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Abstract

This paper presents a system aiming at joint dereverberation and noise reduction by applying a combination of a

beamformer with a single-channel spectral enhancement scheme. First, a minimum variance distortionless response

beamformer with an online estimated noise coherence matrix is used to suppress noise and reverberation. The

output of this beamformer is then processed by a single-channel spectral enhancement scheme, based on statistical

room acoustics, minimum statistics, and temporal cepstrum smoothing, to suppress residual noise and reverberation.

The evaluation is conducted using the REVERB challenge corpus, designed to evaluate speech enhancement

algorithms in the presence of both reverberation and noise. The proposed system is evaluated using instrumental

speech quality measures, the performance of an automatic speech recognition system, and a subjective evaluation of

the speech quality based on a MUSHRA test. The performance achieved by beamforming, single-channel spectral

enhancement, and their combination are compared, and experimental results show that the proposed system is

effective in suppressing both reverberation and noise while improving the speech quality. The achieved

improvements are particularly significant in conditions with high reverberation times.
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1 Introduction
In many speech communication applications, such as

voice-controlled systems or hearing aids, distant micro-

phones are used to record a target speaker. The micro-

phone signals are often corrupted by both reverberation

and noise, resulting in a degraded speech quality and

speech intelligibility, as well as in a reduced performance

of automatic speech recognition (ASR) systems.

Several algorithms have been proposed in the litera-

ture to deal with these issues (cf. [1–3] and the ref-

erences therein). This paper extends the description

and evaluation of the system proposed by the authors

in [4], which consists of a commonly used combination

of a minimum variance distortionless response (MVDR)

beamformer with a single-channel spectral enhancement
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scheme. In such a combined system, the spectral enhance-

ment scheme typically consists in applying a real-valued

spectral gain to the short-time Fourier transform (STFT)

of the beamformer output. The computation of this spec-

tral gain relies on estimates of the power spectral densities

(PSDs) of the interference to be suppressed, i.e., noise and

reverberation, as early reflections are often considered to

be beneficial both in terms of speech quality [5] and ASR

performance [6].

Different methods have been proposed for estimat-

ing the late reverberant and noise PSDs, e.g. relying on

assumptions about the sound field or on a voice activity

detector (VAD). The PSDs of the noise and reverberation

can be estimated using the output signal(s) of a blocking

matrix, suppressing the signal to be preserved, in the well-

known generalized sidelobe canceller (GSC) structure.

The blocking matrix can be designed, e.g., as a delay-

and-subtract beamformer cancelling the direct speech

component [7, 8] or based on a blind source separation
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(BSS) scheme aiming to cancel both the direct speech

component and the early reflections [9, 10]. Alternatively,

the PSD at a reference position can be obtained using a

maximum likelihood estimator (MLE) and a model of the

sound field [11]. The PSD to be used in the computation

of the spectral postfilter is then obtained by correcting the

estimated PSD at the reference position. This correction

can be done using an adaptive filter [8], back-projection

[9, 10], or the relative transfer functions between the

target speaker and the microphones [11].

Other methods estimate the PSD of the interference

from the output of the beamformer and thus can in

principle also be used if only one microphone is avail-

able. In such methods [4, 12], the estimation of the

noise PSD is often derived from statistical models of

the speech and noise [13, 14]. The estimation of the

reverberant PSD can, e.g., be derived from a statisti-

cal model of the room impulse response (RIR) and the

acoustical properties of the room, such as the reverber-

ation time (T60) or the direct-to-reverberant ratio (DRR)

[15, 16].

In the system presented in this paper, the micro-

phone signals are first processed using an MVDR beam-

former [17], which aims to suppress sound sources not

arriving from the direction of arrival (DOA) of the tar-

get speaker, while maintaining a unit gain towards this

DOA. The noise coherence matrix used to compute

the coefficients of the MVDR beamformer is estimated

online using a VAD [18], and the DOA of the target

speaker is estimated using the multiple signal classifica-

tion (MUSIC) algorithm [19, 20]. The beamformer output

is processed using a single-channel spectral enhancement

scheme, which aims at jointly suppressing the residual

noise and reverberation. The main novel contribution of

this paper is the combination of the several estimators

used in the single-channel spectral enhancement scheme.

This spectral enhancement scheme relies on estimates of

the PSDs of the noise and the late reverberation, similarly

as in [21]. The proposed scheme computes a real-valued

spectral gain, combining the clean speech amplitude esti-

mator presented in [22], the noise PSD estimator based

on minimum statistics (MS) [13], and an estimator of the

(late) reverberant PSD based on statistical room acoustics

[15, 23]. In order to reduce the musical noise which

is often a byproduct of spectral enhancement schemes,

adaptive smoothing in the cepstral domain is used to

estimate the speech PSD [24, 25].

The proposed system is evaluated using the REVERB

challenge corpus [26], which permits the evaluation of

algorithms under realistic conditions in single- and multi-

channel scenarios. The single-channel scenario is par-

ticularly challenging as illustrated by the results of the

REVERB challenge workshop [27], in which most con-

tributions succeeded to reduce reverberation but only a

few improved the speech quality [4, 12]. The evaluation

is conducted for different configurations of the proposed

system in terms of instrumental speech quality mea-

sures, improvement of ASR performance, and a subjective

evaluation of speech quality and dereverberation using a

MUSHRA test [28]. The evaluation results show that the

proposed system is able to reduce noise and reverberation

while improving the speech quality in both single- and

multi-channelscenarios.

This paper is organized as follows. In Section 2, an

overview of the proposed system is given. Details about

the proposed MVDR beamformer and the single-channel

spectral enhancement scheme are presented in Section 3

and in Section 4, respectively. The evaluation corpus is

briefly described in Section 5 and the evaluation results

are presented in Section 6.

2 System overview
When recording a single speech source in an enclosure

using M microphones, the reverberant and noisy mth

microphone signal ym(n) at time index n is given by

ym(n) = s(n) ∗ hm(n) + vm(n) (1)

= xm(n) + vm(n), form = 1, · · · ,M, (2)

with s(n) denoting the clean speech signal, hm(n) denoting

the RIR between the speech source and the mth micro-

phone, and xm(n) and vm(n) denoting the reverberant

speech component and the additive noise component in

themth microphone signal, respectively. The STFT repre-

sentations of ym(n), s(n), xm(n), and vm(n) are denoted by

Ym(k, ℓ), S(k, ℓ), Xm(k, ℓ), and Vm(k, ℓ), respectively, with

k and ℓ representing the discrete frequency bin and frame

indices, respectively.

The proposed system, depicted in Fig. 1, aims at obtain-

ing an estimate ŝ(n), with ·̂ denoting estimated quantities,

of the clean speech signal s(n) from the reverberant and

noisy microphone signals, ym(n). This system consists of

two stages. First, an MVDR beamformer is applied to

the microphone signals. This beamformer aims at reduc-

ing noise and reverberation by suppressing the sound

sources not arriving from the target DOA, while provid-

ing a unity gain in the direction of the target speaker. The

noise coherence matrix and the DOA used to compute the

MVDR beamformer coefficients are estimated from the

received microphone signals ym(n). The noise coherence

matrix is estimated using a VAD [18], whereas the DOA

estimation is based on the MUSIC algorithm [19, 20], cf.

Section 3. In order to suppress the residual noise and

reverberation at the beamformer output x̃(n), the beam-

former output is processed by a single-channel spectral

enhancement scheme, cf. Section 4.
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Fig. 1 Overview of the proposed system

3 Beamformer
3.1 MVDR beamforming

In the STFT domain, (2) can be expressed as

Ym(k, ℓ) = Xm(k, ℓ)+Vm(k, ℓ), form = 1, · · · ,M, (3)

which in vector notation can be written as

Y(k, ℓ) = X(k, ℓ) + V(k, ℓ), (4)

with

Y(k, ℓ) =[Y1(k, ℓ) Y2(k, ℓ) . . . YM(k, ℓ)]T , (5)

denoting the M-dimensional stacked vector of the

received microphone signals and X(k, ℓ) and V(k, ℓ)

denoting the stacked vectors of the reverberant speech

component and noise component, respectively, defined in

the same way as in (5).

In the STFT domain, the beamformer output signal

x̃(n) is denoted by X̃(k, ℓ) and obtained by filtering and

summing the microphone signals, i.e.,

X̃(k, ℓ) = W
H
θ (k)Y(k, ℓ)

= W
H
θ (k)X(k, ℓ) + W

H
θ (k)V(k, ℓ),

(6)

with Wθ (k) denoting the stacked filter coefficient vector

of the beamformer steered towards the angle θ .

Aiming at minimizing the noise power while providing

a unity gain in the direction of the target speaker, the fil-

ter coefficients of the MVDR beamformer are computed

as [17]

Wθ (k) =
Ŵ−1(k)dθ (k)

d
H
θ (k)Ŵ−1(k)dθ (k)

, (7)

where dθ (k) andŴ(k) denote the steering vector of the tar-

get speaker and the noise coherence matrix, respectively.

Using a far-field assumption, the steering vector dθ (k) is

equal to

dθ (k) =
[

e−j2π fkτ1(θ) e−j2π fkτ2(θ) · · · e−j2π fkτM(θ)
]

, (8)

with fk denoting the center frequency of frequency bin k

and τm(θ) denoting the time difference of arrival of the

source at angle θ between the mth microphone and a ref-

erence position, which has been arbitrarily chosen as the

center of the microphone array.

To compute the MVDR beamformer filter coefficients,

an estimate θ̂ of the DOA of the target speaker as well as

an estimate of the noise coherence matrix is required.

3.2 Noise coherence matrix estimation

The noise coherence matrix is estimated during noise-

only periods detected using the VAD described in [18], as

the covariance matrix of the noise-only components, i.e.

Ŵ̂(k) =
1

Lv

∑

ℓ∈Lv

V(k, ℓ)VH(k, ℓ), (9)

withLv denoting the set of detected noise-only frames and

Lv its cardinality.

However, if the detected noise-only period is too short

for a reliable estimate (cf. Section 5), the coherence matrix

Ŵ(k) of a diffuse noise field is used instead, i.e., the coher-

ence between two microphones i and i′, separated by a

distance li,i′ , is computed as

Ŵi,i′(k) =
sin

(

2π fk li,i′/c
)

2π fkli,i′/c
, (10)

with c denoting the speed of sound, resulting in the well-

known superdirective beamformer [17]. Additionally, a

white noise gain constraint WNGmax is imposed in order

to limit the potential amplification of uncorrelated noise,

especially at low frequencies. With such a constraint, the

used noise coherence matrix is equal to

Ŵ̂(k) = Ŵ(k) + ̺(k)IM, (11)

with IM denoting theM ×M-dimensional identity matrix

and ̺(k) denoting a frequency-dependent regulariza-

tion parameter which is computed iteratively such that

W
H
θ (k)Wθ (k) ≤ WNGmax [29].

3.3 DOA estimation

As the beamformer aims at suppressing sources not arriv-

ing from the target DOA, an error in the DOA estimate
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Fig. 2 Overview of the proposed single-channel enhancement scheme for a single frame

may lead to suppression of the desired source by the

beamformer. In the proposed system, the subspace-based

MUSIC algorithm [19, 20], shown robust in our target

application (cf. Section 6.1), has been used to compute the

DOA estimate θ̂ .

Assuming that speech and noise are uncorrelated, the

steering vector corresponding to the true DOA is orthog-

onal to the noise subspace, which is represented by an

M × (M − Q)-dimensional matrix, with Q the number of

sources (i.e., Q = 1 in this case), defined as

E(k, ℓ) =
[

eQ+1(k, ℓ) . . . eM(k, ℓ)
]

. (12)

The noise subspace E(k, ℓ) is composed of the eigenvec-

tors of the covariance matrix of Y(k, ℓ) corresponding to

the (M − Q) smallest eigenvalues.

The MUSIC algorithm then estimates the DOA as the

angle maximizing the sum of the MUSIC pseudo-spectra

Uθ (k, ℓ) =
1

d
H
θ (k)E(k, ℓ)EH(k, ℓ)dθ (k)

, (13)

over a given frequency range, i.e.,

θ̂ = argmax
θ

1

K

khigh
∑

klow

Uθ (k, ℓ), (14)

withK denoting the total number of considered frequency

bins k = klow . . . khigh.

4 Single-channel spectral enhancement
Although the beamformer in Section 3.1 is able to reduce

the interference, i.e., noise and reverberation, to some

extent, spectral enhancement schemes are able to fur-

ther reduce reverberation as well as noise. The output

signal X̃(k, ℓ) of the MVDR beamformer contains the

clean speech signal S(k, ℓ) as well as residual reverberation

R(k, ℓ) and residual noise Ṽ (k, ℓ), i.e.

X̃(k, ℓ) = Z(k, ℓ) + Ṽ (k, ℓ), (15)

with

Z(k, ℓ) = S(k, ℓ) + R(k, ℓ) (16)

the reverberant speech component. Aiming at jointly

reducing residual reverberation and noise, the single-

channel spectral enhancement scheme summarized in

Fig. 2 is proposed, where a real-valued spectral gain

G(k, ℓ) is applied to the STFT coefficients of the beam-

former output, i.e.,

Ŝ(k, ℓ) = G(k, ℓ)X̃(k, ℓ), (17)

with Ŝ(k, ℓ) denoting the STFT of the estimated speech

signal.

The spectral gain G(k, ℓ) is computed using the min-

imum mean square error (MMSE) estimator for the

clean speech spectral magnitude as proposed in [22] (cf.

Section 4.1). This estimator, similarly to the Wiener filter,

requires the PSDs of the clean speech, the noise, and the

reverberation components.

First, an estimate σ̂ 2
ṽ
(k, ℓ) of the noise PSD is obtained

based on a slight modification of the well-known mini-

mum statistics (MS) approach [13] (cf. Section 4.2) and

used to estimate the reverberant speech PSD. The esti-

mate σ̂ 2
z (k, ℓ) of the reverberant speech PSD is com-

puted using temporal cepstrum smoothing [24, 25] (cf.

Section 4.3). The estimate σ̂ 2
r (k, ℓ) of the (late) rever-

berant PSD is computed from the reverberant speech

PSD estimate using the approach proposed in [15] (cf.

Section 4.4). This approach requires an estimate of the

reverberation time T60, which has been obtained using the

estimator described in [30]. As the dereverberation task

is treated separately from the denoising task, care has to

be taken that no reverberation leaks into the noise PSD

estimate and vice versa. Thus, a longer minimum search

window is used in the MS approach as compared to [13]

(cf. Section 5.2).

The estimate σ̂ 2
s (k, ℓ) of the clean speech PSD is finally

obtained by a re-estimation, again using temporal cep-

strum smoothing. The following subsections give a more

detailed description of the different components of the

proposed single-channel spectral enhancement scheme.
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4.1 Spectral gain

The gain function used in the spectral enhancement

scheme has been proposed in [22] to estimate the spectral

magnitude of the clean speech. This estimator is derived

by modeling the speech magnitude |S(k, ℓ)| as a stochas-

tic variable with a chi probability density function (pdf)

with shape parameter μ, while the phase of S(k, ℓ) is

assumed to be uniformly distributed between −π and π .

Furthermore, the interference J(k, ℓ) = R(k, ℓ) + Ṽ (k, ℓ)

is modeled as a complex Gaussian random variable with

PSD σ 2
j (k, ℓ). Assuming that R(k, ℓ) and Ṽ (k, ℓ) are uncor-

related, σ 2
j (k, ℓ) can be expressed as

σ 2
j (k, ℓ) = E

{

|J(k, ℓ)|2
}

= σ 2
ṽ (k, ℓ) + σ 2

r (k, ℓ), (18)

with σ 2
r (k, ℓ) and σ 2

ṽ
(k, ℓ) denoting the PSDs of the rever-

beration and of the noise, respectively.

The squared distance between the amplitudes (to the

power β) of the clean speech S(k, ℓ) and the estimated

output Ŝ(k, ℓ) is defined as

ǫ(k, ℓ) =
(

∣

∣S(k, ℓ)
∣

∣

β
−

∣

∣Ŝ(k, ℓ)
∣

∣

β
)2

. (19)

The parameter β , typically chosen as 0 < β ≤ 1, is a com-

pression factor resulting in a different emphasis given on

estimation errors for small amplitudes in relation to large

amplitudes. The clean speech magnitude is estimated by

optimizing the MMSE criterion
∣

∣

∣
Ŝ(k, ℓ)

∣

∣

∣
= argmin

∣

∣

∣
Ŝ(k,ℓ)

∣

∣

∣

E
{

ǫ(k, ℓ)|X̃(k, ℓ), σ 2
j (k, ℓ), ξ(k, ℓ)

}

,

(20)

with ξ(k, ℓ) denoting the a priori signal-to-interference

ratio (SIR) defined as

ξ(k, ℓ) =
σ 2
s (k, ℓ)

σ 2
r (k, ℓ) + σ 2

ṽ
(k, ℓ)

, (21)

with σ 2
s (k, ℓ) denoting the PSD of the clean speech.

As shown in [22], the solution to (20) leads to the

spectral gain G̃(k, ℓ)

G̃(k, ℓ) =

√

ξ(k, ℓ)

μ + ξ(k, ℓ)
·

⎡

⎣

Gam
(

μ + β
2

)

Gam (μ)

�
(

1 − μ − β
2 , 1;−ν(k, ℓ)

)

�(1 − μ, 1;−ν(k, ℓ))

⎤

⎦

1/β

·

(

√

γ (k, ℓ)
)−1

,

(22)

with γ (k, ℓ) denoting the a posteriori SIR, defined as

γ (k, ℓ) =
|X̃(k, ℓ)|2

σ 2
r (k, ℓ) + σ 2

ṽ
(k, ℓ)

, (23)

and

ν(k, ℓ) =
γ (k, ℓ)ξ(k, ℓ)

μ + ξ(k, ℓ)
, (24)

with �(·) denoting the confluent hypergeometric func-

tion and Gam (·) denoting the complete Gamma func-

tion [31]. Depending on the choice of β andμ, the solution

in (22) can resemble other well-known estimators, such

as the short-time spectral amplitude estimator (β = 1,

μ = 1) [32] or the log-spectral amplitude estimator (β =

0, μ = 1) [33]. In order to reduce artifacts which may

be introduced by directly applying (22), the spectral gain

G(k, ℓ) in (17) is restricted to values larger than a spectral

floor Gmin (cf. Section 5.2), i.e.,

G(k, ℓ) = max
(

G̃(k, ℓ),Gmin

)

. (25)

To compute the expression in (22), the PSDs σ 2
s (k, ℓ),

σ 2
ṽ
(k, ℓ), and σ 2

r (k, ℓ) have to be estimated from the beam-

former output. The used estimators are described in the

next subsections.

4.2 Noise PSD estimator

The MS [13] approach has been shown to be a reliable

estimator of the noise PSD for moderately time-varying

noise conditions. This approach relies on the assumption

that the minimum of the noisy speech power, Px̃(k, ℓ),

over a short temporal sliding window is not affected by

the speech. The noise PSD σ 2
ṽ
(k, ℓ) is then estimated by

tracking theminimum of Px̃(k, ℓ) over this sliding window,

whose usual length corresponds to 1.5 s according to [13].

Figure 3 depicts the powers of anechoic speech, rever-

berant speech, and additive noise for one frequency bin of

their power spectrograms. As illustrated in this figure, the

decay time in speech pauses is typically increased in the

presence of reverberation. Consequently, a longer track-

ing window is used in the proposed spectral enhancement

scheme (cf. Section 5) in order to avoid reverberant speech

affecting the estimation of the noise PSD σ 2
ṽ
(k, ℓ).

noise
reverberant speech
anechoic speech

Time [s]

P
o
w

er
[d

B
]

0 0.25 0.5 0.75 1
-100

-80

-60

-40

-20

Fig. 3 Power of anechoic speech, reverberant speech, and additive

noise at a frequency of 500 Hz for a 1-s signal extracted from the

REVERB challenge corpus for a room of T60 =0.73 s and a distance of

2 m between the speech source and the microphone
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4.3 Speech PSD estimator

Temporal cepstrum smoothing, as proposed in [24], is

used to estimate the PSD σ 2
z (k, ℓ) of the reverberant

speech component Z(k, ℓ) as well as the PSD σ 2
s (k, ℓ) of

the dereverberated speech signal S(k, ℓ). The estimation

of σ 2
z (k, ℓ) only requires the noise PSD estimate σ̂ 2

ṽ
(k, ℓ)

whereas the estimation of σ 2
s (k, ℓ) additionally requires an

estimate of the reverberant PSD σ 2
r (k, ℓ), as depicted in

Fig. 2. The modifications required for the latter case are

described at the end of this section.

In order to estimate the reverberant speech PSD

σ 2
z (k, ℓ), the maximum likelihood (ML) estimator of the a

priori signal to noise ratio (SNR)

ξzml(k, ℓ) =
|X̃(k, ℓ)|2

σ 2
ṽ
(k, ℓ)

− 1 (26)

is employed. An estimate σ̂ 2
zml

(k, ℓ) of the reverberant

speech PSD can then be obtained as

σ̂ 2
zml

(k, ℓ) = σ̂ 2
ṽ (k, ℓ) max

(

ξzml(k, ℓ), ξmin
ml

)

, (27)

with ξmin
ml > 0 denoting a lower bound to avoid negative

or very small values of ξzml(k, ℓ).

In the cepstral domain, σ̂ 2
zml

(k, ℓ) can be represented by

λzml(q, ℓ) = IFFT
{

log
(

σ̂ 2
zml

(k, ℓ)|k=0,··· ,(L−1)

)}

, (28)

with q denoting the cepstral bin index and L denoting

the length of the FFT. A recursive temporal smoothing is

applied to λzml(q, ℓ), i.e.,

λz(q, ℓ) = δ(q, ℓ)λz(q, ℓ − 1) + (1 − δ(q, ℓ))λzml(q, ℓ),

(29)

with δ(q, ℓ) denoting a time-quefrency-dependent

smoothing parameter. Only a mild smoothing is applied

to the quefrencies which are mainly related to speech,

while for the remaining quefrencies, a stronger smoothing

is applied. Consequently, a small smoothing parameter is

chosen for the low quefrencies, as they contain informa-

tion about the vocal tract shape, and for the quefrencies

corresponding to the fundamental frequency f0 in voiced

speech. In order to protect these quefrencies, especially

the ones corresponding to the fundamental frequency,

the parameter δ(q, ℓ) in (29) is adapted. After determining

f0 by picking the highest peak in the cepstrum within a

limited search range, δ(q, ℓ) is defined as

δ(q, ℓ) =

{

δpitch if q ∈ Q,

δ̄(q, ℓ) if q ∈ {0, · · · , L/2} \ Q,
(30)

with Q denoting a small set of cepstral bins around the

quefrency corresponding to f0 and δpitch the smooth-

ing parameter for the quefrency bins within Q [24]. The

quantity δ̄(q, ℓ) is given as

δ̄(q, ℓ) = ηδ(q, ℓ − 1) + (1 − η)δ̄const(q), (31)

where δ̄const(q) is time independent and chosen such

that less smoothing is applied in the lower cepstral bins.

Furthermore, η is a forgetting factor which defines how

fast the transition from δ(q, ℓ) to δ̄const(q) can occur (cf.

Section 5.2). Finally, the reverberant speech PSD estimate

σ̂ 2
z (k, ℓ) can be obtained by transforming λz(q, ℓ) back to

the spectral domain, i.e.

σ̂ 2
z (k, ℓ) = exp

(

κ + DFT
{

λz(q, ℓ)
}

|q=0,··· ,(L−1)

)

,

(32)

with κ denoting a parameter to compensate for the bias

due to the recursive smoothing in the log domain in (29)

and is estimated as in [25].

The estimate of the reverberant speech PSD can be used

to estimate the reverberant PSD σ 2
r (k, ℓ) (cf. Section 4.4).

After having estimated σ 2
r (k, ℓ), cepstral smoothing is

also used to estimate the dereverberated clean speech

PSD σ 2
s (k, ℓ). In this case, the noise PSD σ 2

ṽ
(k, ℓ) in (26)

and (27) is replaced by the interference PSD σ 2
j (k, ℓ) =

σ 2
ṽ
(k, ℓ) + σ 2

r (k, ℓ).

4.4 Reverberant PSD estimation

The RIR model presented in [23] represents the RIR as a

Gaussian noise signal multiplied by an exponential decay

�, which depends on the room reverberation time, T60,

i.e.,

� =
3 ln 10

T60fs
. (33)

In the proposed spectral enhancement scheme, the

approach derived from this model and presented in [15] is

used to estimate the reverberant PSD σ 2
r (k, ℓ) as

σ̂ 2
r (k, ℓ) = e−2�Td fs σ̂ 2

z (k, ℓ − Td/Ts) . (34)

with

σ̂ 2
z (k, ℓ) = σ̂ 2

r (k, ℓ) + σ̂ 2
s (k, ℓ) . (35)

In (34), Ts denotes the frame shift whereas Td is the

duration of the direct path and early reflections of the RIR,

typically assumed to be between 50 and 80 ms. As a result,

the estimate σ̂ 2
r (k, ℓ) can be obtained using σ̂ 2

z (k, ℓ) and

an estimate of the reverberation time T60 obtained using

an online estimator such as the one proposed in [30].

Finally, using the estimated PSDs of the reverberation

and of the residual noise, an estimate σ̂ 2
s (k, ℓ) of the clean

speech PSD is obtained. These estimates are used in (21)

to compute the a priori SIR and in (22) to compute the

real-valued spectral gain, G̃(k, ℓ).

5 Experimental setup
5.1 Corpus description

The results presented in this paper have been obtained

using the evaluation set of the REVERB challenge [26],

which consists of a large corpus of speech corrupted
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by reverberation and noise. All recordings have been

made at a sampling frequency of 16 kHz with a circular

microphone array with 20 cm diameter and 8 equidis-

tant microphones. This corpus is divided into simulated

and real data. The simulated data is composed of clean

speech signals taken from the WSJCAM0 corpus [34],

which have been convolved with RIRs recorded in three

different rooms and to which measured noise at a fixed

SNR of 20 dB have been added. The real data is com-

posed of utterances from the MC-WSJ-AV corpus [35]

and contains speech recorded in a room in the presence

of noise. The utterances have been spoken from differ-

ent unknown positions within each room, but the position

was constant during each utterance. For each room, two

distances (denoted by “near” and “far”) between the tar-

get speaker and the center of the microphone array have

been considered. The combination of a room and a par-

ticular distance will be refered to as “condition” in the

remainder of this paper. The characteristics of each condi-

tion along with the labels used to refer to it are summarize

in Table 1.

5.2 Algorithm settings

For the experiments, it has been assumed that the T60

and the DOA of the target speaker remain constant for

each utterance. Therefore, both T60 and DOA have been

estimated only once per utterance. The STFT has been

computed using a 32-ms Hann window with 50% over-

lap and an FFT of length L = 512. The DOA has been

estimated as the angle minimizing the sum of the MUSIC

pseudo-spectra, for θ = 0 ° . . . 360 ° for every 2 °, using all

8 microphones of the circular microphone array for the

frequency range from 50 Hz to 5 kHz, cf. Section 3.3.

The MVDR beamformer uses a theoretically diffuse

noise coherence matrix and a white noise gain constraint

WNGmax = −10 dB if less than 10 frames are detected as

noise when applying the VAD, cf. (11). The VAD has been

configured similarly as in [18], but its parameters have

been adapted in order to apply it to signals with a sampling

Table 1 Summary of the testing room conditions and of the

labels used for presenting the results

Set Room T60 [ms] Distance [cm] Label

Simulated

Small 250
50 S1, near

200 S1, far

Medium 500
50 S2, near

200 S2, far

Large 700
50 S3, near

200 S3, far

Real Large 700
100 R1, near

250 R1, far

frequency of 16 kHz. Otherwise, the noise coherence

matrix is estimated using all detected noise-only frames,

cf. (9). The speech amplitude estimator in Section 4.1

assumes a chi pdf with shape parameter μ = 0.5, a mini-

mum gain Gmin of −10 dB, and a compression parameter

β = 0.5. The noise PSD estimator described in Section 4.2

uses the same parameters as in [13], except for the length

of the sliding window for minima tracking which has been

set to either 1.5 s (SE1.5) or 3 s (SE3) in our experiments.

In (31), η = 0.96 and all parameters used for the speech

PSD estimation, described in Section 4.3, have been set as

prescribed in [22]. In (34), Td has been set to 80 ms.

6 Results
The performance of the proposed system for each condi-

tion is evaluated in terms of instrumental speech quality

measures (cf. Section 6.2) as well as in terms of word error

rate (WER) when using the proposed system as a prepro-

cessing scheme for the REVERB challenge baseline ASR

system (cf. Section 6.3). Additionally, the results obtained

in a subjective speech quality evaluation are presented for

4 out of 8 conditions in Section 6.4.

The performance of the combined scheme is compared

to the performance when applying only the single-channel

spectral enhancement scheme to the first microphone sig-

nal and when applying only theMVDR beamformer to the

multichannel input.

6.1 Observations on beamformer design

The MVDR beamformer used in this paper is steered

towards the estimated DOA of the target speech signal.

In practice, errors in the DOA estimation can result in

speech degradation. Figure 4 (top) depicts the DOA error

obtained in all conditions of the simulated data of the

REVERB challenge (i.e., a total of 2176 utterances). The

true DOA has been considered to be the one stated in

the REVERB challenge data documentation [36]. Ignoring

outliers, it can be seen that the absolute value of the error

is smaller than 5 in room S1 while in room S2, it is smaller

than 10 ° for 50% of the data and always smaller than 15 °.

As expected, the largest error in DOA estimation appears

in the case of room S3, which has the largest reverberation

time. It can be seen that for room S3, in 50% of the utter-

ances, the absolute value of the DOA error is inferior to

15 °. However, it can be as high as 28 ° for some utterances.

In order to assess the detrimental effect that such DOA

error could have on the performance of the MVDR beam-

former, one may examine its corresponding beampattern.

Figure 4 (bottom) depicts the beampattern of the MVDR

beamformer computed using the noise coherence matrix

of a theoretically diffuse noise field as in (11), steered

towards the zero degrees direction, and using the micro-

phone configuration described in Section 5.1. By observ-

ing the width of the main lobe, it appears that the error
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Fig. 4 Error in DOA estimation obtained on the simulated data of the

REVERB challenge corpus (top) and beampattern of the used MVDR

beamformer computed using the noise coherence matrix of a

theoretically diffuse noise field (bottom)

in DOA is small enough to not introduce distortions in

rooms S1 and S2. Some cancellation of the target speech

signal may occur in room S3 but should be limited to

frequencies higher than 4 kHz.

6.2 Instrumental speech quality measures

The performance in terms of instrumental speech quality

measures for the different considered conditions is pre-

sented in Table 2 for the simulated data and in Table 3

for the real data. Since various instrumental speech qual-

ity measures exist which can be used to assess the quality

of denoised and dereverberated signals [37–39] and since

it is difficult to assess the quality using only one sin-

gle measure, the performance of the proposed system has

been evaluated using the five signal-based quality mea-

sures suggested in [26], i.e., the speech to reverberation

modulation energy ratio (SRMR) [40], the cepstral dis-

tance (CD) [41], the log likelihood ratio (LLR) [41], the

frequency-weighted segmental SNR (FWSSNR) [41], and

the perceptual evaluation of speech quality (PESQ) [42].

Among these five quality measures, the SRMR is the only

non-intrusive measure, i.e., not requiring a reference sig-

nal, and is hence the only measure that can be used to

evaluate the performance for real data. The other mea-

sures use the clean speech signal s(n) as the reference

signal.

For the single-channel case, Tables 2 and 3 compare

the quality of the unprocessed (first microphone) signal

(“Unp.” in tables) to the quality of the signal processed

using the proposed spectral enhancement scheme using

the standardMS window of 1.5 s (SE1,5) as well as a longer

Table 2 Values of the instrumental speech quality measures

obtained on the simulated data

Mean results on all simulated data

1 channel 8 channels

Unp. SE1.5 SE3 MVDR MVDR MVDR

+SE1.5 +SE3

SRMR [dB] 3.68 4.42 4 .39 4.22 5.01 4.97

CD [dB] 3.98 3.64 3.58 3.81 3.48 3.41

LLR 0.58 0.58 0.57 0.59 0.61 0.6

FWSSNR [dB] 3.62 5.76 5.92 4.56 7.1 7.26

PESQ 1.48 1.66 1.67 1.84 2.03 2.05

S1, near

SRMR [dB] 4.5 4.97 4.95 6.39 7.21 7.16

CD [dB] 1.99 2.27 2.22 2.47 2.65 2.59

LLR 0.35 0.4 0.39 0.37 0.46 0.45

FWSSNR [dB] 8.12 9.29 9.52 10.26 10.28 10.55

PESQ 2.14 2.39 2.4 2.79 2.84 2.86

S1, far

SRMR [dB] 4.58 5.16 5.13 5.05 5.76 5.72

CD [dB] 2.67 2.81 2.77 2.81 2.9 2.84

LLR 0.38 0.44 0.44 0.39 0.46 0.45

FWSSNR [dB] 6.68 8.29 8.48 8.38 9.69 9.93

PESQ 1.61 1.71 1.71 2.01 2.12 2.14

S2, near

SRMR [dB] 3.74 4.55 4.52 3.45 3.97 3.95

CD [dB] 4.63 3.89 3.84 3.78 3.15 3.09

LLR 0.49 0.47 0.46 0.51 0.53 0.52

FWSSNR [dB] 3.35 6.03 6.19 2.93 7.01 7.07

PESQ 1.4 1.72 1.73 2.12 2.55 2.57

S2, far

SRMR [dB] 2.97 3.84 3.81 2.78 3.49 3 .46

CD [dB] 5.21 4.68 4.62 4.75 4.16 4.09

LLR 0.75 0.72 0.71 0.77 0.73 0.72

FWSSNR [dB] 1.04 3.44 3.56 0.6 4.27 4.3

PESQ 1.19 1.27 1.28 1.33 1.52 1.53

S3, near

SRMR [dB] 3.57 4.41 4 .39 4.52 5.52 5.47

CD [dB] 4.38 3.73 3.67 4.19 3.61 3.53

LLR 0.65 0.64 0.62 0.65 0.65 0.64

FWSSNR [dB] 2.27 4.84 4.97 3.81 6.88 7.07

PESQ 1.37 1.65 1.66 1.59 1.87 1.88

S3, far

SRMR [dB] 2.73 3.6 3.57 3.14 4.1 4.04

CD [dB] 4.96 4.46 4.38 4.86 4.41 4.32

LLR 0.84 0.82 0.79 0.83 0.82 0.8

FWSSNR [dB] 0.24 2.7 2.81 1.4 4.5 4.66

PESQ 1.17 1.24 1.24 1.22 1.3 1.31
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Table 3 SRMR values, in dB, obtained on the real data

1 channel 8 channels

SC scheme Unp. SE1.5 SE3 MVDR MVDR MVDR

+SE1.5 +SE3

all 3.18 4.76 4.69 3.57 4.97 4.89

R1, near 3.17 4.81 4.75 3.58 5.04 4.96

R1, far 3.19 4.7 4.64 3.56 4.9 4.82

window of 3 s (SE3) for all acoustic conditions (rooms

S1, S2, and S3 for positions “near” and “far”). For the

8-channel case, Tables 2 and 3 compare the quality of

the output of the MVDR beamformer with and without

spectral enhancement scheme, SE1,5 and SE3.

For each condition and for each instrumental quality

measure, the best performance is highlighted by means

of italic typeface to allow for an easier comparison. As

expected, the selected instrumental measures do not

always show completely consistent results [37, 38]. Never-

theless, some common tendencies can clearly be observed,

which will be summarized next.

The results for all processed signals show an increase in

SRMR, except for the MVDR beamformer in the case of

room S2 (conditions “S2, near” and “S2, far”) of the sim-

ulated data. These conditions are also the only ones in

which the SRMR is higher in the single-channel case than

in the multi-channel case. This performance difference

may result from unvalid noise coherence matrix or from

error in the DOA estimate for some utterances. The fact

that the spectral enhancement scheme, used either alone

or in combination with the MVDR beamformer, always

increases the SRMR illustrates the ability of the proposed

system to reduce the amount of reverberation both in the

single- and the multi-channel case.

Additionally, the presented FWSSNR values depict a

significant increase in comparison to the unprocessed

microphone signal for all processed signals, except for the

MVDR beamformer in the case of room S2. This illus-

trates the noise reduction capabilities of the proposed

system. The difference in the FWSSNR values between

the single- and the multi-channel scenarios further illus-

trates the benefit of using an MVDR beamformer aiming

at noise reduction in the first stage. It can be noted that

using a sliding window of 3 s instead of 1.5 s improves

the FWSSNR scores in all simulated conditions, both

in the single- and the multi-channel case. The advan-

tage of using this longer sliding window is also illustrated

by the lower CD values, both in the single- and in the

multi-channel case, suggesting that distortions have been

limited by avoiding leakage of the reverberation into the

noise PSD estimate. Except for room S1, with the low-

est amount of reverberation, both CD and LLR values are

lower for the processed signals than for the unprocessed

signal.

Finally, the improvement in the overall perceptual qual-

ity of the processed signal is illustrated by means of the

PESQ score, which increases up to 0.19 and 0.49 for

the single- and multi-channel scenarios, respectively. The

PESQ score is increased in all conditions, with the largest

improvement being obtained by the combined system

MVDR + SE3.

6.3 Word error rate

In order to evaluate the potential benefit of the pro-

posed signal enhancement scheme on the performance of

an ASR system, the processed signals have been used as

the input for the baseline speech recognition system pro-

vided by the REVERB challenge [26]. This system is based

on the hidden Markov model toolkit (HTK) [43], using

mel-frequency cepstral coefficients, including Deltas and

double Deltas, as features and acoustic models with tied-

state hidden Markov models with 10 Gaussian compo-

nents per state. The ASRmodels provided by the REVERB

challenge [26] have been trained on clean data contain-

ing 7861 sentences uttered by 92 speakers for a total of

approximately 17.5 h. The achieved ASR performance is

measured in terms of WER, as depicted in Fig. 5, for

the different signal enhancement schemes and acoustic

conditions.

Compared to the scores obtained using the unpro-

cessed signals (cf. horizontal black lines in Fig. 5), the

WER increases slightly for the conditions with the lowest

reverberation time (room S1). This indicates that spectral

coloration introduced by the enhancement scheme may

reduce the performance of the ASR system while the ben-

efit of dereverberation is limited for small reverberation

times. In all other conditions, the single-channel spectral

enhancement scheme reduces theWER, with SE3 yielding

larger improvements than SE1.5. Except for room S3, the

MVDR beamformer yields better results than the single-

channel scheme. The combination of the MVDR beam-

former with SE3 yields the largest improvement: absolute

WER improvement up to 44.28% for the simulated data

(condition “S2, far”) and up to 29.48% for the real data

(condition “R1, near”).

6.4 Subjective evaluation of the speech quality

Since instrumental quality assessment, especially for the

task of assessing dereverberation performance, may not

always correlate well with the opinion of human listeners

[37], we conducted a listening experiment in addition to

the instrumental quality assessment described before.

The subjective evaluation is based on a multi-stimulus

test with hidden reference and anchor (MUSHRA) fol-

lowing the specifications described in [28]. Four acoustic

conditions have been tested, “S2, near’; “S2, far”; “R1,

near”; and “R1, far”. These conditions have been chosen

to match the conditions used in the online MUSHRA test
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Fig. 5WER obtained using the baseline recognizer of the REVERB challenge trained on clean data. Numbers indicate the difference with the WER

obtained on unprocessed data

conducted in [27]. We have carried out a subjective eval-

uation for the unprocessed signal and for 3 processing

schemes, namely, the single-channel scheme applied to

the first microphone signal (SE3), the MVDR beamformer

using 8 microphones (MVDR), and the combination of

the MVDR beamformer with the spectral enhancement

scheme (MVDR + SE3). In addition to these signals,

a hidden reference and an anchor have been presented

to the subjects. The hidden reference was the anechoic

speech signal in the case of simulated data and the

signal recorded by a headset microphone in the case

of real data. The anchor consisted of the first micro-

phone signal, low-pass filtered with a cut-off frequency of

3.5 kHz.

A total of 21 self-reported normal-hearing listeners par-

ticipated in the MUSHRA listening test. The listening test

was conducted in a soundproof booth and the subjects

listened to diotic signals through headphones (Seinheiser

HD 380 pro). Each subject evaluated 3 utterances per

condition (i.e., 12 uterances per subject), in terms of

two different attributes: “overall quality” and “perceived

amount of reverberation”, on a scale ranging from 0 to

100. For each subject, the utterances to be evaluated were

randomly picked from the REVERB challenge database.

All signals were normalized in amplitude and presented

at a sampling frequency of 16 kHz and a quantization of

16 bit using a Roland sound card (model UA-25EXCW).

The listening test was divided into three stages. In the

first stage, the subjects were asked to listen to all files that

would be presented to them during a training phase. This

training phase allowed the subjects to get familiar with the

data to be evaluated and to adjust the sound volume to

a comfortable level. In the second stage, the subjects had

to evaluate the overall quality of the signals and finally,

the third stage consisted in the evaluation of the perceived

amount of reverberation. The order of presentation of

algorithms and conditions were randomized between all

stages and all subjects.

The obtained MUSHRA scores are summarized in

Fig. 6. The anchor appears to be the least satisfactory
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Fig. 6MUSHRA scores for three processing schemes, the unprocessed signal and the low-pass filtered anchor. The highest score, 100, was labeled

as “excellent” or “no reverberation” for the attributes “overall quality” and “perceived amount of reverberation”, respectively. The means over all files

and all subjects are displayed by circles. The scores of the hidden reference, close to 100 with small variance, are not displayed
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Table 4 Results of the Friedman’s test for both tested attributes.

The value p < 0.01 indicates the significance of the results and

χ2 denotes the Friedman’s chi square statistic

S2, near S2, far R1, near R1, far

Overall quality
χ2 99.6 77.1 98.9 90.6

p <0.01 <0.01 <0.01 <0.01

Amount of reverberation
χ2 93.9 120.8 98.6 104.7

p <0.01 <0.01 <0.01 <0.01

for the attribute “overall quality,” suggesting that the sub-

jects used the full extent of the grading scale. However,

this is not the case for the attribute “perceived amount

of reverberation”, illustrating the difficulty of evaluating

this attribute. The three considered processing schemes

yielded an improvement compared to the unprocessed

signal both in terms of “overall quality” and of “per-

ceived amount of reverberation”. As expected, the largest

reduction of the “perceived amount of reverberation” is

observed for the combination MVDR + SE3. The com-

bination MVDR + SE3 improves the overall quality as

well, although the improvement, compared to the single-

channel scheme, is lower than for the attribute “per-

ceived amount of reverberation”. The use of an MVDR

beamformer alone reduces the “perceived amount of

reverberation” but does not improve the performance

compared to the single-channel processing scheme (SE3).

Since the scores of theMUSHRA test were not normally

distributed, a Friedman’s test [44] was used to examine

the significance of the results, excluding the scores of the

anchor and the reference. The results of the Friedman’s

test are presented in Table 4. The p value, p < 0.01,

shows that at least one significant pairwise difference can

be observed in all conditions and for all attributes. In

order to examine the significance of the pairwise differ-

ence in performance between the processing schemes,

a Wilcoxon rank sum test [45] has been used for each

condition separately. A Bonferroni correction has been

applied resulting in significant effects being considered for

p < 0.05/6. For the attribute “perceived amount of rever-

beration”, the differences in performance between the

unprocessed signal and all processing schemes are signif-

icant but no significant differences were present between

the different processing schemes. The same conclusion

holds for the attribute “overall quality”, except for the

room R1 and the condition “S2, near”, where the differ-

ences between the unprocessed signal and the output of

the MVDR beamformer do not appear to be significant.

Even though the statistical significance criterion is not

always satisfied, the trend of the results confirm the ben-

efits of combining a beamformer with a single-channel

spectral enhancement scheme for reducing reverberation

and noise and for improving the overall speech quality.

7 Conclusions
In this paper, we have presented the combination of

an MVDR beamformer with a single-channel spectral

enhancement scheme, aiming at joint dereverberation

and noise reduction. In the MVDR beamformer, the

noise coherence matrix is estimated online using a VAD,

whereas the DOA of the target speaker is estimated using

the MUSIC algorithm. The output of this beamformer is

processed using a spectral enhancement scheme combin-

ing statistical estimators of the speech, noise, and rever-

berant PSDs and aiming at joint residual reverberation

and noise suppression. The evaluation of the proposed

system, carried out using instrumental speech quality

measures, a speech recognizer trained on clean data and

subjective listening tests, illustrates the benefits of the

proposed scheme.
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