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 
Abstract—An algorithm based on the concept of combining 

Kalman filter and Least Error Square (LES) techniques is pro-
posed in this paper. The algorithm is intended to estimate signal 
attributes like amplitude, frequency and phase angle in the online 
mode. This technique can be used in protection relays, digital 
AVRs, DGs, DSTATCOMs, FACTS and other power electronics 
applications. The Kalman filter is modified to operate on a ficti-
tious input signal and provides precise estimation results insensi-
tive to noise and other disturbances. At the same time, the LES 
system has been arranged to operate in critical transient cases to 
compensate the delay and inaccuracy identified because of the 
response of the standard Kalman filter. Practical considerations 
such as the effect of noise, higher order harmonics, and computa-
tional issues of the algorithm are considered and tested in the 
paper. Several computer simulations and a laboratory test are 
presented to highlight the usefulness of the proposed method. 
Simulation results show that the proposed technique can simul-
taneously estimate the signal attributes, even if it is highly dis-
torted due to the presence of non-linear loads and noise. 
 

Index Terms—Frequency estimation, amplitude estimation, 
phase angle estimation, Kalman filtering, Least error square, 
harmonics, noise, nonlinear loads 

I. INTRODUCTION 

ONTROL and protection of power system is critically 
dependant on real time estimates of signal attributes. The 

faster and more precise are the estimates, the more reliable are 
the applied control and protection schemes. Harmonic and 
noise contamination have become a major concern for power 
system since they affect the accuracy of the estimates and the 
speed of estimation. In addition, the integration of power elec-
tronic devices to utility grids necessitates the presence of such 
a reliable estimator that not only provides service to linear 
loads but also compensates/caters for nonlinear loads. Various 
techniques have been introduced in the literature to measure 
the signal attributes. Discrete Fourier transform (DFT) and its 
modifications [1,2,3], Kalman filtering [4,5,6], phase locked 
loop (PLL) [7], least square (LS) [8,9], Newton type algo-
rithms [10], and adaptive notch filters [11] are among the ex-
isting techniques. Most of these techniques do not provide 
comprehensive estimation results including all attributes of 
signal (frequency, amplitude, and phase angle) for both fun-
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damental and harmonic components. References [5,12-15] 
review these techniques and outline the strengths and draw-
backs of each of them. Noise and the distortion of signal are 
issues that these techniques have considered. Although, they 
have suggested some solutions for taking care of these issues, 
still the results can be improved especially by using new algo-
rithms implemented in state-of-the-art microprocessors. 

A literature review shows that PLL based techniques have 
been proved to have desirable performance in tracking the 
attributes of the fundamental component [12,16-19]. Refer-
ence [15] analyzes the performance of the PLL and highlights 
the tracking errors derived due to distortion such as phase 
unbalancing, harmonics, and offset. References [12,16,17] 
have mitigated the effects of harmonics and noise pollution 
using enhanced methods of the PLL approach. However, these 
techniques focus on the attributes of the fundamental compo-
nent rather than on harmonic components. 

Techniques such as Prony's method [20,21], ESPRIT [22], 
Root-MUSIC [23], and frequency-domain interpolation me-
thod [24] provide good results for the signals with wide spec-
trums especially when the inter-harmonics are involved. Thes-
es techniques provide significant estimation results although at 
the expense of large computation loads and considerable de-
lays. 

Kalman-filter based techniques, extended or enhanced with 
frequency estimation algorithms, can provide comprehensive 
results comprising of the attributes of fundamental and har-
monic components as well as dc-offsets [14]. Nonetheless, in 
order for the Kalman filter to maintain the variance of the es-
timation error as low as possible, the specific statistical set-
tings about disturbances and noise must be chosen close 
enough to realty. Lowering the level of disturbance and noise 
leads to less deviation between these settings and the real val-
ues. Therefore, this paper proposes a method that the input 
signal is refined before being fed to the Kalman filter. Another 
drawback of Kalman filtering is its weak response to large 
changes in the signal parameters. To rectify this, a technique 
is proposed to detect these critical changes and then apply a 
different estimation technique, so-called enhanced LES. How-
ever, the LES method is used only in the critical transients. In 
fact, Kalman filtering is the main estimator in the steady state 
and non-critical transients as it requires less computational 
effort and can give better or even optimal results provided the 
statistical settings are proper or exact. The other contribution 
of the paper is to propose a method to provide the Kalman 
filter with relatively accurate estimates of system frequency.  
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This paper is organized as follows. In Section II, the pro-
posed algorithm is derived. The analysis of the proposed tech-
nique calls for some crucial parameters and relevant computa-
tion effort. The consequences of these issues and recommend-
ed solutions are explained in Section III. The performance of 
the proposed method is evaluated in Sections IV and V. Sec-
tion VI summarizes the main conclusions of the paper. 

II. DEVELOPMENT OF THE ALGORITHM 

A typical power system or power electronic signal can be 
expressed as follows. 

      dvtnthftatv  11 2sin)(            (1) 

where symbols h(t), n(t) and vd represent the harmonic, noise 
and offset parts of the signal, respectively. The signal offset is 
often produced in the measurement and data conversion 
process using A/D devices. The signal is theoretically mod-
eled in this paper as the combination of the fundamental com-
ponent, odd harmonics up to the 9th order and the offset com-
ponent. It is assumed that necessary low-pass filters exist in 
the power system that harmonics higher than the ninth order 
are unaccounted for in the signal model. Also, inter-harmonics 
with non-integer orders are not in the scope of this paper. The 
modeled signal can then be summarized as 

  
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The sampling rate chosen here is 80 kHz. Thus, the sam-
pling interval, denoted by ∆T in this paper, is 12.5μs. 

A. Frequency Estimation Algorithm 

The basic sub-algorithm in [14,25] called “sample counting 
and interpolation technique” is enhanced here to be used for 
the purpose of frequency estimation. If a zero crossing takes 
place between the two consecutive samples of a signal such as 
Si-1 and Si or at the leading sample, Si, the frequency can be 
calculated in the following manner. 

  jj
j Tp

f
 


1

5.0                (3) 

where p denotes the number of samples located between two 
consecutive zero crossings. It should be noted that values of p 
less than 0.9pu or more than 1.1pu will be rejected to avoid 
inaccurate frequency estimation due to multiple zero crossing 
or large phase angle steps. Also, the correction factors αj and 
βj are calculated in [14] as functions of Si-1 and Si. In this pa-
per Si-1 and Si are defined in the following manner. 
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Let us define the following relations. 
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Therefore, the expansion of (4) according to (2) and the rela-
tions defined in (5) and (6) can give the following equation. 
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It can be shown that the signal S(t) whose digital samples are 
expressed as Si, is periodical with the same period as y(t). Fi-
nally, the correction factors can be calculated using following 
condition: 

If Si×Si-1 ≤ 0 and Si-1 ≠ 0, then  
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B. Amplitude and Phase Angle Estimation by Kalman filter  

In this section, a modification to the conventional Kalman 
filter is proposed to estimate the amplitude and phase angle of 
the preprocessed signal. The reason to preprocess the input 
signal is shown in the Appendix. It can be shown that prepro-
cessing leads to a considerable decrease in the settings for the 
level of noise. According to (7), the relevant state vector com-
ponents are similar to the conventional ones but they all are 
weighted by λk coefficients defined in (6). Therefore, the 11×1 
state vector must be defined as 
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It can be shown that the following relation is valid for the state 
vector. 
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where diag. denotes the diagonal element of F based on the 
following square matrix. It should be noted that 
x'=(2w+1)ω∆T. Thus, the computation cycle time given to the 
modified Kalman filter is (2w+1) times larger than the sam-
pling interval. This can also help to maintain the white se-
quence of noise in the samples of Si fed to the modified Kal-
man filter.  
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The Appendix describes briefly the details of the Kalman filter 
and more importantly explains how the statistical information 
of the disturbances must be prepared for the Kalman filtering. 
However, matrix H and vector Z are arranged as follow. 
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Let us define the following relation. 
DXY                       (13) 
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Fig. 1. The block diagram of the modified Kalman filter 

The amplitude and phase angle of the signal components can 
be calculated using the components of Y. 
The proposed estimation process can be summarized in Fig. 1. 
It is obvious that the proposed modification to Kalman filter is 
in series with the Kalman filter. Therefore, the stability of the 
proposed system follows that of the Kalman filter.   

C. Amplitude and Phase Angle Estimation by LES  

Let us define the following relations. 
 Tmtmx iii    

 
 

 
 kikkkkikkk kaBBkaAA

miimii
 


cos,sin

    

     d
k

kik

d
k

k
k

dkimii

vmxka

vAvAyyy
mii
















 

5

1
1212

5

1
12

5

1
12

12sin 

   (15) 

where, 2m+1 is the number of least error square equations 
while m must be larger than 5 to ensure to have an over-
determined system. 

From (15), followings can be developed. 
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Equation (16) can help arrange an LES approach of 2m+1 
equations in 11 unknowns. The matrices of the LES system 
can then be stated in the following manner. 
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where the elements of Ae can be obtained in the following 
manner in accordance with (16). 

   








111

11,
,

l

llh
lhAe

           (18) 

where: 

  
























 













 x

hll
llh

2
1

2

1
2

22
2sin,

     (19)  

in which: 







else

evenishandoddislif

1

1
      (20) 

The elements of Xe and Ye at ti are defined respectively as 
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where  h5.0  denotes the integer floor number of 0.5h. 

Anyhow, equation (17) yields unacceptable results because 
the signal samples constructing the LES input vector are sub-
jected to noise and unaccounted-for harmonic contamination. 
To tackle this issue, the LES system of (17) can be modified 
as 

 UV                      (23) 
where the elements of modified LES matrices are specified as 
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Therefore, from (7), (19), (21), and (23) to (25) the ele-
ments of U can be derived as follows. 
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It seems that Λ can be solved from (23) and can give precise 
results due to the noise reduction applied. However, the out-
comes are still unacceptable. The reason behind this relates to 
the method employed by MATLAB for computing sinusoidal 
functions. Packages such as MATLAB use Taylor series ex-
pansion method to calculate the sinusoidal functions. They use 
a finite number of terms in the series. Thus, unavoidable er-
rors can be produced while dealing with minor magnitudes of 
sinusoidal functions. Elements of U apart from those in the 
eleventh column include sinusoidal functions involving tiny 
arguments. To tackle this problem, let us enlarge the argu-
ments of these sinusoidal functions. Parameter q is used for 
this purpose and is set to 20. Thereby, the elements of the in-
put vector and transition matrix are modified as follows. 
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From (27) to (29) the elements of the transition matrix, B*, 

can be stated as 
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The elements of X* can yield the amplitude and phase angle 
components of the signal. However, the consequent estimation 
delay due to the summation, required as per (27) will be 
(mq+w)∆T seconds, that has also been considered in (28). 

D. How to combine the Kalman filter and LES parts 
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It can be shown that Kalman filter suffers from a delay about 
2.5 cycles in the critical transients where the changes in signal 

 
Fig. 2. Residue ratios [i / r1(i), the black-colored graph, and '

i / r1(i), the gray-
colored graph]   

parameters are relatively large. However, the respective delay 
of the proposed LES system is less than a half cycle. There-
fore, it is necessary to detect these critical transients in the 
online mode. This can be achieved by monitoring the differ-
ence between the real value of the latest signal sample and its 
predicted value based on the past trend of the signal. The best 
way is to use the following index for monitoring the condition 
of signal: 



 *
iii XHyu


                  (32) 

where
*

iX


is the predicted estimate of *
iX


, the process-state 

vector when y(t) is directly fed to the measurement vector of 
Kalman filter. Therefore, ui represents the difference between 

the latest sample and its predicted estimate.
*

iX


and *
iX


can 

be obtained or updated by the following equations. 
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The index of monitoring, ui, can be used in the following 
equations and conditions for the detection of critical tran-
sients. 
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if [i > 0.12r1(i) and '
i > 0.12r1(i)] or (i=1) 

   set  flag=i 
   Start building the data window of the LES system 
end; 
while [i > flag+2(mq+w)] and (i < flag+2.5×1600)  
 Switch to the LES system 
end; 
where i and '

i denote the residue indices that determine if 
Kalman filter is able to track signal changes properly. Fig. 2 
shows an instance for these indices that illustrates how they 
detectably change upon the occurrence of any critical change 
in the signal parameters. 
r1(i) denotes the estimate for the amplitude of the fundamental 
component at the instant ti 

 Fig. 2 shows the ratios of i and '
i in respect to r1(i) by the 

solid black and gray colored graphs, respectively. It can be 
shown by several simulations that these ratios are less than 
0.12 in the steady state and normal transient cases where Kal-
man filter is able to track the signal satisfactorily. Nonethe-

less, in case of large transient changes the ratios go beyond 
0.12. In Fig. 2, the phase shifts of +30o, +27o, +40o, +42o, 
+60o, -69o, -30o, +111o occur suddenly at the 16000th sample 
in the phase angles of the fundamental, third, fifth, …, fif-
teenth order harmonic components, respectively. 
Upon the detection of a critical case or at the initiation stage 
of the estimation process where i=1, the main algorithm starts 
building the necessary data window for the LES system. This 
data window is a column vector with the dimension of 
2(mq+w) as per (27) and (28). Since Kalman filter is able to 
converge to the steady state in 2.5 cycles 
(2.5×1600∆Tseconds) or less, the main algorithm will return 
to Kalman filtering 2.5 cycles later. 

Kalman filter utilizes covariance matrices of the state noise 
and the measurement noise while the LES system is only a 
general mathematical technique with no particular concern on 
the level of signal pollution. Therefore, the LES system uses 
the same kind of solver matrices for two signals with the same 
components but different levels of noise pollution. At the 
same time, Kalman filtering can treat these two signals in dif-
ferent ways. The more precise is the information about the 
signal pollution, given to Kalman filter, the less is the devia-
tion of the estimation results from the real variation of the 
signal parameters under estimation. Therefore, Kalman filter 
can track the real variations on the signal parameters, e.g. am-
plitude changes due to random load changes, better than the 
LES system which is using a general method no matter what 
the level of noise is affecting the state components or the mea-
surement data. That is the major reason why the main algo-
rithm uses Kalman filtering as the main estimator in the steady 
state and non-critical cases. The other reason relates to this 
fact that the computation level of Kalman filtering is relatively 
less than that of the proposed LES system. Especially, the 
solutions proposed in the Section III.C can provide much less 
computation for the modified Kalman filtering proposed in 
this paper. 

III. DISCUSSION ON THE CHOICE OF PARAMETERS AND 

COMPUTATAIONAL ISSUES 

There are a number of issues that should be considered in 
the development of the proposed algorithm. In this section 
what these issues are and how they should be taken care of, 
will be discussed. 

A. Number of samples and the sampling frequency 

The larger is w, the less is the error imposed by noise and 
unaccounted-for harmonics on the estimates, albeit at the ex-
pense of a longer delay. Since, at least 2 samples per cycle is 
required to obtain the parameters of a desired harmonic, at 
least 18 samples per a fundamental cycle must be available to 
estimate the parameters of the harmonics up to the ninth order. 
Therefore, the computation cycle must occur at the frequency 
of at least 18×50 Hz or 900 Hz. In the appendix it will be 
shown that the noise effect can be lowered by the factor of 
(2w+1)/ (λ1)

2. According to (4), λ1 is approximately in linear 



Review Copy: IEEE Transactions on Power System. 
 

5

relationship with w. However, it is shown in the Appendix 
that w=40 can lower the noise variance by 98.72 percent. 
These two factors together call for a sampling frequency of at 
least 18×50×(2×40+1) or 72.9 KHz. Therefore, the standard 
value of 80 KHz is chosen in this study.  

B. Noise parameters 

A random noise with zero mean and Gaussian distribution 
with 0.02pu standard deviation is the typical model of noise 
applied in the simulations of this paper. This signal conven-
tionally models the noise related to the measurement and sig-
nal conversion in A/D. Furthermore, an unconventional noise, 
relating to the high frequency sampling rate of A/Ds, is also 
applied. In spite of reliable clocks and accurate counters used 
by microprocessors to define the exact instant of performing 
the sampling subroutines, in practice a variable, slight time 
delay due to internal loading of microprocessors and the inter-
nal hardwired interfaces of the system exists for an A/D to 
receive the sampling command. Also, a variable delay de-
pending upon the quality of A/D and its speed in high fre-
quency ranges must be supposed for the A/D to take the sam-
ples right after receiving the command. Therefore, the sam-
pling interval in the simulations has been supposed to be a 
random signal with 80-kHz mean and Gaussian distribution 
having 2.1% standard deviation. 

Often, the load variation, affecting the amplitude of current 
signal and even the amplitude of voltage signal in case of a 
weak source, can be modeled as a random noise. Therefore, a 
random signal of Gaussian distribution with zero mean and 
0.02pu standard deviation has been set for the variant part of 
the signal amplitude in the simulations. 

C. Computational load on microprocessor 

Four solutions are proposed here to lower the computa-
tional load on the microprocessor. The first one involves stor-
ing some matrices in the offline mode and retrieving them for 
the on-line computations. Matrices D in (14), B* in (30) and F, 
the state transition matrix defined in (10) can be sorted by 
frequency and stored consecutively in the memory of the mi-
croprocessor. Several versions of these matrices can be pro-
duced as a function of frequency that is assumed to vary in the 
range of 49Hz to 51Hz at the steps of 0.01Hz. Thus, 202 ver-
sions for each matrix can be obtained at the offline mode in 
the initialization stage. Therefore, in the online mode any ma-
trix in relation to the estimated frequency can be retrieved 
from the memory addresses defined primarily based on the 
frequency. If the estimated frequency is exactly one of those 
that has its particular matrix saved on the memory, that matrix 
will be retrieved as the target. Otherwise, an interpolation will 
be performed to obtain the required matrix.  

The second solution recommends that sampled data are 
logged until the microprocessor becomes free to process them. 
In this case, the highest priority of the microprocessor’s inter-
rupt services will be allocated for the subroutine that imple-
ments the zero-crossing detection based on the idea proposed 
formerly as per (3) and (8). The lower priorities will be allo-

cated for performing other normal routines and computations. 
Therefore, if any fresh sample arrives in the middle of 
processing older samples, it will be logged for the next course 
of computation. The logged samples will be counted to identi-
fy the interval between two process states to incorporate in the 
state transition matrix. 
The third solution proposes the idea of producing the Kalman 
gains and error covariance matrices in the offline mode and 
save them in the memory of the microprocessor. In the philos-
ophy of Kalman filtering, these two are basically developed in 
a recursive manner which does not leave a chance to somehow 
store their real series in a memory with a limited capacity. 
However, through the simulation it can be shown that Kalman 
gains as well as error covariance matrices, either chosen from 
a proper set of periodic data or set to particular constant val-
ues, can be acceptable. An observation on the Kalman gains 
generated based on (62), (64) and (71) reveals the following 
facts. First, Kalman gains from K0 to K9, normally taking care 
of the first half cycle samples, are not always the best. These 
gains are subjected to inevitable errors due to the assumption 
made for the first state estimate in (65) which is conservative-
ly the best but untrue due to the lack of information about the 
first state of signal. Second, gains after K9 start to approach 
the steady state and settle smoothly. The average of K10 to K19, 
the gains normally taking care of the samples from the second 
half cycle of signal, is generally a little higher than the steady 
state gains. Therefore, these average gains can lead to more 
sensitivity to any changes and faster response to real changes 
of the signal but not much sensitivity to disturbances as their 
effect have been lowered by the aid of pre-filtering. In other 
words, the steady state gains generated based on the initial 
information as per (62), (64) and (71) can be enhanced by 
considering a multiplier coefficient larger than one in the ele-
ments of the state noise covariance matrix of the Kalman fil-
ter. This is intended to include the uncertainty due to the un-
known real changes that happen suddenly in the signal. Either 
time varying gains K10 to K19 or their average are applied in the 
algorithm, a good trade-off can be achieved between the fast 
response to real changes of signal and the immunity to distur-
bances. 

The fourth solution concerns the method used to solve the 
LES system in (29). The algebraic solution of the normal equ-
ations can be written as 

  **
1

*** VBBBX
TT 

                (37) 

However, it is not a good practice to invert this LES-
transition matrix. It can involve the singularity problem of the 
inversed matrix. Also, this practice can involve a large amount 
of online-computation load on the microprocessor because of 
the matrix inversion and matrix multiplication. The matrix 

** BB
T

is well-conditioned and positive definite for its whole 
operational range, that is, it is full ranked. Therefore, the equa-
tion can be solved directly by using the Cholesky decomposi-
tion [26] i.e.  TBB

T

** , where  is an upper-triangular 

matrix, giving 
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*** VBX
TT                    (38) 

The solution is obtained in two stages, a forward substitu-
tion, ** VBZ

TT  , followed by a backward substitution 

ZX * . Both substitutions are facilitated by the triangular 

nature of . 

Fig. 3. Response to a step change in frequency; solid line: the proposed me-
thod, dotted-line: the method of [14] 

D. Parameters m and q 

Several simulations performed on the MATLAB package 
reveal that the optimal choice for m and q in (27) is 15 and 20, 
respectively. As a result, the delay of (mq+w)∆T can be main-
tained as minimum as possible where issues such as the trun-
cation error of the Taylor expansion are tackled, as well. 
Therefore, 680∆T seconds after the occurrence of a change, 
the LES can track it. However, the precision of the estimates 
can be improved if m is upgraded from 15 to 16 or 17 and so 
on. In the simulations of this paper, m is to be increased up to 
40 where estimation results do not require further improve-
ment as the computation load grows significantly. 

E. Robustness of the algorithm 

Reference [5] analyzes the stability of an approach based 
on Kalman filtering. The Kalman gains or the error covariance 
matrix are proved to be bounded to avoid the instability. 
However, in the Kalman filtering system proposed in this pa-
per, the Kalman gains are already chosen from a limited set of 
data. All these gains are definitely bounded. Accordingly, it 
can be shown that the elements of the error covariance matric-
es due to the bounded gains become bounded, as well. There-
fore, the deviation between the estimated state vector and its 
real value always remains bounded. In fact, the estimation is 
stable. Moreover, in case of any large disturbance in the sig-
nal, the main algorithm switches from Kalman filtering to the 
LES system. The LES system proposed in this paper is inhe-
rently robust. As per (30) and (31) the elements of B* are defi-

nite and bounded. Therefore, the elements of   TT

BBB *
1

**


can 

be determined and it can be proved that they are bounded, too. 
Eventually, the elements of the state vector obtained in (37) 
will be bounded as the signal samples are bounded. Therefore, 
the main algorithm proposed in this paper is robust and stable 
whether it utilizes the Kalman filter or the LES system.          

IV. SIMULATION STUDIES 

In this section, the proposed algorithm is tested for various 
simulated signals. Appropriate software programs to generate 
test signals and develop the software algorithm of the pro-
posed method are coded in MATLAB. 

A. Change of frequency 

The test signal with the following characteristics is applied 
to test the ability of the proposed technique for frequency es-
timation purposes. 

)
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  ttnttn
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11sin()](06.0[)
3

9sin()](03.0[ 65

  ttnttn

)
18

13sin()](09.0[ 7

  ttn  

)(07.0)
3

15sin()](025.0[ 8 tnttn 
                      (39) 

nk(t) is intended to simulate the random changes in the cus-
tomer load. The offset of 0.07pu, in conjunction with n(t), a 
random noise with zero mean and 0.02pu standard deviation, 
have also been added to simulate low frequency and mea-
surement noises, respectively. Furthermore, the sampling in-
terval is set to a random signal with 80kHz mean and a stan-
dard deviation of 2.1 percent. 

The test signal experiences a sudden drop of 0.04 Hz in fre-
quency at t=500ms. Fig. 3 shows the performance of the algo-
rithm in this case where the proposed method (solid-line) is 
compared with the method of [14] (dotted line). It should be 
noted that frequency changes normally do not cause large dis-
tortions in the shape of signal. Therefore, the main algorithm 
does not switch to the LES system and stays with Kalman 
filtering for the amplitude and phase angle estimations. 

B. Conventional and modified Kalman filters compared 

In this case, the signal of (39) is being processed by both 
the conventional Kalman filter and the modified one proposed 
in this paper. The modified Kalman filter, unlike the conven-
tional one, involves pre-filtering the input signal. Fig. 4 shows 
how this pre-filtering can lead to better results in the estima-
tion of amplitude and phase angle of the signal parameters. 
Fig. 4(a) and 4(b) show the estimation result for the amplitude 
and the error of estimation for the phase angle of the funda-
mental component, respectively. The solid line graph shows 
the results by the modified Kalman filter and the dashed-style 
graph shows the results by the conventional one. 

C. Kalman filter and LES system in steady state 

    In this case, the constraint of applying the LES approach 
only in certain moments is deliberately relaxed. Hence, both 
the Kalman filter and the LES approaches proposed in this 
paper are employed together to process the signal of (39). Fig. 
5 shows by a solid-line graph the result of estimation for the 
amplitude of the fundamental component in the steady state 
when the Kalman filter is employed. The result for the same 
parameter is also shown in this figure by a dashed-style graph 
when the same signal samples but the LES approach is used 
for the simulation.  Comparing these two graphs concludes 
that the Kalman filter can give more precise results than the 
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LES approach during the steady state. The reason is related to 
the auxiliary statistical matrices utilized in the Kalman filter. 
The appendix explains how to calculate these matrices. 

D. Change of amplitude and phase angle 

In this case, the test signal experiences sudden phase angle 
changes in the harmonic components at t=400ms. In the fol-
lowing equations, y2(t) is applied before t=400ms and y3(t) is 
being applied between t=400ms and t=700ms. In addition, the 
amplitude of the fundamental component in y3(t) is to drop 
suddenly from 1pu to 0.95pu at t=700ms. 

)
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Fig. 6(a) to 6(e) show the results of estimation for the phase 
angles of the odd-order-harmonics from the ninth down to the 
fundamental components. For ease of presentation, the differ-
ence between the estimated phase angles of the components 
and their actual phase parts of kωt (where k is the harmonic 
order), have been utilized. The results have also been prepared 
in degrees. The grey-colored graphs are from the Kalman-
filter and the solid-black graphs are from the LES approach of 
the algorithm. The LES part starts to prepare its data-vector as 
soon as the critical change at t=400ms is detected. The first 
outcome is ready after 680∆T seconds or at t=8.5ms. 

 
Fig. 4. Amplitude estimation (a) and phase angle estimation error (b) by the 
modified Kalman filter (solid line) and the conventional one (dashed line)  

 
Fig. 5. Amplitude estimation of the fundamental component in the steady-state 
by Kalman filtering (solid-line) and by the LES approach (dashed-line) 

 
Fig. 6. Phase angle and frequency estimation results in response to step 
changes in phase angle and amplitude  

 
Fig. 7. Amplitude estimation results in response to step changes in phase angle 
and amplitude 

In less than a half cycle, the LES approach gives precise re-
sults for the phase angle of the harmonics while the Kalman 
filter despite being enhanced, is found to be suffering from the 
critical transient at least for 2.5 cycles. Therefore, the LES 
approach is maintained for 2.5 cycles and then becomes deac-
tivated. 

Fig. 6(f) shows the frequency estimation result for the 
above-described test case. The point is that the algorithm re-
peats the result of frequency estimation for the last normal 
half cycle when a large frequency deviation is detected in any 
abnormal half cycles. The term “abnormal half cycle” implies 
the half cycles in which the critical changes occur especially 
in the phase angle parts of the signal components. 

Fig. 7(a) to 7(e) show the results of estimation for the am-
plitudes of the odd-order-harmonics from the ninth down to 
the fundamental component. The grey-colored graphs are 
from the Kalman-filter and the solid-black graphs are from the 



Review Copy: IEEE Transactions on Power System. 
 

8

LES approach of the algorithm. Like the phase angle estima-
tions, the LES approach gives precise results while the Kal-
man filter is found to be suffering from the critical transient at 
least for 2.5 cycles. Fig. 8 shows the final results of the main 
algorithm for the above-described test. This response is based 
on the combination of the Kalman filter and the LES ap-
proach. The results for the amplitude estimates of the third up 
to the ninth order harmonics have been 10 times scaled up for 
better presentation. The cooperation of the Kalman filter and 
the LES approach improves the estimates especially for the 
critical transient that occurs at t=400ms. However, there is no 
need to switch to the LES approach for the event happening at 
t=700ms where the residue indices defined in (35) and (36) do 
not detect any critical changes, genuinely. 

Fig. 8(c) shows the frequency estimation result given by the 
proposed algorithm. Fig. 8(d), illustrating the response of pha-
sor-measurement method [2] to the same signal, has also been 
provided for the comparison purpose. The transient response 
of the phasor measurement technique to the sudden phase an-
gle changes suffers from the estimation error of about 6Hz for 
2 cycles in the phasor measurement method. 

E. Convergence to the initial state 

Kalman filter suffers from a delay in converging to the tar-
get estimates. The delay depends on the Kalman gains and the 
rank of the state-process vector. The convergence in the initia-
tion of Kalman filter is often critical because the predicted 
estimates for the components of the initial state vector are 
unlikely to be exactly correct. Therefore, the main algorithm 
always activates the LES approach at the beginning of estima-
tion process. Fig. 9 and 10 show respectively the initial con-
vergence of the proposed algorithm for the amplitudes and 
phase angles of the signal components defined in (39). The 
black and gray colored graphs present the results by the LES 
and the Kalman filter approaches, respectively. The Kalman 
filter is not doing well for the first three cycles but the LES 
can give good results 9.5 ms after the initiation. Fig. 10(f) 
shows the input signal by the solid gray graph in conjunction 
with the fundamental component, shown by a dotted black 
graph. This fundamental component is synthesized using the 
amplitude and phase angle estimates provided by the LES 
approach. It is evident from the figures that the main algo-
rithm should switch to the LES approach and remain there for 
the next 2.5 cycles. Then, it should switch back to the Kalman 
filter approach. 

F. Simultaneous change in frequency and amplitude 

In particular application areas such as parallel operation of 
distributed generation inverters, frequency and amplitude are 
subjected to simultaneous changes. As load sharing is usually 
controlled based on the droop method, load changes lead to 
droop or rise in both amplitude and frequency of voltage and 
current signals. In this regards, a test signal same as that in 
(39) is utilized here but at t=500ms the frequency drops sud-
denly from 50Hz to 49.95Hz and simultaneously the ampli-
tudes of components change, too. The amplitude of the fun-

damental component drops from 1pu to 0.9pu and the ampli-
tudes of the other components drop suddenly by 20 percent. 

Fig. 11 shows the results of frequency and amplitude esti-
mations. For better presentation, the results of amplitude esti-
mates for the third up to the ninth harmonics have been scaled 
up for 10 times. The algorithm does not employ the LES part 
this time because the changes detected in the signal were not 
identified as critical. However, the algorithm effectively tracks 
the signal attributes in about a half cycle for the fundamental 
and lower order harmonics as expected. 

 
Fig. 8. Response to step changes in the phase angles and the amplitudes as per 
y2(t) and y3(t); (a) Amplitudes and (b) phase angles of the odd harmonics from 
fundamental to the ninth order (the harmonic orders labeled on the respective 
graphs) ; (c) frequency estimation result by the proposed algorithm; (d) fre-
quency estimation by the phasor measurement method. 

Also, signal amplitude can suddenly change due to short 
circuits in power system as well as can the frequency because 
of the considerable power being fed to the fault. Fault currents 
usually contain decay DC parts which depend on the X/R ratio 
of system. In this case, a test signal with the following charac-
teristics has been prepared to consider all the issues. 

   
 









mstty

mstty
ty

500

500
*
4

1

4
          (42) 
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)
3

2
3sin()](42.0[sin)](8[)( **

2
**

1
*
4

  ttnttnty  

)
2

7sin()](24.0[)
3

5sin()](30.0[ **
4

**
3

  ttnttn

)
10

11sin()](36.0[)
3

9sin()](18.0[ **
6

**
5

  ttnttn

)
5

2
15sin()](15.0[)

9
13sin()](54.0[ **

8
**

7

  ttnttn

)(1.07
*10 tne t                   (43) 



Review Copy: IEEE Transactions on Power System. 
 

9

in which ω*=2π ×49.97 rad/sec and t*= t - 0.5  
It is assumed that the fault happens at t=500ms with the 

signal specified in (43) that includes a decay DC term. This 
time, the proposed algorithm finds the changes critical. Thus, 
the LES part gets activated and takes on the responsibility 
9.5ms after the detection of the threshold residues by i and '

i 
indices. Fig. 12(a) shows both pre-fault and post-fault forms 
of the signal in a solid gray-colored graph and the extracted 
fundamental component in a dotted black-colored graph, re-
built using the online estimates for its amplitude and phase 
angle. Also, the amplitudes of the fundamental and decay-DC 
components are shown in Fig. 12(b). The gray-colored graphs 
are for the true values that should be tracked and the solid 
black ones are for the estimation results. The successful re-
sults shown in Fig. 12 illustrate that the proposed algorithm 
can be useful for power system protection purposes. 

V. LABORATORY TEST 

A laboratory prototype of a seven-level H-bridge inverter 
[27], shown in Fig. 13, has been implemented to practically 
verify the proposed method. The laboratory prototype has 
been arranged with the same specification defined in [27] and 
in particular the reference frequency is attempted to be main-
tained at 157.5Hz. Therefore, the key specifications are as 
follow: Vdc=90 V, Iout-peak=5 A, fsw=6 kHz and the load is pure 
inductive with L=16mH. A predictive current control has been 
developed in a V850E/IG3 microcontroller to force the load 
current to follow the reference. The output voltage is shown in 
Fig. 14(a). It can be concluded that the signal is highly dis-
torted by harmonics, offset and noise. The voltage signal is 
fed once to the modified Kalman filter and again to the con-
ventional Kalman filter. The amplitude and the estimation 
error for the phase angle of the fundamental component are 
shown in Fig. 14(b) and Fig. 14(c), respectively. The estima-
tion results by the modified and the conventional Kalman fil-
ters are shown by solid line and dash-style graphs, respective-
ly. It is evident that the proposed algorithm performs much 
better than the conventional Kalman filter. 

VI. CONCLUSION 

A new technique is proposed for the estimation of signal 
attributes and its performance is evaluated. The method is 
based on the combination of Kalman filter and LES approach-
es to provide comprehensive results. The drawbacks of the 
Kalman filter related to its sensitivity to the information of 
disturbances and its deficiency in response to some critical 
transients have been improved by the proposed method. In this 
regard, a special summation is made on the samples of the 
original signal to produce another periodic signal that meets 
the requirements of the Kalman filter. The new input signal is 
less distorted than the original signal. The new signal is also 
good for the frequency estimation purpose. Moreover, provi-
sions have been made to detect the critical transients that re-
quire the application of the LES approach instead of the Kal-
man filtering method. The results obtained from various simu-

lation studies and a laboratory test demonstrate the effective-
ness of the proposed algorithm in both control and protection 
applications. 

 
Fig. 9. Amplitude estimation results in the initiation of the algorithm for the 
proposed Kalman filter and LES approaches 

 
Fig. 10. Phase angle estimation results (a to e) in the initiation of the algorithm 
for the proposed Kalman filter and LES approaches; the input signal and its 
fundamental component synthesized (f) 

 
 Fig. 11. Response to simultaneous change in frequency and amplitude  
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Fig. 12. Pre-fault and post-fault signals with their fundamental components 
synthesized (a); Fundamental amplitude and decay DC estimates (b) 

 
Fig. 13. A laboratory prototype of a seven-level H-bridge inverter [27] 

 
Fig. 14. Output voltage of the H-bridge inverter (a), and results of its ampli-
tude estimation (b), and phase angle estimation error (c); Estimations by the 
modified Kalman filter and the conventional Kalman filter are shown by solid-
line and dash-style graphs, respectively. 

APPENDIX 

The Kalman filtering basic theory and model development 
is described here. More detailed theory can be found in stan-
dard text books [28,29]. 

The design of a Kalman filter requires a state-space model 
of the signal to be estimated in the form of: 

iii NFXX 1
                                                                 (44) 

iii MHXZ                                                                     

(45) 
The covariance matrices for Ni and Mi vectors are given as 
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where E denotes the expected value. 
Having the prior knowledge of initial estimation error cova-

riance matrix 
0P , the Kalman gains can be computed recur-

sively as  
1)(   RHHPHPK T

i
T

ii
                                             (48) 

 iii PHKIP )(                                                               (49) 

QFFPP T
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1
                                                               (50) 

where: 
Pi is the error covariance matrix for the updated estimate at 
time ti, 
R denotes the covariance matrix of the measurement error 
vector in the Kalman filter which is assumed to be a white 
noise sequence, 
I denotes the identity matrix. 

Having an initial state estimate, 
0X


, the Kalman filter eq-

uation, which recursively estimates new values of the state 
vector, is as follows. 

)(   iiiii XHZKXX
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                                                (51) 
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                    (52) 

where 
iX


is the estimate of Xi. 

The discrete-time state-space representation of the periodic 
signal having odd harmonic components up to the ninth order 
with samples Zi at time ti is given as per (9) to (12). 

Assuming λ1a1 for the base value of amplitudes, the statis-
tical matrices of the applied Kalman filter can be obtained as 
follows. 

The state noise originating from random load changes are 
modeled by Gaussian noises with zero mean and standard 
deviation of 2 percent of the amplitude of signal component. 
Therefore, (4), (7) and (9) can give 
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k
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Let us define the state noise of the (2r-1)th harmonic as 

        
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From (54), the mean of the state noise is zero and its perunit 
variance can be obtained as 
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   (55) 

From (44), (53) and (54) the following can be derived. 
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where: 

   
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



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
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The vectors in (56), in the form of  






a

A , represent 11×1 

vectors whose last element is a and the others are the same as 
the corresponding elements in vector A.    

The original state noise elements in the main signal of y(t) 
are uncorrelated at different instants as well as the state noise 
elements in the pre-filtered signal of S(t), expressed as 

 tN r 12 


. Therefore, E(NiNj

T) will be zero when i and j are not 

equal. In addition, (10), (11), (56) and (58) can give the fol-
lowings. 
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  (59) 
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From (55) and (60), the following equation can be derived. 
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From (46) and (61), the covariance matrix Q can be ob-
tained as follows. 

]0,...,,,,.[ 10321 qqqqdiagQ             (62) 

From (45) and (53), the measurement noise for the pre-
filtered signal can be obtained as 

    
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k
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              (63) 

The original measurement noise elements, expressed as n(t) 
for different time instants, are uncorrelated as well as the mea-
surement noise elements in the pre-filtered signal of S(t), ex-
pressed as M(t) for different time instants. Therefore, the fol-
lowings can be derived. 
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Equations (55) and (64) imply that pre-filtering the signal 
lowers the statistical information of the disturbances as the 
variance of the signal is decreased by about 98.72 percent. 
Accordingly, the sensitivity to the initial settings can be con-
siderably decreased especially when the information about the 
signal is unavailable or incorrect. 

Since the initial state of the sinusoidal components of the 
signal can be any value between +λ2k-1a2k-1 and -λ2k-1a2k-1, the 
initial state estimate is conservatively assumed to be set at 
zero for every sinusoidal component. Also, the initial estimate 
of offset is supposed to be zero. Thus, 

TX ]0,0,0,0,0,0,0,0,0,0,0[0              (65) 

Therefore, the initial estimation error covariance matrix can 
be obtained in the following manner [29]. 
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From (5), (9) and (66) the diagonal and non-diagonal ele-
ments of 

0P  can be obtained as follows. 
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    (68) 

where f(i,j), g(i) and g(j) are sinusoidal functions produced 
due to the existence of sinusoidal parts in the signal compo-
nents as per (5) and (9). For example, 
     53 5sin3cos6,3   ttf          (69) 

   99cos9   tg                 (70) 

Since signal is uniformly distributed and f and g are purely 
sinusoidal functions, the average of non-diagonal elements in 
X0X0

T will be zero. In addition, from (67), the followings can 
be obtained. 
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  (71) 

GLOSSARY 

The parameters used frequently in this paper that need spe-
cific referencing are summarized in Table. 1. The definition of 
the parameter and the number of the first or main equation it is 
referenced, are addressed in column 3 and 4 of this table.  

Table I. Glossary 

Parameter Definition 
Equa-

tion No. 
ak the amplitude of the kth  harmonic 1,2 

θk 
the initial phase angle of the kth 
harmonic component 

1,2 

f power signal frequency 1

yi 
the ith digital sample of the main 
signal y(t) 

4 

Si 

the ith digital sample of S(t) gener-
ated through the summation of the 
main signal samples  

4 

Ak and Bk 
the kth in-phase and quadrative 
components of signal    

5,9 

λk weight factor on Ak and Ak
'  6,9 

X 11×1 process state vector 9 

m 
2m+1 denotes the number of LES 
equations 

15 

w 
2w+1 denotes the number of sam-
ples summed in (4) to constitute 
S(t) 

4 

F 11×11 state transition matrix 10,44 
x'  x' = (2n+1)x = (2n+1)ω∆T 10,11 

Z 
measurement vector of Kalman 
filter 

12,46 

H 
1×11 matrix giving the noiseless 
connection between Z and X 

12,46 

Ae 
(2m+1)×11 matrix whose elements 
are LES coefficients 

17,18 

Xe 
11×1 vector of unknowns in the 
LES system 

17,21 

Ye 
(2m+1)×1 vector of signal samples 
in the LES system  

17,22 

q 
auxiliary factor expanding argu-
ments of sinusoidal functions   

27,28,31 

Ki Kalman gains at time ti 33,48,51 

V* 
(2m+1)×1 LES-vector whose ele-
ments are digital samples of S(t) 
arranged as per (24)  

27,37 

B* 
(2m+1)×11 matrix whose elements 
are LES coefficients arranged as 
per (30) 

29,30,37 

X* 
11×1 LES-vector of unknowns 
whose elements arranged as per 
(28) 

28,29,37 

n(t) measurement noise 
1,39 to 

43 

nk(t) 

random noise with zero mean and 
standard deviation of 2 percent of 
the amplitude of the kth-order-odd 
harmonic that simulates the random 
changes of customer load  

39 to 43 

Ni 
11×1 noise vector–assumed to be a 
white sequence with known cova-
riance matrix Q 

44,46,59 

Mi 

1×1 measurement error vector–
assumed to be a white noise se-
quence with known covariance 
matrix R and uncorrelated with Ni 
sequence 

45,47,63 

 ir tN


 the state noise of the rth order-
harmonic at time ti 

5455,58 
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