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Combination of bicarbonate
and low temperature stress
induces the biosynthesis of
both arachidonic and
docosahexaenoic acids in
alkaliphilic microalgae
Dunaliella salina HTBS
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Tong Han2, Nahui Hao2, Yuanjiang Yao1,2, Chunxuan Lan1,2,
Tongling Ge2,3, Maliheh Safavi4, Weijie Wang1*, Lei Zhao2,3*

and Fangjian Chen2,3*

1College of Life Science, North China University of Science and Technology, Tangshan, China,
2Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin, China, 3National Center of Technology Innovation for
Synthetic Biology, Tianjin, China, 4Department of Biotechnology, Iranian Research Organization for
Science and Technology, Tehran, Iran
High bicarbonate levels and low temperature may have an impact on

microalgae cultivation. However, changes in cellular composition in response

to the combination of the above stresses are still poorly understood. In this

study, the combined effects of bicarbonate and low temperature on

biochemical changes in alkaliphilic microalgae Dunaliella salina HTBS were

investigated. Comparing to the control condition of 25°C without bicarbonate,

the cell density was increased from 0.69 to 1.18 in the treatment condition of

0.15 M bicarbonate and low temperature (16 °C) while the lipid\protein

\carbohydrate contents were increased from 34.71% to 43.94%, 22.44% to

26.03%, 22.62% to 29.18%, respectively. Meanwhile, the PUFAs, arachidonic

acid (AA) and docosahexaenoic acid (DHA) contents reached to 3.52% and

4.73% with the combination of low temperature and bicarbonate, respectively,

whereas they were not detected when the cells were treated with single

condition. Moreover, both the chlorophyll and carotenoid contents were also

detected with increased profiles in the combined treatments. As a result, the

maximum photochemical efficiency but not reduced non-photochemical

quenching was strengthened, which enhanced the photosynthetic

performance. Additionally, our results indicated that D. salina HTBS could

acclimate to the combined stress by up-regulating the activity of SOD\CAT

and reducing MDA content. These findings demonstrated that the addition of a

certain bicarbonate under low temperature could effectively enhance the
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biomass production and accumulation of AA and DHA, which would benefit the

development of the microalgae industry in value-added products.
KEYWORDS

Dunaliella salina HTBS, bicarbonate, low temperature, arachidonic acid,
docosahexaenoic acid
Introduction

Microalgae, as photosynthetic organisms, are utilized as

potential candidates for carbon sequestration and valuable

compounds production with a higher growth rate and efficiency

in CO2 fixation than terrestrial plants (Chaunhan et al., 2022;

Jakhwal et al., 2022). Among the great diversity of metabolites in

microalgal cells, polyunsaturated fatty acids (PUFAs), such as

arachidonic acid (AA) and docosahexaenoic acid (DHA), have

been widely used as the key ingredients for nutrient supplements

and pharmaceutical industrial products. Although both AA and

DHA are reported to be accumulated in microalgae under certain

conditions, their biosynthesis could be greatly affected by culture

medium modifications, such as nutrients supplementation,

limitation, and abiotic condition changes (Almutairi, 2020).

Biosynthesis of AA and DHA is closely related to carbon

metabolism and temperature changes. Studies have shown that

the PUFAs are increased from 32.3% to 37.9% in Pavlova lutheri

with the addition of bicarbonate from 2 mM to 18 mM in the

medium, which are also the case with both biomass and lipid

contents (Guihéneuf and Stengel, 2013). The biosynthesis of

both lipid and AA is active in Parietochloris Incisa under high C/

N conditions (Khozin-Goldberg et al., 2002). Interestingly,

bicarbonate is convenient to transport and cost effective when

compared with CO2, it can be considered as an excellent carbon

resource for microalgae cultivation with high carbon utilization.

Therefore, bicarbonate supplementation has been regarded as an

effective way for the enhancement of secondary metabolites

biosynthesis and growth acceleration. In contrast, PUFAs were

detected with reduced content under high carbon conditions

(Morales et al., 2021), and both the PUFAs biosynthesis and cell

growth varied depending on the bicarbonate concentration and

microalgae strain (Nunez et al., 2016). When added with

bicarbonate, a large amount of cations are accumulated in

both the microalgae cells and medium, which may inhibit cell

division, resulting in cell death (Chen et al., 2009; Chi et al., 2014;

Srinivasan et al., 2015; Ratomski et al., 2021). Due to the lack of

strains tolerant to high-concentration cations, the effects of high

bicarbonate on facilitating PUFAs biosynthesis in microalgae

have been rarely reported.

Temperature is the other key factor which affects the

biosynthesis of both AA and DHA. Low temperatures ranging
02
from 10 °C to 25 °C trigger the PUFAs metabolic pathway, which

leads to a 120% increase in PUFAs content (Jakhwal et al., 2022),

and the accumulated PUFAs improve the cell membrane

fluidity, which reduces the damage to cells caused by low

temperatures (Lu et al., 2017). The PUFAs content increased

to 35.23% when the temperature was decreased from 45 °C to 25

°C in Galdieria sp (Lu et al., 2021). Similarly, the positive effects

of low temperature on PUFAs biosynthesis were also observed in

the cultivation of Nannochloropsis, Isochrysis, Rhodomonas, and

Dixioniella grisea (Aussant et al., 2018; Lu et al., 2021). However,

microalgal growth is inhibited when PUFAs accumulate under

low temperature conditions. Therefore, the strains with high

bicarbonate and low-temperature tolerance are urgently needed

to solve the previously mentioned problems.

In our previous study, Dunaliella salina strain HTBS, with a

high tolerance to bicarbonate, was reported to be able to grow well

under 70 g/L bicarbonate and low temperature. Nevertheless, the

combined effects of bicarbonate supplementation and low

temperature on the biochemical composition of HTBS changes

are still unclear. Therefore, the objective of this study was to

investigate the role of the combination of high bicarbonate and

low temperature in physiological and biochemical changes in

HTBS. Changes of cell density, pigments, lipid, carbohydrate,

and protein contents, particularly the high value products AA and

DHA content were initially monitored. Then, stress biomarkers

like antioxidative enzyme superoxide dismutase (SOD), catalase

(CAT) and malondialdehyde (MDA), along with Ci and nitrogen

consumption curve were evaluated to elucidate the physiological

mechanism of HTBS in response to the combined stress as well as

to study their effects on PUFAs. These results will provide valuable

information to produce PUFAs using microalgae and will benefit

industrial development.
Materials and methods

Strain and cultivation conditions

Dunaliella salina strain HTBS with high tolerance to HCO3
-

and low temperature was obtained and cultured to an early

stationary phase, then centrifuged and washed twice with sterile

seawater for inoculation based on our previous study (Hou et al.,
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2016). For evaluating the effects of different bicarbonate contents

at low temperature on physiological and biochemical changes in

HTBS, the cells were inoculated in the modified f/2 medium (750

mg/L NaNO3) under a light intensity of 80 mmol m-2 s-1

containing various bicarbonate concentrations ranging from 0

M to 0.6 M at 16°C.
Analytical methods

During the cultivation, the cell growth was evaluated by

measuring the optical density (OD) at 680 nm using a

spectrometer. The algae suspension was centrifuged to harvest

the cell pellets at 8,000 rpm for 5 min, the pellets were freeze

dried using a vacuum freeze-drying machine. About 50 mg of

cells were resuspended with 4 mL of chloroform and 2 mL of

methanol, then incubated at 30°C for 16 h for lipid extraction.

Then the mixture was centrifuged at 5,000 rpm for 10 min after

adding another 2 mL of methanol and 3.6 mL of ddH2O.

Subsequently, the organic phase was transferred to a pre-

weighed glass tube and dried with N2 protection under 65 °C.

The lipid was dissolved in 2.5 mL of 2% (v/v) H2SO4-methanol

solution and heated at 85°C for 2.5 h. The fatty acid methyl ester

(FAME) was obtained with 1 mL of n-hexane and 1 mL of

saturated sodium chloride solution addition. FAME analysis was

carried out using GC (GC2010, Shimadzu; SP-2560,

100m×0.25mm×0.2µm, Supelco, USA) (Zhang et al., 2020a).

The cell pellets were also used for other metabolites analysis.

For pigment measurement, the cells at 8th day were mixed with 80%

(v/v) acetone and ethanol solution and incubated in the dark at 4°C

for 60 min, then centrifuged at 7,500 rpm for 5 min to obtain the

supernatant for chlorophyll and carotenoid content detection with

ultraviolet spectrophotometer (Thermo Scientific, USA). 0.5 M

NaOH was used to extract the protein by boiling for 10 min,

then the supernatant after centrifugation was measured using the

Bradford assay (Chen et al., 2012). For carbohydrate analysis, the

cell pellets were re-suspended in 4 mL of ddH2O and transferred to

a tube with 1mL of 5% (w/v) phenol solution and 5mL of HCl. The

tube was incubated at 25°C for 10min, then at 30°C for 20 min, and

OD483 was then measured (Liang et al., 2020). For fluorescence

parameters measurement, 3 mL of algal suspension were adapted

for 15min in dark place thenmeasured by PalmWater Chlorophyll

Fluorometer (Aquapen-C AP-C 100, Photonic System Instrument,

Czech Republic) (Zhang et al., 2020b).

To investigate the effect of the antioxidase system in cells, the

harvested cells were broken using an Ultrasonic Cell Disruption

System (Nanjing XinChen JY96-II, Nainjing, China) at 4°C for

15 min (3 s on and 3 s off). Then the supernatant obtained by

centrifugation (12,000 rpm at 4°C for 10 min) was assayed

according to Solarbio BC0170, BC0200 and BC0020 for SOD,

CAT and MDA, respectively. (Zhang et al., 2020b).

The supernatant was detected by inorganic carbon content

analyzer (MULTI N/C 2100 N5 221/I). For nitrogen
Frontiers in Marine Science 03
concentration determination, the obtained supernatant was

mixed with 20 mM HCl and 0.08% sulfamic acid according to

Liu’s report (Liu et al., 2013).
Statistical analysis

All the experiments in this study were conducted in

triplicate. Data is represented as the mean value with standard

deviation (error bars). SPSS Statistics software program was used

for one-way ANOVA at the significance level of 0.05 to calculate

the salient difference between treatments.
Results and discussion

Effects of different combinations of
temperature and bicarbonate content on
growth and major metabolites
accumulation in HTBS

Growth of the strain HTBS with high tolerance to low

temperature and high bicarbonate content was evaluated

under the combination of these above conditions. As shown in

Figure 1A, the growth was inhibited slightly when cells were

cultured at 16°C. However, cell density increased significantly

with the addition of bicarbonate (0-0.15), then decreased when

the bicarbonate content exceeded 0.15 M. The OD680 reached to

1.18 under the condition of 0.15 M bicarbonate on day 7 when

cultured at 16°C, which was 60.9% and 69.6% higher than cells

under 25°C and 16°C without bicarbonate treatment,

respectively. These results suggest that temperature and

bicarbonate may affect the growth rate in microalgae

cultivation. Previous study indicated the underlying

mechanism that low temperature can inhibit the metabolic

activity and result in the rigidification of the bilayer lipid

membrane, which consequently affects the nutrient

permeability and utilization (Chua et al., 2020). Furthermore,

low temperature decreases the intracellular enzyme activity,

which results in low cell density (Yang et al., 2019).

Meanwhile, the addition of bicarbonate brings a high

concentration of Na+, 0.2 M of which can inhibit many algal

strains (Srinivasan et al., 2015). Therefore, it seems as if the

growth might be inhibited significantly by the combination of

high HCO3
− and low temperature. Interestingly, the strain

HTBS exhibited good bicarbonate-tolerance ability under low

temperature condition in this study. The results suggested that

the addition of bicarbonate was beneficial for algal strains to

overcome the bottleneck caused by low temperature.

Bicarbonate and temperature conditions can also affect the

biosynthesis of cellular components. As shown in Figure 1B, the

lipid content of the group with 16°C and 0 M bicarbonate was

1.7% higher than treatment with 25°C and 0 M bicarbonate
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(control), then increased from 36.41% to 43.94% when the

bicarbonate supplement increased from 0 M to 0.15 M under

16°C. Carbohydrate as the other carbon storage material of

HTBS increased from 24.67% to 29.18% (Figure 1C), which

was consistent with previous results that carbon sources are

positively related to carbohydrate content (Xu et al., 2017).

Similar results were also obtained for protein content analysis

(19.66% to 26.03%) (Figure 1D). With the addition of

bicarbonate, the increased C/N ratio results in more lipid and

carbohydrate biosynthesis for carbon storage with the excess

energy (Peng et al., 2019; Singh et al., 2022; Xie et al., 2022).

Although the lipid accumulation and protein biosynthesis

present competitive relationships with each other, the

increased profile of both lipid and protein content were

observed in this study, possibly owing to the modified

nitrogen content (750 mg/L), which was 10-fold higher than f/

2 medium and promotes more intracellular conversion to

protein (Vishwakarma et al., 2019). Hence, we speculate that

the combination of stress could be used as an effective method

for regulating the biosynthesis of main intracellular metabolites

in HTBS.
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Effects of different combinations of
temperature and bicarbonate content on
fatty acid components changes in HTBS

The effects of different bicarbonate contents on the profile of

fatty acids were investigated at 25°C and 16°C at 8 days after

inoculation (Table 1). The results showed that C16:0 was the main

saturated fatty acids in various conditions. C16:0 decreased

slightly from 31.5% to 28.5% when cells were transferred from

25°C to 16°C without the addition of bicarbonate, whereas the

unsaturated fatty acids, C18:1n9c significantly increased from

5.9% to 9.1% with an increment of 54.2%. A similar trend was

observed at 25°C with 0.15 M bicarbonate addition. In contrast,

the highly valued components C20:4 (AA) and C22:6 (DHA) were

not found neither in both treatments at 25°C nor in treatment at

low temperature without bicarbonate. Previous studies have

emphasized the important effect of bicarbonate and low

temperature on microalgae metabolites production (Chua et al.,

2020). Lower temperature affects lipid composition, which is

important to maintain membrane fluidity, and brings in an

increase in the content of unsaturated fatty acids (Gao et al.,
B

C D

A

FIGURE 1

Effects of different combinations of bicarbonate and temperature on growth (A) and major metabolites (B, lipid; C, carbohydrate; D, protein)
accumulation in HTBS.
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2018). The strain HTBS appears to be incapable of biosynthesizing

AA and DHA under either low temperature or high bicarbonate

conditions. Interestingly, the combination resulted in AA and

DHA accumulation. Moreover, the profiles of the two fatty acids

varied in different bicarbonate content treatments at 16°C. AA

concentration increased from 0.38% to 3.52% with the content of

bicarbonate increased from 0.075 M to 0.3 M, then decreased to

2.0% when bicarbonate reached to 0.6 M. Similarly, the relative

percentages of DHA were 1.8%, 2.1%, 4.7% and 4.6% for 0.075 M,

0.15 M, 0.3 M and 0.6 M bicarbonate under 16°C, respectively.

The highest AA and DHA concentrations in total fatty acids were

found in 0.3 M bicarbonate condition, which accounted for 8.2%

of the total fatty acids. In contrast, the PUFA (EPA, C20:5) of

Nannochloropsis oculata was observed in normal culture

condition and increased obviously in the group at 15°C

(Willette et al., 2018; Chua et al., 2020). Another D. salina

strain was reported to produce AA and DHA at 25°C, and the

content of AA and DHA increased slightly with carbon stress

(Almutairi, 2020). By contrast, AA and DHAwere undetectable in

D. salina Y6 under various conditions, such as high-light,

nitrogen-depleted and high-salt conditions. In general,

microalgae cells accumulate more PUFAs to increase membrane

fluidity to counteract the negative effect caused by lower

temperatures (Lu et al., 2017). Nevertheless, with the good

ability of tolerance to cold treatment, the membrane fluidity of

HTBS is activated as the cells grow well at 16°C and 4°C, thus the

PUFAs such as AA and DHA are unnecessary to be synthesized

(Hou et al., 2016; Wu et al., 2020). Then, more carbon resource is

provided with the supplement of bicarbonate, which might be

used for secondary metabolites conversion (Chua et al., 2020; Wu

et al., 2021). In addition, bicarbonate may induce ROS production,

which could be counteracted by increasing PUFA synthesis (Xie

et al., 2021; Ju et al., 2022; Vinuganesh et al., 2022). As a result, AA

and DHA are accumulated with the combinatorial stresses.
Frontiers in Marine Science 05
Effects of different combinations on
photosynthetic performance and carbon
and nitrogen removal rate of HTBS

To illustrate the potential reason for the effects of various

bicarbonate contents with low temperature on growth and

metabolite biosynthesis, the photosynthetic performance and

carbon\nitrogen utilization rate were investigated (Figure 2).

The maximum photochemical efficiency (Fv/Fm) was reduced

by 19.35% compared to the control culture at 25 °C due to the

low temperature and lack of bicarbonate supply. The addition of

bicarbonate alleviated low temperature-induced photosynthesis

impairment, as Fv/Fm increased by 54.67%, 34.22%, 14.67% and

12% at 0.075 M, 0.15 M, 0.3 M and 0.6 M bicarbonate,

respectively, which was consistent with the previous study

(Sun et al., 2020). Similarly, microalgae cells with an increased

bicarbonate conditions showed a gradually significant rise in Fv/

Fm, which suggested an increase in photosynthetic carbon

fixation and metabolic activity (Singh et al., 2022). With the

sustained addition of bicarbonate, the salinity increases to

suppress of photosynthetic activity (Salbitani et al., 2020).

Luckily, the extracellular carbon anhydrases in HTBS are

sufficient to provide enough Ci for the growth under high

bicarbonate levels (Hou et al., 2016). Then the carboxylation

reaction catalyzed by Rubisco in the dark reaction could be

enhanced, which resulted in ATP and NADPH consumption.

Hence, Fv/Fm was increased to promote electron transfer to

generate more energy for carbon fixation, which resulted in a

higher carbon removal rate (Figure 2C) and higher biomass

(Figure 1) (Xie et al., 2022). The increased non-photochemical

quenching (NPQ) means that the cells are suffering from

environmental stress (Xue et al., 2022). Therefore, the

reductions of NPQ at 0.075 M and 0.15M bicarbonate groups

suggest that a certain bicarbonate content can help to relieve the
TABLE 1 Fatty acids profile of HTBS cells under various conditions.

Fatty acids(% in TFA) 25 °C 16 °C

0 M1 0.15 M1 0 M2 0.075 M2 0.15 M2 0.3 M2 0.6 M2

C14:0 1.9 ± 0.1 1.3 ± 0.1 2.0 ± 0.2 1.3 ± 0.0 1.3 ± 0.0 1.0 ± 0.2 1.7 ± 0.2

C16:0 31.6 ± 0.9 30.5 ± 0.6 28.5 ± 1.2 30.7 ± 0.9 30.8 ± 0.7 33.3 ± 1.4 29.2 ± 1.1

C16:1 1.1 ± 0.2 1.1 ± 0.1 1.7 ± 0.3 1.0 ± 0.0 1.3 ± 0.1 0.6 ± 0.0 0.9 ± 0.0

C18:0 6.6 ± 0.4 7.5 ± 0.9 6.8 ± 1.2 7.7 ± 0.1 8.4 ± 0.7 11.6 ± 0.3 7.4 ± 0.9

C18:1n9c 5.9 ± 0.5 8.1 ± 0.3 9.1 ± 1.1 9.2 ± 0.2 10.6 ± 1.3 10.1 ± 0.1 10.2 ± 0.8

C18:2n6t 11.8 ± 1.0 10.2 ± 1.0 11.9 ± 0.3 8.2 ± 0.1 8.3 ± 0.8 7.2 ± 0.5 8.4 ± 0.8

C18:2n6c 4.9 ± 1.6 6.8 ± 0.6 5.6 ± 0.2 11.2 ± 0.3 9.1 ± 0.5 6.2 ± 0.2 7.9 ± 0.0

C18:3n6 1.7 ± 0.0 1.3 ± 0.1 1.6 ± 0.8 1.3 ± 0.0 1.4 ± 0.1 0.8 ± 0.1 1.1 ± 0.1

C18:3n3 34.5 ± 1.2 33.2 ± 1.6 32.9 ± 2.2 27.2 ± 1.5 25.7 ± 1.0 21.0 ± 0.4 26.5 ± 0.5

C20:4 (AA) – – – 0.4 ± 0.1 1.1 ± 0.2 3.5 ± 0.5 2.0 ± 0.4

C22:6 (DHA) – – – 1.8 ± 0.2 2.1 ± 0.4 4.7 ± 0.3 4.6 ± 0.1
front
Data represent mean ± SD of three replicates. TFA, total fatty acids. “-” represents that the fatty acid was not detected. “1” represents the results in 25°C, “2” represents the results in 16°C.
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stress caused by low temperature, which is consistent with the

report that a high concentration of CO2 declines NPQ to benefit

carbon and nitrogen sequestration, resulting in more metabolite

synthesis (Singh et al., 2022). As a consequence, the carbon and

nitrogen removal rates of the combined groups were

significantly increased compared to low temperature treatment

without bicarbonate supply. The visible nutrient utilization

might be attributed to the increased Fv/Fm and decreased

NPQ. Overall, these results indicated that HTBS with the

combination of optimum bicarbonate concentration and low

temperature showed good photosynthetic performance, which

resulted in a significant increase in cell proliferation.
Pigment changes in HTBS in response to
different combined stresses

As shown in Figure S1, low temperature without bicarbonate

affected chlorophyll (Chl) biosynthesis slightly. However, the

additional bicarbonate showed a dose-dependent effect. Chl was

gradually increased by 9.67%, 27.43% and 43.58% with the

added bicarbonate content increasing from 0.075 M to 0.3 M,
Frontiers in Marine Science 06
while the extremely high content of bicarbonate (0.6 M)

inhibited Chl biosynthesis. It means that a certain bicarbonate

content accelerates Chl synthesis to maintain photosynthetic

activity and alleviate the stress caused by low temperature (Xie

et al., 2022). Meanwhile, carotenoids, another important

pigment for light harvest and energy transfer, were affected by

the combination of low temperature and bicarbonate. The

carotenoid contents of the combined stress groups increased

compared with the low temperature without bicarbonate, which

indicated that more energy is required for carbon utilization

under high carbon resources in HTBS (Ding et al., 2017).
The effects of the combined stresses on
oxidation resistance parameter

To respond to the stress-induced ROS, the antioxidant

system is activated to protect cells from oxidative damage

(Rezayian et al., 2019). Superoxide dismutase (SOD) and

catalase (CAT) were up-regulated to scavenge superoxide

radicals and hydrogen peroxide at low temperature. In this

study, SOD and CAT decreased under low temperature
B

C D

A

FIGURE 2

Effects of various combinations on HTBS photosynthetic performance [(A), Fv/Fm; (B), NPQ] and nutrient removal rate [(C), carbon; (D),
nitrogen]. Data were mean ± SD of three replicates.
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without bicarbonate, probably due to the good low-temperature

tolerance of HTBS (Hou et al., 2016). SOD activity increased and

reached its maximum at the 0.15 M bicarbonate group, which

was 89% higher than that in the group without carbon supply,

followed by a decrease in activity (Figure 3A). The increased

SOD activity resulted in H2O2 accumulation, which could be

converted to H2O by CAT. CAT activity was closely associated

with SOD activity (Figure 3B). On the other hand, MDA, the

biomarker for evaluating oxidative damage, was also assessed.

With the addition of bicarbonate at 16 °C, MDA decreased

slightly and then significantly increased (Figure 3C). These

results suggested that HTBS adapted to the environment by

regulating specific enzymes in response to the combined stresses

(Srinivasan et al., 2018).
Conclusions

In this study, the effects of a combination of low temperature

and bicarbonate on physiological and biochemical changes in HTBS
Frontiers in Marine Science 07
were investigated. Compared to single stress (low temperature or

bicarbonate), the content of pigment and, Fv/Fm was increased

while NPQ was decreased under the combination of low

temperature and bicarbonate stress. All of the above changes

benefited carbon and nitrogen absorption and utilization, which

resulted in an increase in cell growth, lipid, protein and

carbohydrate with combined conditions. Moreover, AA and

DHA reached 3.52% and 4.73%, respectively, whereas they were

not detected with single treatment. The present study demonstrates

that supplementing bicarbonate under low temperature could

effectively enhance the biomass production and accumulation of

AA and DHA in D. salina HTBS, which benefits the development

of the microalgae industry in value-added products.
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