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To solve the invalidation problem of Dempster-Shafer theory of evidence (DS) with high con
ict in multisensor data fusion,
this paper presents a novel combination approach of con
ict evidence with di�erent weighting factors using a new probabilistic
dissimilarity measure. Firstly, an improved probabilistic transformation function is proposed to map basic belief assignments
(BBAs) to probabilities. 	en, a new dissimilarity measure integrating fuzzy nearness and introduced correlation coe�cient is
proposed to characterize not only the di�erence between basic belief functions (BBAs) but also the divergence degree of the
hypothesis that two BBAs support. Finally, the weighting factors used to reassign con
icts on BBAs are developed and Dempster’s
rule is chosen to combine the discounted sources. Simple numerical examples are employed to demonstrate the merit of the
proposedmethod.	rough analysis and comparison of the results, the new combination approach can e�ectively solve the problem
of con
ict management with better convergence performance and robustness.

1. Introduction

Multisensor data fusion is a technology that combines infor-
mation from several sources to form a unied picture [1].
Dempster-Shafer (DS) theory of evidence is one of the most
prevalent methods for data fusion and is rstly proposed by
Dempster in the 1960s [2] and further developed by Shafer in
the 1970s [3]. DS has been widely used in many regions, such
as image processing [4, 5], target recognition and tracking [6,
7], fault diagnosis [8], and knowledge discovery [9], to name
a few. Unfortunately, in the framework of DS, Dempster’s
rule, as an inherent problem, is incapable of managing the
high con
icts from various information sources at the step
of normalization and will generate counterintuitive results as
rst highlighted by Zadeh [10].

For a few years, a variety of combination methods have
been proposed to achieve e�ective data fusion on high degree
of con
icting sources of evidence. By studying them, the over-
allmethods can be summarized into twomain categories.	e
rst is to improve the rules of combination [11–13].	e repre-
sentative methods are Lefevre’s method [11], Yager’s method

[12], and so on. Scholars who put forward thismethod believe
that the cause of high con
ict evidence combination failure
is due to some defects of the Dempster combination’s rules.
	e second is to modify the original sources of evidence
without changing Dempster’s combination rule [14–19]. 	e
representative methods are Murphy’s method [14], Y. Deng’s
method [15], and so on. Our approach is based on the second
kind of improvement way, for the improved combination
rules cannot meet the commutative law or associative law
and the high con
ict is not due to Dempster’s rule, and the
unreliable evidence is the real cause. 	e sources of evidence
should be discounted according to the reliability. 	e basic
idea of the discounting method is that if one source has great
(small) dissimilarity with the others, its reliability should be
low (high).

	erefore, the dissimilarity measure between two sources
of evidence plays a crucial role in the discounting method.
Jousselme et al. [16] proposed a principled distance which
regarded the evidence as the vector based on the geometry
interpretation, but its computation burden is important. Liu
[17] proposed the two-dimensional measure which consists
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of Shafer’s con
ict coe�cient and the pignistic probability
distance between betting commitments. However, when one
factor is large and another is small, the dissimilarity degree
cannot be directly assured. Qu et al. [18] proposed a con
ict
rate to proportion the con
ict, but when the two pieces of
evidence are equal, the con
ict rate will cause a counter-
intuitive result. Liu et al. [19] proposed a dissimilarity mea-
sure to describe the divergences of two aspects between two
pieces of evidence, the di�erence of beliefs and the di�erence
of hypotheses which two pieces of evidence strongly support.
But it is not good enough to capture the di�erence between
BBAs in some cases as it will be seen. Based on the above
analysis, the current methods are not adequate to precisely
delineate the divergence between two pieces of evidence.	is
motivates researchers to develop a good and useful measure
of dissimilarity.

In this study, a novel combination approach of con
ict
evidence is proposed. 	e novel dissimilarity measure is
dened through integrating the fuzzy nearness and corre-
lation coe�cient by Hamacher T-conorm rule [20] based
on an improved probabilistic transformation. 	e weighting
factors adopted to discount the original sources are automat-
ically determined according to the proposed probabilistic-
based dissimilarity measure. 	e interest of our improved
probabilistic transformation, the new dissimilarity measure,
and the discountedmethod to combine con
icting sources of
evidence are illustrated through some numerical examples.

	e rest of this paper is organized as follows. In Section 2,
we brie
y review the DS evidence theory. 	e new method
for combining con
ict evidence is proposed in Section 3. In
Section 4, numerical examples are enumerated to show the
performance of the existing alternatives and the proposed
method. Section 5 concludes this paper.

2. Theory of Evidence

2.1. Belief Function. 	e frame of discernment, denoted by
Θ, is a nite nonempty set including mutually exclusive and

exhaustive elements. 2Θ denotes the power set composed of
all the possible subsets ofΘ. A basic belief assignment (BBA)

is a function m mapping from 2Θ to [0, 1] and veries the
following conditions:

�(�) = 0,
∑
�⊂Θ

�(�) = 1, (1)

where � is the empty set. 	e subset � of Θ with nonzero
masses is called the focal elements of m. 	ere are also two
other denitions in the theory of evidence.	ey are belief and
plausibility functions associated with a BBA and are dened,
respectively, as

Bel (�) = ∑
�⊂�

�(	) ,

Pl (�) = ∑
�∩� ̸=�

�(	) .
(2)

Bel(�) represents the total amount of probability that is
allocated to �, while Pl(�) can be interpreted as the amount

of support that could be given to �. Bel(�) and Pl(�) are
the lower and upper limit of the belief level of hypothesis �,
respectively.

2.2. Dempster’s Combination Rule and the Paradox Problem.
Suppose two bodies of evidencem	 andm
 are derived from
two information sources; Dempster’s combination rule can be
dened as

�(�) = �	 ⊕ �
 =
{{
{{
{

∑�∩�=��	 (	)�
 (�)
1 − � , � ̸= �

0, � = �,
(3)

� = ∑
�∩�=�

�	 (	)�
 (�) , (4)

where � is the con
ict coe�cient, re
ecting the degree of
con
ict between the two bodies of evidence.

Note that there are two limitations in applying DS
evidence theory. One is that the counterintuitive results can
be generated when high con
icting evidence is infused using
Dempster’s rule as shown in classical Zadeh’s example [10].
	e second is that the con
ict coe�cient is not very appro-
priate to really characterize the con
ict between BBAs, par-
ticularly in case of two equal BBAs as reported in [17].

Example 1 (Zadeh’s example). Assume m1 and m2 over Θ =
{�1, �2, �3} are dened as

m1: �1 (�1) = 0.9, �1 (�2) = 0.1, �1 (�3) = 0;
m2: �2 (�1) = 0, �2 (�2) = 0.1, �2 (�3) = 0.9.

(5)

According to (3) and (4), we get �(�1) = �(�3) = 0,
�(�2) = 1, and� = 0.99.We can see thatm1 andm2 have low
support level to hypothesis �2, but the resulting structure has
complete support to �2. 	is appears to be counterintuitive.

Example 2. Consider two equalm1 andm2 over Θ = {�1, �2,
�3, �4} are dened as

m1: �1 (�1) = �1 (�2) = �1 (�3) = �1 (�4) = 0.25;
m2: �2 (�1) = �2 (�2) = �2 (�3) = �2 (�4) = 0.25.

(6)

According to (4), we get � = 0.75. 	is reveals that the
two pieces of evidence are of high degree of con
ict, but in
fact they are equal.

2.3. Pignistic Transformation. When working in the prob-
abilistic framework, the focal elements are singletons and
exclusive, and the degree of the con
ict becomes easier
to compute regardless of the intrinsic relationship between
BBAs. Probabilistic transformation is a useful tool to map
BBAs to probabilities. A classical transformation is the pig-
nistic transformation [22], dened as

Bet�� (�	) = ∑
�⊆Θ,��∈�

1
|�|� (�) , (7)
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where |�| is the number of elements in subset�. Bet�� trans-
fers the positive mass of belief of each nonspecic element
onto the singletons involved in that element according to the
cardinal number of the proposition.

3. A Novel Combination Approach of
Conflict Evidence

	e fundamental goal of our approach is to allocate rea-
sonable weighting factors to the evidence and make a much
better combination. 	e derivation of the weights of the
sources is based on the widely well-adopted principle that
the truth lies in the majority opinion. 	e sources which are
highly con
icting with the majority of other sources will be
automatically assigned with a very low weighting factor in
order to decrease their bad in
uence in the fusion process. To
determine the weighting factors, the con
ict should be well
measured rst.

	e degree of con
ict between BBAs has been mea-
sured in many works, including con
ict coe�cient � [3],
Jousselme’s distance measure �� [16], pignistic probability
distance difBet� [17], con
ict rate � [18], and dissimilarity
measure Dis�� [19]. 	ese measures cannot characterize
the con
ict comprehensively and accurately. What is more,
the distance measures [16, 17, 19] are based on the pignistic
transformation [21], but such transformation is only a simple
average in mathematics. It considers the role of belief func-
tions while ignoring the e�ect of the plausibility functions.
	erefore, we propose an improved probabilistic transfor-
mation to transform BBAs into probabilities to overcome
the shortcomings of pignistic transformation. 	en based
on the improved probabilistic transformation method, a
novel dissimilarity degreewhich integrates the fuzzy nearness
and correlation coe�cient by Hamacher T-conorm rule is
proposed.

3.1. An Improved Probabilistic Transformation

De�nition 3. By utilizing the information contained in the
belief function and plausibility function of the propositions in
the DS, a new method for transforming BBA into probability
is dened as

� (�	) = Bel (�	)

+ BEL ⋅ Bel (�	) + (1 − BEL)Pl (�	)
∑��∈Θ BEL ⋅ Bel (�
) + (1 − BEL)Pl (�
)

⋅ (1 − BEL) ,

(8)

where BEL is the total value of belief functions, dened as
BEL = ∑Bel(�	). 	e uncertain information that can be real-
located can be represented as 1 − BEL. BEL can well balance
the degree of in
uence of the belief function and plausibility
function. If the value of BEL is big, the certainty information
plays a dominant role, so the in
uence of Bel should be bigger
than Pl. On the contrary, if the value of 1 − BEL is big,
the proportion of uncertain information is larger than the
certainty information, so the in
uence of Pl should be bigger
than Bel.

Table 1: 	e results of probabilistic transformation in Example 4.

�1 �2 �3 �(�)
Bet��(�	) [21] 0.5333 0.3333 0.1333 0.4213

PT [22] 0.5435 0.2913 0.1652 0.4291

PFT [23] 0.5000 0.3571 0.1429 0.4310

�(�	) 0.5615 0.2956 0.1429 0.4179

	e improved probabilistic transform function satises
�(�	) ∈ [0, 1] and ∑�(�	) = 1. It is worthy to note that the
presented probabilistic transformation not only includes the
special cases described in [22, 23] but also can well transform
the BBAs into probabilities in general conditions.

(1) If BEL = 1, all the focal elements are single sets, and
so the BBAs should remain unchanged. Equation (8)
can be simplied to �(�	) = Bel(�	).

(2) If BEL = 0.5, Bel and Pl have the same in
uence on
the allocations of the uncertain information, so (8)
degrades into the probabilistic transform function
proposed in [24], described as �(�	) = Bel(�	) +
((Bel(�	) + Pl(�	))/(∑��∈Θ Bel(�
) + Pl(�
)))(1 − BEL).

(3) If BEL = 0, all the focal elements are multiple sets
and the allocating of the uncertain information is only
based on the Pl, so (8) degrades into the plausibility
function-based transform (PFT) proposed by Cobb
and Shenoy in [23], described as �(�	) = Pl(�	)/
∑Pl(�	).

Example 4. Let the BBA over the same frame of discernment
Θ = {�1, �2, �3} be as follows:

m: �1 (�1) = 0.4, �1 (�2) = 0.2, �1 (�3) = 0.1,
�1 {�1, �2} = 0.2, �1 (Θ) = 0.1.

(9)

In Example 4, BEL = 0.7. We choose Shannon entropy
�(�) = −∑�(�)log2�(�) to measure the uncertainty of the
probabilities a�er transformation.	e results of probabilities
and uncertainties in such general case are listed in Table 1.
By analyzing the results, the improved probability transfor-
mation can get more e�ective probability and the smallest
information uncertainty compared to the methods proposed
in [21–23], since it balances the in
uence of belief function
and plausibility function well with the factor BEL.

3.2. 	e New Dissimilarity Measure

3.2.1. Fuzzy Nearness. Fuzzy set theory is specially designed
to provide a language with syntax and semantics to trans-
late qualitative judgments into numerical reasoning and to
capture subjective and vague uncertainty. In this theory,
fuzzy nearness is used to measure the level of similarity
between two objects. In this work, we use the fuzzy nearness
[24] to measure the similarity between BBAs. We use the
fuzzy nearness [24] to measure the similarity between BBAs.
	e most commonly used fuzzy nearness is the well-known
maximum-minimum method. 	e merit of fuzzy nearness
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will be illustrated in Example 6 by comparing with the
distance measure [16, 19, 20].

De�nition 5. Assume we have got a sequence of  pieces of
probability evidence {�1, �2, . . . , ��} rebuilt by the improved
probabilistic transformation form {m1,m2, . . . ,m�}.	e level
of similarity between two BBAs can be calculated by

! (m	,m
) =
∑��=1 (�	 (��) ∧ �
 (��))
∑��=1 (�	 (��) ∨ �
 (��))

$, % = 1, 2, . . . , �,

(10)

where ∧ and ∨ are the operators for calculating the minimum
and maximum, respectively. 	e fuzzy nearness satises
!(m1,m2) ∈ [0, 1]. In Examples 1 and 2, according to (13),
we get !(m1,m2) = 0.0526 and !(m1,m2) = 1, respectively,
which means that the fuzzy nearness can well re
ect the
di�erence between two highly con
ict BBAs or two equal
BBAs.

Example 6. Let us consider the frame Θ = {�1, �2, �3} and let
the following three independent BBAs over the same frame
of discernment be as follows:

m1: �1 (�1) = 0.5, �1 (�2) = 0.3,
�1 (�3) = �1 (Θ) = 0.1;

m2: �2 (�1) = 0.8, �2 (�2) = 0.1, �2 (�3) = 0.1;
m3: �3 (�1) = 0.3, �3 (�2) = 0.5, �3 (Θ) = 0.2.

(11)

One gets

�� (m1,m2) = 0.2582, �� (m1,m3) = 0.2160;
difBet� (m1,m2) = 0.2667,
difBet� (m1,m3) = 0.2333;

Dist� (m1,m2) = 0.2667, Dist� (m1,m3) = 0.2333;
! (m1,m2) = 0.6062, ! (m1,m3) = 0.5576.

(12)

	e dissimilarity between m1 and m2 is larger than that
between m1 and m3 according to the distance measures ��
[16], difBet� [17], and Dist� [19], which are counterintuitive.
	e fuzzy nearness !(m1,m2) > !(m1,m3) shows m1 and
m2 are more similar than m1 and m3, which is in line with
the intuitive judgment.	is illustrates that the fuzzy nearness
canmeasure the con
ict in the case that the distancemeasure
fails.

However, the fuzzy nearness is not stable. Ifm�2: m
�
2(�1) =

0.8, m�2(�3) = 0.2 is used instead of m2 in Example 6, and

one gets !(m1,m�2) = 0.4999, !(m1,m3) = 0.5576. In this
case, the fuzzy nearness cannot work well because the degree
of the divergence between the distinct hypotheses strongly
supported by each source must play an important role [18].

3.2.2. Correlation Coe�cient. A con
ict between two BBAs
can be interpreted qualitatively as the fact that one source
strongly supports one hypothesis and the other strongly
supports another hypothesis, and the two hypotheses are
not compatible (their intersection is empty) [19]. 	is is
intuitively consistent and will be adopted here. Reference [19]
dened a con
ict coe�cient to re
ect the divergence degree
by the pair of maximal subjective probability from con
ict
sources, but it cannot re
ect the di�erence between two
noncon
icting sources of evidence. In this part, a correlation
coe�cient is proposed to re
ect the divergence degree of
the hypothesis that two belief functions strongly support
based on the new proposed probabilistic transformation.	e
proposed correlation coe�cient can re
ect the di�erence of
two con
icting or noncon
icting sources of evidence.

De�nition 7. Let �	 and �
 be two pieces of probability
evidence produced by the improved probabilistic transforma-
tion on the frame Θ. 	e correlation coe�cient is dened by

CoC (m	,m
) =

{{{{{{{
{{{{{{{
{

�	 (���max
) + �
 (���max)
2 , if ���

max
= ���max

�	 (���min
) + �
 (���min

)
2 , if ���

max
̸= ���max,

(13)

where ���
max

= argmax�	(�), ���min
= argmin�	(�).	e correla-

tion coe�cient is dened by using the maximal approximate
subjective probability of the BBAs. If two sources of evidence
distribute most of their mass of belief to the same elements,
the similarity between the two sources in such conditions is
calculated by the average of maximal probability. Otherwise,
the amount of con
ict will be represented by the product of
the average of minimal subjective probability. So our de-
nition can well describe the di�erence of two con
icting or
noncon
icting sources of evidence.

In Example 6, one gets CoC(m1,m�2) = 0.7689,
CoC(m1,m3) = 0.05, which indicates that the correlation
coe�cient can well re
ect the divergence of incompatible
hypotheses that two sources of evidence commitmost of their
beliefs to.

However, according to the denition of the correlation
coe�cient, it only considers the elements that two sources of
evidence strongly support and ignores the other elements of
BBAs. Actually, the fuzzy nearness and correlation coe�cient
are complementary and they separately capture di�erent
aspects of the dissimilarity of BBAs.

3.2.3. 	e New Similarity Measure. Taking into account both
of them in the elaboration of a new measure of dissimilarity
seems therefore a natural way to capture two aspects of the
dissimilarity of BBAs. Consider the analysis in [19]; Hama-
cher T-conorm fusion rule [20] satises important properties
and also will be used here.

De�nition 8. Based on the improved probabilistic transfor-
mation, the new dissimilarity measure denoted by Sim is
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Figure 1: Comparisons of di�erent con
ict measure methods when
subset � changes in Example 9.

dened by fusing fuzzy nearness and correlation coe�cient,
described as

Sim (m	,m
) =
! (m	,m
) + CoC (m	,m
)

1 + ! (m	,m
) × CoC (m	,m
)
. (14)

In order to verify the e�ectiveness of the new dissimi-
larity measure, Example 9 drawn from [17] is conducted to
compare it with the methods proposed in [3, 16–19]. Since
the compared methods are proportional to the con
ict and
our method is inversely proportional to the con
ict, with
the purpose of making an intuitive comparison, we dene a
variable DisSim, denoted by

DisSim (m	,m
) = 1 − Sim (m	,m
) . (15)

Example 9. LetΘ be a frame of discernmentwith 20 elements
in Shafer’s model. We denote �	 by its subscript $ and the two
BBAs are dened as follows:

m1: �1 (2, 3, 4) = 0.05, �1 (7) = 0.05,
�1 (Θ) = 0.1, �1 (�) = 0.8;

m2: �2 (1, 2, 3, 4, 5) = 1,
(16)

where � is the subset of Θ. 	e number of elements in � is
increased step by step from 1 to 20. Consequently, there are 20
cases in this example.	e results of the dissimilaritymeasures
betweenm1 andm2 are graphically illustrated in Figure 1.

From Figure 1, it can be seen that although the novel
dissimilarity measure DisSim presents a similar behavior
with the �� [16], difBet� [17], and Dis�� [19], our function
DisSim changesmore slowly than the existing ones.	e value
of con
ict coe�cient � [3] is always equal to 0.05 whether
the size of subset � changes or not. � [18] indicates that m1
and m2 are totally di�erent except for case 5, so it cannot

distinguish the variation among these cases. In case 4 and
case 5, the difBet� [17] is equal, but the two pieces of evidence
have obvious di�erence. It is worthy tomention that whenm1
becomes more and more uncertain, all singletons get small
probability gain through the probabilistic transformation.
	e divergence degree, re
ecting the strong support of
sources in di�erent hypotheses, is becoming lower and lower.
	erefore, the new dissimilarity measure can well re
ect the
con
ict between two sources of evidence and is more rela-
tional than other measures.

3.3. Combination Based on Discounting Evidence. Suppose
the number of sources of evidence is  . 	e evidence
similarity can be represented with matrix *:

* = {
{
{

Sim (m	,m
) $ ̸= %
1 $ = %

$, % = 1, 2, . . . ,  .
(17)

	e support degree of all sources of evidence to evidence
% can be dened by

Sup (m
) =
�
∑

=1,
 ̸=	

Sim (m	,m
) $, % = 1, 2, . . . ,  . (18)

	e credibility of evidence can be calculated by the
following formula:

- (m	) =
Sup (m	)

∑��=1 Sup (m�)
. (19)

	e weight of evidence is dened by

:	 =
- (m	)

max1≤�≤� (- (m�))
. (20)

De�nition 10. Let Θ = {�1, �2, . . . , ��} be the frame of dis-
cernment; there are  pieces of evidence participating in
combination, respectively, which arem1,m1, . . . ,m�. Let the
weight ofm	 be:	; we discount the evidence by the weighting
factor as the following formula [3]:

m
�
	 (�) =

{
{
{

:	 ×m (�) , ∀� ⊂ Θ, � ̸= �
1 − :	 + :	 ×m (�) , � = Θ;

(21)

then do the combination of the discounted evidence by
Dempster’s rule:

m (�) = m
�
1 (�) ⊕m

�
2 (�) ⊕ ⋅ ⋅ ⋅ ⊕m

�
� (�) . (22)

4. Numerical Examples

A typical architecture of the proposed combination method
is shown in Figure 2. It consists of two main parts: determi-
nation of belief functions and combination of the sources of
evidence. 	e construction of BBAs can be processed by the
existing belief function generators and is out of the scope of
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Figure 2: 	e typical architecture of the proposed combination scheme.

Table 2: Combination results ofm1 andm2 for Example 1.

Methods m(�1) m(�2) m(�3) m(Θ)
DS [3] 0 1 0 0

Our results 0.3691 0.0919 0.3691 0.1699

Table 3: 	e new source of evidencem3 and combined results.

m(�1) m(�2) m(�3) m(Θ)
m3 0.9 0.1 0 0

DS [3] 0 1 0 0

Our results 0.6772 0.0716 0.1301 0.1217

this paper. With the obtained sources of evidence, the pro-
posed approach is employed tomeasure the degree of con
ict
of BBAs and combine highly con
icting sources of evidence
with weighting factors for decision making. 	ree simple
examples are employed to show the performance of the pro-
posed approach with respect to other methods, including DS
[3], Yager’s rule [12],Murphy’smethod [14], Y. Deng’smethod
[15], and Liu’s method [19].

4.1. Feasibility. 	e classic Zadeh’s example is used in this
part to illustrate that the proposed approach can solve the
invalidation problem of DS combination rule with high
con
ict. 	e combined results are tabulated and are listed in
Table 2.

FromTable 2, we can obtain that DS rule [3] assigns 100%
certainty to the minority belief hypothesis �2, which is coun-
terintuitive. 	e proposed methods can balance the con
ict
and allocate the same belief 0.3691 to �1 and �3 and 0.1699 to
the unknown proposition. Moreover, when a new source of
evidence m3 supporting �1 is collected and then combined,
the proposed approach conrms �1 to 0.6772 while DS rule
constantly assigns the 100% certainty to �2. What is more,
the belief allocated to the unknown proposition drops to
0.1217. 	e new source of evidence and combined results are
listed in Table 3. 	is illustrates that our approach can well
combine highly con
icting sources of evidence with a correct
decision.

Table 4: Four sources of evidence in Example 11.

�1 �2 �3
m1 0 0.9 0.1

m2 0.6 0.25 0.15

m3� 0.75 0.15 0.1

m3� 0.7 0.2 0.1

4.2. Robustness. In the real application of decision-making
support systems, the interference of surroundings or the
aberrant measurement of sensors always leads to the varying
of the collected belief functions within a certain range.
	erefore, the robustness of the combinationmethod directly
a�ects the synthesis results.

Example 11 (employed from [19]). Let us consider three
simple Bayesian BBAs over the frame Θ = {�1, �2, �3} as in
Table 4. 	e source of evidence number 3 can provide two
similar BBAs denoted by m3� and m3�. Let us see how the
small di�erence a�ects the fusion results.

From Table 4, we can see thatm2,m3�, andm3� commit
most belief on �1, whereas m1 distributes the largest belief
to �2. 	us,m1 will not be considered as reliable as the other
ones.	e combination results of di�erentmethods are shown
in Table 5.

	e fusion results in Table 5 show that m123� and m123�
are very similar. DS rule provides the unreasonable result
that �1 is impossible to happen. Although Yager’s rule has a
preferable robustness, the outcome is poor since it assigns the
con
ict to the unknowndomain.	is re
ects that Yager’s rule
is too conservative. In Murphy’s method, m123� considers
that �1 is most likely to be true, whereas m123� believes
that �2 should correspond to the truth; therefore they lead
to opposite conclusion. 	is indicated that average BBAs
method is not robust enough. Once the discounting approach
in [15, 19] and this paper is applied, one gets the largestmass of
belief to �1 as expected.Moreover, if ourmethod is used as the
dissimilarity coupled with the proposedmethod of weighting
factors determination, it can produce the most specic and
robust results. 	is illustrates that the proposed method can
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Table 5: Combination results of di�erent methods in Example 11.

Methods m123�(�1) m123�(�1) m123�(�2) m123�(�2) m123�(�3) m123�(�3)
DS [3] 0.0000 0.0000 0.9574 0.9677 0.0426 0.0323

Yager [12] 0.5700 0.5320 0.1478 0.197 0.0775 0.0775

Murphy [14] 0.5235 0.4674 0.4674 0.5235 0.0091 0.0091

Y. Deng [15] 0.7264 0.6823 0.2502 0.2968 0.0234 0.0209

Liu [19] 0.8332 0.7958 0.1454 0.1829 0.0214 0.0213

Our results 0.8837 0.8513 0.0931 0.1159 0.0232 0.0327

Table 6: 	e collected sources of evidence of the target recognition
system.

�1 �2 �3 {�1, �2} {�2, �3} Θ
m1 0.8 0.1 0 0 0 0.1

m2 0.5 0.2 0.1 0.2 0 0

m3 0 0.9 0.1 0 0 0

m4 0.5 0.1 0.1 0.1 0 0.2

m5 0.6 0.1 0 0 0.1 0.2

work well with perfect robustness even in high con
icting
cases.

4.3. E�ectiveness. In this section, a synthetic numerical
example of a simulation of the multisensor based automatic
target recognition system is employed to analyze the e�ective-
ness of the proposed approach of combination.

Example 12. Let the frame of target discernment be Θ =
{�1, �2, �3} and the real target is �1. Fromve distinct informa-
tion sources the system has collected seven singleton bodies
of evidence m1, m2, m3, m4, and m5, including the con
ict-
ing evidence m3 from the nonreliable information source,
shown as in Table 6.

In Table 6,m1,m2,m4, andm5 assign most of their belief
to �1, but m3 oppositely commits its largest mass of belief to
�2.m3 is considered as the least reliable source.	e sources of
evidence are rstly transferred into probabilities by the pro-
posed probability transformation.	en the weighting factors
are determined by the new probability-based dissimilarity
measure. All the combined results of the discounted sources
of evidence are listed in Table 7 and the belief assignment
to the target �1 of the di�erent alternatives is graphically
illustrated in Figure 3.

As can be observed in Table 7, the Dempster combination
rule concludes that the target �1 is very unlikely to happen
whereas �2 is almost sure to happen. Such unexpected
behavior shows that DS rule is risky to be used to combine
sources of evidence in a high con
icting situation.	e results
of Yager’s rule [12] indicate that �1 has a small mass of belief
a�er the con
ict evidence m3 arrives, since it allocates the
majority of the belief to the unknown domainΘ.	is re
ects
that Yager’s rule is too conservative. InMurphy’smethod [14],
although �1 has a higher mass of belief than �2 as expected,
the results are only the average of the BBAs. Y. Deng’s
method [15], Liu’s method [19], and the proposed approach
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Figure 3: 	e belief assignment allocated to target �1 of di�erent
alternatives.

can generate right results, because once the discounting
method is applied, the con
ict evidencem3 becomes strongly
discounted owing to its largest con
ict with other sources.
FromFigure 3, one sees that the proposed probabilistic-based
dissimilarity measure coupled with the automatic discount-
ing factors determination generates more e�ective results
with a better convergence performance than all other meth-
ods.

5. Conclusions

In this paper, a new method has been proposed to combine
con
ict sources of evidence with di�erent weighting factors.
	e merit of the new method proposed in this work lies
in the elaboration of an e�cient probability transforma-
tion and a comprehensively probabilistic-based dissimilarity
measure which can be used for the determination of the
weighting factors of the sources involved in the fusion pro-
cess. 	rough aforementioned analysis and comparison, the
proposed approach can e�ectively solve the counterintuitive
behaviors of the classical DS rule in combining highly con-

icting sources. Furthermore, it can make the right decision
with better robustness and e�ectiveness performance for the
decision-making support system or target detection system.
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Table 7: Combination results of di�erent methods of the target recognition system.

Methods m12 m123 m1234 m12345

DS [3]

m(�
1
) = 0.8714

�(�2) = 0.0857 m(�
2
) = 0.9863 m(�

2
) = 0.9897 m(�

2
) = 0.9922

�(�3) = 0.0143 �(�3) = 0.0137 �(�3) = 0.0013 �(�3) = 0.0078
�(�1, �2) = 0.0286

Yager [12]

m(�
1
) = 0.6514 �(�1) = 0.1769 �(�1) = 0.3157

�(�2) = 0.0592 �(�2) = 0.3203 �(�2) = 0.2450 �(�2) = 0.2146
�(�3) = 0.0102 �(�3) = 0.0855 �(�3) = 0.1561 �(�3) = 0.0715

�(�1, �2) = 0.0201 m(Θ) = 0.6842 �(�1, �2) = 0.1326 �(�1, �2) = 0.0349
�(Θ) = 0.2591 m(Θ) = 0.2894 �(�2, �3) = 0.0348

m(Θ) = 0.3285

Murphy [14]

m(�
1
) = 0.8136 m(�

1
) = 0.5347 m(�

1
) = 0.6453 m(�

1
) = 0.7169

�(�2) = 0.1144 �(�2) = 0.4582 �(�2) = 0.3493 �(�2) = 0.2809
�(�3) = 0.0305 �(�3) = 0.0035 �(�3) = 0.0026 �(�3) = 0.0014

�(�1, �2) = 0.0380 �(�1, �2) = 0.0035 �(�1, �2) = 0.0026 �(�1, �2) = 0.0006
�(Θ) = 0.0035 �(Θ) = 0.0001 �(Θ) = 0.0002 �(�2, �3) = 0.0001

�(Θ) = 0.0001

Y. Deng [15]

m(�
1
) = 0.7836 m(�

1
) = 0.6728 m(�

1
) = 0.7364 m(�

1
) = 0.8102

�(�2) = 0.1087 �(�2) = 0.2492 �(�2) = 0.2247 �(�2) = 0.1727
�(�3) = 0.0181 �(�3) = 0.0152 �(�3) = 0.0137 �(�3) = 0.0010

�(�1, �2) = 0.0892 �(�1, �2) = 0.0628 �(�1, �2) = 0.0252 �(�1, �2) = 0.0161

Liu [19]

m(�
1
) = 0.7908 m(�

1
) = 0.7621 m(�

1
) = 0.8355 m(�

1
) = 0.8873

�(�2) = 0.1099 �(�2) = 0.1414 �(�2) = 0.1003 �(�2) = 0.0905
�(�3) = 0.0323 �(�3) = 0.0319 �(�3) = 0.0248 �(�3) = 0.0082

�(�1, �2) = 0.0645 �(�1, �2) = 0.0622 �(�1, �2) = 0.0386 �(�1, �2) = 0.0136
�(Θ) = 0.0025 �(Θ) = 0.0024 �(Θ) = 0.0008 �(�2, �3) = 0.0002

�(Θ) = 0.0002

Our results

m(�
1
) = 0.8865 m(�

1
) = 0.8461 m(�

1
) = 0.9299 m(�

1
) = 0.9675

�(�2) = 0.0771 �(�2) = 0.1082 �(�2) = 0.0517 �(�2) = 0.0280
�(�3) = 0.0151 �(�3) = 0.0151 �(�3) = 0.0062 �(�3) = 0.0025

�(�1, �2) = 0.0201 �(�1, �2) = 0.0294 �(�1, �2) = 0.0119 �(�1, �2) = 0.0018
�(Θ) = 0.0012 �(Θ) = 0.0012 �(Θ) = 0.0003 �(�2, �3) = 0.0001

�(Θ) = 0.0001
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