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Abstract: Diesel engines have a wide range of functions in the industrial and military fields. An
urgent problem to be solved is how to diagnose and identify their faults effectively and timely. In
this paper, a diesel engine acoustic fault diagnosis method based on variational modal decomposi-
tion mapping Mel frequency cepstral coefficients (MFCC) and long-short-term memory network is
proposed. Variational mode decomposition (VMD) is used to remove noise from the original signal
and differentiate the signal into multiple modes. The sound pressure signals of different modes
are mapped to the Mel filter bank in the frequency domain, and then the Mel frequency cepstral
coefficients of the respective mode signals are calculated in the mapping range of frequency domain,
and the optimized Mel frequency cepstral coefficients are used as the input of long and short time
memory network (LSTM) which is trained and verified, and the fault diagnosis model of the diesel
engine is obtained. The experimental part compares the fault diagnosis effects of different feature
extraction methods, different modal decomposition methods and different classifiers, finally verifying
the feasibility and effectiveness of the method proposed in this paper, and providing solutions to the
problem of how to realise fault diagnosis using acoustic signals.
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1. Introduction

Diesel engines, as the main power source in the current industrial, military and other
fields, are prone to various types of failures due to their harsh working environment in many
practical applications. Most of the current research on diesel engine fault identification
is realized by analyzing vibration signals [1–3]. In practical engineering applications,
diesel engines will generate high temperature or even explode during operation. Directly
measuring the vibration state of the diesel engine in space is very likely to damage the
sensor and transmission line, resulting in measurement distortion or even inability to
measure. Acoustic measurement [4] can effectively avoid such problems and provide
convenience for data analysis and collection.

At present, fault diagnosis and state identification based on acoustic signals has
become an emerging research hotspot in the research of fault prediction and health manage-
ment (PHM) of machinery such as diesel engines. Some experts and scholars have carried
out certain research and exploration on diesel engine fault diagnosis based on acoustic
signals. Mathew et al. [5] conducted combustion fault diagnosis for engine acoustic signals,
established and compared three fault classification models, and weighed the diagnostic ac-
curacy and diagnostic time of different models, which can be applied to different scenarios.
Figlus et al. [6] used discrete wavelet transform to denoise the engine acoustic signal and
extract entropy features, which can effectively diagnose diesel engine valve faults based on
instantaneous entropy. Ning et al. [7] proposed a new dislocation superposition method,
which improves the extraction accuracy of fault components by increasing the number of
superpositions to the acoustic signal, and uses the similarity coefficient to automatically
determine the fault components. Zhang et al. [8] proposed a parallel sparse filtering method
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to extract the fault features of bearings, and verified the effectiveness of the method through
simulation and experiments. The above studies show that it is practical to diagnose diesel
engine faults by means of acoustic signals, but in the process of these actual studies, some
deficiencies and problems of non-contact data acquisition methods and traditional feature
extraction methods are also exposed:

(1) The sound field environment is complex, mixed with noise signals from other sound
sources, resulting in a low signal-to-noise ratio in the acoustic signal, and it is difficult
to separate and extract the fault information in the acoustic signal. The transmission
path of sound is complex and the signal is weak, so it is difficult to locate the fault
source for complex equipment.

(2) Using conventional feature extraction methods to extract fault features from sound
signals is still relatively one-sided and easy to ignore acoustic characteristics.

Variational mode decomposition (VMD) is widely used in signal noise reduction
in the field of mechanical vibration, and some current researches also use it in acoustic
signals. Facing the problem of abnormal sound recognition during vehicle operation,
Kwon et al. [9] used VMD to effectively distinguish the sound into background noise and
abnormal sound, and proved the good decomposition performance of VMD for sound;
Chen et al. [10] proposed a method combining VMD, fast independent component analysis,
and Hilbert transform to optimize the decomposition effect for the problem of diesel engine
sound source decomposition, and verified the effectiveness of the method; Zhang et al. [11]
optimized the decomposition performance of wind turbine aeroacoustic signals collected
by a single acoustic sensor by improving the number of decomposition layers of VMD,
and achieved a better blind source separation effect. These studies have shown that VMD
can reduce noise, decompose effective information, and improve the signal-to-noise ratio,
but it has disadvantage of not being able to directly extract the required fault features and
needing to combine more specific feature extraction methods. It will lead to a substantial
increase in the dimension of the features extracted later.

Mel Frequency Cepstrum Coefficient (MFCC) is a typical voiceprint recognition fea-
ture and has strong ability to extract acoustic signal features. At present, some scholars
have begun to extend MFCC to the acoustic signal analysis of mechanical equipment.
Suman et al. [12] proposed an algorithm combining adaptive Kalman filter and MFCC for
mechanical fault detection of vehicle acoustic signals. Gong et al. [13] extracted MFCC
features from the dynamic acoustic signals of vehicles, and then implemented fault fea-
ture classification using various machine learning methods. Márquez-Molina et al. [14]
extracted features from the sound signal of aircraft taking off through 1/24 octave analysis
and MFCC, which can effectively realize the classification of aircraft engines. It can be seen
that extracting MFCC from the sound signal as a fault feature can better reflect the status
information of the equipment, and it is more suitable for the characteristics of the acoustic
signal, but these studies did not preprocess the original acoustic signal, which will lead to
noise during the feature extraction process. Greater impact.

The combined use of VMD and MFCC can not only improve the signal-to-noise ratio
of the signal, but also extract fault features that conform to the acoustic characteristics, but
it will lead to a high feature dimension and introduce some useless features, which will
introduce interference for later diagnosis and identification. and increase the computational
burden. Therefore, this paper proposes a diesel engine fault feature extraction method
based on VMD mapping MFCC. This method uses VMD to decompose the mode of
the original one-dimensional sound pressure signal, removes useless noise components
according to the change of the energy ratio of each intrinsic mode function (IMF), and
maps the reserved IMFs to the frequency distribution of the Mel filter bank in the frequency
domain. The Mel filter corresponding to each IMF is used to calculate the MFCC as the
fault feature of the diesel engine, which effectively solves the problem of fault information
extraction. In view of the memory function of the LSTM network, it has a strong learning
ability in time series data [15,16]. Therefore, the double-layer LSTM network is selected
as the fault diagnosis classifier, which effectively solves the problem of fault classification
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and localization. Combined with the diesel engine preset fault experiment, compared with
the traditional feature extraction method and the unimproved MFCC extraction method,
the method proposed in this paper can effectively characterize the diesel engine state and
reduce the feature dimension. Then the diagnostic effects of different classification networks
are compared to test the effectiveness, superiority and robustness of the proposed model.

The main contributions and innovations of this paper are as follows:

(1) A feature extraction method of VMD mapping MFCC is proposed. According to the
corresponding relationship between the IMF component and the frequency distri-
bution of the Mel filter bank, the corresponding MFCC is calculated to form a fault
feature. The feature has a low dimension and a strong ability to represent the state,
which can effectively improve diagnostic accuracy.

(2) The deep learning method is introduced to train the classification model, and the
double-layer LSTM network is selected as the output classifier for network training
and parameter fine-tuning, which effectively reduces the network training time and
improves the accuracy of fault identification.

(3) Taking the acoustic signal as the research object, combined with VMD mapping MFCC
and LSTM network to build a diesel engine fault diagnosis model, the model shows
more efficient and accurate diagnosis effect in the experiment.

The main contents of the other sections of this paper are as follows: Section 2 introduces
the basic theory of VMD, MFCC and LSTM in detail; Section 3 describes the implementation
process of the fault diagnosis model based on VMD mapping MFCC and LSTM networks;
Section 4 describes the setup and result analysis of the diesel engine preset fault test; the
conclusion is showed in Section 5.

2. Basic Theory
2.1. Variational Mode Decomposition

VMD is a signal mode decomposition method proposed by Zosso’s team in 2014 [17].
It has the characteristics of self-adaptation and non-recursion. As a new non-stationary,
nonlinear signal processing method, replacing the previous local mean decomposition
(LMD) [18], empirical mode decomposition (EMD) [19], ensemble empirical mode de-
composition (EEMD) [20] and other recursive decomposition modes, which improve the
mode mixing and end-effect problems of traditional decomposition methods by solving
constrained variational problems. Literature [21,22] verified that VMD has better complex
data decomposition accuracy and better anti-noise interference, etc.

The function of the VMD algorithm is to construct and solve the variational problem,
decompose the original signal f (t) into K IMF components uk(t). Under the condition of the
sum of each component is equal to the input signal, the center frequency and bandwidth
are continuously updated through the iterative process, and finally the IMF component that
minimizes the sum of the IMF bandwidths is obtained. The specific steps are as follows:

(1) Through the Hilbert transform, the one-sided spectrum of the analytical signal of
each IMF component uk(t) (k= 1, 2, · ··, K) is obtained:

[δ(t) + (j/πt)] ∗ uk(t) (1)

Adjust the position of the center frequency of each intrinsic mode to the
respective baseband:

{[δ(t) + (j/πt)] ∗ uk(t)}e−jωkt (2)

where δ(t) is the impulse function, ∗ is the convolution calculation, uk(t) is the kth IMF
component and ωk is the center frequency of each IMF component.
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(2) The L2-norm of the above demodulated signal gradient is calculated, and the band-
width of each IMF component is estimated. Get the constrained variational model expression:

min
{uk ,ωk}

{
K
∑

k=1

∥∥∥∂t

[
(δ(t) + j

πt ) ∗ uk(t)
]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f (t)

 (3)

(3) The quadratic penalty factor α and the Lagrange multiplication operator λ are
introduced into the variational solution problem to transform the constrained variational
problem into an unconstrained variational problem. The augmented Lagrange function is
as follows:

L({uk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∂t

[
(δ(t) + j

πt ) ∗ uk(t)
]
e−jwkt

∥∥∥2

2

+

∥∥∥∥ f (t)−
K
∑

k=1
uk(t)

∥∥∥∥2

2
+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉 (4)

where α is usually selected to be a large enough positive number to improve the recon-
struction accuracy of the signal; λ(t) ensures the strict restriction of the constraints; ‖‖2

2
represents the operation of L2-norm and 〈 〉 represents the operation of inner product.

Alternate direction method of multipliers (ADMM) is used to update the value of each
uk,ωk.and calculate the saddle point of the augmented Lagrange function. It is the way
to find the optimal solution of the constrained variational model, so as to realize modal
decomposition. The iterative process of uk,ωk is as follows:

ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûn
i (ω) + λ̂(ω)

2

1 + 2α(ω−ωk)
2 (5)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(6)

where ûk is the IMF function in the frequency domain state, λ̂ is the Lagrange multiplication
operator in the frequency domain state.

In the VMD process, the difference of the number of decomposition layers K will affect
the effect of modal decomposition, which is a limitation of VMD. The determination of the
number of decomposition layers K needs to be set manually, which has a certain degree of
randomness and subjectivity. Therefore, this paper will determine the appropriate K value
by calculating the spectral centroid of each IMF.

ωk
G =

∫ ∞
0 ω|ûk(ω)|dω∫ ∞

0 |ûk(ω)|dω
(7)

where ωk
G is the spectral centroid of each kth IMF.

2.2. Mel Frequency Cepstrum Coefficient

MFCC was first proposed by Davis and Mermelstein in the 1980s [23], and this
study effectively proved that the coefficient has a better identification effect than other
parameters. So far, MFCC has been widely used in various fields of speech recognition,
including instruction recognition, emotion recognition, and person recognition. At the
same time, MFCC is also gradually introduced into the status and fault identification of
some mechanical equipment, such as transformers [24], UAVs [25], etc., and good results
have also been achieved by means of MFCC.
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The physical meaning of MFCC, in simple terms, is a cepstral coefficient calculated in
the Mel-scale frequency domain, which can be understood as the parameter corresponding
to the energy of the sound signal in different frequency ranges in the cepstrum, which
can reflect low frequency envelope and high frequency detail information. The Mel-scale
frequency domain is a frequency domain that simulates the human ear’s perception of
sound frequency. Its definition formula is as follows:

M( f ) = 2595lg
(

1 +
f

700

)
(8)

where M is the Mel frequency; f is the frequency.
The MFCC extraction process of the sound signal is shown in Figure 1, in which the

pre-emphasis is to compensate the high-frequency components of the signal and prevent
the high-frequency components from being attenuated or even lost in the subsequent
calculation process. When framing the sound pressure signal, considering the continuity
between the two frames, there should be an overlapping area between the two adjacent
frames. In speech recognition, the frame length is generally set to 25 ms, and the frame
shift is set to 10 ms [26]. The acoustic signal of the diesel engine is relatively more stable, so
this paper also uses this setting. The framed signal is windowed with a Hamming window
to enhance the continuity of the signal and reduce the distortion caused by the subsequent
FFT. The Hamming window formula is expressed as follows.

W(a) =

{
0.54− 0.46 cos

( 2πa
A−1

)
, 0 ≤ a ≤ A− 1

0, a < 0&a > A− 1
(9)

where A is the length of the Hamming window.
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The Mel filter is composed of several triangular bandpass filters. As shown in Figure 2,
if the number of filters is N, then it is necessary to determine the N + 2 Mel frequency
domain scale values M(0), M(1), M(2), . . . , M(N), M(N + 1), which are equally spaced values.
Through the inverse operation of Equation (8), the scale value in the linear frequency
domain is obtained: f (0), f (1), f (2), . . . , f (N), f (N + 1). According to the N + 2 scale values,
the functional expression of the N Mel filters can be calculated

Hn(k) =


0 k < f (n− 1)

2(k− f (n−1))
( f (n+1)− f (n−1))( f (n)− f (n−1)) f (n− 1) ≤ k ≤ f (n)

2(k− f (n−1))
( f (n+1)− f (n−1))( f (n+1)− f (n)) f (n) ≤ k ≤ f (n + 1)

0 k ≥ f (n− 1)

(10)

where Hn(k) is the function of the nth Mel filter, and k is the independent variable of the
function, that is, the frequency.
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After the preprocessed signal is filtered by the Mel filter bank, N parameters mn (n = 1,
2, . . . , N) can be obtained:

mn =
F−1

∑
k=0
|X(k)| × Hn(k), n = 1, 2, . . . , N (11)

where F is the number of FFT points; X(k) is the frequency domain function of the prepro-
cessing framed signal after FFT. Take the logarithm of mn calculated by Equation (11), and
perform DCT on it. The transformation process is as follows:

c(n) =

√
2
F

N

∑
j=1

ln mj cos[
πn(2j− 1)

2N
], 1 ≤ n, j ≤ N (12)

where c(n) is the MFCC of each framed signal.
However, the traditional MFCC extraction method realizes frequency domain conver-

sion through FFT. In this process, it is assumed that the signal is approximately unchanged
in a short time, and the nonlinearity and non-stationarity of the signal cannot be reflected,
resulting in the loss of some information. Decomposing the signal by VMD and then
extracting the MFCC will reflect the local characteristics more accurately, so as to obtain
more comprehensive diesel engine fault characteristics.

2.3. VMD Mapping MFCC Features

Due to the low signal-to-noise ratio of the diesel engine sound signal, MFCC, as
features, can effectively reflect the envelope and detail information of the diesel engine
acoustic signal. but the conventional MFCC feature extracted from the original signal
directly without noise reduction may result in more interference in the features. Therefore,
multiple IMF components are obtained after VMD of the original signal, and the noise
components are removed from them, which can achieve effective noise reduction of the
original signal. Zou et al. [27] extracted MFCC and GFCC from each IMF component
decomposed by the VMD of the UAV noise signal, and formed a mixed feature together
with the energy ratio of each IMF component of the VMD. Drone audio can be identified
effectively in different noise environments. However, this method of directly extracting
features from the original signal may still contain a large amount of noise components in the
features. At the same time, the method of extracting MFCC features for all IMF components
will lead to higher dimensions of the extracted features and increase the computational
burden. And even some cepstral coefficient features that are not conducive to classification
are introduced. Considering that the distribution of each IMF component is different in the
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frequency domain, it is usually concentrated in the frequency range of 4 to 5 triangular Mel
filters, as shown in Figure 3. The MFCC of each frame signal is also calculated separately
by each triangular Mel filter.
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If only the cepstral coefficients corresponding to the main frequency distribution filters
of each IMF component are calculated during the MFCC calculation process of the IMF
components, some invalid information can be eliminated, the feature dimension can be
reduced, and the operation speed can be improved. Therefore, this paper proposes a diesel
engine fault feature extraction method based on VMD Mapping MFCC (VMMFCC). The
extraction process of VMMFCC is as follows:

The IMF component is FFT, and its frequency domain distribution is mapped to the
frequency distribution of the Mel filter bank, so that each IMFi1 mainly corresponds to 2~4
Mel triangular filters in frequency, for example, the first IMFi1 reserved corresponds to the
x1th to y1th filters. Likewise, the nth IMFin retained corresponds to the xnth to ynth filters.
Use the triangular filters corresponding to the IMF components to calculate the MFCC of
the IMF, and combine them to form a new cepstral coefficient feature: [c(x1), c(x1 + 1), . . . ,
c(y1), c(x2), c(x2 + 1), . . . , c(y2), . . . , c(xn), c(xn + 1), . . . , c(yn)], namely VMMFCC.

2.4. Long Short-Term Memory Network

Recurrent neural network (RNN) is the most traditional method of deep learning for
time series signal classification, but RNN often has the problem of gradient disappearance
for long sequence data, so it is difficult to learn and save long-term information. LSTM [28]
proposed by Hochreiter and Schmidhuber in 1997 solves this problem well, and its core
is a special implicit neural unit, as shown in Figure 4. LSTM can effectively prevent the
occurrence of gradient disappearance and gradient explosion, and is widely used in long
sequence recognition. It means that LSTM is also applicable to acoustic signals belonging
to long time series.
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Compared with RNN, LSTM is more complex. On the basis of retaining the original
hidden state ht, it also adds a new hidden state of the cell state, denoted as Ct. The long-
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term memory and short-term memory functions of LSTM are realized through the gated
structure, including input gate, forget gate and output gate. The specific calculation process
is as follows:

(1) The forget gate is a gated structure that controls the cellular state at the previous
moment to be forgotten according to the probability. The gate will read the hidden state of
the previous moment and the input of the current moment, and output a value between 0
and 1 to represent the probability that the data is retained, the formula is as follows:

ft = σ(W f · [ht−1, xt] + b f ), ft ∈ [0, 1] (13)

where ht−1 represents the hidden state at the previous moment, xt is the input at the current
moment, W is the weight vector, b is the bias vector, σ represents the sigmoid function, and
ft is the retention probability of the cell state.

(2) The input gate is a gated structure that determines the degree to which new
information enters the cellular state. The gate consists of two parts. The calculation
formulas are as follows:

it = σ(Wi · [ht−1, xt] + bi) (14)

C̃t = tanh(WC · [ht−1, xt] + bC) (15)

Equation (14) uses the sigmoid layer to decide which information needs to be updated,
that is, the update probability: it; Equation (15) uses the tanh layer to generate the update
content of the current moment: C̃t. The results of the two equations are multiplied to
update the cellular state.

(3) Combine the forget gate and the input gate to calculate the current cell state Ct.

Ct = Ct−1 � ft + it � C̃t (16)

(4) The output gate is a gated structure that determines the final output of the cell state
to the hidden state ht. It is also composed of two parts. The calculation is as follows:

ot = σ(Wo · [ht−1, xt] + bo) (17)

ht = ot � tanh(Ct) (18)

Equation (17) uses the sigmoid layer to determine which parts of Ct. will be output.
Equation (18) is to multiply the output of the sigmoid layer with the Ct. processed by tanh
to obtain the hidden state output ht at the current moment.

3. Fault Diagnosis Process Based on VMMFCC and LSTM

When calculating the MFCC for the IMF components, only the cepstral coefficients
of the Mel filter corresponding to the frequency distribution of each IMF component are
calculated. It can eliminate some invalid information, reduce the feature dimension, and
improve the operation speed. Therefore, this paper proposes a diesel engine fault diagnosis
method based on VMMFCC-LSTM. The flow chart is shown in Figure 5. The specific
implementation steps are as follows:

Step 1: Optimization of VMD decomposition layers. Under different decomposition
layers K, perform VMD on the original sound pressure signal of the diesel engine, and
calculate the spectral centroid of each IMF component. When the boundary of the spectral
centroid tends to be stable for the first time, VMD can not only avoid under-decomposition,
but also better avoid modal aliasing. Therefore, the K value at this time is determined as
the number of decomposition layers of VMD.

Step 2: IMF component optimized selection. the capacity ratio and energy variation
range of each IMF under different operating states of the diesel engine are calculated to deter-
mine which IMF components contain large amounts of information and are more sensitive
to fault conditions, and retain these n IMF components for subsequent feature extraction.
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Step 3: Map the IMF frequency distribution to the Mel filter bank and calculate the new
feature vectors. FFT is performed on the reserved IMF components, and the distribution in
the frequency domain is mapped to the frequency distribution of the Mel filter bank, so as
to calculate VMMFCC.

Step 4: Feature set partitioning. The feature sets of the diesel engine sound pressure
signals in different operating states are extracted, and the training set and the validation
set are divided in each state.

Step 5: Train the LSTM classification network. Build the LSTM network and adjust
the network parameters, input the training set, and train the LSTM network classifier.

Step 6: Fault identification. The trained LSTM network structure and parameters
are transferred to the classification network of the validation set to verify the effect of the
proposed method.
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4. Diesel Engine Preset Experiment
4.1. Experimental Setup

The diesel engine preset experiment takes a high pressure common rail diesel engine
with the model of CA6DF3-20E3 as the research object. This test bench is a customized
derating test bench for experiment and teaching. In the artificial preset fault experiment,
the sound pressure signals of the diesel engine under five working conditions, namely,
normal, blocked air inlet, the first cylinder misfire, the third cylinder misfire and the sixth
cylinder misfire, are tested respectively. The installation position of the test bench and the
sensor is shown in Figure 6.
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According to the standard on the position of the microphone in GB/T 17248.3-2018, the
distance between the two sensors does not exceed 2 m and the distance between the sensor
and the ground shall not be less than 1.2 m. Therefore, the two sound pressure sensors
are arranged at the center of 30 cm on each side of the diesel engine, and the height is
basically the same as the upper plane of the cylinder head. The experiment adopts YSV5001
high-precision ICP-type sound pressure sensor and DH5902N data acquisition system. The
sensor sensitivity is 50 mV/Pa and the sampling frequency is 20 kHz. In the abnormal state
setting, the blockage of the intake port is realized by installing the intake cover, and the
misfire is realized by disconnecting the ignition power cord of the corresponding cylinder.
According to the sampling settings in Table 1, the sound pressure signals of the diesel
engine running in five states were collected.

Table 1. Sampling settings for diesel engine preset states.

No. Running Status Rotating
Speed

Sampling
Frequency

Sampling
Time

Number of
Sensors

S1 normal status 500 rpm 20 kHz 60 s 2
S2 blocked air inlet 500 rpm 20 kHz 60 s 2
S3 the first cylinder misfire 500 rpm 20 kHz 60 s 2
S4 the third cylinder misfire 500 rpm 20 kHz 60 s 2
S5 the sixth cylinder misfire 500 rpm 20 kHz 60 s 2

4.2. Experimental Data Preprocessing

The sound pressure signals of different states in the time domain are shown in Figure 7a,
and it is found that the periodicity and regularity of the sound pressure signals of diesel
engines are poor. Through the fast Fourier transform, the frequency domain signal diagram
is obtained as shown in Figure 7b. It can be seen that the spectral distribution difference
under different states is not too large, so it is difficult to find the corresponding fault
characteristic frequency. It can be found that the spectral energy is mainly distributed
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within 9 kHz, which does not exceed the hearing range of the human ear of 20Hz~20 kHz,
so it basically conforms to the applicable range of the Mel filter bank.
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4.2.1. Data Set Partitioning

In order to facilitate the analysis and verification of the scientificity and validity of the
classification model constructed in this paper, it is necessary to divide the collected data.
In this experiment, the 0.5 s sound pressure data collected by the sound pressure sensor 1
is used as a sample, that is, 10,000 sampling points are used as a sample. Therefore, the
number of samples measured in each state is 120, of which 100 samples are selected as the
training set, and the remaining 20 samples are used as the verification set. The data set
division is shown in Table 2.

Table 2. The division of data set sample.

No. Total Number of
Samples

Number of
Training Samples

Number of
Validation Samples

S1 120 100 20
S2 120 100 20
S3 120 100 20
S4 120 100 20
S5 120 100 20

Total 600 500 100

4.2.2. The Extraction of VMMFCC

Compared with the traditional EMD, the VMD can effectively improve the modal
aliasing phenomenon, but the determination of the decomposition level K of the VMD
needs to be set manually. For complex signals, the value of K will directly affect the
decomposition effect. If its value is too large, it will cause over-decomposition and increase
the degree of modal aliasing; if its value is too small, it will lead to under-decomposition
and no useful signal will be obtained. In this paper, the optimal number of decomposition
layers is determined by analyzing the distribution of the spectral centroid of each IMF
component. The formula for calculating the spectral centroid is as follows:

P =
∑N−1

k=0 k|S(k)|
∑N−1

k=0 |S(k)|
(19)

where N is the number of FFT points, k is the frequency subscript, and S(k) is the amplitude
value of the frequency domain signal at k.

VMD is performed on the sound pressure signal according to different decomposition
layers K, and the respective spectral centroids of the IMFs are calculated respectively, and
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they are arranged in order from low to high. The results of normal status are shown in
Table 3. As the value of K increases, the range boundary of the spectral centroid will
gradually stabilize. When the boundary values of the spectral centroid are stable for the
first time, it can be determined that the K value at this time is the optimal number of
decomposition layers. When K = 8, the boundary value of the spectral centroid begins
to stabilize. Therefore, for the collected sound pressure signal, the optimal value of K is
determined to be 8. At this time, the decomposition effect of VMD is shown in Figure 8.
The spectral distribution of each IMF has no obvious modal aliasing and is relatively
concentrated, so the decomposition effect is ideal.

Table 3. Spectral centroid values of IMF components under different decomposition levels K.

IMF
Decomposition Levels K

2 3 4 5 6 7 8 9

IMF1 331.0723 207.5153 142.7331 71.697 57.99569 56.33168 56.0017 55.15293
IMF2 1573.246 1007.623 744.3112 446.7148 380.4228 374.7676 373.8702 370.7743
IMF3 0 1909.521 1433.890 1047.140 826.8442 801.9578 798.8166 783.0283
IMF4 0 0 2770.871 1757.248 1231.698 1191.835 1186.98 1153.387
IMF5 0 0 0 2824.727 1797.587 1775.476 1770.775 1724.641
IMF6 0 0 0 0 2844.753 2665.919 2637.471 2112.904
IMF7 0 0 0 0 0 3872.804 3629.005 2732.561
IMF8 0 0 0 0 0 0 5576.862 3679.650
IMF9 0 0 0 0 0 0 0 5633.213
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In order to verify whether the optimal decomposition level K = 8 is also applicable to
other data of fault state, acoustic signal is processed by VMD under different states with
different K-values, according to the same method, and calculate the spectral centroids of
each IMF respectively. Since the change of boundary value of spectrum centroid is mainly
considered when determining the optimal number of layers, the maximum and minimum
values of the IMF spectrum centroid of each group of signals are calculated, as shown in
Table 4. By observing the same state data, with the constant increase of K, the maximum
value of spectral centroid tends to be stable after K = 8, and when K = 8, the minimum value
of spectral centroid is also in the stable range. Therefore, K = 8 is the optimal decomposition
level for VMD processing of diesel engine operation data in different states.
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Table 4. Boundary values of the spectral centroid of the IMF for each state at different K-values.

Value of Spectral
Centroid Status

Decomposition Levels K

2 3 4 5 6 7 8 9

Minimum

S1 331.07 207.52 142.73 71.69 57.99 56.33 56.00 55.15
S2 417.30 228.92 187.93 173.81 173.25 171.71 171.85 168.99
S3 168.34 106.11 80.09 39.18 29.91 21.95 21.64 19.42
S4 322.32 243.90 196.28 171.97 160.78 158.71 106.02 105.59
S5 271.20 177.30 159.41 124.57 116.65 59.51 60.33 59.04

Maximum

S1 1573.24 1909.52 2770.87 2824.72 2844.75 3872.80 5576.86 5633.21
S2 1717.91 1845.23 1886.74 2952.63 6372.27 5787.47 8087.25 8109.01
S3 1472.63 1976.81 2937.07 2795.13 3856.66 4420.12 5761.55 5844.35
S4 1590.73 2863.08 4022.57 5658.60 4703.65 6509.39 6679.96 6731.02
S5 1522.05 1993.73 3328.57 4247.02 4462.41 5511.18 7033.35 7154.32

VMD of the original sound pressure signal only decomposes the signal into multiple
modes, but it cannot play a role in noise reduction. Therefore, it is also necessary to filter and
eliminate the IMF components obtained, so as to achieve signal noise reduction and retain
the useful part of the signal. The noise mentioned here is generalized. Any component
that is not conducive to fault feature extraction can be regarded as noise. When the energy
proportion of an IMF component changes significantly under different operating conditions,
it can be considered that the IMF component is more sensitive to fault conditions. At the
same time, it is also necessary to take into account the amount of information contained in
the IMF. If the energy of the IMF component is relatively small, it means that its amount
of information is small. Therefore, IMFs with a large proportion of energy and obvious
changes among different states should be retained.

In this paper, Average proportion of energy (APE), variance of contribution of energy
(VPE) and average Pearson correlation coefficient (APCC) are selected as the selection indi-
cators of IMF components, in which APE is obtained by averaging the energy proportion of
the same IMF in all groups of data; The VPE is obtained by first calculating average energy
proportion of the same IMF in 120 groups of data under each state, and then calculating
the variance between the five average values. Therefore, VPE can reflect the sensitivity of
the IMF to changes in operating conditions to a certain extent; The APCC is obtained by
averaging the Pearson correlation coefficients of the same IMF and the original signal in
each group of data, which can reflect the correlation between IMF components and the
original signal.

Table 5 shows APE, VPE and APCC of IMF1~IMF8. In this paper, five IMF components
that are larger in each index value are selected as candidates. Among them, the APE of
IMF1~IMF5 is relatively high, indicating that these five components contain relatively large
amount of information; The VPE of IMF1, IMF2, IMF4, IMF5 and IMF6 is large, which
means that these five components are more sensitive to fault conditions; The APCC of
IMF1~IMF5 is high, indicating that the IMF component contains high original information
content. After comprehensive consideration, four IMF components, IMF1, IMF2, IMF4 and
IMF5, which take into account the three indicators, are retained in this paper to further
extract fault features.

Table 5. Indexes related to the energy proportion of each IMF component.

Indicators IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

APE (%) 25.57 21 17.75 15.44 12.22 4.81 1.97 1.23
VPE 0.00252 0.00119 0.00057 0.00066 0.00193 0.00109 0.00010 0.00001

APCC 0.5267 0.5333 0.4932 0.4695 0.3794 0.2472 0.16077 0.1027

The spectra of the four reserved IMF components will be corresponding to the con-
structed Mel filter bank, as shown in Figure 9. The frequency distribution of each IMF
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component of the energy will be mainly concentrated in some filters. Take IMF1 as an
example, its spectrum is mainly distributed in the range of the first to fourth triangular
filters. Therefore, the first to fourth triangular filters are called the mapped part. And
the distribution in the 5th to 13th filters is very small, which is called the unmapped part.
The IMF1 component itself has very little information in the unmapped part, and filtering
through the filter will only result in less obvious features, or even cause interference. So
only the 4 MFCC values of the mapped part are calculated for IMF1. In the same way, the
mapping relationship between different IMF components and Mel filters is obtained, as
shown in Table 6.
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Table 6. Mapping relationship between each IMF component and Mel filter.

Indicators IMF1 IMF2 IMF4 IMF5 Total

The serial number of the
mapping filter 1~4 1~4 3~7 5~8 -

Number of mapping filters 4 4 5 4 17

This experiment takes 0.5 s of data as a sample, that is, 10,000 sampling points as a
sample. Generally speaking, the frame length is set to 25 ms, and the frame shift is set to
15 ms. This article uses this setting to calculate the frame length as 20,000 × 0.025 = 500
sampling points, and the frame shift as 20,000 × 0.015 = 300 sampling points. Therefore, a
sample will be divided into 32 frames in feature extraction, and the sum of the number of
MFCCs extracted in each frame is the dimension of the frame’s feature vector, so that a set
of 32 × 17 features vector is extracted from each set of data.

4.3. Comparison of Feature Effect

The VMMFCC feature is different from the traditional MFCC feature. Figure 10a–e
shows the MFCC feature vector map in five states. From the shape of the graph, under
the same feature dimension, the feature coefficients corresponding to different frames
fluctuate greatly under the same feature dimension, indicating that the feature fluctuates
greatly over time, so the robustness of the feature is poor. Therefore, the robustness of this
feature is poor. When the MFCC is directly extracted from the original signal, the feature
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will also be extracted from the noise component. Therefore, the feature vectors are more
cluttered and less regular, which will also bring a burden to the subsequent training of the
LSTM network.
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Figure 10. Comparison of MFCC characteristics in different states (a) normal state; (b) blocked air
inlet; (c) the first cylinder misfire; (d) the third cylinder misfire; (e) the sixth cylinder misfire.

The VMMFCC feature vectors graph under five states are showed in Figure 11a–e.
Under the same feature dimension, the feature coefficients of different frames are relatively
stable. It can be seen that the feature coefficients at this time are less affected by noise
and have stability in the time domain. Comparing Figure 11a–e, the shape and trend of
VMMFCC feature vector graph is more distinct between different states, so the characteristic
coefficient is more conducive to the realization of fault diagnosis in principle.
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In order to verify the effectiveness of VMD for MFCC coefficient mapping selection
and outperform other modal decomposition methods. Use LMD, EMD and EEMD to
decompose the original signals, and then get the mapping MFCC under different mode
decomposition methods through the process in Figure 5, namely LMMFCC, EMMFCC and
EEMMFCC. The MFCC of the original signal and the four mapping MFCCs are trained
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and verified using LSTM network. The final fault diagnosis accuracy is shown in Table 7,
and the fault diagnosis confusion matrix is shown in Figure 12.

Table 7. Diagnostic accuracy of different characteristics.

Features Classification
Model

Diagnostic Accuracy Overall Diagnostic
Accuracy

Time of Feature
ExtractionS1 S2 S3 S4 S5

MFCC LSTM 90% 100% 55% 100% 90% 87% 1.401 s
LMFCC LSTM 95% 100% 55% 60% 85% 79% 2.337 s
EMFCC LSTM 85% 95% 65% 85% 90% 84% 2.641 s

EEMFCC LSTM 90% 95% 85% 90% 90% 90% 4.523 s
VMMFCC LSTM 100% 100% 90% 95% 100% 97% 3.012 s
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It can be seen that the accuracy of fault diagnosis can reach 87% when taking MFCC
directly extracted from the original signal as the feature, but the diagnosis ability for S3
state is poor. Although feature LMMCC and EMMFCC use modal decomposition and
mapping, due to the limited decomposition ability of LMD and EMD, it may lead to modal
aliasing, which will bring more interference to feature extraction later, so the diagnostic
effect is not as good as that of MFCC. With EEMMFCC as the feature input, the diagnostic
accuracy has been improved to a certain extent, reaching 90%, but each state cannot be
completely accurately identified, and the feature extraction time is long. VMMFCC is the
feature proposed in this paper. Its feature extraction time is slightly higher than that of
other features with lower accuracy, but the overall fault diagnosis accuracy can reach 97%,
and individual confusion only exists among the three similar fault states of S3, S4 and S5.
Therefore, VMMFCC can better reflect the running state of diesel engine and obtain higher
accuracy in the diagnosis process.

4.4. Comparison of Classifier Effects

After feature extraction, proper fault classification diagnostic device is also the key to
fault diagnosis. For one-dimensional time-domain signals, LSTM is the most commonly
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used neural network recognition classification signal. The construction of LSTM network
should take into account such structural factors as data format, number of layers, number of
hidden units, and set appropriate learning rate, batch size, discard rate, maximum number
of iterations and other network learning super parameters [29]. Since the original signal
has been feature extracted in the early stage, there is no need to use the overly complex
deep network for feature learning, so the simple double-layer LSTM network structure is
used in this paper. Specific parameters of network model training are shown in Table 8.
Other learning super parameter settings include: the decay period of learning rate decay
period is 30, the decay factor of learning rate is 0.1, the batch size is 32, and the maximum
number of iterations is 35.

Table 8. The name of network layer and parameter settings.

No. Name of
Network Layer

Type of
Network Layer

Setting of Relevant
Parameters Input Size Output Size Number of Learning

Parameters

1 Input Sequenceinput
layer Input dimension: 17 17 × 32 17 × 32 -

2 LSTM1 LSTM layer Number of hidden
cells: 100 17 × 32 100 × 32 4 × [100 × (100 + 17) +

100] = 47,200
3 Dropout Dropout layer Dropout rate: 20% 100 × 32 100 × 32 -

4 LSTM2 LSTM layer Number of hidden
cells: 100 100 × 32 100 × 1 4 × [100 × (100 + 100) +

100] = 80,400

5 FC fullyConnected
layer - 100 × 1 5 × 1 5 × (100 + 1) = 505

6 Softmax Softmax layer - 5 × 1 5 × 1 -

7 Output Classification
layer - 5 × 1 5 × 1 -

To verify the rationality of parameter settings of LSTM network, we also compared
the impact of different number of hidden cells and dropout rates on network training and
final diagnosis results, as shown in Table 9. As the number of hidden layer units increases,
the number of network training parameters increases. At the same time, by comparing
the diagnostic accuracy of different combinations of number of hidden cells of LSTM and
dropout rate, it can be seen that number of hidden cells = 100 and dropout rate = 0.2 are
the best combination of parameter settings.

Table 9. Comparison of different parameter Settings in LSTM network.

Number of Hidden
Cells of LSTM Dropout Rate The Sum of

Trainable Parameters
Overall Diagnostic

Accuracy

100
20% 128,105 97%
10% 128,105 95%
30% 128,105 96%

50
10% 34,455 95%
20% 34,455 94%
30% 34,455 91%

80
10% 83,445 93%
20% 83,445 95%
30% 83,445 93%

120
10% 182,365 93%
20% 182,365 96%
30% 182,365 95%

The t-SNE visualization process is performed on the features processed by different
layers of the double-layer LSTM network, and the intuitive classification effect is shown in
Figure 13. It can be seen that the distribution of fault characteristics of each state extracted
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by LSTM1 is generally scattered, only the S1 state can be basically distinguished, and the
features of the other four states are seriously scattered, making it difficult to achieve fault
separation. The role of the Dropout layer is to prevent overfitting, so the extracted features
can not improve the classification effect. After the feature vector is processed by LSTM2,
five states can be effectively identified. Among them, the S1 and S2 states can be completely
distinguished, and there is a very small amount of confusion between the S3, S4, and S5
states, but these three states can also be effectively identified. The classification effect of the
fullyConnected layer is more obvious, but there is still a very small amount of confusion
between S3, S4, and S5. Considering that S3, S4, and S5 are all in the misfire state of a
certain cylinder in the diesel engine, their fault states are relatively close, so there may be
misjudgments in the identification process.
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In order to verify the effectiveness of LSTM network model for sound pressure signals
and extracted features, common classification models used in machine learning and deep
learning are selected for training. The accuracy of fault diagnosis obtained by inputting
verification sets into different classification models is shown in Table 10. Among them, as a
traditional machine learning model, SVM has a relatively simple structure, so the sum of
trainable parameters is less, but it is difficult to effectively distinguish the types of fault
states; For LSTM, RNN and 1D-CNN neural networks, the total training parameters of
LSTM network classifier are relatively small and can achieve better classification effect,
which proves that LSTM network is more suitable for the classification of sound signals
under different operating conditions of diesel engines.

Table 10. Accuracy of different diagnostic models.

Features Classification
Model

The Sum of
Trainable Parameters

Diagnostic Accuracy Overall
Diagnostic AccuracyS1 S2 S3 S4 S5

VMMFCC LSTM 128,105 100% 100% 90% 95% 100% 97%
VMMFCC SVM 27,700 80% 95% 70% 80% 65% 78%
VMMFCC RNN 130,015 95% 100% 85% 90% 85% 91%
VMMFCC 1D-CNN 182,729 85% 95% 80% 80% 90% 86%
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The diagnosis effect of VMMFCC in different classification models is showed in
Figure 14. When using SVM for diagnosis, various states cannot achieve a good fault
identification effect. When using the traditional RNN model for classification, the accuracy
rate can reach 91%, but the effect is not ideal. It may be that the network cannot be
accurately classified due to the disappearance of the gradient during the training process.
The diagnostic accuracy rate of 1D-CNN is 86%. Although the convolutional network has
strong self-learning ability, it is difficult to learn the features of time series signals with
strong correlation. When using LSTM, the overall accuracy rate can reach 97%, which is
better than other classifiers and can achieve relatively satisfactory results.
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To sum up, the VMMFCC-LSTM fault diagnosis method proposed in this paper has
more representative feature extraction and better diagnosis effect, and provides a more
effective method and idea for diesel engine acoustic fault diagnosis.

5. Conclusions

In this paper, a fault diagnosis method for diesel engine acoustic signals based on
VMD mapping MFCC and LSTM is proposed. A feature that can better represent the
current operating state is extracted from the sound pressure signal obtained by non-contact
measurement, and then the LSTM network is trained for diesel engine fault diagnosis. The
main contributions of this paper are as follows:

(1) VMD on the diesel engine sound pressure signal is performed, and calculate the
spectral centroid of each IMF component under different decomposition layers K is
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calculated. According to the change of the boundary of spectral centroid, the optimal
number of decomposition layers is determined to realize the optimization of VMD.

(2) The MFCC method is introduced into the analysis of diesel engine sound signals.
According to the corresponding relationship between the frequency domain distribu-
tion of the IMF component and the Mel filter, a feature extraction method of VMD
mapping MFCC is proposed for the first time, which effectively improve the ability of
the sound signal of the diesel engine to reflect the fault state.

(3) A diagnosis method based on two-layer LSTM network is proposed. VMMFCC is
input into LSTM network for parameter pre-training, then the verification set is used
to verify the LSTM network. Thus, a fault diagnosis classifier suitable for VMMFCC
is constructed, which achieves good fault diagnosis effect.

The experimental results show that the proposed method is superior to other diag-
nostic models in diesel engine acoustic fault diagnosis. In the engineering application of
pursuing high timeliness, this research can quickly judge the fault type and locate the fault
location by non-contact measurement means. In addition, the results of research will help
to expand new knowledge in this field, with good reference value, and provide a new idea
for relevant scholars.
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