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Approximately 1% of the world’s population has epilepsy, and 25% of epilepsy patients cannot be treated sufficiently by any
available therapy. If an automatic seizure-detection system was available, it could reduce the time required by a neurologist to
perform an off-line diagnosis by reviewing electroencephalogram (EEG) data. It could produce an on-line warning signal to alert
healthcare professionals or to drive a treatment device such as an electrical stimulator to enhance the patient’s safety and quality of
life. This paper describes a systematic evaluation of current approaches to seizure detection in the literature. This evaluation was
then used to suggest a reliable, practical epilepsy detection method. The combination of complexity analysis and spectrum analysis
on an EEG can perform robust evaluations on the collected data. Principle component analysis (PCA) and genetic algorithms
(GAs) were applied to various linear and nonlinear methods. The best linear models resulted from using all of the features without
other processing. For the nonlinear models, applying PCA for feature reduction provided better results than applying GAs. The
feasibility of executing the proposed methods on a personal computer for on-line processing was also demonstrated.

1. Introduction

Epilepsy is one of the most common neurological disorders.
Approximately 1% of the world’s population has epilepsy,
and up to 5% of people may have at least one seizure during
their lifetime [1]. Epilepsy is characterized by a sudden
and recurrent malfunction of the brain, a “seizure” [2]. An
electroencephalogram (EEG) is a record of the electrical
potentials generated by the cerebral cortex’s nerve cells, and it
has been an especially valuable clinical tool for the evaluation
and treatment of epilepsy [3].

A continuous recording of the EEG lasting as long as
one week is required to detect epilepsy. Examining the entire
length of such EEG recordings by a well-trained neurologist
is both tedious and time consuming. The time required
by the neurologist to review extensive EEG data could be
greatly reduced via assistance from a reliable automated
seizure detection system. In addition, if an online seizure
detection method was available, the system could signal
healthcare professionals to provide immediate care when a
seizure occurs, or it could drive a treatment device (e.g., an

electrical stimulator or a drug delivery device) to suppress the
seizure and to enhance the patient’s quality of life [4, 5].

Several methods have been proposed to automatically
detect epileptic seizures by analyzing EEG data. During
seizures, the scalp EEG of patients with epilepsy is char-
acterized by high-amplitude, synchronized EEG waveforms.
Therefore, analysis of EEG data using chaotic nonlinear
dynamics (e.g., Lyapunov exponents) [6, 7] and complexity
analysis (e.g., entropy) [8–12] has been proposed to analyze
seizure discharges. Time-frequency analysis approaches that
analyze the fundamental frequencies and the harmonic
frequencies of seizure events have also been proposed for
seizure detection. These types of analyses include short-time
Fourier transforms [13–15] and wavelet transforms [16].
Combinations of wavelet analysis with entropy analysis or
combinations of wavelet analysis with Lyapunov exponents
have also been proposed for seizure detection by analyzing
the complexity of some specific EEG subbands [17, 18].
Because of their self-training capability, neural networks [12,
14, 17–20] and adaptive neurofuzzy inference systems [21]
have also been utilized for classification of normal events and
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Figure 1: Exemplary EEG time series from five different sets [22].
(a) normal eyes-open EEG (Set A), (b) Normal eyes-closed EEG
(Set B), interictal EEG at (c) opposite (Set C) and (d) epileptogenic
zones (Set D), and (e) ictal EEG (Set E) at epileptogenic zones.

seizure events by analyzing the spectra and/or the complexity
of the EEG recordings.

The performance of an EEG-based seizure detection
model may be affected by at least four factors: (1) the EEG
features, (2) the feature extraction/reduction methods, (3)
the classifiers, and (4) the number of data classes to be
classified. The objective of this study was to systematically
evaluate the performance of current approaches described
in the literature and to suggest a reliable, practical epilepsy
detection method based on the findings of the evaluation.
Because the dataset from Department of Epileptology,
University of Bonn, Germany [21, 22], has been widely
used for performance demonstration in many studies, the
evaluation presented here focused on analyzing methods
with this dataset for fair comparisons [8, 12, 14, 18, 23–34].

For EEG features, Srinivasan et al. successfully combined
an approximate entropy (ApEn) analysis with neural net-
works to discriminate between normal and ictal EEG signals,
and the overall accuracy was as high as 100% [12]. The study
presented here examined the capability of ApEn analysis
to analyze multiclass EEGs, and the analysis’ performance
was enhanced by combining ApEn analysis with the power
of EEG subbands or autoregressive models [30]. Genetic
algorithms [27] and principle component analysis [18] were
compared to examine their ability to select features that are
useful while using various linear and nonlinear methods for
classification.

For the number of data classes to be classified, there
are five datasetes in [21, 22], including normal eyes-open
EEGs (Set A), normal eyes-closed EEGs (Set B), interictal
EEGs at the opposite (Set C) and epileptogenic zones (Set

D), and ictal EEGs (Set E) at epileptogenic zones. For two-
class classification, studies described in [8, 12, 14, 23–25]
classified Set A and Set E, and their accuracies ranged from
92% to 100%. Studies described in [26, 27] classified Set E
and Sets A, B, C, and D, and their accuracies ranged from
96% to 97%. For three-class classification, studies described
in [18, 28–30] classified Set A, Set D (Set C in [30]), and Set
E, and the accuracies ranged from 85% to 96%. Finally, the
studies described in [31–34] classified the five datasetes, and
the accuracies ranged from 89% to 99%. In our experiments,
the seizure detection approaches were also used to classify
two additional datasets: Set D and Set E; and Sets A and D
and Set E.

The motivation of this study is to present a comprehen-
sive study on state-of-the-art methods for seizure detection
and propose a reliable and practical epilepsy detection
method that can balance computational complexity and
detection accuracy. The combination of complexity analysis
and spectrum analysis on an EEG that can perform robust
evaluations on the collected data is proposed. Applying
principle component analysis (PCA) for feature reduction
and utilizing radial-basis-function support vector machine
as the classifier are developed for multiclass EEG discrimina-
tion. For online seizure detection, the temporal and spectral
features are integrated with the linear classifiers and can
be easily implemented on current processing platforms and
perform with high accuracy and with low computational
cost. In addition, it is feasible for the system to responsively
drive a treatment device, such as an electrical stimulator or a
drug delivery device, to suppress the seizures.

2. Dataset

This study utilized the dataset from Department of Epilep-
tology at the University of Bonn, Germany [22, 23], because
many seizure detection methods have been proposed and
evaluated with this dataset. It contains normal EEGs of
healthy subjects, interictal EEGs of epileptic subjects, and
ictal EEGs of epileptic subjects. Each set contains 100 single-
channel EEG segments with a duration of 23.6 s and a
sampling frequency of 173.61 Hz. Each segment consists of
4,096 samples. Segments from Sets A and B contain normal
EEGs taken using surface electrodes on five healthy people
with their eyes open and closed, respectively. Sets C and
D contain interictal EEGs taken from five epileptic patients
using intracranial electrodes placed at the opposite and
epileptogenic zones, respectively. Set E contains ictal EEGs
taken from five epileptic patients using intracranial elec-
trodes placed at the epileptogenic zone. The type of epilepsy
was diagnosed as temporal lobe epilepsy. The exemplary EEG
segments from each set are shown in Figure 1.

3. Methods

A typical EEG-based seizure detection model may contain
(1) the EEG features, (2) the feature extraction/reduction,
and (3) the classifier. This study systematically evaluated the
performance of current approaches with respect to these
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Figure 2: Applying entropy analysis to the normal, interictal, and ictal EEG datasets. (a) Results by approximate entropy. (b) Results by
sample entropy.

three elements. The results of the evaluation were used to
suggest methods for achieving a practical epilepsy detection
method.

For EEG features, the approximate entropy (ApEn)
analysis was evaluated for its ability to analyze multiclass
EEGs, and the performance of ApEn analysis was enhanced
by incorporating the power of EEG subbands or autore-
gressive models [30]. Genetic algorithms [27] and principle
component analysis [18] were compared for their ability
to select features while using various linear and nonlinear
methods for classification.

3.1. Spectral and Entropy Analysis

3.1.1. Approximate Entropy (ApEn). Approximate entropy
(ApEn) is a measure that quantifies the regularity or the
predictability of a time series [35]. ApEn accounts for the
temporal order of points in a time sequence and is therefore
a preferred measure of randomness or regularity. It has also
been used recently for the detection of epilepsy [8, 12].
Smaller values of ApEn imply a greater likelihood that similar
patterns of measurements will be followed by additional
similar measurements [35].

In addition to diagnosis such as discriminating between
the EEGs of healthy people and the epileptic-seizure EEGs
of patients [12], the ability to discriminate between the ictal
and nonictal EEGs of epileptic patients is also important for
some practical applications, such as seizure warning systems
or closed-loop seizure control systems [5]. Figure 2(a) shows
the distribution, the means, and the standard deviations of
ApEn values corresponding to three datasetes: the normal
scalp EEGs of healthy subjects (Set A), the interictal EEGs
of epileptic subjects (Set D), and the ictal EEGs of epileptic

subjects (Set E). The data length of each nonoverlapping
window for ApEn calculation was 512 points, and the other
ApEn parameters were r = 0 and m = 1 [12]. Based
on these data, ApEn was a good index for discriminating
between normal (Set A) and ictal EEGs (Set E). However,
the ApEn values of the interictal EEGs overlapped with those
of the normal and the ictal EEGs. Figure 2(b) shows the
results from the sample entropy analysis method [36] that
was proposed to eliminate bias caused by self-matching.
The values from sample entropy analysis corresponding
to the interictal EEGs overlap with those of the normal
EEGs, and ApEn analysis performs better than the sample
entropy method for discriminating between normal and
ictal EEGs. Thus, to improve the performance of epileptic
seizure detection, it is required to combine additional,
complementary features to ApEn analysis. Spectral features
and the autoregressive model are compared for this purpose.

3.1.2. Spectral Analysis. The EEG power spectra calculated
using a fast Fourier transform (FFT) were normalized
to a logarithmic scale. The 0–60 Hz frequency range was
continuously segmented into 15 subbands, and the averaged
EEG log-power spectrum from each sub-band (with a 4 Hz
bandwidth) was extracted to generate the spectral features
used by the classifying method. The feature for each sub-
band i (for 0 ≤ i ≤ 14) was calculated by

PSi = Mean
[
PS
(
f
)]

, 4 · i < f ≤ 4 · (i + 1), (1)

where PS( f ) is the log power of frequency f. Combined with
a time domain feature (i.e., the approximate entropy), a total
of 16 features were used.

Because EEG signals are noisy and nonstationary, each
EEG segment was divided into several subwindows, and
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the approximate entropy analysis and spectral analysis was
applied to each subwindow. The feature values of the EEG
segment were the median values of the ApEn and the band
powers for each of divided subwindows. Assuming that the
number of data points of an EEG segment to be classified is
N, the resultant ApEn is

ApEn = MED
[
ApEnk

]
, k = 1, 2, . . . N/128, (2)

and the power of the ith band is

PSi = MED
[
PSi,k

]
, (3)

where PSi,k represents the power of the ith band at the kth
sub-window [37].

3.1.3. Autoregressive Model. The autoregressive (AR) model
is a parametric model used to describe stationary time series,
and it is also a popular tool for EEG analysis [38]. AR
models represent the current signal as the weighted sum of
its previous values and the white noise. The determination
of the weights is based on the least mean square (LMS)
criteria. For the analysis presented here, Akaike’s information
criterion [39] was used to determine the appropriate order
of the AR model, which was 20. The weights of the AR
model and the ApEn analysis (a total of 21 features) were
combined as the set of features for use by the classifiers and
were compared with the spectral features.

3.2. Feature Reduction. Principle component analysis and
genetic algorithms have been utilized to perform feature
reduction in seizure detection methods [18, 27]. Here,
these two methods have been used in conjunction with the
combination of ApEn analysis and spectral power analysis
for feature reduction, and the results are compared to those
obtained when examining the original 16 features without
any processing.

3.2.1. Principle Component Analysis. Principal component
analysis transforms a set of correlated variables into a new
set of uncorrelated variables that can use fewer dimensions
to express the relevant information contained in the obser-
vation data. It has also been widely used in EEG analysis for
dimension reduction or for feature extraction [18, 37]. For
this analysis, PCA was applied to the 16 features (ApEn and
the powers of the 15 subbands), and the resultant principle
components (PCs) were fed to the classifiers for evaluation.
The number of PCs was determined based on the best
performance of each classifier [18].

3.2.2. Genetic Algorithm. A Genetic Algorithm (GA) is an
adaptive heuristic search algorithm. It starts with an initial
population of fixed-length individuals (chromosomes). The
evolution process is governed by selection, crossover, and
mutation [40] of the parents to generate the children’s
generation. A fitness function is defined to evaluate how well
a solution (i.e., the individuals) solves the problem. Here, the
settings and the procedure for the GA followed the approach
proposed in [27] for seizure detection. At initialization, the

population size was set at 20. Each individual consisted of 16
genes that represented each of the 16 features (i.e., the ApEn
and the powers of the 15 subbands). The genes were allowed
to have a value of 0 or 1. The value of 1 implied that the
corresponding feature was selected, and a value of 0 implied
that the corresponding feature was excluded. The fitness
value of an individual was defined as the inverse value of the
classification error. Two of the individuals (the elites) in the
current generation were quarantined to survive to the next
generation without any modifications. In each generation,
80% of the individuals in the population, excluding the elites,
were created through a crossover operation. The remaining
20% were generated through mutation. The algorithm was
allowed to run for a maximum of 100 generations. The stop
criteria for the algorithm were set such that the algorithm
would halt if there were no improvements in the fitness
values from 20 consecutive generations [27].

3.3. Classification. To evaluate and compare the performance
of analysis methods, four linear and nonlinear methods
were utilized to classify the extracted features as a seizure
or a Nonseizure event. The four evaluated methods were
linear least squares [41], linear discriminate analysis [42], a
backpropagation (BP) neural network [43], and the support
vector machine with either the linear (LISVM) or the radial-
basis function kernels (RBFSVM) [44].

The linear least squares (LLS) method finds a best fitting
linear model that minimizes the mean square error between
the system output and the desired output. Mathematically,
it can be stated as finding an approximate solution to
an overdetermined system of linear equations. Because the
model output is only the weighted sum of the input features,
it is suitable for implementation using processors without
high computing power or for use in online processing.
Linear discriminant analysis (LDA) uses a hyperplane to find
the linear combination of features that best separates two
or more classes of objects or events. Usually, the within-
class, between-class, and mixture scatter matrices are used to
formulate the criteria for searching the hyperplane so that
the distance between the classes’ means is minimized and the
interclass variance is maximized [45, 46].

Backpropagation (BP) neural networks are widely used
nonlinear models for pattern recognition and classification
problems. BP is a multilayer perceptron that is composed
of several layers of neurons. The error between the desired
output and the network output is backpropagated from the
output layer to the hidden and input layers to update the
weights for network training based on the gradient-descent
method. Here, a 3-layer feedforward neural network was
utilized, and the number of neurons in the hidden layer
was 20. The log-sigmoid function was used as the activation
function of the hidden and output layers. The learning
constant was 0.1 for network training and iteration number
is 2000 for network training.

The support vector machine (SVM) also uses a hyper-
plane to identify classes. The hyperplane that maximizes the
margin (i.e., the distance from the nearest training points) is
selected by the SVM. Maximizing the margins is known to
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Table 1: Groupwise average accuracies of various feature extraction methods combined with various classifiers applied to classify sets A, D,
and E (standard deviations are noted in parentheses).

Classifier Feature selection A D E Accuracy

LLS

All features 100.00 (0.0) 95.00 (3.9) 95.50 (1.6) 96.83 (1.2)

GA 99.25 (1.2) 94.50 (3.3) 94.75 (3.6) 96.17 (1.9)

ApEn + AR model 98.50 (2.4) 95.50 (2.6) 95.50 (3.1) 96.50 (1.3)

LDA

All features 100.00 (0.0) 94.50 (3.9) 95.75 (1.7) 96.75 (1.1)

GA 99.50 (1.1) 95.00 (4.4) 94.50 (2.3) 96.33 (1.9)

ApEn + AR model 97.50 (2.6) 96.00 (2.9) 95.75 (3.1) 96.41 (1.6)

BP

All features 98.75 (3.1) 96.50 (2.9) 97.00 (2.0) 97.42 (1.4)

PCA 100.0 (0.0) 97.75 (1.8) 97.00 (2.6) 98.25 (1.5)

GA 98.50 (1.7) 91.50 (5.2) 97.50 (2.4) 95.83 (2.0)

ApEn + AR model 99.25 (1.2) 93.00 (5.5) 89.50 (6.0) 93.92 (3.0)

LISVM

All features 99.50 (1.1) 97.00 (2.6) 98.25 (1.2) 98.25 (1.1)

PCA 99.75 (0.8) 98.00 (2.0) 97.25 (1.4) 98.33 (0.6)

GA 98.75 (2.1) 93.50 (5.0) 98.00 (1.1) 96.75 (1.7)

ApEn + AR model 99.75 (0.8) 94.25 (3.1) 94.50 (5.0) 96.17 (2.2)

RBFSVM

All features 99.75 (0.8) 97.75 (1.8) 97.75 (1.4) 98.42 (0.8)

PCA 99.75 (0.8) 98.25 (1.8) 98.00 (1.6) 98.67 (0.7)

GA 99.50 (1.6) 95.00 (3.7) 96.50 (2.7) 97.00 (1.7)

ApEn + AR model 99.75 (0.8) 92.25 (3.2) 91.75 (3.9) 94.58 (1.8)

Table 2: Groupwise average accuracies of various feature extraction methods combined with various classifiers applied to classify sets A, B,
C, D, and E (standard deviations are noted in parentheses).

Classifier Feature
Selection

A B C D E Accuracy

LLS All features 94.75 (3.6) 88.75 (5.0) 51.00 (8.6) 60.00 (8.0) 92.25 (3.6) 77.95 (1.7)

LDA All features 96.00 (2.9) 88.25 (5.3) 51.00 (8.6) 62.00 (8.1) 94.25 (4.1) 78.30 (1.7)

BP All features 95.75 (3.1) 91.50 (3.8) 59.25 (8.8) 63.75 (9.3) 94.00 (2.7) 80.85 (1.5)

PCA 94.75 (4.9) 92.50 (3.3) 63.25 (7.0) 70.50 (9.5) 93.00 (2.8) 82.80 (2.5)

LISVM All features 94.75 (6.5) 92.00 (4.4) 59.50 (5.8) 64.50 (6.5) 95.25 (1.4) 81.20 (1.4)

PCA 94.50 (4.4) 91.75 (4.7) 62.50 (7.7) 63.00 (9.1) 94.50 (3.5) 81.25 (2.2)

RBFSVM All features 97.00 (4.4) 93.00 (3.5) 71.75 (6.5) 70.00 (8.7) 96.00 (3.4) 85.55 (2.0)

PCA 94.25 (7.3) 92.50 (3.7) 75.75 (7.4) 72.00 (6.7) 95.00 (3.3) 85.90 (2.4)

Table 3: Total number of windows corresponding to various window lengths used for training and testing the classifiers for seizure detection.

Sets Window size
Number of windows for training Number of windows for testing

Nonseizure Seizure Nonseizure Seizure

D-E
173 1380 1380 920 920

256 960 960 640 640

512 480 480 320 320

AD-E
173 2760 1380 1840 920

256 1920 960 1280 640

512 960 480 640 320

ABCD-E
173 5520 1380 3680 920

256 3840 960 2560 640

512 1920 480 1280 320
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Table 4: Sensitivity, specificity, and accuracy of combining various feature extraction methods with various classifiers to distinguishing
between Set E (ictal) and Set D (interictal).

Window size Classifier Feature selection Sensitivity Specificity Accuracy

173

LLS
All features 95.98 (1.4) 95.14 (1.0) 95.56 (0.8)

GA 95.90 (1.3) 94.66 (1.6) 95.28 (0.9)

ApEn + AR model 95.88 (0.8) 94.85 (1.6) 95.36 (0.8)

LDA
All features 95.98 (1.4) 95.14 (1.0) 95.56 (0.8)

GA 95.79 (0.9) 94.82 (1.3) 95.30 ( 0.7)

ApEn + AR model 95.88 (0.8) 94.85 (1.6) 95.36 (0.8)

BP

All features 95.90 (0.9) 95.41 (1.2) 95.66 (0.7)

PCA 95.89 (1.0) 94.65 (1.2) 95.27 (0.6)

GA 95.67 (1.3) 94.49 (1.9) 95.08 (1.1)

ApEn + AR model 93.47 (2.0) 94.95 (1.4) 94.21 (1.2)

LISVM

All features 95.68 (1.0) 95.62 (1.2) 95.65 (0.8)

PCA 95.46 (1.4) 95.16 (1.1) 95.31 (0.8)

GA 95.27 (1.5) 95.29 (1.0) 95.28 (0.9)

ApEn + AR model 94.68 (1.2) 94.73 (1.6) 94.71 (1.0)

RBFSVM

All features 96.04 (1.1) 95.29 (1.2) 95.67 (0.7)

PCA 95.95 (1.5) 95.09 (1.2) 95.52 (0.9)

GA 95.86 (1.0) 95.32 (1.8) 95.59 (0.9)

ApEn + AR model 92.84 (2.9) 93.54 (1.8) 93.19 (1.6)

256

LLS
All features 95.48 (1.8) 96.20 (1.5) 95.84 (1.2)

GA 95.27 (1.7) 95.88 (1.3) 95.57 (1.2)

ApEn + AR model 96.23 (0.6) 95.08 (2.2) 95.66 (1.2)

LDA
All features 95.48 (1.8) 96.20 (1.5) 95.84 (1.2)

GA 94.64 (1.8) 96.34 (1.2) 95.49 (1.2)

ApEn + AR model 96.23 (0.6) 95.08 (2.2) 95.66 (1.2)

BP

All features 96.03 (1.2) 95.70 (1.3) 95.87 (0.9)

PCA 95.72 (1.1) 96.03 (1.3) 95.88 (0.6)

GA 95.75 (1.4) 95.03 (1.5) 95.39 (0.9)

ApEn + AR model 93.34 (2.5) 95.58 (1.6) 94.46 (1.3)

LISVM

All features 95.61 (1.3) 96.41 (1.4) 96.01 (0.9)

PCA 95.19 (1.2) 96.11 (1.6) 95.65 (1.0)

GA 95.19 (1.2) 95.91 (1.4) 95.55 (0.7)

AR model 94.67 (1.7) 95.06 (1.9) 94.87 (1.4)

RBFSVM

All features 96.34 (1.4) 96.53 (1.3) 96.44 (0.9)

PCA 96.28 (1.3) 96.38 (1.4) 96.33 (1.0)

GA 95.67 (1.2) 95.81 (1.3) 95.74 (0.9)

ApEn + AR model 92.39 (3.8) 93.88 (2.1) 93.13 (2.1)

512

LLS
All features 96.03 (2.0) 96.56 (1.8) 96.30 (1.4)

GA 95.91 (2.0) 96.47 (1.8) 96.19 (1.4)

ApEn + AR model 96.44 (0.8) 95.38 (2.1) 95.91 (1.1)

LDA
All features 96.30 (2.0) 96.56 (1.8) 96.30 (1.4)

GA 96.03 (1.9) 96.03 (1.7) 96.03 (1.4)

ApEn + AR model 96.44 (0.8) 95.38 (2.1) 95.91 (1.1)

BP

All features 96.63 (1.3) 95.88 (1.7) 96.25 (1.0)

PCA 96.44 (1.5) 95.78 (1.3) 96.11 (0.8)

GA 96.41 (1.9) 95.47 (1.8) 95.94 (0.7)

ApEn + AR model 94.25 (1.4) 95.56 (2.0) 94.91 (1.1)

LISVM

All features 96.91 (1.2) 96.59 (1.6) 96.75 (1.0)

PCA 94.47 (3.6) 98.57 (0.8) 97.75 (0.6)

GA 96.88 (1.4) 96.16 (1.7) 96.52 (1.0)

ApEn + AR model 93.94 (2.4) 94.88 (2.6) 94.41 (1.7)
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Table 4: Continued.

Window size Classifier Feature selection Sensitivity Specificity Accuracy

RBFSVM

All features 97.22 (1.3) 96.63 (1.6) 96.92 (1.1)

PCA 97.00 (2.0) 99.18 (0.6) 98.74 (0.5)

GA 96.44 (1.5) 96.13 (1.4) 96.28 (0.9)

ApEn + AR model 92.00 (4.1) 94.53 (2.6) 93.27 (2.3)

increase the method’s generalization capabilities. The SVM
performs structural risk minimization and creates a classifier
with a minimized Vapnik-Chervonenkis (VC) dimension.
When the VC dimension is low, the expected probability of
error is low and ensures a good generalization. The SVM
can also simultaneously minimize the empirical risk and the
expected risk of pattern classification problems [47]. For the
analysis presented here, two kinds of kernels, the linear kernel
and the radial-basis function, were used. The RBF kernel
nonlinearly maps samples into a higher dimensional space
to handle cases where the relation between class labels and
attributes is nonlinear. The parameter settings used were the
following: a penalty parameter, C = 2; a variance, σ = 0.5
for RBFSVM; and C = 1 for LISVM.

4. Results

The experiments consisted of two parts: (1) Epilepsy Diag-
nosis based on classification of three or five EEG datasetes,
including normal EEGs, interictal EEGs, and ictal EEGs and
(2) Seizure Detection based on classifying the windowed
EEG trials as ictal or nonictal. The results demonstrated
the feasibility of the seizure detection method for use in
online seizure detection. This experiment contained three
subexperiments. The first was to distinguish ictal EEGs (Set
E) and nonictal EEGs (Sets A and D). The second was to
distinguish ictal EEGs (Set E) and interictal EEGs (Set D).
The third was to distinguish ictal EEGs (Set E) and nonictal
EEGs (Sets A, B, C, and D) when all of the datasets provided
in [22] are used.

4.1. Classification. Table 1 shows the average accuracies
obtained by combining various feature extraction methods
and classifiers to classify the three EEG datasetes, including
the normal EEGs (Set A), the interictal EEGs (Set D), and
the ictal EEGs (Set E). Most of the seizure-detection methods
were evaluated with Sets A, D, and E without using Sets B
and C [18, 28, 29]. Set B consists of normal EEGs taken
from subjects with closed eyes that will induce specific
alpha rhythms. Set C consists of interictal EEGs taken with
intracranial electrodes at the opposite side of the epileptic
zones, but a temporal-lobe seizure is regarded as a focal
seizure.

In the experiments, 60% of the datasetes were randomly
selected for training and the remaining data were used for
testing the performance of the methods. The procedures
were repeated 10 times to obtain the average performance
results and their standard deviations (noted in parentheses).

By combining the temporal and spectral features of the
EEG signals, the average accuracies of the linear models
were remarkable and close to 97%. The use of PCA
enhanced the best average classification accuracies of BP and
SVM. Figure 3 shows the average variation in classification
accuracies versus the number of principle components with
respect to various classifiers. Applying the PCA method
did not improve the average accuracy of LLS or LDA and
it required more computation for the linear classifiers, so
PCA will not be combined with the linear classifiers in the
following experiments. However, PCA did improve either
the dimension reduction or the accuracy improvement of
BP and SVM. The RBFSVM method had the highest average
accuracy when combined with PCA. The GA did not improve
the average accuracies for all classifiers. The results obtained
by combining ApEn analysis with the AR model were worse
than the results of combining ApEn analysis and EEG
spectral features.

Table 2 shows the average accuracies of applying the
linear and nonlinear classifiers to classify all of the five EEG
datasetes. The results show that nonlinear classifiers perform
much better than the linear classifiers if the number of data
classes increases. In our experiments, the best result among
the ten tests for each classifier can be higher than 80% and
the best result of RBFSVM can reach 90%.

4.2. Toward an Online Seizure Detection System. To evaluate
the feasibility of online operation of the seizure detection
methods, all of the segments of the datasetes were divided
into nonoverlapping windows with 173-, 256-, and 512-
point window lengths. The trial numbers corresponding
to various window lengths for training and for testing are
shown in Table 3. Three combinations of the datasets were
set to distinguish between ictal and nonictal EEGs, including
(1) Set D versus Set E, (2) Sets A and D versus Set E, and
(3) Sets A, B, C, and D versus Set E. Tables 4–6 show the
results from combining various feature extraction methods
with various classifiers and applying them to the three cases,
respectively. Sensitivity (SE), specificity (SP), and accuracy
(AC) are defined as

SE = TP
TP + FN

, (4)

SP = TN
TN + FP

, (5)

AC = TP + TN
TP + TN + FP + FN

, (6)
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Table 5: Sensitivity, specificity, and accuracy of combining various feature extraction methods with various classifiers to distinguishing
between Set E (ictal windows) and Sets (A, D) (normal and interictals).

Window size Classifier Feature Selection Sensitivity Specificity Accuracy

173

LLS
All features 93.61 (2.1) 97.79 (0.8) 96.40 (0.6)

GA 92.85 (2.5) 97.69 (0.8) 96.08 (0.7)

ApEn + AR model 92.53 (1.8) 98.10 (0.7) 96.25 (0.7)

LDA
All features 95.60 (1.4) 97.32 (0.9) 96.74 (0.5)

GA 95.67 (1.7) 96.99 (1.2) 96.55 (0.7)

ApEn + AR model 94.03 (1.7) 97.55 (0.8) 96.38 (0.7)

BP

All features 94.59 (2.5) 97.42 (1.2) 96.47 (0.8)

PCA 94.26 (2.3) 97.91 (0.8) 96.70 (0.8)

GA 89.34 (3.9) 98.45 (0.5) 96.63 (0.5)

ApEn + AR model 93.97 (2.4) 97.38 (1.1) 96.24 (0.7)

LISVM

All features 94.75 (1.8) 97.84 (0.9) 96.81 (0.5)

PCA 93.91 (2.2) 97.64 (0.8) 96.40 (0.6)

GA 93.97 (2.6) 97.62 (1.0) 96.40 (0.9)

ApEn + AR model 94.36 (2.1) 97.42 (1.0) 96.40 (0.7)

RBFSVM

All features 95.22 (1.9) 97.98 (0.9) 97.06 (0.6)

PCA 98.85 (1.9) 97.90 (0.8) 96.88 (0.6)

GA 94.75 (2.2) 97.72 (1.1) 96.73 (0.8)

ApEn + AR model l 94.07 (1.8) 97.23 (1.1) 96.18 (0.6)

256

LLS
All features 94.92 (1.5) 98.37 (0.8) 97.22 (0.5)

GA 94.33 (1.7) 98.15 (0.7) 96.88 (0.4)

ApEn + AR model 93.39 (1.8) 98.08 (0.8) 96.49 (0.7)

LDA
All features 96.06 (1.2) 97.77 (1.0) 97.20 (0.5)

GA 95.92 (1.8) 97.24 (1.3) 96.80 (0.6)

ApEn + AR model 96.36 (1.7) 97.51 (0.9) 96.46 (0.7)

BP

All features 95.89 (2.1) 97.79 (1.4) 97.16 (0.9)

PCA 95.25 (1.5) 98.58 (0.7) 97.47 (0.5)

GA 95.75 (3.0) 97.35 (1.4) 96.82 (1.1)

ApEn + AR model 94.16 (2.6) 97.80 (1.2) 96.58 (0.6)

LISVM

All features 96.19 (1.8) 98.23 (1.0) 97.55 (0.6)

PCA 95.08 (1.9) 98.20 (0.9) 97.16 (0.5)

GA 95.45 (2.6) 97.91 (1.2) 97.09 (0.9)

ApEn + AR model 94.83 (2.0) 97.62 (1.0) 96.69 (0.6)

RBFSVM

All features 96.88 (1.8) 98.41 (1.0) 97.90 (0.7)

PCA 96.67 (1.7) 98.43 (1.0) 97.83 (0.6)

GA 96.06 (2.5) 98.17 (0.9) 97.47 (0.7)

ApEn + AR model 93.80 (2.2) 97.09 (1.2) 95.99 (1.7)

512

LLS
All features 95.59 (1.3) 98.58 (0.7) 97.58 (0.3)

GA 95.50 (2.0) 98.39 (1.0) 97.43 (0.9)

ApEn + AR model 93.94 (2.0) 98.13 (0.8) 96.73 (0.7)

LDA
All features 97.03 (1.0) 98.13 (0.9) 97.76 (0.4)

GA 96.81 (1.7) 97.78 (0.9) 97.46 (0.9)

ApEn + AR model 94.59 (1.9) 97.77 (0.9) 96.71 (0.7)

BP

All features 97.44 (1.5) 97.81 (1.4) 97.69 (0.9)

PCA 96.78 (1.6) 98.47 (0.9) 97.90 (0.5)

GA 95.91 (2.7) 98.05 (1.3) 97.33 (1.0)

ApEn + AR model 95.00 (1.8) 97.88 (1.0) 96.92 (0.6)

LISVM

All features 97.28 (1.4) 98.66 (0.8) 98.20 (0.5)

PCA 96.38 (1.3) 98.47 (0.9) 97.77 (0.5)

GA 96.88 (2.0) 98.33 (1.1) 97.84 (0.7)

ApEn + AR model 94.69 (2.5) 97.70 (0.9) 96.70 (0.8)
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Table 5: Continued.

Window size Classifier Feature Selection Sensitivity Specificity Accuracy

RBFSVM

All features 97.53 (1.4) 98.73 (1.0) 98.33 (0.7)

PCA 97.44 (1.5) 98.77 (0.9) 98.32 (0.6)

GA 97.37 (1.9) 98.53 (0.9) 98.15 (0.8)

ApEn + AR model 93.63 (2.4) 97.28 (1.3) 96.06 (1.0)
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Figure 3: Variations in classification accuracies versus number of principle components with respect to various classifiers for epilepsy
diagnosis. (a) LDA and LLS. (b) BP, LISVM, and RBFSVM.

where TP is the true positive, the total number of correctly
detected positive events; TN is the true negative, the total
number of correctly detected negative events; FP is the false
positive, the total number of erroneously positive detections
(i.e., false alarms); and FN is the false negative, the total
number of erroneously negative detections (i.e., missed
detections).

Table 4 shows that the performance of linear classifiers
was similar to the nonlinear models, and the average
accuracy of seizure detection could reach roughly 96% for
the 173-pt EEG windows (a data window of approximately
1 second). The detection accuracy increased to 98% for
the 512-pt EEG windows (a data window of approximately
3 seconds). For the linear models, utilizing all of the
features obtained the best accuracy, and features extracted
by PCA provided for the best accuracy from the nonlinear
models. The RBFSVM had the highest average accuracy
when combined with PCA.

The average accuracies in Tables 5 and 6 are somewhat
higher than those in Table 4 because the specificity was
improved by including more datasets (i.e., Set A or Sets A,
B, C) to Set D in the nonictal class. However, the sensitivity
values were reduced due to uneven numbers of data points.

LDA had a more stable sensitivity than LLS and is close to
the sensitivity of RBFSVM. For these experiments, the BP
had two output nodes representing ictal and nonictal events,
respectively. The class belonging to the output node that had
the higher output value was regarded as the classified result
for each input vector. For the linear models and the SVMs,
the threshold was set as the “knee point” of the receiver
operation characteristic (ROC) curve corresponding to the
training data (Figure 4). To avoid bias, no testing data were
used to determine the threshold.

The feasibility of executing the proposed method in real
time was also examined. The windowed EEGs were analyzed
by using FFT and the approximate entropy to extract the 16
features, and the features were fed to the LLS/LDA classifier
for discrimination. The program was coded using the C
programming language. The method was implemented on
a personal computer with an Intel core 2 6600 operated
at 2.4 GHz with 2 G of RAM. The time consumed during
processing of the EEGs using different window lengths is
presented in Table 7. The first raw was, of Table 7, used as
an example. The time consumed by processing 1000 173-
point windows was 547 milliseconds, and the average time
consumed to process 1 window (173 points, 1 second) was



10 EURASIP Journal on Advances in Signal Processing

Table 6: Sensitivity, specificity, and accuracy of combining various feature extraction methods with various classifiers to distinguishing
between Set E (ictal windows) and all nonictal windows (Sets A, B, C, and D).

Window size Classifier Selection feature Sensitivity Specificity Accuracy

173

LLS
All features 88.40 (2.9) 98.67 (0.3) 96.62 (0.4)

GA 89.03 (2.6) 98.67 (0.3) 96.74 (0.4)

ApEn + AR model 86.13 (3.5) 99.17 (0.2) 96.56 (0.6)

LDA
All features 93.71 (1.8) 97.90 (0.5) 97.07 (0.3)

GA 93.84 (1.6) 97.82 (0.5) 97.03 (0.3)

ApEn + AR model 89.87 (3.1) 98.53 (0.3) 96.80 (0.5)

BP

All features 89.46 (3.5) 98.57 (0.4) 96.74 (0.5)

PCA 92.26 (2.2) 98.56 (0.3) 97.30 (0.4)

GA 89.34 (3.9) 98.45 (0.5) 96.63 (0.5)

ApEn + AR model 91.83 (3.1) 98.67 (0.5) 97.30 (0.5)

LISVM

All features 92.75 (1.9) 98.43 (0.5) 97.29 (0.3)

PCA 91.89 (2.2) 98.34 (0.5) 97.05 (0.3)

GA 92.42 (2.1) 98.41 (0.5) 97.22 (0.3)

ApEn + AR model 98.67 (0.4) 91.79 (2.7) 97.29 (0.5)

RBFSVM

All features 93.09 (1.9) 98.61 (0.5) 97.50 (0.3)

PCA 92.49 (2.5) 98.53 (0.4) 97.46 (0.3)

GA 92.86 (2.2) 98.40 (0.4) 97.30 (0.3)

ApEn + AR model 92.09 (2.6) 98.35 (0.4) 97.10 (0.4)

256

LLS
All features 89.23 (3.3) 99.35 (0.3) 97.33 (0.6)

GA 89.33 (3.1) 99.30 (0.3) 97.31 (0.5)

ApEn + AR model 86.72 (3.8) 99.24 (0.3) 96.74 (0.7)

LDA
All features 93.45 (2.2) 98.73 (0.4) 97.67 (0.3)

GA 94.03 (2.2) 98.66 (0.5) 97.73 (0.4)

ApEn + AR model 90.14 (3.5) 98.67 (0.3) 96.96 (0.7)

BP

All features 92.27 (3.2) 98.68 (0.6) 97.40 (0.4)

PCA 92.55 (2.3) 99.09 (0.5) 97.78 (0.4)

GA 89.84 (3.9) 98.83 (0.6) 97.03 (0.7)

ApEn + AR model 92.39 (2.7) 98.91 (0.5) 97.61 (0.5)

LISVM

All features 93.30 (2.2) 98.97 (0.6) 97.84 (0.3)

PCA 93.00 (2.4) 98.96 (0.5) 97.77 (0.3)

GA 92.97 (2.4) 98.84 (0.6) 97.67 (0.4)

ApEn + AR model 92.47 (2.6) 98.77 (0.4) 97.51 (0.5)

RBFSVM

All features 94.69 (1.9) 99.10 (0.6) 98.21 (0.5)

PCA 94.48 (1.9) 99.12 (0.5) 98.19 (0.5)

GA 94.34 (2.1) 99.03 (0.5) 98.09 (0.4)

ApEn + AR model 92.48 (2.6) 98.48 (0.5) 97.28 (0.5)

512

LLS
All features 91.40 (2.7) 99.42 (0.2) 97.82 (0.5)

GA 90.91 (4.2) 99.32 (0.3) 97.64 (0.7)

ApEn + AR model 87.31 (0.4) 99.32 (0.3) 96.92 (0.8)

LDA
All features 94.25 (2.1) 99.04 (0.4) 98.08 (0.3)

GA 94.66 (2.2) 98.88 (0.5) 98.04 (0.4)

ApEn + AR model 90.59 (3.5) 98.79 (0.4) 97.15 (0.7)

BP

All features 92.16 (3.6) 98.72 (0.5) 97.41 (0.7)

PCA 94.94 (2.0) 99.09 (0.5) 98.26 (0.4)

GA 93.63 (2.9) 98.95 (0.3) 97.88 (0.4)

ApEn + AR model 93.75 (2.4) 98.88 (0.6) 97.85 (0.5)

LISVM

All features 95.28 (1.8) 99.13 (0.5) 98.36 (0.4)

PCA 94.72 (2.1) 99.07 (0.5) 98.20 (0.3)

GA 94.44 (3.4) 98.98 (0.5) 98.08 (0.7)

ApEn + AR model 93.47 (2.8) 98.86 (0.4) 97.78 (0.6)
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Table 6: Continued.

Window size Classifier Selection feature Sensitivity Specificity Accuracy

RBFSVM

All features 95.78 (1.8) 99.19 (0.6) 98.51 (0.5)

PCA 95.78 (1.8) 99.19 (0.6) 98.51 (0.5)

GA 95.47 (1.4) 99.07 (0.5) 98.35 (0.4)

ApEn + AR model 92.43 (3.4) 98.58 (0.6) 97.35 (0.7)

Table 7: Time consumption of the proposed method implemented on a personal computer (PC) to analyze EEG data corresponding to
different data length. The program was coded by C language. The processor is Intel core 2 6600 operated in 2.4 GHz and the RAM size is 2 G.

Window size Execution time (ms) FFT Entropy LLS/LDA Total

173 (1 s) 1000 cycles/one cycle 109/0.109 ms 422/0.422 ms 16/0.016 ms 547/0.547 ms

256 (1.48 s) 1000 cycles/one cycle 125/0.125 ms 453/0.453 ms 16/0.016 ms 594/0.594 ms

512 (2.95 s) 1000 cycles/one cycle 172/0.172 ms 844/0.844 ms 16/0.016 ms 1032/1.032 ms

Table 8: A comparison of performances of the various methods for detection of epileptic seizures applied to the dataset from [21, 22]
(reproduced from [26, 34]).

Classes Authors (year) Method Dataset Accuracy

2

Nigam et al. [23] (2004)
Nonlinear preprocessing filter, diagnostic artificial neural
network (LAMSTAR)

A, E 97.2

Srinivasan et al. [14] (2005)
Time & frequency domain features, recurrent neural
network (RNN)

A, E 99.6

Kannathal et al. [8] (2005)
Entropy measures, adaptive neurofuzzy inference system
(ANFIS)

A, E 92.22

Polat et al. [24] (2006) Fast Fourier transform (FFT), decisiontree (DT) A, E 98.72

Subasi [25] (2007)
Discrete wavelet transform (DWT), mixture of expert
model

A, E 95

Srinivasan et al. [12] (2007) Approximate entropy, artificial neural network A, E 100

Tzallas et al. [26] (2007)
Time frequency (TF) analysis, artificial neural network
(ANN)

(A, B, C, D), E 97.73

Ocak [27] (2008)
Approximate entropy & discrete wavelet transform
(DWT), genetic algorithm(GA)

(A, B, C, D), E 96.15

This paper
Time frequency & approximate entropy analysis, linear or
nonlinear classifiers

(A, B, C, D), E 97.82–98.51

3

Guler et al. [28] (2005) Lyapunov exponents, recurrent neural network (RNN) A, D, E 96.79

Sadati et al. [29] (2006)
Discrete wavelet transform (DWT), adaptive neural fuzzy
network (ANFN)

A, D, E 85.9

Ghosh-Dastidat et al. [18] (2008)
Chaos theory and wavelet analysis, PCA, radical basis
function neural network

A, D, E 96.73

Mousavi et al. [30] (2008) AR model, wavelet decomposition, MLP classifier A, C, E 96

This paper
Time frequency & approximate entropy analysis, linear or
nonlinear classifiers

A, D, E 96.83–98.67

5

Güler et al. [32] (2005) Wavelet transform, adaptive neurofuzzy inference system A, B, C, D, E 98.68

Güler et al. [33] (2007)
Wavelet transform, Lyapunov exponents, support vector
machine

A, B, C, D, E 99.28

Übeyli et al. [31] (2007) Eigenvector methods, Mixture of expert models A, B, C, D, E 98.60

Tzallas et al. [34] (2009)
Time frequency (TF) analysis, artificial neural network
(ANN)

A, B, C, D, E 89

This paper Time frequency & approximate entropy analysis, RBFSVM A, B, C, D, E 85.9
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Figure 4: The ROC cures of LLS, LDA, and SVMs to classify the
training data of Set E and Sets A, B, C, and D. The threshold is
determined by the “knee point” of the ROC curve.

only 0.547 milliseconds. The proposed method can easily be
implemented using the current processing platform. When
a seizure occurs, the online seizure detection system could
generate a warning signal so that healthcare professionals
could provide immediate care. Alternately, the system could
drive a treatment device, such as an electrical stimulator or
a drug delivery device, designed to suppress the seizure and
enhance the patient’s quality of life.

5. Discussion

Table 8 shows the performance data for the various seizure
detection methods applied to the same dataset [21, 22]
(reproduced from [26, 34]). Only methods evaluated using
the same dataset were included so that a comparison between
the results was feasible. Although combining ApEn analysis
with neural networks to discriminate between the EEGs of
healthy people and the epileptic-seizure EEGs of patients has
high accuracy [12], when only ApEN analysis was used to
determine the features of the probabilistic neural network
(PNN) for the three-class classification (Sets A, D, E), the
detection rates for Sets A, D, and E were 89.75%, 39.75%, and
96.00%, respectively. The average accuracy also decreased to
74.42%. Each of the classification methods combined with
the corresponding best features in Table 1 was significantly
better than ApEN analysis combined with PNN (P <
.001). However, ApEn analysis was still a good index for
discriminating between normal (Set A) and ictal EEGs (Set
E) because the normal EEGs were not classified as ictal EEGs
(or vice versa).

For the three-class discrimination, combining median-
filtered ApEn data and the multiband EEG power spectra
led to average accuracies ranging from 96.83%–98.67% while
using the linear and nonlinear classifying methods. These
accuracies were superior to those from the related methods
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Figure 5: Times of the features selected by GA.

that utilize recurrent networks [28], adaptive neural fuzzy
networks [29], or radial basis-function neural networks
[18].

For the five-class discrimination, the average accuracy
of the proposed features combined with RBFSVM is 85.9%.
Our best result can reach 90% (close to the results in
[34]) among the ten tests but is not satisfactory. The best
result in literature is 99.28% reported in [33]. For our
approach, most of errors were the misclassifications between
Sets C and D, interictal EEGs of epileptic patients recorded
by intracranial electrodes, so the misclassifications do not
affect the applicability of the developed methods to much
in epilepsy diagnosis (discriminating between the EEGs of
healthy people and the epileptic-seizure EEGs of patients)
and seizure detection (discriminating between the ictal and
nonictal EEGs of epileptic patients).

For the two-class classification that distinguishes between
Set E and Sets (A, B, C, D) [26, 27], the approach presented
here achieved the best average accuracies, which were 1%-
2% higher than the methods described in the literature.
The comparisons showed that integrating temporal and
spectral features with linear classifiers can perform with high
accuracy and with low computational cost to achieve epilepsy
diagnosis or seizure detection.

For determining the EEG features, the experimental
results in Tables 2 and 4–6 show that, when combined
with ApEn analysis, multiband EEG spectra can be used to
achieve better performance than the AR model used with all
classification methods. For feature extraction, using all 16
features without other processing produced the best results
while using the linear models. With the nonlinear models,
applying PCA to ApEn analysis of all of the frequency
bands produced better results than using features selected
by GA. Figure 5 shows the times of the features selected
by GA. The most selected features were the ApEn and the
band powers of 0–4 Hz, 4–8 Hz, 12–16 Hz, 48–52 Hz, and
56–60 Hz. However, the least-selected feature, at a band
power of 16–20 Hz, was still selected more than 35 times.
Figure 6 shows the power distributions of the 15 subbands
corresponding to Set A (normal), Set D (interictal), and Set E
(ictal). The figure also shows that no specific sub-band could
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Figure 6: Power distributions of the 15 subbands corresponding to Set A (normal), Set D (interictal), and Set E (ictal).

linearly separate the three classes individually. Therefore,
utilizing all of the subbands can lead to better performance.

Real-time operation is also an issue for an online seizure
warning or seizure control system. The operations, includ-
ing FFT analysis, approximate entropy analysis, and the
LLS/LDA classification method, could be easily implemented
on current processing platforms designed for various online
applications. The results described here and in the literature
(Table 8) were obtained using a database selected and cut
out from continuous, multichannel EEG recordings after a
visual inspection for artifacts such as muscle activity or eye
movement. Further study to evaluate the performance of the
seizure detection methods using continuous EEG recordings
encompassing various behaviors and physiological states
is required for development of clinical applications. In

addition, these methods may require modification if they
are applied to other types of seizures, such as absence
seizures that have rhythmic oscillations on fundamental and
harmonic frequency bands of the scalp EEG [48, 49].
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[32] I. Güler and E. D. Übeyli, “Adaptive neuro-fuzzy inference
system for classification of EEG signals using wavelet coeffi-
cients,” Journal of Neuroscience Methods, vol. 148, no. 2, pp.
113–121, 2005.
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