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Abstract 
Dempster-Shafer theory offers an alternative to traditional probabilistic theory for the 
mathematical representation of uncertainty.  The significant innovation of this framework 
is that it allows for the allocation of a probability mass to sets or intervals.  Dempster-
Shafer theory does not require an assumption regarding the probability of the individual 
constituents of the set or interval.  This is a potentially valuable tool for the evaluation of 
risk and reliability in engineering applications when it is not possible to obtain a precise 
measurement from experiments, or when knowledge is obtained from expert elicitation.  
An important aspect of this theory is the combination of evidence obtained from multiple 
sources and the modeling of conflict between them.  This report surveys a number of 
possible combination rules for Dempster-Shafer structures and provides examples of the 
implementation of these rules for discrete and interval-valued data. 
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1.1:  INTRODUCTION 

Only very recently, the scientific and engineering community has begun to 
recognize the utility of defining multiple types of uncertainty.  In part the greater depth of 
study into the scope of uncertainty is made possible by the significant advancements in 
computational power we now enjoy.  As systems become computationally better 
equipped to handle complex analyses, we encounter the limitations of applying only one 
mathematical framework (traditional probability theory) used to represent the full scope 
of uncertainty.  The dual nature of uncertainty is described with the following definitions 
from [Helton, 1997]: 

 
Aleatory Uncertainty – the type of uncertainty which results from the fact that a 
system can behave in random ways 
also known as: Stochastic uncertainty, Type A uncertainty, Irreducible 
uncertainty, Variability, Objective uncertainty 
 
Epistemic Uncertainty- the type of uncertainty which results from the lack of 
knowledge about a system and is a property of the analysts performing the 
analysis.  
also known as: Subjective uncertainty, Type B uncertainty, Reducible uncertainty, 
State of Knowledge uncertainty, Ignorance 

         
Traditionally, probability theory has been used to characterize both types of 

uncertainty.  It is well recognized that aleatory uncertainty is best dealt with using the 
frequentist approach associated with traditional probability theory.  However, the recent 
criticisms of the probabilistic characterization of uncertainty claim that traditional 
probability theory is not capable of capturing epistemic uncertainty.  The application of 
traditional probabilistic methods to epistemic or subjective uncertainty is often known as 
Bayesian probability.  A probabilistic analysis requires that an analyst have information 
on the probability of all events.  When this is not available, the uniform distribution 
function is often used, justified by Laplace’s Principle of Insufficient Reason.  [Savage, 
1972]  This can be interpreted that all simple events for which a probability distribution is 
not known in a given sample space are equally likely.   Take for an example a system 
failure where there are three possible components that could have caused this type of 
failure.  An expert in the reliability of one component assigns a probability of failure of 
that component with 0.3 (Component A).  The expert knows nothing about the other two 
potential sources of failure (Components B and C).  A traditional probabilistic analysis 
following the Principle of Insufficient Reason, could assign a probability of failure of 
0.35 to each of the two remaining components (B and C).  This would be a very precise 
statement about the probability of failure of these two components in the face of complete 
ignorance regarding these components on the part of the expert. 

An additional assumption in classical probability is entailed by the axiom of 
additivity where all probabilities that satisfy specific properties must add to 1.  This 
forces the conclusion that knowledge of an event necessarily entails knowledge of the 
complement of an event, i.e., knowledge of the probability of the likelihood of the 
occurrence of an event can be translated into the knowledge of the likelihood of that 
event not occurring.  If an expert believes that a system may fail due to a particular 
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component with a likelihood of 0.3, does that necessarily mean that the expert believes 
that the system will not fail due to that component of 0.7?  This articulates the challenge 
of modeling any uncertainty associated with an expert’s subjective belief.  Though the 
assumptions of additivity and the Principle of Insufficient Reason may be appropriate 
when modeling the random events associated with aleatoric uncertainty, these constraints 
are questionable when applied to an issue of knowledge or belief.   

As a consequence of these concerns, applied mathematicians have investigated 
many more general representation of uncertainty to cope with particular situations 
involving epistemic uncertainty.  Examples of these types of situations include: 

 
1. When there is little information on which to evaluate a probability or  
2. When that information is nonspecific, ambiguous, or conflicting.   
 

Analysis of these situations can be required, for an example in risk assessment, though 
probability theory lacks the ability to handle such information.  Where it is not possible to 
characterize uncertainty with a precise measure such as a precise probability, it is 
reasonable to consider a measure of probability as an interval or a set.   

This characterization of a measure of probability as an interval or set has three 
important implications:  

 
1. It is not necessary to elicit a precise measurement from an expert or an 

experiment if it is not realistic or feasible to do so. 
2. The Principle of Insufficient Reason is not imposed.  Statements can be made 

about the likelihood of multiple events together without having to resort to 
assumptions about the probabilities of the individual events under ignorance. 

3. The axiom of additivity is not imposed.  The measures do not have to add to 1.  
When they do, it corresponds to a traditional probabilistic representation.  
When the sum is less than 1, called the subadditive case, this implies an 
incompatibility between multiple sources of information, e.g. multiple sensors 
providing conflicting information.  When the sum is greater than 1, the 
superadditive case, this implies a cooperative effect between multiple sources 
of information, e.g. multiple sensors providing the same information. 

 
  Because there is more than one kind of uncertainty and probability theory may not 
apply to every situation involving uncertainty, many theories of generalized uncertainty-
based information have been developed.  Currently, this discipline area is known as 
monotone measure theory or nonadditive measure theory but in older publications it is 
referred to as fuzzy measure theory.  This latter designation is a misnomer as the majority 
of frameworks subsumed under this term are not fuzzy in the traditional use of the term 
as introduced by Zadeh.   There are three major frameworks from which the problem of 
interval-based representation of uncertainty has been approached: imprecise probabilities 
(initial work by Walley, Fine; Kuznetsov); possibility theory (Zadeh; Dubois and Prade; 
Yager); and the Dempster-Shafer theory of evidence. (Dempster; Shafer; Yager; Smets).   

This situation of multiple frameworks to characterize uncertainty poses an 
obvious problem to the analyst faced with epistemic uncertainty, namely, which method 
should be applied to a particular situation.  While this is still a research question, this 
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decision is simplified somewhat by the level of development of the theories and their use 
in practical applications.  This study uses Dempster-Shafer Theory as the framework for 
representing uncertainty and investigates the issue of combination of evidence in this 
theory.  The motivation for selecting Dempster-Shafer theory can be characterized by the 
following reasons:  

 
1. The relatively high degree of theoretical development among the non-

traditional theories for characterizing uncertainty.  
2. The relation of Dempster-Shafer theory to traditional probability theory and 

set theory. 
3. The large number of examples of applications of Dempster-Shafer theory in 

engineering in the past ten years. 
4. The versatility of the Dempster-Shafer theory to represent and combine 

different types of evidence obtained from multiple sources. 
 
1.2:  TYPES OF EVIDENCE 

 
There are two critical and related issues concerning the combination of evidence 

obtained from multiple sources: one is the type of evidence involved and the other is how 
to handle conflicting evidence.  We consider four types of evidence from multiple 
sources that impact the choice of how information is to be combined: consonant 
evidence, consistent evidence, arbitrary evidence, and disjoint evidence:   
 
Consonant evidence can be represented as a nested structure of subsets where the 
elements of the smallest set are included in the next larger set… all of whose elements are 
included in the next larger set and so on.  This can correspond to the situation where 
information is obtained over time that increasingly narrows or refines the size of the 
evidentiary set.  Take a simple example from target identification.  Suppose there are five 
sensors with varying degrees of resolution: Sensor 1; Sensor 2; Sensor 3; Sensor 4; 
Sensor 5. 

 
Sensor 1 detects a target in vicinity A. 
Sensor 2 detects two targets: one in vicinity A and one in vicinity B. 
Sensor 3 detects three targets: one in vicinity A, one in vicinity B, one in vicinity 
C. 
Sensor 4 detects four targets: one in vicinity A, one in vicinity B, one in vicinity 
C, one in vicinity D. 
Sensor 5 detects five targets: one in vicinity A, one in vicinity B, one in vicinity 
C, one in vicinity, one in vicinity E. 
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Figure 1: Consonant evidence obtained from multiple sources 

Consistent evidence means that there is at least one element that is common to all 
subsets.  From our target identification, this could look like: 
 

Sensor 1 detects a target in vicinity A. 
Sensor 2 detects two targets: one in vicinity A and one in vicinity B. 
Sensor 3 detects two targets: one in vicinity A, one in vicinity C. 
Sensor 4 detects three targets: one in vicinity A, one in vicinity B, one in vicinity 
D. 
Sensor 5 detects four targets: one in vicinity A, one in vicinity B, one in vicinity 
C, one in vicinity E. 

 

 

 

 

 

 

 

Figure 2: Consistent evidence obtained from multiple sensors 

Arbitrary evidence corresponds to the situation where there is no element common to 
all subsets, though some subsets may have elements in common.  One possible 
configuration in our target identification example: 
 

Sensor 1 detects a target in vicinity A. 
Sensor 2 detects two targets: one in vicinity A and one in vicinity B. 
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Sensor 3 detects two targets: one in vicinity A, one in vicinity C. 
Sensor 4 detects two targets: one in vicinity C, one in vicinity D. 
Sensor 5 detects two targets: one in vicinity C, one in vicinity E. 

 

 

 

 

 

 

Figure 3: Arbitrary evidence obtained from multiple sensors 

 
Disjoint evidence implies that any two subsets have no elements in common with any 
other subset.  

Sensor 1 detects a target in vicinity A. 
Sensor 2 detects a target in vicinity B. 
Sensor 3 detects a target in vicinity C. 
Sensor 4 detects a target in vicinity D. 
Sensor 5 detects a target in vicinity E. 
 

 

 

 

 

 

Figure 4: Disjoint evidence obtained from multiple sensors 

 Each of these possible configurations of evidence from multiple sources has 
different implications on the level of conflict associated with the situation.  Clearly in the 
case of disjoint evidence, all of the sources supply conflicting evidence.  With arbitrary 
evidence, there is some agreement between some sources but there is no consensus 
among sources on any one element.  Consistent evidence implies an agreement on at least 
one evidential set or element.  Consonant evidence represents the situation where each set 
is supported by the next larger set and implies an agreement on the smallest evidential 
set; however, there is conflict between the additional evidence that the larger set 
represents in relation to the smaller set.   Traditional probability theory cannot handle 
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consonant, consistent, or arbitrary evidence without resorting to further assumptions of 
the probability distributions within a set, nor can probability theory express the level of 
conflict between these evidential sets.  Dempster-Shafer theory is a framework that can 
handle these various evidentiary types by combining a notion of probability with the 
traditional conception of sets.  In addition, in Dempster Shafer theory, there are many 
ways which conflict can be incorporated when combining multiple sources of 
information.  
 
2.1: DEMPSTER-SHAFER THEORY 
 

Dempster-Shafer Theory (DST) is a mathematical theory of evidence.  The 
seminal work on the subject is [Shafer, 1976], which is an expansion of [Dempster, 
1967].  In a finite discrete space, Dempster-Shafer theory can be interpreted as a 
generalization of probability theory where probabilities are assigned to sets as opposed to 
mutually exclusive singletons.  In traditional probability theory, evidence is associated 
with only one possible event.  In DST, evidence can be associated with multiple possible 
events, e.g., sets of events.  As a result, evidence in DST can be meaningful at a higher 
level of abstraction without having to resort to assumptions about the events within the 
evidential set.  Where the evidence is sufficient enough to permit the assignment of 
probabilities to single events, the Dempster-Shafer model collapses to the traditional 
probabilistic formulation.  One of the most important features of Dempster-Shafer theory 
is that the model is designed to cope with varying levels of precision regarding the 
information and no further assumptions are needed to represent the information.  It also 
allows for the direct representation of uncertainty of system responses where an 
imprecise input can be characterized by a set or an interval and the resulting output is a 
set or an interval. 

 There are three important functions in Dempster-Shafer theory: the basic 
probability assignment function (bpa or m), the Belief function (Bel), and the Plausibility 
function (Pl). 

The basic probability assignment (bpa) is a primitive of evidence theory. 
Generally speaking, the term “basic probability assignment” does not refer to probability 
in the classical sense.  The bpa, represented by m, defines a mapping of the power set to 
the interval between 0 and 1, where the bpa of the null set is 0 and the summation of the 
bpa’s of all the subsets of the power set is 1.  The value of the bpa for a given set A 
(represented as m(A)), expresses the proportion of all relevant and available evidence that 
supports the claim that a particular element of X (the universal set) belongs to the set A 
but to no particular subset of A [Klir, 1998].  The value of m(A) pertains only to the set A 
and makes no additional claims about any subsets of A.  Any further evidence on the 
subsets of A would be represented by another bpa, i.e. B ⊂ A, m(B) would the bpa for the 
subset B.  Formally, this description of m can be represented with the following three 
equations: 

m: P (X)→[0,1]      (1) 
 

m(∅) = 0      (2) 
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m(A) = 1

A∈P (X )
∑       (3) 

 
where P (X) represents the power set of X, ∅ is the null set, and A is a set in the power set   
(A∈ P (X)). [Klir, 1998] 

Some researchers have found it useful to interpret the basic probability 
assignment as a classical probability, such as [Chokr and Kreinovich, 1994], and the 
framework of Dempster-Shafer theory can support this interpretation.  The theoretical 
implications of this interpretation are well developed in [Kramosil, 2001].  This is a very 
important and useful interpretation of Dempster-Shafer theory but it does not demonstrate 
the full scope of the representational power of the basic probability assignment.  As such, 
the bpa cannot be equated with a classical probability in general. 
 From the basic probability assignment, the upper and lower bounds of an interval 
can be defined.  This interval contains the precise probability of a set of interest (in the 
classical sense) and is bounded by two nonadditive continuous measures called Belief 
and Plausibility.  The lower bound Belief for a set A is defined as the sum of all the basic 
probability assignments of the proper subsets (B) of the set of interest (A) (B ⊆ A).  The 
upper bound, Plausibility, is the sum of all the basic probability assignments of the sets 
(B) that intersect the set of interest (A)  (B ∩ A ≠ ∅).  Formally, for all sets A that are 
elements of the power set (A∈ P (X)), [Klir, 1998] 
 

∑
⊆

=
ABB

BmABel
|

)()(      (4) 

 

∑=
∅≠∩ ABB

BmAPl
|

)()(      (5) 

 
The two measures, Belief and Plausibility are nonadditive.  This can be interpreted as is 
not required for the sum of all the Belief measures to be 1 and similarly for the sum of the 
Plausibility measures. 

It is possible to obtain the basic probability assignment from the Belief measure 
with the following inverse function: 

∑
⊆

−−=
ABB

BA BBelAm
|

)()1()(     (6) 

 
where |A-B| is the difference of the cardinality of the two sets. 
 
 In addition to deriving these measures from the basic probability assignment 
(m), these two measures can be derived from each other.  For example, Plausibility can 
be derived from Belief in the following way: 
 

)(1)( ABelAPl −=      (7) 
 
where A  is the classical complement of A.  This definition of Plausibility in terms of 
Belief comes from the fact that all basic assignments must sum to 1.  
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Bel(A) = m(B) =
B B⊆ A
∑ m(B)

B B∩ A=∅
∑     (8) 

m(B)
B B ∩A≠ ∅
∑ = 1 − m(B)

B B∩ A=∅
∑         (9) 

From the definitions of Belief and Plausibility, it follows that )(1)( ABelAPl −= .  As a 
consequence of Equations 6 and 7, given any one of these measures (m(A), Bel(A), Pl(A)) 
it is possible to derive the values of the other two measures. 

The precise probability of an event (in the classical sense) lies within the lower 
and upper bounds of Belief and Plausibility, respectively.  

 
Bel(A) = P(A) = Pl(A)     (10) 

The probability is uniquely determined if Bel (A) = Pl(A).  In this case, which 
corresponds to classical probability, all the probabilities, P(A) are uniquely determined 
for all subsets A of the universal set X [Yager, 1987, p.97].  Otherwise, Bel (A) and Pl(A) 
may be viewed as lower and upper bounds on probabilities, respectively, where the actual 
probability is contained in the interval described by the bounds.  Upper and lower 
probabilities derived by the other frameworks in generalized information theory can not 
be directly interpreted as Belief and Plausibility functions. [Dubois and Prade, 1992, 
p.216] 
 
2.2: RULES FOR THE COMBINATION OF EVIDENCE 
 

The purpose of aggregation of information is to meaningfully summarize and 
simplify a corpus of data whether the data is coming from a single source or multiple 
sources. Familiar examples of aggregation techniques include arithmetic averages, 
geometric averages, harmonic averages, maximum values, and minimum values [Ayuub, 
2001].   Combination rules are the special types of aggregation methods for data obtained 
from multiple sources.  These multiple sources provide different assessments for the same 
frame of discernment and Dempster-Shafer theory is based on the assumption that these 
sources are independent.  The requirement for establishing the independence of sources is 
an important philosophical question. 

 From a set theoretic standpoint, these rules can potentially occupy a continuum 
between conjunction (AND-based on set intersection) and disjunction (OR-based on set 
union) [Dubois and Prade, 1992].  In the situation where all sources are considered 
reliable, a conjunctive operation is appropriate (A and B and C…).  In the case where 
there is one reliable source among many, we can justify the use of a disjunctive 
combination operation (A or B or C…).  However, many combination operations lie 
between these two extremes (A and B or C, A and C or B, etc.).  Dubois and Prade 
[Dubois, Prade, 1992] describe these three types of combinations as conjunctive pooling 
(A∩B, if A∩B≠∅), disjunctive pooling (A∪B), and tradeoff (There are many ways a 
tradeoff between A∩B and A∪B can be achieved).   

There are multiple operators available in each category of pooling by which a 
corpus of data can be combined.  One means of comparison of combination rules is by 
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comparing the algebraic properties they satisfy.  With the tradeoff type of combination 
operations, less information is assumed than in a Bayesian approach and the precision of 
the result may suffer as a consequence.  On the other hand, a precise answer obtained via 
the Bayesian approach does not express any uncertainty associated with it and may have 
hidden assumptions of additivity or Principle of Insufficient Reason.  [Dubois and Prade, 
1992]  

In keeping with this general notion of a continuum of combination operations, 
there are multiple possible ways in which evidence can be combined in Dempster-Shafer 
theory.  The original combination rule of multiple basic probability assignments known 
as the Dempster rule is a generalization of Bayes’ rule. [Dempster, 1967] This rule 
strongly emphasizes the agreement between multiple sources and ignores all the 
conflicting evidence through a normalization factor.  This can be considered a strict 
AND-operation.  The use of the Dempster rule has come under serious criticism when 
significant conflict in the information is encountered. [Zadeh, 1986; Yager, 1987]  
Consequently, other researchers have developed modified Dempster rules that attempt to 
represent the degree of conflict in the final result.  This issue of conflict and the 
allocation of the bpa mass associated with it is the critical distinction between all of the 
Dempster-type rules.  To employ any of these combination rules in an application, it is 
essential to understand how conflict should be treated in that particular application 
context. 
 In addition to the Dempster rule of combination, we will discuss four modified 
Dempster rules: Yager’s rule; Inagaki’s unified combination rule; Zhang’s center 
combination rule; and Dubois and Prade’s disjunctive pooling rule.   Three types of 
averages will be considered: discount and combine; convolutive averaging; and mixing.  
All of the combination rules will be considered relative to four algebraic properties: 
commutativity, A * B = B * A; idempotence, A * A = A; continuity, A * B ≈ A′ * B, 
where A′≈A (A′ is very close to A); and associativity, A * (B * C) = (A * B) * C; where 
* denotes the combination operation.  The motivation for these properties is discussed at 
length in [Ferson and Kreinovich, 2002]. 
 
2.2.1: THE DEMPSTER RULE OF COMBINATION 

 
The Dempster rule of combination is critical to the original conception of 

Dempster-Shafer theory.  The measures of Belief and Plausibility are derived from the 
combined basic assignments.  Dempster’s rule combines multiple belief functions 
through their basic probability assignments (m).   These belief functions are defined on 
the same frame of discernment, but are based on independent arguments or bodies of 
evidence.  The issue of independence is a critical factor when combining evidence and is 
an important research subject in Dempster-Shafer theory.  The Dempster rule of 
combination is purely a conjunctive operation (AND).  The combination rule results in a 
belief function based on conjunctive pooled evidence [Shafer, 1986, p.132]. 

Specifically, the combination (called the joint m12) is calculated from the 
aggregation of two bpa’s m1 and m2 in the following manner: 

 

m12( A) =
m1(B)m2(C)

B∩C = A
∑

1 − K
 when A≠∅   (11) 
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m12(∅) = 0      (12) 

where K = m1 (B)m2 (C)
B∩C =∅
∑      (13) 

K represents basic probability mass associated with conflict. This is determined by the 
summing the products of the bpa’s of all sets where the intersection is null.  This rule is 
commutative, associative, but not idempotent or continuous. 

The denominator in Dempster’s rule, 1-K, is a normalization factor.  This has the 
effect of completely ignoring conflict and attributing any probability mass associated with 
conflict to the null set [Yager, 1987].  Consequently, this operation will yield 
counterintuitive results in the face of significant conflict in certain contexts.  The problem 
with conflicting evidence and Dempster’s rule was originally pointed out by Lotfi Zadeh 
in his review of Shafer’s book, A Mathematical Theory of Evidence  [Zadeh, 1984].  
Zadeh provides a compelling example of erroneous results.  Suppose that a patient is seen 
by two physicians regarding the patient’s neurological symptoms.  The first doctor 
believes that the patient has either meningitis with a probability of 0.99 or a brain tumor, 
with a probability of 0.01.  The second physician believes the patient actually suffers 
from a concussion with a probability of 0.99 but admits the possibility of a brain tumor 
with a probability of 0.01.  Using the values to calculate the m (brain tumor) with 
Dempster’s rule, we find that m(brain tumor) = Bel (brain tumor) = 1.  Clearly, this rule 
of combination yields a result that implies complete support for a diagnosis that both 
physicians considered to be very unlikely. [Zadeh, 1984, p.82] 

In light of this simple but dramatic example of the counterintuitive results of 
normalization factor in Dempster’s rule, a number of methods and combination 
operations that have been developed to address this problem posed by strongly 
conflicting evidence.  We will discuss many of these alternatives in the following 
sections as well as the importance of conflict and context in the rule selection.  We will 
find that in addition to the level or degree of conflict is important in determining the 
propriety of using Dempster's rule, the relevance of conflict also plays a critical role. 

 
2.2.2: DISCOUNT+COMBINE METHOD 

This tradeoff method was initially discussed in [Shafer, 1976] and deals with 
conflict just in the manner that the name implies.  Specifically, when an analyst is faced 
with conflicting evidence, he/she can discount the sources first, and then combine the 
resulting functions with Dempster’s rule (or an alternative rule) using a discounting 
function.  This discounting function must account for the absolute reliability of the 
sources.  Absolute reliability implies that the analyst is qualified to make distinctions 
between the reliability of experts, sensors, or other sources of information and can 
express this distinction between sources mathematically.  [Dubois and Prade, 1992] 

Shafer applies the discounting function to each specified Belief.  Let 1-αi be the 
degree of reliability attributable to a particular belief function, A (Shafer calls this a 
degree of trust), where 0 ≤ α i ≤1 and i is an index used to specify the particular 
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discounting function associated with a particular belief measure.  Belαi (A) then represents 
the discounted belief function defined by: 

)()1()( ABelAiBel iα
α

−=     (14) 

Shafer then averages all the belief functions associated with set A (Belαi 
1(A), 

Belαi 
2(A)…. Belαi 

n(A)) to obtain an average of n Bel, denoted by Bel . 

))(...)((
1

)( 1 ABelABel
n

ABel n
αα ++=    (15) 

for all subsets A of the universal set X. 
 Consequently, the discount and combine method uses an averaging function as the 
method of combination.  This is to be used when all the belief functions to be combined 
are highly conflicting and the discounting rate is not too small.  This can also be used to 
eliminate the influence of any strongly conflicting single belief function provided that the 
remaining belief functions do not conflict too much with each other and the discount rate 
is not too small or too large.  Alternatively, for this case one could also eliminate the 
strongly conflicting belief altogether if that is reasonable. [Shafer, 1976] 
 
2.2.3: YAGER’S MODIFIED DEMPSTER’S RULE 

The most prominent of the alternative combination rules is a class of unbiased 
operators developed by Ron Yager. [Yager, 1987a]  Yager points out that an important 
feature of combination rules is the ability to update an already combined structure when 
new information becomes available.  This is frequently referred to as updating and the 
algebraic property that facilitates this is associativity.  Dempster’s rule is an example of 
an associative combination operation and the order of the information does not impact the 
resulting fused structure. [Yager, 1987b]   

Yager points out that in many cases a non-associative operator is necessary for 
combination.  A familiar example of this is the arithmetic average.  The arithmetic 
average is not itself associative, i.e., one cannot update the information by averaging an 
average of a given body of data and a new data point to yield a meaningful result.  
However, the arithmetic average can be updated by adding the new data point to the sum 
of the pre-existing data points and dividing by the total number of data points.  This is the 
concept of a quasi-associative operator that Yager introduced in [Yager, 1987b].  Quasi-
associativity means that the operator can be broken down into associative suboperations.  
Through the notion of quasi-associative operator, Yager develops a general framework to 
look at combination rules where associative operators are a proper subset. 

To address the issue of conflict, Yager starts with an important distinction 
between the basic probability mass assignment (m) and what he refers to as the ground 
probability mass assignment (designated by q).  The major differences between the basic 
probability assignment and the ground probability assignment are in the normalization 
factor and the mass attributed to the universal set.  The combined ground probability 
assignment is defined in equation 16. 
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q(A) = m1(B)m2 (C)
B∩C=A
∑      (16) 

where A is the intersection of subsets B and C (both in the power set P (X)), and q(A) 
denotes the ground probability assignment associated with A.  Note that there is no 
normalization factor.  This rule is known as Yager’s combination rule or sometimes the 
Modified Dempster’s Rule. 

Though the Yager rule of combination is not associative, the combined structure 
q(A) can be used to include any number of pieces of evidence.  Assume m1, m2,…mn are 
the basic probability assignments for n belief structures. Let Fi represent the set of focal 
elements associated with the ith belief structure (mi) which are subsets of the universal set 
X.   Ai represents an element of the focal set.  Then the combination of n basic probability 
assignment structures is defined by [Yager, 1987a]:  

∑=
==∩ AiAn

i

nn AmAmAmAq
1

2211 )()...()()(
   (17) 

Through the quasiassociativity that Yager describes, the combined structure q(A) can be 
updated based on new evidence. This is performed by combining the ground probability 
assignment associated with the new evidence and the ground probability assignment of 
the already existing combination through the above formulas (Equation 16) and then 
converting the ground probability assignments to basic probability assignments described 
below. (Equations 19-21) 

As previously mentioned, one obvious distinction between combination with the 
basic and the ground probability assignment functions is the absence of the normalization 
factor (1-K).  In Yager’s formulation, he circumvents normalization by allowing the 
ground probability mass assignment of the null set to be greater than 0, i.e. 

 
q ( ∅ ) ≥ 0      (18) 

 
q(∅) is calculated in exactly in the same manner as Dempster’s K (conflict) in Equation 
13.  Then Yager adds the value of the conflict represented by q(∅) to the ground 
probability assignment of the universal set, q(X), to yield the conversion of the ground 
probabilities to the basic probability assignment of the universal set mY(X): 
 

mY (X ) = q( X ) + q(∅)     (19) 
 

Consequently, instead of normalizing out the conflict, as we find in the case of the 
Dempster rule, Yager ultimately attributes conflict to the universal set X through the 
conversion of the ground probability assignment to the basic probability assignments.  
The interpretation of the mass of the universal set (X) is the degree of ignorance.  
Dempster’s rule has the effect of changing the evidence through the normalization and 
the allocation of conflicting mass to the null set.  Yager’s rule can be considered as an 
epistemologically honest interpretation of the evidence as it does not change the evidence 
by normalizing out the conflict.  In Yager’s rule, the mass associated with conflict is 
attributed to the universal set and thus enlarges this degree of ignorance. [Yager, 1987a]  
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Upon inspection of the two combination formulas it is clear that Yager’s rule of 
combination yields the same result as Dempster’s rule when conflict is equal to zero, (K 
= 0 or q(∅) = 0). [Yager, 1987a]  The basic algebraic properties that this rule satisfies is 
commutativity and quasiassociativity, but not idempotence or continuity. 

The ground probability assignment functions (q) for the null set, ∅, and an 
arbitrary set A, are converted to the basic probability assignment function associated with 
this Yager’s rule (mY) by [Yager 1987a]: 
 

m Y (∅ ) = 0      (20) 
 

m Y ( A ) = q ( A )     (21) 
  
The basic probability assignments associated with Yager’s rule (mY) are not the same as 
with Dempster’s rule (m).  Yager provides the relation between the ground assignments 
and Dempster’s rule [Yager 1987a]: 
 

m ( ∅ ) = 0     (22) 

m(X) =
q(X )

1− q(∅)
    (23) 

 

m(A) =
q(A)

1 − q(∅)
    (24) 

 
for A ≠ ∅, X 

 
 To summarize, these are the important attributes of Yager’s rule of combination:  

1. The introduction of the general notion of quasi-associative operators and the 
expansion of the theoretical basis for the combination and updating of 
evidence where the associative operators are a proper subset of the quasi-
associative operators. 

2. The introduction of the ground probability assignment functions (q) and their 
relation to the basic probability assignments (mY) associated with Yager’s rule 
and the basic probability assignments (m) associated with Dempster’s rule. 

3. The rule does not filter or change the evidence through normalization. 
4. The allocation of conflict to the universal set (X) instead of to the null set (∅).  

Thus mass associated with conflict is interpreted as the degree of ignorance. 
 
2.2.4: INAGAKI’S UNIFIED COMBINATION RULE 

This combination rule was introduced by Toshiyuki Inagaki. [Inagaki, 1991]  
Inagaki takes advantage of the ground probability assignment function (q) that Yager 
defined in [Yager, 1987a] to define a continuous parametrized class of combination 
operations which subsumes both Dempster’s rule and Yager’s rule.  Specifically, Inagaki 
argues that every combination rule can be expressed as: 
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)()()()( ∅+= qCfCqCm     (25) 

where C ≠ ∅   

∑
∅≠⊂

=
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1)(      (26) 

0)( ≥Cf      (27) 

From Equation 25 the function, f, can be interpreted as a scaling function for q(∅), where 
the conflict (represented by the parameter k) is defined by: 
 

k =
f (C )
q (C)

for any C ≠ X , ∅     (28) 

Inagaki restricts consideration to the class of combination rules that satisfy the 
following property: 

m(C)
m(D)

=
q(C)
q( D)

      (29) 

for any nonempty sets C and D which are distinct from X or ∅.  By maintaining the ratio 
between m and q consistently, this equation implies that there is no “meta-knowledge” of 
the credibility or reliability of sources/experts.  If an analyst applied a weighting factor to 
the evidence based on some extra knowledge about the credibility of the sources, in 
general, this would change the ratio and the equality would not hold.  As a result of this 
restriction and its implication, Inagaki’s rule applies only to the situations where there is 
no information regarding the credibility or reliability of the sources. [Inagaki, 1991] 
 From the general expression (Equation 25) and the restriction (Equation 26) and 
the definition of k (Equation 28), Inagaki derives his unified combination rule denoted by 
mU. 

∅≠∅+= ,),()](1[)( XCwhereCqkqCm U
k    (30) 

m k
U ( X ) = [1 + kq (∅ )] q ( X ) + [1 + kq (∅ ) − k ]q (∅ )  (31) 

0 ≤ k ≤
1

1− q(∅) − q( X)
     (32) 

The parameter k is used for normalization.  The determination of k is an important 
step in the implementation of this rule, however, a developed well-justified procedure for 
determining k is lacking in the literature reviewed for this report.  Tanaka and Klir refer 
to the determination of k either through experimental data, simulation, or the expectations 
of an expert in the context of a specific application.  In addition, they provide an example 
for the determination of k and the resulting affect on m for monitoring systems [Tanaka 
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and Klir, 1999]. In [Inagaki, 1991], Inagaki poses the optimization problem for the 
selection of k to be an open and critical research question.  Despite this, Inagaki discusses 
the rules in the context of an application where he demonstrates the values of Belief and 
Plausibility as a function of k and the implications on the choice of a safety control 
policy.   

The value of k directly affects the value of the combined basic probability 
assignments and will collapse to either Dempster’s rule or Yager’s rule under certain 
circumstances.  When k = 0, the unified combination rule coincides with Yager’s rule.  

When 
)(1

1
∅−

=
q

k , the rule corresponds to Dempster’s rule.  The parameter k gives 

rise to an entire parametrized class of possible combination rules that interpolate or 
extrapolate Dempster’s rule. [Inagaki, 1991]  This is schematically represented in the 
Figure 5 from [Inagaki, 1991]: 
 

 

  

            k    

     0                     
1

1 − q(∅)
             

1
1 − q(∅) − q(X)

 

Figure 5: The Possible Values of k in Inagaki’s Unified Combination Rule 

The only combination rule of this parametrized class that is associative is the one that 
corresponds to Dempster’s rule.  Every combination rule represented by the unified 
combination rule is commutative though not idempotent or continuous.  Inagaki considers 
the effect of non-associativity in applications to be an open research question. [Inagaki, 
1991]  
 As is pointed out by Tanaka and Klir [Tanaka and Klir, 1999], the most extreme 
rule (referred to as “the extra rule” and denoted by the parameter kext) availed by this 
formulation is when k is equal to the upper bound: 
  

m kext

U (C ) =
1 − q(X )

1 − q( X ) − q(∅)
q(C)     (33) 

for C ≠ X,   

m kext

U ( X ) = q (X )      (34) 
 

As can be seen in Equation 33, the value of q(C) is scaled by the factor, 
1 − q(X)

1 − q(X) − q(∅)
 

to yield the corresponding basic probability function mkext

U .  The interpretation of the 

Yager’s 
rule 

Dempster’s 
rule 
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extreme rule of Inagaki’s class is that both conflict (represented by q(∅)) and the degree 
of ignorance (represented by the probability mass associated with the universal set, q(X)) 
are used to scale the resulting combination.  This acts as a filter for the evidence.   

Inagaki studied the ordering relations of the three rules: Dempster’s rule, Yager’s 
rule, and this “extra rule” and the propriety of their application in fault-warning safety 
control policy. [Inagaki, 1991]  Tanaka and Klir point out that the selection of the 
parameter k essentially determines how to cope with conflicting information. Yager’s rule 
(k=0) assigns conflict to the universal set and does not change the evidence.  Dempster’s 
rule (k=1/[1-q(∅]) tremendously filters the evidence by ignoring all conflict.  Inagaki’s 
extreme rule (k=1/[1-q(∅)-q(X)]) also filters the evidence by scaling both conflict and 
ignorance, but the degree of influence of the scaling is determined by the relative values 
of q(X) and q(∅). k has the effect of scaling the importance of conflict as it is represented 
in the resulting combination.  The greater the value of k, the greater the change to the 
evidence.   As noted earlier, a well-justified procedure for the selection of k is as essential 
step toward implementing this rule in an application. 
 The important contributions of Inagaki’s Unified rule of combination can be 
summarized as follows:  
 

1. The use of Yager’s ground functions to develop a parametrized class of 
combination rules that subsumes both Dempster’s rule and Yager’s rule. 

2. Inagaki compares and orders three combination rules: Dempster’s rule, 
Yager’s rule, and the Inagaki extra rule, in terms of the value of m in the 
context of an application. 

 
2.2.5: ZHANG’S CENTER COMBINATION RULE 

Lianwen Zhang [Zhang, 1994] also provides an alternative combination rule to 
Dempster’s rule.  In addition, he offers a two frame interpretation of Dempster-Shafer 
theory: Suppose there are two frames of discernment, S and T.  These could be the 
opinions of two experts.  Between these frames is a compatibility relation, C, which is a 
subset of the Cartesian product S × T.  We are concerned with the truth in T but the only 
available probability P is about the truth in S. Because of this compatibility relation it 
follows that information about S provides some information of T.  This information is 
summarized as a Belief function for any subset of A of T.  The belief function for A can 
be written as: 

 
Bel(A) = P{s|s ∈ S and ∃ t ∈ A s.t.(s,t) ∈ C}     (35) 

The value of this two frame interpretation of Dempster-Shafer Theory is 
recognizing the contribution of DST as a new technique for propagating probabilities 
through logical links, i.e. one can obtain information about one frame of discernment 
from its logical relation to another frame.  Specifically, if the only information available 
between the elements of S and T (denoted by s and t, respectively) is through the logical 
constraint (i.e., their compatibility relation C), traditional Bayesian theory has difficulty 
providing for a meaningful inference regarding s and t.  Dempster-Shafer theory can 
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represent the relationship, C, between s and t by a subset of the joint frame S×T.  [Zhang, 
1994] 
 With respect to the rule of combination, Zhang points out that Dempster’s rule 
fails to consider how focal elements intersect. [Zhang, 1994]  To define an alternative 
rule of combination, he introduces a measure of the intersection of two sets A and B 
assuming finite sets.  This is defined as the ratio of the cardinality of the intersection of 
two sets divided by the product of the cardinality of the individual sets.  Zhang denotes 
this relation with r(A,B): 

BA
C

BA
BA

BAr =
∩

=),(     (36) 

where A ∩ B = C.  The resulting combination rule scales the products of the basic 
probability assignments of the intersecting sets (A ∩ B = C) by using a measure of 
intersection, r(A,B) defined in Equation 36.  This is repeated for every intersecting pair 
that yields C.   The scaled products of the masses for all pairs whose intersection equals C 
are summed and multiplied by a factor k.  In this case, k is a renormalization factor that is 
independent of C, m1, and m2.  This renormalization factor provides that the sum of the 
basic assignments to add to 1. 

m (C ) = k [
C

A B
m1 (A) m2 ( B)]

A ∩ B = C
∑    (37) 

The case where |C| = |A||B|, this rule will correspond to the Dempster rule.   
It is important to note that the measure of intersection of two sets (r(A,B)) can be 

defined in other ways, for example by dividing the cardinality of intersection of A and B 
by the cardinality of the union of sets A and B.  This would have the effect of a different 
scaling on the product of the m’s that could be compensated for in the sum of all the basic 
probability assignments by the renormalization factor k.  Many combination rules could 
be devised in the spirit of Zhang’s center combination rule by defining a reasonable 
measure of intersection.  This particular rule is commutative but not idempotent, 
continuous, or associative. 

The important contributions of Zhang’s work: 
 
1. The two frame interpretation of Dempster-Shafer theory 
2. The introduction of a measure of intersection of two sets (r(A,B)) based on 

cardinality. 
3. The center combination rule based on a measure of intersection of two sets 

that could be modified by any other reasonable measure of intersection. 
 

2.2.6:  DUBOIS AND PRADE’S DISJUNCTIVE CONSENSUS RULE 
 
 Dubois and Prade take a set-theoretic view of a body of evidence to form their 
disjunctive consensus rule in [Dubois, Prade, 1986; Dubois, Prade, 1992].  They define 
the union of the basic probability assignments m1 ∪ m2 (denoted by m∪(C)) by extending 
the set-theoretic union: 

∑= =∪∪ CBA BmAmCm )()()( 21
              (38)  
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For all A of the power set X.  The union does not generate any conflict and does not reject 
any of the information asserted by the sources.  As such, no normalization procedure is 
required.  The drawback of this method is that it may yield a more imprecise result than 
desirable. 
 The union can be more easily performed via the belief measure: Let Bel1∪Bel2 be 
the belief measure associated with m1 ∪ m2. Then for every subset A of the universal set 
X, 

Bel1 (A) ∪ Bel 2 (A ) = Bel 1(A) Bel 2(A)    (39) 

The disjunctive pooling operation is commutative, associative, but not idempotent. 

2.2.7: MIXING OR AVERAGING 
 

Mixing (or p-averaging or averaging) is a generalization of averaging for 
probability distributions. [Ferson and Kreinovich, 2002]  This describes the frequency of 
different values within an interval of possible values in the continuous case or in the 
discrete case, the possible simple events. The formula for the "mixing" combination rule 
is just 
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where mi's are the bpa's for the belief structures being aggregated and the wi's are weights 
assigned according to the reliability of the sources.  This is very similar to the discount 
and combine rule proposed by Shafer in that they are both averaging operations, but they 
differ in which structures are being pooled.  In the case of mixing, it is the basic 
probability assignment, m; in the case of discount and combine, it is Bel. 

Mixing generalizes the averaging operation that is usually used for probability 
distributions.  In particular, suppose that the input Dempster-Shafer structures are 
probability distributions, that is, suppose that both structures consist of an element in 
which each basic probability mass is associated with a single point.  If one applies the 
mixing operation to these inputs, the result will be a Dempster-Shafer structure all of 
whose masses are also at single points.  These masses and points are such that the 
Dempster-Shafer structure is equivalent to the probability distribution that would have 
been obtained by mixing the probability distributions, that is, by simply averaging the 
probabilities for every point.  None of the other Dempster-Shafer aggregation rules would 
give this same answer.  Insofar as averaging of probability distributions via mixing is 
regarded as a natural method of aggregating probability distributions, it might also be 
considered as a reasonable approach to employ with Dempster-Shafer structures, and that 
is why it is considered here.  Like mixing of probability distributions, mixing in 
Dempster-Shafer theory is idempotent and commutative.  It's not associative but it is 
quasi-associative. 
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2.2.8: CONVOLUTIVE X-AVERAGING 

 
Convolutive x-averaging (or c-averaging) is a generalization of the average for 

scalar numbers. [Ferson and Kreinovich, 2002]  This is given by the formula: 
 

m12 (A) = m1(B)m2 (C)
B + C

2
= A

∑     (41) 

Like the mixing average, this can be formulated to include any number of bpa’s, n, in the 
following equation: 
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Suppose that the input Dempster-Shafer structures are scalar numbers, that is, 
suppose that both structures consist of a single element where all mass is at a single point.  
If one applies the convolutive average operation to these inputs, the result will be a 
Dempster-Shafer structure all of whose mass is at a single point, the same point one gets 
by simply averaging the two scalar numbers. None of the other Dempster-Shafer 
aggregation rules would give this answer. Insofar as "averaging" is regarded as a natural 
method of aggregating disparate pieces of information, it might also be considered as a 
reasonable approach to employ with Dempster-Shafer structures, and that is why it is 
considered here. 

Like averaging of scalar numbers, the convolutive average is commutative.  Also 
like scalar averaging, the convolutive average is not associative, although it is quasi-
associative.  Unlike scalar averaging, however, it is not idempotent. 
 
2.2.9: OTHER RULES OF COMBINATION 
 

There are still other rules of combination available for Dempster-Shafer theory 
that will not be considered here.  The remaining rules and the motivation for their 
exclusion are summarized as follows: 
 
Smets’ rule: Some authors refer to this as a distinct rule, however, this is essentially the 
Dempster rule applied in Smets’ Transferable Belief Model.  Smet’s model entails a 
slightly different conception and formulation of Dempster-Shafer theory, though it 
essentially distills down to the same ideas. [Smets, 2000]   
 
Qualitative Combination Rule: This rule was proposed by Yao and Wong in their paper 
[Yao and Wong, 1994].  This rule requires the definition of a binary relation expressing 
the preference of one proposition or source, over another. Then a distance function is 
defined between two belief relations.  All the distances over all the pairs of the relation 
are summed to obtain an overall distance.  The resulting combination rule combines the 
relations in such a way as to minimize the overall distance.  This type of formulation of 
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DST, as its name implies is qualitative, whereas in engineering analyses, we expect to be 
dealing with quantitative data.  Consequently, it is beyond the scope of this study. 
 
Yen’s rule:  This rule is based on an extension of Dempster-Shafer theory by 
randomizing the compatibility relations and using Zadeh’s relational model of Dempster-
Shafer theory.  As this extension of DST is not the focus of the current paper and the rule 
is similar to Zhang’s rule, a discussion of Yen’s rule is not included. [Yen, 1989] 
 
Envelope, Imposition, and Horizontal x-Averaging: These are three methods of 
combination that can be applied to belief structures that have been converted to 
“generalized cumulative distribution functions” or p-boxes.  The resultant combination 
can be reinterpreted as a belief structure but with a complicated relationship with the 
original inputs.  A discussion of these methods in the context of p-boxes can be found in 
[Ferson and Kreinovich, 2002]. 
 
3: DEMONSTRATION OF COMBINATION RULES 
 
In this section, we demonstrate the differences between the various combination rules for 
discrete and interval-type data.  In Section 3.1, the data will be given by discrete values 
and in Section 3.2 the data will be given by intervals. 
 
3.1: Data given by discrete values 
 

Suppose two experts are consulted regarding a system failure.  The failure could 
be caused by Component A, Component B or Component C.  The first expert believes 
that the failure is due to Component A with a probability of 0.99 or Component B with a 
probability of 0.01 (denoted by m1(A) and m1(B), respectively).  The second expert 
believes that the failure is due to Component C with a probability of 0.99 or Component 
B with a probability of 0.01 (denoted by m2(C) and m2(B), respectively).  The 
distributions can be represented by the following: 
 
Expert 1: 
m1(A) = 0.99 (failure due to Component A) 
m1(B) = 0.01 (failure due to Component B) 
 
Expert 2: 
m2(B) = 0.01 (failure due to Component B) 
m2(C) = 0.99 (failure due to Component C) 
 
3.1.1: Dempster’s Rule  
 
The combination of the masses associated with the experts is summarized in Table 1. 
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Expert 1 

A B C Failure 
Cause 

  

0.99 0.01 0 m1 
Failure 
Cause 

m2     

A 0 
 

m1(A) m2(A) = 0 m1(B) m2(A) 
= 0 

m1(C) m2(A) 
= 0 

 

B 0.01 m1(A) m2(B) = 
0.0099 

m1(B) m2(B) 
= 0.0001 

m1(C) m2(B) 
= 0 

 

 
 
 

Expert 
2 

C 0.99 m1(A) m2(C) = 
0.9801 

m1(B) m2(C) 
= 0.0099 

m1(C) m2(C) 
= 0 

 

Table 1: Dempster Combination of Expert 1 and Expert 2 

 
Using Equations 11-13: 
 

1. To calculate the combined basic probability assignment for a particular cell, 
simply multiply the masses from the associated column and row.   

2. Where the intersection is nonempty, the masses for a particular set from each 
source are multiplied, e.g., m12(B) = (0.01)(0.01) = 0.0001.   

3. Where the intersection is empty, this represents conflicting evidence and 
should be calculated as well. For the empty intersection of the two sets A and 
C associate with Expert 1 and 2, respectively, there is a mass associated with 
it. m1(A) m2(C)=(0.99)(0.99) =(0.9801). 

4. Then sum the masses for all sets and the conflict. 
5. The only nonzero value is for the combination of B, m12(B) = 0.0001.  In this 

example there is only one intersection that yields B, but in a more complicated 
example it is possible to find more intersections to yield B. 

6. For K, there are three cells that contribute to conflict represented by empty 
intersections.  Using Equation 13, K = (0.99)(0.01) + (0.99)(0.01) + 
(0.99)(0.99) = 0.9999 

7. Using Equation 11, calculate the joint, m1(B) m2(B) = (.01)(.01) / [1-0.9999] = 
1 

 
Though there is highly conflicting evidence, the basic probability assignment for the 
failure of Component B is 1, which corresponds to a Bel (B) = 1.  This is the result of 
normalizing the masses to exclude those associated with conflict.  This points to the 
inconsistency when Dempster’s rule is used in the circumstances of significant relevant 
conflict that was pointed out by Zadeh. 
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3.1.2: Yager’s Rule 
 

For this simple problem, Yager’s rule will yield the almost the same matrix as 
with Dempster’s rule.  However, there are some important exceptions in the 
nomenclature and eventually the allocation of conflict:  

 
1. Instead of basic probability assignments (m), Yager calls these ground 

probability assignments (q) 
2. Instead of using K to represent the conflict, Yager uses the q(Ø) which is 

calculated in the exact same way as K. (Equation 13)   
 
Using Equation 16, the combination is calculated: 

q12(B) = m12(B) = (.01)(.01) = .0001 

Here the combination is not normalized by the factor (1-K).  When Yager converts the 
ground probability assignments (q) to the basic probability assignments (m), the mass for 
a particular joint remains the same and the mass associated with conflict is attributed to 
the universal set X that represents the degree of ignorance (or lack of agreement). So in 
this case the m(X) is 0.9999. To convert the basic probability assignment to the lower 
bound Bel, the Bel(B) is equal to the m(B) (Bel (B) = .0001), as this is the only set that 
satisfies the criteria for Belief  (B ⊆B).  This approach results in a significant reduction of 
the value for Belief and a large expansion of Plausibility.  Note that the value of Belief is 
substantially smaller than either the experts’ estimates would yield individually and in 
such a case, this may be counterintuitive. 
 
3.1.3: Inagaki’s Rule 
 

Once again the matrix is calculated in the same manner as in case of the Dempster 
rule.  Inagaki uses the ground probability functions similar to Yager.  Ultimately, the 
value of m12(B) obtained by Inagaki’s rule depends on the value of k which is now a 
parameter.  It is suggested by the literature that the value of k should be determined 
experimentally or by expert expectation though an exact procedure is lacking.  Figure 6 
demonstrates the behavior of the Inagaki combination as a function of the value of k for 
this problem.   
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Figure 6:  The value of m12(B) as a function of k in Inagaki’s rule 

 
When k = 0, Inagaki’s combination will obtain the same result as Yager’s (m12(B) 

= .0001).  When k =
1

1− q(∅)
=

1
1 − 0.9999

= 10000 , Inagaki’s rule corresponds to 

Dempster’s rule (m12(B) = 1).  Because there is no mass associated with the universal set 
q(X), in this case, Inagaki’s extra rule is the same as Dempster’s rule. Although, the 
calculation can be extended beyond Dempster’s rule, any value for the combination 
greater than 1 does not make sense because sums of all masses must be equal to 1.  
Corresponding to the increasing value of k, is the increase in the filtering of the evidence. 
 
3.1.4: Zhang’s Rule 
 

Recall from Equations 36 and 37 for Zhang’s rule, in addition to calculating the 
product of the masses like in Table 1, we must also calculate the measure of intersection 
based on the cardinality of the sets.  The cardinality of each of the sets A, B, and C is 1.  
In this case we find that the only nonzero intersection of the sets is set B obtained from 
the evaluation of B by both Experts 1 and 2. Since |B|=|B||B|, we find that the Zhang 
combination corresponds to the Dempster combination.  This points to two problems with 
Zhang’s measure of intersection:  

 
1. The equivalence with Dempster’s rule when the cardinality is 1 for all relevant 

sets or when the |C|=|A||B| in the circumstance of conflicting evidence.  (This 
should not pose a problem if there is no significant conflict.) 

2. If the cardinality of B was greater than 1, even completely overlapping sets 
will be scaled. 

 
3.1.5: Mixing 
 

The formulation for mixing in this case corresponds to the sum of m1(B)(1/2) and 
m2(B)(1/2).  From Equation 40: 
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m12(A) = (1/2)(0.99) = 0.445 

 m12(B) = (1/2)(0.01)+ (1/2) (0.01) = 0.01 
 
m12(C) = (1/2)(0.99) = 0.445 
 
3.1.6: Dubois and Prade’s Disjunctive Consensus Pooling 
 

The unions of multiple sets based on the calculations from Table 1 that can be 
summarized in Table 2. 

 
Union m∪ Linguistic Interpretation 
A ∪ A 0 Failure of Component A 
A ∪ B 0.0099 Failure of Component A or B 
A ∪ C 0.9801 Failure of Component A or C 
B ∪ B 0.0001 Failure of Component B 
B ∪ C 0.0099 Failure of Component B or C 
C ∪ C 0 Failure of Component C 

A ∪ B  ∪ C 1 Failure of Component A or B or C 

Table 2: Unions obtained by Disjunctive Consensus Pooling 

 
3.2: Data given by intervals 
 

Using the operations discussed above, now we will consider the aggregation of 
three sources of information where the information is given as intervals.  Interval-based 
data is common to problems involving parametric uncertainty for physical parameters 
like conductivity, diffusivity, or viscosity.  Suppose there is an experiment that provides 
multiple intervals for an uncertain parameter from three sources A, B, and C that must be 
combined.  The intervals associated with sources A, B, and C are summarized in the 
Tables 3,4, and 5, respectively.  Figures 7, 8, and 9 depict the intervals and the basic 
probability assignments graphically with a “generalized cumulative distribution function” 
(gcdf).  This is the probabilistic concept of cumulative distribution function generalized 
to Dempster-Shafer structures where the focal elements (intervals) are represented on the 
x-axis and the cumulative basic probability assignments on the y-axis.  A discussion of 
the generalization of some of the ideas from the theory of random variable to the 
Dempster-Shafer environment is discussed in [Yager, 1986]. 

 
Interval m1 

[1,4] 0.5 
[3,5] 0.5 

Table 3: The interval-based data for A and the basic probability assignments 
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Figure 7: The gcdf of A 

 
 

Interval m2 
[1,4] 0.3333 
[2,5] 0.3333 
[3,6] 0.3333 

Table 4: The interval-based data for B and the basic probability assignments 
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Figure 8: The gcdf of B 
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Interval m3 
[6,10] 0.3333 
[9,11] 0.3333 
[12,14] 0.3333 

Table 5: The interval-based data for C and the basic probability assignments 
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Figure 9: The gcdf of C 

 
Without any combination operation, the gcdf’s of A, B, and C are represented in Figure 
10. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10: The gcdf’s of A, B, and C without any combination operation 

 
 As is evident in Figure 10 and Tables 3,4 and 5, the data for A and B is consistent 
with each other.  However the data for A and C are disjoint.  First, we will consider the 
combination of consistent data (A and B) and then the combination of the disjoint data (A 
and C) with the combination rules discussed in Section 2. 
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3.2.1: Dempster’s Rule 
 
The calculation of Dempster’s rule (Equation 11-13) is summarized in Table 6. 
 

   
   A 
   Interval m Interval m 
   [1, 4] 0.5 [3, 5] 0.5 
 Interval m     

 [1, 4] 0.33333 [1, 4] 0.16667 [3, 4] 0.16667 
       
B [2, 5] 0.333333 [2, 4] 0.16667 [3, 5] 0.16667 
       
 [3, 6] 0.333333 [3, 4] 0.16667 [3, 5] 0.16667 
       

 

Table 6:  Combination of A and B with Dempster’s Rule  

 
Note that the intersection of two intervals is defined by the maximum of the two lower 
bounds and the minimum of the two upper bounds corresponding to an intersection. The 
bpa's for like intervals are summed, i.e. [1,4] has a value for m of 0.166667; [2,4] has an 
m value of 0.166667; [3,4] has a value of 0.33334; and [3,5] has an m value of 0.33334. 

The resulting structure of the combination of A and B using Dempster’s rule is 
depicted in Figure 11. 
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Figure 11: The gcdf of the combination of A and B using Dempster’s rule 

 
The combination of A and C using Dempster’s rule is not possible due to the 
normalization factor. 
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3.2.2: Yager’s Rule 
 
As the evidence from A and B is consistent, the calculations for Yager’s rule are same as 
in Table 6.  The resulting structure of the combination of A and B using Yager’s rule 
(Figure 12) is also the same as with Dempster’s rule. 
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Figure 12: The combination of A and B using Yager’s rule 

 
Unlike the Dempster’s case, Yager’s rule can be calculated for the combination of A and 
C.  However, since the evidence is entirely conflicting, all of the basic probability mass is 
attributed to the universal set.  In the continuous domain this corresponds to the real line.   
As noted earlier, the mass allocated to the universal set is interpreted as the degree of 
ignorance or the degree of lack of agreement among sources. 
 

 

-10 0 10  20  30  

0 

0.5  

1 

 

Figure 13: The gcdf of the combination of A and C using Yager’s rule 
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3.2.3: Inagaki’s Rule 
 
Using k=0, we obtain the same calculations as Yager’s rule and Dempster’s rule.  
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Figure 14: The Inagaki combination of A and B for k=0 

As expected, we find the same calculations for the combination of A and B where k=1. 
 

 

0 1 2 3 4 5 6 

0 

0.5  

1 

 
Figure 15: The Inagaki combination of A and B where k = 1 

 
3.2.4: Zhang’s Rule  
 
 For the step-by step calculation of Zhang’s combination rule, first take the masses 
obtained by the simple product of the marginals. 
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   A 
   Interval m Interval m 
   [1, 4] 0.5 [3, 5] 0.5 
 Interval m 1 4 3 5 

 [1, 4] 0.333333 [1, 4] 0.166667 [3, 4] 0.166667 
 1 4 1 4 3 4 

B [2, 5] 0.333333 [2, 4] 0.166667 [3, 5] 0.166667 
 2 5 2 4 3 5 
 [3, 6] 0.333333 [3, 4] 0.166667 [3, 5] 0.166667 
 3 6 3 4 3 5 

Table 7: The combination of the marginals with Zhang’s rule 

 
Next we calculate a measure of intersection.  In the continuous case, we have 

elected to interpret interval length for the calculation of the measure of intersection.  
 

   A 
   Interval A length Interval A length 
   [1, 4] 3 [3, 5] 2 
 Interval B length Interval A∩B 

length 
Interval A∩B 

length 
 [1, 4] 3 [1, 4] 3 [3, 4] 1 

B [2, 5] 3 [2, 4] 2 [3, 5] 2 
 [3, 6] 3 [3, 4] 1 [3, 5] 2 

Table 8: The length of the intervals and their intersections 

 
 Then calculate the value of r(A,B) from Equation 36: 
 

   A 
   Interval A length Interval A length 
   [1, 4] 3 [3, 5] 2 
 Interval B length Interval r(A,B) Interval r(A,B) 
 [1, 4] 3 [1, 4] 0.333333 [3, 4] 0.166667 

B [2, 5] 3 [2, 4] 0.222222 [3, 5] 0.333333 
 [3, 6] 3 [3, 4] 0.111111 [3, 5] 0.333333 

Table 9: Calculation of the Measure of Intersection 

 
 Multiply the basic probability masses (m) from Table 8 by the r(a,B) in Table 9. 
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   A 
   Interval m Interval m 
   [1, 4] 0.5 [3, 5] 0.5 

 Interval m Interval r(A,B)*m Interval r(A,B)*m 
 [1, 4] 0.333333 [1, 4] 0.055556 [3, 4] 0.027778 

B [2, 5] 0.333333 [2, 4] 0.037037 [3, 5] 0.055556 
 [3, 6] 0.333333 [3, 4] 0.018519 [3, 5] 0.055556 

Table 10: The product of m and r(A,B) 

The sum of all of the masses m, scaled by r(A,B) is 0.25.  So the renormalization 
factor k is the inverse of this sum, 4.  All of the masses are then renormalized by 
multiplying each by 4. 

 
   A 
   Interval m Interval m 
   [1, 4] 0.5 [3, 5] 0.5 

 Interval m Interval r(A,B)*m Interval r(A,B)*m 
 [1, 4] 0.333333 [1, 4] 0.222222 [3, 4] 0.111111 

B [2, 5] 0.333333 [2, 4] 0.148148 [3, 5] 0.222222 
 [3, 6] 0.333333 [3, 4] 0.074074 [3, 5] 0.222222 

Table 11: The renormalized masses with Zhang’s rule 

Once again, masses for like intervals are summed to obtain the final distribution, i.e. [1,4] 
has an m value of 0.22222; [2,4] has an m value of 0.14815; [3,4] has an m value of 
0.18519; [3.5] has an m value of 0.44444.   
  These gcdf of the renormalized masses are graphed in Figure 16. 
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Figure 16: The Zhang combination of A and B 
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As can be seen in Figure 16 and its corresponding table (Table11) when compared to 
those of the other Dempster-type rules (Dempster’s rule, Yager’s rule, and Inagaki’s rule 
for k=0 and k=1), the Zhang rule yields a slightly different answer for the combination.   

As there is no overlap between the two inputs, the combination of A and C is not 
possible using Zhang’s rule. 
 
3.2.5: Mixing 
 
Using Equation 40, the values for mixing (without weights) are listed in Table 12: 
 

Sources Initial Interval m Final Interval m 
[1, 4] 0.5 [1, 4] 0.25 Source 1 
[3, 5] 0.5 [3, 5] 0.25 
[1, 4] 0.333333 [1, 4] 0.166667 
[2, 5] 0.333333 [2, 5] 0.166667 

Source 2 

[3, 6] 0.333333 [3, 6] 0.166667 
 

Table 12: The mixture of A and B 

 
The masses for the like final intervals are summed: [1,4] has an m value of 0.41667; the 
remaining distributions remain the same.  The resulting structure of the combination of A 
and B using mixing can be observed in the Figure 17. 
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Figure 17: The mixture of A and B 

 
The combination of A and C is possible using mixing.  These calculations are 

summarized in Table 13. 
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Sources Initial Interval m Final Interval m 
[1, 4] 0.5 [1, 4] 0.25 Source 1 
[3, 5] 0.5 [3, 5] 0.25 

[6, 10] 0.333333 [6, 10] 0.166667 
[9, 11] 0.333333 [9, 11] 0.166667 

Source 2 

[12, 14] 0.333333 [12, 14] 0.166667 
 

Table 13: The mixture of A and C 

 
The resulting structure of the combination of A and C using mixing: 
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Figure 18: The mixture of A and C 

 
3.2.6: Convolutive x-Averaging 
 

Using Equation 42, we calculate the convolutive x-average for A and B found in 
Table 14. 

 
   A 
   Interval m Interval m 
   [1, 4] 0.5 [3, 5] 0.5 
 Interval m 1 4 3 5 

 [1, 4] 0.33333333 [1, 4] 0.16666667 [2, 4.5] 0.16666667 
 1 4 1 4 1 0.5 

B [2, 5] 0.33333333 [1.5, 4.5] 0.16666667 [2.5, 5] 0.16666667 
 2 5 1.5 4.5 2 0.5 
 [3, 6] 0.33333333 [2, 5] 0.16666667 [3, 5.5] 0.16666667 
 3 6 3 0.5 3 0.5 

Table 14: The Combination of A and B using Convolutive x-Averaging 
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The resulting structure of the combination of A and B using convolutive x-
averaging is depicted in Figure 19. 
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Figure 19: The gcdf of the combination of A and B using convolutive x-averaging 

 
To see the difference between the Dempster rule (solid line) and convolutive x-

averaging (dashed line) for the combination of A and B refer to Figure 20. 
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Figure 20: The Comparison of Combinations of A and B with Dempster’s rule and 

Convolutive X-Averaging 

 
As is readily apparent, the bound for the convolutive x-average either is equal to or is 
significantly larger than the bounds of the Dempster combination. 
 The combination for A and C can be performed though the convolutive x-average 
and the calculation are shown in Table 15. 
 
 
 

Convolutive  
X-Avg. 

Dempster 
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   A 
   Interval m Interval m 
   [1, 4] 0.5 [3, 5] 0.5 
 Interval m 1 4 3 5 

 [6, 10] 0.33333333 [3.5, 7] 0.16666667 [4.5, 7.5] 0.16666667 
 6 10 3.5 7 6 0.5 

C [9, 11] 0.33333333 [5, 7.5] 0.16666667 [6, 8] 0.16666667 
 9 11 5 7.5 9 0.5 
 [12, 14] 0.33333333 [6.5, 9] 0.16666667 [7.5, 9.5] 0.16666667 
 12 14 12 0.5 12 0.5 

Table 15: The Combination of A and C using Convolutive x-Averaging 
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Figure 21: The gcdf of the Combination of A and C using Convolutive x-Averaging 

The difference between the Yager rule and convolutive x-averaging for the combination 
of A and C. 
 
 
 
 
 
 
 
 



 43

 

3 4 5 6 7 8 9 10  

0 

0.5  

1 

 

Figure 22: Comparison of Yager’s rule and Convolutive x-averaging for A and C 

This dramatically demonstrates the difference between the Yager combination under 
complete conflict (which corresponds to the whole real line) and the convolutive x-
average.  Yager’s distribution implies that there is complete ignorance regarding the 
inputs, whereas the convolutive x-average simply averages them and provides a 
significantly narrower answer. 
 
3.2.7 Dubois and Prade’s Disjunctive Consensus 
 

The upper and lower bounds for the disjunctive consensus are defined by the 
minimum of the lower bounds and the maximum of the upper bounds.  The calculations 
for the joint of the basic probability assignments is the product of the marginals.  This is 
also known as a convex hull of all unions.  The intervals and their respective probability 
assignments are listed in Table 16. 
 

 

Table 16: The Disjunctive Consensus Pooling of A and B 

 
 The only like interval is [1,5] where the summed m is equal to 0.33334.  The other 
distribution remain the same as in Table 16. 
 

   A 
   Interval m Interval m 
   [1, 4] 0.5 [3, 5] 0.5 
 Interval m 1 4 3 5 

 [1, 4] 0.333333 [1, 4] 0.166667 [1, 5] 0.166667 
 1 4 1 4 1 5 

B [2, 5] 0.333333 [1, 5] 0.166667 [2, 5] 0.166667 
 2 5 1 5 2 5 
 [3, 6] 0.333333 [1, 6] 0.166667 [3, 6] 0.166667 
 3 6 1 6 3 6 

Convolutive  
X-Avg. 

Yager 
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Figure 23: The Disjunctive Consensus Pooling of A and B 

It is also possible to calculate the combination of A and C using disjunctive consensus 
pooling. 
 

   A 
   Interval m Interval m 
   [1, 4] 0.5 [3, 5] 0.5 
 Interval m 1 4 3 5 

 [6, 10] 0.333333 [1, 10] 0.166667 [3, 10] 0.166667 
 6 10 1 10 3 10 

C [9, 11] 0.333333 [1, 11] 0.166667 [3, 11] 0.166667 
 9 11 1 11 3 11 
 [12, 14] 0.333333 [1, 14] 0.166667 [3, 14] 0.166667 
 12 14 1 14 3 14 

Table 17: Calculations for the Disjunctive Consensus Pooling of A and C 
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Figure 24: The gcdf for the Disjunctive Consensus Pooling of A and C 

 
See [Ferson and Kreinovich, 2002] for a comparison of the disjunctive consensus and the 
envelope operation. 
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3.2.8: Summary of Examples 
 

A simple comparison of the combinations of A and B and A and C with the 
various rules is summarized in Table 18 and Table 19: 

 
COMBINATION 

RULES 
COMMENTS 

Dempster’s Rule The intervals are defined by the minimum of the upper bounds 
and maximum of the lower bounds. The individual bpa’s are 
calculated by multiplying the bpa’s of the marginals.  Where the 
same interval is obtained from multiple combinations, the 
associated bpa’s are summed.  No normalization step is taken in 
this example, as there is no mass associated with conflict. 

Yager’s Rule As there is no conflict, this problem provides the same answer as 
Dempster’s rule. 

Inagaki’s Rule (k=0) As there is no conflict, this problem provides the same answer as 
Dempster’s rule. 

Inagaki’s Rule (k=1) As there is no conflict, this problem provides the same answer as 
Dempster’s rule. 

Zhang’s Rule Provides a slightly different answer than the other Dempster-type 
rules.  The intervals are defined in the same manner but the bpas 
are scaled differently because of the measure of intersection.  
Consequently some bpa’s are larger than those obtained by 
Dempster’s rule, while others are slightly smaller.  The final 
masses are renormalized so all masses will add to one. 

Mixing This averaging operation provides different intervals and different 
bpa’s than Dempster’s rule.  The intervals are either equal to the 
Dempster intervals or in most cases wider. The bpa’s are more 
concentrated on the interval [1,4].  

Convolutive  
x-Average 

The convolutive x-average is quite different from Dempster’s 
rule, Zhang’s rule, and mixing in terms of the bounds of the 
interval and their respective bpa’s.  The bounds of this average 
are either equal to those of Dempster’s rule or larger. 

Disjunctive 
Consensus Pooling 

As expected, this is by far the most imprecise of the combination 
methods.  The intervals are defined by the maximum of the upper 
bounds and the minimum of the lower bounds and the bpa’s are 
calculated in the same manner as Dempster’s rule.  Consequently, 
in this example, this method provides fewer intervals than in 
Dempster’s rule which are either equal to or greater than the 
Dempster intervals. 

Table 18: The Combination of A and B Comparison Table  
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COMBINATION 
RULES 

COMMENTS 

Dempster’s Rule No answer is possible. 
Yager’s Rule To reflect the complete conflict between the two sources, Yager’s 

rule provides the universal set or the real line as its answer. 
Inagaki’s Rule (k=0) Provides the same answer as Yager’s rule, i.e., the universal set or 

the real line. 
Inagaki’s Rule (k=1) No answer is possible. 
Zhang’s Rule No answer is possible. 
Mixing The mixture maintains the same intervals as the inputs but divides 

the bpa by 2, the number of sources.  While this does provide an 
answer, the issue of conflict is not represented.  The gcdf reflects 
the full scope of the input bounds. 

Convolutive  
x-Average 

The convolutive x-average provides different intervals than 
obtained by mixing. The upper bounds of the marginals are 
averaged to obtain the upper bound of the joint.  The same 
process is repeated for the lower bound.  The bpa’s are the 
product of the marginal’s masses.  Consequently, this average is 
different than the mixing average and the gcdf is concentrated in 
the center of the two inputs. 

Disjunctive 
Consensus Pooling 

As a union operation, this finds the largest possible intervals 
obtained by the two inputs and calculates the joint bpa’s by 
multiplying the marginal bpa’s.  The answer subsumes both 
answers provided by mixing and the convolutive x-average. 

 

Table 19: The Combination of A and C Comparison Table  

As indicated in Table 19, when the sources are completely conflicting, some rules 
will not apply at all (Dempster rule, Zhang’s rule) or provide an answer that corresponds 
to complete ignorance (Yager’s rule).  The averaging operations will work but it may be 
inappropriate to average two extremes to produce an answer that neither source suggested 
was a possible answer. 
 
4: CONCLUSIONS 

 
Dempster-Shafer Theory essentially combines the Bayesian notion of 

probabilities with the classical idea of sets where a numerical value signifying confidence 
can be assigned to sets of simple events rather than to just mutually exclusive simple 
events. [Bogler, 1992]  The theoretical basis for Dempster-Shafer Theory is an attractive 
one for dealing with a corpus of data that requires different degrees of resolution.  From 
the operational perspective of Dempster-Shafer theory, we find that the aggregation of 
evidence from multiple sources is not straightforward, as there are a variety of possible 
combination rules. 

As there are multiple ways of combining data, it would be desirable to develop a 
formal procedure by which one could select an appropriate combination operation.  
Although the algebraic properties may not prove to be useful in designing a 
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comprehensive typology of combination operators, they do provide insight into some of 
the behavior of the operators.  Some of the algebraic properties of the combination rules 
discussed in this report are summarized in Table 20. 

 
 Algebraic Properties 

Combination 
Rules 

Idempotent Commutative Associative Quasi-
Assocative 

Dempster’s 
Rule 

No Yes Yes  

Yager’s Rule No Yes No Yes 
Inagaki’s Rule No Yes Depends on 

value of k 
Depends 
on value of 
k 

Zhang’s Rule No Yes  Yes 
Mixing Yes Yes  Yes 
Convolutive  
x-Average 

Yes Yes  Yes 

Disjunctive 
Consensus 
Pooling 

No Yes Yes  

 

Table 20: Combination Rules and Their Algebraic Properties 

 
For Dubois and Prade, combination operations cannot be discussed solely in terms 

of algebraic properties because the imposition of too many properties can be too 
restrictive to solve practical problems.  As we can see with the numerous Dempster-type 
combination rules, they satisfy many of the same algebraic properties.  Moreover, as the 
work of Dubois and Prade points out, [Dubois, Prade, 1992], even the definitions of the 
algebraic properties can be problematic and debatable.  Nevertheless, understanding what 
are the desirable properties of a prospective combination rule can be one part of the 
criteria for rule selection. 

Another helpful heuristic for choosing a combination rule is to identify the 
requirements of the situation as disjunctive pooling, conjunctive pooling or tradeoff.  
These correspond to the Dubois and Prade disjunctive pooling method, the Dempster 
rule, and the remaining operations of Yager’s rule, Zhang’s rule, discount and combine, 
mixing, and convolutive x-averaging, respectively.  If that requirement alone cannot be 
determined, it may prove practical to apply Inagaki’s rule for many values of k.  As we 
have shown here, a number of these rules can be tested and their results compared.  Many 
of the Dempster and the “Dempster-type” combination rules share a common first step, 
the multiplication of the marginal masses to find the joint.  These rules fundamentally 
differ on how these joint masses are to be combined and where to allocate the mass 
associated with conflict in the second step.   

There are a number of considerations that need to be addressed when combining 
evidence in Dempster-Shafer theory.  Generally speaking, these include the evidence 
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itself, the sources of information, the context of the application, and the operation used to 
combine the evidence.  These are depicted in Figure 25. 

 

 

 

 

 

 

 

 

 

Figure 25: Important Issues in the Combination of Evidence 

As the literature survey on aggregation in generalized information theory reflects, 
much of the research in the combination rules in Dempster-Shafer theory is devoted to 
advancing a more accurate mathematical representation of conflict.  In Figure 25, all of 
the contextual considerations like the type, amount, and accuracy of evidence as well as 
the type and reliability of sources and their interdependencies can be interpreted as 
features of conflict assessment.  Once values are established for degree of conflict, the 
most important consideration is the relevance of the existing conflict.  Though conflict 
may be present, it may not always be contextually relevant.  Take a target identification 
problem where there are two sensors with a small overlapping area in their respective 
ranges and the ultimate task is to assign priority to all detected targets.  In this case, it is 
intuitive to assign the highest priority to the target with the largest amount of mass 
associated with it.  We are not concerned with the mass allocated to other targets and 
hence, conflict is not relevant in this case.  Consequently, even in a context of highly 
conflicting evidence, Dempster's rule might be the most appropriate rule to use as conflict 
is normalized out of the combination if that conflict is determined by context to be 
irrelevant.  Dempster's rule allows for the comparative assessment the masses associated 
with various targets independent of their location inside or outside of the intersection of 
the two overlapping sets.   

In conclusion of the discussion of the rules of combination in Dempster-Shafer 
theory we find that under situations of minimal conflict or irrelevant conflict and all of 
the sources can be considered reliable, a Dempster combination might be justified.  As 
was demonstrated by the example (Section 3.2.1), when there is a situation of no conflict, 
two of the Dempster-type rules (Yager, Inagaki (k=0, k=1), provide the same answer as 
Dempster’s rule.  As the level of relevant conflict increases, Yager’s rule might more 

CONTEXT 
Relevance of Conflict 

SOURCES 
Type of source 
Number of sources 
Reliability of sources 
Dependency between 
sources 
Conflict between sources 
 

EVIDENCE 
Type of evidence 
Amount of evidence 
Accuracy of evidence 

COMBINATION 
OPERATION 

Type of operation 
Algebraic properties 
Handling of conflict 
Advantages 
Disadvantages 
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appropriate as the conflict is not ignored.  An advantage of Yager’s rule is that it 
represents the level conflict by the basic probability assignment of the universal set X.  
However, there is the possibility with Yager’s rule that the basic probability mass 
associated with the combined result is significantly smaller than those provided by the 
original sources (demonstrated in Section 3.1).  Inagaki’s unified combination rule 
investigates the effects of many different values for conflict on a combined result and 
includes both Dempster’s rule and Yager’s rule.  However, the procedure for the 
contextual determination of the value of k for Inagaki’s rule is an important question that 
is not clearly described in this current literature survey.  Zhang’s rule provides a result for 
the bpa of the combination that is scaled by a measure of the intersection but under 
certain circumstances this measure can correspond to Dempster’s rule and suffer the same 
criticisms under significant relevant conflict.  If Yager’s rule begins to reflect a high level 
of ignorance, the propriety of a combining the evidence at all should be considered.  If a 
combination is appropriate, possible methods for this case could be disjunctive consensus 
pooling, the discount and combine method (when there is a qualified analyst to discount 
based on source reliability), or other averaging methods like mixing or convolutive x-
averaging.  With all the issues that have been discussed in this report with respect to the 
combination of evidence in Dempster-Shafer theory, we find that most are linked to the 
characterization of conflict.  Consequently, we identify this as the most critical concern 
for the specific selection of a combination operation.  Specifically, what is the degree and 
contextual relevance of conflict and how is this handled by a particular combination rule.   
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APPENDIX A 
References to Applications of Dempster-Shafer Theory 

 
SUBJECT Related Subject Headings Pages 
Cartography Geography, Map building, Image Processing A-2 

Classification, 
Identification, Recognition 

Pattern Recognition, Speaker Identification, 
Voice Recognition, Decision-Making, 

Radar, Target Identification, Optimization, 
Fault Detection, Artificial Vision, Image 

Processing, Multiple Sensors 

A-2 to A-7 

Decision-Making Classification, Identification, Recognition, 
Risk Management, Expert Systems, Image 

Processing, Robotics 

A-7 to  
A-11 

Engineering and 
Optimization 

Expert Systems, Decision Making A-11 to  
A-12 

Expert Systems Knowledge-based Systems, Identification, 
Fault Diagnosis, Geography, Control 

Systems, Decision-Making 

A-13 to  
A-14 

Fault Detection and Failure 
Diagnosis 

Identification, Risk, Reliability, 
Classification, Sensors 

A-14 to  
A-15 

Image Processing Object Recognition, Expert Systems, 
Geography, Cartography, Radar, Target 
Identification, Biomedical Engineering 

A-16 to  
A-21 

Medical Applications Expert Systems, Image Processing, Control 
Systems 

A-21 to  
A-23 

Miscellaneous Databases, Autonomous Vehicle 
Navigation, Expert Systems, Forecasting, 

Finance, Manufacturing, Document 
Retrieval, Simulation, Decision-Making, 

Climatology, Expert Opinion Pooling, 
Optimization 

A-23 to  
A-27 

Multiple Sensors Autonomous Vehicles, Target Identification, 
Pattern Recognition, Classification, 

Simulation, Artificial Vision, Satellites, 
Robotics 

A-27 to  
A-29 

Risk and Reliability Fault Diagnosis, Expert Systems, Decision-
Making 

A-30 

Robotics Sensors, Decision-Making, Target 
Identification, Artificial Vision 

A-31 to  
A-33 

Signal Processing Sensors, Target Identification, Recognition, 
Classification, Radar, Detection, Expert 

Systems, Sensitivity Analysis 

A-33 to  
A-34 

 



AUTHOR(S) TITLE REFERENCE GENERAL 
SUBJECT 

HEADINGS

APPLICATION

Binaghi, E., L. 
Luzi, et al.

“Slope instability zonation: 
A comparison between 
certainty factor and fuzzy 
Dempster-Shafer 
approaches.”

Natural Hazards 17(1): 77-
97 (1998).

Cartography, 
Instability Maps, 
Evaluation

This paper presents a comparison between two methodologies for the 
evaluation of slope instability and the production of instability maps, 
using a probabilistic approach and a hybrid possibilistic and credibilistic 
approach. The first is the Certainty Factor method, and the second is 
based on Fuzzy Logic integrated with the Dempster-Shafer theory.

Leduc, F., B. 
Solaiman, et al.

“Combination of fuzzy sets 
and Dempster-Shafer 
theories in forest map 
updating using 
multispectral data.”

Proceedings of SPIE The 
International Society for 
Optical Engineering 4385: 
323-335, (2001).

Cartography, Forest 
Map Updating

This paper explains a new approach to change detection and 
interpretation in a context of forest map updating. The analysis of 
remotely sensed data always necessitates the use of approximate 
reasoning. For this purpose, we use fuzzy logic to evaluate the objects' 
membership values to the considered classes and the Dempster-Shafer 
theory to analyse the confusion between classes and to find the more 
evident class to which an object belongs.

Tirumalai, A. P., 
B. G. Schunck, et 
al.

“Evidential Reasoning for 
Building Environment 
Maps.”

IEEE Transactions on 
Systems Man and 
Cybernetics 25(1): 10-20, 
(1995).

Cartography, 
Environmental 
Science

We address the problem of building a map of the environment utilizing 
sensory depth information obtained from multiple viewpoints. We 
present an approach for multi-sensory depth information assimilation 
based on Dempster-Shafer theory for evidential reasoning.

AUTHOR(S) TITLE REFERENCE GENERAL 
SUBJECT 

HEADINGS

APPLICATION

Altincay, H. and 
M. Demirekler

“Novel rank-based 
classifier combination 
scheme for speaker 
identification.”

ICASSP, IEEE 
International Conference on 
Acoustics, Speech and 
Signal Processing 
Proceedings 2: 1209-1212 
(2000).

Classification, 
Speaker 
Identification,

In this paper, we propose a novel rank-based classifier combination 
scheme under uncertainty for speaker identification (SI). The 
combination is based on a heuristic method that uses Dempster-Shafer 
theory of evidence under some conditions.

Bauer, M. “A Dempster-Shafer 
Approach to Modeling 
Agent Preferences for Plan 
Recognition.”

User Modeling and User-
Adapted Interaction 5(3-4): 
317-348 (1995).

Plan Recognition, 
Modeling

In this paper, an approach to the quantitative modeling of the required 
agent-related data and their use in plan recognition is presented. It relies 
on the Dempster-Shafer Theory and provides mechanisms for the 
initialization and update of corresponding numerical values.

CARTOGRAPHY

CLASSIFICATION, IDENTIFICATION, AND RECOGNITION

Appendix A-2



AUTHOR(S) TITLE REFERENCE GENERAL 
SUBJECT 

HEADINGS

APPLICATION

Chibelushi, C. C., 
F. Deravi, et al.

“Audio-visual person 
recognition: An evaluation 
of data fusion strategies.”

IEE Conference 
Publication(437): 26-30, 
(1997).

Person 
Recognition, 
Multimedia, 
Decision-Making

Audio-visual person recognition promises higher recognition accuracy 
than recognition in either domain in isolation. To reach this goal, special 
attention should be given to the strategies for combining the acoustic and 
visual sensory modalities. This paper presents a comparative assessment 
of three decision-level data fusion techniques for person identification: 
Bayesian, Dempster-Shafer and possiblistic approaches.

Dekorvin, A., V. 
Espino, et al.

“Using Multiple Sources of 
Information to Recognize 
and Classify Objects.”

Stochastic Analysis and 
Applications 10(5): 573-
589 (1992).

Object recognition, 
Classification, 
Identification

The authors discuss an object recognition problem in which the 
characteristic features of the object are reported by remote sensors. We 
then extend the method to a more general class of selection problems and 
consider several different scenarios. Fuzzy sets are used to represent 
vague information. Information from independent sources is combined 
using the Dempster-Shafer approach adapted to the situation in which the 
focal elements are fuzzy as in the recent paper by J. Yen.

Dekorvin, A., R. 
Kleyle, et al.

“The Object Recognition 
Problem When Features 
Fail to Be Homogeneous.”

International Journal of 
Approximate Reasoning 
8(2): 141-162, (1993).

Object 
Recognition, 
Identification, 
Classification

The goal of the present work is to obtain a reasonable solution to the 
problem of object identification. Sensors report on certain independent 
feature values of an object. The Dempster-Shafer theory is used to 
integrate the information coming from these independent sources.

Denoeux, T. “Evidence-theoretic neural 
network classifier.”

Pattern 
Recognition, 
Classification

A new classifier based on the Dempster-Shafer theory of evidence is 
presented. The approach consists in considering the similarity to 
prototype vectors as evidence supporting certain hypotheses concerning 
the class membership of a pattern to be classified. The different items of 
evidence are represented by basic belief assignments over the set of 
classes and combined by Dempster's rule of combination.

Denoeux, T. “K-nearest neighbor 
classification rule based on 
Dempster-Shafer theory.”

IEEE Transactions on 
Systems, Man and 
Cybernetics 25: 804-813 
(1995).

Classification In this paper, the problem of classifying an unseen pattern on the basis of 
its nearest neighbors in a recorded data set is addressed from the point of 
view of Dempster-Shafer theory. Each neighbor of a sample to be 
classified is considered as an item of evidence that supports certain 
hypotheses regarding the class membership of that pattern.
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AUTHOR(S) TITLE REFERENCE GENERAL 
SUBJECT 

HEADINGS

APPLICATION

Denoeux, T. “Function approximation 
in the framework of 
evidence theory: A 
connectionist approach.”

IEEE International 
Conference on Neural 
Networks Conference 
Proceedings 1: 199-203 
(1997).

Functional 
Regression, 
Prediction

We propose a novel approach to functional regression based on the 
Transferable Belief Model, a variant of the Dempster-Shafer theory of 
evidence. This method uses reference vectors for computing a belief 
structure that quantifies the uncertainty attached to the prediction of the 
target data, given the input data.

Denoeux, T. “Reasoning with imprecise 
belief structures.”

International Journal of 
Approximate Reasoning 
20(1): 79-111, (1999).

Pattern 
Classification

This paper extends the theory of belief functions by introducing new 
concepts and techniques, allowing to model the situation in which the 
beliefs held by a rational agent may only be expressed (or are only 
known) with some imprecision. Central to our approach is the concept of 
interval-valued belief structure (IBS), defined as a set of belief structures 
verifying certain constraints. An application of this new framework to the 
classification of patterns with partially known feature values is 
demonstrated.

Denoeux, T. “A neural network 
classifier based on 
Dempster-Shafer theory.”

IEEE Transactions on 
Systems Man and 
Cybernetics Part a-Systems 
and Humans 30(2): 131-
150, (2000).

Pattern 
Classification

A new adaptive pattern classifier based on the Dempster-Shafer theory of 
evidence is presented. This method uses reference patterns as items of 
evidence regarding the class membership of each input pattern under 
consideration.

Denoeux, T. and 
L. M. Zouhal

“Handling possibilistic 
labels in pattern 
classification using 
evidential reasoning.”

Fuzzy Sets and Systems 
122(3): 409-424, (2001).

Pattern 
Classification, 
Decision-Making

A category of learning problems in which the class membership of 
training patterns is assessed by an expert and encoded in the form of a 
possibility distribution is considered. Two approaches are proposed, 
based either on the transformation of each possibility distribution into a 
consonant belief function, or on the use of generalized belief structures 
with fuzzy focal elements. In each case, a belief function modeling the 
expert's beliefs concerning the class membership of each new pattern is 
obtained.

Dillard, R. A.  “Tactical Inferencing with 
the Dempster-Shafer 
Theory of Evidence.”

Conference Record 
Asilomar Conference on 
Circuits, Systems & 
Computers 17th: 312-316, 
(1984).
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SUBJECT 

HEADINGS

APPLICATION

Foucher, S., J. M. 
Boucher, et al.

“Multiscale and 
multisource classification 
using Dempster-shafer 
theory.”

IEEE International 
Conference on Image 
Processing 1: 124-128, 
(1999).

Classification, 
Radar

We propose to use evidential reasoning in order to relax bayesian 
decisions given by a multiscale markovian classification algorithm 
(ICM). The Dempster-shafer rule of combination enables us to fuse 
decisions in a local spatial neighbourhood which we further extend to be 
multiscale and multisource. This approach enables us to more directly 
fuse multiscale information. Application to the classification of very 
noisy radar images produce interesting results.

Gang, T. and L. 
Wu

“Technique of multi-source 
information fusion and 
defects recognition in 
ultrasonic detection.”

Jixie Gongcheng 
Xuebao/Chinese Journal of 
Mechanical Engineering 35: 
11-14, (1999).

Recognition, 
Decision-Making

According to the Dempster-Shafer theory, the information fusion method 
and classification decision strategies in ultrasonic detection were studied. 
On this basis, the primary experimental research on the classification and 
recognition of the defects based on the information fusion has been 
carried out.

Horiuchi, T. “Decision rule for pattern 
classification by 
integrating interval feature 
values.”

IEEE Transactions on 
Pattern Analysis and 
Machine Intelligence 20(4): 
440-448, (1998).

Pattern 
Classification, 
Decision-Making

In this paper, a pattern classification theory using feature values defined 
on closed interval is formalized in the framework of Dempster-Shafer 
measure. Then, in order to make up lacked information, an integration 
algorithm is proposed, which integrates information observed by several 
information sources with considering source values.

Kawade, M. “Object recognition system 
in a dynamic 
environment.”

IEEE International 
Conference on Fuzzy 
Systems 3: 1285-1290, 
(1995).

Object Recognition In this paper, we propose an object recognition system in a dynamic 
environment based on fuzzy logic and Dempster-Shafer's Theory which 
can integrate various inferences.

Khalaf, S., P. Siy, 
et al.

“2-D and 3-D touching part 
recognition using the 
theory of evidence.”

Proceedings IEEE 
International Symposium on 
Circuits and Systems 2: 992-
994, (1990).

Recognition, 
Identification, 
Decision-Making

A unified approach is presented for solving the 2-D and 3-D touching 
part recognition problem. The problem is formulated as a Dempster-
Shafer evidence accumulation process.
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APPLICATION

Nigro, J. M., S. 
Loriette 
Rougegrez, et al.

“Driving situation 
recognition in the 
CASSICE project towards 
an uncertainty 
management.”

IEEE Conference on 
Intelligent Transportation 
Systems, Proceedings, 
ITSC: 71-76, (2000).

Recognition, 
Driving Maneuver, 
Sensors

We interested in the recognition of the maneuvers performed by the 
driver, specially the overtaking maneuver. We consider a maneuver as a 
sequence of events. Then, according to the inputs obtained from the 
system's sensors at different times, the goal is to evaluate the confidence 
of which particular maneuver is in progress. In this paper, the confidence 
is modeled by a distribution of mass of evidence as proposed in the 
Dempster-Shafer's theory.

Peddle, D. R. “Knowledge Formulation 
for Supervised Evidential 
Classification.”

Photogrammetric 
Engineering and Remote 
Sensing 61(4): 409-417, 
(1995).

Classification, Land
Cover 
Classification

The Dempster-Shafer Theory of Evidence provides an appropriate 
framework for overcoming problems associated with the analysis, 
integration, and classification of modern, multisource data sets. However, 
current methods for generating the prerequisite evidence are subjective 
and inconsistent. To address this, a more objective approach is presented 
for deriving evidence from histogram bin transformations of supervised 
training data frequency distributions. The procedure is illustrated by an 
example application in which evidential land-cover classification.

Vasseur, P., C. 
Pegard, et al.

“Perceptual organization 
approach based on 
Dempster-Shafer theory.”

Pattern Recognition 32(8): 
1449-1462, (1999).

Pattern 
Recognition, 
Object 
Recognition, 
Identification, 
Optimization

In this paper, we propose an application of the perceptual organization 
based on the Dempster-Shafer theory. This method is divided into two 
parts which rectify the segmentation mistakes by restoring the coherence 
of the segments and detects objects in the scene by forming groups of 
primitives. We show how we apply the Dempster-Shafer theory, usually 
used in data fusion, in order to obtain an optimal adequation between the 
perceptual organization problem and this tool.

Xu, L., A. 
Krzyzak, et al.

“Methods of Combining 
Multiple Classifiers and 
Their Applications to 
Handwriting Recognition.”

IEEE  Transactions on 
Systems, Man, and 
Cybernetics 22(3): 418-435, 
(1992).

Classification, 
Pattern Recognition

Method of combining the classification powers of several classifiers is 
regarded as a general problem in various applications areas of pattern 
recognition, and a systematic investigation has been made. Possible 
solutions to the problem can be divided into three categories according to 
the levels of information available from the various classifiers.  Four 
approaches are proposed based on different methodologies for solving 
this problem.
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Zhu, D. P., R. W. 
Conners, et al.

“A prototype vision system 
for analyzing CT imagery 
of hardwood logs.”

IEEE Transactions on 
Systems Man and 
Cybernetics Part B-
Cybernetics 26(4): 522-532, 
(1996).

Artificial Vision, 
Image, Defect 
Detection, 
Classification, 
Object 
Identification

To fully optimize the value of material produced from a hardwood log 
requires information about type and location of internal defects in the 
log, This paper describes a prototype vision system that automatically 
locates and identifies certain classes of defects in hardwood logs. To 
further help cope with the above mentioned variability, the Dempster-
Shafer theory of evidential reasoning is used to classify defect objects.

AUTHOR(S) TITLE REFERENCE GENERAL 
SUBJECT 

HEADINGS

APPLICATION

Attoh-Okine, N. 
O. and J. Gibbons

“Use of belief function in 
brownfield infrastructure 
redevelopment decision 
making.”

Journal of Urban Planning 
and Development-Asce 
127(3): 126-143 (2001).

Decision-Making, 
Urban 
Development

The Dempster-Shafer theory of combination is used to combine 
independent evidence from various issues to determine the overall 
uncertainty in redevelopment decision-making.

Bauer, M. “Approximation algorithms 
and decision making in the 
Dempster-Shafer theory of 
evidence : An empirical 
study.”

International Journal of 
Approximate Reasoning 
17(2-3): 217-237 (1997).

Decision-Making This article reviews a number of algorithms based on a method of 
simplifying the computational complexity of DST.

Beynon, M., D. 
Cosker, et al.

“An expert system for 
multi-criteria decision 
making using Dempster 
Shafer theory.”

Expert Systems with 
Applications 20(4): 357-
367 (2001).

Decision-Making This paper outlines a new software system we have developed that 
utilises the newly developed method (DS/AHP) which combines aspects 
of the Analytic Hierarchy Process (AHP) with Dempster-Shafer Theory 
for the purpose of multi-criteria decision making (MCDM).

Beynon, M., B. 
Curry, et al.

“The Dempster-Shafer 
theory of evidence: an 
alternative approach to 
multicriteria decision 
modelling.”

Omega-International 
Journal of Management 
Science 28(1): 37-50 
(2000).

Decision-Making We discuss recent developments of Dempster-Shafer theory including 
analytical and application areas of interest. We discuss developments via 
the use of an example incorporating DST with the Analytic Hierarchy 
Process (AHP).

DECISION-MAKING
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Bharadwaj, K. 
K., Neerja, et al.

“Hierarchical Censored 
Production Rules (Hcprs) 
System Employing the 
Dempster-Shafer 
Uncertainty Calculus.”

Decision-Making The Dempster-Shafer Theory is used to formalize Variable Precision 
Logic (VPL) type inference provides a simple, intuitive notion of the 
precision of an inference which relates it to the amount of information 
found. This formalism allows the ignorance in the evidence to be 
preserved through the reasoning process and expressed in the decision.

Bosse, E. and J. 
Roy

“Fusion of identity 
declarations from 
dissimilar sources using the 
Dempster-Shafer theory.”

Optical Engineering 36(3): 
648-657 (1997).

Object 
Identification, 
Decision-Making

The problem of fusing identity declarations emanating from different 
sources is explored and decision makers are offered a quantitative 
analysis based on statistical methodology rooted in the Dempster-Shafer 
theory of evidence that can enhance their decision making processes 
regarding the identity of detected objects.

Caselton, W. F. 
and W. B. Luo

“Decision-Making with 
Imprecise Probabilities : 
Dempster-Shafer Theory 

Water Resources Research 
28(12): 3071-3083 (1992).

Decision-Making, 
Water Resources 
Management

A water resources example of an application of the Dempster-Shafer 
approach is presented, and the results contrasted with those obtained 
from the closest equivalent Bayesian scheme.

Chang, Y. C., J. 
R. Wright, et al.

“Evidential reasoning for 
assessing environmental 
impact.”

Civil Engineering Systems 
14(1): 55-77 (1996).

Decision-Making, This research proposes a formal methodology for integrating subjective 
inferential reasoning and geographic information systems (GIS) into a 
decision support system for use in these problem domains. The rationale 
for inferential spatial models, and the structure and function of a spatial 
modeling environment based on the Dempster-Shafer theory of evidence 
are presented.

Class, F., A. 
Kaltenmeier, et 
al.

“Soft-decision vector 
quantization based on the 
Dempster/Shafer theory.”

(Proceedings ICASSP, 
IEEE International 
Conference on Acoustics, 
Speech and Signal 
Processing 1: 665-668, 
(1991).

Speech 
Recognition, 
Decision-Making

The authors describe an algorithm for soft-decision vector quantization 
(SVQ) implemented in the acoustic front-end of a large-vocabulary 
speech recognizer based on discrete density HMMs (hidden Markov 
models) of small phonetic units.

deKorvin, A., S. 
Hashemi, et al.

“Evaluating policies based 
on their long term average 
cost.”

Stochastic Analysis and 
Applications 18(6): 901-
919 (2000).

Decision-Making, 
Policy selection

We use the Dempster-Shafer theory together with techniques of Norton 
and Smets to approximate the transition probabilities for an application 
in policy selection from a set of possible policies in the long term.

DECISION-MAKING (continued)
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Dekorvin, A. and 
M. F. Shipley

“A Dempster-Shafer-Based 
Approach to Compromise 
Decision-Making with 
Multiattributes Applied to 
Product Selection.”

IEEE Transactions on 
Engineering Management 
40(1): 60-67 (1993).

Decision-Making, 
Product Selection

The Dempster-Shafer theory of evidence is applied to the technology 
assessment problem of selecting computer software

Denoeux, T. “Modeling vague beliefs 
using fuzzy-valued belief 
structures.”

Fuzzy Sets and Systems 
116(2): 167-199 (2000).

Decision-Making, 
Classification

We introduce the concepts of interval-valued and fuzzy-valued belief 
structures and discuss the application of this framework in the areas of 
decision making under uncertainty and classification of fuzzy data.

Denoeux, T. and 
M. S. Bjanger

“Induction of decision 
trees from partially 
classified data using belief 
functions.”

Proceedings of the IEEE 
International Conference on 
Systems, Man and 
Cybernetics 4: 2923-2928 
(2000).

Decision-Making, 
Classification

A new tree-structured classifier based on the Dempster-Shafer theory of 
evidence is presented.

Drakopoulos, E. 
and C. C. Lee

“Decision Rules for 
Distributed Decision 
Networks with 
Uncertainties.”

IEEE Transactions on 
Automatic Control 37(1): 5-
14, (1992).

Decision-Making A binary hypothesis testing problem is solved using some simple 
concepts of Dempster-Shafer theory. Each Decision Maker in a 
distributed decision networks employs Dempster's combining rule to 
aggregate its input information for a decision.

Ducey, M. J. “Representing uncertainty 
in silvicultural decisions: 
an application of the 
Dempster-Shafer theory of 
evidence.”

Forest Ecology and 
Management 150(3): 199-
211 (2001).

Decision-Making This paper presents examples of silvicultural decision-making using 
belief functions for the case of no data, sparse data, and adaptive 
management under increasing data availability.

Engemann, K. J., 
H. E. Miller, et 
al.

“Decision making with 
belief structures: An 
application in risk 
management.”

International Journal of 
Uncertainty Fuzziness and 
Knowledge-Based Systems 
4(1): 1-25 (1996).

Decision-Making, 
Risk Management

We then propose a methodology for decision making under uncertainty, 
integrating the ordered weighted averaging aggregation operators and the 
Dempster-Shafer belief structure. The proposed methodology is applied 
to a real world case involving risk management at one of the nation's 
largest banks.
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Gaglio, S., R. 
Minciardi, et al.

“On the Acquisition and 
Processing of Uncertain 
Information in Rule-Based 
Decision Support 
Systems.”

Decision-Making Problems relevant to the construction of a rule-based decision-support 
system that is based on uncertain knowledge are addressed. The 
representation of uncertainty and the combination of evidence are carried 
out by means of the Dempster-Shafer theory of evidence.

Garribba, S. F. 
and A. Servida

“Evidence Aggregation in 
Expert Judgments.”

Lecture Notes in Computer 
Science 313: 385-400, 
(1988).

Expert Judgments, 
Decision-Making

Kohlas, J. and P.-
A. Monney

“Theory of Evidence--A 
Survey of its Mathematical 
Foundations, Applications 
and Computational 
Aspects.”

Mathematical Methods of 
Operations Research 39: 35-
68, (1994).

Decision Analysis, 
Statistical Analysis, 
Imaging, Project 
Planning, 
Scheduling, Risk 
Analysis

Evidence theory has been used to represent uncertainty in expert systems, 
especially in the domain of diagnostics. It can be applied to decision 
analysis and it gives a new perspective for statistical analysis. Among its 
further applications are image processing, project planning and 
scheduling and risk analysis. The computational problems of evidence 
theory are well understood and even though the problem is complex, 
efficient methods are available.

Shipley, M. F., C. 
A. Dykman, et al.

“Project management: 
Using fuzzy logic and the 
Dempster-Shafer theory of 
evidence to select team 
members for the project 
duration.”

Annual Conference of the 
North American Fuzzy 
Information Processing 
Society NAFIPS: 640-644 
(1999).

Decision-Making, 
Project 
Management

Fuzzy logic and the Dempster-Shafer theory of evidence is applied to an 
IS multiattribute decision making problem whereby the project manager 
must select project team members from candidates, none of whom may 
exactly satisfy the ideal level of skills needed at any point in time.

Smets, P. “The transferable belief 
model for expert 
judgements.”

Analysis and Management 
of Uncertainty:  Theory and 
Applications. B. M. Ayyub, 
M. M. Gupta and L. N. 
Kanal. New York, North-
Holland. 13: 165-170 
(1992).

Decision-Making We show how the transferable belief model can be used to assess and to 
combine expert opinions.  The transferable belief model has the 
advantage that it can handle weighted opinions and their aggregation 
without the introduction of any ad hoc methods.

DECISION-MAKING (continued)
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Srivastava, R. P. 
and T. J. Mock

“Evidential reasoning for 
WebTrust Assurance 
services.”

Proceedings of the Hawaii 
International Conference on 
System Sciences 170: 170 
(1999).

Decision-Making In this paper we develop an evidential network model for `WebTrust 
Assurance,' a service recently proposed by the American Institute of 
Certified Public Accountants and the Canadian Institute of Chartered 
Accountants. The aggregation of evidence and the resolution of 
uncertainties in the model follow the approach of Dempster-Shafer 
theory of belief functions.

Yang, J. B. and 
M. G. Singh

“An Evidential Reasoning 
Approach for Multiple-
Attribute Decision-Making 
with Uncertainty.”

IEEE Transactions on 
Systems Man and 
Cybernetics 24(1): 1-18 
(1994).

Decision-Making A new evidential reasoning based approach is proposed that may be used 
to deal with uncertain decision knowledge in multiple-attribute decision 
making (MADM) problems with both quantitative and qualitative 
attributes. This approach is based on an evaluation analysis model and 
the evidence combination rule of the Dempster-Shafer theory.

AUTHOR(S) TITLE REFERENCE GENERAL 
SUBJECT 

HEADINGS

APPLICATION

Alim, S. “Application of Dempster-
Shafer Theory for 
Interpretation of Seismic 
Parameters.”

Journal of Structural 
Engineering-Asce 114(9): 
2070-2084 (1988).

Butler, A. C., F. 
Sadeghi, et al.

“Computer-Aided-Design 
Engineering of Bearing 
Systems Using the 
Dempster-Shafer Theory.”

AI Edam-Artificial 
Intelligence for Engineering 
Design Analysis and 
Manufacturing 9(1): 1-11, 
(1995).

Computer Aided 
Design, 
Engineering, 
Expert System, 
Selection

Research in computer-aided design/engineering (CAD/E) has focused on 
enhancing the capability of computer systems in a design environment, 
and this work has continued in this trend by illustrating the use of the 
Dempster-Shafer theory to expand the computer's role in a CAD/E 
environment. An expert system was created using Dempster-Shafer 
methods that effectively modeled the professional judgment of a skilled 
tribologist in the selection of rolling element bearings.

ENGINEERING AND OPTIMIZATION
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Chen, L. and S. 
S. Rao

“A modified Dempster-
Shafer theory for 
multicriteria optimization.”

Engineering Optimization 
30(3-4): 177-201, (1998).

Engineering, 
Multicriteria 
Design 
Optimization

A new methodology, based on a modified Dempster-Shafer (DS) theory, 
is proposed for solving multicriteria design optimization problems. The 
design of a mechanism in the presence of seven design criteria and 
eighteen design variables is considered to illustrate the computational 
details of the approach. This work represents the first attempt made in the 
literature at applying DS theory for numerical engineering optimization.

Rao, S. S. and L. 
Chen

“Generalized hybrid 
method for fuzzy 
multiobjective 
optimization of 
engineering systems.”

AIAA Journal 34(8): 1709-
1717, (1996).

Optimization, 
Engineering 
Systems

A generalized hybrid approach is presented for the multiobjective 
optimization of engineering systems in the presence of objectives and 
constraints that are partly fuzzy and partly crisp. The methodology is 
based on both fuzzy-set and Dempster-Shafer theories to capture the 
features of incomplete, imprecise, uncertain, or vague information that is 
often present in real-world engineering systems. The original partly fuzzy 
multiobjective optimization problem is first defuzzified into a crisp 
generalized multiobjective optimization problem using fuzzy-set theory. 
The resulting multiobjective problem is then transformed into an 
equivalent single-objective optimization problem using a modified 
Dempster-Shafer theory. The computational details of the approach are 
illustrated with a structural design example.

Yang, J. B. and 
P. Sen

“Multiple attribute design 
evaluation of complex 
engineering products using 
the evidential reasoning 
approach.”

Journal of Engineering 
Design 8(3): 211-230, 
(1997).

Evaluation, 
Engineering 
Product Selection, 
Decision-Making

This paper reports the application of an evidential reasoning approach to 
design selection of retro-fit options for complex engineering products. 
The particular selection problem investigated in this paper is initially 
modeled by means of techno-economic analysis and may be viewed as a 
multiple-attribute decision-making problem with a hierarchical structure 
of attributes which may be measured for each design option using 
numerical values or subjective judgments with uncertainty.
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Berenji, H. and 
H. Lum, Jr.

“Application of Plausible 
Reasoning to AI-Based 
Control Systems.”

Proc Am Control Conf: 
1655-1661. (1987).

Expert Systems, 
Knowledge-Based 
Systems

The authors discuss techniques used for development of knowledge-
based (e. g. , expert) systems. Specifically, the MYCIN expert system 
certainty factor approach, probabilistic approach, Dempster-Shafer 
theory of evidence (1976), possibility theory and linguistic variables, and 
fuzzy control are presented.

Ferrier, G. and G. 
Wadge

“An integrated GIS and 
knowledge-based system as
an aid for the geological 
analysis of sedimentary 
basins.”

International Journal of 
Geographical Information 
Science 11(3): 281-297, 
(1997).

Knowledge-base, 
Geography

Approximate reasoning techniques to handle the vagueness and 
uncertainty inherent in a large amount of geological data, knowledge and 
reasoning are reviewed with particular emphasis on provenance analysis 
using subjective probability theory, Dempster-Shafer theory and fuzzy 
logic techniques.

Gammerman, A., 
B. Skullerud, et 
al.

“Sysex: An Expert System 
for Biological 
Identification.”

Proceedings of SPIE The 
International Society for 
Optical Engineering 657: 
34-39, (1986).

Identification, 
Biology, Expert 
Systems

The aim of this research is to create an expert system which would help 
with the task of identifying a biological specimen. The Dempster-Shafer 
theory of evidence was used to handle uncertainty associated with the 
date and the expertise.

Guan, J., D. A. 
Bell, et al.

“Dempster-Shafer theory 
and rule strengths in expert 
systems.”

(1990). IEE Colloquium: 
086.

Expert Systems, 
Fault Diagnosis

Dempter-Shafer theory is discussed, focusing on the union of the 
granules in a granule set. The discussion is illustrated by considering an 
example of fault diagnosis in a distributed vehicle monitoring system.

Shenoy, P. P. “Using Dempster-Shafer's 
belief-function theory in 
expert systems.”

Proceedings of SPIE The 
International Society for 
Optical Engineering: 2-14, 
(1992).

Expert Systems, 
Valuation-Based 
Systems

The main objective of this paper is to describe how Dempster-Shafer's 
(DS) theory of belief functions fits in the framework of valuation-based 
systems (VBS). Since VBS serves as a framework for managing 
uncertainty in expert systems, this facilitates the use of DS belief- 
function theory in expert systems.

Stephanou, H. E. “Evidential Framework for 
Intelligent Control.”

Control Systems, 
Decision-Making

The author deals with a class of knowledge-based control systems that 
involve two types of (not necessarily probabilistic) uncertainty: (1) an 
incomplete set of control rules contributed by multiple domain experts; 
and (2) incomplete and/or inaccurate feedback information from multiple 
sensors. The Dempster-Shafer theory of evidence provides the basic 
framework for the representation of uncertain knowledge.

EXPERT SYSTEMS
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Wunsch, G. and 
F. Klages

“Expert systems to assist 
analytical chemistry: 
Realization of learning 
ability and plausibility 
checking demonstrated for 
ICP mass spectrometry.”

Journal Fur Praktische 
Chemie-Chemiker-Zeitung 
338(7): 593-597, (1996).

Expert Systems, 
Analytical 
Chemistry, Mass 
Spectrometry, 
Decision-Making

Certain, uncertain and lacking knowledge has to be considered for 
intelligent counseling. In the ICP mass spectrometry the composition of 
the actual sample and the ionization rates are the most important 
parameters to be prognosticated. The way of storage and retrieval of data 
and of decision making should be automatically checked and improved 
with respect to the success of previous guesses. The Dempster-Shafer 
theory is used for the combination and propagation of uncertainties.

AUTHOR(S) TITLE REFERENCE GENERAL 
SUBJECT 

HEADINGS

APPLICATION

Kang, H., J. 
Cheng, et al.

“An application of fuzzy 
logic and Dempster-Shafer 
theory to failure detection 
and identification.”

Proceedings of the IEEE 
Conference on Decision and 
Control 2: 1555-1560, 
(1991).

Failure Detection, 
Identification, 
Decision-Making

A novel approach to failure detection and identification (FDI) is 
proposed which combines an analytic estimation method and an 
intelligent identification scheme in such a way that sensitivity to true 
failure modes is enhanced, while the possibility of false alarms is 
reduced. At the final stage of the algorithm, an index is computed--the 
degree of certainty--based on Dempster-Shafer theory, which measures 
the reliability of the decision. The FDI algorithm has been applied 
successfully to the detection of rotating stall and surge instabilities in 
axial flow compressors.

Parikh, C. R., M. 
J. Pont, et al.

“Application of Dempster-
Shafer theory in condition 
monitoring applications: a 
case study.”

Pattern Recognition Letters 
22(6-7): 777-785, (2001).

Classification, Fault 
Diagnosis, 
Monitoring

This paper is concerned with the use of Dempster-Shafer theory in 
'fusion' classifiers.  We demonstrate the effectiveness of this approach in 
a case study involving the detection of static thermostatic valve faults in 
a diesel engine cooling system.

FAULT DIAGNOSIS AND FAILURE DETECTION
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Tanaka, K. and 
G. J. Klir

“Design condition for 
incorporating human 
judgement into monitoring 
systems.”

Reliability Engineering and 
System Safety 65: 251-258, 
(1999).

Safety Monitoring, 
Sensors, Failure 
Detection

The present article proposes two types of an automatic monitoring 
system not involving any human inspection or a human-machine (H-M) 
cooperative monitoring system with inspection. In order to compare the 
systems, an approach based on the Dempster-Shafer theory is proposed 
for uncertainty analysis. By comparing their expected losses as a result of 
failed dangerous failures or failed safe failures as well as the inspection 
errors, the condition is determined under which H-M cooperative systems 
incorporating human judgements are more effective than automatic 
monitoring systems.

Vachtsevanos G., 
H. Kang, et al.

“Detection and 
Identification of Axial-
Flow Compressor 
Instabilities.”

Journal of Guidance 
Control and Dynamics 
15(5): 1216-1223, (1992).

Identification, 
Failure Detection

A new approach to failure detection and identification is proposed that 
combines an analytic estimation method and an intelligent identification 
scheme in such a way that sensitivity to true failure modes is enhanced 
while the possibility of false alarms is reduced. We employ a real-time 
recursive parameter estimation algorithm with covariance resetting that 
triggers the fault detection and identification routine only when potential 
failure modes are anticipated. A possibilistic scheme based on fuzzy set 
theory is applied to the identification part of the algorithm with 
computational efficiency. At the final stage of the algorithm, an index is 
computed-the degree of certainty-based on Dempster-Shafer theory, 
which measures the reliability of the decision. The proposed algorithm 
has been applied successfully to the detection of rotating stall and surge 
instabilities in axial flow compressors.

Van Dam, K. and 
T. J. Moulsley

“Extension of Dempster-
Shafer theory and 
application to fault 
diagnosis in 
communication systems.”

IEE Conference 
Publication(395): 310-315, 
(1994).

Fault Diagnosis, 
Communication 
Systems

A novel method is presented for propagating uncertainty that also 
calculates measures of contradictions in the input data. This method can 
improve the performance of a Reason Maintenance System (RMS) by 
ranking the contradictions and resolving the most severe of these first. 
An example shows the application of this technique to fault diagnosis in 
a communication system.
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Askari, F. and B. 
Zerr

“Neural network 
architecture for automatic 
extraction of 
oceanographic features in 
satellite remote sensing 
imagery.”

Oceans Conference Record 
2: 1017-1021 (1998).

Image Processing, 
Oceanography, 
Satellite, Neural 
Networks

This paper discusses an approach for automatic feature detection and 
sensor fusion in remote sensing imagery using a combination of neural 
network architecture and Dempster-Shafer theory of evidence.

Aslandogan, Y. 
A. and C. T. Yu

“Evaluating strategies and 
systems for content based 
indexing of person images 
on the web.”

Proceedings of the ACM 
International Multimedia 
Conference and Exhibition: 
313-321 (2000).

Image Processing, 
Multimedia, 
Recognition,     
Content-based 
Indexing

We provide experimental evaluation of the following strategies for the 
content based indexing of multimedia: i) Face detection on the image 
followed by Text/HTML analysis of the containing page; ii) face 
detection followed by face recognition; iii) face detection followed by a 
linear combination of evidences due to text/HTML analysis and face 
recognition; and iv) face detection followed by a Dempster-Shafer 
combination of evidences due to text/HTML analysis and face 
recognition.

Betz, J. W., J. L. 
Prince, et al.

“Representation and 
transformation of 
uncertainty in an evidence 
theory framework.”

Image Processing, 
Artificial Vision, 
Sensors

A framework is presented for deriving and transforming evidence-
theoretic belief representations of uncertain variables that denote 
numerical quantities. Belief is derived from probabilistic models using 
relationships between probability bounds and the support and plausibility 
functions used in evidence theory. This model-based approach to belief 
representation is illustrated by an algorithm currently used in a vision 
system to label anomalous high-intensity pixels in imagery.

Bloch, I. “Some aspects of 
Dempster-Shafer evidence 
theory for classification of 
multi-modality medical 
images taking partial 
volume effect into 
account.”

Pattern Recognition Letters 
17(8): 905-919 (1996).

Image Processing, 
Medicine, 
Classification, 
Medical Imaging

This paper points out some key features of Dempster-Shafer evidence 
theory for data fusion in medical imaging. Examples are provided to 
show its ability to take into account a large variety of situations, which 
actually often occur and are not always well managed by classical 
approaches nor by previous applications of Dempster-Shafer theory in 
medical imaging.

IMAGE PROCESSING
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Chapron, M. “A color edge detector 
based on Dempster-Shafer 
theory.”

Image Processing, 
Pattern Recognition

Segmentation based on contour detection is a relevant stage before image 
interpretation or pattern recognition. This paper is concerned with color 
image filtering and color edge detecting. These 2 techniques utilize the 
Dempster-Shafer theory.

Huber, R. “Scene classification of 
SAR images acquired from 
antiparallel tracks using 
evidential and rule-based 
fusion.”

Image and Vision 
Computing 19(13): 1001-
1010 (2001).

Image Processing, 
Radar, 
Classification

This paper presents a method for fusion of information derived from 
different airborne synthetic aperture radar measurement processes and 
from different observations of the same scene. Dempster-Shafer theory 
will be used to fuse radar backscatter and phase measurements.

Ip, H. H. S. and 
R. C. K. Chiu

“Evidential reasoning for 
facial gestures recognition 
from cartoon images.”

Australian and New 
Zealand Conference on 
Intelligent Information 
Systems Proceedings: 397-
401 (1994).

Image Processing, 
Recognition

The Dempster-Shafer theory of evidential reasoning is applied to 
combine evidence represented by the facial features. The study 
demonstrates the feasibility of applying the Dempster-Shafer theory to 
facial gesture recognition.

Ip, H. H. S. and J. 
M. C. Ng

“Human face recognition 
using Dempster-Shafer 
theory.”

IEEE International 
Conference on Image 
Processing 1: 292-295 
(1994).

Image Processing, 
Recognition

In this paper, image processing techniques developed for the extraction 
of the set of visual evidence, the formulation of the face recognition 
problem within the framework of Dempster-Shafer Theory and the 
design of suitable mass functions for belief assignment are discussed.

Janez, F., O. 
Goretta, et al.

“Automatic map updating 
by fusion of multispectral 
images in the Dempster-
Shafer framework.”

Proceedings of SPIE The 
International Society for 
Optical Engineering 4115: 
245-255 (2000).

Image Processing, 
Cartography

In this article, we present a strategy to report in an automatic way 
significant changes on a map by fusion of recent images in various 
spectral bands. For configurations of partial overlapping between map 
and images, it is difficult or even impossible to formalize the approach 
suggested within a probabilistic framework. Thus, the Dempster-Shafer 
theory is shown as a more suitable formalism in view of the available 
information, and we present several solutions.
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Kasinski, A. and 
T. Piascik

“Managing processes of 
perceptual organization for 
emerging geometrical 
objects.”

Proceedings of the IEEE 
International Conference on 
Systems, Man and 
Cybernetics 3: 1604-1609 
(2000).

Image Processing, 
Artificial Vision

Three lower level layers of the hierarchical machine perception system 
are described, and experimental results are provided. Three approaches 
to the features fusion: one based on crisp, geometrical, heuristic 
conditions, the second based on fuzzyfied conditions and the third one 
based on Dempster-Shafer theory are addressed. The results obtained 
with three methods are compared and presented on the example image of 
the real scene.

Krishnapuram, R. “A Belief Maintenance 
Scheme for Hierarchical 
Knowledge-Based Image-
Analysis Systems.”

International Journal of 
Intelligent Systems 6(7): 
699-715 (1991).

Image Processing, 
Knowledge-base, 
Decision-Making

In this article, we show how the Dempster-Shafer theoretic concepts of 
refinement and coarsening can be used to aggregate and propagate 
evidence in a multi-resolution image analysis system based on a 
hierarchical knowledge base.

Lohmann, G. “Evidential reasoning 
approach to the 
classification of satellite 
images.”

Forschungsbericht Deutsche 
Forschungsanstalt fuer Luft 
und Raumfahrt, DLR FB: 
91-29 (1991).

Image Processing, 
Satellite, 
Classification, 
Ecological 
Mapping

A new algorithm for classifying satellite images is presented. The new 
algorithm called EBIS (Evidence-Based Interpretation of Satellite 
Images) - will be used for ecological mappings. In EBIS, a feature space 
is regarded as a source of evidence in the sense of the Dempster-Shafer-
theory, and methods of evidential reasoning are used for combining 
evidence stemming from several disparate sources. This makes EBIS 
particularly useful for integrating different data sources such as various 
sensors, digital elevation models or other types of ancillary data.

Mulhem, P., D. 
Hong, et al.

“Labeling update of 
segmented images using 
conceptual graphs and 
Dempster-Shafer theory of 
evidence.”

IEEE International 
Conference on Multi Media 
and Expo(II): 1129-1132 
(2000).

Image Processing, 
Object Recognition

We propose here to use conceptual graphs (a knowledge representation 
formalism that allow fast processing) with Dempster-Shafer theory of 
evidence to update original labeling coming from a segmentation that 
labels image regions out of context.
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Payne, M. G., Q. 
Zhu, et al.

“Using the Dempster-
Shafer reasoning model to 
perform pixel-level 
segmentation on color 
images.”

Proceedings of SPIE The 
International Society for 
Optical Engineering: 26-35 
(1992).

Image Processing We present an algorithm that performs pixel-level segmentation based 
upon the Dempster-Shafer theory of evidence. The algorithm fuses image 
data from the multichannels of color spectra. Dempster-Shafer reasoning 
is used to drive the evidence accumulation process for pixel level 
segmentation of color scenes.

Peddle, D. R. “Mercury-Circle-Plus : An 
Evidential Reasoning 
Image Classifier.”

(1995). Computers & 
Geosciences 21(10): 1163-

Image Processing, 
Software, 
Geoscience, 
Environment, 
Classification

MERCURY circle plus is a multisource evidential reasoning 
classification software system based on the Dempster-Shafer theory of 
evidence. The design and implementation of this software package is 
described for improving the classification and analysis of multisource 
digital image data necessary for addressing advanced environmental and 
geoscience applications. An example of classifying alpineland cover and 
permafrost active layer depth in northern Canada is presented to illustrate 
the use and application of these ideas.

Pinz, A., M. 
Prantl, et al.

“Active fusion : A new 
method applied to remote 
sensing image 
interpretation.”

Pattern Recognition Letters 
17(13): 1349-1359 (1996).

Image Processing, 
Artificial Vision

In this paper, we introduce a new method, termed ''active fusion'', which 
provides a common framework for active selection and combination of 
information from multiple sources in order to arrive at a reliable result at 
reasonable costs. The implementation of active fusion on the basis of 
probability theory, the Dempster-Shafer theory of evidence and fuzzy 
sets is discussed.

Sarma, L. C. S. 
and V. V. S. 
Sarma

“A Prototype Expert-
System for Interpretation 
of Remote-Sensing Image 
Data.”

Sadhana-Academy 
Proceedings in Engineering 
Sciences 19(pt.1)): 93-111 
(1994).

Image Processing, 
Knowledge-base, 
Classification, 
Geography

In this paper, we have critically studied visual interpretation processes 
for urban land cover and land use information. The Dempster-Shafer 
theory of evidence is used to combine evidence from various 
interpretation keys for identification of generic class and subclass of a 
logical image object. Analysis of some Indian Remote Sensing Satellite 
images has been done using various basic probability assignments in 
combination with learning.
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Tupin, F., I. 
Bloch, et al.

“A first step toward 
automatic interpretation of 
SAR images using 
evidential fusion of several 
structure detectors.”

IEEE Transactions on 
Geoscience and Remote 
Sensing 37(3/pt.1): 1327-
1343 (1999).

Image Processing, 
Radar, Cartography

We propose a method aiming to characterize the spatial organization of 
the main cartographic elements of a synthetic aperture radar (SAR) 
image and thus giving an almost automatic interpretation of the scene. 
Our approach is divided into three main steps which build the whole 
image interpretation gradually. The first step consists of applying low-
level detectors taking the speckle statistics into account and extracting 
some raw information from the scene. The detector responses are then 
fused in a second step using Dempster-Shafer theory, thus allowing the 
modeling of the knowledge that we have about operators, including 
possible ignorance and their limits. A third step gives the final image 
interpretation using contextual knowledge between the different classes, 
Results of the whole method applied to different SAR images and to 
various landscapes are presented.

Vancleynen-     
breugel, J., S. A. 
Osinga, et al.

“Road Extraction from 
Multitemporal Satellite 
Images by an Evidential 
Reasoning Approach.”

Pattern Recognition Letters 
12(6): 371-380 (1991).

Image Processing, 
Satellite

Road networks extracted from multi-temporal SPOT images of the same 
scene are matched to collect evidence for individual road segments. The 
Dempster-Shafer theory is applied to find a degree of confirmation for a 
road segment in one network based on its corresponding lines in the 
other networks.

Vannooren-     
berghe, P., O. 
Colot, et al.

“Color image segmentation 
using Dempster-Shafer's 
theory.”

IEEE International 
Conference on Image 
Processing 4: 300-304 
(1999).

Image Processing, 
Biomedical 
Engineering

In this paper, we propose a color image segmentation method based on 
the Dempster-Shafer's theory. The basic idea consists in modeling the 
color information in order to have the features of each region in the 
image. This model, obtained on training sets extracted from the intensity, 
allows for the reduction of the classification errors concerning each pixel 
of the image. The proposed segmentation algorithm has been applied to 
synthetic and biomedical images in order to illustrate the methodology.

Verly, J. G., R. L. 
Delanoy, et al.

“Model-Based System for 
Automatic Target 
Recognition from Forward-
Looking Laser-Radar 
Imagery.”

Optical Engineering 31(12): 
2540-2552 (1992).

Image Processing, 
Target Recognition, 
Radar

We describe an experimental model-based automatic target recognition 
(ATR) system, called XTRS, for recognizing 3-D vehicles in real or 
synthetic, ground-based or airborne, 2-D laser-radar range and intensity 
images
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Verly, J. G., B. 
D. Williams, et 
al.

“Automatic Object 
Recognition from Range 
Imagery Using Appearance 
Models.”

Image Processing, 
Radar, Object 
Recognition

A system for the automatic recognition of objects in real infrared-radar 
range imagery is described. Recognition consists of matching symbolic 
range silhouette descriptions against appearance models of known 
objects and then deciding among the possible objects using the Dempster-
Shafer theory of evidence. Both contour-based and region-based 
silhouette extraction and recognition showed good results.

Wang, Y. and D. 
L. Civco

“Evidential reasoning-
based classification of 
multi-source spatial data 
for improved land cover 
mapping.”

Canadian Journal of 
Remote Sensing 20: 381-
395 (1994).

Image Processing, 
Classification, 
Cartography

In this paper, a two-stage distribution-free classification strategy was 
adopted to incorporate ancillary data in remote sensing image 
classification.. The approach provides a scheme that can readily pool 
attribute information from multi-source spatial data.

Wilkinson, G. G. 
and J. Megier

“Evidential reasoning in a 
pixel classification 
hierarchy. A potential 
method for integrating 
image classifiers and 
expert system rules based 
on geographic context.”

International Journal of 
Remote Sensing 11: 1963-
1968, (1990).

Image Processing, 
Classification, 
Expert System, 
Geography

This paper presents a technique for integrating diverse sources of 
evidence about pixel or segment classification using the belief function 
approach of the Dempster-Shafer theory of evidential reasoning. A 
description of the algorithm is provided and a case study is given to 
illustrate the potential of the method for combining output from image 
classifers, geographic information systems and expert system rules 
concerning geographic context.

Yamane, S., K. 
Aoki, et al.

“Model-Based Object 
Recognition Using Basic 
Probability Assignment.”

Systems and Computers in 
Japan 26(12): 49-57 (1995).

Image Processing, 
Object Recognition

A method of object recognition is proposed based on Dempster-Shafer 
theory (DS theory), which can treat the ambiguity of image data.
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Andress, K. M. “Evidential reconstruction 
of vessel trees from 
rotational angiograms.”

IEEE International 
Conference on Image 
Processing 3: 385-389, 
(1998).

Medicine, Digital 
Imagery

The Dempster-Shafer theory of evidence is used to combine information 
about location of the vessels from the different projections contained in 
the digital subtraction angiogram (DSA) sequence.

MEDICAL APPLICATIONS
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Bell, D. A., J. W. 
Guan, et al.

“Using the Dempster-
Shafer orthogonal sum for 
reasoning which involves 
space.”

Kybernetes 27(4-5): 511-&, 
(1998).

Spatial Reasoning The objects of interest here are geometric forms, and we can encode 
rectangular and other shaped forms using hexadecimal numbers 
according to shapes and positions. Boolean algebra of such shapes can 
then be used directly in Dempster-Shafer-type reasoning exercised. 
Discusses how medical and other fields can gain from this approach.

Boston, J. R., L. 
Baloa, et al.

“Combination of data 
approaches to heuristic 
control and fault 
detection.”

IEEE Conference on 
Control Applications 
Proceedings 1: 98-103, 
(2000).

Control, Detection, 
Medicine

Data fusion techniques for ventricular suction detection in a heart assist 
device based on Bayesian, fuzzy logic and Dempster-Shafer theory were 
evaluated. Fusion techniques based on fuzzy logic and Dempster-Shafer 
theory provide a measure of uncertainty in the fused result. This 
uncertainty measure can be used in the control process, and it can also be 
used to identify faults in pump operation.

Cios, K. J., R. E. 
Freasier, et al.

“An Expert System for 
Diagnosis of Coronary-
Artery Stenosis Based on 
Ti-201 Scintigrams Using 
the Dempster-Shafer 
Theory of Evidence.”

Computer Applications in 
the Biosciences 6(4): 333-
342, (1990).

Lefevre, E., O. 
Colot, et al.

“Knowledge modeling 
methods in the framework 
of evidence theory. An 
experimental comparison 
for melanoma detection.”

Proceedings of the IEEE 
International Conference on 
Systems, Man and 
Cybernetics 4: 2806-2811, 
(2000).

Medical Imaging The aim of this paper is to present modeling methods of knowledge for 
the initialization of belief functions from Dempster-Shafer theory. 
Moreover, an experimental comparison of these different modeling on 
real data extracted from images of dermatological lesions is presented.

Medina, R., M. 
Garreau, et al.

“Evidence combination 
approach to reconstruction 
of the left ventricle from 
two angiographic views.”

Medicine, Image A left ventricle three-dimensional reconstruction method from two 
orthogonal angiographic projections is described based on the cylindrical 
closure operation and the Dempster-Shafer Theory.
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Principe, J. C., S. 
K. Gala, et al.

“Sleep staging automaton 
based on the theory of 
evidence.”

IEEE Transactions on 
Biomedical Engineering 36: 
503-509(1989).

Medicine, 
Biomedical 
Engineering, Signal 
Information

The Dempster-Shafer theory of evidence is used to develop a model for 
automated sleep staging by combining signal information and human 
heuristic knowledge in the form of rules.

Suh, D. Y., R. L. 
Eisner, et al..

“Knowledge-based system 
for boundary detection of 
four-dimensional cardiac 
magnetic resonance image 
sequences.”

IEEE Transactions on 
Medical Imaging 12(1): 65-
72 (1993).

Medicine, 
Knowledge-based 
system, Image, 
Multiple sources

A strategy for a knowledge-based system to detect the interior and 
exterior boundaries of the left ventricle from time-varying cross-sectional 
images obtained by ECG-gated magnetic resonance imaging uses both 
fuzzy set theory and Dempster and Shafer theory to manage the 
knowledge and to control the flow of system information.

Suh, D. Y., R. M. 
Mersereau, et al.

“A system for knowledge-
based boundary detection 
of cardiac magnetic 
resonance image 
sequences.”

Proceedings ICASSP, IEEE 
International Conference on 
Acoustics, Speech and 
Signal Processing 4: 2341-
2344 (1990).

Medicine, 
Knowledge-based 
system, Image, 
Boundary 
Detection

A knowledge-based system is described for boundary detection from 
magnetic resonance image sequences of a beating heart. It is shown that 
the Dempster/Shafer theory and fuzzy set theory can be used for control 
of the system as well as for labeling objects in the images.
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Cai, D., M. F. 
McTear, et al.

“Knowledge discovery in 
distributed databases using 
evidence theory.”

International Journal of 
Intelligent Systems 15(8): 
745-761 (2000).

Knowledge 
Discovery, 
Distributed 
Databases

Distributed databases allow us to integrate data from different sources 
which have not previously been combined. Evidential functions are 
suited to represent evidence from different sources. Previous work has 
defined linguistic summaries to discover knowledge by using fuzzy set 
theory and using evidence theory to define summaries. In this paper we 
study linguistic summaries and their applications to knowledge discovery 
in distributed databases.
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Cortes Rello, E. 
and F. Golshani

“Uncertain reasoning using 
the Dempster-Shafer 
method. An application in 
forecasting and marketing 
management.”

Expert Systems 7: 9-18 
(1990).

Forecasting, 
Marketing, 
Management, 
Expert Systems

The intended purpose of this article is twofold: to study techniques for 
uncertainty management in expert systems, particularly the Dempster-
Shafer theory of belief; and to use this method in the construction of an 
expert system for the field of forecasting and marketing management.

Gillett, P. R. “Monetary unit sampling: a 
belief-function 
implementation for audit 
and accounting 
applications.”

International Journal of 
Approximate Reasoning 
25(1): 43-70, (2000).

Finance 
Applications

Audit procedures may be planned and audit evidence evaluated using 
monetary unit sampling (MUS) techniques within the context of the 
Dempster-Shafer theory of belief functions.

Golshani, F., E. 
Cortes Rello, et 
al.

“Dynamic route planning 
with uncertain 
information.”

Knowledge Based Systems 
9: 223-232, (1996).

Autonomous 
Vehicle Navigation

The paper describes the design of a route planning system, called RUTA-
100, that works with incomplete information obtained from many 
unreliable knowledge sources and plans an optimal route by minimizing 
both danger and distance. The Dempster-Shafer theory of belief is used 
as the underlying formalism to pool and represent uncertain information 
and reason with it.

Isaksen, G. H. 
and C. S. Kim

“Interpretation of 
molecular geochemistry 
data by the application of 
artificial intelligence 
technology.”

Organic Geochemistry 26(1-
2): 1-10, (1997).

Molecular 
Geochemistry

This paper describes the application of fuzzy logic and Dempster-Shafer 
theory to the interpretation of molecular geochemistry data with respect 
to key exploration parameters, such as thermal maturity, organic facies 
(organic matter type and depositional environment of the source rock(s)), 
geological age, and the degree of biodegradation.

Ji, Q., M. M. 
Marefat, et al.

“Evidential reasoning 
approach for recognizing 
shape features.”

Manufacturing, 
Feature Extraction

This paper introduces an evidential reasoning based approach for 
recognizing and extracting manufacturing features from solid model 
description of objects. The main contributions of our approach include 
introducing the evidential reasoning (Dempster-Shafer theory) to the 
feature extraction domain and developing the theory of principle of 
association to overcome the mutual exclusiveness assumption of the 
Dempster-Shafer theory.
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Ji, Q., M. M. 
Marefat, et al.

“Dempster-Shafer and 
Bayesian networks for 
CAD-based feature 
extraction: A comparative 
investigation and analysis.”

Proceedings of the National 
Conference on Artificial 
Intelligence 2, (1994).

Manufacturing, 
Feature Extraction

The paper evaluates the performance the Dempster-Shafer theory (DS) 
and the Bayesian Belief Network (BBN) with regard to their ability to 
extract manufacturing features from the solid model description of 
objects.

Kawahara, A. A. 
and P. M. 
Williams

“An Application of 
Dempster-Shafer Theory to 
the Assessment of Biogas 
Technology.”

Energy 17(3): 205-214, 
(1992).

Biogas Technology We apply the Dempster-Shafer theory of belief functions to the 
assessment of biogas technology in rural areas of Brazil. Two case 
studies are discussed in detail and the results compared with a more 
conventional method of project appraisal. On the computational side, it is 
shown how local computation and dimensionality reduction, in cases 
where certain relations hold between variables, can increase efficiency.

Lalmas, M. “Dempster-Shafer's theory 
of evidence applied to 
structured documents: 
Modelling uncertainty.”

SIGIR Forum: 110-118, 
(1997).

Document 
Retrieval, 
Document 
Structure, 
Information 
Retrieval, Indexing

Chiaramella et al advanced a model for indexing and retrieving 
structured documents. This paper adds to this model a theory of 
uncertainty, the Dempster-Shafer theory of evidence. It is shown that the 
theory provides a rule, the Dempster's combination rule, that allows the 
expression of the uncertainty with respect to parts of a document, and 
that is compatible with the logical model developed by Chiaramella et al.

Lalmas, M. and I. 
Ruthven

“Representing and 
retrieving structured 
documents using the 
Dempster-Shafer theory of 
evidence: Modelling and 
evaluation.”

Journal of Documentation 
54(5): 529-565, (1998).

Document 
Retrieval, 
Document 
Structure, 
Information 
Retrieval, Indexing

In this paper we report on a theoretical model of structured document 
indexing and retrieval based on the Dempster-Shafer Theory of 
Evidence. This includes a description of our model of structured 
document retrieval, the representation of structured documents, the 
representation of individual components, how components are combined, 
details of the combination process, and how relevance is captured within 
the model.
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Laskey, K. B. and 
M. S. Cohen

“Applications of the 
Dempster-Shafer Theory of 
Evidence for Simulation.”

Winter Simul Conf Proc: 
440-444, (1986).

Simulation The key feature of the Dempster-Shafer theory is that precision in inputs 
is required only to a degree justified by available evidence. The output 
belief function contains an explicit measure of the firmness of output 
probabilities. The authors give an overview of belief function theory, 
presents the basic methodology for application to simulation, and gives a 
simple example of a simulation involving belief functions.

Ling, X. and W. 
G. Rudd

“Combining opinions from 
several experts.”

Applied Artificial 
Intelligence 3: 439-452, 
(1989).

Expert Opinion, 
Opinion Pooling

We develop an approach for combining expert opinions that formally 
allows for stochastic dependence. This approach is based on an extension 
of the Dempster-Shafer theory, a well-known calculus for reasoning with 
uncertainty in artificial intelligence.

Luo, W. B. and 
B. Caselton

“Using Dempster-Shafer 
theory to represent climate 
change uncertainties.”

Journal of Environmental 
Management 49(1): 73-93, 
(1997).

Decision Analysis, 
Climate Change, 
Water Resource 
Projects

This paper presents, along with some elementary examples, aspects of 
the Dempster-Shafer approach that contribute to its appeal when dealing 
with weak subjective and data-based information sources that have a 
bearing on climate change.

Mellouli, K. and 
Z. Elouedi

“Pooling expert opinions 
using Dempster-Shafer 
theory of evidence.”

Proceedings of the IEEE 
International Conference on 
Systems, Man and 
Cybernetics 2: 1900-1905, 
(1997).

Expert Opinion, 
Opinion Pooling

In this paper, we propose a method based on Dempster-Shafer theory of 
evidence, to pool expert judgements about the hypotheses of the studied 
field and to get an assessment and even a ranking of the different 
scenarios.

Schocken, S. and 
R. A. Hummel

“On the use of the 
Dempster Shafer model in 
information indexing and 
retrieval applications.”

International Journal of 
Man Machine Studies 
39(5): 843-879, (1993).

Information 
Retrieval, 
Information 
Indexing

This paper has two objectives: (i) to describe and resolve some caveats in 
the way the Dempster Shafer theory is applied to information indexing 
and retrieval, and (ii) to provide an intuitive interpretation of the 
Dempster Shafer theory, as it unfolds in the simple context of a canonical 
indexing model.
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Sy, B. K. and J. 
R. Deller, Jr.

“AI-based communication 
system for motor and 
speech disabled persons: 
Design methodology and 
prototype testing.”

IEEE Transactions on 
Biomedical Engineering 36: 
565-571, (1989).

Communication 
System, 
Optimization

The device is centered on a knowledge base of the grammatical rules and 
message elements. A belief reasoning scheme based on both the 
information from external sources and the embedded knowledge is used 
to optimize the process of message search. The search for the message 
elements is conceptualized as a path search in the language graph, and a 
special frame architecture is used to construct and to partition the graph. 
Bayesian belief reasoning from the Dempster-Shafer theory of evidence 
is augmented to cope with time-varying evidence.
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Basti, Egrave, et 
al.

“Methods for multisensor 
classification of airborne 
targets integrating evidence 
theory.”

Aerospace Science and 
Technology 2(6): 401-
411(1998).

Multisensor 
Classification, 
Airborne Target 
Classification

This paper proposes to analyze methods applied to the multisensor
classification of airborne targets using Dempster-Shafer theory. Several
simulations relating to an airborne target classification problem are
presented.

Belloir, F., R. 
Huez, et al.

“A smart flat-coil eddy-
current sensor for metal-
tag recognition.”

Measurement Science & 
Technology 11(4): 367-374 
(2000).

Multiple Sensors, 
Pattern Recognition

This paper describes a smart eddy-current sensor for locating and
identifying metal tags used to recognize buried pipes. Intelligent pattern-
recognition methods and their combination by the Dempster-Shafer
theory of evidence are briefly presented.

Braun, J. J. “Dempster-Shafer Theory 
and Bayesian reasoning in 
multisensor data fusion.”

Proceedings of SPIE The 
International Society for 
Optical Engineering 4051: 
255-266 (2000).

Multiple sensors, 
Classification

This paper presents a Monte Carlo simulation approach for a
comparative analysis of a Dempster-Shafer Theory based and a Bayesian
multisensor data fusion in the classification task domain, including the
implementation of both formalisms, and the results of the Monte Carlo
experiments of this analysis.
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Coombs, K., D. 
Freel, et al.

“Using Dempster-Shafer 
methods for object 
classification in the theater 
ballistic missile 
environment.”

Proceedings of SPIE The 
International Society for 
Optical Engineering 3719: 
103-113, (1999).

Sensors, Ballistic 
Missile 
Discrimination

The Dempster Shafer (DS) Theory of Evidential Reasoning may be 
useful in handling issues associated with theater ballistic missile 
discrimination. This paper highlights the Dempster-Shafer theory and 
describes how this technique was implemented and applied to data 
collected by two infrared sensors on a recent flight test.

Fabre, S., A. 
Appriou, et al.

“Sensor Fusion Integrating 
Contextual Information.”

Multiple Sensors The Dempster-Shafer theory of evidence is used to integrate information
from the context of the sensor acquisitions.

Jiang, J., J. Guo, 
et al.

“Multisensor multiple-
attribute data association.”

Multiple Sensors, 
Target 
Identification, 
Simulation

A multisensor multiple-attribute data association method is presented
based on Dempster and Shafer (D-S) evidence theory. This approach is
illustrated by simulations involving multisensor multiple targets in a
dense clutter environment.

Pigeon, L., B. 
Solaiman, et al.

“Dempster-Shafer theory 
for multi-satellites 
remotely-sensed 
observations.”

Proceedings of SPIE The 
International Society for 
Optical Engineering 4051: 
228-236, (2000).

Sensors, Satellites This study suggests a slight variation of the Dempster-Shafer theory 
using observation qualification in multi-sensor contexts. The uncertainty 
is placed on the rules instead of on sources. Thus, sensor's specialization 
is taken into account. By this approach, the masses are not directly 
attributed on the frame of discernment elements, but on the rules 
themselves that become the sources of knowledge, in the context of 
Dempster combining rule. It proposes then an approach for observation 
qualification in a multi-sensor context, as well as it suggests a new path 
for the delicate task of mass attribution.

Safranek, R. J., S. 
Gottschlich, et al.

“Evidence accumulation 
using binary frames of 
discernment for 
verification vision.”

IEEE Transactions on 
Robotics and Automation 6: 
405-417, (1990).

Sensors, Artificial 
Vision

Vision sensor output can be processed to yield a multitude of low-level 
measurements, where each is inherently uncertain, which must somehow 
be combined to verify the locations of an object. It is shown that this 
combination can be accomplished via Dempster-Shafer theory using 
binary frames of discernment (BFODs).
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Tang, Y. C. and 
C. S. G. Lee

“A Geometric Feature 
Relation Graph 
Formulation for Consistent 
Sensor Fusion.”

IEEE Transactions on 
Systems Man and 
Cybernetics 22(1): 115-129, 
(1992).

Identification, 
Sensors, 
Optimization, 
Simulation

The paper presents an effective and reliable procedure for identifying 
corresponding measurements of features in the presence of sensory 
uncertainty based on both geometric and topological constraints, and a 
nonlinear programming formulation for maintaining consistency in a 
network of relations is proposed. The Dempster-Shafer theory of belief 
functions is applied to make the utilization of topological constraints in 
achieving reliable identification.

Tang, Y. C. and 
C. S. G. Lee

“Optimal Strategic 
Recognition of Objects 
Based on Candidate 
Discriminating Graph with 
Coordinated Sensors.”

IEEE Transactions on 
Systems Man and 
Cybernetics 22(4): 647-661, 
(1992).

Object 
Recognition, 
Identification, 
Optimization, 
Sensors, Simulation

Reliable and knowledge-based recognition of objects is obtained by 
applying the Dempster-Shafer theory of belief functions. Computer 
simulations were performed to verify the feasibility and to analyze the 
performance of the optimal strategic recognition of objects.

Tchamova, A. “Evidence reasoning 
theory with application to 
the identity estimation and 
data association systems.”

Mathematics and 
Computers in Simulation 
43: 139-142, (1997).

Sensors, Data 
Association 
Systems, 
Simulation

The theory of Dempster-Shafer is discussed with emphasis placed on its 
use grown from the field of multisensor data fusion and data association 
systems. The aims of this paper are to investigate: how the structure of 
multisensor integration systems influences over the accuracy of objects 
identification process; to determine the dependence of the degree of 
uncertainty on the speed of receiving best evidential intervals; to 
determine what is the impact of increasing number of sensors on the 
calculation time.

Wang, G., Y. He, 
et al.

“Adaptive sensor 
management in multisensor 
data fusion system.”

Chinese Journal of 
Electronics 8: 136-139 
(1999).

Multiple Sensors, 
Simulation

Sensor management has been an active research area in recent years.
Based on fuzzy set theory and the Dempster-Shafer theory of
mathematical evidence, adaptive sensor management schemes in
multisensor data fusion system are presented by using individual sensor's
performance.

Zhang, R., G. Gu, 
et al.

“AUV obstacle-avoidance 
based on information 
fusion of multi-sensors.”

Multiple Sensors, 
Autonomous 
Vehicles

This paper presents a method of AUV (Autonomous Underwater
Vehicle) obstacle avoidance based on information fusion of multi-
sensors. Dempster Shafer's theory of evidence is used to judge whether
an obstacle exists ahead of an AUV.
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Cronhjort, B. T. 
and A. Mustonen

“Computer Assisted 
Reduction of Vulnerability 
of Data Centers.”

Risk Control, 
Expert Systems

The authors proceed to suggest an expert systems approach for the 
evaluation of EDP risks, and for risk control. A methodology based on 
the Dempster-Shafer Theory of Evidence is proposed, and the essential 
principles for the implementation of such an expert system are outlined.

Holmberg, J., P. 
Silvennoinen, et 
al.

“Application of the 
Dempster-Shafer Theory of 
Evidence for Accident 
Probability Estimates.”

Reliability Engineering  & 
System Safety 26(1): 47-58, 
(1989).

Risk Analysis

Ibrahim, A. and 
B. M. Ayyub

Uncertainties in risk-based 
inspection of complex 
systems.

Analysis and Management 
of Uncertainty:  Theory and 
Applications. B. M. Ayyub, 
M. M. Gupta and L. N. 
Kanal. New York, North-
Holland. 13: 247-262, 
(1992).

Risk Analysis, 
Complex Systems

Catastrophic industrial failures over the past decade highlight the societal 
need to use more explicitly risk-based methods and procedures with 
uncertainty analysis for these systems.  Three measures of uncertainty are 
discussed and several examples to illustrate their applications are 
presented.  Logic diagrams and techniques were utilized to propagate 
uncertainties for the process of assessing the magnitude of consequences 
due to failure and the uncertainty associated with them.

Inagaki, T. “Interdependence between 
Safety-Control Policy and 
Multiple-Sensor Schemes 
Via Dempster-Shafer 
Theory.”

IEEE Transactions on 
Reliability 40(2): 182-188, 
(1991).

Reliability, Safety, 
Fault Warning

This paper explores the application of the Dempster-Shafer theory in 
system reliability and safety. Inappropriate application of the Dempster-
Shafer theory to safety-control policies can degrade plant safety. This is 
proven in two phases: 1) A new unified combination rule for fusing 
information on plant states given by independent knowledge sources such
as sensors or human operators is developed. 2) Combination rules can 
not be chosen in an arbitrary manner; ie, the best choice of combination 
rules depends on whether the safety-control policy is fault-warning or 
safety-preservation.

RISK AND RELIABILITY
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Clerentin, A., L. 
Delahoche, et al.

“Cooperation between two 
omnidirectional perception 
systems for mobile robot 
localization.”

IEEE International 
Conference on Intelligent 
Robots and Systems 2: 
1499-1504 (2000).

Multiple Sensors, 
Robotics

In this paper, an absolute localization paradigm based on the cooperation
of an omnidirectional vision system composed of a conical mirror and a
CCD camera and a low cost panoramic range finder system is reported.
We present an absolute localization method that uses three matching
criteria fused by the combination rules of the Dempster-Shafer theory.

Graham, J. H. “Sensory-Based 
Safeguarding of Robotic 
Systems.”

International Journal of 
Robotics & Automation 
9(4): 141-148, (1994).

Robotics, Sensors, 
Decision-Making

This paper presents a multilevel system for contributing to robot safety 
by the use of sensory information in partially defined environments, 
including provision for sensory preprocessing, sensory fusion, and high-
level decision making. Sensory fusion is achieved by using Dempster's 
rule of combination on a set of belief fuctions generated from the input 
sensory data.

Hughes, K. and 
R. R. Murphy

“Ultrasonic robot 
localization using 
Dempster-Shafer theory.”

Proceedings of SPIE The 
International Society for 
Optical Engineering: 2-11, 
(1992).

Robotics, Sensors In this paper we present a method for ultrasonic robot localization 
without a priori world models utilizing the ideas of distinctive places and 
open space attraction. This method was incorporated into a move-to-
station behavior, which was demonstrated on the Georgia Tech mobile 
robot. The key aspect of our approach was to use Dempster-Shafer 
theory to overcome the problem of the uncertainty in the range 
measurements returned by the sensors.

Luo, Z. and D. Li “Multi-source information 
integration in intelligent 
systems using the 
plausibility measure.”

IEEE International 
Conference on Multisensor 
Fusion and Integration for 
Intelligent Systems: 403-
409, (1994).

Robotics, Artificial 
Vision, Object 
Recognition, 
Sensors

In the paper, we develop a new multisource information fusion scheme 
using the plausibility measure. The method avoids using Dempster's rule 
of combination, so as to overcome the intractability of Dempster-Shafer 
computations, allowing the theory to be feasible in many more 
applications. A simple robotic vision system with object recognition data 
from multisensor is presented to highlight benefits of the new method.

Murphy, R. R. “Dempster-Shafer theory 
for sensor fusion in 
autonomous mobile 
robots.”

IEEE Transactions on 
Robotics and Automation 
14(2): 197-206 (1998).

Multiple Sensors, 
Robotics

This article discusses Dempster-Shafer (DS) theory in terms of its utility
for sensor fusion for autonomous mobile robots, It exploits two little
used components of DS theory: the weight of conflict metric and the
enlargement of the frame of discernment.

ROBOTICS
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Murphy, R. R. 
and E. Rogers

“Estimating time available 
for sensor fusion exception 
handling.”

Muliple Sensors, 
Robotics

In this paper, we consider the impact of time for teleoperation
applications where a remote robot attempts to autonomously maintain
sensing in the presence of failures yet has the option to contact the local
for further assistance. Time limits are determined by using evidential
reasoning with a novel generalization of Dempster-Shafer theory.

Puente, E. A., L. 
Moreno, et al.

“Analysis of data fusion 
methods in certainty grids 
application to collision 
danger monitoring.”

IECON Proceedings 2: 
1133-1137, (1991).

Robotics, 
Monitoring

The authors focus on the use of the occupancy grid representation to 
maintain and combine the information acquired from sensors about the 
environment. This information is subsequently used to monitor the robot 
collision danger risk and take into account that risk in starting the 
appropriate maneuver. The occupancy grid representation uses a 
multidimensional tessellation of space into cells, where each cell stores 
some information about its state. Two main approaches have been used 
to model the occupancy of a cell: probabilistic estimation and the 
Dempster-Shafer theory of evidence. Probabilistic estimation and some 
combination rules based on the Dempster-Shafer theory of evidence are 
analyzed and their possibilities compared.

Ribo, M. and A. 
Pinz

“A comparison of three 
uncertainty calculi for 
building sonar-based 
occupancy grids.”

Robotics and Autonomous 
Systems 35(3-4): 201-209, 
(2001).

Robotics, Sensors In this paper, we describe and compare three different uncertainty calculi 
techniques to build occupancy grids of an unknown environment using 
sensory information provided by a ring of ultrasonic range-finders. These 
techniques are based on Bayesian theory, Dempster-Shafer theory of 
evidence, and fuzzy set theory.
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Utete, S. W., B. 
Barshan, et al.

“Voting as validation in 
robot programming.”

International Journal of 
Robotics Research 18(4): 
401-413, (1999).

Robotics, Target 
Identification, 
Sensors, Decision-
Making

This paper investigates the use of voting as a conflict-resolution 
technique for data analysis in robot programming. Dispersed sensors take 
decisions on target type, which must then be fused to give the single 
group classification of the presence or absence and type of a target 
Dempster-Shafer evidential reasoning is used to assign a level of belief to 
each sensor decision. The decisions are then fused by two means. Using 
Dempster's rule of combination, conflicts are resolved through a group 
measure expressing dissonance in the sensor views.

Wu, Y., J. Huang, 
et al.

“Mobile robot obstacle 
detection and environment 
modeling with sensor 
fusion.”

Zidonghua Xuebao/Acta 
Automatica Sinica 23: 641-
648, (1997).

Robotics, 
Environment 
Detection,

Modeling 2D environment and road detection for mobile robot by fusing 
color and range image information are discussed. The environment 
model is constructed by using multi-resolution 2D grid representation, 
which is proved to be a better solution to the tradeoff between accuracy 
and computation speed. The fusion algorithm is designed based on a 
generalized Dempster-Shafer theory of evidence (DSTE), which is 
efficient in dealing with dependent information.
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Boston, J. R. “Signal Detection Models 
Incorporating Uncertainty: 

Sensitivity to Parameter 
Estimates.”

Uncertainty Modelling and 
Analysis:  Theory and 

Applications. B. M. Ayyub 
and M. M. Gupta. New 
York, Elsevier. 17: 459-

476(1994).

Classification, 
Signal Detection, 

Sensitivity Analysis

This chapter develops models for signal detection in noisy waveforms, 
based on Dempster-Shafer theory and on fuzzy logic, that classify 
waveforms as signal-present, signal-absent, or uncertain.  The 
performances of the models were evaluated using simulated sensory 
evoked potential data and compared to a Bayesian maximum likelihood 
detector.  The effects of errors in estimates of the statistical parameters of 
the wave forms are considered.
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Boston, J. R. “A signal detection system 
based on Dempster-Shafer 
theory and comparison to 
fuzzy detection.”

IEEE Transactions on 
Systems Man and 
Cybernetics Part C-
Applications and Reviews 
30(1): 45-51, (2000).

Classification, 
Signal Detection

This paper describes a signal detection algorithm based on Dempster-
Shafer theory: The detector combines evidence provided by multiple 
waveform features and explicitly considers uncertainty in the detection 
decision, The detector classifies waveforms as including a signal, not 
including a signal, or being uncertain, in which case no conclusion 
regarding presence or absence of a signal is drawn.

Chao, J. J. and C. 
C. Lee

“An Efficient Direct-
Sequence Signal Detector 
Based on Dempster-Shafer 
Theory.”

IEEE Transactions on 
Communications 38(6): 868-
874, (1990).

Chao, J. J., C. M. 
Cheng, et al.

“A moving target detector 
based on information 
fusion.”

Target Detection, 
Radar, Signals

Moving target detector (MTD) related multiple-hypothesis testing is 
considered, and the Dempster-Shafer theory is applied to this problem. 
Feature parameters are extracted from radar signals, and the value of 
each feature parameter is interpreted in terms of Dempster-Shafer's belief 
or disbelief for the associated hypotheses. Using Dempster's combining 
rule, a generalized likelihood ratio test is derived.

Hughes, R. C. 
and J. N. 
Maksym

“Acoustic Signal 
Interpretation Reasoning 
with Non-Specific and 
Uncertain Information.”

Pattern Recognition 18: 475-
483, (1984).

Identification, 
Expert Systems

An expert system approach to identifying the sources of underwater 
acoustic signals is described. In order to deal with non-specific and 
uncertain evidence in the presence of an unknown number of signal 
sources, we develop an inference network approach which is based on 
the Dempster-Shafer theory of evidence.

Jang, L.-W. and 
J.-J. Chao

“Information fusion 
algorithm for data 
association in multitarget 
tracking.”

Target Tracking, 
Radar, Sonar

We employ the technique of uncertain information processing to solve 
problems of multitarget tracking. We consider the data association 
problem as a fuzzy partition. Dempster-Shafer theory is used to evaluate 
the plausibilities of the association events. Using the plausibilities, a 
fuzzy partition is performed.
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