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Abstract: Betel palms and mango plantations are two crucial commercial crops in tropical agricultural
areas. Accurate spatial distributions of these two crops are essential in tropical agricultural regional
planning and management. However, the characteristics of small patches, scattering, and perennation
make it challenging to map betel palms and mango plantations in complex tropical agricultural
regions. Furthermore, the excessive features of very-high-resolution (VHR) imaging might lead to a
reduction in classification accuracy and an increase in computation times. To address these challenges,
we selected five feature selection (FS) methods (random forest means a decrease in accuracy (RFMDA),
ReliefF, random forest-recursive feature elimination (RFE), aggregated boosted tree (ABT), and lo-
gistic regression (LR)) and four machine learning algorithms (random forest (RF), support vector
machine (SVM), classification and regression tree (CART), and adaptive boosting (AdaBoost)). Then,
the optimal combinations of FS and machine learning algorithms suited for object-oriented classifica-
tion of betel palms and mango plantations were explored using VHR Gaofen-2 imagery. In terms of
overall accuracy, all optimal classification schemes exceeded 80%, and the classifiers using selected
features increased the overall accuracy between 1% and 4% compared with classification without FS
methods. Specifically, LR was appropriate to RF and SVM classifiers, which produced the highest
classification accuracy (89.1% and 89.88% for RF and SVM, respectively). In contrast, ABT and ReliefF
were found to be suitable FS methods for CART and AdaBoost classifiers, respectively. Overall, all
four optimal combinations of FS methods and classifiers could precisely recognize mango plantations,
whereas betel palms were best depicted by using the RF-LR method with 26 features. The results
indicated that combination of feature selection and machine learning algorithms contributed to the
object-oriented classification of complex tropical crops using Gaofen-2 imagery, which provide a
useful methodological reference for precisely recognizing small tropical agricultural patterns.

Keywords: feature selection; betel palms and mango plantations; machine learning classifier; Gaofen-2

1. Introduction

Information on cropland extent is fundamental for crop monitoring and manage-
ment [1]. Remote sensing technology can supply effective and accurate information about
agricultural activity because of its characteristic of repeatability, timeliness, and high cover-
age [2], making it a primary data source for agricultural crop recognition [3,4]. Existing
middle- or coarse-resolution remote sensing data have the disadvantage that the limited
spatial resolution is insufficient to precisely classify patches with small agricultural crop
size distributions [5]. Very-high-resolution (VHR) images have detailed textural and spatial
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information, providing an improved opportunity for precise classification of small crop-
lands [6]. The object-based classification considers both spectral and also morphological,
contextual, and proximity features in VHR images; therefore, many previous studies have
indicated that object-oriented image analysis approaches outperformed pixel-based clas-
sifications when comparing accuracy metrics [7,8]. Numerous studies have used various
object-oriented supervised machine learning classifiers for crop identification based on
VHR satellite datasets [9,10]. The common machine learning algorithms include random
forest (RF) [7], support vector machine (SVM) [8], classification and regression tree (CART),
K-nearest neighbors (KNN) [11], adaptive boosting (AdaBoost) [12], neural networks, etc.

Object-based classification can lead to better performance using a high number of
features generated from spectral, spatial, and contextual properties in VHR images [13].
Alternatively, to further improve classification accuracy, increasing amounts of auxiliary
features (e.g., geometry, texture, and vegetation index) is used to recognize land cover
types [14]. However, not all features have a positive influence on land cover classifi-
cation. Several studies have found that excessive input features may reduce the classi-
fication accuracy and increase the computation time [15,16]. The feature selection (FS)
technique is very effective in reducing redundant information, which aims to find the
optimal subset of features with minimal redundancy and maximal relevance to the objects.
Several FS methods have been widely used in object-based classification. For example,
Laliberte et al. [17] compared three FS methods for object-based vegetation classification,
and pointed out that classification tree analysis was most suited for mapping arid range-
lands with UltraCam-L imagery. Cánovas-García and Alonso-Sarría [18] indicated that the
Gini index was the most appropriate FS method for identifying agricultural landscape by
Z/I-imaging DMC imagery. Ma et al. [19] showed that support vector machine-recursive
feature elimination (SVM-RFE) could provide more useful features to perform better classi-
fication accuracy for an agricultural area mapping using unmanned aerial vehicle imagery.
Overall, there is no general FS method available to obtain optimal features for various
machine learning classifiers, regions with different climatic conditions, and different types
of remote sensing data. Therefore, further studies of the utility and efficiency of the FS
methods need to be conducted according to different research purposes.

Betel palms and mango plantations are two important cultivated commercial crops in
tropical and sub-tropical areas, such as Africa, China, India, Malaysia, and Thailand [20].
China is the world’s dominant producer of both betel nuts and mango, and the island of
Hainan in southern China is the main production area of the two crops. The acreages of
betel palms and mango plantations in Hainan grew from 26,944 and 36,076 ha, respectively,
in 2000 to 115,171 and 56,934 ha, respectively, in 2019. Moreover, the total outputs of betel
nuts and mango increased from 101,220 and 35,598 tons, respectively, in 2000 to 675,805 and
287,043 tons, respectively, in 2019 [21]. The industries of betel palms and mango plantations
play a critical role in tropical rural economic development in Hainan due to their high profit
margins and strong market demand [22]. To ensure a scientifically informed management
policy relating to tropical crops, it is necessary to regularly monitor the accurate extents
of betel palms and mango plantations. Compared with the temperate zone, the planting
regions of tropical crops are relatively scattered and small, and more abundant crops
present in a small area could reduce the spectral separability of different classes [23]. In
addition, as two perennial evergreen trees, betel palms and mango plantations have no
significant defoliation phase, unlike rubber plantations [24], which is another common
tropical crop. Thus, it is a complex and challenging task to recognize betel palms and
mango plantations in heterogeneous agricultural regions.

The Gaofen-2 satellite was launched from the Taiyuan Satellite Launch Centre on
19 August 2014, and is also the first civilian satellite with sub-meter spatial resolution and
a 5-day repetition cycle in China [25]. The excellent spatial and temporal resolution of
Gaofen-2 could provide more accurate spectral and textural information for detailed land
cover mapping. In addition, compared with other foreign commercial satellites, Gaofen-2
data has the advantage of low cost, and some sectors (such as Chinese forestry, land, and
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resources) could obtain free satellite data [15]. Therefore, Gaofen-2 images have been
widely used in agricultural monitoring [26,27]; however, these studies have mainly focused
on a single crop type in temperate regions, such as wheat and maize. To the best of our
knowledge, mapping tropical crops, especially for betel palms and mango plantations with
Gaofen-2 imagery, has rarely been reported in previous literature. Whether Gaofen-2 data
can accurately recognize tropical crops in complex heterogeneous agricultural regions is a
topic which still needs in-depth research.

Our research aims to develop a framework for recognizing betel palms and mango
plantations in complex tropical agricultural regions using Gaofen-2 imagery. The detailed
objectives of this study are to: (1) evaluate the potential of GaoFen-2 imagery for mapping
betel palms and mango plantations in complex tropical agricultural regions, (2) assess
and compare the relative importance of different FS methods, and (3) explore the optimal
combination of FS methods and machine learning classifiers for identifying betel palms
and mango plantations.

2. Materials
2.1. Study Area

The study area is located southwest of the city of Sanya, Hainan Island, China (Figure 1a),
which has a typical distribution of tropical agricultural plantations. The mean annual
precipitation and mean annual temperature are 1347 mm and 25.7 ◦C, respectively, in the
region, which belongs to the tropical monsoon climate. According to the 2020 Hainan
Statistical Yearbook [21], the annual production of betel nuts in Sanya ranked fourth, while
the annual mango production is more than 50% of the Hainan province’s mango yield.
Although the experimental site only covers about 446 ha (Figure 1), it represents a typical
characteristic of tropical agricultural region in southern Hainan Island. The main land
cover types include mango plantations, betel palms, cultivated land (mainly vegetables),
forest, built up (roads and residential buildings), and other land uses (e.g., water bodies and
unutilized land).
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2.2. Gaofen-2 Imagery

This study used a cloud-free Gaofen-2 image from 16 January 2020, with the Land
Observation Satellite Data Service Platform of the China Center for Resource Satellite
Data and Application (CASC, http://www.cresda.com/CN/ (accessed on 5 March 2020)).
The resolutions of Gaofen-2 data are 1 m and 4 m in one panchromatic band and four
multispectral bands, respectively. The detailed payload information about Gaofen-2 im-
agery is shown in Table 1 [26]. All imagery, including radiometric calibration, atmospheric
correction, geometric rectification, and reprojection, was preprocessed in ENVI 5.3 software
(Exelis Visual Information Solutions, USA). The fast line-of-sight atmospheric analysis of
the spectral hypercubes (FLAASH) model was selected to perform the atmospheric correc-
tion [28]. The rational polynomial coefficients were used to execute geometric correction.
The image was then georeferenced into UTM WGS84. In addition, a popular nearest neigh-
bor diffusion (NNDiffuse) pan-sharpening method was used to generate multispectral
imagery with a spatial resolution of 1 m. Then, the imagery was clipped to the study region
for further analysis.

Table 1. Specifications of GF-1 satellite.

Camera Spectral Range
of Four Bands

Spatial
Resolution Width Revisit

Period

multispectral
cameras

0.45–0.52 µm

4 m 45 km (for two
cameras together)

5 days
0.52–0.59 µm
0.63–0.69 µm
0.77–0.89 µm

Panchromatic
camera 0.45–0.90 µm 1 m

2.3. Samples

Ground reference samples included field surveys data using handheld global position
system (GPS) receivers (Trimble Juno 3D) and visual interpretation data from Google Earth.
In this study, we mainly evaluated the performance based on object-based classification. In
order to avoid more than one class appearing in a single object, we selected the random
samples according to ground reference data after the image was subjected to optimal seg-
mentation (see Section 3.1). All samples selected for classification covered the entire study
area to ensure unbiased estimation of all types in limited extent [29]. For detailed operation
methods, please refer to our previous research [30]. The minimum number of samples was
suggested to be 50 for each type when evaluating the classification accuracy [31]. Finally, a
total of 3000 samples were supplied in the present study, ensuing approximately 500 sample
points per class (six total classes). Then, the samples were randomly split into training
and test samples at the ratio of 0.7:0.3. The training samples were used to construct the
supervised classification models and adjust parameters of machine learning algorithms.
Meanwhile, the test samples were applied in the accuracy assessment of mapping betel
palms and mango plantations.

3. Methodology

The general workflow chart for mapping betel palms and mango plantations is sum-
marized in Figure 2. First, the Gaofen-2 imagery was preprocessed in ENVI 5.3. The
detailed interpretation of data preprocessing is shown in Section 2.2. Second, the image was
segmented into objects using a multi-resolution segmentation algorithm in eCognition 9.0.
Third, 109 initial features were chosen, including four types (layer values, geometry, texture,
and vegetation index). Forth, five FS methods and four machine learning classification al-
gorithms were applied in betel palms and mango plantations recognition using R software.
Finally, the optimal combinations of FS and machine learning algorithms were evaluated to
reduce the redundant features and obtain higher classification accuracy.

http://www.cresda.com/CN/
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Figure 2. The workflow for object-oriented tropical crop classification (betel palms and
mango plantations).

3.1. Image Segmentation and Features Extraction

In object-based classification, image segmentation mainly obtains the image objects by
dividing them according to similar spatial and spectral characteristics, which effectively simu-
late the manual interpretation of imagery. For image segmentation, the most critical procedure
is to select a suitable segmentation scale such that the object can clearly represent specific
type of land use [32]. In the current study, we applied the estimation of scale parameter (ESP)
tool to determine the optimal segmentation scales for delimiting the borders of different
classes. The tool was provided by Dragut et al. [33] in order to maximize the heterogeneity of
inter-segmentation and homogeneity of intra-segmentation. Finally, the optimum scale was
set to 95 for tropical crop classification (Figures 3 and 4). Then, a common multi-resolution
segmentation algorithm in eCognition 9.0 was used to perform image segmentation, i.e.,
a bottom-up segmentation based on the fractal net evolution approach [34]. Besides the
segmentation scale, two sets of key parameters needed to be determined: color/shape and
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compactness/smoothness. The color and shape mainly decide the spectral homogeneity of
the object shape, where the sum of weight coefficient is equal to 1. While the compactness
and smoothness control the compact edges and smooth boundaries [35], where the sum
of weight coefficient is also equal to 1. In this paper, the parameters of color/shape and
compactness/smoothness were set to 0.8/0.2 and 0.6/0.4, respectively.
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To find suitable features for identifying betel palms and mango plantations, we se-
lected 109 initial features based on the following four aspects: layer values, geometry,
texture, and vegetation index. Detail features information is shown in Table 2. Gray-level
co-occurrence matrix (GLCM) and gray-level difference vector (GLDV) are two very popu-
lar approaches for calculating textural features [36,37]. GLCM represents the frequency of
various combinations of grey levels in an image object, and GLDV is the sum of GLCM
within the image object on the diagonal [9]. The ten vegetation indexes have been com-
monly applied in agricultural researches, due to their potential to identify some crop field
characteristic that may be vital to crop classification [38]. All features were calculated
in eCognition 9.0. These features could provide abundant spectral, textural, and spatial
features to determine optimal features for typical tropical vegetation classification. Previ-
ous studies have shown that the most important features were always highly correlated,
which could lead to unstable classification results [39]. To reduce data redundancy of
initial features, we calculated the correlations of all initial features using Spearman’s rank
correlation coefficient, and those features for which the correlation coefficients were greater
than 0.9 were eliminated, which has been commonly used in past studies on FS [17]. As
a result, a total of 33 features remained in the present study (Table 3). All comparisons
with FS methods and machine learning classifiers used the same features. Therefore, it is a
reasonable assumption that the variations of classification accuracy were mainly caused by
the different combinations of the FS method and machine learning algorithms.

Table 2. Summary of the initial features selected.

Types Features Explanation

Layer values (10) Mean; standard deviation for blue, green, red, and
near-infrared spectrum (NIR); max. diff; brightness.

Layer value features calculate
corresponding information based on the
spectral properties of image objects.

Geometry (9) Border index, area (Px), roundness, compactness, shape
index, rectangular fit, density, and asymmetry.

Geometry features principally evaluate
the shape of image objects.

Texture (80)

Gray-level co-occurrence matrix (GLCM) homogeneity,
GLCM contrast, GLCM dissimilarity, GLCM entropy,
GLCM mean, GLCM correlation, GLCM variance, GLCM
angular second moment, gray-level difference vector
(GLDV) homogeneity, GLDV contrast, GLDV dissimilarity,
GLDV entropy, GLDV mean, GLDV correlation, GLDV
variance, and GLDV angular second moment.

Texture features utilize texture values
derived from GLCM or GLDV using blue,
green, red, and NIR bands.

Vegetation index (10)

Greenness index (GI), modified chlorophyll absorption in
reflectance index (MCARI), modified simple ratio (MSR),
green normalized difference vegetation index (GNDVI),
normalized difference vegetation index (NDVI),
renormalized difference vegetation index (RDVI), simple
ratio index (SRI), transformed chlorophyll absorption in
reflectance index (TCARI), triangular vegetation index
(TVI), and green vegetation index (VIgreen)

These 10 vegetation indexes are usually
applied in agricultural identification
because of their ability to recognize the
spatial characteristics of certain crops.
For detailed formulas refer to
Peña-Barragán et al. [38].

Notes: Numbers in parenthesis () represent the number of each type of initial features.

3.2. FS Methods

Overall, there are three main categories of FS methods: filter, embedded technique, and
wrapper [16]. Filter, as a simple and fast FS method, does not need any learning algorithm
but rather selects optimal features on the basis of statistics. Wrapper mainly determines the
most suitable features based on predictions by machine learning algorithms. The embedded
method only requires one model to perform FS, achieving a computationally efficient
approach compared with wrappers. In this study, we focused on assessing the following
five FS methods, including three embedded methods (RFMDA, ABT, and LR) one filter
(ReliefF), and one wrapper (RFE). We chose these five FS methods because they had been
widely applied in feature optimization [16,19] due to their excellent performance. All FS
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methods were implemented in R software (version 4.0.2) through their respective packages
(“randomforest”,“gbm”, “nnet”, “CORElearn”, and “caret” packages). Just as Li et al. [40]
pointed out, it is usually safe practice to adopt the default parameters recommended by the
software developers. Therefore, we also used the reference parameters in original sources
of references when performing various FS methods.

Table 3. The 33 features remained based on Spearman’s rank correlation coefficient method.

Types Features

Layer values (7)
Mean_blue, mean_NIR (near-infrared spectrum), standard
deviation_blue, standard deviation_red, standard deviation_NIR, max.
diff, and brightness.

Geometry (6) Border index, area (Px), roundness, rectangular fit, density, and
asymmetry.

Texture (17)

Gray-level co-occurrence matrix (GLCM) entropy, gray-level difference
vector (GLDV) contrast_blue, GLDV contrast_red, GLDV contrast_NIR,
GLCM variance, GLCM variance_blue, GLCM variance_green, GLCM
variance_red, GLCM variance_NIR, GLCM mean, GLCM angular second
moment, GLCM dissimilarity_red, GLDV entropy, GLDV angular second
moment_green, GLDV mean_NIR, GLCM contrast_blue, and GLCM
correlation.

Vegetation index (3) Greenness index (GI), triangular vegetation index (TVI), and green
vegetation index (VIgreen).

Notes: Numbers in parenthesis () represent the number of each type of selected features.

3.2.1. Random Forest Mean Decrease in Accuracy (RFMDA)

The principle of random forest (RF) is establishing a set of decision trees by randomly
selected features, where the single tree node may be called a forest [19,41]. RFMDA
performs the feature quality assessment based on the difference among the original features
and the modified features in which the approach randomly permutes values of observed
data between examples using the mean decrease in accuracy. The above difference is
then combined into an importance estimate for each tree in the forest, according to their
influence on model accuracy [16]. The importance estimate for the feature is as follows:

I
(

Aj
)
= ∑

di

n×
(
SDdi

/
√

n
) (1)

where Aj represents the number of chosen feature, I(Aj) means the ultimate importance
estimate result for feature Aj, i is the number of trees, di is the performance difference of the ith
tree, n is the number of elements in the dataset, and SDdi means the standard deviation of di.

3.2.2. ReliefF

ReliefF is a common filter FS method that principally estimates the importance of
features using a feature weight algorithm. Assuming that there is a total of m classes, class
labels set can be considered as C = {C1, C2, . . . , Cm}. ReliefF mainly chooses a sample x
from the training set D, and then finds the d-nearest samples from each class of x, forming
the matrix M(c).

The specific formula of Relief-F is as follows [42]:

ωt = ωt− ∑
x∈H

di f f (t, Si, x)
r ∗ d

+ ∑
c 6=class(si)

 p(c)
1− p(class(Si))

∑
x∈M(c)

di f f (t, Si, x)

/(r ∗ d) (2)

where ωt means the weight of feature t, Si is the selected data sample S, x represents
the data point belong to near hits or near misses, d represents the number of nearest
samples, r is the number of iterations, p(c) means the frequency of occurrence of class C, and
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p(class(si)) shows the probability that sample Si appertains a class. diff (*) can be computed
as follows [43]:

di f f (t, Si, Sj) =

∣∣∣∣ Sit − Sjt

maxt −mint

∣∣∣∣, if the features are continuous values (3)

di f f (t, Si, Sj) =

{
0 Sit = Sjt
1 Sit 6= Sjt

}
, if the features are discrete values (4)

3.2.3. Recursive Feature Elimination (RFE)

The RFE method is an iterative greedy method that performs the FS based on backward
feature elimination [44]. Its main principle is selecting the optimal feature subset through
repeatedly building a model. When the chosen variable with the smallest score is removed,
the above process is continued until all features have been traversed. The RFE will then
form a feature ranking that shows the importance of each input feature [45]. During
the execution of RFE, a machine learning classifier is needed to assess the importance of
predictors. Therefore, we applied the RF approach as the base classifier. It should be noted
that the chosen variables may not be unique because of the split difference in resampling for
the RFE method. RFE with k-fold cross-validation was then applied to solve the problem of
split difference. In our study, k was set to 10, and the number of complete sets of folds was
set to 200.

3.2.4. Aggregated Boosted Tree (ABT)

De’ath (2007) proposed the ABT method, an extension of the boosted tree method.
The predictor error of ABT can be evaluated from the out-of-bag data (see [46]). However,
it could obtain better prediction accuracy than boosted trees or bagged trees [47]. The
ABT predictors are performed in the following steps: predicting the new data based on a
collection of boosted trees and then aggregating the results of predictions. The detailed
formula is as follows:

VV = f (PCs) = ∑
m

fm(PCs) = ∑
m

ϕmb(PCs; δm) (5)

where PCs are the ordinary principal components, ϕm is the weight assigned to each tree
node in the collection of boosted trees and determines the combination form of predictions
from independent trees, the function b(PCs; δm) is the independent trees, and δm represents
the split variables [48]. The loss function L(VV, f (PCs)) illustrates the difference between
the response of ABT and the actual value, which is used to select the optimal features [49].

3.2.5. Logistic Regression (LR)

LR is a log-linear model that is suited for FS or classification [50]. LR mainly reveals
the relations among dependent and explanatory variables on the basis of fitting a regression
model. The LR formula can be expressed as follows [51]:

P(yi = J) =
1

1− exp(β0i + β1ix1 + β2ix2 + . . . + βnixn)
(6)

where J represents the baseline class; P(yi = J) refers to the probability that the yi belongs
to the class J; (x1, x2, . . . , xn) represents the input vector of the explanatory variable; β0i
is a constant; and β1i, β2i, . . . , and βni represent the regression coefficients suited for
corresponding explanatory variables.

3.3. Machine Learning Classification Algorithms

In this study, four common classification algorithms were applied for mapping typi-
cal tropical vegetation, including RF, support vector machines (SVM), classification and
regression tree (CART), and AdaBoost. RF, SVM. and CART are progressively used in
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agricultural crop recognition and excessive reports can be found [9,10]. AdaBoost is an
adaptive machine learning algorithm, and previous studies [12] demonstrated its advan-
tages and capabilities in classifying crop structures. The optimal parameters of classifiers
were identified using cross-validation, which are shown in Table 4.

Table 4. Optimal parameters of four machine learning algorithms.

Classifiers Parameters Value

RF
ntree 500
mtry 10

SVM

gamma 0.001
kernel radial

C 3
degree 3

CART
split gini
cp 0.01

AdaBoost
mfinal 50

coeflearn Breiman

RF includes a set of tree classifiers in which each classifier is obtained by a random
vector sampling from the input vector and the input vector is classified based on the most
popular voting class [52]. The approach is more effective and robust against noise compared
with single bagging or boosting classifiers. To perform the RF classifier, two important
parameters, including the number of trees in the forest (ntree) and the number of random
subsets of input features at each split (mtry), should be established [53].

SVM is a nonparametric classifier based on statistical learning theory. The principle of
SVM is to evaluate the best separation of classes using the position of decision boundaries [54].
SVM performs a soft classification, and the classifier can obtain a good classification result
from complicated and noisy input. When dealing with samples with high dimensions, a
positive kernel function should be selected to save computational time [55].

CART mainly constructs binary trees using the impurity level of given data, with
only two classes for each internal node output [56]. One of the important capacities for
CART is to generate regression trees, which are constructed by recursively selecting the
attribute with the lowest Gini index [57]. At each internal node, the tree’s leaf nodes in
corresponding division regions are decided by related splitting rules.

AdaBoost was proposed by Freund and Schapire [58] in 1996, which performs boosting
in an iterative approach. The level of weight associated with classes is very important in
iterative processing. First, given that all classes are the same weight, the weight of correctly
classified classes is then declined, whereas that of misclassified classes is improved in each
iteration. Each classified class has a corresponding weight that can be used to evaluate
the classification accuracy. Finally, the classifiers are grouped using response weights and
prediction class [57].

3.4. Accuracy Assessment

Accuracy assessment is a vitally effective method used to determine the classification
results [59]. In this study, the classification accuracy was evaluated using overall accu-
racy (OA), user’s accuracy, producer’s accuracy, and F1 score. The OA is the ratio between
correctly classified and total pixels, which is a common measure for accuracy assessment.
The user’s accuracy is a measure of commission errors, which indicates that the identified
class was the actual class on the ground [60]. The producer’s accuracy is a measure of
omission errors, which indicates that the set of training samples can be correctly identified.
F1 score represents the quality of classification results by weighting the average of user’s
and producer’s accuracy [61]. In addition, McNemar’s test (detailed principle refers to
Chuang and Shiu [62] was applied to explore the significant difference in OA between
different FS methods and without the FS method.
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4. Results
4.1. Selected Features Using Different FS Methods

To explore the sorting of relevant variables, Table 5 listed the top 15 features derived
from different FS methods, which have proven to be the most important for mapping betel
palms and mango plantations (see Section 4.2). The proportion of different types of features
among the different subsets is shown in Table 6. The results show that the most relevant
variables from each FS method had significant differences. Although the prediction of one
single variable may be limited, it could increase classification accuracy by its interaction
with other variables [16,63]. Overall, textural features made up a large proportion of the
top 15 features. Surprising, the vegetation index of GI was the top-ranking feature.

Table 5. Top 15 features using various FS methods.

RFMDA ReliefF RFE ABT LR

GI standard
deviation_blue GI GI max. diff

VIgreen standard deviation_red VIgreen mean_blue GI

GLDV angular second
moment_green max. diff mean_blue standard

deviation_blue GLDV Entropy

GLDV entropy GI standard
deviation_blue GLDV entropy rectangular fit

standard
deviation_blue VIgreen standard

deviation_NIR
GLDV angular second

moment_green VIgreen

standard
deviation_NIR GLDV entropy max. diff standard

deviation_NIR density

mean_blue GLCM
dissimilarity_red standard deviation_red max. diff GLCM entropy

max. diff TVI GLDV angular second
moment_green GLCM correlation GLCM correlation

standard deviation_red GLDV contrast_red brightness brightness asymmetry

GLCM
dissimilarity_red

standard
deviation_NIR GLDV entropy GLCM variance roundness

GLCM correlation mean_blue GLCM correlation GLCM
dissimilarity_red GLDV mean_NIR

brightness GLDV angular second
moment_green

GLCM
dissimilarity_red

GLDV angular second
moment

GLCM
dissimilarity_red

GLDV mean_NIR brightness TVI TVI GLCM variance_red

GLCM variance GLDV contrast_blue GLCM variance border index GLCM mean

GLCM contrast_blue GLCM contrast_blue border index asymmetry GLCM variance_green

Table 6. Summary of different categories of features among the top 15 features according to Table 5.

FS Methods The Detail Description of Features Layer Values Geometry Texture Vegetation Index

RFMDA

Number of features 5 1 7 2
The proportion of features among the top

15 features 33.33% 6.67% 46.67% 13.33%

The proportion of features among the
total number of respective categories in

the chosen 33 features
71.43% 16.67% 41.18% 66.67%
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Table 6. Cont.

FS Methods The Detail Description of Features Layer Values Geometry Texture Vegetation Index

ReliefF

Number of features 5 1 6 3
The proportion of feature among the top

15 features 33.33% 6.67% 40% 20%

The proportion of features among the
total number of respective categories in

chosen 33 features
71.43% 16.67% 35.29% 100%

RFE

Number of features 6 2 5 2
The proportion of features among the top

15 features 40% 13.33% 33.33% 13.33%

The proportion of features among the
total number of respective categories in

chosen 33 features
85.71% 33.33% 35.29% 66.67%

ABT

Number of features 5 2 6 2
The proportion of features among the top

15 features 33.33% 13.33% 40% 13.33%

The proportion of features among the
total number of respective categories in

chosen 33 features
71.43% 33.33% 35.29% 66.67%

LR

Number of features 1 4 8 2
The proportion of features among the top

15 features 6.67% 26.67% 53.33% 13.33%

The proportion of features among the
total number of respective categories in

chosen 33 features
14.29% 66.67% 47.06% 66.67%

Notes: The total number of respective categories from chosen 33 feature can be found in Table 3. Specifically, the
total numbers for layer values, geometry, texture, and vegetation index were 7, 6, 17, and 3, respectively.

ReliefF concentrated on information from vegetation indexes and layer values, such
as standard deviation and max. diff. In addition, we observed that the selected features of
ReliefF had more consistency with RFMDA, compared with the other three FS methods. For
example, GLCM contrast_blue was selected by RFMDA and ReliefF, while it was not pre-
sented in the top 15 features of RFE, ABT, and LR. ABT presented more sophisticated types,
including texture, layer values, and geometrical feature. Significantly, more geometrical
and texture features appeared in LR, such as density, asymmetry, and roundness. Among
the top 15 features, the percentages of geometry and texture were 26.67% and 53.33% by
LR, respectively, which were higher than the other four FS methods.

4.2. The OA Trends with Different Combinations

The OA was computed for all four classifiers, using a different number of features
ranked by the abovementioned five FS methods. Figures 5–8 show the change patterns
of OA using various FS methods and machine learning algorithms. In general, the OA of
each classifier increased rapidly with the number of features increasing in the initial stage.
When certain thresholds were reached, the curves of OA remained stable, even though
more features were selected.

The RF classifier produced no significant changes in OA after the number of features
exceeded 5 (Figure 5), regardless of the FS method used. This may indicate that the RF
classifier is a robust algorithm that is insensitive to the addition of redundant and irrelevant
features [16,18]. Here, LR had a higher classification accuracy (89.1%, 26 features) than the
other FS methods (Table 7). However, the OA between 7 and 21 in LR was lower than that
of the other four FS methods. The OAs of RFMDA and ReliefF were virtually the same
between 12 and 22 features. For ABT, the OA value achieved 85.6% using only four features,
and remained almost stable subsequently.
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Table 7. Maximal OA (%) for each machine learning classifier using various FS methods.

Classifiers

FS Methods
RFMDA ReliefF RFE ABT LR All Features

RF 88.33 (26) 88.33 (31) 88.33 (22) 88.72 (27) 89.1 (26) 87.55

SVM 89.11 (25) 88.72 (27) 89.09 (32) 89.07 (22) * 89.88 (25) * 87.55

CART 84.01 (30) 84.33 (14) 84.03 (11) * 84.44 (8) 84.02 (27) 83.27

AdaBoost 85.60 (30) 86.77 (11) * 85.60 (10) 85.21 (9) 84.05 (24) 82.88

Notes: Numbers in parenthesis () represent the number of features at which the corresponding OA value was
reached. * indicates the significance between the respective model and all features at the p < 0.05 level.

Compared with the RF classifier, the SVM classifier indicated slightly greater sensitivity
to high dimensionality but this advantage was not significant. Notably, the LR method
achieved the highest OA (89.88%) with 25 features, which was the maximum accuracy in all
classification combinations with five FS methods and four machine learning classifiers. The
curve obtained from the RFMDA method was quite different from the other FS methods; in
general, OA increased steadily as features were added (Figure 6). Importantly, the RFMDA
reached a maximum value (89.11%) with 25 features, and the result was approximate to
that acquired by the LR method. As shown in Table 7, using ABT and LR, there were
statistically significant differences (p < 0.05) compared with applying all features.

For the CART classifier, the highest OA (84.43%) was achieved with ABT and eight
features, forming a parsimonious classification model because it needed the minimum
number of features. Figure 7 shows that ABT, ReliefF, and RFE had almost the same curve
between 14 and 22 features. For LR, the OA showed no obvious variations between 3 and
19 features. Apart from RFMDA, the remaining four FS methods presented relatively high
OA accuracy (>80%) when there were more than three input features. The curve of RFMDA
fluctuated greatly, indicating that dimensionality reduction did not cause the OA to increase.
This may be because the important features that suit the CART classifier were eliminated.

For the AdaBoost classifier, the ReliefF method obtained the best classification accu-
racy (86.77%) with 11 features. Moreover, ReliefF produced a ~4% improvement in OA
compared with that containing all feature variables, and McNemar’s test indicated that
the variation was statistically significant (p < 0.05) (Table 7). These findings show that FS is
quite useful for the AdaBoost classifier. Figure 8 shows a clear fluctuation in the OA curves
with the AdaBoost classifier regardless of the FS method. In addition, RFMDA and RFE
showed the same maximum classification accuracy (85.6%); however, RFE required fewer
features than RFMDA to achieve the same value.

4.3. Classification Results

For a further specific analysis, we mainly compared classification accuracies of dif-
ferent classes based on the four machine learning algorithms. It should be noted that
each classifier used the corresponding optimal feature set obtained from respective most
appropriate FS method (see Section 4.2). Ultimately, there were four optimal combinations:
RF-LR (with 26 features), SVM-LR (with 25 features), CART-ABT (with 8 features), and
AdaBoost-ReliefF (with 11 features). In general, although all four approaches produced
considerable salt-and-pepper speckled noise (Figure 9), the interesting land cover types
of the study region could be reasonably identified. Accuracy indicators were calculated
including producer’s accuracy (PA), user’s accuracy (UA), F1 score, kappa coefficients, and
overall accuracy (OA) for all six types (Table 8).
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The F1 scores of mango plantations were 95.68%, 96.07%, 97.33%, and 96.69% for
RF-LR, SVM-LR, CART-ABT, and AdaBoost-ReliefF, respectively. Among them, CART-ABT
achieved maximum F1 score (97.33%) with only eight features. In addition, both producer’s
accuracies and user’s accuracies with four combinations exceeded 90%. These results
demonstrated that mango plantations can be precisely identified whether on the ground or
on the map based on the four optimal combinations. When mapping the betel palms, RF-
LR presented a higher F1 score (88.89%) than other classification schemes. The confusion
mistakes were encountered with types such as betel palm-cultivated land. Meanwhile,
RF-LR was the only scheme in which the user’s accuracy was more than 80%. Compared
to the other machine learning classifiers, the SVM-LR for recognizing cultivated land and
built up produced the highest classification accuracy (F1 score is 92.91% for cultivated
land and 94.74% for built up). In all classification schemes, the others classes performed
poor classification results, and the F1 scores were generally in the range of 50–60%, which
might be induced by the similar spectral structure between others and built up. The second
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lowest F1 score was produced by forest, and there were some signature confusion among
forest and betel palms.

Table 8. The values of user’s accuracy, producer’s accuracy, F1 score, overall accuracy, and kappa for
four optimal combinations of the FS method and machine learning classifier.

Schemes Accuracy Betel
Palms

Mango
Plantations

Cultivated
Land Forest Built Up Others

RF-LR

User’s accuracy (%) 86.67 92.59 85.51 100 100 69.23
Producer’s accuracy (%) 91.23 98.99 93.65 75 80 50

F1 score (%) 88.89 95.68 89.39 85.71 88.89 58.06
Overall accuracy (OA) 89.1

kappa 0.86

SVM-LR

User’s accuracy (%) 79.11 93.75 92.19 100 100 83.33
Producer’s accuracy (%) 92.98 98.5 93.65 66.67 90 55.56

F1 score (%) 85.49 96.07 92.91 80.01 94.74 66.67
Overall accuracy 89.88

kappa 0.87

CART-
ABT

User’s accuracy (%) 73.24 97.33 87.5 93.75 94.44 52.38
Producer’s accuracy (%) 91.23 97.33 77.78 62.5 85 61.11

F1score (%) 81.25 97.33 82.35 75 89.47 56.41
Overall accuracy (%) 84.43%

kappa 0.8

AdaBoost-
ReliefF

User’s accuracy (%) 74.29 96.05 86.15 90 100 77.78
Producer’s accuracy (%) 91.23 97.33 88.89 75 85 38.89

F1score (%) 81.89 96.69 87.50 81.82 91.90 51.85
Overall accuracy 86.77

kappa 0.83

Based on the visual interpretation from the classification maps, the mango plantations
and betel palms were the principal tropical crops in the study region, and mango planta-
tions were located throughout the surrounding betel palms and cultivated land (Figure 9).
The classification results were close to our previous field survey data. There were slight
differences in the specific depictions under different classification schemes when the same
tropical crops were compared. For example, the confusion of mango plantations and forest
in the northeastern corner of the study region was more apparent in machine learning
classifications that utilized the RF-LR and AdaBoost-ReliefF methods when compared
with classifications using other approaches. However, the maps based on the two afore-
mentioned approaches produced fewer jagged edges along narrow forest areas in the
southeastern corner of the study region. The RF-LR method produced a more accurate
visual depiction of betel palms than any classification approaches, although there remained
some misclassification among forest and cultivated land and betel palm regions because of
the similar spectral characteristics [30]. Moreover, the boundary between betel palms and
built-up land was not well distinguished for all classification schemes.

5. Discussion
5.1. The Performance of Different Machine Learning Algorithms

Overall, the classifiers of RF and SVM showed better results than others for tropical
areas object-oriented classification. However, the OA values of both RF and SVM were
87.55% without using any FS methods, which was about 5% larger than Adaboost with
all 32 features. This finding further demonstrated that machine learning algorithms of RF
and SVM can show a good performance in mapping betel palms and mango plantations.
In addition, RF required more features than SVM to achieve maximum accuracy, which
was attributed to SVM’s strengths for performing higher accuracy using limited input
features [8,18]. We also found that the SVM classifier was more sensitive to the influence



Remote Sens. 2022, 14, 1757 18 of 23

of data redundancy compared with the RF classifier. Ma et al. [19] also demonstrated that
the Hughes effect could easily occur in SVM classifier in object-oriented classification with
limitation training samples. The AdaBoost approach had the lowest OA value (82.88%)
compared with classification classifiers with a full feature set, whereas the maximum
accuracy achieved 86.77% with only 11 features, which was approximate to the OA obtained
by the RF or SVM classifier using all features (Table 7). This indicates that AdaBoost could
achieve a better classification performance using an ensemble classifier by assembling many
weak classifiers into a strong classifier, especially after feature ranking selection [64,65].

5.2. The Combinations of FS Methods and Machine Learning Classifiers

The results of this study confirmed that the FS method was vitally important for de-
picting land cover types based on different machine learning algorithms, which supported
the findings of several previous studies [18,55]. A robust FS method should be able to rank
and reduce a potentially large amounts of input features [17]. In the present paper, the five
FS methods evaluated in this research have their respective advantages and disadvantages
with different classifiers. In general, LR was best suited to RF and SVM classifiers in this
study, with an almost 2% increase in OA values, because the LR method requires fewer
restrictive statistical assumptions about features (such as normally distributed or linear)
compared with ordinary least squares regression [51]. Meanwhile, ABT produced rela-
tively higher OA values using fewer features when the CART was used in classifying betel
palms and mango plantations. The ABT approach overcame the relatively weak prediction
capacity of depicting large trees. Furthermore, higher accuracy was performed by ABT
than that of other intensive computationally methods such as RFMDA, which supports
the findings of previous research [66]. ReliefF, an optimal local learning filter method,
overperformed in the AdaBoost classifier because of its effectiveness and simplicity [67].
In addition, ReliefF also maintained good classification accuracy with other classifiers.
Cehovin and Bosnic [41] compared ReliefF and RFMAD to select optimal features and they
also found that ReliefF presented better classification accuracy, supporting our findings for
the same two FS methods.

In terms of selected features, the spectral layer values and geometry have a significant
advantage, but the textural features and vegetation indexes should not be ignored. There
were few textural features (about 20 percent of total chosen textures) selected ultimately
for mapping betel palms and mango plantations (Table 3). This demonstrated that most of
the textures might be significantly correlated. As Ma et al. [68] pointed out, the number
of texture features needed to be controlled considering the classification accuracy and
computer times in oriented-object image analysis, especially in large regions. According to
Table 5, the textural measures of GLDV entropy and GLDV angular second moment_green
should be explored more closely in order to classify betel palms and mango plantations.
Furthermore, GI was a very important vegetation index selected frequently for every FS
method in our study.

5.3. Thematic Maps of Different Tropical Crops

In the process of tropical cropland classification, one of the greatest challenges was
to identify betel palms from other class types. For all classification strategies, the UA
values of betel palms were lower than those of other land cover types. Even with differ-
ent FS methods, the maximum UA value of betel palms was 86.67% using RF-LR (with
26 features) and the minimum UA value of betel palms was only 73.24% using CART-ABT
(with 8 features) (Table 8). A visual inspection of this study area based on field survey data
showed that many betel palms were planted around built-up areas (Figure 10a,b). Normally,
the height and canopy of mature betel palms can reach 10–20 and 2.5–3 m [20], respectively.
The crowns of betel palms form shadows on built-up regions, causing misclassification
between the two classes. Similar results of mapping vegetation areas were found in other
regions using Gaofen-2 imagery [15]. In addition, betel palms were easily confused with
neighboring forest and cultivated land (Figure 10c), which was attributed to the spatial
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complexity of tropical agricultural planting regions. This was also demonstrated earlier in the
analysis of classification accuracy (Section 4.3). When performing the segmentation process
in objected-based image analysis, betel palm regions may be merged with adjacent forest or
cultivated land because of the similar spectral characteristics to these land-use types. Wang
et al. [69] also pointed out that a mixed object is more obvious along the edge or borders of
different types. Although the influence of over-segmentation and under-segmentation can be
reduced to some extent using the ancillary features, the classification accuracy of betel palms
will still be inevitably affected. Surprisingly, we obtained a relatively satisfactory classification
accuracy of mango plantations; this is because Gaofen-2 imagery uses sub-meter resolution
data and has more abundant spatial and structure information. As a typical tropical crop,
evergreen mango trees need enough sunlight for photosynthesis. Therefore, mango planta-
tions usually exhibit bigger planting spacing in the rows (3–4 m) (Figure 10d). Compared
to other tropical vegetation, the rounded canopies of mango trees show a lower and looser
characteristic. Due to this distribution, mango plantations had unique textural patterns in
Gaofen-2 imagery that can overcome the spectral similarity between mango plantations and
other tropical vegetation. Leckie and Gillis [70] pointed out that VHR imagery can replace
the aerial photography in the field of land cover mapping. In this paper, we similarly found
that Gaofen-2 imagery performed brilliantly in tropical crop classification.
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Figure 10. Field photos illustrating different classification types in parts of study area. (a) Gaofen-2
imagery in a part of study area. the three blocks (c, b, and d) are parts of Figure 10a, and the detail
field photos are shown as follows: (b) betel palms, (c) betel palms planting neighboring cultivated
land, and (d) mango plantations.
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Usually, classification accuracy (including OA, F1 score, user’s accuracy, and pro-
ducer’s accuracy) is used to evaluate the optimal combinations of FS methods and classi-
fiers. However, to obtain higher classification results, more evaluation criteria should be
considered, such as efficiency and processing times. When the difference of classification
accuracy is small, processing times may be more important to big study areas, especially
for mapping with high-resolution images [17]. In future research, varying the method of
accuracy evaluation should be implemented to evaluate the tradeoff between accuracy
and efficiency. About the machine learning approach, we just explored the performance
of conventional classifiers. To improve the classification accuracy for recognizing tropical
crops, the state-of-the-art classification technique (e.g., deep learning methods) should be
applied in our following studies. In addition, this paper only focused on the optical image
in mapping two tropical crops. Nevertheless, the high frequency of cloud coverage makes
it very difficult to acquire high-quality optical data in tropical regions [71]. Considering the
demand for periodic recognition, more cloud-free data (such as synthetic aperture radar
image (SAR)) are required for mapping tropical crops in our following study.

6. Conclusions

Mapping of tropical agricultural land cover types is incredibly difficult due to their
complexity and heterogeneity in finer resolution imagery. In this study, our specific objec-
tives were to assess the appropriate combinations of FS methods and machine learning
classifiers, and evaluate the capability of sub-meter resolution Gaofen-2 imagery for iden-
tifying betel palms and mango plantations based on object-oriented classification. The
SVM and RF classifiers based exclusively on classification accuracy results showed a slight
advantage for the purposes of mapping tropical crops relative to the other machine learning
classifiers. Furthermore, we also found that all classifiers presented better performance
after FS methods were used to choose the optimal subsets of features. Compared with
classification results without the FS method, different classifiers with an optimal features
subset could increase the overall accuracy by 1–4%. Moreover, different FS methods showed
adaptability to various machine learning classifiers. In general, RF and SVM classifiers
applying the LR method showed higher overall accuracies. For the CART classifier, ABT
was identified as the most suitable FS method for identifying tropical crops. The AdaBoost
classifier with ReliefF was also a suitable option for classifying tropical crops under a
comprehensive consideration of classification precision and computation time. When eval-
uating classification results based both on the ground and on the map, this study indicated
that all four optimal combinations of FS methods and classifiers could correctly recognize
mango plantation regions, whereas betel palms were best depicted by using the RF-LR
method with 26 features. Even though the classification accuracy of AdaBoost-ReliefF
was not the highest, we suggested it was a practical scheme if identifying betel palms and
mango plantations in large study regions.

Our research confirmed the utility of Gaofen-2 for mapping betel palms and mango
plantations in complex tropical agricultural regions with heterogeneous planting structure
and a high degree of fragmentation. These findings provide an effective technical approach
for accurate tropical crop identification, which is the foundation for tropical agricultural
regional planning and management.
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