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Abstract 

Antibodies targeting programmed cell death protein-1 (PD-1) or its ligand PD-L1 rescue T cells from exhausted 
status and revive immune response against cancer cells. Based on the immense success in clinical trials, ten α-PD-1 
(nivolumab, pembrolizumab, cemiplimab, sintilimab, camrelizumab, toripalimab, tislelizumab, zimberelimab, prolgoli-
mab, and dostarlimab) and three α-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) have been approved 
for various types of cancers. Nevertheless, the low response rate of α-PD-1/PD-L1 therapy remains to be resolved. 
For most cancer patients, PD-1/PD-L1 pathway is not the sole speed-limiting factor of antitumor immunity, and it 
is insufficient to motivate effective antitumor immune response by blocking PD-1/PD-L1 axis. It has been validated 
that some combination therapies, including α-PD-1/PD-L1 plus chemotherapy, radiotherapy, angiogenesis inhibi-
tors, targeted therapy, other immune checkpoint inhibitors, agonists of the co-stimulatory molecule, stimulator of 
interferon genes agonists, fecal microbiota transplantation, epigenetic modulators, or metabolic modulators, have 
superior antitumor efficacies and higher response rates. Moreover, bifunctional or bispecific antibodies containing 
α-PD-1/PD-L1 moiety also elicited more potent antitumor activity. These combination strategies simultaneously boost 
multiple processes in cancer-immunity cycle, remove immunosuppressive brakes, and orchestrate an immunosup-
portive tumor microenvironment. In this review, we summarized the synergistic antitumor efficacies and mechanisms 
of α-PD-1/PD-L1 in combination with other therapies. Moreover, we focused on the advances of α-PD-1/PD-L1-based 
immunomodulatory strategies in clinical studies. Given the heterogeneity across patients and cancer types, individu-
alized combination selection could improve the effects of α-PD-1/PD-L1-based immunomodulatory strategies and 
relieve treatment resistance.
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Background
Programmed cell death 1 (PD-1) signaling is commonly 
hijacked by cancer cells to escape immune surveillance 
[1]. When PD-1 and T cell receptor (TCR) bind to their 
ligands, the immunoreceptor tyrosine-based inhibitory 
motif and immunoreceptor tyrosine-based switch motif 
of PD-1 are phosphorylated [2]. Subsequently, Src homol-
ogy region 2 domain-containing phosphatase (SHP-2) is 
recruited and activated, reversing the phosphorylation of 
downstream signaling of TCR and CD28 [3, 4]. Besides 
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inhibiting some early activating pathways of T cells, PD-1 
directly undermines antigen recognition by disrupting 
the trimolecular interaction of TCR-pMHC-CD8 [5]. 
As a result, PD-1 signaling suppresses T cell functions, 
including activation, proliferation, and cytokine pro-
duction [6]. At present, antibodies blocking PD-1 or its 
ligand PD-L1 have been approved to treat various solid 
and hematologic malignancies (Table 1) [7–12]. Although 
α-PD-1/PD-L1 therapies exhibit potent antitumor effects 
in some patients, most patients could not benefit from 
α-PD-1/PD-L1 treatments, owing to primary or acquired 
treatment resistance [13]. For the non-responders, PD-1 
signaling is not the speed-limiting rheostat of cancer-
immunity cycle, and it is insufficient to revive antitumor 
immunity by blocking PD-1 or PD-L1 [14].

Apart from PD-1 signaling, other immune check-
points, abnormal angiogenesis, immunosuppressive 
immune cells or cytokines, cancer-associated adipo-
cytes, and hyperactive cancer-associated fibroblasts 
also modulate cancer-immune set point and promote 
immune tolerance [15–20]. Logically, removing these 
negative factors could enhance the therapeutic effect 

of α-PD-1/PD-L1 and relieve drug resistance. On the 
other hand, some positive factors such as immuno-
genic cancer cell death, immunosupportive cytokines, 
and professional antigen presentation cells (pAPCs) 
contribute to immune clearance [21]. Correspondingly, 
strengthening these positive elements might boost 
the cancer-immune cycle, drive the transformation 
from cold to hot tumors, and improve the response to 
α-PD-1/PD-L1 therapies [21].

The combination strategy is deemed as a rational and 
feasible approach to achieve optimal treatment effects. 
Accumulating evidence indicates that chemotherapy, 
radiotherapy, angiogenesis inhibitor, stimulator of 
interferon genes (STING) agonist, fecal microbiota 
transplantation (FMT), epigenetic modulators, or other 
immunomodulators could synergize α-PD-1/PD-L1, 
by enhancing cancer antigen release, APC function, or 
effector activity [22–31]. In this review, we summarized 
the synergistic effects of combination immunothera-
pies and the underlying mechanisms. Moreover, given 
the development of antibody technology, we also intro-
duced the emerging bispecific or bifunctional antibod-
ies targeting PD-1 or PD-L1.

Table 1 The approved indications of α-PD-1/PD-L1 antibodies in the globe

Abbreviations: SC skin cancer, NSCLC non-small cell lung cancer, RCC  renal cell carcinoma, HL Hodgkin lymphoma, HNC head and neck cancer, UC urothelial carcinoma, 
CRC  colorectal cancer, HCC hepatocellular carcinoma, ESC esophageal carcinoma, MPM malignant pleural mesothelioma, GC gastric cancer, GEJC gastroesophageal 
junction cancer, TNBC triple-negative breast cancer, BC bladder cancer, CC cervical cancer, EC endometrial cancer, EU European Union, PRC People’s Republic of China. 
√ denotes the indication approved in the globe

Drugs Approval SC NSCLC SCLC RCC HL HNC UC CRC HCC ESC MPM GC GEJC TNBC BC CC EC

Nivolumab 2014-US
2015-EU
2018-PRC

√ √ √ √ √ √ √ √ √ √ √ √ √ – – – –

Pembrolizumab 2014-US
2015-EU
2018-PRC

√ √ √ √ √ √ √ √ √ √ – √ √ √ √ √ √

Cemiplimab 2018-US
2019-EU

√ √ – – – – – – – – – – – – – – –

Toripalimab 2018-PRC √ – – – – √ √ – – – – – – – – – –

Sintilimab 2018-PRC – √ – – √ – – – √ – – – – – – – –

Camrelizumab 2019-PRC – √ – – √ √ – – √ √ – – – – – – –

Tislelizumab 2019-PRC – √ – – √ – √ – – – – – – – – – –

Zimberelimab 2021-PRC – – – – √ – – – – – – – – – – – –

Prolgolimab 2020-RU √ – – – – – – – – – – – – – – – –

Dostarlimab 2021-US
2021-EU

– – – – – – – – – – – – – – – – √

Atezolizumab 2016-US
2017-EU
2020-PRC

√ √ √ – – – √ – √ – – – – √ – – –

Durvalumab 2017-US
2018-EU
2019-PRC

– √ √ – – – – – – – – – – – √ – –

Avelumab 2017-US
2017-EU

√ – – √ – – √ – – – – – – – – – –
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Conventional chemotherapy combined 
with α‑PD‑1/PD‑L1
Chemotherapy modifying the TME
Chemotherapy retards tumor growth mainly by arrest-
ing cell cycle, inhibiting DNA replication, disturbing cell 
metabolism, or suppressing microtubule assembly [32]. 
Besides, some cytotoxic chemotherapeutic drugs such as 
anthracycline and oxaliplatin could induce immunogenic 
cell death and stimulate antitumor immune response [33, 
34]. Immunogenic cell death is featured with some upreg-
ulated damage-associated molecular patterns (DAMPs) 
such as the secretion of IFN-I, the exposure of endoplas-
mic reticulum proteins especially calreticulin (CRT, an 
eat-me signal) on cell membrane, the leak of ATP (a find-
me signal), and the release of high-mobility group box 1 
(HMGB1) [35]. The receptors of CRT, ATP, and HMGB1 
are CD91, P2RX7, TLR4 on dendritic cells (DCs). The 
ATP-P2RX7 signaling recruits DCs into the tumor bed; 
the CRT-CD91 axis promotes DC to engulf cancer anti-
gens; the HMGB1-TLR4 pathway facilitates the optimal 
cancer antigen presentation [36]. Collectively, the anti-
gen capture and presentation of DC are enhanced, ulti-
mately motivating adaptive antitumor immune response 
(Fig. 1a).

Apart from immunogenic cell death, chemother-
apy could directly eliminate immune suppressor cells 
and enhance the functions of effector cells, espe-
cially administrated at the dose below maximum-
tolerated dose [37]. Low-dose cyclophosphamide 
depleted circulating and tumor-infiltrating regulatory 
T cells (Tregs) [38–40]. Moreover, paclitaxel promoted 
tumor-associated macrophage (TAM) to repolar-
ize from M2-like to M1-like phenotype [41]. Notably, 
although 5-fluorouracil, doxorubicin, gemcitabine, and 
docetaxel reduced circulating myeloid-derived sup-
pressor cells (MDSCs) in mouse models [42–45], some 
chemotherapeutic agents increased circulating MDSCs 
in cancer patients [46]. Therefore, the chemotherapy-
mediated MDSC depletion remains further verifica-
tion in cancer patients. Besides suppressor cells, some 

certain chemotherapies such as cyclophosphamide, 
gemcitabine, and vinblastine recruited and activated 
DC in the immunogenic cell death manner [47–49]. 
Also, chemotherapeutic drugs such as vinblastine, 
5-fluorouracil, and oxaliplatin, could directly enhance 
the functions of DC and promote IL-12 secretion [49, 
50]. Additionally, pemetrexed enhanced the activation 
of tumor-infiltrating lymphocytes (TILs) by improving 
mitochondrial biogenesis, independent of immuno-
genic cell death [51].

Chemotherapy combined with α‑PD‑1
Based on the immune-modulatory effect of chemothera-
peutic agents, chemotherapy might be an appropriate 
partner with α-PD-1/PD-L1 to achieve both rapid and 
long-term cancer control. Nowadays, chemotherapy 
combined with α-PD-1/PD-L1 has become a standard-
of-care option for some cancer patients, and there are 
hundreds of ongoing clinical trials exploring the efficacy 
and safety of chemotherapy plus α-PD-1/PD-L1 (Table 2). 
In the clinical trial KEYNOTE-021 (phase 2), non-
squamous non-small cell lung cancer (NSCLC) patients 
receiving pembrolizumab combined with standard chem-
otherapy (carboplatin and pemetrexed) had a higher 
response rate and longer progression-free survival (PFS) 
than did patients receiving standard chemotherapy [52]. 
Based on the results of KEYNOTE-021, pembrolizumab 
plus chemotherapy has been approved by the FDA as the 
first-line treatment for advanced non-squamous NSCLC, 
regardless of PD-L1 level [52]. Later, in two phase 3 
clinical studies (KEYNOTE-189 and KEYNOTE-407), 
pembrolizumab combined with standard chemotherapy 
led to a better overall survival (OS) and PFS in NSCLC 
patients, relative to chemotherapy monotherapy [53, 
54]. The results of KEYNOTE-407 engaged the FDA to 
approve pembrolizumab combined with chemotherapy 
for squamous NSCLC in 2018. Then, based on a string 
of successes (KEYNOTE-355, KEYNOTE-590, and 
KEYNOTE-811), the indication of pembrolizumab plus 

(See figure on next page.)
Fig. 1 The synergistic antitumor efficacies and mechanisms of α-PD-1/PD-L1 in combination with chemotherapy, radiotherapy, or angiogenesis 
inhibitor. a Chemotherapy synergizes with α-PD-1/PD-L1. Some cytotoxic chemotherapeutic drugs could induce immunogenic cell death and 
stimulate antitumor immune response. Immunogenic cell death is featured with some upregulated damage-associated molecular patterns 
(DAMPs) such as calreticulin (CRT), ATP, and high-mobility group box 1 (HMGB1). The ATP-P2RX7, CRT-CD91, and HMGB1-TLR4 pathways facilitate 
the antigen capture and presentation of DC, ultimately motivating adaptive antitumor immune response. Apart from immunogenic cell death, 
low-dose chemotherapy depletes regulatory T cells (Tregs) and promotes the repolarization of tumor-associated macrophage (TAM) from M2-like 
to M1-like phenotype. b Radiotherapy synergizes with α-PD-1/PD-L1. Firstly, radiotherapy could induce immunogenic cell death, enhance 
antitumor immune response, promote T cell infiltration, expand T-cell receptor (TCR) repertoire in the TME. Secondly, radiotherapy upregulates 
the expression of PD-L1 on tumor cells, which might be utilized by additional α-PD-1/PD-L1. Thirdly, radiotherapy increases the MHC-I on tumor 
cells and relieves resistance to α-PD-1/PD-L1. c Angiogenesis inhibitor synergizes with α-PD-1/PD-L1. Angiogenesis inhibitor blocks proangiogenic 
pathways, promotes vessel normalization, improves tumor perfusion and oxygenation, restores the hypoxic TME, and enhances drug delivery. 
Also, angiogenesis inhibitor reshapes the TME: promoting T cell infiltration and DC maturation, enhancing the differentiation towards M1-like 
macrophage, decreasing the ratio of Treg and MDSC, and alleviating hypoxia-induced PD-L1



Page 4 of 27Yi et al. Molecular Cancer           (2022) 21:28 

chemotherapy was expanded to advanced triple-negative 
breast cancer (TNBC), esophageal cancer, gastroesopha-
geal junction cancer (GEJC) [55–57].

Generally, pembrolizumab has a great advantage on 
chemoimmunotherapy, with a broad range of indications. 
The FDA rarely approves chemoimmunotherapeutic 

Fig. 1 (See legend on previous page.)
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strategies with other α-PD-1 drugs (except for nivolumab 
combined with chemotherapy for gastric cancer and 
GEJC) [58]. In China, the NMPA approved sintilimab 
plus pemetrexed and platinum as the first-line treat-
ment for advanced non-squamous NSCLC, based on 
the results of ORIENT-11 [59]. In addition, the NMPA 
approved sintilimab plus gemcitabine and platinum as 
the first-line treatment for advanced squamous NSCLC, 
based on the results of ORIENT-12 [60]. In 2020, the 
NMPA also approved camrelizumab plus carboplatin and 
pemetrexed as the first-line treatment for non-squamous 
NSCLC, based on the results of CameL [61]. Later in 
2021, the NMPA approved camrelizumab plus gemcit-
abine and cisplatin (for advanced nasopharyngeal carci-
noma) and tislelizumab plus chemotherapy (for NSCLC) 
[62–64].

Chemotherapy combined with α‑PD‑L1
Besides α-PD-1, α-PD-L1-based chemoimmunotherapy 
also attracts intensive attention, especially chemoimmu-
notherapeutic regimens with atezolizumab. IMpower150 
is the pioneer of this series of studies, assessing the effi-
cacy of atezolizumab plus angiogenesis inhibitor and 
chemotherapy in advanced non-squamous NSCLC 
[65]. Based on the results of IMpower150, the FDA 
approved atezolizumab plus bevacizumab, paclitaxel, and 

carboplatin as the first-line treatment for advanced non-
squamous NSCLC [65]. Subsequently, the FDA approved 
atezolizumab plus chemotherapy for TNBC (atezoli-
zumab plus nab-paclitaxel, based on IMpassion130), 
SCLC (atezolizumab plus carboplatin and etoposide, 
based on IMpower133), and non-squamous NSCLC (ate-
zolizumab plus nab-paclitaxel and carboplatin, based on 
IMpower130) [66–68]. Moreover, based on the results 
of CASPIAN, durvalumab combined with platinum plus 
etoposide therapy was approved for SCLC in the US [69]. 
Presently, there are still dozens of chemoimmunothera-
peutic regimens with α-PD-1/PD-L1 awaiting approval in 
the US and China.

Radiotherapy combined with α‑PD‑1/PD‑L1
The mechanisms by which radiotherapy synergizing 
α‑PD‑1/PD‑L1
Like some chemotherapeutic drugs, radiotherapy could 
induce immunogenic cell death and enhance antitumor 
immune response [70]. On the one hand, immunogenic 
cell death-associated DAMPs and cytokines especially 
IFN-I recruit immune cells and promote the function of 
DCs. On the other hand, released tumor antigens could 
be captured by DCs and presented to T cells [70]. Con-
sequently, radiotherapy not only eliminates local lesions 
but also stimulates the systemic antitumor immune 

Table 2 The clinical trials exploring the efficacy of α-PD-1/PD-L1 plus chemotherapy

Abbreviations: NSCLC non-small cell lung cancer, ORR objective response rate, PFS progression-free survival, OS overall survival, GEJ gastroesophageal junction, SCLC 
small cell lung cancer

Clinical trial Phase α‑PD‑1/PD‑L1 Chemotherapy Cancer type Primary 
outcome 
measures

NCT02039674 1/2 Pembrolizumab Pemetrexed and carboplatin Non-squamous NSCLC ORR

NCT02775435 3 Pembrolizumab Paclitaxel/nab-paclitaxel and carboplatin Squamous NSCLC PFS, OS

NCT02819518 3 Pembrolizumab Paclitaxel; nab-paclitaxel;
gemcitabine and carboplatin

TNBC PFS, OS

NCT03189719 3 Pembrolizumab Cisplatin and 5-fluorouracil Esophageal or GEJ cancer PFS, OS

NCT03615326 3 Pembrolizumab Trastuzumab plus either 5-fluorouracil plus 
cisplatin or capecitabine plus oxaliplatin

HER2+ gastric or GEJ adenocarcinoma PFS, OS

NCT02872116 3 Nivolumab 5-fluorouracil and leucovorin plus oxaliplatin; 
capecitabine and oxaliplatin

Gastric cancer, esophageal or GEJ adenocar-
cinoma

PFS, OS

NCT03607539 3 Sintilimab Pemetrexed and platinum Non-squamous NSCLC PFS

NCT03629925 3 Sintilimab Gemcitabine and platinum Squamous NSCLC PFS

NCT03134872 3 Camrelizumab Carboplatin and pemetrexed Non-squamous NSCLC PFS

NCT03707509 3 Camrelizumab Gemcitabine and cisplatin Nasopharyngeal carcinoma PFS

NCT03594747 3 Tislelizumab Paclitaxel/nab-paclitaxel and carboplatin Squamous NSCLC PFS

NCT03663205 3 Tislelizumab Platinum and pemetrexed Non-squamous NSCLC PFS

NCT02366143 3 Atezolizumab Bevacizumab plus paclitaxel and carboplatin Non-squamous NSCLC PFS, OS

NCT02763579 3 Atezolizumab Carboplatin and etoposide SCLC PFS, OS

NCT02425891 3 Atezolizumab Nab-paclitaxel TNBC PFS, OS

NCT02367781 3 Atezolizumab Carboplatin and nab-paclitaxel Non-squamous NSCLC PFS, OS

NCT03043872 3 Durvalumab Etoposide and carboplatin/ cisplatin SCLC OS
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response (also known as abscopal effects) [71]. Previ-
ous preclinical and clinical studies demonstrated that 
radiotherapy could synergize α-PD-1/PD-L1 in multiple 
manners. Firstly, radiotherapy promoted T cell infiltra-
tion, increased the number of TILs, and expanded T-cell 
receptor (TCR) repertoire in the TME [72, 73]. Secondly, 
radiotherapy upregulated the expression of PD-L1 on 
tumor cells, which can be utilized by additional α-PD-1/
PD-L1 [74]. Thirdly, radiotherapy increased the MHC-I 
on tumor cells and relieved resistance to α-PD-1/PD-L1 
(Fig.  1b) [75]. However, some problems have not been 
well addressed, including the fractionation, dose, sched-
ule of radiotherapy, irradiated tumor volume, irradi-
ated regional lymph nodes, and the schedule of α-PD-1/
PD-L1 post-radiotherapy [76].

Clinical studies exploring the efficacy and safety 
of radiotherapy combined with α‑PD‑1/PD‑L1
Most radioimmunotherapy regimens are based on ste-
reotactic body radiotherapy (SBRT), which could pre-
cisely deliver ablative doses of radiation in image-guided 
and intensity-modulated manners [77]. The results of 
the phase 1 study NCT02608385 demonstrated that 
α-PD-1/PD-L1 combined with SBRT was well-tolerable 
(Table  3) [24]. Moreover, the results of some phase 1/2 
studies (NCT02621398, NCT02434081, NCT02586207, 
NCT02383212, and NCT02402920) showed that 
α-PD-1/PD-L1 plus chemoradiotherapy was tolerable 
in advanced NSCLC, head and neck squamous cell car-
cinoma (HNSCC), and SCLC patients, with promising 
clinical outcomes [78–82].

In the phase 2 study NCT02904954, SBRT combined 
with durvalumab acquired a superior antitumor effect 
to durvalumab in early-stage NSCLC [83]. In the com-
bination therapy arm, patients received 24 Gy SBRT 

before durvalumab treatment (given in three consecu-
tive daily fractions of 8 Gy) [83]. The major pathologi-
cal response rate was significantly higher in the SBRT 
combined with durvalumab arm than that in the dur-
valumab arm [83]. Additionally, the results of the phase 
3 study NCT02125461 indicated that sequential dur-
valumab treatment markedly improved the PFS and OS 
of NSCLC patients undergoing chemoradiotherapy [84]. 
However, in the phase 2 study NCT02684253, SBRT 
combined with nivolumab was not superior to nivolumab 
in response rate, PFS, and OS in advanced HNSCC [85]. 
Furthermore, in the phase 3 study NCT02952586 explor-
ing the efficacy of avelumab plus standard-of-care chem-
oradiotherapy in HNSCC, it did not meet the primary 
endpoint (PFS) [86]. Considering the multiple variants in 
the combination therapy such as dose, volume, fractiona-
tion, sequence, more efforts are needed to explore opti-
mal radioimmunotherapy schemes.

Angiogenesis inhibitor combined with α‑PD‑1/
PD‑L1
Abnormal angiogenesis hampering the antitumor immune 
response
Hyperactive metabolism and incommensurate blood sup-
ply contribute to the hypoxic and acid TME [87]. As the 
feedback on hypoxia, the levels of some pro-angiogenic 
cytokines such as vascular endothelial growth factor 
(VEGF) and angiopoietin 2 (ANGPT2) are upregulated, 
driving angiogenesis [88]. The disorganized angiogen-
esis promotes the formation of the immunosuppressive 
TME [16]. Firstly, the immature and leaky vessels lead to 
increased interstitial fluid pressure, which hinders blood 
perfusion and immune cell infiltration [89]. Secondly, 
VEGF could inhibit the maturation of DC, induce the 
exhaustion of T cells, promote the proliferation of Tregs, 

Table 3 The clinical trials exploring the efficacy of α-PD-1/PD-L1 plus radiotherapy

Abbreviations: SBRT stereotactic body radiotherapy, NSCLC non-small cell lung cancer, MDT maximum tolerated dose, DLT dose limiting toxicity, PFS progression-free 
survival, OS overall survival, SCLC small cell lung cancer, HNSCC head and neck squamous cell carcinoma, BOR best overall response

Clinical trial Phase α‑PD‑1/PD‑L1 Radiotherapy Cancer type Primary outcome measures

NCT02608385 1 Pembrolizumab SBRT Solid tumors Recommended SBRT dose

NCT02621398 1 Pembrolizumab Concurrent chemoradiation NSCLC MTD and DLT

NCT02434081 2 Nivolumab Concurrent chemoradiation NSCLC Safety

NCT02586207 1 Pembrolizumab Concurrent chemoradiation HNSCC Safety

NCT02383212 1 Cemiplimab Concurrent chemoradiation Solid tumors Safety, DLT

NCT02402920 1 Pembrolizumab Concurrent chemoradiation; 
Concurrent radiation

SCLC DLT

NCT02904954 2 Durvalumab SBRT NSCLC Pathological response rate

NCT02125461 3 Durvalumab Concurrent chemoradiation NSCLC PFS, OS

NCT02684253 2 Nivolumab SBRT HNSCC BOR

NCT02952586 3 Avelumab Concurrent chemoradiation HNSCC PFS
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and increase the ratio of MDSCs [90–93]. Thirdly, despite 
without direct influence on T cells, ANGPT2 recruits 
Tie-2-expressing monocytes, enhances the differentia-
tion towards M2-like macrophages, and upregulates the 
expression of IL-10 [94–97]. Moreover, other proangio-
genic cytokines such as placental growth factor (PLGF) 
and TGF-β also contribute to immunosuppression [98].

Angiogenesis inhibitor synergizing with α‑PD‑1/PD‑L1
Commonly, the transformation from nascent to func-
tional vessel needs maturational processes, which are 
disturbed by hyperactive angiogenesis in the TME [99]. 
Angiogenesis inhibitor blocks these proangiogenic path-
ways, promotes vessel normalization, improves tumor 
perfusion and oxygenation, restores the hypoxic TME, 
and enhances drug delivery [100, 101]. Also, angiogen-
esis inhibitor reshapes the TME: promoting T cell infil-
tration and DC maturation, enhancing the differentiation 
towards M1-like macrophage, decreasing the ratio of 
Treg and MDSC, and alleviating hypoxia-induced PD-L1 
(Fig. 1c) [93, 102–105]. In the multiple preclinical studies, 
angiogenesis inhibitor enhanced the efficacy of α-PD-1/
PD-L1 in murine tumor models [106–108].

In 2019, pembrolizumab combined with axitinib was 
approved by the FDA as the first-line treatment for 
advanced RCC, based on the results of KEYNOTE-426 
(Table  4) [109]. At a median follow-up time of 
30.6 months, the median OS and PFS were longer in 
the pembrolizumab combined with axitinib arm com-
pared to those in the sunitinib arm [109]. Moreover, 

pembrolizumab plus lenvatinib was also approved for 
advanced endometrial carcinoma [110]. Additionally, as 
mentioned above, the FDA approved atezolizumab plus 
bevacizumab and chemotherapy as the first-line treat-
ment for advanced non-squamous NSCLC based on 
the results of IMpower150 [65]. Then, in 2020, the FDA 
approved atezolizumab combined with bevacizumab for 
advanced HCC based on the data of IMbrave150 [111]. 
Besides pembrolizumab plus axitinib, nivolumab plus 
cabozantinib (based on CheckMate-9ER) [112] and ave-
lumab plus axitinib (based on JAVELIN Renal 101) [113] 
were also approved by the FDA as the initial-line treat-
ment for RCC.

Up to now, most angiogenesis inhibitor plus α-PD-1/
PD-L1 strategies are undergoing clinical trials, having 
not been approved by the FDA or NMPA. Combination 
therapies such as sintilimab plus anlotinib, sintilimab 
plus IBI305 (bevacizumab biosimilar), camrelizumab 
plus apatinib, and toripalimab plus axitinib demonstrated 
potent antitumor effects in multiple types of cancers [22, 
114–120]. Despite encouraging results, further phase 3 
trials are needed to validate the efficacies of these combi-
nation regimens.

Dual immune checkpoint blockade 
or co‑stimulatory molecule agonist plus α‑PD‑1/
PD‑L1
α‑CTLA‑4 plus α‑PD‑1/PD‑L1
CTLA-4 is primarily expressed on activated T cells and 
Tregs, as a negative regulator for T cell activation [121]. 

Table 4 The clinical trials exploring the efficacy of α-PD-1/PD-L1 combined with angiogenesis inhibitor

Abbreviations: NSCLC non-small cell lung cancer, MDT maximum tolerated dose, DLT dose limiting toxicity, PFS progression-free survival, OS overall survival, SCLC small 
cell lung cancer, NSCLC non-small cell lung cancer, RCC  renal cell carcinoma, TNBC triple-negative breast cancer, HCC hepatocellular carcinoma, CBR clinical benefit rate

Clinical trial Phase α‑PD‑1/PD‑L1 Angiogenesis inhibitor Cancer type Primary 
outcome 
measures

NCT02853331 3 Pembrolizumab Axitinib RCC PFS, OS

NCT02501096 1b/2 Pembrolizumab Lenvatinib Solid tumors MTD, ORR, DLT

NCT03517449 3 Pembrolizumab Lenvatinib Endometrial cancer PFS, OS

NCT02366143 3 Atezolizumab Bevacizumab plus chemotherapy Non-Squamous NSCLC PFS, OS

NCT03434379 3 Atezolizumab Bevacizumab HCC PFS, OS

NCT03141177 3 Nivolumab Cabozantinib RCC PFS

NCT02684006 3 Avelumab Axitinib RCC PFS, OS

NCT03628521 1b Sintilimab Anlotinib NSCLC Safety, ORR

NCT03794440 2/3 Sintilimab IBI305 HCC PFS, OS

NCT02942329 1/2 Camrelizumab Apatinib Gastric cancer, HCC OS rate

NCT03417895 2 Camrelizumab Apatinib SCLC Safety, ORR

NCT03816553 2 Camrelizumab Apatinib Cervical cancer ORR

NCT03394287 2 Camrelizumab Apatinib TNBC ORR

NCT03359018 2 Camrelizumab Apatinib Osteosarcoma PFS, CBR

NCT03086174 1 Toripalimab Axitinib Kidney cancer, melanoma Safety
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On the one hand, CTLA-4 could competitively sup-
press the binding of CD28 to CD80/CD86, halting the 
secondary signal of T cell activation [122]. On the other 
hand, CTLA-4 engagement with CD80/CD86 counter-
acts TCR-induced downstream signaling and suppresses 
PI3K-Akt pathway (vital signaling of T cell activation), 
via SHP-2 and protein phosphatase 2A (PP2A) [123, 
124]. Additionally, CTLA-4 could capture, remove, and 
degrade its ligands CD80/CD86 from nearby APCs by 
trans-endocytosis, further hampering the co-stimula-
tory signal [125]. It is commonly believed that CTLA-4 
signaling mainly undermines T cell priming in second-
ary lymphoid organs [126]. Ipilimumab (developed by 
Bristol-Myers Squibb) is the first approved α-CTLA-4 
drug, initially used for advanced melanoma [127]. So far, 
the mechanism of antitumor activity of ipilimumab is still 
unclear. Theoretically, ipilimumab blocks the binding of 
CTLA-4 to CD80/CD86, removes the immunoinhibitory 
signal, and promotes T cell priming. However, multiple 
studies have been confirmed that antibody-dependent 
cell-mediated cytotoxicity of Treg also substantially 
contributes to the antitumor activity of ipilimumab 
[128–130].

In the clinic, ipilimumab is rarely used alone. Instead, 
ipilimumab is commonly used in combination with 
nivolumab. Although both CTLA-4 and PD-1 are 
immune checkpoints, they inhibit T cell activation in 
nonredundant manners. Therefore, α-CTLA-4 might 
cooperate with α-PD-1/PD-L1 to boost the antitumor 
immune response. Accumulating evidence has indicated 
that dual PD-1/PD-L1 and CTLA-4 blockade has supe-
rior antitumor activity in some types of cancers [131]. 
The results of CheckMate-069, CheckMate-067, and 
CheckMate-142 showed that ipilimumab plus nivolumab 
significantly improved the outcomes of patients, relative 
to ipilimumab or nivolumab monotherapies [132–134]. 
Moreover, the data of CheckMate-214, CheckMate-227, 
and CheckMate-743 indicated the superior efficacy of 
ipilimumab plus nivolumab over the standard targeted 
therapy or chemotherapy [135–137]. Until now, the FDA 
has approved the ipilimumab plus nivolumab for mela-
noma, RCC, MSI-H/dMMR colorectal cancer, HCC, 
PD-L1 positive NSCLC, and malignant pleural mesothe-
lioma (Table 5) [132–138].

Tremelimumab is a human IgG2 monoclonal anti-
body (developed by AstraZeneca) targeting CTLA-
4, which has entered phase 3 clinical trials [139]. The 
efficacy of tremelimumab plus durvalumab has been 
intensively investigated in SCLC, urothelial carci-
noma, colorectal cancer, HNSCC, NSCLC, gastric 
and GEJ adenocarcinoma, germ cell tumors, mesothe-
lioma, pancreatic ductal adenocarcinoma, and HCC 
[69, 140–152]. The results of some clinical trials were 

unsatisfactory, and no additional benefit was brought 
by tremelimumab plus durvalumab, compared to dur-
valumab monotherapy or standard chemotherapy [140, 
142, 144]. However, the subgroup analysis showed that 
tremelimumab plus durvalumab markedly improved 
the OS of NSCLC patients with a high tumor mutation 
burden [145], indicating the importance of appropri-
ate patient selection for the optimal benefit of tremeli-
mumab plus durvalumab.

Apart from efficacy, it is concerned that dual PD-1/
PD-L1 and CTLA-4 blockade might lead to serious 
immune-related adverse events (irAEs) such as coli-
tis, hypophysitis, pneumonitis, and thyroiditis [153]. 
Therefore, ipilimumab is commonly administrated at a 
reduced dose [154], which might weaken the efficacy 
of combination therapy. A preclinical study found that 
prophylactic TNF blockade could dissociate the efficacy 
and toxicity of α-CTLA-4 plus α-PD-1/PD-L1 therapy 
[155]. Further clinical investigations are needed to 
improve the safety and strengthen the efficacy of dual 
PD-1/PD-L1 and CTLA-4 blockade.

α‑PD‑1/PD‑L1 plus other ICIs
Other dual immune checkpoint blockade strategies, 
including α-PD-1/PD-L1 combined with α-TIM-3, 
α-LAG-3, α-PVRIG, α-TIGIT, are still in clinical trials, 
having not been approved by the FDA or NMPA. The 
engagement of TIM-3 with its ligand galectin-9 led to 
Th1 cell death by triggering intracellular calcium flux 
[156]. Dual blockade of TIM-3 and PD-1/PD-L1 dra-
matically enhanced antitumor immune response and 
retarded tumor growth in murine tumor models [157]. 
The results of clinical trials showed that α-TIM-3 plus 
α-PD-1/PD-L1 was tolerable without unexpected safety 
signals, but more efforts are needed for patient selec-
tion [158–160].

Besides α-TIM-3, other ICIs such as α-LAG-3, 
α-PVRIG, α-TIGIT, α- Siglec-10 also synergized with 
α-PD-1/PD-L1 in enhancing TIL function and suppress-
ing tumor growth [161–164]. In the phase 2/3 study 
RELATIVITY-047, relatlimab (α-LAG-3) plus nivolumab 
therapy demonstrated a significant PFS benefit (10.1 
vs. 4.6 months, HR: 0.75) in advanced melanoma, rela-
tively to nivolumab monotherapy [165]. Moreover, in the 
phase 1 study NCT03667716, COM701 (α-PVRIG) plus 
nivolumab exhibited encouraging antitumor activity even 
in some patients with prior ICI treatment [166]. In addi-
tion, in the phase 2 study NCT03563716, tiragolumab 
(α-TIGIT) plus atezolizumab showed an improvement 
in ORR (OR:2.57, 95%CI:1.07–6.14) and PFS (HR:0.57; 
95%CI 0.37–0.90) in PD-L1 positive NSCLC, relative to 
placebo plus atezolizumab [167].
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Co‑stimulatory molecule agonist plus α‑PD‑1/PD‑L1
Besides co-inhibitory pathways such as PD-1 and CTLA-
4, co-stimulatory pathways including CD27/CD70, 
CD40/CD40L, 4-1BB/4-1BBL, OX40/OX40L, GITR/
GITRL, and ICOS/ICOSL also regulate T cell function 
(Fig.  2a) [168]. Agonists targeting co-stimulatory path-
ways could enhance T cell activity and revolve antitumor 
immune response [169]. A series of preclinical studies 
showed that co-stimulatory molecule agonists improved 
α-PD-1/PD-L1 efficacy [170–176]. At present, multi-
ple clinical studies of co-stimulatory molecule agonists 
plus α-PD-1/PD-L1 are ongoing. The preliminary data 
showed that these combination strategies were well-tol-
erated, supporting further investigation in advanced solid 
tumors [177–180].

Targeted therapy (except for angiogenesis 
inhibitor) combined with α‑PD‑1/PD‑L1
Epidermal growth factor receptor‑tyrosine kinase inhibitor 
(EGFR‑TKI) plus α‑PD‑1/PD‑L1
EGFR is a member of ErbB family driving the initiation 
and development of multiple types of cancers [181]. 
Upon the engagement with its ligands (such as epider-
mal growth factor, transforming growth factor-alpha, 
amphiregulin), EGFR would be homodimerized or heter-
odimerized [182]. Then, the cytoplasmic tyrosine kinases 
domain of EGFR is phosphorylated, triggering the acti-
vation of PI3K-AKT and MAPK pathways [182]. Some 
cancers especially NSCLC are addicted to the hyper-
active EGFR pathway [183]. Therefore, agents target-
ing EGFR could effectively suppress the growth of these 

Table 5 The clinical trials exploring the efficacy of dual immune checkpoint blockade or immune checkpoint agonist plus α-PD-1/
PD-L1

Abbreviations: NSCLC non-small cell lung cancer, PFS progression-free survival, OS overall survival, SCLC small cell lung cancer, NSCLC non-small cell lung cancer, RCC  
renal cell carcinoma, HCC hepatocellular carcinoma, GEJ gastroesophageal junction, HNSCC head and neck squamous cell carcinoma

Clinical trial Phase α‑PD‑1/PD‑L1 Other immune checkpoint 
inhibitors (Target)

Cancer type Primary outcome measures

NCT01844505 3 Nivolumab Ipilimumab (CTLA-4) Melanoma PFS, OS, PFS rate, OS rate

NCT01927419 2 Nivolumab Ipilimumab (CTLA-4) Melanoma ORR

NCT02060188 2 Nivolumab Ipilimumab (CTLA-4) Colorectal cancer ORR

NCT02231749 3 Nivolumab Ipilimumab (CTLA-4) RCC ORR, PFS, OS

NCT02477826 3 Nivolumab Ipilimumab (CTLA-4) NSCLC PFS, OS

NCT02899299 3 Nivolumab Ipilimumab (CTLA-4) Mesothelioma OS

NCT03043872 3 Durvalumab Tremelimumab (CTLA-4) plus chemo-
therapy

SCLC OS

NCT02812420 1 Durvalumab Tremelimumab (CTLA-4) Urothelial cancer Safety

NCT02516241 3 Durvalumab Tremelimumab (CTLA-4) Urothelial cancer OS

NCT02870920 2 Durvalumab Tremelimumab (CTLA-4) Colorectal cancer OS

NCT02369874 3 Durvalumab Tremelimumab (CTLA-4) HNSCC OS

NCT02453282 3 Durvalumab Tremelimumab (CTLA-4) NSCLC OS, PFS

NCT02352948 2 Durvalumab Tremelimumab (CTLA-4) NSCLC OS, PFS

NCT02340975 1/2 Durvalumab Tremelimumab (CTLA-4) Gastric or GEJ adenocarcinoma Safety, ORR, PFS rate

NCT02319044 2 Durvalumab Tremelimumab (CTLA-4) HNSCC ORR

NCT03081923 2 Durvalumab Tremelimumab (CTLA-4) Germ cell tumors ORR

NCT02588131 2 Durvalumab Tremelimumab (CTLA-4) Mesothelioma ORR

NCT02519348 1/2 Durvalumab Tremelimumab (CTLA-4) HCC Safety

NCT02558894 2 Durvalumab Tremelimumab (CTLA-4) Pancreatic ductal adenocarcinoma ORR

NCT03099109 1 LY3300054 LY3321367 (TIM-3) Solid tumor Safety

NCT02791334 1 LY3300054 LY3321367 (TIM-3) Solid tumor Safety

NCT02608268 1/2 Spartalizumab Sabatolimab (TIM-3) Solid tumor Safety, ORR

NCT03470922 2/3 Nivolumab Relatlimab (LAG-3) Melanoma PFS

NCT03667716 1 Nivolumab COM701 (PVRIG) Solid tumor Safety

NCT03563716 2 Atezolizumab Tiragolumab (TIGIT) NSCLC ORR, PFS

NCT02179918 1 Pembrolizumab PF-05082566 (4-1BB) Solid tumor Safety

NCT03502330 1 Nivolumab APX005M (CD40) Melanoma, NSCLC, RCC Safety

NCT03829501 1/2 Atezolizumab KY1044 (ICOS) Solid tumor Safety, ORR

NCT02740270 1 Spartalizumab GWN323 (GITR) Solid tumor, lymphomas Safety
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EGFR-addictive cancers. Generally believed, the efficacy 
of α-PD-1/PD-L1 is modest in EGFR-mutated patients 
[184, 185], which might be attributed to the lack of con-
current TIL and PD-L1 expression, low tumor mutation 
burden, or increased Tregs in the TME [186]. Recent 
studies demonstrated that EGFR-TKI could promote T 
cell infiltration, decrease the ratios of tumor-infiltrating 
Treg and M2-like macrophage, and improve the respon-
siveness to α-PD-1/PD-L1 in EGFR-mutated models [17, 
187]. Besides, activated EGFR signaling contributes to the 
upregulated PD-L1 on cancer cells, and EGFR-TKI might 
cooperate with α-PD-1/PD-L1 to attenuate immune eva-
sion [188]. Collectively, EGFR-TKI plus α-PD-1/PD-L1 
therapy would maximize the efficacy of immunotherapy 
in patients with EGFR-mutated cancers (Fig. 2b).

In the phase 1 trial CheckMate-012, nivolumab com-
bined with erlotinib showed potent and durable antitu-
mor activity in EGFR-mutated NSCLC patients, with 
tolerable adverse events (no grade 4/5 adverse event 
reported) (Table 6) [189]. Moreover, in the phase 1 study 
NCT02013219, EGFR-mutated NSCLC patients received 
erlotinib (150 mg QD for 7 days), followed by erlotinib 
(150 mg QD) plus 1200 mg atezolizumab (1200 mg, q3w) 
[190]. The ORR of combination therapy was as high as 
75% in the expansion-stage group, and tumor-infiltrat-
ing CD8+ T cell was increased in 8/13 paired biopsies 
after 7-day erlotinib treatment [190]. No pneumonitis 
and dose-limiting toxicity were reported in this study 
[190]. However, a retrospective study found that patients 
receiving nivolumab plus erlotinib might have a higher 
risk of treatment-associated interstitial pneumonitis 
(Odds ratio: 4.31, P < 0.001), relative to patients under-
going EGFR-TKI monotherapy [191]. Additionally, in 
the phase 1 study TATTON, the incidence rate of inter-
stitial lung disease in the osimertinib (a third-generation 
EGFR-TKI) plus durvalumab arm was unexpectedly high 
(22%), leading to the termination of patient enrollment 
[192]. Because of the increased risk of treatment-associ-
ated interstitial lung disease, a phase 3 clinical trial CAU-
RAL was stopped early [193]. Although the mechanisms 
of combination therapy-caused irAEs are still unclear, it 
has been confirmed that treatment sequence and timing 
are closely associated with the incidence of irAE. PD-1/
PD-L1 blockade followed by osimertinib led to a higher 

incidence rate of irAE, while osimertinib followed by 
PD-1/PD-L1 blockade decreased the risk of irAE [194]. 
This phenomenon appears to be unique to osimerti-
nib [194]. The efficacy and toxicity of EGFR-TKI plus 
α-PD-1/PD-L1 should be further valuated in patients 
harboring EGFR-mutations.

Anaplastic lymphoma kinase (ALK)‑TKI plus α‑PD‑1/PD‑L1
ALK is a receptor tyrosine kinase belonging to insu-
lin receptor superfamily [195]. EML4-ALK fusion is the 
most common ALK arrangement variant in NSCLC 
patients [196]. The constitutively activated ALK fusion 
gene promotes cancer development by initiating some 
oncogenic pathways including MAPK, PI3K-Akt, JAK-
STAT, and PLCγ [197]. ALK-TKI has dramatically pro-
longed the survival of ALK-arranged patients [198]. 
Similar to EGFR-mutation, ALK rearrangement is also 
related to the poor response to α-PD-1/PD-L1 [199]. A 
retrospective analysis showed that the co-expression 
of PD-L1 and CD8 was rare in ALK-arranged tumors, 
which might contribute to the lower response rate to 
α-PD-1/PD-L1 [200]. Overexpressed ALK fusion pro-
tein increased PD-L1 level, promoting the apoptosis of 
tumor-infiltrating T cells [201]. Besides, ALK inhibition 
induced immunogenic cell death in ALK-arranged can-
cer cells and conferred the protection of tumor rechal-
lenge in the mouse model [202]. Combination therapy of 
α-PD-1 and ceritinib had an enhanced antitumor efficacy 
in NPM1-ALK+ R80 model [202].

It should be noted that ALK-TKI combined with 
α-PD-1/PD-L1 might increase treatment-associated 
hepatotoxicity. In the phase 1/2 study CheckMate-370, 
38% of patients receiving nivolumab plus crizotinib devel-
oped severe hepatic toxicities, leading to the termina-
tion of the enrollment [203]. Moreover, pembrolizumab 
plus crizotinib also showed intolerable hepatotoxicity in 
NSCLC [204]. Conversely, some other combination strat-
egies such as atezolizumab plus alectinib and avelumab 
plus lorlatinib had a manageable safety profile, indicating 
the hepatotoxicity might be ALK-TKI specific [205, 206]. 
Additionally, the timing and sequence of combination 
therapy also influence treatment toxicity, which should 
be further validated in clinical studies [186, 207].

Fig. 2 The synergistic antitumor efficacies and mechanisms of α-PD-1/PD-L1 in combination with other novel therapies. a The co-inhibitory and 
co-stimulatory pathways regulating the activities of T cells or NK cells. The green circle refers to co-stimulatory pathway, and the red circle refers 
to co-inhibitory pathway. b Targeted therapy synergizes with α-PD-1/PD-L1. Oncogenic pathways such as MAPK and PI3K-AKT promote PD-L1 
transcription. Targeted therapies including EGFR-TKI, ALK-TKI, and RAS inhibitor not only directly retard tumor growth, but also decrease intrinsic 
PD-L1 expression. Moreover, STING agonist enhances DC function by activating STING-IFN-I pathway. c The bifunctional and bispecific antibody 
containing α-PD-L1 moiety. The structures of M7824 and YM101. d The effect of gut microbiota on antitumor immunity. Gut microbiota regulates 
DC function, Th1-skweing immunity, Th17 polarization, Treg differentiation, and cytokines secretion. Altered gut mucosa immunity could influence 
the effect of systemic anticancer immunotherapy. Abbreviations: EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor; ALK, 
anaplastic lymphoma kinase; PARP, Poly (ADP-ribose) polymerase; DSB, double-strand break; STING, stimulator of interferon genes

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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RAS‑targeted therapy plus α‑PD‑1/PD‑L1
RAS family (KRAS, NRAS and HRAS) is frequently 
mutated in cancer cells. Mutated KRAS is a well-estab-
lished driver gene of NSCLC, colorectal cancer, and pan-
creatic cancer [208]. In normal cells, RAS is activated by 
growth factor receptors such as EGFR. RAS is a small G 
protein, toggling between GTP-bound state (active) and 
GDP-bound state (inactive). In active state, RAS trig-
gers several downstream pathways including MAPK 
and PI3K-AKT [209]. In tumor cells, mutations in RAS 
disturb this switch between GTP-bound state and GDP-
bound state. As a result, RAS is locked in GTP-bound 
state, leading to the hyperactive downstream pathways 
and tumor growth [209, 210]. Recent studies have shown 
that RAS and its downstream pathways participated in 
cancer immune escape: negatively regulating MHC-I 
expression on cancer cells, increasing the cell-intrinsic 

PD-L1 level, elevating immune suppression-associated 
cytokine production [211, 212]. RAS-targeted therapy 
abrogated RAS-MAPK/PI3K-AKT-involved immune 
evasion, synergizing with α-PD-1/PD-L1 [213, 214].

In the phase 1 study NCT01988896, atezolizumab plus 
cobimetinib (MEK inhibitor) had a manageable safety 
profile and clinical activity in advanced solid tumors, 
regardless of KRAS/BRAF status [215]. However, in the 
phase 2 study NCT02322814, atezolizumab plus cobi-
metinib and taxane had no improvement in ORR in 
TNBC, relative to cobimetinib plus taxane [216]. More-
over, in the phase 3 study NCT02788279 exploring the 
efficacy of atezolizumab plus cobimetinib in metastatic 
colorectal cancer, the primary endpoint of improved 
OS (atezolizumab plus cobimetinib vs. regorafenib) 
could not be reached [217]. At present, other combina-
tion strategies including α-PD-1/PD-L1 plus AMG 510 

Table 6 The clinical trials exploring the efficacy of α-PD-1/PD-L1 combined with targeted therapy (except for angiogenesis inhibitor)

Abbreviations: NSCLC non-small cell lung cancer, PFS progression-free survival, OS overall survival, RP2D recommended phase 2 dose, DOR duration of response, DCR 
disease control rate, CBR clinical benefit rate

Clinical trial Phase α‑PD‑1/PD‑L1 Targeted therapy (Target) Cancer type Primary outcome measures

NCT01454102 1 Nivolumab Erlotinib (EGFR) NSCLC Safety

NCT02013219 1 Atezolizumab Erlotinib (EGFR) NSCLC Safety, RP2D

NCT02143466 1 Durvalumab Osimertinib (EGFR) NSCLC Safety

NCT02454933 3 Durvalumab Osimertinib (EGFR) NSCLC Safety

NCT02574078 1/2 Nivolumab Crizotinib (Met/ALK/ROS) NSCLC Safety

NCT02511184 1 Pembrolizumab Crizotinib (Met/ALK/ROS) NSCLC Safety

NCT02013219 1 Atezolizumab Alectinib (ALK/ FLT3/RET) NSCLC Safety, RP2D

NCT02584634 2 Avelumab Crizotinib (Met/ALK/ROS) NSCLC ORR, Safety

NCT02660034 1 Tislelizumab Pamiparib (PARP) Solid tumor Safety, ORR, PFS, DOR, DCR, CBR, OS

NCT04475939 3 Pembrolizumab Niraparib (PARP) NSCLC PFS, OS

NCT02657889 1/2 Pembrolizumab Niraparib (PARP) TNBC, Ovarian cancer Safety, ORR

NCT02734004 2 Durvalumab Olaparib (PARP) Ovarian cancer DCR, ORR, Safety

NCT02484404 1/2 Durvalumab Olaparib (PARP) Solid tumor RP2D, ORR

NCT01988896 1 Atezolizumab Cobimetinib (MEK) Solid tumor Safety, RP2D

NCT02322814 2 Atezolizumab Cobimetinib (MEK) TNBC PFS, ORR

NCT02788279 3 Atezolizumab Cobimetinib (MEK) Colorectal cancer OS

NCT03600883 1/2 Unspecified AMG 510 (KRAS) KRAS p.G12C mutant solid tumor Safety

NCT02972034 1 Pembrolizumab MK-8353 (ERK) Solid tumor Safety

NCT02967692 3 PDR001 Dabrafenib (RAF) and Trametinib 
(MEK)

Melanoma Safety, PFS

NCT04017650 1/2 Nivolumab Encorafenib (RAF) and Cetuximab 
(EGFR)

Colorectal cancer Best radiographic response; Safety

NCT03502733 1 Nivolumab Copanlisib (PI3K) Solid tumor and lymphoma Safety

NCT03395899 2 Atezolizumab Ipatasertib (AKT) Breast cancer 2-fold increase in  GzmB+CD8+ T cell

NCT02393248 1/2 Pembrolizumab Pemigatinib (FGFR) Solid tumor Maximum tolerated dose, Pharma-
codynamics

NCT03123055 1/2 Pembrolizumab B-701 (FGFR) Urothelial cell carcinoma Safety, ORR

NCT02819596 2 Durvalumab Savolitinib (c-MET) Renal cell carcinoma Safety, ORR

NCT02779751 1 Pembrolizumab Abemaciclib (CDK4/6) NSCLC, Breast cancer Safety

NCT04000529 1 Spartalizumab TNO155 (SHP-2) Solid tumor Safety
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(RAS inhibitor) (NCT03600883), MK-8353 (ERK inhibi-
tor) plus pembrolizumab (NCT02972034), PDR001 
(α-PD-1) plus dabrafenib (RAF inhibitor) and trametinib 
(MEK inhibitor) (NCT02967692), nivolumab plus 
encorafenib (RAF inhibitor) and cetuximab (α-EGFR) 
(NCT04017650), nivolumab plus copanlisib (PI3K inhibi-
tor) with or without ipilimumab (NCT03502733), atezoli-
zumab plus ipatasertib (AKT inhibitor) (NCT03395899) 
are still in clinical trials [218].

Poly (ADP‑ribose) polymerase (PARP) inhibitor plus α‑PD‑1/
PD‑L1
Normal cells preferentially repair double strand break 
(DSB) via homologous recombination (HR). However, 
some HR-deficient (e.g. BRCA1/2 mutant) cancer cells 
only repair DSB by nonhomologous end joining, which is 
a low fidelity repair pathway [219]. As a result, chromo-
somal rearrangements are accumulated in cancer cells, 
eventually leading to cell death [220]. Therefore, intact 
single-strand break (SSB) repair pathway is essential to 
these HR-deficient cancer cells. Based on this synthetic 
lethality theory, interfering SSB could destroy HR-defi-
cient cancer cells [221]. As the core of SSB repair, PARP 
is the ideal target for drug development [222]. Besides 
synthetic lethal effect, PARP inhibitor (PARPi) modu-
lates the TME and promotes the antitumor immune 
response [223]. Firstly, PARPi activates cGAS-STING 
pathway in cancer cells and increases T cell recruitment 
[224]. Moreover, PARPi upregulates PD-L1 expression by 
inactivating GSK3β signaling, which attenuates antitu-
mor immunity [225]. Inspired by the results of preclinical 
studies, numerous clinical studies are ongoing to evalu-
ate the efficacy of PARPi combined with α-PD-1/PD-L1 
[219].

In the phase 1 study NCT02660034, pamiparib plus 
tislelizumab was well-tolerated, and 20% of patients with 
advanced solid tumors achieved an objective response at 
a median follow-up of 8.3 months [226]. Additionally, in 
the phase 2 study JASPER, niraparib plus pembrolizumab 
exhibited a powerful antitumor activity especially in PD-
L1high (tumor proportion scores TPS ≥ 50%) advanced 
NSCLC patients (ORR: 56.3%) [227]. Moreover, in the 
phase 1/2 study KEYNOTE-162, niraparib plus pem-
brolizumab was tolerable, with a considerable antitumor 
efficacy in recurrent ovarian carcinoma (ORR: 18%; DCR: 
65%) [228]. Besides, olaparib and durvalumab arm also 
had a higher ORR than that reported for PARPi treat-
ment in germline BRCA-mutated platinum-sensitive 
relapsed ovarian cancer [229]. Accumulating evidence 
indicates that PARPi plus α-PD-1/PD-L1 is a promis-
ing combination strategy in multiple types of cancers, 
including metastatic castrate-resistant prostate cancer 
and metastatic TNBC [230, 231].

α‑PD‑1/PD‑L1 plus other novel targeted therapies
Dysregulated fibroblast growth factor-fibroblast growth 
factor receptor (FGF-FGFR) signaling participates in can-
cer development by activating MAPK, PI3K, and PLC-γ 
pathways [232, 233]. Mutant FGFR signaling might be 
related to the poor response to α-PD-1/PD-L1, and FGFR 
inhibitor synergized with α-PD-1/PD-L1 in  FGFRmut 
models [234]. The combination of erdafitinib (FGFR 
inhibitor) and α-PD-1 broadened the TCR repertoire and 
increased T cell fraction, contributing to the superior 
antitumor efficacy [234]. Besides, lenvatinib (VEGFR/
FGFR inhibitor) plus α-PD-1 also showed a synergistic 
antitumor effect in the murine HCC model [235]. The 
clinical studies exploring the efficacy of FGFR inhibitor 
plus α-PD-1 are still undergoing. The interim results of 
phase 1/2 study NCT02393248 indicated pemigatinib 
(FGFR inhibitor) combined with pembrolizumab therapy 
was tolerable, with a potent antitumor effect in  FGFRmut 
patients [236]. Besides, the preliminary results of phase 
1/2 study NCT03123055 demonstrated that vofatamab 
(FGFR inhibitor) plus pembrolizumab had an encourag-
ing effect in  FGFRWT metastatic urothelial carcinoma 
[237].

c-MET is also known as hepatocyte growth factor 
receptor (HGFR). Activated c-MET signaling triggers 
downstream MAPK, PI3K-AKT, RAC1, and FAK path-
ways [238]. c-MET signaling is hyperactivated in multiple 
cancers, due to MET mutations, amplification, or rear-
rangement [238]. c-MET signaling upregulated PD-L1 
expression, and c-MET inhibitor impaired intrinsic 
and IFN-γ-induced PD-L1 expression [239–241]. In the 
phase 2 study NCT02819596, savolitinib (c-MET inhibi-
tor) plus durvalumab had clinical activity in MET-driven 
papillary renal cancer (Confirmed RR: 57%, median PFS: 
10.5 months, median OS: 27.4 months) [242].

Cyclin-dependent kinase 4/6 (CDK4/6) is an essential 
component of cell cycle, which cooperates with cyclin 
D to promote cell cycle G1/S transition [243]. CDK4/6 
inhibitors suppress tumor growth by cell cycle arrest 
[243]. Besides interfering cell division, CDK4/6 inhibitors 
also had immunomodulatory activity. CDK4/6 inhibitors 
promoted NF-κB activation, increased T cell chemoat-
tractant and PD-L1 level, and prevented PD-L1 degra-
dation in cancer cells [244]. Besides, CDK4/6 inhibitors 
upregulated NFAT activity and elevated effector gene 
expression in T cells [244]. CDK4/6 inhibitors improved 
the efficacy of α-PD-1 in murine models by enhancing 
lymphocyte infiltration and TIL activities [245–248]. The 
interim data of phase 1b study NCT02779751 showed 
that abemaciclib (CDK4/6 inhibitor) plus pembroli-
zumab had antitumor activity in KRASmut non-squamous 
NSCLC [249].
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SHP2 is an oncogenic protein belonging to protein 
tyrosine phosphatases family [250]. As the convergent 
node of MAPK, PI3K-AKT, JAK-STAT, and PD-1 path-
ways, SHP2 widely regulates multiple cancer-associated 
processes such as cell survival and immune escape [251]. 
SHP2 inhibition increased PD-L1 and MHC-I expression 
by augmenting intrinsic IFN-γ in cancer cells [252]. SHP2 
inhibitor enhanced the efficacy of α-PD-1 in murine 
tumor models [252–254]. A clinical study exploring 
SHP2 inhibitor combined with α-PD-1 is still ongoing 
(NCT04000529), and the final data of this combination 
study are not yet available [255].

STING agonist plus α‑PD‑1/PD‑L1
STING pathway and STING agonist
Cytosolic chromatin fragments and micronuclei are com-
monly accumulated during malignant transformation, 
increasing the probability of cytosolic DNA leakage in 
cancer cells or tumor-derived DNA uptake in DCs [256]. 
cGAS-STING pathway is a cytosolic DNA sensing sign-
aling. Cytosolic dsDNA binds to cGAS, catalyzing the 
generation of cyclic GMP-AMP (cGAMP). Stimulated by 
cGAMP, STING changes from monomer to dimer and 
translocates from ER to perinuclear microsome. Then, 
STING recruits and phosphorylates TBK1, which further 
activates downstream IRF3 and upregulates IFN-I [257–
259]. Besides, STING also increases IFN-I by activating 
NF-κB pathway [260]. IFN-I is a versatile immune stimu-
lator that could enhance the functions of DC, NK, and T 
cells [261]. Given the critical role of cGAS-STING path-
way in bridging innate and adaptive immunity, STING is 
the potential target for cancer immunotherapy.

Dimethyloxoxanthenyl acetic acid (DMXAA) is the first 
STING agonist which failed in the clinical trials [262]. 
Further investigation has identified that DMXAA is a 
mouse-specific STING agonist, with a subtle influence 
on human STING pathway [263, 264]. Sharing similar 
structures and biological characteristics with cGAMP, 
some natural and artificially synthetic cyclic dinucleo-
tides (CDNs) are developed as STING agonists for cancer 
immunotherapy [265–267]. Generally, CDNs have two 
main flaws: poor transmembrane capability and depend-
ing on intratumor injection. Recently, some novel STING 
agonists such as diABZI and MSA-2 have been devel-
oped which could be systemically administrated [268, 
269]. Besides, manganese is also identified as a natural 
STING agonist, playing an important role in antitumor 
immunity [270, 271].

STING agonist plus α‑PD‑1/PD‑L1
The combination therapy of STING agonist and α-PD-1/
PD-L1 simultaneously boosts innate immunity and 
adaptive immunity, effectively overcoming resistance to 

immunotherapy. On the one hand, STING agonist pro-
motes immune cell infiltration and enhances the func-
tion of APC, NK, and T cells [272–274]. On the other 
hand, α-PD-1/PD-L1 antibodies take advantage of 
STING agonist-induced PD-L1 upregulation [273]. Up to 
now, multiple clinical trials of STING agonist combined 
with α-PD-1/PD-L1 are ongoing. The preliminary data 
showed that some combination therapies (e.g. ADU-S100 
plus spartalizumab, MK-1454 plus pembrolizumab, man-
ganese plus α-PD-1) had encouraging antitumor activity 
with a tolerable safety profile [270, 275, 276].

Bispecific/bifunctional antibody targeting PD‑1/
PD‑L1
Dual targeting by bispecific/bifunctional antibodies has 
emerged as an option for combination therapy. Bispe-
cific/bifunctional antibody simultaneously blocks two 
molecules with one drug, having a strategic advantage 
over the combination therapy (Table 7) [277].

TGF‑β × PD‑L1 bispecific/bifunctional antibody
TGF-β is a well-studied immunoinhibitory cytokine: 
restraining immune cell infiltration, inducing Treg dif-
ferentiation, and hampering the functions of T cell, APC, 
and NK [17]. Hyperactivated TGF-β signaling was asso-
ciated with the poor response to α-PD-1/PD-L1, and 
blocking TGF-β significantly improved the efficacy of 
α-PD-1/PD-L1 [299–302]. M7824 is a TGF-β × PD-L1 
bifunctional protein, which had potent antitumor activ-
ity in murine tumor models (Fig. 2c) [278]. The results of 
phase 1 studies were encouraging, and patients receiving 
M7824 had a higher ORR, compared to previous data 
[303, 304]. Besides, in the phase 1 study NCT03710265, 
SHR-1701 (TGF-β × PD-L1 bifunctional antibody) 
showed encouraging antitumor activity [280]. Apart from 
bifunctional antibody, the TGF-β × PD-L1 bispecific anti-
body YM101 also exhibited robust antitumor activity in 
immune-excluded tumor models [279]. Further investi-
gation showed that YM101 promoted T cell infiltration, 
enhanced T cell function, impaired cancer-associated 
fibroblasts (CAF) activity, and induced macrophage 
polarization toward M2-like phenotype [279]. The anti-
tumor mechanisms of TGF-β × PD-L1 bispecific/bifunc-
tional antibody are well-understood, thus an enormous 
number of resources are spent on the development of 
analogical antibodies.

Bispecific antibody targeting two inhibitory immune 
checkpoints
The resistance to α-PD-1/PD-L1 is related to the upregu-
lation of other immune checkpoints. Therefore, bispecific 
antibodies targeting two inhibitory immune checkpoints 
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might relieve α-PD-1/PD-L1 resistance. Numerous 
bispecific antibodies have been developed, includ-
ing CTLA-4 × PD-L1 (KN046) [281], CTLA-4 × PD-1 
(MGD019 and MEDI5752) [282, 283], LAG-3 × PD-L1 
(IBI323) [284], LAG-3 × PD-1 (Tebotelimab) [285], 
TIM-3 × PD-L1 (LY3415244) [286], TIM-3 × PD-1 
[305], TIGIT×PD-L1 [287]. Most bispecific antibod-
ies achieved excellent antitumor efficacies in murine 
tumor models. Some bispecific antibodies have been 
in clinical trials, showing preliminary antitumor 
activity.

Bispecific antibody targeting PD‑1/PD‑L1 
and co‑stimulatory molecules
As mentioned above, agonists targeting co-stimulatory 
molecules synergize α-PD-1/PD-L1. It is rational 
to develop bispecific antibodies targeting PD-1/
PD-L1 and co-stimulatory molecules to optimally 
engage antitumor immune response. Multiple bispe-
cific antibodies have been successfully constructed, 
including 4-1BB × PD-L1 (MCLA-145, ABL503, 
PM1003) [288–290] and CD27 × PD-L1 (CDX-527) 
[291]. These bispecific antibodies augmented the 
functions of TILs and exerted a powerful antitumor 
efficacy [288–291].

Other bispecific antibodies targeting PD‑1/PD‑L1
The synergistic effect between c-MET inhibitor and 
α-PD-1/PD-L1 has been verified [306]. c-MET×PD-1 
bispecific antibodies simultaneously reversed c-Met-
mediated cell proliferation and migration and enhanced 
T cell functions [292–295]. Moreover, avoiding ‘on-
target/off-tumor’ binding to PD-L1 on nonmalignant 
cells, EGFR×PD-L1 bispecific antibody was devel-
oped for EGFR+ tumors [296]. This antibody had 
an enhanced tumor specificity, reducing the risks of 
the indiscriminate reactivation of antitumor T cells 
and severe treatment-related adverse events [296]. 
These tumor-associated antigen×PD-1/PD-L1 bispe-
cific antibodies might have a great advantage in effi-
cacy and safety. Besides, PD-1 × PD-L1 (LY3434172) 
and CD47 × PD-L1 (IBI322) bispecific antibodies had 
enhanced immunomodulatory properties and improved 
antitumor activity, relative to monospecific PD-1 and 
PD-L1 antibodies [297, 298].

Other novel combination strategies
FMT plus α‑PD‑1/PD‑L1
The influence of gut microbiota on host immunity is 
multifaceted, simultaneously regulating the gut mucosal 
immune system and systemic immune system (Fig.  2d) 
[307–310]. It was reported that the gut microbiota of 
immunotherapy-sensitive patients was distinct from 

Table 7 Bispecific/bifunctional antibodies targeting PD-1/PD-L1

Target Antibody Product Company/Authors Reference

TGF-β × PD-L1 M7824 Merck KGaA [278]

YM101 Wuhan YZY Biopharma [279]

SHR-1701 Hengrui Pharmaceuticals [280]

CTLA-4 × PD-L1 KN046 Alphamab Oncology [281]

CTLA-4 × PD-1 MGD019 MacroGenics [282]

MEDI5752 AstraZeneca [283]

LAG-3 × PD-L1 IBI323 Innovent Biologics [284]

LAG-3 × PD-1 Tebotelimab MacroGenics [285]

TIM-3 × PD-L1 LY3415244 Eli Lilly [286]

TIGIT×PD-L1 Not given Novamab Biopharmaceuticals [287]

4-1BB × PD-L1 MCLA-145 Merus and Incyte [288]

ABL503 ABL Bio [289]

PM1003 Biotheus [290]

CD27 × PD-L1 CDX-527 Celldex Therapeutics [291]

c-Met×PD-1 Not given Yuan et. al [292]

Not given Hou et. al [293]

Not given Wu et. al [294]

Not given Sun et. al [295]

EGFR×PD-L1 Not given Koopmans et. al [296]

PD-1 × PD-L1 LY3434172 Eli Lilly [297]

CD47 × PD-L1 IBI322 Innovent Biologics [298]
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that of immunotherapy-resistant populations [311, 312]. 
Some specific bacteria including Bifidobacterium, Faecal-
ibacterium, Akkermansia muciniphila, and Bacteroides 
fragilis enhanced the functions of DC and T cells, con-
tributing to the better response to immunotherapy [313]. 
Conversely, bacteria including Bacteroidales, Rumino-
coccus obeum, and Roseburia intestinalis increased the 
immunoinhibitory components such as MDSC and Treg, 
impairing the efficacy of immunotherapy [313]. Besides, 
manipulating gut microbiota composition could improve 
the response to α-PD-1/PD-L1 [311, 314–316]. The 
results of two phase 1 clinical studies NCT03341143 and 
NCT03353402 showed responder-derived FMT effec-
tively relieved the resistance to α-PD-1/PD-L1 in some 
melanoma patients, having implications for modulating 
gut microbiota in cancer immunotherapy [26, 317].

Immunostimulatory cytokine treatment 
or immunoinhibitory cytokine blockade plus α‑PD‑1/PD‑L1
Some cytokines including GM-CSF, IFN-α, IL-2, IL-7, 
IL-12, IL-15, IL-18, and IL-21 have antitumor activity via 
stimulating immunity, inhibiting proliferation, or induc-
ing apoptosis in cancer cells [318]. Moreover, neutral-
izing cytokines including TGF-β and IL-6 potentiates 
antitumor immunity [319, 320]. The safety and efficacy 
of α-PD-1/PD-L1 combined with IL-2 pathway agonist 
(NKTR-214/BEMPEG) [321], PEGylated IL-10 (Pegilo-
decakin) [322], IL-12 plasmid (Tavo) [323], IL-15 agonist 
(ALT-803) [324], or PEGylated IFN-α [325] had been val-
idated in cancer patients. The preliminary results support 
further clinical trials to assess the optimal sequencing 
and combination of α-PD-1/PD-L1 and cytokine therapy.

Epigenetic modifiers plus α‑PD‑1/PD‑L1
Epigenetic alterations such as histone acetylation regu-
late PD-L1 expression [188]. Beyond direct cytotoxic-
ity, histone deacetylases (HDAC) inhibitors changed 
immunogenicity and enhanced antitumor immunity, 
via decreasing MDSC ratio and upregulating MHC-I/II, 
CD40, CD80, and CD86 expression [326–328]. HDAC 
inhibitor combined with α-PD-1/PD-L1 has shown a syn-
ergistic antitumor effect in murine tumor models [329–
331]. Inspired by the encouraging results of preclinical 
studies, the combination therapy of entinostat (HDAC1/3 
inhibitor) and pembrolizumab is in clinical trials. The 
preliminary results (NCT02697630) showed that enti-
nostat plus pembrolizumab induced durable responses 
in some patients with metastatic uveal melanoma, and 
more entinostat-involved combination regimes such as 
entinostat plus avelumab (NCT02915523), nivolumab 
(NCT03838042), or M7824 (NCT04708470) are still in 
clinical evaluation [332].

Metabolic modulators plus α‑PD‑1/PD‑L1
The engagement of adenosine 2A receptor (A2AR) with 
adenosine elicits immunoinhibitory effects: suppress-
ing the activities of tumor-infiltrating CD8+ T cells and 
hampering the function and differentiation of DCs [333, 
334]. The accumulated adenosine in the TME promotes 
cancer immune evasion, and A2AR blockade rescues 
immune cell function [335, 336]. The results of a phase 
1 study showed that ciforadenant (A2AR inhibitor) com-
bined with atezolizumab effectively prolonged PFS and 
OS in RCC patients [337]. Besides, other metabolic mod-
ulators such as glutaminase inhibitor also had a synergis-
tic effect with α-PD-1/PD-L1 in murine tumor models 
[338].

Chimeric antigen receptor‑T (CAR‑T) cell therapy 
plus α‑PD‑1/PD‑L1
CAR-T cells are genetically engineered T cells, which 
could recognize and bind cancer antigen in an MHC-
independent manner [339]. CAR-T cell therapy pro-
vides numerous cancer-reactive T cells and overcomes 
MHC downregulation-mediated cancer immune eva-
sion [339]. However, the efficacy of CAR-T cell therapy 
is modest in most solid tumors, which is partly attributed 
to the immunosuppressive TME [340]. α-PD-1/PD-L1 
enhanced CAR-T cell therapy by rescuing CAR-T cell 
exhaustion [341–343]. The results of phase 1 study dem-
onstrated CAR-T cell therapy combined with α-PD-1/
PD-L1 had confirmed antitumor activity in patients with 
malignant pleural diseases [344]. Moreover, modified 
CAR-T cells, which secret PD-1-blocking single-chain 
variable fragments (scFv), had improved antitumor activ-
ity by an autocrine and paracrine manner [345]. This 
combination strategy protects CAR-T cells from immune 
exhaustion and optimizes CAR-T cell efficacy.

Perspective and conclusion
Although dozens of combination regimens exhibit potent 
antitumor activities in preclinical studies, some positive 
preclinical findings could not be validated in the clinic. 
At present, only combinations of α-PD-1/PD-L1 with 
chemotherapy, angiogenesis inhibitor, or α-CTLA-4 are 
approved by the FDA or NMPA. For most combinations, 
the striking antitumor activities are limited in animal 
tumor models. Therefore, how to select an optimal pre-
clinical model is a grand challenge to identify the activi-
ties of combination regimens. Relative to widely used 
syngeneic murine models, humanized patient-derived 
models could provide a more precious efficacy evaluation. 
Besides, combination therapy increases the risk of irAEs 
and the cost of health care. Inappropriate combination 
treatments will expose patients to significantly higher 
toxicities. How to optimize administration regimen, 
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including dosage, timing, and sequence, is another chal-
lenge for the development of combination therapy. Lastly, 
it is still unclear  how to select appropriate combina-
tion therapy and find biomarkers predicting treatment 
response. Considering the heterogeneity and evolution 
of tumors, liquid biopsy could dynamically monitor the 
immune landscape of the TME and provide a real-time 
biomarker for guiding precision immunotherapy [346]. 
We believe individualized combination therapy should be 

provided based on patient’s immune profiling and other 
predictive biomarkers. A comprehensive framework 
integrating genome, transcriptome, immune profiling, 
microbiome could be adopted to select patients benefit-
ing from combinations.

For patients with non-inflamed tumors, α-PD-1/
PD-L1 monotherapy scarcely provides clinical benefits, 
and a personalized combination is needed to overcome 
drug resistance. In the background of immune-excluded, 

Fig. 3 Therapies regulating the cancer-immunity cycle. The cancer-immunity cycle starts with cancer antigen release and ends with cancer 
cell-killing by immune cells. Each step in the cycle is regulated by various factors. The stimulatory factors (shown in green) enhance antitumor 
immunity, while the inhibitory factors (shown in red) undermine antitumor immunity. These factors provide potential therapeutic targets to 
promote antitumor immunity. The figure presents some of therapies regulating the cancer-immunity cycle. Abbreviations: CAF, cancer-associated 
fibroblasts; PARP, Poly (ADP-ribose) polymerase; DSB, double-strand break; STING, stimulator of interferon genes; A2AR, adenosine 2A receptor
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therapies such as TGF-β blocker could rescue the 
restrained T cell penetration by inhibiting CAF activi-
ties and reducing peritumoral collagen deposition. In 
the context of immune-desert, therapies such as radi-
otherapy, chemotherapy, and STING agonist could 
overcome low immunogenicity-mediated immune tol-
erance by inducing immunogenic cell death, increasing 
cancer antigen release, and promoting the function of 
APC. Combining these therapies with α-PD-1/PD-L1 
simultaneously boosts multiple processes in the cancer-
immunity cycle, reshapes the TME, and substantially 
promotes the transformation from non-inflamed to 
inflamed tumors (Fig. 3). Besides, with the development 
of next-generation α-PD-1/PD-L1 drugs such as bifunc-
tional or bispecific antibodies, the indication of α-PD-1/
PD-L1 therapies would be greatly extended, and more 
patients could benefit from the updated α-PD-1/PD-L1 
treatments.
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