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Abstract
In recent years, the use of advanced magnetic resonance (MR) imaging methods such as functional magnetic resonance imaging
(fMRI) and structural magnetic resonance imaging (sMRI) has recorded a great increase in neuropsychiatric disorders. Deep
learning is a branch of machine learning that is increasingly being used for applications of medical image analysis such as
computer-aided diagnosis. In a bid to classify and represent learning tasks, this study utilized one of the most powerful deep learning
algorithms (deep belief network (DBN)) for the combination of data from Autism Brain Imaging Data Exchange I and II (ABIDE I
and ABIDE II) datasets. The DBN was employed so as to focus on the combination of resting-state fMRI (rs-fMRI), gray matter
(GM), and white matter (WM) data. This was done based on the brain regions that were defined using the automated anatomical
labeling (AAL), in order to classify autism spectrum disorders (ASDs) from typical controls (TCs). Since the diagnosis of ASD is
much more effective at an early age, only 185 individuals (116 ASD and 69 TC) ranging in age from 5 to 10 years were included in
this analysis. In contrast, the proposed method is used to exploit the latent or abstract high-level features inside rs-fMRI and sMRI
data while the old methods consider only the simple low-level features extracted from neuroimages. Moreover, combining multiple
data types and increasing the depth of DBN can improve classification accuracy. In this study, the best combination comprised rs-
fMRI, GM, and WM for DBN of depth 3 with 65.56% accuracy (sensitivity = 84%, specificity = 32.96%, F1 score = 74.76%)
obtained via 10-fold cross-validation. This result outperforms previously presented methods on ABIDE I dataset.
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Introduction

In 1 of every 150 children, autism spectrum disorders (ASDs)
which are regarded as relatively common neurodevelopmental
conditions are presented [1, 2]. Statistics show that the risk of
ASD is increasing in the world. The present data from the US

Department of Education [3] showed that the risk of autism is
increasing by 10 to 17% annually. As a developmental disor-
der, ASD has a widespread effect which manifests in social
communications, social skills, imagination, and behavior
[4–9]. In most cases, this disorder is only diagnosed when
symptoms have erupted and the patient is suffering from
untreatable complications. Therefore, correct diagnosis of
ASD in the early stages is considered very important.

In the treatment of ASD, early diagnosis is the most
important factor. The most important factor in treating
ASD is early diagnosis. In cases of unclear behavioral
symptoms, biomarkers are needed to improve diagnostic
precision. It is also required for the identification of infants
and young children at risk of ASD, prior to the manifesta-
tion of reliable behavioral symptoms [10, 11]. The intro-
duction of new imaging methods, such as functional and
structural magnetic resonance imaging (fMRI and sMRI),
offers a more constructive approach to early diagnosis of
neurological brain disorders. According to Mueller et al.
[12], neurobiological correlations for brain architecture
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and function were detected by these methods. In addition,
for better diagnosis, these methods could be used to detect
potential early markers of the disease.

In recent years, magnetic resonance (MR) images were
used to identify patients with autism. Several studies have
been conducted using MRI techniques to diagnose ASD
based on resting-state functional magnetic resonance im-
aging (rs-fMRI) [11, 13–17], gray matter (GM) [18, 19],
and white matter (WM) [19, 20]. With these recent ad-
vances, it is still not clear if these structural and functional
abnormalities are enough to differentiate ASD from typi-
cal control (TC) individuals. The combination of function
and structure could provide more information about al-
tered brain patterns and connectivity [21–24]. Studies
are yet to be conducted which will combine rs-fMRI with
two other different types of matters for sMRI data (GM
and WM).

The use of machine learning algorithms in medical di-
agnosis has been increasing gradually. In the field of med-
ical imaging which includes computer-aided diagnosis,
machine learning plays an important role. In a bid to im-
prove diagnostic performance, researchers are now using
modern machine learning methods like deep learning. This
method is employed for exploitation of the high-level la-
tent and complicated features in data [25–31], to solve
medical imaging-related problems. The initial incentive
of this field is inspired by an examination of the neural
structure of the brain where nerve cells make perception
possible by sending messages to each other [32]. Based on
different assumptions on how these cells connect, different
models and structures have been proposed; however, these
models do not naturally exist in the human brain, because
the human brain is more complex. A lot of interests have
been raised consequent upon the successful application of
greedy layer-wise training using restricted Boltzmann ma-
chine (RBM), deep belief network (DBN), one of the deep
learning methods and a generative probabilistic model
[33–35]. Recently, there have been breakthroughs in med-
ical imaging analysis which is as a result of DBN usage.

This paper introduces recent work on individuals rang-
ing in age from 5 to 10 years with combined data from
Autism Brain Imaging Data Exchange I [36] and II
(ABIDE I and ABIDE II) datasets with DBN. However,
DBN has never been used for the combination of rs-fMRI
and sMRI data in diagnosing ASD. Therefore, this study
was aimed at improving diagnostic performance through
the diagnostic classification of ASD from TC individuals
by utilizing a combination of six data types (three single,
two pairwise, one three-way) (Tables 3 and 4) with DBN
of depths 2 and 3. In general, we have tried to provide an
intelligent system to diagnose ASD, which can help doc-
tors to identify young children ranging in age from 5 to
10 years for a better medication.

Materials and Methods

Data Source

Data for this study were obtained from the ABIDE I and II
datasets [37]. From a total of more than 24 international sites,
a collection of 1112 and 1144 resting-state scans were obtain-
ed, respectively. Sites acquiring between 160 and 180 time
points were selected. Also, subjects ranging in age from 5 to
10 years were allowed to participate in the experiments be-
cause diagnosis of ASD is more effective at an early age.
Therefore, 116 individuals with ASD and 69 from TCs, com-
prising a subsample of 185 participants, were selected. It is
noteworthy that ABIDE II data can be merged with ABIDE I
collection, because there are overlaps in phenotypic character-
ization and scan parameters. The website (http://
fcon_1000.projects.nitrc.org/indi/abide/) served as a source
of acquisition parameters and protocol information. Table 1
shows the information of participants.

fMRI Preprocessing

A series of preprocessing steps were conducted in SPM8 [38]
for effective data analysis:

& The first five volumes were removed from the data for
further processing to ensure magnetization equilibrium.

& In order to compensate for differences in the time of slice
acquisition, slice-timing correction was performed.
Furthermore, the time corresponding to the first slice
was chosen to be the reference.

& To compensate for bulk head movements, realignment
(motion correction) was done.

& To map the functional and subject-matched structural im-
ages to each other, co-registration was performed.

& By using a voxel size of 2 × 2 × 2 mm3, spatial normaliza-
tion to theMontreal Neurological Institute (MNI) standard
space was performed. The product of this step was images
with 79 × 95 × 68 spatial dimensions.

Table 1 Participants’ information

Datasets Sites Sample size (total) Sample size Measurements

ASD TC

ABIDE I NYU 36 20 16 180

Stanford 10 10 0 180

SDSU 1 1 0 180

ABIDE II EMC1 49 23 26 160

SDSU1 11 7 4 180

NYU1 55 33 22 180

NYU2 23 23 0 180
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& The fMRI data were smoothed in order to increase the
signal to noise ratio (SNR). Gaussian filters are commonly
used to smooth images [39, 40]. In the present study, for
spatial smoothing, Gaussian kernel of 8 × 8 × 8 full-width
half-maximum (FWHM) mm3 was utilized.

& Numerical normalization was done. In this step, values of
each fMRI data need to be between zero and one.

sMRI Preprocessing

To preprocess structural images, the SPM8 software pack-
age was applied. Segmentation of the images into GM and
WM was conducted. Both GM and WM images were
spatially normalized to the MNI standard space. This
was after conducting segmentation with a voxel size of
2 × 2 × 2 mm3. This step produced images with spatial
dimensions of 79 × 95 × 68. Subsequently, a Gaussian ker-
nel of 8 mm FWHM was used to smooth segmented nor-
malized GM and WM images.

fMRI ROIs and Time Flatting

Preprocessed rs-fMRI images were segmented into 116 re-
gions of interest (ROIs) based on the automated anatomical
labeling (AAL) template [41]. By determining the average of
the intensities of all voxels within an ROI, the representative
mean time series of each ROI was calculated. Therefore, a set
of time series was obtained for each subject (N × R), where N
and R are the number of time points and the number of
ROIs (=116), respectively. Thereafter, there was a reduction
of the number of time points to one, by calculating the average
mean time series of each ROI. This resulted in the production
of a 1D feature vector (1 × R), where R is the number
of ROIs (=116), for each individual. We used the mean value
due to the fact that the values of the waveform signal for the
voxels appear to follow a Gaussian distribution.

sMRI ROIs

The AAL atlas was used to partition the preprocessed GM and
WM volumes into 116 brain anatomical regions. For every
subject, a 1D feature vector (1 × R) was produced, where R
is the number of ROIs (=116).

Data Fusion

After parcellation of each, the data from rs-fMRI, GM, and
WM were combined, so as to examine the possible improve-
ments in classification performance. Through the use of fea-
ture concatenation to combine information from rs-fMRI,
GM, and WM data, a progressive stepwise approach was tak-
en. Firstly, single rs-fMRI modality was used. To obtain the

best accuracy, each matter of sMRI data was added to rs-
fMRI. As a result, three data type combinations (two
pairwise and one three-way) were obtained (Tables 3 and 4).
The number of features of two pairwise (rs-fMRI + GM, rs-
fMRI +WM) and one three-way (rs-fMRI + GM +WM) data
fusions was equal to 232 and 348, respectively.

Deep Learning Method

In this study, DBN was used to perform a binary classification
(ASD vs. TC) using fusion of rs-fMRI and sMRI data.

Restricted Boltzmann Machine

DBN is a hierarchical structure consisting of multiple stacked
RBM. RBMs are undirected graphical models with two
layers: visible and hidden units (Fig. 1) [35]. The visible units
denote observations which are connected to the hidden units
representing features. However, connections are yet to be
established within the visible or hidden units. Bernoulli dis-
tributed units are utilized by the simplest RBM with binary
visible and hidden units. To adapt to the real-valued data,
Gaussian-Bernoulli RBMs were used with real-valued input
for visible units and binary output for hidden units. This
makes RBMs suitable to build blocks to learn DBNs for its
valid greedy learning method.

In RBMs, the joint probability distribution between v and h
can be written as

p v; hð Þ ¼ 1

Z
exp −E v; hð Þð Þ ð1Þ

where v is the visible unit, h is the hidden unit, and E is an
energy function defined by

E v; hð Þ ¼ ∑V
i¼1∑

H
j¼1vih jwij−∑V

i¼1bivi−∑
H
j¼1ajh j ð2Þ

where vi, hj ∈ { 0, 1}, wij is the weight between vi and hj, bi is
the bias of visible unit, and aj is the bias of hidden unit. Z is

Fig. 1 Structure of RBM
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obtained by the sum of e−E v; hð Þ . The probability of a visible
unit assigned by the model is

p vð Þ ¼ ∑
h
e−E v;hð Þ=∑

v
∑
h
e−E v;hð Þ ð3Þ

The conditional distributions p(v| h) and p(h| v) are
given by

p h j ¼ 1
� ��v; θ

�
¼ σ ∑V

i¼1wijvi þ aj
� � ð4Þ

p vi ¼ 1ð jh; θ
�
¼ σ ∑H

j¼1wijh j þ bi
� �

ð5Þ

where θ = (w, b, a) and σ(x) = (1 + e−x)−1.
An RBM was pretrained to maximize the log likelihood

logP (v). The findings from the log probability regarding the
weights are given by

∂logp vð Þ=∂wij ¼< vih j > v− < vih j > model ð6Þ

The update rule for the weights follows the gradient of the
log likelihood as

Δwij ¼ ε < vih j > data− < vih j > model
� � ð7Þ

where ε is the learning rate and the expectations relative to the
distribution specified in the subscript manifested by using an-
gle brackets. To compute the exact value of the term <vihj >
model, exponential time is required. The calculation can also
be done using the contrastive divergence (CD) (Hinton 2002)
approximation to the gradient. Then, the new update rule is

Δwij ¼ ε < vih j > data− < vih j > recon
� � ð8Þ

where the term <vihj > recon denotes the expectation of recon-
structions produced by initializing the data from the hidden
units and then updating the hidden units according to the data
as visible units. It is effective in the detection of good features
and has been proven to work adequately in practice.

Deep Belief Networks

In a bid to obtain a better performance, a stack of restricted
Boltzmann machines can be defined as a DBN.When training
the first RBM which is made up of visible and first hidden
layers, the parameter θ1 of this RBM is also obtained. A prior
distribution is hereby defined over the first hidden units ob-
tained by marginalization over the space of visible units. The
idea behind the DBN, which is training by a stack of RBMs, is
to keep the p(v| h, θ1) defined by the first RBM, but to improve
p(v) by replacing p(h| θ1) with a better prior performance over
the hidden units.

In an attempt to train the second RBM, the network was
formed by using samples from the aggregated posterior of the
first RBM as training data. It is simple to initialize the second
RBM which has the visible and hidden units swapped in the
first RBM. Then, the second RBM has visible unit h and
hidden unit h2. Making p(h| θ2) a better model of the aggre-
gated posterior of p(h| θ1) is the same as the first RBM.

In addition, a stack of RBMs could be trained. Thereafter, a
feed-forward network of multiple layers can be initialized by
using the bottom-up recognition weights of the resulting DBN.
By using the back-propagating err derivatives (obtained by a final
Blogistic regression^ layer that computes a probability over class
labels), the network can be fine-tuned. Using the derivative of the
log probability of the correct class, the weights in all the lower
layers are fine-tuned and the weights of the final layer are back-
propagated. The process of bottom-up training and up-bottom
fine-tuning is shown in Fig. 2 [35]. Red arrows stand for the
generative process and green arrows, the fine-tuning process.

Figure 3 illustrates combination of rs-fMRI, GM, and WM
using DBN for ASD identification.

Performance Measures

To evaluate the given diagnostic system, accuracy, sensitivity,
specificity, and F1 score were calculated based on 10-fold
cross-validation to increase the confidence level of the results.
Before discussing the aforementioned criteria, it is necessary
to introduce the following diagnostic conditions:

Fig. 2 Architecture of DBN
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Positive samples: children with ASD
Negative samples: typical controls (TCs)

& True positive (TP): the number of cases correctly labeled
positive samples

& True negative (TN): the number of cases correctly labeled
negative samples

& False positive (FP): the number of negative samples incor-
rectly labeled as positive

& False negative (FN): the number of positive samples in-
correctly labeled as negative

Based on the aforementioned definitions, the evaluation
criteria of a classifier in medical diagnosis can be presented
as follows:

& Accuracy:

accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð9Þ

& Sensitivity:

sensitivity ¼ TP
TP þ FN

ð10Þ

& Specificity:

specificity ¼ TN
TN þ FP

ð11Þ

& F1 score:

F1 score ¼ 2� TP
2� TP þ FP þ FN

ð12Þ

Results

In this work, subjects ranging in age from 5 to 10 years from
ABIDE I andABIDE II datasets, participated in the experiments.
DBN of depths 2 (100 and 100 hidden units in the first and top
layers, respectively) and 3 (100, 100, and 150 hidden units in the
first, second, and the top layers, respectively) were constructed
and trained. Furthermore, a diagnostic classification was done by
adding a logistic regression on top of the layer of these DBN
models. Pretraining and fine-tuning learning rates of 0.01 were
used as hyper parameters for both DBNmodels. For pretraining,
the stopping criteria were fixed at 50 epochs, and for fine-tuning,
they were set at a maximum of 1000 epochs. In addition, the
number of input dimensions of the proposed model with single

GM

WM

preprocessed sMRI

preprocessed rs-fMRI
mean time series of ROIs

AAL Atlas

AAL Atlas

class label

hidden 
layer

hidden 
layer

hidden 
layer

visible 
layer
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observation vectors V

reduction number 
of time points to 1 
by averaging mean 
time series of each 
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Fig. 3 Illustration of combination of rs-fMRI, GM, and WM to discriminate ASD using DBN
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data (rs-fMRI or GM orWM), integration of two data, and com-
bination of three data are equal to 116, 232, and 348, respectively.

All the experiments were conducted using computer with an
Intel Core i7 CPU (2.2 GHz) and 16 GB DDR3 memory using
DBNTheano code [42]. Theano is written in Python and is also
regarded as a tool for network creation using simple logic [43].

Tables 3 and 4 summarize the classification accuracies for
both DBN models for unimodal and multimodal procedures.
As presented in Tables 3 and 4, accuracies of 63.89% for DBN
of depth 2 and 65.56% for DBN of depth 3 were obtained, when
a stepwise procedure was utilized in concatenating the features of
different data types. This result was obtained when the procedure
was started with a single rs-fMRImodality. For DBN of depths 2
and 3, the diagnostic classification reached overall accuracies of
59.72 and 60.56% with rs-fMRI, respectively. Classification ac-
curacy improves the most when GM (from 59.72 to 61.94% for
DBN of depth 2 and 60.56 to 65% for DBN of depth 3) or WM
(from 59.72 to 63.89% for DBN of depth 2 and 60.56 to 62.5%
for DBN of depth 3) is added. As such, the best improvement
resulted from addingWM to rs-fMRI + GM (from 65 to 65.56%
for DBN of depth 3), while for DBN of depth 2, rs-fMRI +WM
predicts the best accuracy among all the six data type combina-
tions (63.89%). As a consequence, significant relationship was
observed between rs-fMRI and sMRI for ASD diagnosis. For
further proof of these significant relationships, in two pairwise
groups (rs-fMRI + GM, rs-fMRI + WM), two-sample t test was
applied on their accuracies that resulted from 10-fold cross-vali-
dation on bothDBNmodels. According to p values, therewas no
significant difference between rs-fMRI and sMRI (p > 0.1 or
p > 0.05) (Table 2). In this study, Python Student’s t test was used
to apply the two-sample t test [44].

Moreover, as shown in Tables 3 and 4, accuracy is improved
when the depth of DBN increases from 2 to 3 in single data (rs-

fMRI, GM), combination of two types of data (rs-fMRI + GM),
and integration of three types of data (rs-fMRI + GM + WM).
Tables 3 and 4 summarize other criteria such as sensitivity, spec-
ificity, and F1 score for both DBN models with depths 2 and 3.

Discussion

In this study, in order to classify individuals with ASD and TC
for the subset of the combination of ABIDE I and ABIDE II
datasets, an accuracy of 60.56%was achieved with rs-fMRI data
and a maximum accuracy of 65.56% was achieved with fusion
of rs-fMRI, GM, and WM data via 10-fold cross-validation on
DBN of depth 3, thus achieving higher predicative performance
than the shallow-architecture DBN. These findings are better
than that of Nielsen et al. [15], who obtained 60.0% accuracy
which was based on rs-fMRI data of ABIDE I dataset. Katuwal
et al. [45], while classifying patients vs. controls using sMRI data
from the ABIDE I dataset, obtained an accuracy of 60%.
Ghiassian et al. [17], while classifying patients vs. controls using
fMRI and sMRI data, respectively, from the ABIDE I dataset,
obtained accuracies of 59.2 and 60.1%. A subset of ABIDE I
participants was included in their analysis: 373male controls and
361male patients. It should be noted that the results of the current
study are not directly comparable to the results of the study of
Nielsen et al. [15], Katuwal et al. [45], and Ghiassian et al. [17],
despite the fact that no results have been published on the com-
bination of ABIDE I and ABIDE II datasets.

Based on AAL atlas, the image features used by our classifier
include large regions throughout the frontal, temporal, subcorti-
cal, insula, occipital, cerebellum, and other regions (Table 5).
These regions consist of a large portion of the total brain volume.
The changes in GM volume are associated with ASD, particu-
larly, in the frontal and temporal regions, the amygdala, hippo-
campus, caudate and other basal ganglia nuclei, and the cerebel-
lum [46, 47]. Patients with autism were reported to exhibit re-
duced resting-state functional connectivity in the default mode
network [48]. Many of the regions were overlapped with brain
regions that were initially linked with autism. In addition, some
regions are not really linked with ASD. It is possible that these
regions played some unrecognized roles in autism; as a result,
doing more conveying on unrecognized regions would be essen-
tial for further development of ASD diagnosis.

Table 2 Applying t test on accuracies obtained from 10-fold cross-
validation on rs-fMRI and sMRI data

Depth of DBN p values

fMRI-WM fMRI-GM

2 0.7352 0.4368

3 0.8062 0.3177

Table 3 Performance measures
on combined data from ABIDE I
and ABIDE II datasets using 10-
fold cross-validation on DBN of
depth 2

Modality Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

rs-fMRI 59.72 62.71 54.44 65.05

GM 63.06 92.82 13.3 75.48

WM 61.11 86.44 19.96 73.37

rs-fMRI + GM 61.94 64.64 57.08 67.49

rs-fMRI + WM 63.89 72.13 49.42 71.11

rs-fMRI + GM + WM 63.06 69.56 52.35 69.39
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DBN automatically learns complexmapping. DBN is a deep
learning model that transforms the neuromorphometric features
via multiple layers of nonlinear processing. At a higher abstract
level, these transformations created representations that were
used for the classification task. The study of Plis et al. [26]
supports the notion that the depth of DBN promotes classifica-
tion and increases group separation. In other words, the pro-
posed method can successfully discover latent feature represen-
tation due to the increasing number of network layers. This is
unlike the competing methods that consider only simple low-
level features extracted from neuroimages. Consequently, the
deep learning classifier was observed to outperform the previ-
ous methods which were used to classify individuals with ASD
and TC.Moreover, in order to design a feature extractor that can
transform the raw data into an appropriate feature vector, the
need for careful engineering and considerable domain expertise
is amajor issue in conventional techniques. Deep learning gives
room for a system input to be combined from raw data, thereby
allowing the machine to automatically discover the representa-
tions required for machine learning tasks [49, 50]. Finally, the
use of deep architectures is promoted by the application of
hierarchical representations and the importance of combining
unsupervised and supervised methods. In this study, due to the
high dimensionality and computer resource demand required to
train a DBN-basedmodel, the raw rs-fMRI and sMRI data were
not used as input data. Nevertheless, when functional and struc-
tural neuroimaging were used, the experimental results showed
that the DBN-based model could achieve better differentiation
performance as compared to the shallow-architecture models.
Also, according to the results of the current study, there was a
significant relationships between rs-fMRI, GM, and WM. In
other words, the differentiation of rs-fMRI and sMRI data be-
tween individual patients and healthy controls could occur at a
reasonable degree of accuracy.

With regards to a model's complexity, more computational
time and resources are required by the method used in this study
as compared to the previousmethods.However, the computation-
al burden of the present method is mostly involved in the compu-
tation of the training phase, which can be performed in the learn-
ing step.Otherwise, the high computational burden or complexity
affects only the learning step, while the required computation for
testing isamatrixvectormultiplicationandsimplenonlinear func-
tion operations. Hence, from a clinical perspective, it is believed

that there is need formore computational timeand resources (only
for a training phase) for higher diagnostic accuracy.

Conclusions

In conclusion, a deep learning-based feature representation was
proposed based on the combined information from rs-fMRI and
sMRI for ASD diagnosis. The participants of the study included
subjects ranging in age from 5 to 10 years of ABIDE I and
ABIDE II datasets. AAL atlas was used to parcellate rs-fMRI,
GM, and WM. The best combination in terms of accuracy in
the study consisted of the rs-fMRI, GM, andWMdata for DBN
of depth 3. As a result, there were significant relationships
between rs-fMRI and sMRI. Therefore, it is recommended that
MRI scanning protocols designed for the diagnosis of ASD
disease be used for the collection of functional and structural
MRI. In addition, this study supports an idea that increasing the
depth of DBN can help improve diagnostic classification and
this can perform better than shallow-architecture models.
Therefore, the present study is one of the most important steps
towards the development of intelligent diagnostic models. In
other words, the results of this study can help doctors to identify
infants or young children who are at risk of ASD before reliable
behavioral symptomsmanifest and plan for a better medication.

Future Direction

Based on the experience gained in this research, the following is
recommended for future works and improvement of the results:

& Do research on the datasets related to a specific geograph-
ical area due to the fact that the prevalence of ASD is
highly geographically dependent.

& Do research on large-scale datasets in order to achieve
better results based on other criteria such as sensitivity,
specificity, and F1 score.

Acknowledgements The authors express gratitude to the Autism Brain
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the scientific community.

Table 4 Performance measures
on combined data from ABIDE I
and ABIDE II datasets using 10-
fold cross-validation on DBN of
depth 3

Modality Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

rs-fMRI 60.56 63.06 55.97 65.91

GM 63.89 97.4 6.82 77.15

WM 59.72 83.86 19.77 71.48

rs-fMRI + GM 65 83.94 33.83 74.51

rs-fMRI + WM 62.5 65.3 57.05 67.87

rs-fMRI + GM + WM 65.56 84 32.96 74.76
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Appendix. Names of ROIs in the AAL template
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