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Abstract: Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontal-
axis wind turbine composed of three blades and a full converter. The support vector approach is data-based and is therefore robust
to process knowledge. It is based on structural risk minimization which enhances generalization even with small training data set and

it allows for process nonlinearity by using flexible kernels. In this work, a radial basis function is used as the kernel. Different parts
of the process are investigated including actuators and sensors faults. With duplicated sensors, sensor faults in blade pitch positions,
generator and rotor speeds can be detected. Faults of type stuck measurements can be detected in 2 sampling periods. The detection
time of offset/scaled measurements depends on the severity of the fault and on the process dynamics when the fault occurs. The

converter torque actuator fault can be detected within 2 sampling periods. Faults in the actuators of the pitch systems represents a
higher difficulty for fault detection which is due to the fact that such faults only affect the transitory state (which is very fast) but not
the final stationary state. Therefore, two methods are considered and compared for fault detection and isolation of this fault: support
vector machines and a Kalman-like observer. Advantages and disadvantages of each method are discussed. On one hand, support vector

machines training of transitory states would require a big amount of data in different situations, but the fault detection and isolation
results are robust to variations in the input/operating point. On the other hand, the observer is model-based, and therefore does not
require training, and it allows identification of the fault level, which is interesting for fault reconfiguration. But the observability of the
system is ensured under specific conditions, related to the dynamics of the inputs and outputs. The whole fault detection and isolation

scheme is evaluated using a wind turbine benchmark with a real sequence of wind speed.

Keywords: Fault detection and isolation, wind turbine, Kalman-like observer, support vector machines, data-based classification.

1 Introduction

With the widespread use of wind turbines (WTs) as re-
newable energy systems, it is now important to include
control and supervision in the system design. Fault de-
tection and isolation (FDI) of WTs allows reducing main-
tenance costs, which is particularly important for offshore
WTs. Online supervision should suggest the best main-
tenance time as a function of fault occurrence and wind
speed in order to reduce operation and maintenance costs.
Early detection of faults allows also avoiding degradation
of the material and other side effects. Furthermore, fault
detection is essential for control reconfiguration in order to
ensure optimal power in case of partial fault. Even though
the wind turbine functionality might be similar to rotat-
ing machinery, it involves a number of difficulties ranging
from a high variability in the wind speed, aggression by the
environment, measurement difficulties due to noise and vi-
brations, besides the fact that wind turbines are supposed
to run continuously for several years. For these reasons,
the development of methods for FDI in WT is increasingly
important. Similarly, a number of fault tolerant control
(FTC) approaches are also being applied to WT, but this
is out of the scope of this paper.

FDI approaches can in general be classified as model-
based or data-based: On one hand, model-based methods
require a comprehensive model of the system. On the other
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hand, success of data-based approaches is conditioned by
the significance (amount and quality) of historical data and
the mathematical method used to detect the patterns in
data. However, training data is usually limited to some
specific conditions that are typically normal, non faulty
data, with limited variations of operating conditions. Limi-
tations of both model-based and data-based approaches can
be overcome by combining them in order to ensure optimal
supervision. This represents the main idea of the present
paper.

Reviews of WT monitoring and fault diagnosis were pro-
posed by [1 − 3]. Both data- and model-based approaches
were reported. Among model-based approaches, observers
were applied to monitoring several parts of wind turbines.
Reference [4] proposes an unknown input observer to detect
sensor faults around the WT drive train. More focus has
been drawn on the electrical conversion system in the wind
turbines. Reference [5] proposes an observer-based solution
to current and voltage sensors fault detection. Reference
[6] presents an FDI solution to faults in a doubly fed wind
turbine converter.

A number of approaches were used for FDI in WT, such
as neural networks (NN) as well as statistical-based ap-
proaches. Neural networks were used for estimation of the
generator power by [7]. Reference [8] shows that neural
networks had a higher confidence level than polynomial
regression-based model for FDI in gearbox bearing damages
and stator temperature anomalies in the WT. Reference [9]
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studies faults related to the accumulation of coal in the
coal mill using statistical and dynamic-based approaches.
They showed the importance of data selection in the sta-
tistical approach for supervision. Reference [10] com-
pares different data-mining algorithms to extract models for
FDI of WT (without isolation, except for diverter fault):
NN, NN ensemble, boosting tree algorithm, and support
vector machine (SVM). In normal situations, SVMs are
more accurate in prediction and isolation. But in faulty
situations, better prediction is obtained by NN ensem-
ble and better evaluation of its severity by the boosting
tree algorithm. The use of frequency domain was also
found interesting for FDI of some vibration components
in WT. Reference [11] uses the frequency domain model
for FDI of tooth crack in the planetary gear using spectral
methods.

The WT considered in this work is a horizontal axis vari-
able speed turbine composed of three blades for which a
benchmark was proposed by the companies kk-electronic
and MathWorks and the University Aalborg[12]. Differ-
ent faults are likely to occur in this benchmark: sensor
faults (pitch positions, generator and rotor speeds), ac-
tuator faults (pitch positions, convertor torque) and sys-
tem faults (drive train). These faults could be type stuck,
scaled measurements or subject to offset (e.g., calibration
error, interruption in data transmission and degradation
of some components). Based on this benchmark, different
solutions for FDI of the WT were proposed at an Inter-
national Federation of Automatic Control (IFAC) competi-
tion in 2011[13−18] . The proposed solutions were satisfac-
tory only for part of the possible faults. No solution was
found convenient for faults related to the actuator of the
convertor torque and system faults. Reference [13] only
considered sensor faults using SVM for supervision. This
method showed the best results in terms of detection time
and number of false alarms for faults of type stuck measure-
ments. The second best solution was proposed by [14] which
is based on an estimation approach. The third solution is
based on up-down counter solution given by [15]. Other ap-
proaches were also used, such as the concepts of sensitivity
matrix[16], piecewise affine models for pitch sensors[17] , par-
ity equations followed by H∞ optimization[18] , a data-based
method[19], and a method based on Kalman filter[20].

In this work, both observers (Kalman-like) and a data-
based approach (SVM) are used for FDI in WT using
the mentioned benchmark. The paper is organized as fol-
lows. In Section 2, basic hints about SVM classification
and Kalman-like observer are given. In Section 3, the wind
turbine is described and the locations and types of faults
are defined. In Section 4, SVM and observer implementa-
tion are presented showing the different tuning levels. In
Section 5, simulation scenarios are presented to evaluate
the efficiency and limitations of the proposed methodology
using a real wind speed sequence.

2 Theoretical background

The objective of this work is to combine data-based
and model-based approaches for FDI in WT. Among
data-based approaches for FDI appear artificial neural

networks[8], and statistical methods such as principal com-
ponent analysis[21] , partial least square (PLS) and more re-
cently support vector machines (SVM). This last approach
will be considered due to its robustness and fastness, which
makes it valid for online applications.

In model-based approaches, the use of observers repre-
sents the first choice for FDI[22−24]. Various observer struc-
tures have been proposed in the literature for linear and
nonlinear systems. Among the proposed structures, the
unknown input observer is widely used[25]; also appears
the eigenstructure assignment approach[26] or the sliding
mode observer[27]. For FDI in nonlinear applications, the
extended Kalman filter was firstly applied without theoret-
ical validation[28]. The theoretical FDI problem for non-
linear systems was initially introduced by [29]. Since that
time, many techniques have been proposed for nonlinear
systems. Garcia and Frank[30] gave a survey on the prin-
cipal observer-based approaches to fault diagnosis of non-
linear systems. The authors in [31−33] proposed solving
the FDI problem by combining the geometric decoupling
techniques with the nonlinear observer synthesis. The ob-
server form proposed in the present paper is obtained by
input-output injection linearization.

2.1 Support vector machines

SVMs are based on the structural risk minimization prin-
ciple using the statistical learning theory introduced in 1964
by Vapnik and Chervonenkis[34]. Only recently, SVMs were
introduced as machine learning algorithms for classifying
data from two different classes[35,36] . Basically, a binary
support vector classifier constructs a separating hyperplane.
The hyperplane should have the maximum margin which
is the width up to which the boundary can be extended
on both sides before it hits any data point. These con-
tact points are called the support vectors. In order to al-
low classifying nonlinearly separable sets, a nonlinear kernel
function can be used. The main differences between SVM
and many other statistical methods are therefore: First,
the structural risk minimization (training by traditional
classifiers usually minimizes only the empirical risk) that
improves the ability of generalization even with a reduced
number of samples and avoids over-fitting in view of good
parameter tuning. Second, SVMs use nonlinear kernels
which allow separation of nonlinearly separable data. SVMs
have been extensively used to solve classification problems
in many domains ranging from face, object and text de-
tection and categorization, information and image retrieval
and so on. Their use for fault detection started in 1999 and
was found to improve the detection accuracy. Reference
[37] presents a review about the use of SVMs for fault de-
tection. They reported 37 papers in academic journals on
this subject. Nowadays, the number of journal papers using
SVMs for fault detection has importantly increased. The
concerned domains are in majority restricted to mechani-
cal machinery with slight extension to electro-mechanical
machinery, semi-conductors and chemical processes[38−40] .

Consider the problem of separating the set D composed
of N training vectors belonging to two classes (Ω1, Ω2) (for
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more details see [34−36])

D = {(x1, z1), (x2, z2), · · · , (xN , zN )}, Ω1 = {xi|zi = +1}

Ω2 = {xi|zi = −1}, i = 1, · · · , N

where xi ∈ Rp denote the input vectors, each vector be-
ing characterized by a set of p descriptive variables xi ∈
{xi1, xi2, · · · , xip}, and zi ∈ {−1, +1} defines the class la-
bel of a given vector xi. The purpose of SVM is to find
an optimal separating hyperplane f(x) that maximizes the
margin ( 1

‖w‖
) between the hyperplane and the data points

from each side such that all points of the same class are
on the same side of the hyperplane (Fig. 1). The support
vectors correspond to points located exactly at a distance
equal to the margin. The weight w is a p-dimensional vec-
tor orthogonal to the hyperplane. Since it is not always
possible to perfectly separate the data (for instance, due to
measurement noise/errors), a slack variable ζi is introduced
to relax the margin constraints and allow misclassification.
ζi measures the degree of misclassified vectors (lying on the
wrong side of the hyperplane or inside the margin). In this
case, the optimisation problem for soft margin classification
can be written as follows (linearly separable data with error
tolerance):

min
w,b,ζ

(

1

2
‖w‖ 2 + C

N
∑

i=1

ζi

)

(1)

subject to

{

zif(xi) � 1 − ζi

ζi � 0
, where f(xi) is the pre-

dicted output and C � 0 is a regularization parameter that
governs the tolerance to misclassification. Increasing the
value of C will increase the cost of misclassifying points
but reduce the importance of minimizing the model com-
plexity (minimizing ‖w‖2). It can be tuned by optimisa-
tion and cross validation. If criterion ‖w‖2 is convex and
all constraints are linear, this problem can be solved by
constructing a Lagrange function. Solving the dual opti-
mization problem gives the Lagrangian multipliers (αi), the
support vectors and b (the bias). According to the Karush-
Kun-Tucker complementary condition, the solution must
satisfy: αi[zif(x) − 1 + ζi] = 0 which means either αi = 0
or zif(x) − 1 + ζi = 0. The latter condition corresponds
to the support vectors (inputs lying on the margin), where
αi �= 0.

Fig. 1 SVM classification of two linearly separable classes (here

xi ∈ R2)

For nonlinearly separable data, which is the case of many
real problems, the data can be mapped by some nonlinear
function φ(x) into a high-dimensional feature space where
linear classification becomes possible. Rather than fitting
nonlinear curves to the data, SVMs handle this by using a
kernel function K(xi, x) � φ(xi), φ(x) > to map the data
into a different space, where a hyperplane can be used to
do the separation. The obtained decision function is

f (x) = 〈w, φ(x)〉 + b =

N
∑

i=1

αiziK(xsup i, x) + b (2)

with the properties

w =
N

∑

i=1

αiziφ(xsup i)

where b is the bias term (a scalar). It is clear that this deci-
sion function is only influenced by the non-zero αi (support
vectors). This gives two features to the SVM algorithm:
ability of adjusting the error with a reduced training set,
and fast computation in decision-making (allowing online
implementation). Therefore, N can be replaced by nsv (size
of support vectors xsup) in (2). The kernel function can be
any function that satisfies Mercer′s theorem, namely any
continuous positive definite function can be considered as
a kernel function that represents an inner product function
in some space. The Gaussian kernel (which is a radial basis
function) is the most widely used:

K (xi, x) = e
−‖xi−x‖2

2σ2

where σ is the variance. A small σ is known to perfectly fit
the training data but to be unable to evaluate the fault for
new data (overfitting, reduced ability of generalization). It
can also be tuned by optimisation and cross validation.

2.2 Kalman-like observer

The Kalman-like observer was developed by [38] for a
class of nonlinear systems, where the state matrix may de-
pend on the inputs; outputs or on time and all the inputs
are regularly persistent. The observer equations are based
on the minimization of a quadratic convex criterion. For
such a class of nonlinear systems, the Kalman-like observer
is easier to implement than the Kalman filter since the gain
matrix relies on a unique tuning parameter, which justifies
the choice of this observer for this FDI in WT. Also, no
need for a change of variables is required since this system
is under a canonical form of observability.

Consider the following nonlinear system:
{

ẋ = A(u, y)x + G(u)

y = Cx
(3)

with a single output, y ∈ R. The state matrix A might
depend on the inputs and the outputs. Let us call φu(s, t0)
the unique solution of

dφu(S, t0)

ds
= A(u(s))φu(S, t0)

with φu(t0, t0) = I the identity matrix and φu(t0, s) =
φ−1

u (s, t0). We denote φu(s, t) = φu(s, t0)φu(t0, t) and
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G(u, t0, t0 + t1) is the Gramian of observability related to
the input u on the interval [t0, T ]:

G(u, t0, t0 + t1) =

∫ t0+t1

t0

φ
T
u (t, t0)C

T
Cφu(t, t0)dt

where T stands for the transposed matrix or vector.
Definition 1. An input u ∈ Rm is regularly persistent

for system 3 if ∃t1 > 0, ∃α1 > 0, ∃α2 > 0 and ∃t0 � 0 such
that ∀t � t0:

λmin(G(u, t0, t0 + t1)) � α1

λmax(G(u, t0, t0 + t1)) � α2

where λmin and λmax stand for the less and largest eigen-
values of G, respectively.

Theorem 1[41]. If u is regularly persistent, then
{

˙̂x = A(u)x̂ + G(u) − R−1CT(Cx − y)

Ṙ = −θR − AT(u)R − RA(u) + CTC
(4)

is an observer for system 3 with θ > 0, x̂(n) ∈ Rn. More-
over, the norm of the estimation error goes exponentially
to zero. The tuning parameter of the Kalman-like observer
is θ, which must be superior than zero. The convergence
of the observer is guaranteed if matrix R is a symmetric
positive definite matrix.

3 Wind turbine description

A horizontal axis variable speed turbine composed of
three blades is considered in this work[12]. The system has a
full converter coupled to a generator that allows converting
the mechanical energy to electrical energy. A drive train
is used to increase the rotational speed from the rotor (the
three blades) to the generator.

Sensor faults: The system is equipped with duplicated
sensors (Fig. 2) measuring:

1) the three pitch positions (βk,mi, k = 1, 2, 3, i = 1, 2),
2) and the generator and rotor speeds (ωg,mi, ωr,mi, i =

1, 2),
where i indicates the sensor number and k the pitch number
(each pitch has 2 sensors measuring its position). This gives
a total of ten sensors all subject to two kinds of faults: stuck
or scaled measurements that are to be detected within 10
sampling periods (desired number of samples for detection
ndes

s < 10), where the sampling time is Ts = 0.01 s (Table

1). The process has other sensors, measuring for instance
the wind speed and generator power that are not supervised
in this work.

Fig. 2 Measurements of the WT

Actuator faults: As a function of the wind speed, a con-
trol system allows controlling the aerodynamics of the tur-
bine to get the optimal power. The benchmark allows sim-
ulating the wind turbine control under normal operation:
Zone II: power optimization, and Zone III: constant power
production. Zones I and IV correspond to the start and
stop operations. The actuators manipulate the three pitch
systems and the convertor torque. They allow respectively
pitching the blades and setting the generator torque to con-
trol the generator and rotor rotation speeds. These actu-
ators are also subject to fault. The converter system that
sets the generator torque might have an offset that should
be detected rapidly (ndes

d < 5). The three pitching systems
might also have a change in the dynamics that can be due
to abrupt change in the hydraulic system or to high air
content in the oil at a slower rate.

System faults: In the used benchmark, system faults
might also occur for instance in the driving train due to
friction changes with time that might break down the train,
but this is not considered in this work. In real life, other
kinds of faults might also occur, like data transmission, or
raw position that are not considered either.

Hints on the model: Fault detection will be studied based
on closed-loop simulations in Zones II and III with a real
measured sequence of wind of 4400 s. The detailed model
of the turbine is given in [12]. Some hints are given bel-
low. Note that the system contains nonlinear parts, the
measurements are noisy and the control system is switched
between both zones, which all add difficulties for FDI.

Table 1 Fault locations and fault detection results based on few scenarios (ndes

s and ns are the desired and real numbers of sampling

periods for detection, the sampling period being Ts = 0.01 s)

Fault n◦ Fault location Fault type n∗

s ndes∗

s

Sensor faults

1a
Pitch angle sensor

Stuck (β=constant) 2

<10

1b Scaling factor ×β 10 if ∆β > 1.5

2a
Rotor speed sensor

Stuck (ωr=constant) 2

2b Scaling factor ×ωr 47 if ∆ωr � 0.3

3a
Generator speed sensor

Stuck (ωg= constant) 2

3b Scaling factor ×ωg 2 if ∆ωg �4

Actuator faults
4 Generator torque Offset τg = τg + ∆τg 2 < 5

5 Error in parameters wn and ζ Abrupt or slow drift 400 8–600 (8 if sever)
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Let us recall the pitch system and converter models that
will explicitly be referred to in the fault scenarios. The
pitch system is hydraulic and the relation between the mea-
sured and desired pitch angle (the reference obtained by the
controller) can be modelled by a second-order transfer func-
tion:

βm
k (s)

βd(s)
=

w2
n

s2 + 2ξwns + w2
n

(5)

where βm
k (s) and βd(s) are the measured and desired po-

sitions of pitches k = 1, 2, 3, and [wn, ζ]=[11.11 rad/s, 0.6]
are respectively the natural frequency and a damping fac-
tor. The pitch rate (β̇) may take values between −8 and
8 deg/s and the pitch angle (β) between −2 and −90 deg.
As shown bellow, β remains lower than 20◦ with the used
wind sequence in this benchmark.

Similarly, the converter dynamics, represented by the
measured to the desired generator torque, can be modelled
by a first-order transfer function:

τm
g (s)

τd
g (s)

=
1

τs + 1
(6)

where τm
g and τd

g are the real and desired generator torques,
and τ = 0.02 s is a combined convertor and generator model
parameter. The real generator torque, being non measured,
is calculated from the measured generator speed ωg,mi and
the power produced by the generator Pg, which are related
by the following equation:

Pg(t) = ηgωg(t)τg(t) (7)

where ηg = 0.98 is the generator efficiency.

4 FDI implementation

First of all, SVM is applied alone to FDI of all faults.
For actuator faults, both SVM and a Kalman-like observer
are compared.

4.1 Support vector machines

Fault detection and isolation by SVM is developed in
two parts: training of models for FDI and validation of the
obtained models. The main steps in the development are
detailed bellow.

1) Data generation: First of all, a set of measured data x

(inputs, references and outputs) without fault or with dif-
ferent fault amplitudes is generated to train models for de-
tection of each fault separately (to ensure isolation). This
set was generated using a real wind sequence as input to
the benchmark. For each fault, about six scenarios were
considered, with different fault amplitudes. Each sample
is attributed z=+/−1 (with/without fault) for the consid-
ered fault. Note that when a particular fault is considered,
normal data might contain faults in the other sensors or
actuators.

2) Data pre-treatment: Data filtering was found pri-
mordial before model development in order to reduce the
sensitivity to process disturbances or measurement noise.
A first order filter with a time constant τ was used

(filtered data is noted with a hat). Data were not nor-
malized.

3) Features selection: The key step in training SVM mod-
els is features selection. The input vector xi used for classi-
fication should contain the most pertinent information re-
lated to the considered fault. But, all the data cannot be
used since the important information might be affected by
high variation amplitudes of useless variables. This vec-
tor may include inputs, outputs, set-points, combination of
both or derivation of the measurements with time. It is
important to mention that the selection of xi should in-
sure both fault detection and isolation. In this work, xi

is selected based on observing the process outputs for each
fault. Note that for each fault a different vector was pro-
posed. Using some statistical analysis such as principal
component analysis or partial least square can be useful for
pre-treatment, but was not found interesting in the present
study since some information was lost during treatment.

4) Parameter tuning: The kernel used for learning all
the faults is the Gaussian kernel. Initial values of the ker-
nel variance σ and generalization parameter C are obtained
based on the correlations proposed by [42]. These values
were then refined based on a few simulations. Cross vali-
dation may also be used, but this would require reduction
of the data size before optimising the parameters for each
fault. Indeed, the wind sequence duration is 4 400 s with
Ts = 0.01 s, which gives 4×105 samples. For parameter tun-
ing, it is well known that high σ values lead to improved
generalisation, but very high σ might not fit the data at
all. Small σ on the contrary might perfectly fit the learn-
ing data (overfitting), but might be unable to evaluate the
fault for new data (reduced ability of generalization). For
the regularization parameter C, higher values allow more
misclassification and minimizing the function complexity.

5) Model development: The SVM learning algorithm
then uses the inputs x and their corresponding outputs
z to identify αi and the support vectors (xsup,i) to be
used in (2) for decision making. Note that the same
“model” (xi and αi) is used for faults of the same type
(e.g., pitch position fault 1a βk,mi, ∀k = 1, 2, 3,∀i = 1, 2,
so one model for 6 sensors). Eight different models were
therefore developed.

6) Validation: the obtained SVM models are evaluated
in new fault scenarios. Parameter adjustment is done based
on the number of false alarms and misdetections.

The features used for learning SVM models are detailed
bellow for each fault.

4.1.1 Stuck measurements

Data exchange with the system might be interrupted for
few sampling periods, especially in wireless systems, which
is frequent in WT. The measurement is therefore stuck at
the last exchange with the system. In order to detect such
a fault, the use of the derivative of the measurement can be
very useful. A wise filter is however necessary in order to
overcome difficulties due to measurement noise. The sen-
sors concerned by this type of fault are the pitch position
sensor and the rotor and generator speed sensors.

Pitch position sensor. For stuck pitch position sensor
fault (fault 1a), the following vector is used for detection
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and isolation:

x =

⎡

⎢

⎣

β̂m1
k (tj) − β̂m2

k (tj)

βm1
1 (tj) − βm1

1 (tj−1)

βm2
1 (tj) − βm2

1 (tj−1)

⎤

⎥

⎦
(8)

where tj and tj−1 are the time instances j and j − 1, re-
spectively, βmi

k is the measured pitch position, and β̂ is the
measured pitch position filtered using τ = 6 × Tss. The
first line allows fault detection. The second and third lines
allow fault isolation (sensor number 1 or 2). They give a
kind of derivative of the sensor measurement (without the
division by Ts, and using the absolute value).

For practical applications, when

|βmi
k (tj) − β

mi
k (tj−1)| = 0

this term is replaced by a large constant value (5000) in
order to enhance distinguishability between the fixed value
fault and normal case (no fault) as these values oscillate
between 1×10−2 and 2. For all sensors measuring the pitch
positions (βmi

k , k = 1, 2, 3, i = 1, 2), the same model is used
with the variance σ tuned at 10.

Generator and rotor speed sensors. For stuck ro-
tor (fault 2a) and generator (fault 3a) speed sensor faults
(ωg,mi, ωr,mi, i = 1, 2), the following vector is used for de-
tection and isolation:

x =

⎡

⎢

⎣

|ω̂m1
p (tj) − ω̂m2

p (tj)|

|ωm1
p (tj) − ωm1

p (tj−1)|

|ωm2
p (tj) − ωm2

p (tj−1)|

⎤

⎥

⎦
, p = g, r (9)

where ω̂g is obtained using a filter with τ = 2 × Tss and
ω̂r using τ = 60 × Tss. The Gaussian variance is tuned at
σ = 15.

4.1.2 Scaled measurements

Scaled faults might occur in the sensors, for instance, due
to calibration errors, or drifts in some components of the
sensor with time. Therefore, these faults might appear pro-
gressively. In order to detect such faults, the difference (in
absolute value) between the “desired” and measured values
is considered after filtering. It is important to note that in
the benchmark these faults are simulated as a multiplica-
tive gain (βmi

k = k × βk). Therefore, once the drift at-
tains a sufficiently detectable limit, it can be detected and
isolated. When the measurement equals zero, the faulty
measurement coincides with the real one, even though the
sensor might be defected. Therefore, in the considered sce-
narios, the faults are introduced at instances where βmi

k �=0,
otherwise it is not detected.

Pitch position sensors. Drift in the pitch position
sensor fault (fault 1b) is detected and isolated in two steps:
First of all, the fault is detected using the following mea-
surement vector

x =

⎡

⎢

⎣

|β̂m1
k (tj) − β̂m2

k (tj)|

|βm1
k (tj) − βm1

k (tj−1)|

|βm2
k (tj) − βm2

k (tj−1)|

⎤

⎥

⎦
. (10)

The second and third lines in 8 are important in order to
exclude faults of type stuck sensor (fault 1a). In a second

step, if a fault of type b is detected, for isolation between
sensors 1 and 2, the following vector is used:

x =

[

|β̂d(tj) − βm1
k (tj)|

|β̂d(tj) − βm2
k (tj)|

]

(11)

where βd is the desired value of the pitch angle and β̂

is obtained by filtering βmi
k using a first order filter with

τ = 0.08 s.
Generator and rotor speed sensors. For the de-

tection of generator and rotor speed sensor faults of type
b (scaled measurement), excluding faults of type a (stuck
measurement), the following vector is first applied:

x =

⎡

⎢

⎣

|ω̂m1
p (tj) − ω̂m2

p (tj)|

|ω̂m1
p (tj) − ω̂m1

p (tj−1)|

|ω̂m2
p (tj) − ω̂m2

p (tj−1)|

⎤

⎥

⎦
, p = g, r. (12)

In a second step, isolation between sensors 1 and 2 is done
using the following vector

x =

⎡

⎢

⎢

⎣

τ̂m
g × ω̂p,m1(tj)

P̂ m
g

τ̂m
g × ω̂p,m2(tj)

P̂ m
g

⎤

⎥

⎥

⎦

, p = g, r (13)

where P m
g is the measured power of the generator. The

measurements are filtered with τ = 6 × Tss for the estima-
tion of faults of ω̂s and using τ = 60 × Tss for ω̂r.

4.1.3 Actuators

Offset in the generator torque actuator. The gen-
erator torque actuator fault (fault 4) is assumed to be an
offset in the benchmark, which is comparable to scaled mea-
surements. Therefore, comparison to the desired value is
considered:

x =

[

|τd
g − τ̂m

g |

λ2 × |ω̂d
g −

ωm1
g +ωm2

g

2
|

]

. (14)

In the first line, the measured generator torque (τm
g ) is

compared to the desired one (τd
g ), and in the second line,

the measured generator speed is compared to the mean mea-
sured values from the two sensors ωg,mi. The desired gen-
erator speed is calculated from the desired generator torque
τd

g (7) which gives

ω
d
g =

P d
g

τd
g ηg

with P d
g the desired generator power. τd

g is filtered using
a first order filter, τ = 2 × Tss is a time constant. The
objective of this filter is to take into account the dynamics
of the control system (time necessary for τm

g to attain τd
g ,

(6). The factor λ2 = 10−10 ×ν6
wind in the 2nd component of

x is used to take into account the wind speed with a kind
of normalization with respect to the first term. The kernel
variance is tuned at σ = 10.

Scaled pitch position actuator. Pitch position actu-
ator faults (fault 5) might be due to abrupt change in the
hydraulic system or to high air content in the oil which ap-
pears at a slower rate. Both types of faults are modelled by
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varying wn and ζ in (1) either abruptly or more smoothly
over 30 s.

As can be seen, (5) is a second order linear relation be-
tween β and βd. In the case of alteration in parameters wn

and ζ, the stationary state does not change, but the tran-
sient dynamics changes. In order to estimate the dynamics,
the transient behavior resulting from different operating
conditions should be included in the data for SVM training,
which might increase importantly the data volume. Based
on a few simulations, as for scaled sensors faults, the vector
proposed for the detection of the pitch position actuator
fault is thought to take into account the difference between
the real and desired pitch positions. Note that due to mea-
surement noise and control dynamics, this difference will
be subject to oscillations even under normal situation. The
difference between both sensors is also considered in order
to distinguish this fault from sensor faults. Finally, the gen-
erator speed measurement is considered since a fault in the
pitch position will affect the rotation of the rotor and so the
generator at a secondary level.

x =

⎡

⎢

⎢

⎢

⎣

ωm1
g − ωm2

g

βm1
k − βm2

k

β̂d − βm1
k

β̂d − βm2
k

⎤

⎥

⎥

⎥

⎦

(15)

where βmi
k is the response of the second order system given

by (5) to the input βd. A Gaussian variance σ=10 is used.
Since it is difficult to obtain a comprehensive training

data including transitory states, and since the mechani-
cal model is known, it is obvious to develop a model-based
method for fault detection of the pitch position actuators.
Therefore, before showing the simulation results of SVM, a
Kalman-like observer will be developed for fault detection
and isolation of this fault.

4.2 Kalman-like observer for pitch posi-
tion actuator

As mentioned previously, the pitch position actuator
fault (fault 5) is simulated by deviating the natural fre-
quency and the dumping factor wn and ζ from their nominal
values. Therefore, for fault detection, an observer is devel-
oped to estimate these parameters and evaluate the drift
from nominal values. The difference between the estimated
values of any of these parameters with respect to its nom-
inal value can be used as a residual with some threshold,
that is to be defined as a function of the noise.

Considering (5) and by applying the following change of
coordinates x1 = βk, x2 = βk, u = βd, k = 1, 2, 3, one gets
the following state equations:

{

ẋ1 = x2

ẋ2 = −w2
nx1 − 2ξwnx2 + w2

nu

y = x1.

To estimate parameters wn and ζ, we construct the follow-

ing augmented system, with x3 = 2ζwn and x4 = w2
n:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẋ1 = x2

ẋ2 = −x4x1 + x3x2 + x4u

ẋ3 = 0

ẋ4 = 0

y = x1. (16)

Necessary conditions for the observability of x3 and x4 in
system 16 are:

1) ẋ1 �= 0 and ẋ2 �= 0 (non null dynamics βk �= 0 and
β̇k �= 0, which requires that βr �=0);

2) Regularly persistent inputs are required (βd);
3) And (ẋ1 + u̇)x2 �= (x1 + u)ẋ2.
Under these conditions, a Kalman-like observer[43] can

be developed for system (16) as follows:
{

˙̂x = A(u)x̂ + G(u) − R−1CT(Cx − y)

Ṙ = −θR − AT(u)R − RA(u) + CTC
(17)

with C = [1 0 0 0]

A(u, y) =

⎡

⎢

⎢

⎢

⎣

0 1 0 0

0 0 −s u − x1

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎦

, X̂ =

⎡

⎢

⎢

⎢

⎣

x̂1

x̂2

x̂3

x̂4

⎤

⎥

⎥

⎥

⎦

,

G(u) =

⎡

⎢

⎢

⎢

⎣

0

0

0

0

⎤

⎥

⎥

⎥

⎦

,

R =

⎡

⎢

⎢

⎢

⎣

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

⎤

⎥

⎥

⎥

⎦

.

Matrix R is initialized at identity. The observer is tuned
using θ=3. s = ẋ1 is the filtered output derivative signal
which should be bounded and non null. A first order fil-
ter with τ = Tss is employed on βk. Note however that
no filtering was considered neither for the output nor its
set-point βmi

k and βd. Indeed, filtering these entities differ-
ently would create a static error (between the output and
the set-point), which would affect the observability of the
unknown parameters.

Also note that since the system is not observable if
βd = 0, the observer gain is set to zero in Zone II and
is activated only in Zone III. Moreover, when βd = 0, the
estimated values are reinitialized at their nominal values.

5 Results and discussion

5.1 SVM results

SVM models were applied to fault detection and isolation
of all the discussed sensors and actuators. All faults of type
stuck measurement could be detected within 2 sampling pe-
riods while introduced at different instances, and therefore
under different dynamics (e.g., control phases). The detec-
tion time (and robustness) for scaled measurement faults
depended on the scaling factor and on the system behaviour
at the fault time. Based on a few simulations, an average
value ns was calculated, as reported in Table 1.
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In the case of occurrence of one fault at a time, fault de-
tection and isolation is insured for all the considered faults.
For simultaneous faults, fault isolation is insured if the esti-
mation is based on a different vector x. For instance, one of
the scenarios will show the efficient isolation of simultane-
ous scaled faults in ωr and ωg. Another scenario will show
the efficiency of isolation of simultaneous faults of different
types stuck/scaled in two different sensors measuring the
pitch position.

5.1.1 Pitch position sensor faults

In a first scenario, two simultaneous faults were consid-
ered in the pitch positions βm1

1 and βm2
2 of types stuck and

scaled measurements, respectively. Moreover, two scaling
factors were compared: 1.2 and 1.8. The faults could be
detected and isolated in both cases. Fig. 3 shows the detec-
tion results of the fault of type stuck measurement in βm1

1 .
Figs. 4 and 5 show the effect of the scaling factor on the
FDI results of βm2

2 . The scaled measurement fault occurs
in βm2

2 at 2800 s, where βm2
2 holds a high value (around

10 deg), and finishes at 2900 s, where it decreases almost to
zero. It can be seen that the detection results depend on
the measured value of β, since the offset is calculated as a
scaling factor of this measurement. Therefore, the smaller
the value of β, the smaller the offset, and at β=0, it can
be said that the fault is eliminated. For this reason, it can
also be seen that the fault is detected only by intermit-
tence if the scaling factor equals 1.2 (Fig. 5), while it is well
detected with a scaling factor of 1.8 (Fig. 4).

Fig. 3 Fault detection and isolation of stuck sensor βm1

1
(fault

1a). Fault duration: 2800–2900 s. The scale of the measured

value is shown on the left and the residual′s scale is given on the

right (as indicated by the arrows)

A threshold is to be attributed to each fault, to be com-
pared to the residual and to announce fault occurrence. The
threshold should be � 0 and its amplitude depends on the
absolute value of used x. For instance, in Figs. 3–5, the
threshold can reasonably be set to 0.5, which means that
the system is considered non faulty if the residual is less
than 0.5. (The color figures in this paper can be found in
the electric version.)

Fig. 4 Fault detection and isolation of pitch position βm2

2
be-

tween 2800–2900 s (fault 1b), scaling factor = 1.8

Fig. 5 Fault detection and isolation of pitch position βm2

2
be-

tween 2800–2900 s (fault 1b), scaling factor = 1.2

It can be concluded that fault isolation is robust to si-
multaneous faults in this case. Fault detection is robust
for faults of type stuck measurements, but depends on the
dynamics and the offset in scaled measurements.

5.1.2 Generator and rotor speed sensor faults

As for the pitch position case, stuck measurement could
be detected in 2 sampling periods while introduced in ωr or
ωg sensor at different instances under different dynamics.
Fig. 6 shows the detection results for the rotor speed sensor
ωm1

r , where the measurement was stuck at 1.2 rad/s.
Concerning scaled measurement faults, fault detection re-

sults were more robust than those of the pitch position,
which is due to the lower noise level with respect to the
absolute values of ωg and ωr. An example of simultaneous
faults occurring in both ωm2

r and ωm1
g with a scaling factor

of 1.2 for both sensors is shown in Figs. 7 and 8. This leads
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to ∆ωr ≈ 0.35 rad/s and ∆ωg ≈ 30 rad/s. Based on a num-
ber of simulations, it can be concluded that fault isolation of
these sensors is efficient for both fault types (stuck/scaled).
Again, the threshold can be set to 0.5 for both types of
faults related to these sensors.

In Fig. 9, the fault was introduced in ωm2
r at 100 s,

where the absolute value of ωr was around 0.6 rad/s (while
ωr ≈ 1.7 at 3560 s, Fig. 7). Therefore, with a com-
parable scaling factor of 0.8, the fault leads to a lower
∆ωr (∆ωr ≈ 0.1 rad/s). The fault could however be de-
tected but the detection results were intermittent.

Fig. 6 Fault detection and isolation of the rotor speed (fault

2a), fault duration: 2400–2500 s

Fig. 7 Simultaneous faults in ωm2

r and ωm1

g , both of them scaled

by a factor of 1.2 (faults 2b and 3b), fault duration: 3600–3700 s

5.1.3 Torque actuator faults

As in scaled faults, the estimation of the rotator torque
actuator faults depends on the offset. Fig. 10 shows that the
detection is very fast and free of oscillations or false alarms
with an offset of 200 N·m (i.e., 1.3 % of τg at the time of fault
occurrence). This fault could be detected in both controller
zones (I and II). When considering faults with 100 N·m off-

set, the residual had some oscillations (not shown in the
figure), which reveals the detectable limit (about 0.07 %).

Fig. 8 Simultaneous faults in ωm2

r and ωm1

g , both of them scaled

by a factor of 1.2 (faults 2b and 3b), fault duration: 3600–3700 s

Fig. 9 Fault in the generator speed ωm2

r , when scaled by a factor

of 0.8 (faults 2b), fault duration: 100–200 s

5.2 Pitch position actuators (by SVM and
observer)

In this section, FDI results of the pitch position actuators
are discussed by two approaches: SVM and Kalman-like ob-
server. The necessity of using an observer to estimate this
fault is due to the fact that only the transitory measure-
ments are affected by drifts in ζ and wn, which seems to be
fast. Training of transitions by SVM would require a num-
ber of simulations under different conditions. As specified
in the observer development section, this fault cannot be
detected by the observer in Zone II (while βd = 0). There-
fore, the fault scenarios are realised mainly in Zone III, but
not exclusively. The observer gain is set at zero in interval
II, by making a test on the value of βd and the estimated
states are reinitialised at their nominal values when βd = 0.
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No test about the zones is done for SVM. Fig. 11 shows the
desired pitch position βd which presents high oscillations.
Note that these oscillations that are due to measurements
noise and control dynamics are expected to create oscilla-
tions in the estimates of the observer. The estimates by the
observer are therefore filtered using a first order filter with
τ = 20Ts s.

Fig. 10 Fault in the convertor torque actuator (fault 4a), with

an offset =200 N·m, fault duration: 2000–2100 s

Fig. 11 Desired pitch position βd

Figs. 12–15 show a first scenario where an abrupt drift
occurs in wn and ζ from there nominal values [11.11 rad/s,
0.6] to [6, 0.3]. The fault occurs at 2460 s for 100 s. This
fault is assumed to be due to a sever failure in the hy-
draulic system. Fig. 12 shows that the estimation of wn by
the Kalman-like observer is clearly affected by the fault but
it is noisy, similarly for ζ (Fig. 13). Note that the observer
gain is set to zero when βd = 0, as for instance between
2000–2200 s.

Fig. 12 Kalman-like observer results. Estimation of wn when a

fault occurs in the pitch actuator β2 at 2460 s (fault 5), where

[wn, ζ] drift suddenly to [6, 0.3] over 100 s

Fig. 13 Kalman-like observer results. Estimation of ζ when a

fault occurs in the pitch actuator β2 at 2460 s (fault 5), where

[wn, ζ] drift suddenly to [6, 0.3] over 100 s

Based on the estimates of wn and ζ, a residual can be
calculated for the pitch actuator fault, using the difference
between wn or ζ and their nominal values. In Fig. 14, the
residual is chosen to be equal to one if both of these con-
ditions are verified: |∆ζ| > 0.2 and |∆wn| > 2. Based
on this assumption, the detection time by the observer is
approximately 4 s. Fig. 15 shows the residual obtained by
SVM, where the detection time is estimated to be 3.94 s.
However, the SVM residual is oscillating and soon after a
first detection it goes back to zero and continues oscillating,
but without false alarms. Note that the presence of false
alarms using the observer cannot completely be avoided, as
the employment of important filtering will delay the detec-
tion.

It can be concluded in this example that the observer FDI
results are more precise than those of SVM. Moreover, the
estimates of wn or ζ can be useful for fault reconfiguration.
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Fig. 14 FDI results using the Kalman-like observer. Detection

of actuator fault at 2460 s in β2 (fault 5) where [wn, ζ] drift sud-

denly to [6, 0.3] over 100 s

Fig. 15 FDI results using SVM. Detection of actuator fault at

2460 s in β2 (fault 5) where [wn, ζ] drift suddenly to [6, 0.3] over

100 s

In a second scenario, the values of wn and ζ are sup-
posed to drift smoothly (over 30 s) from their nominal values
[11.11, 0.6] to [7, 0.4], which is assimilated to the presence of
high air content in the oil of the hydraulic system (Figs. 16
and 18). This fault is assumed less severe than the first
scenario. The estimates of wn and ζ are shown in Figs. 16
and 17, respectively. Due to oscillations and the fact that
the fault (air content in the oil) appears relatively quickly
(over 30 s), it cannot be distinguished from a sudden fault
(Figs. 12–15). The final values of wn and ζ seem however to
be well estimated in both fault types, which can be useful
for fault reconfiguration.

Fig. 16 Kalman-like observer results. Estimation of wn when a

fault occurs in the pitch actuator β3 at 3300 s (fault 5), where

[wn, ζ] drift suddenly to [7, 0.4] over 100 s

Fig. 17 Kalman-like observer results. Estimation of ζ when a

fault occurs in the pitch actuator β3 at 3300 s (fault 5), where

[wn, ζ] drift suddenly to [7, 0.4] over 100 s

Fig. 18 shows the residual as obtained by the observer
(based on the conditions |∆ζ| > 0.2 and |∆wn| > 2) and
Fig. 19 the residual obtained from SVM in this scenario.
Both residuals are oscillating, with some false alarms using
the observer. This slow drift fault is therefore slightly more
difficult to estimate, which indicates that small offset fault
(resulting at the beginning of the drift) cannot be detected.

6 Conclusions

The wind energy is profitable if the technology of the
turbines is optimized and online supervised. In view of the
large number of components in the system, large number
of frequent but noisy measurements besides the system dis-
turbances, a good method of supervision should be used
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for fault detection and isolation. In this work, sensor faults
were treated by SVM which was found to be a good method
for pattern recognition and to be adapted to online imple-
mentation. For detection of sensors stuck at some mea-
surement, the derivative of the measurement is used in the
training data. For detection of scaled measurements, the
training data contain the difference between the measure-
ment and the set-point. Offset in the actuator torque was
also learned by SVM, based on the difference between the
desired and real values.

Fig. 18 FDI results using the Kalman-like observer. Detection

of actuator fault at 3300 s in β3 (fault 5) where [wn, ζ] drift sud-

denly to [7, 0.4] over 100 s

Fig. 19 FDI results using SVMs. Detection of actuator fault at

3300s in β3 (fault 5) where [wn, ζ] drift suddenly to [7, 0.4] over

100 s

For the pitch position actuator, two methods were used:
SVM and Kalman-like observer. Both methods give compa-
rable results, with the observer having a higher sensitivity
to the fault, but more false alarms. The observer interest

is however incontestable for fault configuration.
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del Sacro Cuore, Milan, Italy, pp. 7086–7091, 2011.

[20] W. Chen, S. X. Ding, A. H. A. Sari, A. Naik, A. Q.
Khan, S. Yin. Observer-based FDI schemes for wind turbine
benchmark. In Proceedings of 18th IFAC World Congress,
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