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Abstract—This paper describes a comprehensive combination
of feature extraction methods for vision-based pedestrian detec-
tion in Intelligent Transportation Systems. The basic components
of pedestrians are first located in the image and then combined
with a support-vector-machine-based classifier. This poses the
problem of pedestrian detection in real cluttered road images.
Candidate pedestrians are located using a subtractive clustering
attention mechanism based on stereo vision. A components-based
learning approach is proposed in order to better deal with pedes-
trian variability, illumination conditions, partial occlusions, and
rotations. Extensive comparisons have been carried out using dif-
ferent feature extraction methods as a key to image understanding
in real traffic conditions. A database containing thousands of
pedestrian samples extracted from real traffic images has been
created for learning purposes at either daytime or nighttime. The
results achieved to date show interesting conclusions that suggest
a combination of feature extraction methods as an essential clue
for enhanced detection performance.

Index Terms—Features combination, pedestrian detection,
stereo vision, subtractive clustering, support vector machine
(SVM) classifier.

I. INTRODUCTION

THIS PAPER describes a comprehensive combination of
feature extraction methods for vision-based pedestrian

detection in Intelligent Transportation Systems (ITS). Vision-
based pedestrian detection is a challenging problem in real
traffic scenarios since pedestrian detection must perform ro-
bustly under variable illumination conditions, variable rotated
positions and pose, and even if some of the pedestrian parts or
limbs are partially occluded. An additional difficulty is given
by the fact that the camera is installed on a fast-moving vehicle.
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As a consequence of this, the background is no longer static,
and pedestrians significantly vary in scale. This makes the
problem of pedestrian detection for ITS quite different from that
of detecting and tracking people in the context of surveillance
applications, where the cameras are fixed and the background
is stationary.

To ease the pedestrian recognition task in vision-based sys-
tems, a candidate selection mechanism is normally applied.
The selection of candidates can be implemented by performing
an object segmentation in either a 3-D scene or a 2-D image
plane. Not many authors have tackled the problem of monocular
pedestrian recognition [1]–[3]. The advantages of the monocu-
lar solution are well known. It constitutes a cheap solution that
makes mass production a viable option for car manufacturers.
Monocular systems are less demanding from the computational
point of view and ease the calibration maintenance process. On
the contrary, the main problem with candidate selection mecha-
nisms in monocular systems is that, on average, they are bound
to yield a large amount of candidates per frame in order to
ensure a low false negative ratio (i.e., the number of pedestrians
that are not selected by the attention mechanism). Another
problem in monocular systems is the fact that depth cues are lost
unless some constraints are applied, such as the flat terrain as-
sumption, which is not always applicable. These problems can
be easily overcome by using stereo vision systems, although
other problems arise such as the need to maintain calibration
and the high computational cost required to implement dense
algorithms.

In this paper, we present a full solution for pedestrian detec-
tion at daytime, which is also applicable, although constrained,
to nighttime driving. Other systems already exist for pedestrian
detection using infrared images [4]–[6] and infrared stereo [7].
Nighttime detection is usually carried out using infrared cam-
eras as long as they provide better visibility at night and under
adverse weather conditions. However, the use of infrared cam-
eras is quite an expensive option that makes mass production an
untraceable problem nowadays, especially for the case of stereo
vision systems where two cameras are needed. They provide
images that strongly depend on both weather conditions and the
season of the year. Additionally, infrared cameras (considered
as a monocular system) do not provide depth information and
need periodic recalibration (normally once a year). In prin-
ciple, the algorithm described in this paper has been tested
using cameras in the visible spectrum. Nonetheless, as soon
as the technology for night-vision camera production becomes

1524-9050/$25.00 © 2007 IEEE



PARRA ALONSO et al.: COMBINATION OF FEATURE EXTRACTION METHODS FOR SVM PEDESTRIAN DETECTION 293

cheaper, the results could easily be extended to a stereo night-
vision system.

Concerning the various approaches proposed in the literature,
most of them are based on shape analysis. Some authors
use feature-based techniques, such as recognition by vertical
linear features, symmetry, and human templates [2], [8], Haar
wavelet representation [9], [10], hierarchical shape templates
on Chamfer distance [3], [11], correlation with probabilistic
human templates [12], sparse Gabor filters and support vector
machines (SVMs) [13], graph kernels [14], motion analysis
[15], [16], and principal component analysis [17]. Neural-
network-based classifiers [18] and convolutional neural net-
works [19] are also considered by some authors. In [4], an
interesting discussion is presented about the use of binary or
gray-level images as well as the use of the so-called hotspots
in infrared images versus the use of the whole candidate region
containing both the human body and the road. Using single or
multiple classifiers is another topic of study. As experimentally
demonstrated in this paper and supported by other authors [1],
[4], [20], the option of multiple classifiers is definitely needed.
Another crucial factor, which is not well documented in the
literature, is the effect of pedestrian bounding box accuracy.
Candidate selection mechanisms tend to produce pedestrian
candidates that are not exactly similar to the pedestrian ex-
amples that were used for training in the sense that online
candidates extracted by the attention mechanism may contain
some part of the ground or may cut the pedestrians’ feet,
arms, or heads. This results in significant differences between
candidates and examples. As a consequence, a decrease in
Detection Rate (DR) takes place. The use of multiple classifiers
can also provide a means to cope with day and nighttime scenes,
variable pose, and nonentire pedestrians (when they are very
close to the cameras). In sum, a single classifier cannot be
expected to robustly deal with the whole classification problem.

In the last years, SVMs have been widely used by many
researchers [1], [9], [10], [20], [21] as they provide a supervised
learning approach for object recognition as well as a separation
between two classes of objects. This is particularly useful for
the case of pedestrian recognition. Combinations of shape and
motion are used as an alternative to improve the classifier
robustness [1], [22]. Some authors have demonstrated that the
recognition of pedestrians by components is more effective than
the recognition of the entire body [10], [21]. In our approach,
the basic components of pedestrians are first located in the
image and then combined with an SVM-based classifier. The
pedestrian searching space is reduced in an intelligent manner
to increase the performance of the detection module. Accord-
ingly, road lane markings are detected and used as the main
guidelines that drive the pedestrian searching process. The area
contained by the limits of the lanes determines the zone of the
real 3-D scene from which pedestrians are searched. In the case
where no lane markings are detected, a basic area of interest is
used instead of covering the front part ahead of the ego-vehicle.
A description of the lane marking detection system is provided
in [23]. The authors have also developed lane tracking systems
for unmarked roads [24], [25] in the past. Nonetheless, a key
problem is to find out the most discriminating features in order
to significantly represent pedestrians. For this purpose, several

feature extraction methods have been implemented, compared,
and combined. While a large amount of effort in the literature
is dedicated to developing more powerful learning machines,
the choice of the most appropriate features for pedestrian
characterization remains a challenging problem nowadays to
such an extent that it is still uncertain how the human brain
performs pedestrian recognition using visual information. An
extensive study of feature extraction methods is therefore a
worthwhile topic for a more comprehensive approach to image
understanding.

The rest of the paper is organized as follows: Section II
provides a description of the candidate selection mecha-
nism. Section III describes the component-based approach and
the optimal combination of feature extraction methods. In
Section IV, the SVM-based pedestrian classification system is
presented. In Section V, the multiframe validation and track-
ing system is described. The implementation and compara-
tive results achieved to date are presented and discussed in
Section VI. Finally, Section VII summarizes the conclusions
and future work.

II. CANDIDATE SELECTION

An efficient candidate selection mechanism is a crucial
factor in the global performance of the pedestrian detection
system. The candidate selection method must assure that no
misdetection occurs. Candidates, which are usually described
by a bounding box in the image plane, must be detected
as precisely as possible since the detection accuracy has a
remarkable effect on the performance of the recognition stage,
as demonstrated in Section VI. In order to extract information
from the 3-D scene, most authors use disparity map techniques
[18] as well as segmentation based on v-disparity [20], [26].
The use of disparity-based techniques is likely to yield useful
results in open roadways. However, depth disparity clues are
unlikely to be useful for segmenting out pedestrians in city
traffic due to the heavy disparity clutter. We disregarded this
option because of the disadvantages associated with disparity
computation algorithms, since the image pair has to be rectified
prior to the disparity map generation to ensure good corre-
spondence matching. In addition, the computation of accurate
disparity maps requires fine grain texture images in order to
avoid noise generation. Otherwise, disparity-based methods
are prone to produce many outliers that affect the segmentation
process. Concerning the v-disparity image, the information
for performing generic obstacles detection is defined with a
vertical line. This implies managing very little information to
detect obstacles, which may work well for big object detection,
such as vehicles [26], but might not be enough for small thin
object detection, such as pedestrians. Conversely, we propose
a candidate selection method based on the direct computation
of the 3-D coordinates of relevant points in the scene. Accord-
ingly, a nondense 3-D geometrical representation is created
and used for candidate segmentation purposes. This kind of
representation allows for robust object segmentation whenever
the number of relevant points in the image is high enough. A
major advantage is that outliers can be easily filtered out in 3-D
space, which makes the method less sensitive to noise.



294 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 8, NO. 2, JUNE 2007

Fig. 1. (Left) Two-dimensional points overlayed on left image. (Right) Three-dimensional coordinates of detected pixels.

A. Three-Dimensional Computation of Relevant Points

The 3-D representation of relevant points in the scene is
computed in two stages. In the first stage, the intensities of
the left and right images are normalized, and the radial and
tangential distortions are compensated for. Relevant points in
the image are extracted using a well-known Canny algorithm
with adaptive thresholds. Features such as heads, arms, and
legs are distinguishable, when visible, and are not heavily
affected by different colors or clothes. In the second stage, a 3-D
map is created after solving the correspondence problem. The
matching computational cost is further reduced in two ways.
First, the matching searching area is greatly decreased by using
the parameters of the fundamental matrix. Second, pixels in the
right image are considered for matching only if they are also
relevant points. Otherwise, they are discarded, and correlations
are not computed for that pixel. Computation time is abruptly
decreased while maintaining similar detection results. Among
the wide spectrum of matching techniques that can be used
to solve the correspondence problem, we implemented the
Zero Mean Normalized Cross Correlation [27] because of its
robustness. The Normalized Cross Correlation between two
image windows can be computed as follows:
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where A and B are defined by

A =
(

I(x + i, y + j) − I(x, y)
)

(2)

B =
(

I ′(x′ + i, y′ + j) − I ′(x′, y′)
)

(3)

where I(x, y) is the intensity level of pixel with coordinates
(x, y), and I(x, y) is the average intensity of a (2n + 1) ×
(2n + 1) window centered around that point. As the window
size decreases, the discriminatory power of the area-based

criterion is decreased, and some local maxima appear in the
searching regions. An increase in the window size causes the
performance to degrade due to occlusion regions and smoothing
of disparity values across boundaries. According to the previous
statements, a filtering criterion is needed in order to provide
outlier rejection. First, a selection of 3-D points within the
pedestrian searching area is carried out. Second, road surface
points as well as high points (points with a Y coordinate above
2 m) are removed. Finally, an XZ map (bird’s eye view of the
3-D scene) is filtered following a neighborhood criterion. As
depicted in Fig. 1, the appearance of pedestrians in 3-D space
is represented by a uniformly distributed set of points.

B. Subtractive Clustering

Data clustering techniques are related to the partitioning of
a data set into several groups in such a way that the similarity
within a group is larger than that among groups. Normally, the
number of clusters is known beforehand. This is the case of
K-means-based algorithms. In this paper, the number of clusters
is considered unknown since no a priori estimate about the
number of pedestrians in scene can be reasonably made. The
effects of outliers have to be reduced or completely removed,
being necessary to define specific space characteristics in order
to group different pedestrians in the scene. For these reasons,
a Subtractive Clustering method [28] is proposed, which is a
well-known approach in the field of Fuzzy Model Identification

Systems. Clustering is carried out in 3-D space based on a
density measure of data points. The idea is to find high-density
regions in 3-D space. Objects in the 3-D space are roughly
modeled by means of Gaussian functions. It implies that, in
principle, each Gaussian distribution represents a single object
in 3-D space. Nonetheless, objects that get too close to each
other can be modeled by the system as a single one and, thus,
represented by a single Gaussian distribution. The complete
representation is the addition of all Gaussian distributions found
in the 3-D reconstructed scene. Accordingly, the parameters of
the Gaussian functions are adapted by the clustering algorithm
to best represent the 3-D coordinates of the detected pixels. The
3-D coordinates of all detected pixels are then considered as
candidate cluster centers. Thus, each point pi with coordinates
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(xi, yi, zi) is potentially a cluster center whose 3-D spatial
distribution Di is given by the following equation:
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where N represents the number of 3-D points contained in a
neighborhood defined by radii rax, ray , and raz . Cluster shape
can then be tuned by properly selecting the parameters rax, ray ,
and raz . As can be observed, candidates pi surrounded by a
large number of points within the defined neighborhood will
exhibit a high value of Di. Points located at a distance well
above the radius defined by (rax, ray · raz) will have almost
no influence over the value of Di. Equation (4) is computed
for all 3-D points measured by the stereovision algorithm. Let
pcl = (xcl, ycl, zcl) represent the point exhibiting the maximum
density denoted by Dcl. This point is selected as the cluster
center at the current iteration of the algorithm. The densities
of all points Di are corrected based on pcl and Dcl. For this
purpose, the subtraction represented as
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is computed for all points, where the parameters (rbx, rby, rbz)
define the neighborhood where the correction of point densi-
ties will have the largest influence. Normally, the parameters
(rbx, rby, rbz) are larger than (rax, ray, raz) in order to prevent
closely spaced cluster centers. Typically, rbx = 1.5 rax, rby =
1.5 ray , and rbz = 1.5 raz . In this paper, these parameters have
been set to rax = raz = 1 m, ray = 1.5 m, rbx = rbz = 1.5 m,
and rby = 2.25 m. After the subtraction process, the density
corresponding to the cluster center pcl gets strongly decreased.
Similarly, densities corresponding to points in the neighbor-
hood of pcl also get decreased by an amount that is a function
of the distance to pcl. All these points are associated with the
first cluster computed by the algorithm, which is represented
by its center pcl, and will have almost no effect in the next step
of the subtractive clustering. After the correction of densities,
a new cluster center pcl,new is selected, which corresponds to
the new density maximum Dcl,new, and the process is repeated
whenever the condition expressed as

if Urel >
Dcl

Dcl,new

Dcl,new > Umin ⇒ new cluster (6)

is met, where Urel and Umin are experimentally tuned parame-
ters that permit the establishment of a termination condition
based on the relation between the previous cluster density
and the new one, as well as a minimum value of the density
function. In this paper, this parameter has been set to Umin =
40. The process is repeated until the termination condition given
by (6) is not met. After applying subtractive clustering to a set

of input data, each cluster finally represents a candidate. The
algorithm can be summarized as follows.

1) The parameters (rax, ray, raz) and (rbx, rby, rbz) are
initialized.

2) The densities of all points are computed using (4).
3) The point pcl that exhibits the highest density value Dcl

is selected as a cluster center.
4) Densities are corrected according to (5).
5) A new maximum density Dcl,new is computed.
6) If the condition given by (6) is met, a new cluster is

considered, which is represented by its center pcl,new, and
the algorithm is resumed from Point 4. Otherwise, the
algorithm is stopped.

Pedestrian candidates are then considered as the 2-D region
of interest (ROI) defined by the projection in the image plane of
the 3-D candidate regions. The number of candidates is bound
to change depending on traffic conditions, since some cars
can be considered as candidates by the subtractive clustering
algorithm.

C. Multicandidate (MC) Generation

In practice, a multiple candidate selection strategy has been
implemented. The purpose is to produce several candidates
around each selected cluster in an attempt to compensate for
the effect of the candidate bounding box accuracy in the recog-
nition step. Accordingly, several candidates are generated for
each candidate cluster by slightly shifting the original candidate
bounding box in the u and v axes in the image plane. The candi-
date selection method yields generic obstacles with a 3-D shape
that is similar to that of pedestrians. The 2-D candidates are then
produced by projecting the 3-D points over the left image and
computing their bounding box. Two bounding box limits are
defined, i.e., for the maximum and minimum values of width
and height, respectively, taking into account people taller than
2 m or shorter than 1 m. The 3-D candidate position is given
by the stereo-based candidate selection approach (subtractive
clustering), which provides the 3-D cluster center coordinates.
Nonetheless, the 2-D bounding box corresponding to a 3-D
candidate might not perfectly match the candidate appearance
in the image plane due to several effects: body parts that are
partially occluded or camouflaged with the background, 3-D
objects that have been subtracted together with a pedestrian
(for example, pedestrians beside traffic signals, trees, cars, etc.),
low contrast pedestrians represented by a low number of 3-D
points, etc. These badly bounded pedestrians will be classified
as nonpedestrians if the positive samples used to train the
classifier are well fitted. Let us note that this problem also
appears with 2-D candidate selection mechanisms [1] with the
additional drawback of losing the actual pedestrian depth.

Two strategies are proposed to solve the “bounding accuracy
effect.” The first one consists of training the classifier with
additional badly fitted pedestrians in an attempt to absorb either
the extra information due to large bounding boxes containing
part of the background or the loss of information due to small
bounding boxes in which part of the pedestrian is not visible. In
other words, the positive samples yielded by the candidate se-
lection method are included in the training set. For that purpose,
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Fig. 2. MC generation approach. (a) Oversized and downsized windows.
(b) Spatial centers for each window. (c) Fifteen candidates are generated.

it is necessary to execute the candidate selection process with
offline validation to distinguish pedestrians from nonpedes-
trians. In [1] and [10], the same procedure is only applied to
nonpedestrian samples. The second strategy consists of per-
forming an MC generation for every extracted candidate, trying
to hit the target and add redundancy. Three window sizes are de-
fined: 1) the window size generated by the candidate selection
method; 2) a 20% oversized window; and 3) a −20% down-
sized one. These three windows are shifted five pixels in each
direction: top, down, left, and right. Thus, a total of 15 MCs are
generated for each original candidate, as depicted in Fig. 2.

A majority criterion is followed in order to validate a pedes-
trian. Thus, the MC strategy yields a pedestrian if more than five
candidates are as pedestrians. This number has been defined
after extensive experiments. In average, the candidate selection
mechanism generates six windows per frame, which yields a
total of 90 candidates per frame after the MC process. In case
the number of candidates generated by the attention mechanism
increases abruptly, the MC approach might become impractical.
A major benefit derived from the MC approach is the fact that
the classification performance of pedestrians at long distance
increases. Fig. 3 depicts typical images from our test sequences.
The number below the bounding box represents range. The
rightmost image shows a motorcyclist that is detected as a
pedestrian (false positive). In the leftmost image, two kids are
properly detected, and their range is correctly measured.

III. FEATURE EXTRACTION

The optimal selection of discriminant features is an issue
of the greatest importance in a pedestrian detection system
considering the large variability problem that has to be solved
in real scenarios. A set of features must be extracted and fed to
a pedestrian recognition system.

A. Component-Based Approach

There are some important aspects that need to be addressed
when constructing a classifier, such as the global classification
structure and the use of single or multiple cascaded classifiers.
These issues are strongly connected to the way features are
extracted. The first decision to make implies the development
of a holistic classifier against a component-based approach.
In the first option, features are extracted from the complete
candidate described by a bounding box in the image plane.
The component-based approach suggests the division of the

candidate body into several parts over which features are
computed. Each pedestrian body part is then independently
learned by a specialized classifier in the first learning stage. The
outputs provided by individual classifiers, which correspond
to individual body parts, can be integrated in a second stage
that provides the final classification output. In Section IV, two
possible methods for developing a second-stage classifier are
described. As long as a sufficient number of body parts or limbs
are visible in the image, the component-based approach can
still manage to provide correct classification results. This allows
for the detection of partially occluded pedestrians whenever the
contributions of the pedestrian visible parts are reliable enough
to compensate for the missing ones.

After extensive trials, we propose a total of six different
subregions for each candidate ROI, which has been rescaled
to a size of 24 × 72 pixels. This solution constitutes a tradeoff
between exhaustive subregion decomposition and the holistic
approach. The optimal location of the six subregions, which are
empirically achieved after hundreds of trials, has been chosen
in an attempt to detect coherent pedestrian features, as depicted
in Fig. 4. Thus, the first subregion is located in the zone where
the head would be. The arms and legs are covered by the
second, third, fourth, and fifth regions, respectively. An addi-
tional region is defined between the legs, which covers an area
that provides relevant information about the pedestrian pose.
This subregion is particularly useful to recognize stationary
pedestrians.

B. Combination of Feature Extraction Methods

The choice of the most appropriate features for pedestrian
characterization remains a challenging problem nowadays since
recognition performance depends crucially on the features that
are used to represent pedestrians. In the first intuitive approach,
some features seem to be more suitable than others for repre-
senting certain parts of human body. Thus, legs and arms are
long elements that tend to produce straight lines in the image,
while the torso and head are completely different parts, which
are not so easy to recognize. This statement, although based on
intuition, suggests the combination of several feature extraction
methods for the different subregions into which a candidate is
divided. Accordingly, we have tested a set of seven different
feature extraction methods. The selection of features was made
based on intuition, previous work carried out by other authors,
and our own previous work on other applications. The proposed
features are briefly described in the following lines.

• Canny image: The Canny edge detector [29] computes
image gradient, i.e., highlighting regions with high spatial
derivatives. The computations of edges significantly re-
duce the amount of data that needs to be managed and filter
out useless information while preserving shape properties
in the image. The result obtained after applying a Canny
filter to the ROI is directly applied to the input of the
classifier. The Canny-based feature vector is the same size
as the candidate image, i.e., 24 × 72.

• Haar wavelets, which were originally proposed for pedes-
trian recognition in [9]: In this paper, only the verti-
cal features have been considered. This yields a feature
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Fig. 3. (Upper row) MC generation. (Bottom row) Results after classifying the 15 candidates.

Fig. 4. Decomposition of a candidate ROI into six subregions.

vector of 432 elements, i.e., the candidate size (24 × 72)
divided by 4.

• Gradient magnitude and orientation: The magnitude of the
spatial derivatives gx and gy are computed for all pixels
in the image plane. After that, orientation is calculated as
θ = arctan(gx, gy). The resulting feature vector has twice
the size of the candidate image, i.e., the vector has 2 ×

24 × 72 elements.
• Cooccurrence matrix [30]: Cooccurrence is specified as

a matrix of relative frequencies Pi,j with which two
neighboring pixels, which are separated by distance d at
orientation θ, cooccur in the image: one with gray level i
and the other with gray level j. The Cooccurrence matrix
can be computed over the gray-level image or over the
Canny image. The resulting matrices are symmetric and
can be normalized by dividing each entry in a matrix
by the number of neighboring pixels used in the matrix
computation. In our approach, we propose a distance of
one pixel and four different cooccurrence matrices for the
following orientations (bins): (0◦, 45◦, 90◦, 135◦). The
resulting size of the feature vector depends on whether
the cooccurrence matrix is computed over the original
gray-level image or over a binary one (after applying the

Canny operator). The cooccurrence matrix over the Canny
image yields a feature vector of 4 × 2 × 2 elements.

• Histogram of intensity differences: The relative frequen-
cies of intensity differences are computed between neigh-
boring pixels along four orientations over a normalized
image of 128 gray levels. This generates a features vector
of 4×128 elements.

• Histogram of normalized gradients [31] (HON): The Gra-
dient image is considered. Orientation is discretized to
20 bins (corresponding to an accuracy of 18◦). Only pixels
in the Gradient image exhibiting a magnitude greater than
some threshold (10) are considered. For those pixels, the
values of gradient are accumulated in a 20-bin histogram.
Thus, the resulting features vector has 20 elements.

• Number of texture unit (NTU) [32]: The local texture in-
formation for a pixel can be extracted from a neighborhood
of 3×3 pixels, which represents the smallest complete unit
of texture. The corresponding texture unit is computed by
comparing the pixel under study with its eight neighboring
pixels. The NTU process generates a feature vector with
the same size as the candidate image, i.e., a feature vector
of 24 × 72 elements.

An appropriate selection of discriminant features is then
carried out in order to determine the best performing features
for pedestrian detection. In the first approach, performance
comparison was made by following the next steps. First, each
feature extractor is applied over the six candidate subregions.
This yields a set of six feature vectors for each candidate.
Then, the obtained feature vectors are applied to the input of a
classifier system that provides a single output, which represents
whether the candidate is classified as pedestrian or nonpedes-
trian. Performance comparison can then be easily done by
analyzing the DR and False-Positive Rate (FPR) achieved by
the classifier for the seven different feature vectors under test,
as described in Section VI.

In theory, the best performing feature extractor method
should be selected in order to implement the final detection
system. However, a detailed observation of partial results re-
veals that some feature extraction methods prove to be more
discriminant than others for certain subregions, as depicted in
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Fig. 6. Thus, NTU and Histogram perform the best for head
and arms, while HON, Canny, and Histogram seem to perform
the best for legs. Similarly, the area between-the-legs is best
recognized by NTU. There seems then to be an optimal feature
extraction method for each candidate subregion. Thus, each
candidate subregion will be learned separately by an indepen-
dent classifier. The input to the classifier associated to a given
subregion will be the features vector corresponding to the best
performing method for such a subregion. The fine-grain selec-
tion of optimal feature extraction methods has been carried out,
as described next. First, the three best performing methods have
been selected for each subregion. Then, the performance differ-
ence among the three selected feature extraction methods has
been evaluated. If there is a method that clearly outperforms the
rest of the methods, it is selected as the optimal method for the
subregion under consideration. Otherwise, a decision is made
considering other aspects such as the feature vector size. In such
a case, the two feature extraction methods yielding a smaller
vector size are chosen among the three best performing ones.
According to these parameters, a preselection of features is
made, with the following result: head—NTU; arms—NTU and
Histogram; legs—HON and Canny; between-the-legs—NTU.
An iterative process is started to test the four possible combina-
tions using the previously mentioned preselected feature extrac-
tion methods. The comparison among the results achieved in the
four experiments yields the final combination of features used
in this paper: head—NTU; arms—Histogram; legs—HON;
between-the-legs—NTU. The increase in performance due to
the use of the proposed optimal combination of feature ex-
traction methods is illustrated in Section VI. The optimal
combination of feature extraction methods eases the learning
stage, which makes the classifier less sensitive, in particular,
to clothing.

IV. PEDESTRIAN DETECTION USING SVM

Pedestrian detection is done using SVMs. Two aspects are
essential in the deployment of SVM classifiers: the training
strategy and the classifier structure.

A. Training Strategy

The first step in the design of the training strategy is to create
representative databases for learning and testing. The training
and test sets were manually constructed using the TSetBuilder
tool [33] developed in our lab. The following considerations
must be taken into account when creating the training and
test sets.

• The ratio between positive and negative samples has to be
set to an appropriate value. A very large number of positive
samples in the training set may lead to a high percentage
of false-positive detections during online classification. On
the contrary, a very large number of negative samples
produce mislearning. A tradeoff of one positive sample
for every two negative samples was initially chosen in our
application and compared to the 1/1 option, as described
in Section VI.

• The size of the database is a crucial factor to take care of.
As long as the training data represent the problem well, the
larger the size of the training set, the better it is for gener-
alization purposes. Nonetheless, the value of the regular-
ization coefficient C [34] is important since this parameter
controls the degree of overlearning. Thus, a small value of
C allows a large separation margin between classes, which
reduces overlearning and improves generalization. In this
paper, a value of C = 1.0 has been used after extensive
trials. This value can be considered as a small one. The
dimension of the database has been designed in order to
achieve real generalization, as demonstrated in practical
experiments.

• The quality of negative samples has a strong effect in
the DR. Negative samples have to be properly selected to
account for ambiguous objects, such as poles, trees, ad-
vertisements, and the like. Only by following this strategy
when creating the training sets can a really powerful
classifier be achieved in practice.

• A sufficiently representative test set must be created for
verification. The content of the test set has similar charac-
teristics to those of the training sets in terms of variability,
ratio of positive/negative samples, and quality of negative
samples.

A detailed observation of the classifier operation in practice
suggests the subdivision of the classification task into several
more tractable learning sets according to different practical
considerations. A major issue is the effect of illumination con-
ditions. It is clear that daytime and nighttime samples must be
compulsorily separated in order to create multiple specialized
classifiers. The nighttime classifier can be reasonably expected
to operate correctly only in very short distances (below 6–8 m)
for nonilluminated areas, where pedestrians can be appropri-
ately illuminated by the car beams (infrared images would be
needed in order to achieve long-range detection, as mentioned
in Section I). Nonetheless, nighttime pedestrian detection can
be done up to 15–20 m in illuminated areas. The separation be-
tween day and night specialized classifiers may not be enough
to cover the most significant cases of pedestrian variability. In
fact, as observed in practice, the effect of depth is determinant.
Shapes and edges are not so neatly distinguished when pedes-
trians are beyond 12–15 m from the cameras. Accordingly, the
effect of depth suggests the development of specialized SVM
classifiers at daytime. Albeit several subdivisions could be
done for very short, short, medium, long, and very long range,
two specialized classifiers for short- and long-range detections
have been considered to be enough in practice. The threshold
between short and long range has been empirically set to 12 m.

The effect of pose must also be taken into account as a signif-
icant source of variability in pedestrian appearance. Differences
between walking and stationary pedestrians are clear. There are
even some remarkable differences between pedestrians moving
laterally, with regard to vehicle trajectory, and those moving
longitudinally. Pedestrians intersecting the vehicle trajectory
from the sides are usually easier to recognize since their legs
are clearly visible and distinguishable. In fact, some authors
have proposed two separate SVM classifiers according to this
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statement [20]. A more complicated case occurs when a pedes-
trian crouches or bends down. Changes due to different clothing
also contribute to further complexity in the variability problem.
Thus, large skirts and coats make pedestrians look very dif-
ferent from those in trousers and suits. Likewise, pedestrians
bringing trolleys or bags make the recognition problem even
more difficult. Had it not been enough, the pedestrians’ legs are
not always visible in the image, especially when pedestrians
are very close to the vehicle. This is a critical case of great
importance for precrash protection systems.

In order to handle all these variability cases, we have created
separate training sets intended to perform pedestrian learning
in short and long range at daytime and nighttime, respectively.
Four training sets were built for this purpose, which contain a
number of negative samples that double the number of posi-
tive ones: a training set of 9000 daytime long-range samples
(denoted by DL), a training set with 15 000 daytime short-
range samples (denoted by DS), a third training set containing
6000 nighttime samples (denoted by N), and a global training
set containing the concatenation of all samples in DL and
DS (denoted by G, 24 000 samples). Similarly, four test sets
were created and denoted by test set for daytime short range
(TDS, 5505 samples), test set for daytime long range (TDL,
4320 samples), test set for nighttime (TN, 3225 samples), and
global test set composed by the concatenation of TDS and TDL
(TG, 9825 samples), respectively. In order to test the effect of
the positive/negative ratio in the training process, the original
training sets were modified to contain the same number of
positive and negative samples. Accordingly, the modified sets
have a size that is two thirds the size of the original sets, as long
as half of the negative samples were removed while the positive
ones remained untouched. Variability due to pose, clothing,
and other artifacts is handled by creating adequate training
databases containing as many representative cases as possible.
In this stage, pedestrians in different poses (standing, walking,
ducked, etc.) and clothing (coats, skirts, etc.) are included in
the database as well as pedestrians with handbags and other
artifacts. In total, the training sets contain up to 30 000 samples,
while the test sets amount up to 13 050 samples.

B. Classifier Structure

A two-stage classifier is proposed in order to cope with the
components-based approach. In the first stage of the classifier,
features computed over each individual fixed subregion are
fed to the input of individual SVM classifiers. Thus, there
are six individual SVM classifiers corresponding to the six
candidate subregions. These individual classifiers are special-
ized in recognizing separate body parts corresponding to the
prespecified candidate subregions. It must be clearly stated that
no matching of parts is carried out. Instead, each individual
SVM is fed with features computed over its corresponding
candidate subregion and provides an output that indicates
whether the analyzed subregion corresponds to a pedestrian
part (+1, in theory) or not (−1, in theory). In the second stage
of the classifier, the outputs provided by the six individual
SVMs are combined. Two different methods have been tested
to carry out this operation. The first method implements what

we denote as simple-distance criterion. A simple addition is
computed as

Sdistance-based =

6
∑

i=1

Si (7)

where Si represents the real output of the SVM classifier (not
strictly contained in the ideal range [−1, +1]) that corresponds
to subregion i. In theory, subregions corresponding to non-
pedestrians or missing parts should contribute with negative
values to Sdistance-based. Likewise, subregions corresponding
to pedestrian parts should contribute with positive values to
the final sum. A threshold value T is then established in order
to perform candidate classification. This threshold is parame-
terized for producing the Receiver Operating Characteristic

(ROC). The difference between pedestrians and nonpedestrians
is set depending on the distance between T and Sdistance-based.
Thus, if Sdistance-based is greater than T , the candidate is
considered to be pedestrian. Otherwise, it is regarded as non-
pedestrian. This simple mechanism is what we denote as
distance-based criterion.

The second method that has been tested to implement the
second stage of the classifier relies on the use of another
SVM classifier. A second-stage SVM merges the outputs of
the six individual first-stage SVM classifiers and provides a
single output representing the candidate classification result.
The resulting global structure is denoted as two-stage SVM
classifier. Obviously, the second-stage SVM classifier has to be
trained with supervised data. The training set for the second-
stage SVM classifier has been built as follows. First, the six
individual first-stage SVM classifiers are properly trained using
training set DS (which contains 15 000 samples) in which
the desired outputs (pedestrian or nonpedestrian) are set in a
supervised way. Then, a new training set is created by taking as
inputs the outputs produced by the six already trained first-stage
SVM classifiers (in theory, between −1 and +1) after applying
the 15 000 samples contained in DS and taking as outputs the
supervised outputs of DS. The test set for the second-stage
SVM classifier is created in a similar way using test set TDS
(containing 5505 samples).

Additionally, an optimal kernel selection for the SVM
classifiers has been performed. For this purpose, we used a
small training set of 2000 samples for which the well-known
Gaussian (Radial Basis Function), sigmoid, polynomial, and
linear kernels [34] were tested. The Gaussian kernel was finally
chosen as the optimal one after the trials.

V. MULTIFRAME VALIDATION AND TRACKING

Once candidates are validated by the SVM classifier, a track-
ing stage takes place. Pedestrian tracking is needed to filter
detection results and minimize the effect of both false-positive
and false-negative detections. For this purpose, detection results
are temporally accumulated. The multiframe validation and
tracking algorithm relies on Kalman filter theory to provide
spatial estimates of detected pedestrians and Bayesian probabil-
ity to provide an estimate of pedestrian detection certainty over
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time. Spatial estimates of the detected pedestrians are given by
a linear Kalman filter. Tracking is done in 3-D space. The state
vector is composed of five elements, which contain the 3-D
pedestrian position (X,Y,Z) (indeed, the position of the mass
center) and the pedestrian width W and height H . Thus, x =
(X,Y,Z,W,H)T . The 3-D relative velocity between the car
and the target pedestrian vR = (vRx, vRy, vRz) is considered
in the state transition matrix A together with the sampling
rate of the complete algorithm ∆t for predicting x−

k . Relative
velocity is computed as a function of the 3-D relative distance
(∆x,∆y,∆z) between the ego-vehicle and the target pedestrian
in two consecutive frames. Each newly detected pedestrian is
tracked by an individual Kalman filter. Multiframe validation
is needed to endow the tracking system with robustness. The
use of Bayesian probability is proposed to provide estimates
of pedestrian detection certainty over time. In other words, a
sort of low-pass filter has been designed based on Bayesian
probability. The process is divided in two stages: pretracking
and tracking. Newly detected pedestrians enter the pretracking
stage. Only after consolidation in the pretracking stage do they
start to be tracked by the system. The process followed in
the pretracking stage after detecting a pedestrian candidate is
described next.

1) The 3-D position of the newly detected pedestrian is com-
pared to the 3-D position of all pedestrians that are being
tracked by the system at time k. The system maintains
a list of tracked pedestrians. The candidate pedestrian
is validated using Probabilistic Data Association. The
idea is to provide matching between newly detected can-
didates and already existing pedestrians under tracking.
For that purpose, the detected pedestrian is associated
with the closest already existing pedestrian following the
Euclidean distance criterion. Association with the closest
pedestrian is done whenever the condition established as

pda
(

s−i,k,mj,k

)

= e−

(

s
−

i,k
mj,k

)

2

2σ2 > 0.7 (8)

is met, where s−i,k represents the 3-D predicted position of
the closest pedestrian i (the first three elements of vector
x−

i,k), mj,k is the 3-D position of the measured candidate
j (the first three elements of vector zj,k), and σ2 is the
covariance of the Gaussian distribution representing the
predicted position of the target pedestrian (the following
assumption has been made: σx = σy = σz = σ). Only
candidates meeting (8) are validated by the system and
enter the pretracking stage. Otherwise, the candidate is
considered to be a new pedestrian appearing in the scene.

2) If the candidate is considered to be a new pedestrian, it is
annotated in the tracked pedestrian list as a new element
denoted by j, and its probability of being a pedestrian is
initialized according to the classification value given by
the SVM classifier at frame k (Sdistance-based,j,k), i.e.,

P (jk) =







1.0, if 0.5 + Dj,k > 1.0
0.0, if 0.5 + Dj,k < 0.0
0.5 + Dj,k, otherwise

(9)

where Dj,k = Sdistance-based,j,k − T . The value of
P (jk) is saturated to be limited between 0.0 and 1.0.
After that, the position of the new pedestrian is initialized
as xj,k = zj,k, and pretracking is activated.

A pedestrian entering the pretracking stage must be validated
in several iterations before entering the tracking stage. The
algorithm followed to implement pedestrian validation during
pretracking is described in the following.

1) Let s−j,k represent the predicted position of the prevali-
dated pedestrian j at frame k, and let mj,k represent the
associated measure at frame k after performing Proba-
bilistic Data Association. The probability of precandidate
j to be considered as pedestrian at frame k, denoted by
P (jk), is given by

P (jk) =P (jk/jk−1)P (jk−1)

=Cn · f(Dj,k)pda(s−j,k,mj,k)P (jk−1) (10)

where Cn is a normalizing factor.
2) The precandidate is validated as a pedestrian when its

probability is above 0.8 during three consecutive itera-
tions. Once a precandidate is validated, pretracking stops,
and tracking starts.

3) Pretracking is stopped if the precandidate probability is
below 0.5 during three consecutive iterations.

The same condition applies during tracking, i.e., tracking
a pedestrian stops if its probability is below 0.5 during three
consecutive iterations. The implementation of the multiframe
validation and tracking algorithm described in this section per-
mits the achievement of a compromise between robustness in
new pedestrian detections and accuracy in pedestrian tracking.

VI. EXPERIMENTAL RESULTS

The system was implemented on a Pentium IV PC at
2.4 GHz running the Knoppix GNU/Linux Operating System
and Libsvm libraries [35]. Using 320 × 240 pixel images, the
complete algorithm runs at an average rate of 20 frames/s,
depending on the number of pedestrians being tracked and
their position. The average rate has a strong dependency on
the number of pixels being matched because of the correlation
of computational cost, which consumes, on average, 80% of
the whole processing time. The candidate selection system has
proved to be robust in various illumination conditions, different
scenes, and distances up to 25 m. The quality of the classifi-
cation system is mainly measured by means of the DR/false

positive ratio (DR/FPR). These two indicators are graphically
bounded together in an ROC.

We created several training and test sets containing thou-
sands of positive and negative samples (pedestrians and non-
pedestrians, respectively) in different situations, as described
in Section IV-A. In order to evaluate the influence of the
positive/negative ratio in the training process, two different
types of training sets were created. In the first type, the number
of nonpedestrian samples was chosen to be twice the number of
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Fig. 5. ROC curves. (a) Holistic approach. (b) Components-based approach.

pedestrian samples. In the second type, the number of non-
pedestrian and pedestrian samples was chosen to be the same.
Positive samples (pedestrian samples) were extracted from
recorded images acquired in real traffic conditions. Training
sets were created both at daytime and nighttime using the TSet-
Builder tool, which is specifically developed in this project for
this purpose. By using the TSetBuilder tool, different candidate
regions were manually selected from the image on a frame-
by-frame basis. As previously mentioned, special attention was
given to the selection of nonpedestrian samples. By selecting
simple nonpedestrian samples (for instance, road regions), the
system learns quickly but does not develop enough discrimi-
nating capability in practice as the attention mechanism may
wrongly select a region of the image that might be very similar
to a pedestrian. Accordingly, negative samples (nonpedestrian
samples) in the training sets were neither randomly nor man-
ually selected. The candidate selection mechanism described
in Section II was used instead to automatically produce the
negative training samples. The use of this mechanism endows
the process with a strong realistic component. In the following
sections, the results are compared and assessed using DR under
certain FPRs.

The selection of the FPR value has been made to show
performance in representative points where differences between
curves can be optimally appreciated. FPR must be a value for
which DR exhibits an acceptable value. This leads to selecting
5% in some cases or 10% in others. For cases in which 10%
has been chosen, a value of 5% would not make sense since DR
would be a really poor value in those conditions. In addition,
FPR has been chosen as a value from which practically no cross
points occur among the ROC curves of the different features.
This means that a curve that is better than another at a given
FPRi remains better for almost all FPR values greater than the
given FPRi, as can be observed in the figures provided in this
section. Accordingly, different FPR values have been selected
for different types of tests in order to provide meaningful
comparisons.

A. Holistic versus Component-Based

A first comparison is made in order to state the best per-
forming approach among the holistic and component-based
options. For this purpose, both the holistic and component-
based classifiers were trained and tested using the same set. In
particular, the training and test sets were designed to contain
10 000 and 3670 samples, respectively. These sets were created
as subsets of DS and TDS. All samples were acquired in day-
time conditions. As depicted in Fig. 5, the performance of the
holistic approach for all feature extraction methods is largely
improved in the component-based approach. In the component-
based approach, the outputs of the six SVMs corresponding
to the six candidate subregions are combined in a simple-
distance classifier, as explained in Section IV. Almost every
feature extraction method produces an acceptable result in the
component-based approach, where the DR is between 97% and
98.7% at an FPR of 5% for all feature extraction methods,
except for the Haar Wavelet. The DR ranges from 40% to
97% at an FPR of 5% in the holistic classifier. The Haar
Wavelet is again below those figures. This shows that breaking
the pedestrian into smaller pieces and specifically training the
SVM for these pieces reduces the variability and lets the SVM
generalize the models much better. It can then be stated, as
previously agreed by other researchers, that the component-
based approach clearly outperforms the global classifier.

B. Combination of Optimal Features

These results can further be improved by combining different
feature extraction methods for different candidate subregions.
The best performing features for each subregion are combined
in a second classifier instead of applying the same feature
extractor to all six subregions. In this paper, we used the same
training and test sets as in Section VI-A. Fig. 6(a)–(f) shows
the ROC curves for each separate subregion after computing
the seven predefined features. As concluded in Section III-B,
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Fig. 6. ROC curves. (a) Head. (b) Left arm. (c) Right arm. (d) Left leg. (e) Right leg. (f) Between-the-legs.

Fig. 7. ROC curves. (a) Comparison between features combination and Canny’s extractor. (b) Comparison between simple-distance classifier and
two-stage SVM.

the selection of optimal features for each subregion is carried
out as follows: head—NTU, arms—Histogram, legs—HON,
between-the-legs—NTU. The combined use of optimal features
leads to a clear increase in the overall classifier performance
with regard to individual feature extractors, as depicted in

Fig. 7(a), where a DR of 99.1% is achieved for an FPR of 2%.
These results improve the performance of Canny’s detector,
which is the best performing feature extractor (in the conditions
of the experiment conducted and described in Section VI-A),
which exhibits a DR of 95% at an FPR of 2%.
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Fig. 8. ROC curves for nighttime pedestrian detection. (a) Classification of nighttime test samples using training set N (nighttime samples). (b) Classification of
nighttime test samples using training set C (daytime samples).

C. Analysis of the Second-Stage Classifier

Another comparison has been studied in order to analyze
the influence of the second-stage classifier that combines the
information delivered by the six specifically trained SVM
models. In the first approach, we have used a simple-distance
criterion (i.e., distance to the hyperplane separating pedestrians
from nonpedestrians) that computes the addition of the six
first-stage SVM outputs and then decides the classification by
setting a threshold. Another option has been tested by training
a two-stage SVM (2-SVM). Once again, the same training and
test sets as in Section VI-A were used in this experiment.
The results achieved to date show that the simple-distance
criterion clearly outperforms the 2-SVM classifier, as depicted
in Fig. 7(b), where a comparison between both methods is
shown when optimal feature extraction methods are applied.
Thus, the simple-distance classifier exhibits a DR of 99.1%
at FPR = 2%, while the performance of the 2-SVM classifier
is DR = 30% for the same FPR = 2%. As a consequence of
this, the combined use of component-based optimal feature
extraction methods in a distance-based classifier is proposed as
a reliable solution for pedestrian classification.

D. Effect of Illumination Conditions and Candidate Size

The need of separate training sets for day, night, and dif-
ferent candidate sizes is analyzed in this section. All training
processes were carried out for both the 1/1 and the 1/2 positive/
negative ratio in the training sets. Although the results attained
after the experiments do not exhibit a dramatic difference in
performance, a slightly superior behavior is obtained by using
training sets following the 1/1 positive/negative ratio. Accord-
ingly, the rest of the experiments shown here and in the next
section were carried out using training sets with the same num-
ber of positive and negative samples. Nighttime samples were
acquired only in illuminated urban and nonurban environments,
where pedestrian detection remains feasible under the same

conditions previously stated throughout this paper, i.e., below
25 m. Nonilluminated areas have not been considered in this
analysis since pedestrian detection would not be possible be-
yond a few meters (6–8 m), and infrared cameras would be
needed. As previously stated, the separation between short- and
long-distance pedestrian detections has been empirically set
to 12 m.

In the first experiment, an SVM classifier was trained using
set G (containing all daytime samples) and tested using set
TN. Next, a different SVM classifier was trained using set N
(nighttime samples) and tested using the same set TN. The
purpose of this experiment is to analyze the performance of
nighttime classification using a global daytime classifier. The
results of this experiment are depicted in Fig. 8. Observation of
Fig. 8(a) reveals that nighttime pedestrian detection exhibits a
high performance when training is carried out using a database
containing nighttime samples. Thus, the DR is between 83%
and 95% for all feature extraction methods at an FPR of
10%. Fig. 8(b) shows that nighttime pedestrian detection is not
accurate when training is carried out using daytime samples
(DR is between 23% and 70% at an FPR of 10%). In such a
case, none of the proposed feature extraction methods exhibit
acceptable operation as their performance is well below the
N-based SVM classifier. In the first approach, our conclusion
is that separate training sets for daytime and nighttime are
definitely advisable for optimal classification. Illumination con-
ditions are too different between day and night, which makes it
difficult to maintain the same training set and the same classifier
for all cases, since generalization becomes a really complex
problem.

In the next experiment, three different SVM classifiers were
trained using sets DS, DL, and G, respectively. The trained
classifiers were tested against sets TDS and TDL. The purpose
of this experiment is to test the necessity or convenience of
training separate classifiers for short and long ranges at day-
time. In the first step, all three classifiers were tested using TDS
in order to demonstrate the influence of specialized classifiers
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Fig. 9. ROC curves for daytime pedestrian detection. (a) Pedestrian detection at short distance. (b) Pedestrian detection at long distance.

in daytime short-range classification. The results are illustrated
in Fig. 9(a). In the second step, the test is repeated using
this time TDL to check how daytime long-range classification
gets affected by learning specialization. Fig. 9(b) shows the
results of this experiment. In both cases, the tests are executed
using the optimal combination of features described in the
previous section. As can be observed in Fig. 9(a), the classifier
specialized in short-distance pedestrians exhibits only a bit
better performance than the rest. Thus, the DR for a DS-based
classifier (SVM classifier trained using set DS) is higher than
the DR for a G-based classifier for an FPR below 2%, while
the G-based classifier performs better for FPR greater than
2%. Similarly, the results depicted in Fig. 9(b) show that the
G-based classifier clearly outperforms the rest of the classi-
fiers for long-distance pedestrian detection. Despite the fact
that short-distance pedestrian detection is slightly improved by
using separate training sets, our conclusion, contrary to the
initial intuition, is that a single SVM classifier trained with
a single database containing all types of pedestrians at short
and long distances proves to be more effective than separate
classifiers for short and long distances, respectively. Let us state
clearly that this statement remains applicable only for daytime
pedestrian detection.

E. Effect of Bounding Box Accuracy

The accuracy exhibited in bounding candidates is limited,
and in fact, a multiple-hypothesis generation for each detected
candidate is encouraged to boost classifier performance, as
described in Section II-C. Although this topic is usually not
considered by most authors, in this section, we analyze the
effect of badly bounded candidates in the performance of the
recognition system. For this purpose, we devised an experiment
in which an SVM classifier was trained using a training set
of 3000 well-fitted (or tightly bounded) candidates (i.e., the
bounding box of candidates fits the real position of the cor-
responding pedestrians in the image plane), while a different
SVM classifier was trained using a training set containing 2000

badly bounded candidates. Next, the system is evaluated using
a test set containing 1000 badly bounded candidates, which is
the most usual situation in online real operation. The results
of this experiment are illustrated in Fig. 10. Fig. 10(a) depicts
the performance obtained after testing a set of badly bounded
samples using a classifier trained on badly bounded samples.
Practical results show that the performance remains nearly un-
affected for HON, Canny, and Cooccurrence–Canny extractors,
where a DR of 92%, 81%, and 80%, respectively, is obtained at
an FPR of 5%. Quite the opposite, other methods exhibit a clear
decrease in performance. Fig. 10(b) shows the performance
obtained after testing a set of badly bounded samples using a
classifier trained on well-fitted (or tightly bounded) samples. In
this case, all methods exhibit much worse figures since none
of the proposed extractors succeed in providing a DR above
83% (for the case of HON, which is the best performing one)
at an FPR of 5%. The analysis of these results suggests that
choosing the optimal feature extraction methods just in terms of
DR and FPR can lead, in practice, to a decrease in recognition
performance. It seems advisable to carry out a strategy in
which badly bounded candidates will be deliberately introduced
in the training set. Additionally, an MC generation stage has
been developed in order to generate several candidates for each
originally selected hypothesis to at least assure some well-fitted
candidates that match the samples used for training.

F. Global Performance

The performance of the global system is evaluated in a set
of sequences recorded in real traffic conditions. Some of the
sequences were acquired in urban environments and others in
nonurban areas. The purpose of this evaluation is to assess the
combined operation of the attention mechanism and the SVM-
based classifier, including the MC generation strategy, and a
multiframe validation stage using Kalman filtering. The results
obtained in the experiments are listed in Table I. For each
row in the table, the following information is provided: type
of environment (urban or nonurban; the nonurban sequences
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Fig. 10. ROC curves for bounding box accuracy. (a) Classification of badly bounded samples using training set containing badly bounded samples.
(b) Classification of badly bounded samples using training set containing only tightly bounded samples.

TABLE I
GLOBAL PERFORMANCE EVALUATED IN A SET OF SEQUENCES

Fig. 11. Examples of false-positive detections.

were recorded in open roads as well as in the campus of the
University of Alcalá), duration of the sequence, number of
detected pedestrians (only pedestrians below 25 m are con-
sidered), number of missed pedestrians, and number of false
alarms (F/A) issued by the system. Let us remark that the gen-
eration of false alarms is also subject to multiframe validation in
order to avoid glitches. Accordingly, a false alarm takes place
only when a false positive persistently occurs in time. The
global system was implemented according to the following
features: subtractive clustering candidate selection, component-
based SVM using the six subregions described in Section IV,
combination of features according to the description provided
in Section III-B, multiple SVM for daytime and nighttime
classification, MC generation to compensate for the bounding
box accuracy effect, and multiframe validation using Kalman
filtering.

The analysis of results reveals that performance is quite
different in urban and nonurban environments. Thus, the pedes-

trian detection system exhibits a ratio of 11 false alarms in
20 min of operation in urban scenarios. This yields a ratio
of 33 false alarms per hour. Similarly, the DR is 93.24% in
urban environments, where ten pedestrians were missed by
the system. Let us clarify the fact that all missed pedestrians
were partially occluded or completely out of the vehicle path.
Concerning the 11 false alarms produced by the system, they
were caused by three motorbikes, two trees, four lampposts and
other urban furniture, one wastebasket, and one fence. Fig. 11
depicts three examples of false detections. In all false alarm
cases, there was a misclassified real object causing the false
alarm. Concerning nonurban environments, three pedestrians
were missed by the system in 72 min of operation. In all cases,
pedestrians were far from the car (20 m or beyond) and wore
clothes that produced almost no contrast with the background.
This yields a DR of 98.19% in nonurban scenarios, where
images are not so heavily corrupted with clutter. Similarly, five
false alarms occurred in the sequences, which are mainly due to
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lampposts and trees located by the edge of the road, yielding an
average ratio of four false alarms per hour. As happens in urban
environments, false alarms are caused by real objects. Although
these figures are still unacceptable for the deployment of a
real pedestrian detection system, the results described in this
paper point to the possible application of a robust pedestrian
protection system in roads and other open environments. In
any case, the results can be largely improved by incorporating
motion- and position-dependent features.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have carried out a comparative study of fea-
ture extraction methods for vision-based pedestrian detection.
Candidates are first selected by an attention mechanism based
on subtractive clustering and stereo vision. This helps reduce
the number of false candidates and enhance the performance
of the recognition stage. In order to reduce the variability of
pedestrians, the learning process has been simplified by de-
composing selected candidates into six local subregions that are
easily learned by individual SVM classifiers. The component-
based approach has been demonstrated to outperform the global
classifier in practice. In addition, the combination of different
feature extraction methods for different subregions leads to an
increase in classifier performance. Accordingly, the so-called
optimal features have been identified for each subregion and
combined in a more discriminant components-based classifier.
Likewise, the effects of illumination conditions and candidate
size have been studied. Several training and test sets have
been created for empirically demonstrating the suitability of
multiple classifiers for daytime and nighttime at short and long
ranges, respectively. At nighttime, the use of the pedestrian-
detection system is limited to well-illuminated areas. Another
important factor, usually disregarded by most authors, is the
effect of the candidate bounding box accuracy. Experimental
results support the use of features based on contrast or edges,
such as HON or cooccurrence over Canny images, as well as the
development of an MC generation strategy, in order to assure
that the issuance of some well-fitted candidates matches the
samples used for training. Finally, we have presented the global
performance of the system described in this paper, including
candidate selection, MC generation, candidate detection using
SVM, and pedestrian multiframe validation and tracking using
Kalman filtering.

Although experimental results show that progress is being
made in the right direction, further improvement needs to be
made before deploying a really robust vision-based pedestrian
detection system for assisted driving in real traffic conditions.
For this purpose, motion-based and position-dependent features
will be incorporated, which aim at enhancing the shape-based
pedestrian detection algorithm developed in this paper. Two
further actions are being carried out at the moment in order to
improve the presented system. Additional classifiers are being
introduced to detect motorbikes, urban furniture, and so on.
This measure aims at decreasing the false alarm rate. The
system is also being ported to an Apple MiniMac computer
where optimization using ALTIVEC is being carried out in
order to reduce the correlation computational cost.
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