
SUBMITTED TO IEEE TRANSATIONS ON CAD/ICAS, NOVEMBER 13, 1992 1

Combinational Test Generation Using Satisfiability
Paul R. Stephan, Robert K. Brayton, Alberto L. Sangiovanni-Vincentelli

Abstract — We present a robust and efficient algorithm for combina-

tional test generation using a reduction to satisfiability (SAT). The algo-

rithm, TEGUS, has the following features. We choose a form for the test set

characteristic equation which minimizes its size. The simplified equation is

solved by an algorithm for SAT using simple, but powerful, greedy heuris-

tics, ordering the variables using depth-first search and selecting a variable

from the next unsatisfied clause at eachbranching point. For difficult faults

the computation of global implications is iterated, which finds more impli-

cations than previous approaches and subsumes structural heuristics such

as unique sensitization. Without random tests or fault simulation, TEGUS

completes on every fault in the ISCAS networks, demonstrating its robust-

ness, and is 11 times faster for those networks which have been completed

by previous algorithms. Our publicly available implementation of TEGUS

can be used as a base line for comparing test generation algorithms; we

present comparisons with 45 recently published algorithms. TEGUS com-

bines the advantages of the elegant organization of SAT-based algorithms,

such as that by Svanæs, with the efficiency of structural algorithms, such

as the D-algorithm.

I INTRODUCTION

IN 1966, Roth presented theD-algorithm [1] for combinational
test generation which he proved complete,1 meaning that if

a test for a fault exists, the D-algorithm will find it if run to
completion. All complete algorithms developed since have the
same worst case complexity, differing only in the heuristics used
to optimize average case performance [2]. Until a breakthrough
in algorithm complexity is achieved, test generation algorithms
must be evaluated using more detailed, empirical comparisons.
Since practical test generation algorithms are incomplete, we
call an algorithm more robust if it empirically completes on
more faults using a suitable set of examples. For algorithms
of comparable robustness, efficiency is important, especially
execution time and memory usage. Finally, one algorithm may
be much simpler than another.

While most practical algorithms like the D-algorithm are
structural, operating directly on the gate network, the theoretical
analysis of test generation is based on transformations to and
from other difficult problems. The proof by Ibarra and Sahni
[3] that combinational test generation is NP-complete uses a
polynomial-time reduction from the logic problem satisfiability
(SAT) to test generation. By Cook’s results [4], this also defines

0Manuscript submitted November 13, 1992; revised January 24, 1994, and
August 31, 1994. This work was supported in part by the Semiconductor Re-
search Corporation under Grant 92-DC-008 and by various grants from DEC,
IBM, Intel, Motorola, AT&T, and BNR.

The authors are with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA, 94720.

IEEE MS Number D1447-R2.
1A test generation algorithm completes on (a problem instance defined by) a

fault if it either generates a test for the fault or proves it redundant, completes on
a network if it completes on everymodeled fault in the network, and is complete
if it completes on all networks.

a polynomial-time reduction from test generation to SAT, as well
as to the hundreds of other NP-complete problems [2] such as
traveling salesman, integer programming, bin packing, and in-
stances of quadratic programming. Although test generation
can be solved by algorithms using any of these reductions with-
out changing its asymptotic complexity, a structural algorithm
avoids the overhead of doing a reduction.

Most nonstructural algorithms use a reduction to SAT or its
dual, referred to collectively as SAT-based algorithms, because
the reduction is straightforward, SAT is a fundamental problem
which has been widely studied, and the formulation as a set
of characteristic functions directly fits the paradigm of logic
programming. The overall approach of existing SAT-based al-
gorithms [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] is to translate
the D-algorithm problem formulation into a characteristic equa-
tion (in product-of-sums form for SAT, or sum-of-products form
for the dual), and then solve the equation using a branch-and-
bound search.

For example, in an algorithm by Svanæs [5], the D-calculus
logic function of each gate type is defined using clauses in PRO-
LOG, the topology of the network is translated into clauses, a
fault is specified as a D or D on some net, and a test is generated
by asking the PROLOG solver if it is possible for some output to
have a value of D or D. This algorithm is simple and elegant, but
inefficient. The other SAT-based algorithms improve or worsen
the average case performance by adding various heuristics, but
the fastest is still orders of magnitude slower than the best struc-
tural algorithms. Many are also not robust, requiring the use of
random patterns to get good fault coverage.

We present a new SAT-based algorithm which is both robust
and efficient. We choose a form for the characteristic equa-
tion to reduce its size, and use a new heuristic of ordering the
equation clauses in DFS order. The simplified equation is solved
using fast, greedy heuristics for dynamically choosing the next
variable at each branch point. Finally, for difficult faults we
iterate the computation of global implications, subsuming the
various unique sensitization, path controller, and global impli-
cation heuristics used in other algorithms.

With these simple heuristics, our algorithmTEGUS (TEst Gen-
eration Using Satisfiability) is more robust than previous algo-
rithms and is one of the most efficient. We compare TEGUS with
other algorithms published in the past seven years, using the
ISCAS benchmarks [19, 20]. We show that TEGUS completes on
every fault in these networks without using fault simulation, and
is 11 times faster for those which have been completed by previ-
ous algorithms. With fault simulation TEGUS performance is as
good as the best structural algorithms (unfortunately robustness
data is not available for these), and is orders of magnitude faster
than previous nonstructural algorithms. The results show that
this approach to test generation is practical as well as conceptu-
ally elegant.



2 SUBMITTED TO IEEE TRANSACTIONS ON CAD/ICAS, NOVEMBER 13, 1992

II SIMPLIFIED EQUATION

A SAT-based algorithm implements test generation by solving
a characteristic equation for all tests for a fault. In an efficient
algorithm, the time to construct these equations often exceeds
the time needed to solve them, so in TEGUS the overhead is
reduced by using a two step problem reduction, and by choosing
a minimized form for the characteristic function of each gate.

As a one time overhead, the gate network is translated into a
network of AND gates with inverted inputs such that every fault
in the originalnetworkhas an equivalent fault in the reduced net-
work. Each characteristic equation is then constructed from the
AND gate network. Since every gate has the same logic function,
this step is now simpler and faster. The intermediate reduction
also simplifies fault simulation, improving its performance.

The second improvement is to simplify the form of the SAT

equation derived from the D-algorithm [1]. For each fault, the
goal is to find an input vector which defines a D-chain from the
fault site to a networkoutput. Previous SAT-based algorithmsde-
rive each characteristic equation by a straightforward translation
of the singular cover (used for all gates) and primitive D-cubes
(used for gates on a potential D-chain). The resulting equations
are larger than necessary because the D-algorithm characteris-
tic functions contain redundant information which simplifies a
structural algorithm but which generally has no benefits for a
SAT-based algorithm.

To simplify the equation, we start from the high level de-
scription of the D-algorithm rather than from the cube covers.
Let G� x̄� denote the logic function for a gate G with inputs
x̄ � fx1� � � � � xng and output G, let Gd be a binary variable
which implies gate G is in a D-chain to a network output, and
let Xf and Xg denote the values of a net X with and with-
out the fault, respectively. For a gate G with fanout gates
Hi� i � 1 � � �k, the D-algorithm characteristic function can be
expressed as

Gg � G� x̄g� � Gf � G� x̄f � � Gd � �Gg �� Gf �

� Gd � �H1�d � � � ��Hk�d�� (1)

Roth [1] derived alternative ways to express the D-chain con-
dition; this choice is one of the main differences between the
various SAT-based algorithms. The form chosen here is most ef-
ficient with the greedy branch-and-bound heuristics in the next
section because it includes the forward D-chain implications. If
G is not on any path from the fault to an output, (1) can be
simplified to Gg � G� x̄g� � �Gf � Gg�.

Minimizing each component function reduces the overall
characteristic equation length. For example, in Fig. 1, as-
sume that all inputs of gate J are on potential D-chains. With
Larrabee’s reduction [14], the 3SAT characteristic function for
J has 67 literals [21]. The reduction in [17] uses a slightly dif-
ferent expression of the D-chain condition, replacing the second
implication in (1) with logical equivalence (adding these back-
ward D-chain implications seems to have no benefits because
the fault site is known a priori to be on any final D-chain). The
corresponding 3SAT function has 51 literals [21]. The simplified
characteristic function used in TEGUS is found by substituting
the gate logic function J � H I E into (1) and expressing it in

M

L

N

P

I

H

C

D

B

A

G

E

F

J

K

Figure 1: Example network fragment.

minimum product-of-sums form. The resulting function is

�Jg�Hg�Ig�Eg��Hg�J g��Ig�Jg��Eg�J g�
�Jf�Hf�If�Ef ��Hf�J f ��If�J f ��Ef�J f �
�Jd�Jg�Jf ��Jd�J g�Jf ��Jd�Ld�Md�,

with 11 clauses and 29 literals. The savings over earlier SAT-
based algorithms are comparable. The equation can be further
simplified by minimizing the functions for several gates simul-
taneously (e.g., the gates in a fanout-free region) but this makes
the algorithm more complicated for a smaller additional im-
provement.

The TEGUS reduction eliminates redundancy found in other
reductions. For example, the reduction in [17] represents the
constraint �Eg � Jg� twice, as J � E and also as E � J .
Although the search algorithms can be modified to partially
compensate for this redundancy (called duality in [17]), it is
more straightforwardnot to add the redundancy in the first place.

Because TEGUS uses an intermediate reduction, it only needs
the minimum form for an AND gate, but characteristic functions
for other gates can be similarly derived. Since the equations can
be long (e.g., for c6288, several equations have over 50 000
literals in the TEGUS minimized form), minimizingeach function
improves the performance considerably, as shown in Section V.

III GREEDY SEARCH

As a search problem, test generation is characterized by the
variable orderings used for branching and what processing to do
at each branch point. Although such search heuristics do not af-
fect the completeness or asymptotic complexity of an algorithm,
they can drastically affect the average case performance.

Most test generation algorithms use analysis of a network (or
equation) to determine a variable ordering, such as the backtrac-
ing heuristics in a structural algorithm. The orderings used by
early SAT-based algorithms depend primarily on the underlying
solvers, although they can be influenced by ordering the problem



D1447-R2: COMBINATIONAL TEST GENERATION USING SATISFIABILITY 3

description [6] or the use of other mechanisms [13]. Recent SAT-
based algorithms [14, 15, 22, 16, 23, 17] analyze the 2-clauses
of an equation, satisfying the easy part of the equation and then
checking if the assignment also satisfies the entire equation.
This heuristic emphasizes parts of the network where many in-
verters or buffers are used, giving little information relevant to
a good variable ordering.

The recent SAT-based algorithms also use a static variable or-
dering, fixing a global ordering for the entire search regardless
of the current partial assignment. This leads to unnecessary as-
signments and backtracking. For example, setting one input of
an n-input AND gate to zero fixes the output to zero but does not
force any value for the other inputs. A static variable ordering
may assign values to these inputs even if no test exists when the
gate output is zero, potentially wasting 2n�1 backtracks. Ex-
periments confirm the disadvantages of static variable orderings
[24]; they typically abort on an order of magnitude more faults
using the same backtrack limits and are also an order of magni-
tude slower. Good fault coverage is achieved only with random
patterns and very high backtrack limits.

Unlike previous algorithms, TEGUS uses a simple greedy vari-
able selection. Since the equation is satisfied exactly when ev-
ery clause is satisfied, the most obvious step which increases
the number of satisfied clauses is to find the first unsatisfied
clause in the equation and assign the first variable which can
satisfy it. Clauses with three or more literals are in some sense
the difficult part of the equation, so only these are considered
during variable selection. The result is a fast, dynamic variable
orderingwhich ignores 2-clauses, essentially the direct opposite
of previous approaches.

The efficiency of such a heuristic depends strongly on the
ordering of the clauses within the equation. In TEGUS the char-
acteristic functions for the gates are added in depth-first search
(DFS) order starting from primary inputs, with the effect that
for each cone of logic, the clauses for gates driven by primary
inputs occur first. This ordering has three advantages over those
used in other SAT-based algorithms. First, with this ordering,
the greedy variable selection mimics the PODEM [25] heuristic of
branching only on primary input variables and deriving all other
assignments from implications. This heuristic avoids many un-
necessary conflicts in networks with reconvergence, but is not
used in any other SAT-based algorithms.

Second, the DFS ordering improves on the PODEM heuristic
by grouping together the clauses for gates whose output values
converge within a small number of logic levels. This usually
allows conflicts to be detected more quickly than by assigning
values to gates which are logically distant (i.e., whose values
converge only after many levels of logic or not at all). For
example, in Fig. 1, after inputG is assigned, a conflict is more
likely to be detected by next assigning F instead of A since
inputs G and F converge immediately while G and A do not
converge at all. In a large network, this heuristic avoids many
useless backtracks and is another reason why other algorithms
(particularly the SAT-based algorithms) are not as robust, even
with much higher search time limits.

The SAT solver must continue its branch-and-bound search
until every clause is satisfied, even if the current partial assign-

Backtrack Aborted Faults Per Strategy Combined
Limit G1 G2 G3 G4 abt cpu
15 1 476 1 549 9 167 8 404 302 440.
150 639 574 6 235 6 535 202 510.
1500 559 429 4 104 5 286 174 620.

Table 1: Results for 18 ISCAS networks, no fault simulation.

ment happens to be a test. This is the only way the SAT solver
can guarantee that the equation has indeed been solved. Thus,
for nonstructural algorithms, the TEGUS DFS ordering has a third
advantage of avoiding conflicts after a test has been successfully
generated. If primary inputs are not assigned first, the search
could have to backtrack and possibly even abort the search after
a test has already been found. This is another reason why other
SAT-based algorithms are less robust.

For example, in Fig. 1 consider the fault G stuck-at-1. As-
sume that input C is driven by some additional logic and that
variables Eg� Fg, and Gg have already been assigned 1, 1, and
0, respectively. This partial assignment is a test, but clause
�Jg �Hg � Ig �Eg� describing gate J (see Section II) has not
been satisfied yet. If the next decision is to set Jg to 0, i.e., the
AND gate to a 0, the SAT solver may have to backtrack in order to
justify a value of 0 for variable Jg. With the DFS ordering used
in TEGUS, such backtracks never occur, improving the average
case performance.

Other test generation algorithmshave to do analysis during the
search to avoid these problems which the TEGUS greedy ordering
avoids naturally. One analysis heuristic dynamically marks a
gate as useless when all its fanouts already have a justified value
or are marked as useless [26, 23, 27]. By not branching on
useless signals, this structural heuristic avoids backtracks after a
test has been found, and can also be used to dynamically identify
unique sensitization points [26]. However this analysis gives
gives no information on which useful variable to choose next for
branching; algorithms with no additional backtracing heuristics,
such as [23], may still frequently branch on variables which
are logically distant. Another heuristic, dependency-directed
backtracking [27], avoids some of the wasted backtracks from
branching on logically distant variables. When a contradiction
is found during the search, the analysis checks if the search can
immediate backtrack several decisions rather than only to the
most recent reversible decision.

All such analysis heuristics are a tradeoff between the time
needed to perform the analysis and the time saved by reducing
the number of backtracks. Most of them also depend on infor-
mation about the network structurewhich is not readily available
from the SAT reduction. Fortunately, the greedy DFS variable or-
dering in TEGUS naturally avoids many bad decisions without
doing any analysis whatsoever, and, as shown in Section V, is
more robust and efficient than existing algorithms which use
such analysis heuristics.

The results in Table 1 demonstrate the effectiveness of a fast
greedy ordering, using the 18 ISCAS networks listed in Table 3.
Column G1 shows the number of aborted faults using the greedy
strategy with DFS clause ordering for three different backtrack



4 SUBMITTED TO IEEE TRANSACTIONS ON CAD/ICAS, NOVEMBER 13, 1992

limits. With a limit of 150, this strategy completes on over
99.5% of the faults including over 96% of the redundant faults.
As shown in Section 5.1, this single greedy strategy is more
robust and efficient than many recent structural algorithms. We
also tried to find an optimal DFS ordering using the distance
from each gate to any primary input and the logic cone sizes,
but found no ordering which was significantly better (or worse)
than that defined by the network description. To emphasize the
importance of the DFS ordering, when the formula is constructed
in reverse order from outputs to inputs, G1 does just as poorly
as a static ordering [24].

To improve the search efficiency, the characteristic equation
is divided into two parts, the set of clauses for gates driven by
at least one primary input, called the subformula, and the re-
maining clauses. During branching, only the subformula needs
to be searched for unsatisfied clauses, since if the subformula is
satisfied and all implications are followed without conflicts, the
remaining clauses must also be satisfiable.

The form of strategy G1 suggests three complementary strate-
gies, a heuristic which has been effective in other algorithms
(e.g., [28, 14]), Greedy strategy G2 varies G1 by selecting the
last free literal in the first unsatisfied clause of the subformula.
Greedy strategies G3 and G4 select the first or last free literal
in the last unsatisfied clause of the subformula. Choosing be-
tween the first and last free literal effectively changes the value
assigned to a gate. For example, in Fig. 1, if the clauses for gate
P are first in the subformula, one choice sets the output of gate
P to 1, the other sets an input of gate P to 0, forcing the output
to 0. Similarly, for G3 and G4, choosing between the first and
last unsatisfied clause starts the search in different regions of the
network, such as gate L versus gate P in the example.

Individually, G3 and G4 do worse than G1 and G2 because
clauses at the end of a subformula often do not belong to the
same cone of logic. Rather, they are whatever clauses were left
over after the earlier cones were searched, and do not converge
as directly, if at all. The last two columns of Table 1 show the
number of aborted faults and total CPU time in seconds when all
four strategies are applied in succession.

IV ITERATED GLOBAL IMPLICATIONS

To complete on faults for which straightforward branch-
and-bound aborts, most of which are redundant, the Socrates
algorithm [29] introduced a procedure for computing global
implications using the tautologies

�A� B� � �A� B� � A� (2)

�A� B� � �B � A�� (3)

Larrabee’s algorithm [14] contains the following improved
global implications procedure which, because it is SAT-based,
is also simpler. For each free literal A, temporarily set A to 1
and call the bounding procedure of the SAT branch-and-bound
solver. If a contradiction occurs, (2) is applied to infer A. If an
unsatisfied clause which initially had at least three free literals
ends up with only a single free literal B, (3) is applied to infer
B � A. Thus this powerful heuristic is applied using only a
trivial extension of the basic branch-and-bound.

We have improved the computation of global implications
after observing that the results of this procedure can depend on
what order the variables are processed. This ordering depen-
dency is illustrated by the following example.

Example 1: In Fig. 1 with fault G stuck-at-1, if variable Cg

is processed first, trying Cg as both 1 and 0 results in neither
a conflict nor any global implications. Later, trying Eg � 0
forcesKf �Kd� Nf � Nd� Pf , andPd to 0, causing a contradiction
because clause �Kd�Nd�Pd� is unsatisfied, i.e., all propagation
paths are blocked. Thus by (2),Eg � 1. But now it is possible to
find a global implication forCg, namelyCg � Jg, so the global
implication J g � Cg can be deduced. To find this implication,
Cg must be processed afterEg, but previous algorithms have no
means for ensuring this order will occur.

More complex dependencies can occur such that no order-
ing will find all the global implications by asserting each literal
only once. Therefore we iterate through the list of free literals,
computing global implications until one full iteration produces
no new implications. More implications are found than in pre-
vious algorithms (such as [29, 14]), and the search space is
reduced enough that TEGUS only computes global implications
statically before the branch-and-bound search is started, not dy-
namically at every branch point of the search. Some benefits of
dynamically computing an incomplete set of global implications
[29, 30, 16, 31, 32, 17] are a result of this ordering dependence.
For extremely difficult redundant faults, the iterated computa-
tion can also be applied dynamically during the search (although
this is not necessary for any faults in the ISCAS networks).

The iterated procedure of TEGUS finds more global implica-
tions than previous algorithms. Socrates [29] only computes
global implications for a subset of signals in the good network,
does not handle all ordering dependencies, and uses too strict
of a criterion for applying (3) as shown below in Example 2.
Larrabee’s procedure [14] computes global implications for all
variables and uses a more general criterion for applying the
tautologies, but it does not handle ordering dependencies.

The algorithms of Kunz et al. [32] and Silva et al. [27] have
applied Larrabee’s criterion in a structural algorithm, but they
also do not handle ordering dependencies and, like Socrates, do
not compute global implications for all variables. For example,
they do not find the implicationEg � 1 in Example 1 because
this global implication can only be derived using information
about the faulty network and potential D-chains.

Finally, the transitive closure algorithms [15, 16, 23, 17] are
even more limited because they only compute global impli-
cations using 2-clauses [21]. For example, these procedures
cannot find the implications Eg � 1, Cg � Jg in Example 1
because these implications are only found by considering the
3-clause �Kd � Nd � Pd�� i.e., one of these gates must be on
a D-chain. For this reason, contrary to the claims in these pa-
pers, the dominator, unique sensitization, and global implication
heuristics of earlier algorithms (e.g., [29, 14]) are not implicit
in transitive closure.

The TEGUS global implications procedure can also be used
with the exhaustive method proposed by Kunz and Pradhan [33]
for dynamically computing global implications, since the two
heuristics are independent. Where existing global implication



D1447-R2: COMBINATIONAL TEST GENERATION USING SATISFIABILITY 5

da

b

x2

c

f
x1

y

Figure 2: Network for Example 2.

procedures (e.g., [29, 14, 24]) call a standard bounding proce-
dure to detect conflicts, they propose calling a secondary full
branch-and-bound procedure (a.k.a. recursive learning proce-
dure). If the secondary branch-and-bound is called with no
backtrack limit (a.k.a. maximum recursion depth rmax), all nec-
essary assignments are guaranteed to be found and the primary
branch-and-bound will never backtrack. Since computing all
necessary assignments is a co-NP-complete problem [2], back-
track limits are used in [33] for both search procedures. The
TEGUS implications procedure could be used to improve the per-
formance of the primary search, the secondary search, or both.

Iterating the global implications computation subsumes the
various unique sensitization, path controller assignments, and
dominator conditions used in other test generation algorithms,
which is not true if each literal is only processed once [24][21].
Example 1 illustrates how TEGUS subsumes the improved unique
sensitization procedure in Socrates [34]. Case analysis of the
other global implications heuristics which have been proposed
for structural and SAT-based algorithms is lengthly but straight-
forward. Similarly, if the global implications procedure of
TEGUS is applied dynamically during the search, it subsumes
heuristics such as dynamic unique sensitization. In TEGUS, the
global implications procedure determines, for the current partial
assignment, every single literalX such that assigningX causes
a contradiction.

Three types of implications which have been recently pro-
posed are not computed in TEGUS because they are already
handled by the conventional implication procedure used during
branch-and-bound search. The first type, simple equivalence, is
based on identifying cycles of implications [14, 16, 15, 17]. All
variables in such a cycle must always have the same value. This
analysis indirectly identifies trivial cases of equivalence such as
buffers and inverters, but does not detect more general equiva-
lences such as the equivalence of variables Kg, Ng, and Pg in
Fig. 1. Identifying variables which are forced to be equivalent
or opposite via direct implications does not reduce the number
of backtracks because when one variable is assigned, the others
are immediately forced to the appropriate values.

The second type, exclusion [17], is just another name for
direct implication. For example, in Fig. 1, since Eg � Jg , and
Jg � Lg, the direct consequence, or exclusion, Eg � Lg can
be inferred. Such implications are implicitly derived during the
search, so computing them explicitly has no benefits.

The third type, clause reduction implications [17], are im-
plications derived when a partial assignment results in a clause
having only two free literals. In other words, this means taking

E

D

GB

A

C

F

Figure 3: Network for Example 3.

B

A E
J

N

C
K

MD

Figure 4: Network for Example 4.

q

k

l

a

b

m

n

r

p � 1

Figure 5: Network for Example 5.

u

v

w

t

s
k

j

m

l

a

i

f

d

c

n

Figure 6: Network for Example 6.



6 SUBMITTED TO IEEE TRANSACTIONS ON CAD/ICAS, NOVEMBER 13, 1992

into account signals which already have an assignment when
doing implication. For example, in Fig. 1, when input B is
assigned the value 1, the clause �Hg � Bg � Cg� describing
gate H has only two remaining free literals. Consequently, this
clause can be reduced toHg � Cg,Cg � Hg, or both. Despite
the claim that this is a novel feature [17], all existing algorithms
make use of the information that Cg � Hg when B � 1.

As observed by Schulz et al. [34], there is obviously no benefit
from explicitly deriving such implications that can be performed
by any conventional implication procedure. Computing simple
equivalences, exclusions, or clause reduction implications gen-
erally reduces efficiency without improving robustness. Conse-
quently, in contrast with previous SAT-based algorithms, TEGUS

does no special processing of direct implications or 2-clauses.
The simplicity of computing global implications in a SAT-

based algorithm belies its power and generality. The benefits
of even Larrabee’s procedure are often underestimated, as illus-
trated by the followingexamples. The improved computation of
TEGUS is not required for these small examples (because they do
not have any ordering dependencies), but since TEGUS uses an
extension of the procedure in [14], the examples also illustrate
how TEGUS subsumes many previous procedures for computing
global implications.

Example 2: The network in Fig. 2 is an example from [32]
used to claim an improved global implication procedure. We
show how Larrabee’s procedure, and consequently TEGUS, also
succeeds on this example (although it is true that Socrates cannot
find the following global implication). As part of the global
implications procedure, variable fg is assigned the value 0 and
the bounding procedure is called. Clauses �dg � fg��yg � fg�
for gate f force dg � 0 and yg � 0, since the literal fg cannot
satisfy these clauses. Subsequently, clause �bg � dg� forces
bg � 0, and clause �bg � x1�g� for gate x1 forces x1 � 1.
But now clause �yg � x1�g � x2�g� can only be satisfied by
x2�g � 0. Since this clause initially had more than two free
literals, (3) is applied to infer x2�g � fg , contradicting the
claim that this implication is not found by earlier procedures.
The learning criterion proposed in [32] is a partial application
of Larrabee’s criterion in a structural algorithm (partial, because
it is not applied to all variables).

Example 3: The examples used in [17] to claim an improved
global implications procedure are likewise incorrect. Consider
the network in Fig. 3 from [17] with the partial assignmentFg �
0, Gg � 1. As part of executing Larrabee’s global implications
procedure, variableDg is assigned 0 and the boundingprocedure
is called. SettingDg to 0 forces Ag � 1, Bg � 1, and Eg � 1.
Clause �Ag � Cg � Eg� describing gate E now forces Cg � 0
since Cg is the only free literal. This results in a contradiction
because clause �Bg �Cg �Fg� describing the XOR gate cannot
be satisfied. Thus by (2), Dg � 1, contradicting the claim in
[17] that this implication is not found. The other examples and
related claims in [17] are similarly shown to be in error. Creating
explicit 2-clauses from clauses with only two free literals is
unnecessary because, unlike [17], all unsatisfied clauses are
processed directly by the bounding procedure.

Example 4: During the computation of global implications
for the network in Fig. 4, variable Ng is assigned the value 0

and the bounding procedure is called. This implies, through
the 2-clauses in the equation, that Jg, Kg , and Mg must all be
0. Subsequently, Kg � 0 implies that Eg, Cg, and Dg must
all be 1. But now clause �Jg � Eg � Cg� describing gate J is
unsatisfiable, and by (2), Ng � 1. Thus fault N stuck-at-1 is
undetectable, contradicting the claim in [35] that this cannot be
determined by any previous methods.

Example 5: The network in Fig. 5 is used in [33] to illustrate
an improved global implications procedure. With the partial as-
signment pg � 1, consider the global implications for qg . From
the clauses for gates q and r, the bounding procedure directly
assigns rg � kg � lg � mg � ng � 0. The clauses for gate k
now imply that ag � bg � 0. But now clause �ng � ag � bg�
cannot be satisfied and by (2), qg � 1, contradicting the claim
in [33] that previous algorithms cannot find this implication.

Example 6: Consider the network in Fig. 6, from [33], for
the fault a stuck-at-0. The assignment af � 0, ag � ad � 1
directly implies jf � sf � 0 and kg � sg � 0. The clause
�sd � sg � sf �, describing the D-chain condition for gate s,
implies sd � 0, which in turn implies the fixed assignments
jd � kd � 0. Subsequently, the global implications procedure
is invoked for ng � 1. The bounding procedure determines
that this directly implies wg � wf � 1, etc., which, similarly
to gate s, implies wd � vd � ud � td � 0. Now clauses
�ld � td � ud��md � vd � wd� can only be satisfied by the
assignment ld � md � 0, resulting in a contradiction for clause
�ad � jd � kd � ld � md� and by (2), ng � 0. This unique
assignment is efficiently determined using only the bounding
procedure of Larrabee’s algorithm (or TEGUS), and does not
require the exhaustive secondary branch-and-bound procedures
used in [33].

The uniformity of the SAT representation is an advantage
for computing global implications. Structural algorithms
[34, 29, 30, 31, 32, 33] have to handle special cases for implica-
tions in forward versus backward directions, for implications of
different gate types, for implications in both the good and faulty
network, and for implications involving the fault propagation
path. Having to check all these special cases can degrade over-
all performance, and is complicated enough that often global
implications are not computed at all (e.g., [36, 37, 35, 38]) even
though they are known to significantly improve robustness.

The SAT-based algorithms in [15, 16, 23, 17] are also much
more complicated, computing global implications by construct-
ing an implication graph from an energy function for a network,
finding the strongly connected components with a special algo-
rithm for sparse graphs with duality, constructinga second graph
of the strongly connected components, computing its transitive
closure, and searching it for edges corresponding to the hypoth-
esis of (2). This costly procedure is performed at every branch
point even for easy faults, degrading the overall performance as
shown in the next section.

V EXPERIMENTAL RESULTS

To summarize the overall algorithm TEGUS, for each fault
a characteristic equation is constructed in DFS order and four
greedy strategies are tried, each with a low backtrack limit. If
all fail, the computation of global implications is iterated and



D1447-R2: COMBINATIONAL TEST GENERATION USING SATISFIABILITY 7

Tested Faults Untested Faults Memory CPU Time (sec)
Mode SIM SAT RED ABT (MB) SIM EQN SAT Total

no fault simulation - 133 995 7 250 0 13.5 - 343. 131. 477.
fault simulation 119 721 14 274 7 250 0 11.5 9.1 51.6 19.3 83.4
fault sim. & random tests 130 235 3 760 7 250 0 6.8 8.7 20.0 14.0 45.9
redundancyremoval 126 274 2 827 0 0 6.9 17.1 18.9 5.6 46.3

Table 2: TEGUS totals for 18 ISCAS networks under four modes of operation.

the greedy strategies are retried with a higher backtrack limit.
For the following experiments, we used an implementation with
limits of 15 and 150 respectively.2

To evaluate TEGUS, we compare it with other published results
using the ISCAS benchmark networks [19, 20]. The eight largest
ISCAS89 sequential networks are tested assuming full scan.3 Al-
though these networks have many gates, the logic cones are
quite shallow. For example, the average length of the character-
istic equations for c2670 is 3700 literals, while for s35932,
it is only 630, even though the latter has 16 times more gates.
The observation that test generation time increases linearly with
network gate count [17, 39] is a result of this characteristic of
the ISCAS networks and is not true in general; search time ver-
sus equation size is a more appropriate measure of asymptotic
complexity.

Table 2 summarizes the data for TEGUS on the ISCAS85 and
eight largest ISCAS89networks using aDEC7000/610AXP, show-
ing that TEGUS is a good balance of robustness, efficiency, and
simplicity. The four rows correspond to four of the different
modes for running TEGUS: without fault simulation, with fault
simulation, with fault simulation and pseudo random patterns,
and with redundancy removal. These are the modes of oper-
ation most commonly found in the literature. The first four
columns show the number of faults detected by simulation, de-
tected by the SAT algorithm, proved redundant, and aborted.
Column Memory is the peak memory usage in megabytes as
measured using our implementation, not estimated using as-
sumptions about the sizes of data structures. Column SIM is the
total time for fault simulation, column EQN, for extracting the
characteristic equations, and column SAT, for solving the equa-
tions, all in seconds. Total time measures the complete program
execution including reading the network, initialization, etc. The
fast, greedy heuristics of TEGUS make creating the equations the
most time consuming step.

5.1 ROBUSTNESS

Practical test generation algorithms are incomplete, aborting
the search for a test after some limit has been reached to avoid
spending an exorbitant amount of time on a fault. It is generally
not possible to prove one algorithmwill complete on more faults
than another, so if one empirically completes on more faults, we
call it more robust.

Ideally, robustnessmeasures howwell an algorithmwilldo on

2For the ISCAS networks, a second limit of 15 is sufficient, but the higher
limit may be useful for more realistic networks.

3The smaller ISCAS89 networks are not difficult for combinational test gen-
eration; TEGUS completes on all 22 of them in a total of two seconds.

30 � 45150
Backtracks

10

100000

10000

1000

100

1

Faults

Figure 7: Distribution without fault simulation.

examples not yet seen, as well as on the benchmark suite. When
fault simulation is used, several algorithms have no aborted
faults for the ISCAS networks. This is very little data for com-
paring robustness since most of the ISCAS networks have fewer
than 4000 gates (ignoring one-input gates), less than 4% of the
testable faults are actually targeted by the deterministic part
of the algorithm, and this small set is not easily reproduced
(there is an element of randomness in which faults are targeted).
We propose that the robustness of a test generation algorithm
should be evaluated without using fault simulation since then
more faults are targeted, giving a larger sample, and the sample
set is unique.4

As shown in Table 2, without fault simulation TEGUS com-
pletes on every fault in the ISCAS networks. Fig. 7 shows the
corresponding distribution of backtracks. Over 95% of the faults
were completed in three or less backtracks. The shaded curves
highlight the evidence that the greedy strategies are complemen-
tary, making them more efficient than a single strategy.

To evaluate the robustness of TEGUS, Table 3 compares the
number of aborted faults on the ISCAS networks with fifteen
recent algorithms. In this table, deterministic test generation
(DTG) is applied to every modeled fault in each network. For
each algorithm, column abt is the number of aborted faults,
and column cpu is the execution time normalized to TEGUS

(explained further in the next section). Backtrack limits range
from 15 for TEGUS to 2� 106 for GIR90.

With or without fault simulation or fault collapsing, 5 TEGUS

4If fault collapsing is used, we assume that the standard techniques of simple
fault equivalence and fault dominance are applied.

5Simple fault collapsing is fairly standard and does not mask nonrobustness
like fault simulation does. The only published results we have found without
fault simulation or fault collapsing are those of Chandra and Patel, column



8 SUBMITTED TO IEEE TRANSACTIONS ON CAD/ICAS, NOVEMBER 13, 1992

completes on every fault in all the ISCAS networks. The DYTEST

and EST algorithms, columns MAO90[41], GIR90[42], and
GIR91[43], complete on the ten ISCAS85 networks, but the
fastest of them is 11 times slower than TEGUS. For these algo-
rithms, no data are presented for the ISCAS89 networks, which
is unfortunate since the ISCAS85 and ISCAS89 networks have
different characteristics and heuristics which work well on one
set may not on the other. One of the algorithms by Kunz and
Pradhan [33] completes on all faults, but is about 110 times
slower than TEGUS. Of the remaining algorithms, seven aborted
on more faults than greedy strategy G1 alone with a backtrack
limit of 15 (when compared using the available data) as well as
being slower.

One application of a robust test generator is for redundancy
removal. TEGUS uses the straightforward method described by
Bryan et al. [44], removing one redundancy at a time and iterat-
ing until no untestable fault remains. Table 2 shows the perfor-
mance on the ISCAS networks, and Table 5 compares TEGUS with
several other redundancy removal algorithms. For ABR92[45],
it is not clear if all redundancies are successfully removed, and
algorithm MEN94[35] fails to remove 298 redundant faults.6

5.2 EFFICIENCY

When two test generation algorithms are equally robust, the
second question is how they compare in efficiency. It is rarely
possible to prove that one heuristic is more efficient than an-
other. Plausibility arguments are valuable for developing intu-
ition but because they are necessarily based on small fragments
of networks, they have a correspondingly small chance of being
correct. Decisions based on local information, no matter how
reasonable, can lead to conflicts. In general, the only reliable
means for comparing the efficiency of different algorithms is
through the performance of actual implementations on a suit-
able set of examples.

Such experiments are prone to many pitfalls. Choosing an
inappropriate set of examples or over-optimizing for the exam-
ples distorts results. Shortcomings may be masked by focusing
on only a few isolated faults or by changing the algorithm pa-
rameters for different networks. Differences in computer per-
formance are often unaccounted for, and preprocessing time is
sometimes omitted even when it is a significant fraction of the
total time. Indirect comparisons of efficiency using the num-
ber of backtracks or performance measures such as MIPS can
be highly inaccurate. When a multiprocessor is used to run
an algorithm [46], speedup factors may actually be a result of
omitting the time for sequential portions of the algorithm, or of
comparing with an inferior algorithm running on a uniproces-
sor, rather than a result of successful parallelization (in extreme
cases, this can even give the illusion of superlinear speedup). If
the programs for previous algorithms are not publicly available,
there is little motivation to reimplement them as efficiently as
possible, and it is incorrect to assume that if a heuristic improves
an inefficient reimplementation, itwill also improve the original.

CHN89[40] in Table 3.
6In comparison, the single greedy strategy G1 with a backtrack limit of 15

fails to complete on only 105 redundant faults for the same seven networks.

Finally, most algorithms are incompletely specified,7 leading to
different results when they are reimplemented or even just run
on a different computer. These variations make it difficult to tell
if an algorithm has even been reimplemented correctly, not to
mention efficiently.

The preferred way to avoid most of these pitfalls is to do a
direct comparison, running two implementations side by side
on the same examples. However, since the programs used for
most published experiments are not publicly available, we have
had to use the next best approach. To compare TEGUS with other
algorithms, for each algorithm A we performed the following
experiment.

1. Port TEGUS to the model of computer reported in the pub-
lished results for A, including any stated constraints on
available memory, operating system, etc.

2. Run TEGUS on the ISCAS networks with the same options
reported for A: with or without fault collapsing, with or
without reverse order pattern simulation, with or without
redundancy removal, with or without random tests, etc.

3. Normalize the reported times for A to the corresponding
times obtained for TEGUS.

In all cases, the native C compiler was used with optimiza-
tion enabled. To ensure consistent results across the variety of
Amdahl, Apollo, DEC, HP, IBM, and Sun computers used in
these experiments, the values used for pseudo random patterns
are generated directly [48] rather than calling a system random
number generator. Thus even the pseudo random patterns which
are generated can be reproduced identically on different com-
puter models. These experiments give a reasonably accurate
comparison of efficiency, avoiding the aforementioned pitfalls
which are within our control.

Tables 3, 4, and 5 show the results of these experiments. Ta-
bles 3 and 5 were described earlier. Table 4 compares TEGUS

with reported results where deterministic test generation is ap-
plied only to a subset of faults. Most often fault simulation
is used with or without random patterns (corresponding to the
middle two rows of Table 2). The same strategies and backtrack
limits were used with TEGUS for all networks in the three tables.

The last row of each table shows the normalized total time for
the available data. For example, in the first column of Table 4,
21 is the sum of the six times reported in [13] dividedby the sum
for these same six networks using TEGUS. For algorithms run
on different networks or with different options, these total times
must be compared with care. Also, deterministic test generation
is not applied to the same set of faults in Tables 4 and 5, and
each algorithm uses different limits for terminating the random
pattern phase (if there is one), and for aborting a search.

Although improvements are claimed for all of these algo-
rithms, it is not clear on what data these claims are based.
Some do not use the ISCAS benchmark networks [50, 15, 53, 69]

7For example, when a variable ordering is based on the number of impli-
cations, often hundreds of variables have the same priority. In this case, the
ordering depends strongly on how ties are broken, which is implementation-
dependent. The ordering dependency in Section IV and use of random values
are two other examples.



D1447-R2: COMBINATIONAL TEST GENERATION USING SATISFIABILITY 9

1988 1989 1990
CHE CHK CHN JAC PAT GIR ABR MAO RAJ CHK

[49] [50] [40] [30] [47]a [42] [51] [41] [52] [53]
Network abt cpu abt cpu abt cpu abt cpu abt cpu abt cpu abt cpu abt cpu abt cpu abt cpu

C432 7 1.4 - 12 3.8 4 2.1 5 0.9 43 - 3 23 -
C499 0.6 - 17 8.8 20 14. 8 0.8 3 - 2 15 -
C880 1.0 - 2.3 3.0 1.3 9 - 6 27 -

C1355 128 2.7 - 26 3.0 48 10. 14 1.7 7 - 6 48 -
C1908 82 1.9 - 252 5.8 3.2 10 1.1 100 - 7 3 41 -
C2670 43 0.8 - 115 2.2 8 1.3 203 0.9 9 85 1 13 20 15 -
C3540 62 0.9 - 662 4.6 9 1.6 289 1.5 6 118 2 9 49 20 -
C5315 1.4 - 26 2.1 1 3.7 70 1.4 20 45 3 13 30 17 -
C6288 231 1.2 - 4 1.6 514 7.7 24 0.9 9 4 1 8 1127 20 -
C7552 245 2.4 - 94 2.5 89 4.4 434 2.1 20 156 2 33 39 24 -
S1494 - - - - - - - - - -
S5378 - - - - - - - - - -
S9234 - - - - - - - - - -

S13207 - - - - - - - - - -
S15850 - - - - - - - - - -
S35932 - - - - - - 300 - - -
S38417 - - - - - - - - - -
S38584 - - - - - - - - - -

Total 798 1.4 - - 1208 2.6 693 5.8 1057 1.2 0 14 408 27 0 12 1268 21 - -

1991 1992 1993 1994
STA GIR TEG TER COX LEE SIL KNZ

[54]b [43] [24] [55] [56] [38]c [27] [33]d

Network abt cpu abt cpu abt cpu abt cpu abt cpu abt cpu abt cpu abt cpu

C432 30 12 1.0 3 22 6.3 - 6 6
C499 580 17 1.0 1 2.8 - 11 5
C880 200 15 1.0 3 6.4 2 12 12

C1355 820 8 1.0 3 9.9 2 23 17
C1908 1300 13 1.0 7 8.7 22 6 11 10
C2670 2197 - 6 1.0 11 18 32 4.3 117 8 12 14
C3540 2931 - 8 1.0 3 2 5.9 323 28 6 7
C5315 120 13 1.0 3 2 5.1 - 16 21
C6288 5840 - 10 1.0 42 27 71 10. - 2 11 8
C7552 6320 - 13 1.0 5 20 28 7.7 269 12 22 23
S1494 25 - 1.0 6 - - - -
S5378 72 - 1.0 6 - - - 31
S9234 5816 - - 1.0 4 - - - 28

S13207 39 - 1.0 10 - - - 62
S15850 47 - 1.0 5 - - - 36
S35932 260 - 1.0 71 - - - 620
S38417 25319 - - 1.0 20 - - - 210
S38584 280 - 1.0 49 - - - 460

Total 48423 180 0 11 0 1.0 61 21 135 8.5 731 15 2 13 0 110

aResults for uniprocessor with SCOAP heuristics.
bExceeded an unspecified memory limit on six networks after an unreported amount of time.
cResults for stuck-at faults only with a backtrack limit of 1000.
dResults for two phase ATPG with secondary branch-and-bound.

Table 3: Relative CPU times (normalized to TEGUS) and aborted faults, DTG applied to all modeled faults (- indicates not available).



10 SUBMITTED TO IEEE TRANSACTIONS ON CAD/ICAS, NOVEMBER 13, 1992

1989 1990 1991 1992
SIM SCH MIN LAR JAC SCH CHK WAI MAH JAI KND CHK GIR ABR MAT WUD

Network [13] [29]a [28]b [14] [30] [29]c [15] [39] [57] [58]d [59]e [16]f [43] [45] [31] [60]g

C432 25 1.1 7 19 5.0 2 - 0.8 2 23 99 4900 21 - 0.7 14
C499 110 2.0 9 27 12. 3 - 0.6 5 46 920 - 20 - 0.6 27
C880 97 2.4 12 120 7.9 3 - 1.0 1 29 7 - 32 - 0.8 22

C1355 100 3.0 20 40 8.1 4 - 1.3 8 96 740 - 33 - 1.7 47
C1908 140 3.9 25 98 8.0 4 - 1.2 4 70 320 - 58 - 1.1 320
C2670 11 0.5 6 25 2.8 1 - 0.3 2 14 140 - 6 3 0.2 9
C3540 - 1.3 6 57 4.0 4 - 0.6 2 51 32 - 19 - 0.7 93
C5315 - 3.0 31 64 19. 5 - 1.4 3 200 14 - 82 37 1.4 100
C6288 - 1.3 - 21 1.8 1 - 0.4 3 65 26 - 13 - 0.5 9
C7552 - 1.9 30 35 9.5 5 - 0.5 5 67 280 - 26 - 0.4 21
S1494 - - - - - 16 - 4.3 - - - - - - 2.3 -
S5378 - - - - - 13 - 2.6 - - - - - - 1.6 -
S9234 - - - - - 32 - 0.5 - - - - - - 0.5 -

S13207 - - - - - 54 - 1.1 8 - - - - - 0.9 -
S15850 - - - - - 20 - 0.9 6 - - - - - 0.7 -
S35932 - - - - - 32 - 0.8 5 - - - - 740 1.0 -
S38417 - - - - - 14 - 1.1 19 - - - - 12 1.1 -
S38584 - - - - - 140 - 1.9 17 - - - - - 1.6 -

Total 21 1.4 18 35 5.8 33 - 0.9 9 54 170 4900 20 230 0.9 34

1992 1993 1994
KND KNZ TEG SRI KNZ POM CHK KLE KON TER LIW KNZ KNZ KNZ

Network [61]h [36] [24] [62]i [32]j [37]k [17]l [63]m [64] [55] [65] [33]n [33]o [33]p

C432 1 59 1.0 26 170 - 2 12 12 6 3 120 2 11
C499 2 160 1.0 1000 - - 8 18 26 4 20 4 4 75
C880 2 24 1.0 - - 3 14 8 14 6 5 - - 38

C1355 4 820 1.0 1200 680 7 16 51 46 13 29 4 4 120
C1908 6 180 1.0 210 5100 5 17 55 55 16 21 94 4 64
C2670 1 230 1.0 - - 1 11 10 9 14 2 68 37 34
C3540 2 25 1.0 390 - 5 7 63 57 5 7 390 2 41
C5315 4 89 1.0 180 62000 11 31 78 90 14 43 10 10 210
C6288 4 4 1.0 - - 1 7 36 39 1 18 2 2 15
C7552 2 120 1.0 - 9700 2 28 35 20 5 7 1400 13 57
S1494 8 - 1.0 - - - 16 - 71 18 - - - -
S5378 6 - 1.0 - - 8 71 64 67 24 - 19 19 170
S9234 3 - 1.0 - - 2 45 58 56 7 - 1200 21 51

S13207 3 - 1.0 - - 4 77 - 23 13 - 1000 21 87
S15850 3 - 1.0 - - 4 91 - 49 14 - 130 11 180
S35932 28 - 1.0 - - 120 120 - 220 41 - 180 180 290
S38417 5 - 1.0 - - 11 230 - 35 34 - 4000 150 210
S38584 13 - 1.0 - - 22 190 - 260 53 - 2200 150 330

Total 7 130 1.0 420 8800 20 100 42 81 22 9 700 63 140

aTimes do not include preprocessing.
bFailed to complete on sixteen faults.
cResults using Socrates 4.0, including preprocessing time.
dFailed to complete on 1504 faults.
eFailed to complete on 133 faults.
fTime is for only four faults, and does not include preprocessing or fault simulation.
gFailed to complete on 988 faults.
hFailed to complete on 53 faults.
iTimes are for only 169 faults and do not include preprocessing.
jTimes are for only eleven faults, and do not include preprocessing or fault simulation.
kFailed to complete on 46 testable faults and an unreported number of redundant faults.
lDifferent networks were run with different backtrack limits and random pattern limits to improve results.

mResults for uniprocessor execution.
nResults for one phase ATPG without secondary branch-and-bound, redundant faults only.
oResults for one phase ATPG with secondary branch-and-bound, redundant faults only.
pResults for two phase ATPG with secondary branch-and-bound and fault simulation.

Table 4: Relative CPU times (normalized to TEGUS), DTG applied to only a subset of faults (- indicates not available).



D1447-R2: COMBINATIONAL TEST GENERATION USING SATISFIABILITY 11

1989 1992 1994
JAC KAJ ABR TEG MEN SIS

Network [30] [66] [67]a [24] [35]b [68]c

C432 23 5 - 1.0 - 12
C499 7 7 - 1.0 - 14
C880 2 7 - 1.0 - 23

C1355 4 21 - 1.0 8 27
C1908 24 20 22 1.0 8 20
C2670 26 30 39 1.0 9 29
C3540 29 29 32 1.0 88 36
C5315 120 93 18 1.0 12 66
C6288 2 4 27 1.0 2 8
C7552 46 130 53 1.0 35 55
S1494 - - - 1.0 - 37
S5378 - - 27 1.0 - 53
S9234 - - 24 1.0 - 120

S13207 - - 13 1.0 - 840
S15850 - - - 1.0 - 400
S35932 - - - 1.0 - 1400
S38417 - - - 1.0 - 170
S38584 - - 150 1.0 - 1100

Total 33 64 57 1.0 28 460

aResults using a backtrack limit of 1000. The number of remaining
redundancies is unreported.

bFailed to identify/remove 298 redundancies.
cResults using sis 1.2 combinational redundancy removal.

Table 5: Relative CPU times (normalized to TEGUS) for redun-
dancy removal (- indicates not available).

or do not publish the total CPU times needed for compari-
son [70, 22, 71]. Others either make no experimental com-
parison [16, 17, 61, 65, 31, 35, 52, 29, 13, 54, 39], or
compare against other heuristics of their own implementation
[51, 71, 42, 43, 25, 33, 14, 57, 28]. These approaches vary too
many factors to give good experimental results. A noteworthy
exception is Cheng [49], who did a direct, normalized com-
parison between CHE88[49] and CHN89[40], and also reported
absolute run times, permitting accurate future comparisons.

From Tables 3, 4, and 5, TEGUS performance is as good as or
better than the best previous results. Without fault simulation,
TEGUS is 10-100 times faster than the other published algorithms
with no aborted faults. For efficient algorithms, Table 4 is
primarily a comparison of fault simulator performance and says
little about the test generation algorithm (unfortunately, results
fromapplyingDTG to all faults are not available formost of these
algorithms). Nonetheless, TEGUS performance is also excellent
under these conditions, and even TEGUS without fault simulation
is faster than many of the algorithms with it (cf. Table 2). The
combinedbenefits of efficiency and robustness are demonstrated
by applying TEGUS to redundancy removal. As shown in Table 5,
all redundancies are successfully removed from the benchmark
networks in a fraction of the time taken by other algorithms. The
comparisons in these tables are limited to stuck-at fault testing,
but results using an earlier implementation of TEGUS have shown
similar advantages for delay-fault testing [72].

Although run time is the main concern, memory usage can
be a limiting factor for applying some algorithms to realistic
VLSI networks. The memory requirements for TEGUS shown

in Table 2 are reasonable and should scale well to larger net-
works. Even with the overhead of generating the characteristic
equations, TEGUS is as practical as the best structural methods.

5.3 SIMPLICITY

Simplicity of an algorithm is subjective but important because
it balances the tradeoffs of robustness and efficiency. TEGUS

would be more efficient if parts of the characteristic equations
were reused when possible, but this is not as straightforward as
simply creating a fresh equation for each fault. Applying the
TEGUS heuristics in a structural algorithm reduces the overhead
from generating the characteristic equations, but requires a more
complicated implication procedure. Similarly, some algorithms
in Tables 3, 4, and 5 can probably be made more efficient, but
at the expense of a more complicated algorithm.

For example, the authors of the EST algorithm [42, 43] claim
that their algorithm is 5.81 times faster than Socrates [29], and
speeds up the identification of some redundancies by a factor of
200000. However, as Table 4 makes evident, they do not actu-
ally compare with the published results for Socrates, but against
their own reimplementation of the Socrates algorithm. When
GIR91 is compared directly to SCH89 taking into account the
difference in performance of the two computers used, Socrates
is shown to be 14 times faster. If it is possible to improve the
performance of algorithmGIR91 byorders of magnitude, itwill
require a carefully optimized, more complicated, implementa-
tion. Thus algorithm simplicity is an important factor.

The branch and bound algorithm for SAT is simpler than for
structural algorithms and the greedy heuristics are generally
simpler than the testability measures and backtrace procedures
used with other algorithms. Computing global implications is
also simpler using the SAT reduction and, when iterated as in
TEGUS, subsumes the unique sensitization conditions, etc., used
in structural algorithms. TEGUS does not require many of the
heuristics added to other algorithms (e.g., testability measures,
single or multiple backtracing, implication graph processing,
topological analysis, or dynamic global implications) and is one
of the simplest algorithms in Tables 3, 4, and 5.

Our stand-alone implementation of TEGUS is is publicly avail-
able, allowing others to verify these experiments and also to use
TEGUS as a base line for future experiments. We stress that such
direct comparisons are more accurate (as well as easier) than
trying to reimplement an algorithm, and are also to be preferred
over the delayed comparisons we were required to use for Ta-
bles 3, 4, and 5. The use of TEGUS as a benchmark program to
supplement the use of benchmark networks is especially valu-
able for experiments using examples which are not in the ISCAS

benchmark set and which are unfamiliaror unavailable to others.

VI CONCLUSIONS

We have described TEGUS, an algorithm for combinational
test generation using satisfiabilitywhichwe argue is an excellent
balance of robustness, efficiency, and simplicity. A combination
of a simplified characteristic equation, DFS variable ordering,
four fast greedy search strategies, and an iterated global impli-
cations procedure make TEGUS more robust and efficient than
the best structural algorithms, without any testability measures



12 SUBMITTED TO IEEE TRANSACTIONS ON CAD/ICAS, NOVEMBER 13, 1992

or backtracing heuristics.
As shown in Table 3, TEGUS completes on every fault in the

ISCAS networks without using fault simulation, and is over 10
times faster than other algorithms which have been shown to
have no aborted faults under these conditions. Such compar-
isons without fault simulation are essential to determine the real
robustness of an algorithm, and we hope that these data will be
published for future algorithms. We have also shown in Tables 4
and 5 that TEGUS performance with fault simulation is compara-
ble to the best published results although, for good algorithms,
this measures the performance of fault simulation more than the
efficiency of deterministic test generation.

Since all existing complete algorithms for test generation have
the same worst case complexity, accurate comparisons of aver-
age case performance must be measured using implementations.
Our publicly available implementation of TEGUS can be used as
a base line for such experiments. The use of TEGUS as a bench-
mark program to supplement the ISCAS benchmark set avoids the
pitfalls in reimplementing an algorithm, and allows meaningful
comparisons despite variations in computer performance or the
use of unfamiliar examples.

ACKNOWLEDGEMENT

The authors thank Hervé Touati for his insight and help, and
are indebted to David Bultman, Abhijit Ghosh, Stuart Jarriel,
Ron Neher, Jackie Patterson, Brian Reid, and Shirley Stephan
for their generous assistance in collecting the data used for
Tables 3, 4, and 5.

REFERENCES

[1] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,”
IBM J. Res. Develop., vol. 10, pp. 278–291, July 1966.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory ofNP-Completeness. NewYork: W.H. Freeman andCompany,
1979.

[3] O. H. Ibarra and S. K. Sahni, “Polynomially complete fault detection
problems,” IEEE Trans. Comput., vol. C-24, pp. 242–249, Mar. 1975.

[4] S. A. Cook, “The complexity of theorem-proving procedures,” in Proc.
3rd Ann. ACM Symp. on Theory of Computing, pp. 151–158, 1971.

[5] D. Svanæs, “Using logic programming (PROLOG) as a tool for micro-
electronics CAD/CAM/CAT,” Master’s thesis, Univ. of Trondheim, Norway,
Dept. of Electrical Engr., 1982.

[6] D. Svanæs and E. J. Aas, “Test generation through logic programming,”
INTEGRATION, the VLSI Journal, vol. 2, no. 1, pp. 49–67, 1984.

[7] E. Gullichsen, “Heuristic circuit simulation using PROLOG,” INTEGRATION,
the VLSI Journal, vol. 3, no. 4, pp. 283–318, 1985.

[8] R.-S. Wei andA. Sangiovanni-Vincentelli, “VICTOR-II: Global redundancy
identification, test generation, and testability analysis for VLSI combina-
tional circuits,” in Proc. 2nd Int. Symp. VLSI Technology, Systems, and
Applications, (Taipei, Taiwan), May 1985.

[9] K. Eshghi, “Application of meta-level programming to fault finding in
logic circuits,” in Logic Programming and its Applications (M. van
Caneghemand D. H. D. Warren, eds.), pp. 208–219,Norwood, NJ: Ablex
Pub. Corp., 1986.

[10] R. Gupta, “Test-pattern generation for VLSI circuits in a PROLOG environ-
ment,” in Proc. 3rd Int. Conf. LogicProgramming, (London), pp. 528–535,
July 1986.

[11] P. Varma and Y. Tohma, “PROTEAN: A knowledge based test generator,” in
Proc. IEEE 1987 Custom Integrated Circuits Conf., (Portland, OR), May
1987.

[12] Y. Tohma and K. Goto, “Test generation for large scale combinational cir-
cuits by using PROLOG,” in Proc. 6th Conf. Logic Programming, (Tokyo),
pp. 298–312, June 1987.

[13] H. Simonis, “Test generation using the constraint logic programming lan-
guage CHIP,” in Proc. 6th Int. Conf. Logic Programming (G. Levi and
M. Martelli, eds.), (MIT Press, Cambridge, MA), pp. 101–112, June
1989.

[14] T. Larrabee, “Efficient generation of test patterns using Boolean differ-
ence,” in Proc. Int. Test Conf., pp. 795–801, Aug. 1989. Also see [18].

[15] S. T. Chakradhar, V. D. Agrawal, and M. L. Bushnell, “Automatic test
generation using quadratic 0-1 programming,”inProc. 27thDesignAutom.
Conf., pp. 654–659, 1990.

[16] S. T. Chakradhar and V. D. Agrawal, “A transitive closure based algorithm
for test generation,” in Proc. 28th Design Autom. Conf., pp. 353–358,
1991.

[17] S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler, “A transitive clo-
sure algorithm for test generation,” IEEE Trans. Computer-Aided Design,
vol. 12, pp. 1015–1028, July 1993.

[18] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Trans. Computer-Aided Design, vol. 11, pp. 4–15, Jan. 1992.

[19] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of se-
quential benchmark circuits,” in Proc. Int. Symp. Circuits and Systems,
pp. 1929–1934,May 1989.

[20] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational bench-
mark circuits and a target translator in FORTRAN,” in Proc. Int. Symp.
Circuits and Systems, pp. 663–698, June 1985.

[21] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Notes on com-
binational test generation using satisfiability,” Tech. Rep. UCB/ERL M94/?,
U. C. Berkeley, Nov. 1994.

[22] V. Sivaramakrishnan, S. C. Seth, and P. Agrawal, “Parallel test generation
using Boolean satisfiability,” in Proc. Fourth CSI/IEEE Int. Symp. VLSI
Design, pp. 69–74, Jan. 1991.

[23] S. T. Chakradhar, M. A. Iyer, and V. D. Agrawal, “Energy minimization
based delay testing,” in Proc. European Conf. Design Automat., pp. 280–
284, Mar. 1992.

[24] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Combinational
test generation using satisfiability,” Tech. Rep. UCB/ERL M92/112, U. C.
Berkeley, Oct. 1992.

[25] P. Goel, “An implicit enumeration algorithm to generate tests for com-
binational logic circuits,” IEEE Trans. Comput., vol. C-30, pp. 215–222,
Mar. 1981.

[26] A. Lioy, “Adaptive backtrace and dynamic partitioning enhanceATPG,” in
Proc. Int. Conf. Computer Design, pp. 62–65, Oct. 1988.

[27] J. P. M. Silva and K. A. Sakallah, “Dynamic search-space pruning tech-
niques in path sensitization,” in Proc. 31st Design Autom. Conf., pp. 705–
711, June 1994.

[28] H. B. Min and W. A. Rogers, “Search strategy switching: An alternative
to increased backtracking,” in Proc. Int. Test Conf., pp. 803–811, Aug.
1989.

[29] M. Schulz and E. Auth, “Improved deterministic test pattern generation
with applications to redundancy identification,” IEEE Trans. Computer-
Aided Design, vol. 8, pp. 811–816, July 1989.

[30] R. Jacoby, P. Moceyunas, H. Cho, and G. Hachtel, “New ATPG tech-
niques for logic optimization,” in Proc. Int. Conf. Computer-AidedDesign,
pp. 548–551, Nov. 1989.

[31] Y. Matsunaga and M. Fujita, “A fast test pattern generation for large scale
circuits,” in Proc. Synth. Simulation Meeting Int. Interchange, pp. 263–
271, Apr. 1992.

[32] W. Kunz and D. K. Pradhan, “Accelerated dynamic learning for test pat-
tern generation in combinational circuits,” IEEE Trans. Computer-Aided
Design, vol. 12, pp. 684–694, May 1993.

[33] W. Kunz and D. K. Pradhan, “Recursive learning: A new implication
technique for efficient solutions to CAD problems — test, verification, and
optimization,” IEEE Trans. Computer-Aided Design, vol. 13, pp. 1143–
1158, Sept. 1994.

[34] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A highly
efficient automatic test pattern generation system,”IEEETrans.Computer-
Aided Design, vol. 7, pp. 126–137, Jan. 1988.

[35] P. R. Menon, H. Ahuja, and M. Harihara, “Redundancy identification and
removal in combinational circuits,” IEEE Trans. Computer-Aided Design,
vol. 13, pp. 646–651,May 1994.

[36] W. Kunzand D. K. Pradhan, “Recursive learning: An attractive alternative
to the decision tree for test generation in digital circuits,” in Proc. Int. Test
Conf., pp. 816–825, 1992.

[37] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COMPACTEST: A method



D1447-R2: COMBINATIONAL TEST GENERATION USING SATISFIABILITY 13

to generate compact test sets for combinational circuits,” IEEE Trans.
Computer-Aided Design, vol. 12, pp. 1040–1049, July 1993.

[38] K.-J. Lee, C. A. Njinda, and M. A. Breuer, “SWITEST: A switch level
test generation system for CMOS combinational circuits,” IEEE Trans.
Computer-Aided Design, vol. 13, pp. 625–637, May 1994.

[39] J. Waicukauski, P. Shupe,D. Giramma, andA. Matin, “ATPG for ultra-large
structured designs,” in Proc. Int. Test Conf., pp. 44–51, Aug. 1990.

[40] S. J. Chandra and J. H. Patel, “Experimental evaluation of testability
measures for test generation,”IEEETrans.Computer-AidedDesign, vol. 8,
pp. 93–97, Jan. 1989.

[41] W. Mao andM. Ciletti, “DYTEST: A self-learning algorithmusing dynamic
testability measures to accelerate test generation,” IEEE Trans. Computer-
Aided Design, vol. 9, pp. 893–898, Aug. 1990.

[42] J. Giraldi and M. L. Bushnell, “EST: The new frontier in automatic test
pattern generation,” in Proc. 27th Design Autom. Conf., pp. 667–672, June
1990.

[43] J. Giraldi and M. L. Bushnell, “Search state equivalence for redundancy
identification and test generation,” in Proc. Int. Test Conf., pp. 184–193,
1991.

[44] D. Bryan, F. Brglez, and R. Lisanke, “Redundancy identification and
removal,” in Proc. Int. Workshop Logic Synthesis, May 1989.

[45] M. Abramovici, D. T. Miller, and R. K. Roy, “Dynamic redundancy iden-
tification in automatic test generation,” IEEE Trans. Computer-Aided De-
sign, vol. 11, pp. 404–407,Mar. 1992.

[46] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, ch. 10. Palo Alto, CA: Morgan Kaufmann Publishers,
1989.

[47] S. Patil and P. Banerjee, “A parallel branch and bound algorithm for test
generation,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 313–322,
Mar. 1990.

[48] S. K. Park and K. W. Miller, “Random number generators: Good ones are
hard to find,” Commun. of the ACM, vol. 31, pp. 1192–1201, Oct. 1988.

[49] W.-T. Cheng, “Split circuit model for test generation,”in Proc. 25thDesign
Autom. Conf., pp. 96–101, 1988.

[50] S. T. Chakradhar, M. L. Bushnell, and V. D. Agrawal, “Automatic test
generation using neural networks,” in Proc. Int. Conf. Computer-Aided
Design, pp. 416–419, Nov. 1988.

[51] M. Abramovici, D. T. Miller, and R. Henning, “Global cost functions for
test generation,” in Proc. Int. Test Conf., pp. 35–43, 1990.

[52] J. Rajski and H. Cox, “A method to calculate necessary assignments in
algorithmic test pattern generation,” in Proc. Int. Test Conf., pp. 25–34,
1990.

[53] S. T. Chakradhar, M. L. Bushnell, and V. D. Agrawal, “Toward massively
parallel automatic test generation,” IEEE Trans. Computer-Aided Design,
vol. 9, pp. 981–994, Sept. 1990.

[54] T. Stanion and D. Bhattacharya, “TSUNAMI: A path-oriented scheme for
algebraic test generation,” in FTCS-21: Int. Symp. Fault-Tolerant Com-
puting, pp. 36–43, June 1991.

[55] M. Teramoto, “A method for reducing the search space in test pattern
generation,” in Proc. Int. Test Conf., pp. 429–435,Oct. 1993.

[56] H. Cox and J. Rajski, “On necessary and nonconflicting assignments in
algorithmic test pattern generation,” IEEE Trans. Computer-AidedDesign,
vol. 13, pp. 515–530,Apr. 1994.

[57] U.Mahlstedt, T.Grüning,C. Özcan, andW.Daehn,“CONTEST: A fast ATPG

tool for very large combinational circuits,” in Proc. Int. Conf. Computer-
Aided Design, pp. 222–225, Nov. 1990.

[58] K. K. Jain, J. Jacob, and M. K. Srinivas, “ATPG with efficient testability
measures and partial fault simulation,” in Proc. Fourth CSI/IEEE Int.
Symp. VLSI Design, pp. 35–40, Jan. 1991.

[59] S. Kundu, I. Nair, L. Huisman, and V. Iyengar, “Symbolic implication in
test generation,” in Proc. European Conf. Design Automat., pp. 492–496,
Feb. 1991.

[60] D. M. Wu and R. M. Swanson, “Multiple redundancyremoval during test
generation and synthesis,” in Proc. IEEE VLSI Test Symp., pp. 274–279,
Apr. 1992.

[61] S. Kundu, L. M. Huisman, I. Nair, V. Iyengar, and L. Reddy, “A small test
generator for large designs,” in Proc. Int. Test Conf., pp. 30–40, 1992.

[62] S. Srinivasan, G. Swaminathan, J. H. Aylor, and M. R. Mercer, “Combi-
national circuit ATPG using binary decision diagrams,” in Proc. IEEE VLSI
Test Symp., pp. 251–258, Apr. 1993.

[63] R. H. Klenke, L. Kaufman, J. H. Aylor, R. Waxman, and P. Narayan,
“Workstation based parallel test generation,” in Proc. Int. Test Conf.,

pp. 419–428, Oct. 1993.
[64] M. H. Konijenburg, J. T. van der Linden, and A. J. van de Goor, “Test

pattern generation with restrictors,” in Proc. Int. Test Conf., pp. 598–605,
Oct. 1993.

[65] W. Li, C. McCrosky, and M. Abd-El-Barr, “Reducing the cost of test
pattern generation by information reusing,” in Proc. Int. Conf. Computer
Design, pp. 310–313,Oct. 1993.

[66] S. Kajihara, H. Shiba, and K. Kinoshita, “Removal of redundancy in
logic circuits under classification of undetectable faults,” in FTCS-22: Int.
Symp. Fault-Tolerant Computing, pp. 263–270, June 1992.

[67] M. Abramovici and M. A. Iyer, “One-pass redundancy identification and
removal,” in Proc. Int. Test Conf., pp. 807–815, 1992.

[68] E. M. Sentovich et al., “Sequential circuit design using synthesis and
optimization,” in Proc. Int. Conf. Computer Design, pp. 328–333, Oct.
1992.

[69] T. Fujino and H. Fujiwara, “An efficient test generation algorithm based
on search state dominance,” in FTCS-22: Int. Symp. Fault-Tolerant Com-
puting, pp. 246–253, June 1992.

[70] T. Kirkland and M. R. Mercer, “A topological search algorithm for ATPG,”
in Proc. 24th Design Autom. Conf., pp. 502–508, June 1987.

[71] D. Bhattacharya and P. Agrawal, “Boolean algebraic test generation using
a distributed system,” inProc. Int. Conf. Computer-AidedDesign, pp. 440–
443, Nov. 1993.

[72] A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Equiva-
lence of robust delay-fault and single stuck-fault test generation,” in Proc.
29th Design Autom. Conf., pp. 173–176, June 1992.


