
behind the development of CombiHeader.

A. Chunk Size

As discussed briefly in §I, the idea behind traffic RE tech-
niques is to remove repeated arrays of bytes from a network
stream at a much finer level than objects or even packets.
The superiority of packet RE over traditional object caches
stems from the fact that RE is mostly application unaware
and can eliminate redundancy irrespective of which application
the flow is a part of. One of the most important parameters
of any RE algorithms is the average chunk size. This size
is decided by tuning a parameter in the Rabin fingerprinting
algorithm [9]. The compression rate of a RE algorithm heavily
depend on this parameter: the bigger the chunk size is, the
fewer shim headers the algorithm has to transmit. However,
having bigger chunk size results is worse similarity detection,
diminishing the fewer-header advantage.

Undetected

Similarity Similarity
labed]efgh |15kl
1 2 _ 3
|abcd|feabhi[ijtt
Fig. 1: Matching regions that cannot be detected by chunk-level RE, but can
be detected by maximal-match RE with many memory accesses

Detected

B. Chunk Area Expansion

The matching of incoming traffic with the chunk store is
typically done in a chunk level. However, matching regions can
extend beyond the chunk boundary. To detect this similarity,
two different approaches has been taken thus far: 1. Chunk
level RE and 2. Maximal Match RE. In Chunk level RE,
comparison is done between representative fingerprints of
whole chunks, which causes partial chunk matches not to
be detected (similar regions in chunk pairs 2 and 3 are not
detected in Figure 1). This problem renders the case of bigger
chunks less useful, which, according to §II-A, was the better
choice. On the other hand, Maximal Match RE performs
rigorous byte-by-byte matching to extend a matching chunk to
its maximum. This allows maximum matching with the cost
of more memory accesses.

C. Performance Parameters

While maximal RE seems to be a good idea to detect as
much matching payload as possible, it requires many memory
accesses and creates a bottleneck in high speed network
elements. On the other hand, chunk level RE, which only
depends on fingerprint comparison, is free from this flaw
but requires a large number of shim headers to be inserted.
Moreover, it can only detect chunk level similarity and the

detection granularity suffers increasingly as bigger chunk sizes
are used. For example, in Figure 1, two series of chunks are
compared. With chunk level RE, we can detect similar chunks
pairs 1 and 2 with only two memory comparisons. However,
partially matching chunk pairs 2 and 3 remain undetected.
Maximal match RE, on the other hand, is able to at least
detect the similarity in chunk 2 which is adjacent to chunk 1
with the expense of extra memory accesses.

If the chunk size is w, matching regions are X;, number of
matching regions m, total number of chunks is «, and total
matching chunks are n:

Lemma I1.1. Number of memory access for maximal match
RE, liym, is proportional to that of chunk level RE, L. with

w? multiplier.

Proof: Lower bound for fi;,m, when each chunk grows
only to the right, and partial matches within chunks (X; mod
w | ¢=1...m) are uniformly distributed in [0, (w — 1)], then,
Lanm = K+ ey (Xi mod w+1) = “H m+k > $(w+1)-
w-Kk+k, where 0 < o < 1. While memory access required for

chunk level RE, ji; = k. Therefore, “ﬁ”—;" =1+ Sw+ Swi
Thus fi;, is proportional to p.; with w? multiplier, as stated.
|

Because of Lemma II.1, we will exclude maximal match
from further discussion. Chunk level RE, while outperforming
maximal match in memory access, misses all the regions of
data which does not belong to a matching chunk, but belongs
to a matching region. Number of missed matching bytes:

m

A, = ZXi mod w (H
i1

Another parameter, number of transmitted shim headers 7,
depends on the selected w. Smaller w allows better similarity
detection, but causes larger 73,. This 75, can be expressed as:

Th =" (2
Lemma IL.2. A, and 7, are inversely related.

Proof: From Equation 1 and 2, 7, = n = ZZ’;l X;i~w=
i1 %ﬂmdw = S0 X - (L, Xy mod w)) =
L3, Xi — Ay), and the lemma follows.]
The target of any RE algorithm should be to reduce all
the three parameters (u.;, A, and 74) simultaneously—which
is non-trivial because of the inverse relationship of A, with
7, and p (Lemma II.1 and II.2). CombiHeader aims to
achieve this target in an RE-algorithm independent way, i.e.,
a pluggable way which can be used with any RE algorithm.

III. COMBIHEADER

From the discussion above, it is apparent that a solution
that can remove as much similar content from a packet as
possible without having to insert too many chunk headers
and without slowing down the operation with many memory
accesses is needed for an efficient RE system. This is where
CombiHeader comes into picture. CombiHeader employs an
efficient algorithm to track consecutive popular chunks and

810

merges them together without losing the ability to detect basic
chunk level hits.

The idea of CombiHeader is based on the presumption of
spatial locality. We assume that, if two consecutive chunks are
highly popular, then the probability of them always appearing
together is higher. Therefore, if we can keep track of adjacent
popular chunks and their probability of appearing together,
it is possible to merge them together and transmit only one
header for more than one chunk. However, while merging
smaller chunks together to generate bigger chunks sounds
exciting with the promise of transmitting less shim headers,
with merging we lose the possibility of detecting smaller
chunks.

Algorithm 1 Pseudocode of CombiHeader algorithm

if current chunk is cache miss then
if miss streak = 1 then
Update last seen Combi and Elementary node
Create new complex CombiNode if link hit > 6
else
Clear last CombiNode and transmit it
Update last seen elementary node
end if
Transmit full text of current chunk
else
if miss streak = 1 then
Start fresh, clear last seen CombiNode
Do not transmit anything
Buffer current chunk as last seen elementary
miss streak<— 0
else
Update last seen elementary node
Create new CombiNode with (Last CombiNode, current Node) if link hit > 6
if Try failed then
Transmit and clear last CombiNode
else
Do not transmit anything
Complex CombiNode is accumulating chunks to transmit
end if
end if

end if

CombiHeader employs a specialized data structure to tackle
this problem. With this data structure, both the elementary and
the merged chunk fingerprints are stored in such a way that
it is possible to gradually pile up chunk hits to a maximal
region and then transmit in a burst. For each adjacent chunk
pair, the algorithm maintains a link, and updates the link hit
count whenever those two chunks appear one after another
in a stream of data. Further, based on a threshold (6) of link
hits, a new merged chunk (CombiNode) is generated from
the two elementary chunks, and is attached to the link. After
creating the CombiNode based on hitcount of the elementary
nodes, each time one of the constituent elementary nodes are
hit, no header is inserted in lieu of that, rather the algorithm
waits for the next chunk and matches it up with the linked
elementary fingerprint. In case of a match, it inserts only the
CombiHeader (Header created from a CombiNode) that has
been created earlier instead of two elementary headers. The
algorithm, thus, works in two phases: 1. CombiNode Creation,
and 2. CombiHeader Insertion. To better understand these two
operations, an example scenario is described with the help of
a pseudo-code description and a figure.

Trail of Chunks: h1h2h3h4h1h2h3h1h2h3

Fig. 2: Creation of CombiNodes based on a trail of chunks

CombiNode Creation: The pseudo code of Algorithm 1
and the simple demonstration of how CombiNodes are created
for a sample stream of chunks is depicted in Figure 2. If we
follow Figure 2 according to the pseudo code, the following
operations occur (The threshold 6 = 1):

e When chunk h2 arrives after chunk hl, a link is estab-
lished between them to indicate the adjacency. The hit
count of the link is set to 1. No CombiNode will be
created for this link because the hit count is not over 6.

e h3 arrives and a link with A2 is created similar to the
previous operation. The case for h4 is similar to h3.

e The chunk hl arrives again and this is a cache hit. So,
no new node is created, just a new link from h4 to hl is
established with a hit count of 1.

o Next comes h2 and the already existing link between
h1h2’s hitcount is updated to 2. Now that the hitcount is
greater than 0, a new CombiNode is created for the link
which contains the fingerprint of the combined chunk
h1h2. All the children of h2 (e.g. h3) are added as
children of hlh2. Similar operations occur when h3
arrives and a new CombiNode h2h3 is created. The
CombiNode h1h2h3 is not created now, as the hitcount
between h1h2 and h3 is not over 1.

o Next comes hl, and just a new link between h3 and hl
is established.

o After hl, arrives h2 and h3, which along with increasing
the hitcount of links hl — A2 and h2 — h3, also
increases hitcount of h1h2 — h3, and triggers the
creation of h1h2h3—a second generation CombiNode.

CombiNode Insertion: From Algorithm 1 we can notice
that the algorithm keeps track of the last elementary node and
the last CombiNode it has created. Based on this knowledge
and on whether the current chunk is a cache hit or miss,
CombiHeader algorithm decides what to insert into the packet
scheduled for transmission. For an example trail similar to
Figure 2, let’s take a look at how the algorithm generates
packets to transmit.

Trail: hlh2h3h4hlh2h3hlh2h3h5

Last elementary: hil h2 h3 ha hl h2 h3 hl h2 h3 hs
Last CombiNode : - - - - - hih2 - - hlh2 hlh2h3 -
Cache hit/miss : M M M M H H H H H H M

Insert in trans: F(hl) F(h2) F(h3) F(h4) - hih2 h3 hilh2h3
& F(h5)
F(x) = Full payload for chunk x

x = Elementary header for chunk x

xy CombiHeader for combined chunks x and y

Following the above with the help of the pseudo-code
should be self-explanatory. For the first instances of hl, h2,
h3, and h4 we are in a miss streak and we insert the full text

811

always in the transmit packet. After that, when chunks h1 and
h2 are received again, nothing is transmitted as the algorithm
enters in a hit streak and starts to search for CombiNodes in the
CombiGraph. This buffering stops once the algorithm cannot
find any ready made CombiNodes in the graph. So, when h3
arrives, the algorithm cannot find h1h2h3 in the graph, and
it then inserts the last seen CombiNode, e.g., h1h2 in the
transmit buffer, and clears last seen CombiNode to indicate
that nothing is anymore buffered for transmission. However,
h3 itself if not transmitted yet, it’s buffered to look for further
aggregation possibility with the next chunks. When A1 appears
next, h3 is immediately released, as there is no CombiNode
opportunity. However, with the incoming ~2 and h3, a new
CombiNode h1h2h3 is now created, and is then transmitted
when a cache miss with hd occurs. Full text of hb is also
transmitted with that.

IV. THEORETICAL ANALYSIS

From the discussion of §II-B, it is evident that the two
parameters where CombiHeader algorithm needs to improve
is memory Access, and the number of headers transmitted.
We will analyze a simple case here to generate a model of
various aspects of the algorithm. CombiNodes are generated
in layers, and depend on 6. In this case, we assume a stretch
of chunks ¢y, cq,...,c;, which are repeated exactly ¢ times,
separated by unique symbols. We express the maximum depth
of CombiNode layer as J, total number of chunks as [, total
number of nodes in the CombiGraph as 2, and total headers
transmitted as H.

TABLE I: CombiHeader Theoretical Parameters

Layer Layer generation =~ Number Tx. Headers
constraint of nodes

1 0<i<0 l -0

2 6 <i<20 -1 L0

3 20 < i <36 -2 L.9

Table I lists the restrictions on CombiNode layer generation
as per the algorithm, where ¢ is the repetition count of
the chunks (details excluded for brevity). Therefore, after ¢
repetitions, maximum depth should be: %. However, if total
number of chunks is less than %, then the generation ends

prematurely. So the final value is:
t
0~ min(g, 1) 3)

The total number of nodes created in the graph depends on
the maximum depth, and nodes created on each layer is listed
on Table I. Therefore, total number of nodes is:

4
Q:Z(z—iﬂ):(s(z“)_@

i=1

4)

To get the number of headers transmitted for a particular round
of repetition, we have to analyze the algorithm. For the first 6
repetition, only the first layer is generated, and [headers are

inserted. For the next 6 repetitions, second layer is generated,
and % headers are transmitted. This pattern continues as shown
in Table I. Therefore, total number of headers transmitted after
t repetitions are:

5 5
l l
H,. = 0--)=20l =)= 0l(Ind 5
SIPELIVORLCIEL D
where c is a constant. As any other general RE algorithms have
to transmit at least H, = [- t headers for the same stretch of
chunks, the ratio is [from (5)]:
H. 6(nd+c)

~ O(In(man(g,1)) +c)
H, t B t (©)

which gets really small as ¢ increases.

V. IMPLEMENTATION

The implementation of the solution is divided into two
major parts: the chunking or RE engine, and the CombiHeader
algorithm.

The chunking engine is used for generating chunks out of
IP packet payloads. The engine is implemented in pure C, and
uses the well known Rabin fingerprinting [9] to detect content
dependent hooks in the payload of each IP packet that goes
through it. We exclude a detailed description of the chunking
algorithm for brevity, however, interested readers can always
refer to previous works [5, 10] which discuss about content
dependent chunking in general. A configurable parameter in
the engine decides whether chunking is done in IP layer or
in TCP layer. Another parameter of the engine determines the
average chunk size. For calculating the fingerprint we have
used SHA-1 hashing algorithm. As for the length of the hash
value, its tunable and depends of the chunksize used. The
reader is requested to refer to [11] for a detailed analysis of
the optimal fingerprint size for any chunksize.

The CombiHeader algorithm is implemented as a directed
graph where each node contains a pointer to a corresponding
entry in the chunkstore. The sole purpose of the node graph
is to keep track of the sequence of chunks passed through the
gateway. Additionally, the node graph is used for generating
and keeping track of merged nodes. The node graph heavily
uses pointers to access memory at random and is optimized
for low memory access with controlled memory usage. For
generated CombiNodes, the chunkstore does not store the
payload. Rather it stores references to the elementary nodes
that were used to create the CombiNode. As any CombiNode
can be a result of unforeseen number of elementary chunks,
storing references to all those elementary chunks would make
the payload arbitrarily large, thus creating problem in memory
management. Therefore, each entry for CombiNode in the
chunkstore have only two references to another CombiNode
or elementary Node. It’s then traversed recursively to resolve
the whole payload of the CombiNode.

VI. EVALUATION

In this section, the proposed algorithm is evaluated on
the light of the targets specified in previous sections. The

812

evaluation primarily focuses on three major areas: how Com-
biHeader algorithm influences redundancy elimination process
with different chunk sizes, the effect of primary tunable
parameters on the result, and the cost of the algorithm in terms
of memory access.

Test Setup: As is already shown in previous works [6, 15],
the Internet traffic has enough redundancy that could be
removed by applying redundancy elimination techniques. This
paper does not try to reinforce that premise again. Rather, we
show how the CombiHeader algorithm affects the outcome of
any RE algorithm with representative traffic. For most of our
experiments, a set of five video files with same video track and
different audio tracks is used. This was an informed choice
because the audio track is interleaved within video frames
and thus presents with a scenario where similar content are
interleaved with dissimilarities. We transmit the files one after
another through the RE system that we developed and measure
various parameters of it.

T T
Chunk Size: 64 —+—
Chunk Size: 128 -
35 - Chunk Size: 256 -
Chunk Size: 512
Chunk Size: 1024

HIT Percentage (HIT payload/Total payload %) increase
o
S

Number of Similar Files Transmitted

Fig. 3: Increment in hit percentage for flow based chunking compared to
packet based chunking

300000

Threshold: 1 —+—
Threshold: 2 -
Threshold: 3 %
Threshold: 4 -
Threshold: 5 -
Threshold: 6 -

%

250000 -

200000

150000

Number of Nodes Allocated

100000

L
50000 . . L .
1

Number of Similar Files Transmitted

Fig. 4: Effect of 6 parameter over memory usage

Packet-level vs. Flow-level chunking: While performing
content based chunking over network traffic, one decision
every RE algorithm needs to take is whether to use packet
level or flow level chunking. In packet level chunking, the
payload of each packet is treated separately and no flow-
tracking is applied, while in flow level chunking, each flow
is tracked individually to reconstruct the actual transport level
payload. While flow level chunking requires extra processing
power and memory for flow tracking, it is much more efficient
in detecting similarity between two flows. In packet level
chunking each packet has a leftover chunk which does not

meet the chunking criterion. However, in flow level chunking
we have only one leftover at the end of the flow.

This observation is backed up by Figure 3 where percentage
gain for chunk hit is depicted for different chunk sizes. As can
be seen from the figure that there is always a positive gain for
flow based chunking, and additionally, the increase is more
for bigger chunk sizes. This proves the “leftover” hypothesis
we made in the previous paragraph.

CombiHeader: OFF —
CombiHeader: ON ===----

200000

150000 -

100000 ~

Number of headers transmitted

50000

64128 256 512 1024
Chunk Size (bytes)

Fig. 5: Effect of CombiHeader algorithm on header transmission savings

40000

T T ;
Chunk Size: 128, CombiHeader: ON —+—
Chunk Size: 256, CombiHeader: ON —%—

Chunk Size: 512, CombiHeader: OFF % 1

Chunk Size: 1024, CombiHeader: OFF -+

35000

30000
25000 - L f
20000 - |

15000

Number of Headers Transmitted

10000

5000 -

Number of Similar Files Transmitted

Fig. 6: CombiHeader allowing smaller chunk sizes to be as beneficial as
bigger ones

Tunable Memory Requirements: While the algorithm
presented in this paper promises wonders in terms of trans-
mitting less bytes to the wire, there is a scope of considerable
discussion about how much memory it requires. The algorithm
offers a parameter represented by 6 to address this. € controls
when two elementary nodes are merged together to generate a
CombiNode. Thus by changing the value of this parameter, the
memory requirement of the algorithm can be tuned. In Figure 4
the number of allocated nodes are shown. The experiment
has been done for 64-byte chunks with different 6 value
while transmitting the five video files under consideration.
The experiment shows that the explosion in node creation
always starts when the number of files transferred (and thus the
number of hit on similar chunks) reaches 6. This allows us to
decide two characteristics of the algorithm: 1. The increase in
elementary nodes is linear for similar files because elementary
nodes are only generated for missed chunks, 2. The explosion
of CombiNodes, and thus memory usage can be conveniently
tuned using the 6 value.

Merging reduces total transmitted headers: One of the

813

features that CombiNode promises is to reduce the number of
headers to be transmitted. The dramatic nature of this feature is
expressed in Figure 5. Five video files are transmitted through
the engine twice: once with the combiHeader algorithm turned
on and then once with it turned off. Figure 5 shows the number
of shim header to be transmitted for both the scenarios. As
can be seen, for smaller chunk sizes CombiHeader algorithm
requires less than 20% of total headers to be transmitted, while
for bigger chunk sizes it requires around 25% of the total.
CombiHeader allows best of both worlds: Continuing from
the previous discussion, we will now show that how we can
get the best of both worlds (better similarity detection with
less header transmission) using CombiHeader. In Figure 6,
we show a superimposed graph where four different chunk
sizes are used, two bigger ones without CombiHeader and
smaller two with CombiHeader. Intuitively, the number of
chunk headers inserted for transmission grows linearly without
CombiHeader algorithm. While for smaller chunk sizes, they
start with a bit higher chunk header insertion as expected
but quickly recovers and surpasses the bigger chunk sizes in
savings. Both 128-byte and 256-byte chunks cross 512 and
1024 byte chunks sizes respectively before the third similar
file is transmitted. This occurs due to more and more complex
CombiNode creation and thus lesser shim header transmission.

3.5e+07

Tx bytés without RE oz
Tx bytes with regular RE texeus
Tx bytes with CombiHeader mw—

3e+07

2.5e+07

2e+07

1.5e+07

Total bytes transmitted to wire

1e+07

5e+06

1 2 3 4 5
Number of Similar Files Transmitted

Fig. 7: CombiHeader reduces total bytes transmitted to wire

CombiHeader: ON —+— '

1400 CombiHeader: OFF ------

1200 i 1

1000 | 1

600 - . 4

400

Number of headers transmitted

200

0 100 200 300 400 500 600
Elapsed Time (Seconds)

Fig. 8: Shim headers to be transmitted: generic HTTP traffic

CombiHeader’s affect on actual bytes transmission: Thus
far we have demonstrated how CombiHeader allows transmis-
sion of dramatically low number of shim headers. Figure 7
shows how this reduction positively affects the number of
bytes to be transferred out to the wire. The figure compares

traffic amount of normal transfer with regular RE algorithm,
and with CombiHeader helped RE algorithm.

CombiHeader with HTTP traffic: Although previous
experiments have already shown the benefits of CombiHeader
from different angles, to reinforce the applicability of Combi-
Header, we also ran it on a trace of HTTP traffic. In Figure 8,
it is clearly visible that even for a very short period of
time, CombiHeader shows a definite savings on the number
of transmitted headers. The experiment is done with 64-byte
chunk size, with # = 1, on a trace of HTTP traffic captured
from a home access point used by several users.

VII. CONCLUSION AND FUTURE WORKS

The applicability of RE in different scenarios has already
been proved by previous works. However, none of them offer
an efficient method to reduce the number of shim headers
to be transmitted. Moreover, none of the previous works has
efficiently solved the tradeoff between chunk size and maxi-
mum similarity detection. This paper proposes and evaluates a
new algorithm named CombiHeader which tracks the produced
chunks according to their popularity and adjacency index, and
based on that merges adjacent chunk opportunistically with
the premise that if several adjacent chunks are popular, there
is a high possibility that they will appear together again in
the future. Thus it reduces the number of shim headers and
improves compression ratio with very few memory accesses.

Due to the highly dynamic nature of CombiHeader, cache
knowledge synchronization among the neighbours to make
informed decision about routing is imperative. We keep it as a
future work to invent a highly optimized way to sync the cache
states among the neighbors. Overall, CombiHeader shows
exciting promise to further increase the performance of RE
algorithms while providing flexible parameters for adapting it
to different usage scenarios.

REFERENCES

[1] (2010) Bluecoat: WAN optimization. [Online]. Available: http://www.bluecoat.com
[2] (2010) Cisco WAN optimization and application acceleration. [Online]. Available:
http://www.cisco.com/en/US/products/ps5680/Products_Sub_Category_Home.html
[3] (2010) Riverbed: WAN optimization. [Online]. Available: http://www.riverbed.
com/us/solutions/wan_optimization/index.php
[4] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth network file
system,” in Proc. of SOSP. ACM, 2001, pp. 174-187.
N. Spring and D. Wetherall, “A protocol-independent technique for eliminating
redundant network traffic,” in Proc. of SIGCOMM. ACM, 2000, pp. 87-95.
A. Anand et al., “SmartRE: an architecture for coordinated network-wide redun-
dancy elimination,” in Proc. of SIGCOMM. ACM, 2009, pp. 87-98.
[71 Y. Song, K. Guo, and L. Gao, “Redundancy-Aware Routing with Limited Re-
sources,” in Proc. of 19th IEEE ICCCN. 1EEE, 2010, pp. 1-6.
[8] E. Halepovic, C. Williamson, and M. Ghaderi, “Exploiting Non-Uniformities in
Redundant Traffic Elimination,” University of Calgary, 2010.
[9]1 M. Rabin, Fingerprinting by random polynomials. Center for Research in
Computing Techn., Aiken Computation Laboratory, Univ. Harvard, 1981.
[10] A. Broder, “On the resemblance and containment of documents,” in Proc. Com-
pression and Complexity of Sequences. 1EEE, 2002, pp. 21-29.
[11] K. Tangwongsan et al., “Efficient similarity estimation for systems exploiting data
redundancy,” in Proc. of IEEE INFOCOM. 1EEE, 2010, pp. 1-9.
[12] S. Thm, K. Park, and V. Pai, “Wide-area network acceleration for the developing
world,” in Proc. of the 2010 USENIX ATC. USENIX Association, 2010, p. 18.
[13] N. Bjgrner et al., “Content-dependent chunking for differential compression, the
local maximum approach,” Journal of Computer and System Sciences, vol. 76, no.
3-4, pp. 154-203, 2010.
[14] M. Ajtai et al., “Compactly encoding unstructured inputs with differential com-
pression,” Journal of the ACM (JACM), vol. 49, no. 3, pp. 318-367, 2002.
[15] A. Anand et al., “Redundancy in network traffic: findings and implications,” in
Proc of SIGMETRICS. ACM, 2009, pp. 37-48.

[5

[6

814

