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Abstract—In pattern classification problem, different classifiers
learnt using different training data can provide more or less
complementary knowledge, and the combination of classifiers
is expected to improve the classification accuracy. Evidential
reasoning (ER) provides an efficient framework to represent and
combine the imprecise and uncertain information. In this work,
we want to focus on the weighted combination of classifiers based
on ER. Because each classifier may have different performance
on the given data set, the classifiers to combine are considered
with different weights. A new weighted classifier combination
method is proposed based on ER to enhance the classification
accuracy. The optimal weighting factors of classifiers are obtained
by minimizing the distances between fusion results obtained by
Dempster’s rule and the target output in training data space to
fully take advantage of the complementarity of the classifiers. A
confusion matrix is additionally introduced to characterize the
probability of the object belonging to one class but classified to
another class by the fusion result. This matrix is also optimized
using training data jointly with classifier weight, and it is used to
modify the fusion result to make it as close as possible to truth.
Moreover, the training patterns are considered with different
weights for the parameter optimization in classifier fusion, and
the patterns hard to classify are committed with bigger weight
than the ones easy to deal with. The pattern weight and the
other parameters (i.e. classifier weight and confusion matrix)
are iteratively optimized for obtaining the highest classification
accuracy. A cautious decision making strategy is introduced
to reduce the errors, and the pattern hard to classify will be
cautiously committed to a set of classes, because the partial
imprecision of decision is considered better than error in certain
case. The effectiveness of the proposed method is demonstrated
with various real data sets from UCI repository, and its per-
formances are compared with those of other classical methods.

Keywords: evidential reasoning, Dempster-Shafer theory

(DST), combination rule, classifier fusion, belief functions.

I. INTRODUCTION

Ensemble classifier has been considered as an efficient

way to achieve the highest possible accuracy in pattern clas-

sification problem [1]–[4]. The different classifiers usually

provide some complementary knowledge about the query

pattern, and the ensemble system can take advantage of such

complementarity to improve the classification accuracy. Thus,

the ensemble classifier produces a higher accuracy rate than

the best classifier in general. The ensemble classifier broadly

consists of two parts 1) the choice and implementation of

classifiers, like boosting and bagging, and 2) the combination

of classifiers in a particular way. In this work, we want to

focus on the second part about how to efficiently combine

the classifiers in the multi-class problem. The classifier fusion

methods can be generally divided into three groups according

to the type of the individual output [3], i.e. crisp labels, class

rankings and soft outputs. The class labels are often combined

by the voting methods. The class set reduction/reordering

methods are usually applied to merge the class rankings.

The soft output (e.g. probability, fuzzy membership, belief

functions) providing more useful classification information can

be combined by Bayesian rule [5], fuzzy integrals [6] and ER

[7], [8].

In the complex pattern classification problem, the classifi-

cation result produced by single classifier may be quite un-

certain due to the limitation of observed attributes. Evidential

reasoning also called Dempster-Shafer theory (DST) or belief

function theory [9]–[12] provides a theoretical framework

to model and combine the uncertain information [14]. In

the combination of sources of evidence (i.e. classifiers), the

reliability of each source can be considered via Shafer’s

discounting operation in ER. Particularly, the contextual dis-

counting operation (i.e. an extension of Shafer’s discounting

operation) has been further developed by Mercier in [27],

and it allows to take into account more refined reliability

knowledge conditionally on different hypotheses regarding the

variable of interest. ER has already been used successfully

in many fields of applications, e.g. information fusion [15],

pattern recognition [16]–[21], parameter estimation [23]–[26],

etc. Some evidential classification methods, e.g. Evidential K-

nearest Neighbors (EKNN) [22], Evidential Neural Network

(ENN) [16], have been proposed by Denœux based on DST,

and these evidential methods can well handle the uncertainty

in pattern classification for achieving a good performance. We

have developed several credal classifiers to further characterize

the partial imprecise information in different cases [17], [18],

and our previous methods allow the object to belong to not

only singleton classes but also meta-classes (i.e. the disjunction

of several singleton classes) with different masses of beliefs.

ER has been used for classifier fusion to improve the ac-
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curacy. Three classifier fusion techniques including Sugeno’s

fuzzy integral, the possibility theory and DST are applied for

Automatic Target Recognition (ATR) to improve the accuracy

of individual classifiers in [30], and it shows that DST usually

achieves the best performance. In [31], an interesting Basic

Belief Assignment (BBA) generation method is presented for

the combination of multiple classifiers based on DST. The

class decision of each classifier is described by a simple

BBA, and the mass of belief focusing on the singleton

class is calculated according to the distance between the

classifier output and the reference vector, which is obtained

by minimizing the mean square errors between combined

classifier outputs and the target values. A class-indifferent

method is developed in [8] for the classifier fusion based on

DST, and each classifier output is represented by evidential

structures of triplet and quadruplet, which can distinguish the

important classes from the trivial ones. The ignorant elements

have been employed to model the unknown and uncertain

class decisions. The parameterized t-norm based combination

rules are introduced in [7] for the fusion of non-independent

classifiers under belief functions framework, and it behaves

ranging between Dempster’s rule and the cautious rule by

tuning the parameters, which are optimized by minimizing an

error criteria. There are two fusion strategies (i.e. a single

combination rule and a two-step fusion method) investigated

for obtaining the optimal combination scheme. In [28], postal

address recognition method is developed based on the fusion

of the outputs from multiple Postal Address Readers (PAR,

regarded as classifier) using transferable belief model (TBM)

[12], and the PAR outputs can be properly converted into

belief functions according to the confusion matrix reflecting

the classification performance of PAR.

In the fusion of multiple classifiers, each classifier may play

a different role, since they often have different classification

performances. Thus the classification accuracy could be further

improved by assigning the appropriate weights to classifiers

in the fusion. ER provides an efficient tool for handling the

uncertainty in the multiple sources of information fusion, and

evidence discounting operation can well control the influence

of each source (i.e. classifier) in the fusion according to the

given weights. Hence, we want to develop a new weighted

combination method for different classifiers based on ER to

enhance the classification accuracy.

The weighted averaging combination rule has been widely

applied in classifier fusion, and the classifier weight is often

determined depending on the individual accuracy [32]. The

fusion method can improve the accuracy with respect to the

individuals mainly because of the complementarity of classi-

fiers. Nevertheless, the important complementary knowledge

cannot be efficiently taken into account if the classifier weight

is calculated only by the accuracy. There also exist some

other methods for optimizing the weights of classifiers, but

these methods are not applicable for ER combination scheme.

Moreover, the training patterns are often considered equal

in the calculation of classifier weight1. In fact, the tuning

of classifier weight has in general a very little influence on

the class decision making for the pattern that can be easily

classified. Whereas, the class decision for the pattern hard to

classify is usually sensitive to the changes of classifier weight.

As a result, the training patterns cannot be equally treated

in the optimization of classifier weight. In the class decision

making step, the hard classification usually assigns the object

to a singleton class with the biggest probability value, but

this strategy may cause high risk of error especially for the

object with high uncertainty of classification. Hence, it seems

interesting to develop a cautious decision making strategy to

reduce the number of classification errors.

We propose a new weighted combination method for mul-

tiple classifiers working with different features (i.e. attributes)

of pattern. The weight of each classifier is optimized by

minimizing an error criteria. A confusion matrix, which char-

acterizes the probability of the object belonging to one class

but classified to another class, is introduced to further improve

the classification performance. Moreover, the training patterns

are given different weights in the parameter optimization based

on the distances of their classification results to the truth. Thus,

the weights of training patterns and the fusion parameters (i.e.

the weights of classifiers and confusion matrix) are iteratively

optimized for achieving the best possible result.

This paper is organized as follows. After the brief intro-

duction of background knowledge of ER in section II, the

combination of classifiers with optimal weights is presented

in detail in section III. Then the cautious decision making

strategy is given in section IV for the final classification. The

performance of proposed method is tested in section V and

compared with other related fusion methods before giving our

concluding remarks in section VI.

II. BACKGROUND KNOWLEDGE OF EVIDENTIAL

REASONING

Evidential reasoning (ER) [9]–[12] also called belief func-

tion theory or Dempster-Shafer theory (DST) works with

a frame of discernment as Ω = {ω1, . . . , ωc} consist-

ing of c exclusive and exhaustive hypotheses (i.e. classes)

ωi, i = 1, . . . , c. The basic belief assignment (BBA) in ER

is defined over the power-set of Ω denoted by 2Ω, which

is composed of all the subsets of Ω. The power-set 2Ω

contains 2|Ω| elements including the empty set as 2Ω =
{∅, {ω1}, . . . , {ωc}, {ω1, ω2}, . . . ,Ω}. The cardinality of a set

as |A| denotes the number of elements included in A.

A BBA is represented by a mass function m(.) from 2Ω

to [0, 1] such that m(∅) = 0 and
∑

A∈2Ω
m(A) = 1. All the

elements A ∈ 2Ω such that m(A) > 0 are called the focal

elements of the BBA m(.). The set K(m) , {A ∈ 2Ω |
m(A) > 0} of all focal elements of the BBA m(.) is called

the core of m(.). The object is allowed to belong to not only

singleton classes (e.g. ωi), but also any subsets of Ω (e.g. A =

1In the Boosting approach, the training patterns are assigned with different
weights, but this method works with quite distinct principle. The different
classifiers are closely relevant in Boosting, whereas the classifiers are consid-
ered independent in this work.
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{ωi, ωj} with different masses of belief. The total ignorance

is represented by Ω.

The lower and upper bounds of probability associated with

a BBA respectively correspond to the belief function Bel(.)
and the plausibility function Pl(.) [10] defined by ∀A ⊆ Ω

Bel(A) =
∑

B∈2Ω|B⊆A

m(B). (1)

Pl(A) =
∑

B∈2Ω|A∩B ̸=∅

m(B). (2)

In pattern classification problem, the soft output of each clas-

sifier can be considered as one source of evidence represented

by a BBA, and the probabilistic output is considered as the

simple Bayesian BBA. Dempster’s rule (also called DS rule)

remains very popular in the combination of multiple sources

of evidence, because it is commutative and associative, which

makes it very appealing from implementation standpoint.

Let us consider two BBA’s m1 and m2 (mi , mi(.) for

conciseness) defined over 2Ω. The combination of m1 and

m2 by DS rule is defined by B,C ∈ 2Ω

m(A) = m1⊕m2(A) =







∑

B∩C=A

m1(B)m2(C)

1−K , ∀A ∈ 2Ω \ {∅}.

0, if A = ∅.
(3)

where K =
∑

B∩C=∅

m1(B)m2(C) measures the degree of

conflict between the BBA’s. The denominator 1−K is used for

the normalization of combination result. It is worth noting that

DS rule is applicable only if K =
∑

B∩C=∅

m1(B)m2(C) ̸= 1.

The vacuous BBA m(Ω) = 1 plays a neutral role in DS fusion,

and any BBA remains unchanged when combined by DS rule

with the vacuous BBA.

In the high conflicting cases and some special cases [33],

[34], DS rule may produce unreasonable results due to the

redistribution way of conflicting masses K. Thus, a number

of alternative combination rules have emerged to overcome

the limitations of DS rule, such as Yager’s rule, Dubois-Prade

(DP) rule, and Proportional Conflict Redistribution (PCR6)

rule [34]. Unfortunately these rules are not associative and

that is why they are not so appealing from the implementation

standpoint in the real applications. DS rule will be used in this

work to combine the classification results provided by different

classifiers because its associativity property makes it easier to

implement than other fusion rules.

The classifiers to combine may have different reliabilities

because they usually have different abilities of classification. A

particular discounting operation has been introduced by Shafer

in [10] for the combination of sources of information with

different reliabilities, and it discounts the masses of all focal

elements by a discounting (weighting) factor α ∈ [0, 1] to the

total ignorance. By doing this, one can efficiently control the

influence of each classifier in the fusion. More precisely, the

discounted mass is obtained by the formula
{

αm(A) = α ·m(A), A ⊂ Ω, A ̸= Ω.
αm(Ω) = 1− α+ α ·m(Ω).

(4)

If the source of evidence is considered completely reliable,

one takes α = 1. Then, the BBA remains the same after the

discounting as αm(.) = m(.). If the evidence is not reliable

at all, we set α = 0, and the mass values of all the focal

elements will be discounted to the ignorance as αm(Ω) = 1.

In certain cases, the reliability of each source of evidence

can be expected to depend on the truth of the variable of

interest. In order to take into account such refined reliability

knowledge (i.e. conditionally on values taken by the variable

of interest), the contextual discounting operation has been

proposed by Mercier in [27], and the learning of discount

rates is also addressed by minimizing the discrepancy between

plausibility and observations. This contextual discounting op-

eration can properly redistribute the masses of belief according

to the reliability vector. The set of tools has been enlarged in

[29] to deal with the contextual knowledge about the source

quality in terms of relevance and truthfulness based on belief

function theory. The practical means to learn the contextual

knowledge from available labeled data are also introduced in

[29], and it makes the correction mechanisms interesting and

useful in practice.

In this work, we consider the simple case that each classifier

is given only one weight as normally done in the classifier

fusion problem, and Shafer’s discounting operation will be

adopted. The combination of a pair of discounted BBA’s (i.e.
α1m1 and α2m2) by DS rule with discounting factors α1 and

α2 is directly given for the convenience by αm = α1m1 ⊕
α2m2. For B,C ∈ 2Ω,






















αm(A) =

∑

B∩C=A

α1α2m1(B)m2(C)

1−
∑

B∩C=∅

α1α2m1(B)m2(C) , ∀A ∈ 2Ω \ {∅,Ω}.

αm(Ω) = δ
1−

∑

B∩C=∅

α1α2m1(B)m2(C) .

αm(∅) = 0.
(5)

where δ = 1− α1[1−m1(Ω)]− α2[1−m2(Ω)] + α1α2[1−
m1(Ω)−m2(Ω) +m1(Ω)m2(Ω)].

III. OPTIMAL COMBINATION OF MULTIPLE CLASSIFIERS

Let us consider one object (say y) being classified over

the frame of discernment Ω = {ω1, . . . , ωc} according to the

proper combination of n classifiers (i.e. C1, . . . , Cn), which

are respectively trained by a set of labeled patterns (i.e.

X = {x1, . . . ,xK}) on n different attribute (feature) spaces

as S1, . . . , Sn. The class label of pattern xk is represented by

L(xk). It is assumed that each classifier Cl, l = 1, . . . , n pro-

duces soft output represented by the probabilistic membership

(for classifier under probabilistic framework) or belief degree

(for evidential classifier working with belief functions) of the

object belonging to each class. The probabilistic output can

be always interpreted as Bayesian BBA [10], and the output

of evidential classifier is also denoted by BBA consisting of

some singletons ωi ∈ Ω, i = 1, . . . , c and the total ignorance

Ω as focal elements. Evidential reasoning (ER) providing

an efficient tool to deal with the uncertain information is

employed for combining classifiers.
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A. Combination of classifiers with different weights

The classifiers to combine are learnt based on different

attribute knowledge, and they may own different abilities of

classification. Thus, each classifier will be given an appropriate

weight in the fusion in order to achieve the best possible

classification result. In the traditional methods, the classifier

weight is usually determined according to its performance (e.g.

accuracy) on the training data set. The lower accuracy, the

smaller weight. By doing this, it can reduce the influence of

the classifier with low accuracy. In such methods, the weight

of individual classifier is calculated separately regardless the

complementarity among the different classifiers. Nevertheless,

the proper combination of different weak but complementary

classifiers (with low accuracy) may still produce good results

if we can take fully advantage of their complementary knowl-

edge via the fusion procedure.

In this work, the classifier weight will be calculated based

on the optimization procedure with DS combination, and the

optimal weight should make the combination results as close

as possible to the truth for the training patterns. This is a

classical optimization strategy in classification problems [16],

[27], [31]. Hence, the optimal classifier weighting vector α =
[α1, . . . , αn] (αl ∈ [0, 1], l = 1, . . . , n.) can be estimated by

minimizing the distance between the combination result and

the true class of the training patterns. Jousselme’s distance

dJ (·, ·) [13] taking into account both the differences of mass

values and the intersection of focal elements is often used to

measure the distance of a pair of BBA’s, and it is employed

here. Therefore, one must calculate

α̂ = argmin
α

K
∑

k=1

dJ(
n

⊕

l=1

αlmkl,Tk). (6)

The output of classifier Cl with respect to pattern xk is

represented by the BBA as mkl. The truth of classification of

the training pattern xk with label L(xk) is characterized by

the binary vector2 Tk = [Tk1, Tk2, . . . , Tkc]. All components

of Tk are equal to zero but Tkt = 1 for the class ωt = L(xk).
Jousselme’s distance for a pair of BBA’s m1 and m2 is defined

by:

dJ (m1,m2) ,

√

1

2
(m1 −m2)′D(m1 −m2). (7)

where D is a 2|Ω| × 2|Ω| positive matrix. Its components are

defined by Jaccard’s factors Dij ,
|Ai∩Bj |
|Ai∪Bj |

, Ai, Bj ∈ 2Ω.

Because in this work the cores of αlmkl are restricted only to

singletons and to Ω, D matrix is restricted to a (|Ω| + 1) ×
(|Ω| + 1) matrix. This distance measure has been aplied for

the decision making in pattern classification problem [41].

The following lemma justifies the use of classifier weight

with discounting technique to reduce the errors in classifier

fusion.

Lemma 1. Let us consider a frame of discernment Ω =
{ω1, ω2, . . . , ωc} and n ≥ 2 discounted BBA’s αlml with

cores K(αlml) = {ωi ∈ Ω,Ω} and with weighting factors

2For the evidential classifier, the ignorant element Ω is a focal element of
the classifier output, and therefore one must include also an extra component
Tk,c+1 = 0.

(i.e. weights of classifiers) αl ∈ [0, 1] for l = 1, . . . , n.

The pattern will be classified based on the resulting BBA

as αm obtained by the combination of these n discounted

BBA’s using DS rule. It is assumed that one pattern to classify

truly belongs to ωt. It is possible to choose the weighting

factors {αl, l = 1, . . . , n} such that ωt = argmax
ωi

[αm(ωi)] if

∄ ωi ̸= ωt,ml(ωi) ≥ ml(ωt) for all l = 1, . . . , n.

Under the above condition, this lemma states that the

suitable weighting factors corresponding to the weights of

classifiers can be chosen in such a way that the true class

(i.e. ωt) of the pattern gets the maximum mass value by the

combination of the discounted BBA’s with DS rule. Therefore,

the proper tuning of classifier weight is an interesting mean

to reduce the classification errors in the fusion3.

The combination of the discounted BBA’s with proper

weighting factors can produce the correct classification, and

the corresponding combination result is generally closer to the

truth of classification than the combination result leading to the

error with improper weighting factors. The optimal weighting

factors will be determined by minimizing the distance between

the combination result and the truth using training data, and

it will be presented in the sequel.

B. Confusion matrix for belief transformation

The weighting vector α is used to discount the classification

results produced by different classifiers in order to control the

influence of each classifier in the fusion procedure. Because

DS rule is based on conjunctive rule, the product of the mass

of non contradicting focal elements is committed to their inter-

section. For any class, if its plausibility value (upper bound of

probability) is nonzero in each BBA, the positive plausibility

will still be committed to this class whatever the classifier

weight α is. Thus, the positive probabilities (or beliefs) are

often committed to multiple classes in the combination result

of different classifiers for the uncertain pattern, which truly

belongs to only one class, and there usually exists more or

less bias between the weighted combination result and the

truth. If we want to make the classifier fusion result as close

as possible to truth, it is necessary to transfer (redistribute)

the beliefs among different classes judiciously. In fact, the

use of the classifier weight α only is insufficient for making

this judicious belief redistribution. That is why we also need

to introduce the confusion matrix, which is justified in the

following lemma.

Lemma 2. Let us consider that one pattern xk truly belonging

to ωt is classified by combining n pieces of classifier outputs

as ml, l = 1, . . . , n with cores K(αlml) = {ωi ∈ Ω,Ω}
and with weighting factors αl ∈ [0, 1] for l = 1, . . . , n. The

combination result of these n discounted BBA’s by DS rule

is denoted by αm. For any values of αl, l = 1, . . . , n, the

inequality dJ(
αm,Tk) > 0 holds if ∃ ωg ̸= ωt ∈ Ω such that

n
∏

l=1

Pll(ωg) > 0.

Lemma 2 states that if the classifiers to combine commit

even little plausibility to a common element ωg (rather than

3The proof of Lemma 1 can be found in the supplementary materials online.
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the true class ωt) or to the total ignorance Ω, then their

combination result by DS rule will never achieve the truth

of classification whatever the values of the weighting factors

are4.

In order to make the combination result as close as possible

to the truth, we propose to introduce a confusion matrix

describing the prior probability of the object belonging to

one class when it is classified to another class based on the

classifier fusion result. One can transform (correct) the beliefs

of the different classes using this confusion matrix to improve

the accuracy of the classification. The confusion matrix is

denoted β = [βij ]c×c (c being the number of classes in the

frame of discernment), and each element βij represents the

conditional probability of the object (say x) belonging to class

ωj if it is classified to ωi according to the combination result

of classifiers. More precisely, βij , p(L(x) = ωj |L̂(x) = ωi),
where L̂(x) denotes the estimated class label of the object x

based on the combination of classifiers, and L(x) represents

the true label. Of course, the following equality must hold:
c
∑

j=1

βij = 1. The weighted combination result of classifiers as

αm(.) are adjusted using β by

m(ωj) =
c

∑

i=1

αm(ωi)βij . (8)

Hence, the confusion matrix5 β is also included in the objec-

tive function which is now expressed by eq. (9).

{α̂, β̂} = argmin
α,β

K
∑

k=1

dJ((
n

⊕

l=1

αlmkl)β,Tk). (9)

subject to constraints






αl ∈ [0, 1], l = 1, . . . , n.
c
∑

j=1

βij = 1, i = 1, . . . , c.
(10)

Optimal parameters α and β can be found by minimizing this

objective function.

Lemma 3 is given to justify the use of the confusion matrix

for improving classification accuracy.

Lemma 3. A set of patterns is classified according to the

combination result of classifiers denoted by αm(.). Let us

consider the patterns belonging to a disjunction of two classes6

say ωi and ωj . A proper confusion matrix β can be found

under a certain condition to improve the accuracy of the fusion

of classifiers.

In Lemma 3, we discuss the conditions of existence of

the proper confusion matrix for the correction of BBA’s in

different cases to show the potential of this correcting step

4The proof of Lemma 2 is given in the supplementary materials online.
5The masses of beliefs of singleton elements will be redistributed according

to the matrix β. The mass of ignorance in evidential classifier is usually very
small, and it will be redistributed in the decision making step as done in
transferable belief model (TBM) model [12].

6In the classification of uncertain data, the different classes can partially
overlap. Each overlapping zone usually contains a few (e.g. two) classes. For
simplicity, we just consider here the case of misclassification between two
classes ωi and ωj . Other misclassified classes can be similarly handled by
the corresponding elements in the confusion matrix.

for the further improvement of classification accuracy7. The

optimal confusion matrix jointly with the classifier weight will

be calculated by minimizing the classification result and the

ground truth using training data, and it will be explained in

the next subsection.

C. Taking into account the pattern weight

In real applications, we usually classify the pattern to the

class with the biggest probability or mass of belief. For

the pattern easy to classify (e.g. each classifier assigns the

high probability to the correct class), its classification result

will be not very sensitive to the tuning of parameters (i.e.

classifier weight, confusion matrix) for making the correct

classification. Nevertheless, some other patterns with quite

uncertain classification results can be hard to classify. Their

classification results are usually very sensitive to the tuning

of parameters in the fusion, and a small change can turn the

correct classification to an error. We must pay more attention

to such pattern in parameter estimation for classifier fusion.

These uncertain patterns should be assigned with the bigger

weights in the parameter optimization procedure than the

patterns easy to classify.

The objective function taking into account the pattern

weight w = (w1, . . . , wK) is given by:

f =

K
∑

k=1

wkdJ((

n
⊕

l=1

αlmkl)β,Tk). (11)

subject to the constraints


















αl ∈ [0, 1], l = 1, . . . , n;
c
∑

j=1

βij = 1, j = 1, . . . , c;

wk ∈ [0, 1], k = 1, . . . ,K.

(12)

Because it is hard to determine the optimal parameters i.e.

α = (α1, . . . , αn), β = [βij ]c×c and w = (w1, . . . , wK)
by minimizing directly the objective function (11) under the

constraints (12), we use an iterative optimization procedure.

The detailed calculation of these parameters is presented

as follows. At the beginning, each training pattern will be

considered with equal weight as wk = 1, for k = 1, . . . ,K.

Then the classifier weight α and the confusion matrix β can be

obtained by minimizing the objective function (11). We use the

active-set algorithm [36] to solve this optimization problem.

One can compute the combination result of the n classifiers

for each pattern with the optimized parameters α and β.

Then the training pattern weight wk is modified according

to the distance between the combination result and the truth

of classification in training data space.

If the combination result is quite close to the ground truth

for the labeled training pattern, it implies that the parameters

obtained in last step can be tuned in some degree keeping

the correct decision for this pattern. Hence, this pattern will

receive a small weight. If the distance between the combi-

nation result and the ground truth is big, we must assign a

bigger weight to this pattern in the optimization procedure.

7The proof of Lemma 3 can be seen in the supplementary materials online.
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Generally, the bigger distance value, the bigger pattern weight.

Hence, the pattern weight wk ∈ [0, 1] should be a monotone

increasing function of the distance measure where dk ∈ [0, 1]
as wk = f(dk). If the distance dk is approximately zero,

it means the combination result is almost equal to ground

truth, and the weight wk value can be also close to zero. If

the distance reaches its maximum value dk = 1, this pattern

weight will be considered with the biggest value wk = 1.

The slope of increasing for the function f(.) mainly depends

on the actual application. Moreover, this function should be

simple for the convenience of application. According to this

basic principle, the pattern weight can be defined by

wk = dλk . (13)

where dk ∈ [0, 1] is the Jousselme’s distance [40] between

the combination result and the target value (i.e. truth of

classification) of training data involved in (11), and where

λ > 0 is a penalized coefficient which controls the slope

of increasing of pattern weight with the increasing of the

distance value. The bigger λ, the bigger slope. It will be tuned

according to the current context for the global improvement

of the classification accuracy.

Once the pattern weight is updated, we will recalculate

the classifier weight α and the confusion matrix β with

this updated pattern weight. Then the corresponding accuracy

will be computed according to the combination result. If the

accuracy becomes higher than before, this updated α and β

will be adopted. Otherwise, we will still keep the previous

estimation of the parameters. Such iterative procedure will be

stopped as soon as the accuracy cannot be improved.

The pseudo-code of the new method is given in Table I.

Table I
COMBINATION OF MULTIPLE CLASSIFIERS WITH OPTIMAL WEIGHT

Input: training patterns X = {x1, · · · ,xK}
trained classifiers C1, . . . , Cn

Initialization: w0 = ones(1,K),α0 = ones(1, n),
β0 = eye(c), AC0 = 0, Sgn = 1.

Implementation: t ← 0

While {Sgn}
t ← t+1

Compute αt and βt to minimize eq. (11) with wt−1;

Compute the classifier fusion result with αt and βt;

Compute the classification accuracy ACt for X;

If ACt −ACt−1 > 0
Compute pattern weight wt using eq. (13);

else

Sgn=0;

EndIf

Endwhile

Output: Classifier fusion result with optimized α and β.

D. Discussion on the parameter optimization procedure

Here we explain why both the BBA discounting opera-

tion using classifier weight α and the BBA correction via

confusion matrix β are included in the proposed optimal

combination method. In discounting operation, the masses of

belief on different classes for each classifier are proportionally

discounted and the mass left is committed to the total ignorant

element Ω according to the value of α. In fact, the discounting

operation is used to control the influence of each classifier

in the fusion by tuning the ignorance degree of each BBA.

This is helpful to take fully advantage of the complementary

information from different classifiers, and it can also reduce

the harmful influence of the quite unreliable classifier that

often produces errors. Nevertheless, the combination result

of these discounted BBA’s usually still has some discrepancy

with the truth. Hence, the confusion matrix β, which can be

considered as the prior knowledge derived from the training

data, is introduced to further modify the combination result by

a judicious transformation of masses of belief among different

classes. This BBA correction step can make the combination

result as close as possible to the truth. Of course, if the

combination result of the discounted BBA’s has already been

very close to the truth, then the confusion matrix β will be

close to identity matrix. The discounting operation and BBA

correction method work with quite distinct principles, and they

are complementary to improve fusion performance. So both of

them are necessary for achieving the best possible combination

result.

In this proposed method, the parameters α, β and the

pattern weight w are iteratively optimized using the training

data according to the minimization of criterion (11) under

constraints (12). This is a normal constrained nonlinear least

squares problem, and it can be solved by the active-set

algorithm8 [36]. The sequential quadratic programming (SQP)

method can be used, and it solves a quadratic programming

subproblem at each iteration. The estimate of the Hessian of

the Lagrangian is updated at each iteration using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) formula (i.e. Quasi-Newton

Method) [35], which always converges when the function

has a quadratic Taylor expansion near an optimum. Once the

optimized α and β are determined, the pattern weight w is

calculated by formula (13). Then α and β will be optimized

again with the weighting vector. If the classification accuracy

can be improved in this round of optimization, the weighting

vector will be updated and the iterative optimization keeps

going. Otherwise, we keep the optimized parameters α, β and

w in last optimization step, and the optimization procedure

stops. Hence, the optimal value of w is determined depending

on the improvement of accuracy.

IV. CAUTIOUS DECISION MAKING SUPPORT

In the applications, the class decision is often required

for pattern classification according to the combination of

classifiers. There exist many tools to deal with the uncertainty

in decision making, such as probability, fuzzy sets [37], belief

functions [38], [39], and so on. In the traditional way, the

object is usually committed to the class with the biggest

probability or fuzzy membership. In DST, a BBA is usually

transferred into probability measure by pignistic probability

8In MatlabTMsoftware, the function fmincon is provided to solve such
constrained nonlinear optimization problem.
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transformation BetP (.) [12] for decision making, and the

pignistic probability of the singleton class ωi is defined by

BetP (ωi) =
∑

X∈2Ω

ωi∈X

1

|X|
m(X). (14)

The belief interval has been used in decision making under

uncertainty. DST is incorporated in the modified version of

the Analytic Hierarchy Process (AHP) [39], and it allows the

numerical measures of uncertainty to be assigned to subsets of

hypotheses as well as to individual hypothesis. The decision

can be derived based on the belief interval as [Bel(.), P l(.)].
In [38], DST has been also applied for the multi-attribute

decision analysis with uncertainty, and the utility intervals is

introduced to characterize the impact of ignorance due to the

incompleteness in the assessment.

The decision maker usually wants to reach a specific deci-

sion (i.e. singleton class) for pattern classification. However,

the hard decision often produces errors in the quite uncertain

cases (e.g. several classes may take the close probabilities),

and the error may yield dramatic consequences with important

collateral damages in some applications like the target iden-

tification. In such case, the partially imprecise decision (i.e.

set of several classes) must be preferable to a very prejudicial

classification error. Nevertheless, how to balance the error and

imprecision for pattern classification is not clearly addressed

in previous works. So a cautious decision making strategy is

introduced for the classification of uncertain data.

Let us consider an example to illustrate the problem.

Suppose the combination result of classifiers for one pattern

is p(.) , BetP (.): p(ω1) = 0.5, p(ω2) = 0.45, and

p(ω3) = 0.05. One sees that p(ω2) is very close to p(ω1),
and it means that ω1 and ω2 appear undistinguishable for this

pattern. If the pattern is classified to ω1 by the hard decision

making strategy, it will very likely cause an error. In such case,

it could be better to cautiously commit the object to the set of

classes {ω1, ω2}, because the partial imprecision is considered

better than error. Moreover, the imprecision reminds the user

that the available information is not sufficient for making a

specific classification, and some other techniques should be

included to make a clear decision. Nevertheless, the high

imprecision of classification is not a good solution either. If

one pattern can be classified to the singleton class with high

confidence, it does not necessarily include any imprecision

in decision. It seems interesting to find an efficient decision

making strategy with a good compromise between imprecision

and error.

An unified benefit value taking into account both the im-

precision and error is presented here. Let us consider that one

pattern belonging to a singleton class ω is classified to the

set A containing either a singleton class or several classes. If

{ω} ∩A = ∅, it means this class decision is an error, and the

benefit value of an error is considered as 0. If A = {ω}, it

is a correct decision, and the corresponding benefit value is

given by 1. If ω ∈ A, |A| ≥ 2, it indicates that the real class is

included in the decision set, but the decision is imprecise. The

bigger cardinality value of |A|, the higher imprecision degree

of decision. Of course, the high imprecision of classification

produces the small benefit value. Hence, the benefit value B
of the imprecision should be a monotone decreasing function

of the cardinality value |A|, and it is simply defined by ( 1
|A| )

γ

according to the above principle. The tuning parameter γ is

the imprecision penalizing coefficient. The benefit value of the

error, imprecision and correct classification can be defined by

Bk(A) ,

{

0, if {L(xk)} ∩A = ∅.

( 1
|A| )

γ , if L(xk) ∈ A.
(15)

The real class label of xk is denoted by L(xk). The

equality Bk(A) = 1 holds if the correct decision is drawn

as A = {L(xk)} since 1γ = 1. So the benefit value of

the imprecision and correct classification can be calculated

by the common formula (the second part of eq. (15)). For a

given imprecise decision set A, the benefit value will decrease

when γ increases. It is argued that the benefit value obtained

from the imprecise decision A (i.e. ( 1
|A| )

γ) should be no less

than that of random selection from A, such as ( 1
|A| )

γ > 1
|A|

(i.e. the probability of correct decision randomly selected

in the set of A is equal to 1
|A| ). Thus, γ must be smaller

than 1. Nevertheless, the benefit value of an imprecision

classification must be smaller than a correct classification.

Therefore ( 1
|A| )

γ < 1, and one gets γ > 0. Hence, γ ∈ (0, 1).
In fact, the exact value of γ must be selected depending on

the context of applications. If the error cost is rather large, one

can choose a small γ value, and it implies that an imprecise

classification is preferred to a classification error.

The expected decision strategy should make the total benefit

value BT as eq. (16) for the whole data set as big as possible.

BT =

K
∑

k=1

Bk(A). (16)

One can see that the benefit value defined in eq. (16) is closely

related with the set A.

In this work, a simple decision criteria is adopted, and the

pattern will be committed to a class set A defined by A =
{ωi|p(ωi) ≥ ϵ ·max{p(.)}} with the threshold ϵ ∈ (0, 1]. The

class set A consists of classes having a probability close to the

maximum one in the classification result with respect to the

threshold ϵ. For each class ωi, i = 1, . . . , c, the parameter ϵi
corresponding to the maximum benefit value may be different.

Hence, the different optimal values of ϵi, i = 1, . . . , c will be

found to maximize the total benefit value defined in (16) using

each class of training data by a grid-search method9.

This cautious decision making strategy is chosen mainly to

draw a decision from the soft output of ensemble classifier.

The decision is just a binary value, and it cannot reflect

so much useful classification knowledge as the original soft

output of ensemble classifier. The decision making strategy is

generally not directly related with the design of (ensemble)

classifier. In this proposed method, we want the combination

result of classifiers as close as possible to the truth. Hence,

the parameters are obtained by minimizing the bias of the

soft combination results with respect to the ground truth. This

is a very often used optimization strategy to minimize the

9A proper interval of ϵ ∈ [0.5, 1] is recommended here.
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discrepancy between the system output and the expected value

in the classification problem [4], [16], [27], [31], and the

decision making is not involved in the parameter optimization

procedure. We also adopt such normal optimization way here.

It is worth noting that this cautious decision-making strategy

is very general and it can be used in all applications where a

decision must be made from the soft probabilistic output.

V. EXPERIMENT APPLICATIONS

The classification performance of this new method called

Optimal Weighted DS (OWDS) combination rule will be eval-

uated and compared with several other fusion methods, such

as simple and weighted averaging rule, simple and weighted

DS combination rule. The weight of each classifier is usually

determined according to the classification accuracy AC, and

the individual accuracy of the classifier Cl is ACl, l = 1, . . . , n
as ACl , Nl

NT
, where the number of patterns correctly

classified by Cl is Nl, and the number of total patterns is

NT . The commonly used classifier weight say αl ∈ [0, 1]
can be calculated by αl1 = ACl or αl2 = ACl−ACL

ACU−ACL
where

ACU = max
l

ACl and ACL = min
l

ACl. The normal hard

decision making strategy is used to calculate the accuracy,

and the object is assigned to the class with the maximum

probability.

For the simple weighted average combination rule, the sum

of normalized weighting factors of classifiers must be equal

to one. In DS combination, one does not need to consider

normalized weighting factors because the discounting is done

separately on the BBA output of each classifier. We can

directly use αl1 ∈ [0, 1] or αl2 ∈ [0, 1] as the weighting factor.

Five related fusion methods have been evaluated in this

work: 1) the simple Average Fusion (AF); 2) the Weighted

Average Fusion (WAF); 3) the Average Fusion with Learning

of Weight (AFLW); 4) Dempster’s fusion rule (DS); and 5)

the Weighted DS fusion rule (WDS). The brief description of

these methods is shown in Table II.

Table II
DESCRIPTION OF THE USED FUSION METHODS.

Name Calculation

AF p = 1
n

n
∑

l=1

pl.

WAF p =
n
∑

l=1

α̃lpl.

AFLW p =
n
∑

l=1

α̂lpl.

DS m = m1 ⊕ . . .⊕mn.

WDS m = α1m1 ⊕ . . .⊕ αnmn.

In Table II, the meaning of the symbol is given by: pl

being probabilistic output of classifier Cl, α̃l being the normal-

ized weighting factors, α̂ being the optimal weighting factor

learned by minimizing the distance between the weighted

averaging combination result and the ground truth as done

in [4]. Both αl1 and αl2 will be used to calculate the classifier

weight in WAF and WDS rules, and the higher classification

accuracy is reported in following Tables IV–IX.

The base classifier can be selected according to the actual

applications. In this work, Support Vector Machine (SVM)

[42], naive Bayesian Classifier (BC) [43] and Evidential

Neural Network (ENN) [16] classifier are employed as the

base classifiers. In SVM, we use the one class versus the

others classification strategy, and the normal linear kernel is

adopted as κ(x,y) = xTy. The classifier output has been

transferred to the probability measure in order to preserve the

useful classification information as most as possible in the

combination procedure. In a c-class problem, the output of

SVM classifier for object y is denoted by f = (f1, f2, . . . , fc),
and fi represents the hyperplane function value of SVM for

class ωi versus the other classes. The transferred probability

is defined by p = (p1, p2, . . . , pc) with pi =
fi−min

j
fj

c∑

g=1

(fg−min
j

fj)
.

This transformation is similar to the max-min normalization

procedure, and thus the bigger hyperplane function value in

output corresponds to bigger probability value. The transferred

probabilities also satisfies the condition
c
∑

i=1

pi = 1, pi ∈ [0, 1].

Of course, some other kernels and other probability trans-

formation methods can be selected according to the actual

application.

The BBA output of ENN consists of the singletons and the

total ignorance. The output of Bayesian classifier is a probabil-

ity measure. Both the BBA and probability can be directly used

in the proposed optimal combination of classifiers. The base

classifier(s) will be respectively trained using different subsets

of attributes, and the multiple classification results obtained

by different classifiers will be combined for classifying the

objects. The pignistic probability transformation BetP (.) is

used to transform a BBA into a probability measure for

making a decision. The hard decision-making approach and

the new cautious decision-making approach are both applied

and evaluated with the classifier fusion methods.

Twelve real data sets from UCI repository (http://archive.ics.

uci.edu/ml) have been used here to evaluate the performances

of our new OWDS method with respect to the other methods.

Each data set includes one or two cases (i.e. the attribute set is

divided into different subsets for different classifiers). Hence,

there are total twelve real data sets consisting of twenty cases

in the experiments. The basic knowledge of the used data

sets is shown by Table III. For each data set, the patterns

consist of multiple attributes, and these attributes will be

randomly divided into n distinct subsets without overlapping

attributes, and each subset of attributes will be respectively

used to train the base classifier (SVM, ENN and BC). The

k-fold cross validation is often used for the classification

performance evaluation, but k remains a free parameter. We

use the simple 2-fold cross validation here, since the training

and test sets are large, and each sample can be respectively

used for training and testing on each fold. For each fold, the

program is randomly run ten times. The average classification

accuracy and benefit values with the standard deviation for

different methods are reported in Tables IV–IX.

In the Tables IV–IX and figures 1–2, OWDS corresponds

to the proposed optimal weighted DS combination method

where each pattern is considered with same importance (i.e.
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all the training patterns have the same weight). OWDS-PW

corresponds to the Optimal Weighted DS combination method

where the Pattern Weight (PW) is automatically tuned using

the proposed method. The benefit value BT (defined in eq.(16))

for all the fusion methods on different data sets based on the

cautious decision making strategy is also reported for SVM

classifier and for the hybrid classifier (based on a random se-

lection of SVM, ENN and BC) in Tables V and IX. The lower

and upper accuracy (given by the average value over multiple

runs) of the singleton classifiers to combine are respectively

denoted by ACL = min
l

ACl and ACU = max
l

ACl, where

ACl for l = 1, . . . , n is the classification accuracy of the

individual classifier Cl. The average of accuracy (or benefit

value) denoted by Ave on different data sets with the same

fusion method is given in the second last row of the tables V–

IX to show the general performance of the method. Moreover,

Winning Times10 (denoted by WT) of each fusion method on

the twenty classification cases is also reported in the last row

of Tables V–IX.

The influence of the tuning of parameters λ and γ on the

classification result is evaluated at first in experiment 1, and

then the performance of different fusion methods are evaluated

and compared with different base classifiers in experiment 2.

A. Experiment 1: Test of parameter influence on fusion

performance

There are two parameters involved in the proposed method,

i.e. the distance penalizing coefficient λ associated with the

pattern weight as given in eq.(13), and the imprecision penal-

izing coefficient γ in eq.(15) for cautious decision making. In

this experiment we evaluate their influence on the classification

performance.

We take the following four real data sets from UCI to

show the parameter influence: 1) newthyroid; 2) knowledge;

3) pima; and 4) tae data sets. The attributes of each data set

is randomly divided into two different subsets for different

10If one method produces the maximum accuracy/benefit value for one
classification case compared with the other fusion methods, it wins one
time. Several different fusion methods may produce the same maximum
accuracy/benefit value, and they are all considered winner in such case.

Table III
BASIC INFORMATION OF THE USED DATA SETS.

Data Class Attribute Instance

newthyroid (new) 3 4 215

white Wine quality (wq) 7 11 4898

knowledge(kn) 4 5 403

Wbdc (Wb) 2 30 569

red wine quality (rwq) 6 11 1599

pima(pi) 2 8 768

tae(ta) 3 5 151

satimage (sat) 7 36 6435

magic (ma) 2 10 19020

vehicle (ve) 4 18 946

page-blocks (pb) 5 10 5472

texture (te) 11 40 5500

classifiers, and three base classifiers, i.e. SVM, ENN and BC

are randomly selected for each subset of attribute in a data set.

The classification accuracy (i.e. average value for ten-times

running) of the proposed method OWDS-PW with the tuning

of parameter λ is shown in Fig. 1 for different data sets.
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Figure 1. Classification accuracy on several data sets with different λ.

One sees that the accuracy changes with the tuning of λ

value, and the optimal λ values in different data sets are

different. Hence, it is difficult to give a common optimal value

for different applications. We can use the training data set to

seek the optimal λ value in each application, and the optimal

value should correspond to the highest accuracy. Nevertheless,

this optimization procedure could be time-consuming. One

observes in Fig. 1 that the proposed method generally produces

good performance if λ ∈ (0.2, 0.4). We find the high accuracy

usually can be reached when one takes λ = 0.25 and that is

why we recommend λ = 0.25 as the default value for λ. In

the following experiments, we have used this default value.

We have also tested the influence of tuning of γ on the

benefit value for cautious decision making with different data

sets. The change curves of benefit values of different methods

including OWDS, OWDS-PW, AFLW and WDS are shown in

Fig. 2.

We see that the benefit value of the four methods generally

decreases with the decreasing of γ value. This is reasonable

behavior because the smaller γ value yields the bigger benefit

value for the imprecise decision. The determination of γ

value mainly depends on the application. If the error cost is

quite large, then an imprecise classification decision must be

preferred to an error, and one can take the smaller γ value.

If the error cost is not very large, then one should take the

big γ value (i.e. close to one). We take γ = 0.8 in the

following experiments to test the performance of our proposed

method with respect to several other related methods, and the
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Figure 2. Benefit value of several methods with different γ.

imprecise classification decision strategy is preferred to the

random selection (corresponding to γ = 1) in decision making.

B. Experiment 2: Classification with different base classifiers

In this experiment, three base classifiers including SVM,

ENN and BC are used to test the performance of the proposed

fusion method with respect to the other related methods. The

classification accuracy (i.e. hard decision) of different fusion

methods with the singleton base classifier (i.e. SVM, ENN

or BC) is respectively given in Tables IV, VI and VII. The

common base classifier is operated on the different attribute

subsets for each data set. The hybrid base classifier fusion is

also tested, where the three base classifiers SVM, ENN and BC

are randomly selected for classifying each subset of attribute

in a data set. For example, the Wbdc data set consists of 30

attributes that are randomly divided into 3 subsets. Then, one

subset of attribute is classified by SVM, and another one is

classified by ENN, and the last one is classified by BC base

classifier. Then their classification results are combined by the

different methods, and the classification accuracy according

to the combination results is reported in Table VIII. In the

cautious decision making strategy, the benefit value of different

fusion methods with SVM base classifier and the hybrid base

classifier is respectively given in tables V and IX. In the

following tables, the maximum of accuracy and benefit value

is emphasized in boldface for convenience.

In the experiment 2, one sees that the proposed classifier

fusion methods (i.e. OWDS and OWDS-PW) with the opti-

mal classifier weight and confusion matrix generally produce

higher accuracy than other methods in most cases (according

to the average accuracy on different data sets Ave and the

winning times WT) as shown in last rows of Tables IV–VIII.

This is because the classifier weight is determined by globally

optimizing the fusion result as well as the confusion matrix. In

other methods, the classifier weight is calculated according to

the accuracy of individual classifiers, and the complementary

knowledge of different classifiers is not efficiently taken into

account. The training pattern weight is considered equal in the

traditional classifier weight determination methods. In the new

OWDS-PW method, the patterns hard to classify play a more

important role in the parameter optimization, and the pattern

weight is automatically tuned for obtaining the best possible

classification results. We find that the accuracy can be further

improved when the optimal (rather than equal) pattern weight

is employed in OWDS-PW with respect to OWDS according

to the Tables IV–VIII. Nevertheless, we also find that AFLW

and several other methods can produce a bit better performance

(higher accuracy and benefit value) than our proposed method

OWDS-PW in some cases (according to the winning times

WT). This is because AFLW and OWDS-PW work with

different combination rules. OWDS-PW working with DS

combination rule is suitable for dealing with the independent

and complementary sources of information, and it can produce

good performance taking advantage of the complementarity of

classifiers. AFLW can well handle the random cases to obtain

the average value. The performance of OWDS-PW may be not

as good as AFLW when the classification results provided by

different classifiers are not very complementary.

The accuracy is calculated based on the hard decision that

the object is assigned to the class with maximum probability.

If the proposed cautious decision making support strategy is

applied, the benefit value shown in Tables V and IX is usually

bigger than the accuracy value, and it implies that the error

has been reduced by the cautious decision making strategy.

This is because the partial imprecision is reasonably kept in

the cautious decision. It is considered that the imprecision is

preferred to error, and the imprecision gains bigger benefit

value than error. The partial imprecision can also warn the

user that the used knowledge is not sufficient for the specific

classification of pattern, and some other sources of information

are essential for making more specific (refined) classification.

The proposed method OWDS-PW produces bigger benefit

value than the other methods in most cases as shown in Tables

V and IX. This shows the effectiveness and potential interest

of this new method.

Nevertheless, the proposed method has bigger computation

complexity compared with the other related methods due to

the optimization of the classifier weight, confusion matrix and

the cautious decision threshold. Fortunately, these optimization

procedures can be done off-line using the training data, and it

can be easily implemented with some mathematical software

like MatlabTM. Generally speaking, the computation complex-

ity of the proposed method is the price to pay for improving

the classification accuracy. In our future works, we will try to

improve the calculation efficiency especially for dealing with

large data sets using new techniques, like random sampling.

VI. CONCLUSION

We have proposed a new weighted combination method

for multiple classifiers based on evidential reasoning. The

weighting factors of classifiers are globally optimized by

minimizing the error criteria, which is defined by the distance

between the combination result of classifiers and the target

value (i.e. truth of classification) in training data space. In



11

order to achieve the best classification performance, a confu-

sion matrix is also introduced to characterize the probability

of the object belonging to one class but classified into another

class according to combination result. This matrix is used to

further modify the combination result for making it as close

as possible to the target value, and it is optimized using the

training data as well as the classifier weight. Moreover, the

training patterns hard to classify are considered playing a

more important role in the parameter optimization than the

patterns easy to classify. The pattern weight is automatically

tuned according to the distance between classification result

and the truth, and the bigger distance generally leads to the

bigger weight. A cautious decision making method has been

also presented. The partial imprecision is introduced to reduce

the error cost, because imprecise classification decision is

preferred to error. Various real data sets have been used to

test the performance of the new method, and our results and

analysis show that the new method can efficiently improve

the accuracy of the classification and provide a higher unified

benefit value than other related methods in most cases.
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Table IV
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH SVM BASE CLASSIFIER (IN %).

Data n [ACL, ACU ] AF WAF AFLW DS WDS OWDS OWDS-PW

new 2 [89.30, 90.32] 90.89±1.90 91.07±1.62 91.16±1.13 90.89±1.90 90.79±1.81 92.37±0.41 93.12±0.76
wq 5 [45.13, 46.76] 45.51±0.07 45.19±0.25 49.26±0.62 45.49±0.04 45.45±0.11 51.09±0.75 51.57±0.15
wq 2 [46.38, 49.69] 49.20±1.64 49.57±3.34 49.81±1.62 48.98±1.33 49.67±2.75 51.03±0.07 51.35±1.21
kn 2 [49.38, 56.94] 45.10±1.27 52.11±7.65 60.18±5.85 45.75±1.25 55.22±6.88 58.21±5.37 60.60±5.94
Wb 6 [89.61, 91.28] 93.48±0.96 90.14±2.49 91.85±2.78 87.79±2.52 92.98±1.40 93.90±1.42 93.90±1.42
Wb 3 [91.03, 91.60] 92.95±1.44 91.26±4.14 91.95±4.70 91.74±2.07 93.18±1.82 93.30±1.66 93.30±1.66
rwq 5 [47.05, 51.16] 55.24±0.69 52.39±1.32 53.47±0.78 55.56±0.57 55.41±1.10 56.29±0.62 56.97±0.55
rwq 2 [52.62, 53.10] 55.72±1.82 55.31±2.91 55.83±2.08 56.00±1.75 55.77±2.32 56.38±1.37 56.95±0.92
pi 4 [65.31, 74.74] 66.56±0.41 70.83±5.30 74.87±4.65 65.29±0.27 69.69±2.00 74.74±0.18 74.82±0.41
pi 2 [67.14, 74.71] 68.88±0.95 69.64±4.16 74.82±2.46 68.88±0.95 69.64±4.16 74.82±2.46 74.82±2.46
ta 2 [45.70, 46.23] 49.00±3.28 48.88±3.77 49.68±3.68 47.56±4.15 49.94±3.14 51.17±2.78 51.26±2.05
sat 6 [50.82, 70.51] 75.75±0.86 73.87±0.50 72.91±1.19 75.69±1.00 75.75±0.56 75.87±0.03 76.16±0.82
sat 3 [71.97, 73.94] 76.24±0.48 75.29±0.57 74.32±1.91 76.35±0.41 75.83±0.60 76.07±0.37 76.22±0.55
ma 5 [64.84, 74.60] 69.73±1.87 68.12±4.64 72.45±0.82 69.73±1.87 70.16±2.48 74.97±0.29 74.97±0.29
ma 2 [70.45, 78.87] 72.05±0.04 78.87±0.37 78.87±0.37 72.92±0.23 78.87±0.37 78.87±0.37 78.87±0.37
ve 6 [35.52, 50.30] 51.60±7.77 51.89±0.17 51.73±1.92 44.50±2.59 53.96±6.94 56.65±3.18 56.50±3.01
ve 9 [32.21, 47.52] 47.58±3.59 48.58±0.50 50.74±4.18 36.11±1.42 48.17±3.43 51.65±1.84 52.25±1.00
pb 5 [89.76, 90.57] 89.91±0.12 90.33±0.53 90.50±0.17 90.27±0.63 90.25±0.58 90.12±0.48 90.70±1.32
te 8 [69.37, 84.97] 93.68±0.35 90.95±1.14 72.75±2.21 93.85±0.28 93.67±0.41 93.85±0.28 93.85±0.28
te 4 [89.96, 94.04] 96.79±0.42 95.96±1.01 86.75±2.68 96.81±0.42 96.75±0.34 96.78±0.47 96.81±0.42
Ave [63.18, 63.18] 69.29±1.50 69.51±2.32 69.70±2.29 68.01±1.28 70.56±2.16 72.41±1.22 72.75±1.28
WT 0 1 3 3 1 7 17

Table V
BENEFIT VALUE OF DIFFERENT COMBINATION METHODS WITH SVM BASE CLASSIFIER (IN %).

Data n AF WAF AFLW DS WDS OWDS OWDS-PW

new 2 91.12±1.18 91.38±1.10 91.28±1.07 91.92±1.07 90.72±1.14 92.71±0.21 93.29±0.59
wq 5 49.87±0.08 49.98±0.96 50.45±0.07 46.57±0.17 49.91±0.11 52.24±0.10 52.34±0.30
wq 2 50.87±1.46 50.51±2.03 51.83±0.99 50.89±0.94 50.78±0.94 52.02±0.43 52.34±0.92
kn 2 51.05±0.95 58.71±4.38 68.76±5.62 50.04±1.75 61.89±5.23 63.69±4.63 66.54±5.35
Wb 6 93.38±0.57 90.14±2.49 92.77±2.35 85.27±2.74 93.23±1.86 93.90±1.42 94.01±1.36
Wb 3 93.28±1.73 92.05±5.04 92.86±4.65 92.11±3.52 93.15±1.76 93.33±1.75 93.29±1.56
rwq 5 57.02±0.85 53.65±1.57 55.77±0.75 57.23±0.36 57.68±1.05 58.55±0.92 58.79±0.46
rwq 2 55.88±1.97 55.71±3.01 56.29±2.13 56.71±1.59 56.92±2.13 57.70±1.25 58.26±1.10
pi 4 70.27±1.31 72.51±4.35 75.02±3.79 66.31±0.65 71.14±2.33 74.74±0.18 74.78±0.42
pi 2 73.34±0.89 73.88±3.05 74.82±2.46 73.02±1.21 74.13±3.75 74.82±2.46 74.82±2.46
ta 2 52.26±1.95 50.46±1.60 52.34±2.69 49.18±5.95 52.11±2.78 52.67±2.78 52.52±2.18
sat 6 76.22±0.61 74.29±1.19 73.70±1.38 75.81±0.75 76.59±0.61 76.37±0.40 76.89±0.57
sat 3 76.57±0.07 76.42±0.10 75.05±2.05 76.67±0.05 76.60±0.40 76.60±0.40 77.04±0.52
ma 5 71.50±1.11 70.05±3.48 73.86±0.70 69.73±1.87 70.16±2.48 75.11±0.41 75.91±1.04
ma 2 75.94±0.29 78.87±0.37 78.87±0.37 75.67±0.33 78.87±0.37 78.87±0.37 78.87±0.37
ve 6 52.41±5.60 53.83±1.07 53.47±1.03 46.96±1.58 54.68±3.55 58.48±3.23 59.71±0.75
ve 9 51.38±2.31 50.41±0.76 53.95±3.44 47.94±5.03 53.06±1.21 53.52±1.12 55.43±2.51
pb 5 90.59±0.15 91.09±0.66 91.12±0.32 90.41±0.83 90.65±0.75 91.21±0.53 92.47±0.59
te 8 93.91±0.89 91.73±1.12 75.56±2.00 93.94±0.58 93.84±0.62 93.94±0.58 94.15±0.25
te 4 96.81±0.38 96.08±1.00 87.90±1.75 96.96±0.22 96.94±0.18 96.85±0.41 96.85±0.41
Ave 71.18±1.22 71.09±1.97 71.28±1.99 69.67±1.56 72.15±1.64 73.37±1.18 73.92±1.19
WT 1 4 1 1 4 15
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Table VI
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH ENN BASE CLASSIFIER (IN %).

Data n [ACL, ACU ] AF WAF AFLW DS WDS OWDS OWDS-PW

new 2 [86.79, 88.85] 92.10±0.57 91.26±1.79 92.50±0.32 92.06±0.70 92.01±1.01 92.81±0.33 93.22±0.25
wq 5 [45.22, 46.82] 45.75±0.90 46.07±1.09 48.97±0.25 45.62±0.77 45.84±0.87 48.80±2.95 49.67±3.10
wq 2 [45.27, 47.35] 47.24±1.90 46.62±1.17 46.55±1.75 46.86±1.25 46.92±1.44 47.22±2.92 47.71±2.04
kn 2 [34.05, 74.50] 70.60±5.57 70.15±6.21 72.76±5.98 67.21±4.99 73.87±6.17 74.93±5.35 75.95±5.46
Wb 6 [82.70, 87.57] 91.23±0.68 90.90±1.92 93.33±1.99 91.35±0.75 91.24±0.79 92.82±1.61 93.21±0.83
Wb 3 [83.64, 87.25] 90.63±0.78 90.47±1.15 91.53±0.91 90.73±0.92 90.70±1.03 90.86±0.99 91.93±1.11
rwq 5 [42.02, 51.57] 56.62±0.63 54.64±0.59 57.12±0.69 56.81±0.82 56.47±0.88 57.47±0.62 58.31±0.84
rwq 2 [47.82, 54.08] 55.31±4.14 54.26±3.93 54.15±4.22 54.87±3.86 55.01±4.03 55.11±3.52 55.62±4.26
pi 4 [64.97, 74.53] 70.21±1.01 70.05±3.09 74.92±3.31 72.03±0.92 72.53±1.25 76.04±1.10 75.98±0.09
pi 2 [65.10, 70.31] 70.68±4.97 69.17±3.62 70.72±4.28 70.63±4.76 70.73±4.94 71.46±4.33 71.72±4.65
ta 2 [38.17, 39.96] 45.02±3.45 43.04±4.04 43.03±3.76 45.46±4.71 44.58±4.42 46.78±2.99 46.78±2.99
sat 6 [70.63, 79.83] 82.86±0.51 79.11±0.14 82.87±0.42 82.56±0.44 82.72±0.57 83.18±0.45 83.59±0.48
sat 3 [77.47, 80.92] 82.51±0.06 81.86±0.49 82.60±0.87 82.18±0.12 82.29±0.21 82.48±0.01 82.89±0.07
ma 5 [64.84, 74.82] 70.91±0.07 73.20±4.13 72.99±2.97 71.40±0.39 71.54±0.50 77.17±0.16 77.44±0.13
ma 2 [64.83, 68.07] 67.45±3.68 67.67±4.01 67.74±3.24 67.56±3.85 67.58±3.87 67.78±4.73 67.99±4.46
ve 6 [37.77, 50.77] 56.32±2.59 53.37±0.92 56.09±2.93 57.45±1.84 57.39±1.59 58.33±1.09 58.63±0.84
ve 9 [34.69, 49.76] 56.15±1.84 50.47±4.01 58.46±4.47 55.97±1.76 55.73±1.59 59.63±2.59 60.34±2.26
pb 5 [89.77, 91.16] 89.77±0.00 89.77±0.00 92.51±1.34 89.77±0.00 89.77±0.00 91.08±0.03 91.08±0.03
te 8 [56.09, 72.39] 81.21±1.71 77.89±2.78 81.15±2.79 81.00±2.19 81.35±2.29 82.20±1.65 82.66±1.38
te 4 [67.76, 74.31] 77.55±1.27 76.48±0.35 78.65±1.21 77.46±0.91 77.57±0.96 78.83±0.42 80.20±0.23
Ave [59.98, 68.24] 70.01±1.82 68.82±2.27 70.93±2.39 69.95±1.80 70.29±1.92 71.75±1.89 72.25±1.78
WT 0 0 2 0 0 2 17

Table VII
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH BAYESIAN BASE CLASSIFIER (IN %).

Data n [ACL, ACU ] AF WAF AFLW DS WDS OWDS OWDS-PW

new 2 [90.61,93.17] 95.68±0.22 93.17±1.20 93.97±1.96 95.82±0.00 95.68±0.44 95.82±0.01 95.82±0.01
wq 5 [42.44,47.49] 46.89±0.12 47.94±2.75 50.27±0.32 46.75±0.00 47.64±0.98 49.24±1.06 49.24±1.06
wq 2 [44.65,46.83] 47.75±0.06 46.84±0.38 48.29±0.07 48.00±0.01 47.74±0.13 50.04±0.12 50.19±0.01
kn 2 [57.59,57.81] 83.38±2.06 83.61±3.03 81.59±2.41 83.33±0.00 83.64±3.12 84.18±0.89 84.40±0.48
Wb 6 [89.73,91.76] 93.13±0.19 92.88±2.28 93.58±0.13 93.32±0.00 93.41±0.43 94.06±0.12 94.27±0.87
Wb 3 [91.93,92.41] 93.27±0.50 92.88±1.75 92.97±1.35 93.67±0.00 93.23±0.69 93.06±0.62 93.78±0.83
rwq 5 [45.55,50.03] 56.14±0.19 54.83±1.72 56.97±0.84 56.22±0.00 56.58±0.04 57.09±0.44 57.52±0.40
rwq 2 [51.32,53.78] 56.41±0.19 56.29±1.07 55.54±0.38 56.85±0.00 56.33±0.99 58.19±0.44 58.27±0.59
pi 4 [65.29,74.97] 72.08±0.27 71.93±2.20 76.07±0.83 72.79±0.00 72.89±1.35 76.17±0.75 76.17±0.75
pi 2 [68.31,75.57] 75.39±0.00 75.29±1.93 76.82±0.74 75.39±0.00 75.68±1.30 76.02±0.92 76.30±0.75
tac 2 [43.27,45.04] 49.43±1.02 49.44±3.13 50.45±0.94 50.32±0.00 50.10±2.52 51.99±0.47 53.42±1.37
sat 6 [75.20,78.68] 80.39±0.11 79.32±0.75 80.46±0.09 80.31±0.00 80.35±0.03 80.42±0.23 80.54±0.16
sat 3 [78.36,79.43] 80.06±0.00 79.69±0.53 79.66±0.59 80.00±0.00 80.11±0.04 80.20±0.26 80.20±0.26
ma 5 [65.04,76.03] 73.25±0.10 72.06±0.90 76.67±0.25 73.43±0.00 73.39±0.16 76.33±0.07 76.43±1.08
ma 2 [70.94,74.39] 72.96±0.00 72.66±0.98 73.26±0.62 72.96±0.00 72.81±0.67 74.09±0.25 74.37±0.72
ve 6 [35.76,46.10] 46.22±0.67 43.68±3.59 50.06±3.93 45.51±0.00 45.86±0.67 53.96±0.08 55.14±0.59
ve 9 [34.55,44.09] 45.19±0.45 42.32±1.39 52.72±1.34 45.04±0.00 45.04±0.66 55.91±2.00 56.50±1.45
pb 5 [85.08,92.34] 90.91±0.58 90.20±0.74 91.81±0.43 93.01±0.01 91.22±0.01 93.42±1.09 93.59±0.93
te 8 [61.11,75.90] 76.14±0.30 76.01±1.94 78.57±0.55 77.45±0.01 77.46±0.01 79.78±0.72 79.79±0.73
te 4 [69.25,78.10] 77.01±0.78 73.94±1.56 77.36±0.72 77.45±0.00 77.05±0.14 77.65±0.23 77.72±0.14
Ave [63.30, 68.70] 70.58±0.39 69.75±1.69 71.85±0.92 70.88±0.00 70.81±0.72 72.88±0.54 73.18±0.66
WT 0 0 3 1 0 3 17
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Table VIII
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH HYBRID BASE CLASSIFIER (IN %).

Data n [ACL, ACU ] AF WAF AFLW DS WDS OWDS OWDS-PW

new 2 [89.76, 92.93] 93.68±2.07 93.77±2.02 93.12±2.45 93.68±1.82 93.59±2.14 93.86±1.81 94.05±1.99
wq 5 [44.33, 50.50] 46.41±0.23 47.14±2.28 51.52±0.16 46.78±0.13 47.12±0.38 50.55±1.79 50.70±2.01
wq 2 [43.17,48.69] 47.44±1.23 49.07±1.14 48.96±0.69 48.08±0.92 47.95±0.94 49.66±0.42 49.86±0.66
kn 2 [55.04,60.95] 78.56±5.18 82.27±4.91 83.18±3.89 78.23±5.90 84.16±6.47 84.15±4.95 85.57±5.58
Wb 6 [87.26, 92.88] 93.55±0.25 92.80±0.50 93.94±0.37 94.16±1.61 94.55±0.74 94.11±0.87 94.46±0.37
Wb 3 [89.28,92.70] 92.53±1.12 89.71±2.61 93.23±0.62 89.36±2.12 93.23±0.62 93.23±0.62 93.23±0.62
rwq 5 [39.65, 55.07] 56.66±0.18 56.07±0.40 57.54±1.94 56.54±0.00 56.97±0.62 57.63±1.10 57.72±1.50
rwq 2 [49.62,55.97] 55.88±2.17 57.26±0.75 57.22±0.44 56.50±0.84 56.38±1.46 57.66±0.88 58.57±1.02
pi 4 [65.17,75.33] 69.21±1.75 66.80±0.74 74.93±1.01 74.97±3.27 69.66±2.39 72.14±2.95 75.13±1.29
pi 2 [66.03, 73.26] 71.33±5.08 71.33±5.08 73.57±2.84 71.33±5.08 71.42±4.99 74.41±3.06 74.41±3.06
tac 2 [44.64,46.76] 50.33±3.14 47.69±3.57 51.52±1.29 49.67±1.93 50.93±3.43 52.32±1.62 53.25±2.59
sat 6 [58.90, 71.99] 75.56±0.27 69.31±1.69 67.57±2.75 75.18±0.24 75.63±0.08 75.45±0.00 75.94±0.07
sat 3 [71.58,74.05] 76.04±0.24 75.80±0.15 73.90±1.75 75.82±0.24 75.82±0.21 75.74±0.20 75.90±0.07
ma 5 [65.10, 73.93] 72.14±0.46 72.75±1.06 75.34±1.20 72.31±0.43 72.27±0.35 72.32±1.14 74.61±1.97
ma 2 [71.29, 74.84] 71.29±1.44 71.29±1.44 74.96±0.57 73.11±0.01 73.62±0.02 75.18±0.70 75.18±0.70
ve 6 [38.48, 53.13] 52.90±0.92 52.96±0.33 56.62±1.50 57.75±1.25 54.91±0.92 57.92±1.00 58.70±1.60
ve 9 [33.69,48.17] 53.49±4.26 44.68±2.60 56.15±1.00 46.22±5.68 53.15±4.10 60.64±2.17 61.29±2.42
pb 5 [88.53, 92.19] 89.81±0.68 89.37±1.03 90.17±0.85 90.82±1.56 90.02±0.75 91.34±1.27 91.38±1.28
te 8 [61.42, 78.48] 77.32±2.64 72.58±4.73 77.32±1.99 78.86±2.20 78.41±2.28 82.65±0.42 83.55±0.22
te 4 [68.25, 92.75] 73.22±0.10 73.90±0.48 75.45±1.98 75.57±0.22 79.12±2.28 82.23±1.48 83.25±1.93
Ave [61.56, 70.23] 69.87±1.67 68.83±1.88 71.31±1.46 70.25±1.77 70.95±1.76 72.66±1.42 73.34±1.55
WT 1 0 3 0 2 3 16

Table IX
BENEFIT VALUE OF DIFFERENT COMBINATION METHODS WITH HYBRID BASE CLASSIFIER (IN %).

Data n AF WAF AFLW DS WDS OWDS OWDS-PW

new 2 93.88±2.11 94.11±2.09 93.07±2.29 93.88±1.83 93.88±2.01 94.07±1.80 94.33±1.49
wq 5 50.26±0.05 50.43±1.29 52.55±0.24 48.34±0.45 50.98±0.11 51.71±1.45 51.75±1.50
wq 2 49.83±1.38 51.08±0.06 50.99±0.05 50.05±0.69 50.00±0.59 51.73±0.67 52.05±0.08
kn 2 80.97±3.92 83.06±3.36 84.66±3.58 80.76±3.93 86.78±4.30 86.90±3.08 87.95±4.67
Wb 6 94.34±0.05 93.03±0.43 94.40±0.27 92.16±2.03 94.71±0.51 94.11±0.87 94.46±0.37
Wb 3 92.53±0.84 91.91±0.68 93.44±0.98 89.33±2.06 93.20±0.07 93.33±0.73 93.33±0.73
rwq 5 57.84±0.52 56.91±0.01 58.26±1.70 57.42±0.47 57.89±0.51 58.33±0.57 58.70±1.06
rwq 2 57.91±1.68 57.56±0.88 58.01±0.60 57.91±0.59 57.92±1.54 58.42±0.34 58.81±0.53
pi 4 70.82±3.30 69.05±2.29 75.33±1.83 69.74±2.26 70.86±3.49 72.52±2.41 75.59±1.94
pi 2 72.41±3.82 71.75±4.64 74.68±2.86 71.33±5.08 71.79±4.56 75.13±2.91 75.15±2.78
tac 2 53.68±3.47 50.38±1.95 54.93±0.89 50.98±2.45 54.61±2.57 55.73±1.59 55.87±1.31
sat 6 76.33±0.13 70.12±2.17 68.96±1.94 75.82±0.08 76.39±0.13 76.11±0.23 76.62±0.10
sat 3 76.74±0.11 76.50±0.02 74.75±1.96 76.70±0.12 76.72±0.11 76.73±0.03 76.85±0.08
ma 5 74.62±2.11 74.20±0.92 76.09±0.63 72.31±0.43 72.88±0.06 73.10±2.03 76.26±2.67
ma 2 73.98±1.21 73.62±1.12 75.60±0.39 73.11±0.01 74.46±0.58 75.78±0.51 75.81±0.46
ve 6 56.72±1.44 56.57±1.52 60.61±1.40 53.56±0.20 58.52±0.20 59.03±1.49 60.21±1.49
ve 9 58.11±1.98 49.38±1.93 59.21±1.02 48.23±6.04 57.39±1.51 60.71±1.40 61.94±2.28
pb 5 90.27±0.79 89.56±1.09 90.52±0.84 90.83±1.61 90.13±0.76 91.49±1.23 91.54±1.26
te 8 78.34±1.94 73.39±4.92 77.95±2.24 79.13±2.18 79.04±1.96 83.05±0.12 83.92±0.47
te 4 76.02±0.02 78.11±0.23 76.55±2.05 76.01±0.29 80.97±1.67 83.28±1.78 84.50±2.37
Ave 71.78±1.54 70.54±1.58 72.53±1.39 70.38±1.64 72.46±1.36 73.56±1.26 74.28±1.38
WT 0 3 0 1 0 16




