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The immune system has the ability to recognize and specifically reject tumors, and tumors
only become clinically apparent once they have evaded immune destruction by creating an
immunosuppressive tumor microenvironment. Radiotherapy (RT) can cause immunogenic
tumor cell death resulting in cross-priming of tumor-specific T-cells, acting as an in situ
tumor vaccine; however, RT alone rarely induces effective anti-tumor immunity resulting in
systemic tumor rejection. Immunotherapy can complement RT to help overcome tumor-
induced immune suppression, as demonstrated in pre-clinical tumor models. Here, we
provide the rationale for combinations of different immunotherapies and RT, and review
the pre-clinical and emerging clinical evidence for these combinations in the treatment of
cancer.
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INTRODUCTION
This review aims at providing the reader with both the rationale
for and the emerging information regarding pre-clinical and clin-
ical testing of combinations of different immunotherapies and
radiotherapy (RT). We will first provide a summary of the main
mechanisms cancer harnesses to evade the control of the immune
system, then we will describe some of the available evidence for the
effects of ionizing radiation on the immune system. We will then
focus on examples of clinical studies built on this background and
share some of the preliminary results that are emerging. Hopefully,
this review will succeed at motivating more pre-clinical and clinical
research in the novel field of combined radiation and immunity.

CANCER’S CROSS-TALK WITH THE HOST’S IMMUNE
SYSTEM
The adaptive human immune system can specifically recognize up
to 1012 unique antigens, allowing T-cells to discriminate between
transformed cells and normal self (1–3). There is evidence in
animal models, and indirect evidence in human beings, that a
competent immune system can selectively eliminate cancer cells
and protect against the development of tumors (4–9). This evi-
dence is corroborated by the increased incidence of malignancies
in immune-suppressed individuals such as AIDS patients and
recipients of allograft transplants (10–13). This raises the ques-
tion: if the immune system can eliminate cancers, how do cancers
develop in the context of a competent immune system?

Schreiber’s modification of the immunosurveillance hypothe-
sis addresses this question, proposing that tumors must undergo
three processes before they become clinically apparent: elimina-
tion, equilibrium, and escape (14, 15). In the elimination phase,
transformed cells are recognized by cognate CD8+ cytotoxic T-
lymphocytes (CTLs) and are immediately eliminated through
cytotoxic mechanisms such as Fas/Fas–ligand interactions and
granzyme/perforin mediated killing. This process continues until
some transformed cells evolve means to evade killing by CTLs. It

is hypothesized that a phase of equilibrium forms between newly
transformed cell clones and those effectively eliminated by CTLs
(16). Eventually, cancer cells able to evade elimination by CTLs
acquire more mutations, and develop unregulated growth, inva-
sion, and metastases. Each of these steps is associated with active
evasion of the immune system.

MECHANISMS FOR IMMUNE EVASION
Tumors have the entire genome at their disposal for modulating
and evading the anti-tumor-immune response, and their escape
tends to be multi-pronged (Figure 1). One simple method of
escape utilized by tumors and viruses alike, is down-regulation
or inactivation of the cellular machinery responsible for MHC
class I (MHC-I) antigen processing and presentation (17–20). If
tumor peptide antigens are not presented by MHC-I, CTLs can-
not recognize and eliminate transformed cells, although MHC
down-regulation does make tumors more susceptible to NK cell
cytotoxicity (21, 22).

Another common mechanism for disrupting the immune
response is through interference with CTL priming, primarily
through modification of the intratumoral infiltrate of dendritic
cells (DCs) (3–5, 8, 9, 23). Intratumoral DCs often have an
immature or regulatory phenotype that results in the presen-
tation of tumor antigens without co-stimulation, resulting in
cross-tolerance and anergy of T-cells (24–27). The importance
of this mechanism in tumor-immune escape is highlighted by the
close temporal correlation of antigen-specific tolerance of both
CD4+ and CD8+ tumor-specific T-cells with the outgrowth of
experimental tumors (6, 7, 14, 15). Additionally, regulatory DCs
(regDCs) can have direct effects on tumor-immune escape, as
the transfer of regDCs into tumor-bearing mice is sufficient to
promote tumor growth and metastasis (16, 28).

Perhaps the most common and effective means of interfering
with anti-tumor immunity is by blocking the effector function
of CTLs through various mechanisms. Tumors foster the
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FIGURE 1 | Mechanisms of immune suppression in the tumor
microenvironment. Tumors utilize multiple mechanisms for evading the
immune system. Tumor cells can down-regulate expression of MHC-I,
making them poor targets for CTL mediated killing. Along with
myeloid-derived suppressor cells (MDSCs) and tumor-associated
macrophages (TAMs), they can express PD-L1 and PD-L2, which inhibit CTL
function through the PD-1 receptor. Tumors make other soluble factors that
also inhibit CTLs. Hypoxia in tumors induces HIF-1, driving the production of
SDF-1, which acts as a chemokine to attract MDSCs and TAMs to the tumor
microenvironment through the receptor CXCR4. These MDSCs and TAMs
secrete cytokines such as IL-10 that promote a regulatory phenotype
among intratumoral DCs, induce Tregs, and directly inhibit CTLs. Other
myeloid-derived factors that inhibit CTL activity include TGF-β, reactive
oxygen species (ROS) and reactive nitrogen intermediates (RNI), and
arginase and nitric oxide synthase (NOS), which are enzymes that deplete
l-arginine, an important metabolite for CTL function.

development of an immunosuppressive microenvironment by
recruiting Tregs and myeloid elements – primarily tumor-
associated macrophages (TAMs) and myeloid-derived suppressor
cells (MDSCs) – that make TGF-β and IL-10 (29–32). These anti-
inflammatory cytokines blunt anti-tumor immunity by inhibiting
the cytolytic activity of CTLs. Furthermore, TAMs and MDSCs
modify the metabolic milieu of the tumor microenvironment by
producing arginase and nitric oxide that deplete l-arginine, an
essential nutrient for T-cell function (33–35). These suppressive
myeloid cells also generate reactive oxygen and nitrogen species
that modify the chemokine and antigen receptors on CTLs both
in the lymphoid organs and in the tumor, impairing their ability
to home to tumors and kill tumor cells (36).

The tumor vasculature plays an important role in
tumor-induced immune dysregulation. Tumors often outgrow

their vasculature, and abnormal tumor angiogenesis results in
tumor ischemia and hypoxia, which initiates recruitment of
immunosuppressive myeloid cells (37). Low oxygen tension in
tumors promotes an increase in hypoxia inducible factor-1 (HIF-
1), which stimulates the production of stromal-derived factor-1
(SDF-1). SDF-1 acts as a chemokine, recruiting myeloid-derived
cells through the chemokine receptor CXCR4 (38, 39). Further-
more, as the gatekeeper between the blood and the tumor microen-
vironment, the tumor vasculature plays a direct role in modulating
anti-tumor immunity. Recruitment of immunosuppressive TAMs,
MDSCs, regDCs, and Tregs, as well as anti-tumor CTLs, requires
active engagement of the vascular endothelium in the tumor
(40). While chemokine gradients attract these immune cells to
the tumor, extravasation requires the expression of selectins and
integrins, such as E-selectin, ICAM-1, and VCAM-1 for rolling,
activation, arrest, and transmigration (41). Endothelial cells can
even selectively recruit subsets of leukocytes, such as Tregs, which
has been described in hepatocellular carcinoma and pancreatic
cancer (42, 43). In addition to these effects, tumor cells and vas-
cular endothelium can directly dysregulate or kill effector CTLs
through engagement of the Programed Death-1 (PD-1) recep-
tor by expressing PD-1 ligand (44–47). Current immunotherapy
strategies target these mechanisms in the attempt to overcome
immune escape of cancer and recover immune-rejection (48).

EFFECT OF RADIOTHERAPY ON CANCER IMMUNE RESPONSE
Radiotherapy, while traditionally used for its direct cytocidal effect
on cancer cells, also has immunomodulatory properties and can be
harnessed to potentiate an immune response (49, 50) (Figure 2).
Ionizing radiation causes immunogenic cell death of cancer cells,
modulates antigen presentation by cancer cells, and most impor-
tantly alters the microenvironment within the irradiated field
(51–54). Lymphocytes are exquisitely sensitive to ionizing radia-
tion, and the direct effect of RT on tumor-infiltrating lymphocytes
is generally cytocidal (55). This results in temporary selective abla-
tion of immune cells within the irradiated target, depleting CTLs
and NK cells directed against the tumor as well as Tregs that sup-
press local anti-tumor immunity. The relative importance of the
effect of RT on these populations remains unclear but it is evident
that the damaging effects of this physical insult are sensed by the
immune system, with systemic implications.

Radiation-induced immunogenic cell death is characterized
by the release of tumor antigens in the context of endogenous
adjuvants that facilitates priming of anti-tumor CTLs (56). Impor-
tant components of immunogenic cell death include translocation
of calreticulin (CRT) to the tumor cell membrane and release
of ATP and other endogenous adjuvants such as HMGB1 (57),
uric acid (58), and heat-shock proteins (HSPs) (59, 60). These
endogenous adjuvants act through the toll-like receptors (TLRs)
to facilitate DC maturation (61–63). The role of TLRs in the mam-
malian immune system was first described as pattern recognition
receptors that respond to pathogen associated molecular patterns
(PAMPs) such as endotoxin from bacteria and double stranded
RNA from viruses (64). However, there is growing evidence that
the TLRs have a broader function by mediating the response
to danger associated molecular patterns (DAMPs) (65). DAMPs
are a larger class of molecules including PAMPs in addition to
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FIGURE 2 | Ionizing radiation induces immunogenic cell death of
tumors, which facilitates cross-priming of CTLs. Ionizing radiation
induces translocation of calreticulin (CRT) to the tumor cell membrane,
which acts as an “eat me” signal to dendritic cells (DCs), facilitating
receptor mediated endocytosis through CD91. This makes tumor antigens
available for cross-presentation on MHC-I for priming of tumor-specific
T-cells. Radiotherapy also induces the release of danger associated
molecular patterns (DAMPs), such as ATP and HMGB-1, which are
endogenous immune adjuvants that stimulate DC activation, inducing DCs
to provide co-stimulatory signals to naïve T-cells, facilitating cross-priming of
CTLs. Together, these processes constitute immunogenic cell death of
tumor cells.

endogenous, evolutionarily conserved intracellular molecules that
are released upon necrotic cell death. By linking the innate and
adaptive immune system by activating antigen-presenting cells,
release of DAMPs is a key aspect of immunogenic cell death
mediated by RT.

Another key component of the pro-immunogenic effect of RT
is the facilitation of tumor antigen uptake by DCs and cross-
presentation on MHC-I (66). In fact, radiation induces MHC-I in
both tumors and normal tissue (67,68). By enhancing presentation
of antigens released by its cytocidal effect, RT potentiates cross-
priming of tumor-specific CTLs in the lymph nodes. Exogenous
antigens can access the cross-presentation pathway by a variety of
means but the most important for anti-tumor immunity is the
uptake of cell-associated antigens mediated by the translocation
of CRT from the endoplasmic reticulum of tumor cells to the cell
surface. Ionizing radiation causes CRT to translocate to the tumor
cell surface where it acts as an “eat me” signal to macrophages
and DCs, which internalize CRT expressing tumor cells (69).
This process is mediated by the common HSP receptor CD91,
and is a necessary part of anthracycline and radiation-induced

immunogenic cell death (70–72). Radiation induces the translo-
cation of CRT on the tumor cell surface along with the release
of the DAMPs HMGB1 and ATP. These signals have been shown
to be necessary and sufficient in a model of radiation-induced
anti-tumor immunity (73, 74).

There is evidence from both human beings and mice that
tumor-associated antigens are cross-presented by DCs after RT,
and this results in cross-priming of tumor-specific CTLs. By exper-
imental necessity, much of this evidence comes from murine
tumor lines transfected to express model antigens, which allow for
measurement of specific CTL responses against known peptide
epitopes. A single fraction of 20 Gy of ionizing radiation results
in cross-presentation of an epitope from the SIY model antigen,
demonstrated by an elegant set of experiments performed in vivo
using a melanoma model (75). In a different melanoma model,
both a single 15 Gy fraction of RT and fractionated RT resulted in
cross-priming of CTLs detected in the tumor and tumor draining
lymph nodes, with fractionated treatment resulting in a smaller
degree of cross-priming (76). Other investigators have used this
model to study the effect of dose and fractionation on cross-
priming, and have found the number of CTLs generated correlates
with the dose of radiation, but after fractionated treatment all
doses of RT resulted in about the same number of primed CTLs
(77). This RT induced cross-priming is dependent on TLR-4 sig-
naling in the host (57). These findings are consistent with evidence
from patients with prostate cancer who developed prostate specific
CTLs after RT and vaccination with a poxviral vaccine encoding
prostate specific antigen (PSA) (78).

Immunogenic cell death alone may not be sufficient to medi-
ate a robust anti-tumor-immune response since the resident DCs
within tumors maintain tolerance (3). Intratumoral injection of
exogenous DCs have been used as an immune therapy for can-
cer, and RT has been shown to stimulate an effective anti-tumor
CTL response among patients treated with this method (79–82).
In some experimental systems, RT overcame the suppressive effect
of tumor resident DCs by recruiting new myeloid-derived DCs
that have not been exposed to the regulatory effects of the tumor
microenvironment. Tumor irradiation recruits these monocyte
derived DCs (mDCs) to tumors after treatment with a single large
fraction of 25 Gy (83). In summary, RT induces multiple intra-
cellular adhesion molecules (ICAMs), chemokines, and cytokines
that mediate naïve DC recruitment and may at least in part
subvert the immune-tolerant microenvironment characteristic of
established tumors (84–86).

Furthermore, RT facilitates the recruitment of effector T-cells
to tumors through the induction of chemokines. Chemokines are
known to be important for the recruitment of leukocytes to tumors
as part of anti-tumor immunity (87, 88). However, tumors with
their immunosuppressive milieu tend to produce chemokines that
recruit Tregs and other suppressive elements (89, 90). Without
effective chemotaxis, lymphocytes primed against tumor antigens
cannot home to tumors and carry out their effector function.
CXCL16 is a chemokine that has been identified as a prognos-
tic factor that correlates with improved survival and increased
numbers of tumor-infiltrating lymphocytes in colorectal cancer
and renal cell carcinoma (91–93). RT induces CXCL16 produc-
tion in the 4T1 mouse breast cancer model, which mediates T-cell
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recruitment to tumors through the CXCR6 receptor on T-cells
(94). Radiation also has effects on the tumor vascular endothelium,
inducing cell adhesion molecules that further promote recruit-
ment of anti-tumor CTLs (95). Although it does not explain the
systemic immune effects of RT, chemotaxis induced by RT may
partially account for the direct effects of RT on tumor control.

THE ABSCOPAL EFFECT OF RADIOTHERAPY
The effects of ionizing radiation on the anti-tumor-immune
response support the hypothesis that the immune system is
responsible for the abscopal effect of RT. Originally described by
Mole, the abscopal (from the Latin ab and the Greek scopus, away
from the target) effect of radiation therapy is a phenomenon by
which a primary tumor is irradiated and a response is seen at dis-
tant metastatic sites outside of the path of the radiation (96–102).
Our group has generated pre-clinical evidence that it is mediated
by the immune system (103–105). Even the “in field” effects of
radiation have been shown to be dependent on the immune sys-
tem, as CD8+ T cells and type I interferon are required for tumor
regression after radiation therapy, since their depletion abrogates
tumor control after RT (75, 83, 106–108).

Despite the observation that radiation induces effects sensed
by the immune system and modulates the immune response to
tumors, abscopal responses are rarely seen in clinical practice.
Although there is evidence that radiation therapy alone is sufficient
to provide the necessary signals for cross-priming of CTLs against
tumor antigens, this adjuvant effect of radiation appears to be rela-
tively weak. However, the rare radiation-induced systemic abscopal
response can be facilitated when additional immune manipula-
tion is added. RT primes new anti-tumor CTLs but these CTLs
are usually unable to overcome the suppressive effect of the tumor
microenvironment at distant untreated metastatic sites. This is the
rationale for combining systemic immunotherapies with RT.

ANTI-IMMUNOGENIC EFFECTS OF RT
It must be noted that RT has anti-immunogenic effects in addi-
tion to the pro-immunogenic effects described above. There are
reports that RT can impair DC function, including cross-priming
(109, 110). Additionally, RT can contribute to the immune-
suppressive tumor microenvironment by recruiting MDSCs and
TAMs (76, 111–113). Tumor-infiltrating Tregs are also enriched
after RT (77, 114). The relative importance of these immuno-
suppressive effects of RT remains unclear and it is likely to be
model-dependent, since there are contrasting reports of RT result-
ing in a shift toward a macrophage mediated pro-immunogenic
microenvironment (115).

COMBINATIONS OF RADIOTHERAPY AND
IMMUNOTHERAPY IN THE CLINIC
There have been a number of efforts recently to combine
immunotherapy with RT to augment the anti-tumor-immune
effects of RT. Abscopal responses to RT alone are extremely
rare, suggesting that combinations with immunotherapy may be
required to sustain the pro-immunogenic effects of radiation. Sim-
ilarly, only a small proportion of cancer patients derive objective
benefit from currently available immunotherapies. One strategy
to increase both the likelihood and duration of systemic anti-
tumor immunity in response to immunotherapy is to add RT

as an adjunct to bolster the immune response. When combined
with RT, immunotherapeutic approaches can be broadly separated
into (1) the promotion of cross-priming of tumor-specific CTLs,
(2) the stimulation of immune effector function of CTLs primed
by RT, and (3) neutralization of the immunosuppressive effects
of the tumor microenvironment. Essentially, all current clinical
approaches fall into the first two categories, with the third category
primarily in the pre-clinical stage.

PROMOTION OF CROSS-PRIMING OF TUMOR-SPECIFIC CTLs
GROWTH FACTORS TO FACILITATE RECRUITMENT OF DCs
The use of growth factors to recruit DCs from the bone marrow to
the irradiated tumor was based on the very first animal model of
the abscopal effect. In this model, syngeneic breast cancer cells were
implanted subcutaneously into the bilateral flanks of Balb/c mice.
Once the tumors grew into palpable nodules the tumor on one side
was treated with RT and systemic fms-like tyrosine kinase-3 (flt-3)
ligand was given concomitantly to recruit DCs from the bone mar-
row. The combination of RT and flt-3 ligand inhibited growth of
both the irradiated tumor and the contralateral untreated tumor.
This abscopal effect in a tumor nodule outside of the radiation
field was demonstrated to be tumor-specific and was not observed
when the experiment was repeated in nude mice, which lack T-
cells, suggesting an immune-mediated mechanism (104). Due to
the lack of clinical availability of flt-3 ligand, GM-CSF – another
DC growth factor – was substituted when these pre-clinical studies
were translated into a proof of principle pilot study at our institu-
tion for patients with metastatic solid tumors. GM-CSF increases
the percentage of DCs and promotes their maturation; facilitat-
ing cross-presentation of newly released antigens after cancer cell
death is achieved within the irradiated tumor. In this study, one
measureable metastatic lesion was treated to a dose of 35 Gy in 10
fractions,and starting on day seven (after 1 week of radiation) GM-
CSF (125 µg/m2) was administered subcutaneously every day for
14 days. Abscopal response was defined as a measurable response in
any of the measurable lesions outside the radiation field, assessed
by PET-CT. Results of this trial were reported at the American Soci-
ety for Therapeutic Radiation Oncology (ASTRO) annual meeting
in 2012, and a manuscript describing the long-term outcome of
the treated patients is in preparation. A weakness of this study was
the lack of immune-monitoring available for these patients.

INTRATUMORAL INJECTION OF AUTOLOGOUS DCs
A more direct, albeit labor intensive, method for delivering DCs to
the site of tumor antigen release after RT is by direct injection. For
this therapy, autologous DCs are generated from mononuclear
cells isolated by leukapheresis from peripheral blood by cultur-
ing these in vitro in the presence of cytokines and growth factors
(GM-CSF). These DCs are then reintroduced directly into the irra-
diated tumor by injection. In one study utilizing this method, five
HLA-A2+ patients with high-risk prostate cancer were treated with
androgen suppression, 45 Gy of external beam RT and intrapro-
static DC injections after fractions 5, 15, and 25. Serial prostate
biopsies before and during treatment showed apoptosis of tumor
cells and an increase in tumor-infiltrating CD8+ T-cells, as well
as an increase in prostate specific CD8+ T-cells in the periph-
eral blood (116). This approach has also been used neoadjuvantly
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in patients with high-risk soft tissue sarcoma. Seventeen patients
were treated to 50.4 Gy in 28 fractions with intratumoral injection
of 107 DCs, three times during treatment and once near surgery to
assess for cell migration. Nine patients (53%) developed tumor-
specific immune responses, which lasted up to 42 weeks with 12 of
17 patients (71%) free of progression at 1 year (117). There is one
small completed randomized trial using this approach, investigat-
ing radiation therapy with and without intratumoral DC injection.
Preliminary results reported 5/14 patients exhibiting an enhanced
T-lymphocyte response in the experimental arm versus 2/6 in the
control arm (ClinicalTrials.gov identifier: NCT01347034).

Intratumoral injection of DCs has also been used in patients
with refractory hepatoma in combination with 8 Gy, single-
fraction RT. All 14 patients in this study tolerated the treatment,
while half of the patients had a minor or partial response clinically,
and 8 patients developed an AFP specific immune response (118).
There is an ongoing proof of principle trial studying the combina-
tion of RT with intratumoral DC injection in patients with malig-
nant melanoma (ClinicalTrials.gov identifier: NCT01973322).
Another recently completed phase I/II study examined the com-
bination of intratumoral DC injection with gemcitabine and
hypofractionated stereotactic body radiation therapy (SBRT) in
the setting of unresectable pancreatic cancer, but results are
pending (ClinicalTrials.gov identifier: NCT00547144).

DC ACTIVATION USING TLR AGONISTS
Another approach to improving T-cell cross-priming in response
to RT is to activate intratumoral DCs using TLR agonists, thus
improving the ability of DCs to present tumor antigens released
by RT and to provide co-stimulation to naïve T-cells. This results
in more robust priming and effector function of tumor-specific
CTLs. Many different TLR ligands, both natural and synthetic,
have been utilized in conjunction with RT to boost anti-tumor
immunity. PSK, a protein-bound polysaccharide derived from the
fungus Basidiomycete coriolus versicolor has been shown to activate
NK cells and DCs through TLR2, leading to its use in conjunction
with chemoRT in locally advanced rectal cancer (119, 120). Thirty
patients were treated with the oral antimetabolite radiosensitiz-
ing chemotherapy S-1 in combination with neo-adjuvant radi-
ation (20 Gy in 10 fractions) followed by radical surgery with
intra-operative electron therapy (15 Gy). Patients were random-
ized between PSK given three times a day at a dose of 3 g/day
or placebo during the neo-adjuvant external beam portion of the
treatment. There was a significant increase in the percentage of NK
cells in the peripheral blood and an increase in number of CTLs
in the rectal mucosa, as well as a decrease in the immunosup-
pressive acidic protein level in the serum of patients treated with
PSK (121). A suspension of heat killed Mycobacterium obuense,
called IMM–101, also contains TLR2 agonists, which has been
shown to be safe and well tolerated in human beings (122). The
combination of IMM–101 and single-fraction linear accelerator
based stereotactic radiosurgery is currently being tested in a single
arm, phase II study in patients with previously treated metasta-
tic colorectal cancer (ClinicalTrials.gov identifier: NCT01539824).
Similarly, a hot water extract from bacillus tuberculosis called
Z-100, containing polysaccharides such as arabinomannan and
mannin, has immunomodulatory properties (123). This was tested

in a Japanese phase III, randomized trial in patients with stage
IIB – IVA cervical cancer in conjunction with standard of care
chemoRT with cisplatinum. A total of 249 patients were ran-
domized to biweekly subcutaneous injections of Z-100 or placebo
and concurrent RT. Z-100 demonstrated a trend toward increased
overall survival (p= 0.07), although the statistical power of this
study was less than anticipated because survival rates were higher
than expected for both arms (124). There is also an ongoing trial
of the TLR4 agonist glucopyranosyl lipid A in combination with
five to six fractions of RT in patients with metastatic sarcoma,
(ClinicalTrials.gov identifier: NCT02180698).

TLR3 is the receptor for poly-ICLC, a synthetic double stranded
RNA shown to increase the antibody response to antigen and aug-
ment the activation of NK cells, macrophages, and T-cells (125,
126). The North American Brain Tumor Consortium conducted
a single-arm phase II trial of patients with recurrent anaplastic
glioma, testing 20 mcg/kg poly-ICLC administered three times
weekly by intramuscular injection in combination with 200 cGy
daily RT to the recurrent brain tumor to a total dose of 60 Gy
followed by poly-ICLC for up to 1 year, or until tumor progres-
sion. Thirty eligible patients demonstrated a 1-year overall survival
of 69%, which compares favorably to the group treated with RT
alone (127).

TLR9 agonists have also been the target of investigation of com-
bined immunoradiotherapy. Brody et al. injected the CpG DNA
PF-3512676 into the tumors of 15 patients with low-grade B-cell
lymphoma treated concurrently with low-dose RT, resulting in a
27% response rate (128). The success of this approach led to its
application in mycosis fungoides in a phase I/II study that demon-
strated a 33% response rate and a trend toward a reduction of
CD25+ T-cells (primarily Tregs) and dermal DCs in the clinical
responders (129).

Imiquimod is a synthetic imidazoquinoline, which specifically
activates TLR7, expressed by both plasmacytoid DCs and CD11c+

myeloid-derived DCs (130). In pre-clinical models, we have shown
that RT in combination with imiquimod significantly improves
survival of tumor-bearing mice treated with either modality alone,
and based on these results we initiated an ongoing phase I/II study
of imiquimod and RT for patients with breast cancer metastatic
to the skin or recurrent on the chest wall (ClinicalTrials.gov iden-
tifier: NCT01421017) (131, 132). Imiquimod is also being used
in a pilot study in combination with concurrent radiation in an
attempt to improve outcomes in diffuse intrinsic pontine glioma,
a pediatric brain tumor with a poor prognosis (ClinicalTrials.gov
identifier: NCT01400672).

CYTOTOXIC GENE THERAPY
Cytotoxic gene therapy delivered in situ is a different tactic for
improving the radiation-induced anti-tumor-immune response.
This method employs intratumoral injection of recombinant
viruses carrying genes that induce tumor-specific cell death, which
complements the immunogenic cell death induced by RT. Cancer
gene therapy using herpes simplex virus thymidine kinase (HSV-
tk) in combination with gancyclovir, acyclovir, or valacyclovir to
induce tumor cell death and anti-tumor immunity in combina-
tion with RT has been used with moderate success in patients
with prostate cancer. After completing a phase I trial to establish
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safety in 18 men, this approach was tested in 33 men with inter-
mediate and high-risk features in combination with definitive RT
and anti-hormonal therapy (133). With a median follow-up of
26 months, mean percentages of DR+CD8+ T cells were increased
at all time-points up to 8 months with DR+CD4+ T cells increased
later and sustained longer until 12 months (134). The same group
is conducting three parallel trials as salvage treatment in patients
who progress after RT, as neo-adjuvant treatment prior to radical
prostatectomy, and in combination with definitive RT. The addi-
tion of RT significantly increased both CD4+ and CD8+ T-cells
in peripheral blood when compared to the methods lacking com-
bined RT, adding support to combined modality therapy (135).
This led to the initiation of a phase III multi-center randomized
trial that will be very important in establishing the efficacy of this
approach (ClinicalTrials.gov identifier: NCT01436968). We will
also learn of the potential activity of this approach in patients with
malignant glioma (ClinicalTrials.gov identifier: NCT00589875,
NCT00751270) and pediatric brain tumors (ClinicalTrials.gov
identifier: NCT00634231), and using a similar approach in pan-
creatic cancer (ClinicalTrials.gov identifier: NCT00638612), with
completion and reporting of ongoing trials.

VACCINES
Therapeutic cancer vaccines promote anti-tumor immunity by
stimulating T-cell priming against tumor antigens, or peptide anti-
gens thought to be specific or cross-reactive with tumors. This is
another method that acts in parallel with RT for inducing anti-
tumor immunity, and is often given with exogenous immunostim-
ulatory adjuvants that promote cross-priming of T-cells against the
vaccine antigen as well as antigens released by RT. Pre-clinical stud-
ies support the synergistic effect of therapeutic vaccination with
RT. For example, a combination of 8 Gy delivered with a recombi-
nant vaccinia-carcinoembryonic antigen vaccine (CEA) resulted
in rejection of CEA expressing colon cancer, an effect that was
not observed when the treatments were given individually (136).
Human studies mimic these results.

One powerful effect of tumor vaccines is the ability to jump-
start the anti-tumor-immune response to both vaccination and RT,
inducing a phenomenon known as an “antigen cascade” or “epi-
tope spreading” (137). Initially discovered in models of autoim-
mune disease, and more recently described after administration
of peptide-based cancer vaccines, epitope spreading describes the
generation of T-cells specific for distinct and non-cross reac-
tive tumor antigens after vaccination against known antigens
(138). This phenomenon was particularly well characterized after
peptide-based vaccination for prostate cancer that was adminis-
tered concurrently with standard definitive RT. In this phase II
trial, 30 men with clinically localized prostate cancer were ran-
domized 2:1 to receive vaccine plus prostate directed RT or RT
alone. The vaccine consisted of a recombinant vaccinia viral vec-
tor coding for PSA and the co-stimulatory molecule B7.1, and
was administered concurrently by subcutaneous injection with
GM-CSF and low-dose IL-2, followed by monthly booster vaccina-
tion with recombinant fowlpox-PSA. Eight patients had extensive
analysis of their PBMCs for tumor-specific T-cell responses, and
six of these eight patients developed T-cells specific for multiple
tumor-associated antigens that were not included in the vaccine,

such as PAP, MUC-1, PSMA, and PSCA (78). This suggests vacci-
nation against a single tumor antigen along with RT can spark an
antigenic cascade that results in an immune response against many
endogenous tumor antigens. Most vaccine trials do not specifically
incorporate RT for its immunogenic properties, and will not be
described here.

STIMULATION OF IMMUNE EFFECTOR FUNCTION OF CTLs
CYTOKINES TO BOLSTER IMMUNE EFFECTOR FUNCTION
One approach to improving the efficacy of tumor-specific T-cells
induced by RT is to bolster the effector function of these T-cells
and other leukocytes through the use of cytokines. Interferons
are a group of proteins that are secreted by DCs, lymphocytes,
macrophages, fibroblasts, and other leukocytes, that increase the
activity of immune effector cells and make cancer cells into better
immune targets by increasing antigen processing and presentation
(139). The combination of interferon alpha and chemoradia-
tion provides a survival advantage over chemoradiation alone
in early studies of patients with completely resected pancreatic
cancer (140). Unfortunately, the treatment is toxic, with 95%
of patients developing grade 3 or higher toxicity. This has led
to the premature closure of ACOSOG Z05031, a randomized
trial assessing a similar treatment strategy, and until now, other
randomized trials have failed to show a benefit to combined adju-
vant chemoradiation with immunotherapy for resected pancreatic
cancer (141, 142).

Similar toxicity was observed when tumor necrosis factor-alpha
(TNF-α) in combination with radiation was tested for locally
advanced and metastatic tumors. This phase I trial resulted in
a 23% patient withdrawal rate due to major toxicity (143). In an
attempt to improve the tolerability of TNF-α therapy, TNFerade
was developed; a replication deficient adenovector that expresses
human TNF-α under the control of the radiation-inducible Egr-1
promoter. This was first tested in human beings in conjunction
with radiation in a phase I trial involving 36 patients with solid
tumors, of whom 70% had an objective response with no dose-
limiting toxicities (144). Phase I and II studies were subsequently
conducted in soft tissue sarcoma, rectal cancer, pancreatic cancer,
esophageal cancer, and recurrent head and neck cancer (145–149).
The promising results in the locally advanced pancreatic cancer
setting led to a multi-institutional, phase III randomized trial
of concurrent fluorouracil and RT with or without TNFerade.
Three hundred and four patients were randomized 2:1 in favor of
TNFerade treatment. Lack of benefit in progression-free or overall
survival dampened the optimism for this therapeutic approach in
this tumor setting (150).

Interleukin 2 (IL-2) is a cytokine that is necessary for the
growth, proliferation, and differentiation of T-cells to become
antigen-specific CD4+ and CD8+ T-cells. IL-2 has been used with
meager success for both melanoma and renal cell carcinoma (151,
152). Pre-clinical studies demonstrated increased cytokine release
(153, 154) and up-regulated expression of MHC-I (68), B7.1 (155),
and Fas/CD95 (156, 157) with the addition of radiation. This
inspired a phase I study combining IL-2 and SBRT for patients
with metastatic renal cell carcinoma and melanoma in which 2/3
of the patients demonstrated a response, and immune-monitoring
looking at cryopreserved PMBCs showed a significantly greater
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frequency of proliferating CD4+ T cells with an early activated
effector memory phenotype (158).

A phase II study is ongoing, looking at the combination of IL-
2 and SBRT in patients with metastatic renal cell carcinoma to
assess for both a local and systemic response with the rationale
that large fractions of radiation (8–20 Gy) in combination with
IL-2 will increase antigen presentation and immune stimulation
(ClinicalTrials.gov identifier: NCT01896271). A similar strategy
is being employed by the Dutch in the setting of oligometas-
tases in an ongoing phase I trial (ClinicalTrials.gov identifier:
NCT02086721). In an attempt to decrease the toxicity of IL-2 treat-
ment, there is an industry sponsored phase II trial combining SBRT
with MSB0010445, a modified IL-2 cytokine bound to a mono-
clonal antibody specific for DNA, which localizes the treatment to
necrotic cells (ClinicalTrials.gov identifier: NCT01973608).

ENHANCEMENT OF T-CELL CO-STIMULATION
Co-stimulation refers to the activating signals delivered to T-cells –
along with antigen-specific stimulation through engagement of
the T-cell receptor – that are required for effective priming and
anti-tumor effector function (159). More generally, this is an
important tool used by the immune system to prevent autoim-
munity by ensuring the presence of DAMPs at the time of T-cell
priming. The use of TLR agonists, described above, indirectly
enhances co-stimulation and priming of tumor-specific T-cells;
however, agonists of the co-stimulatory receptors can be utilized
to directly promote co-stimulation and improved activation and
effector function of anti-tumor T-cells. There are two general fam-
ilies of co-stimulatory molecules, the B7/CD28 immunoglobulin
family and the TNF/TNFR family (160). The stimulatory B7-
family members include CD80 (B7-1) and CD86 (B7-2), which
stimulate T-cells through CD28, and CD275 (ICOS-L), which acts
through CD278 (ICOS) (161). The TNF/TNFR family includes
CD154 (CD40L), CD252 (OX40L), CD70, and CD137L (4-1BBL),
which signal through CD40L, CD134 (OX40), CD27, and CD137
(4-1BB), respectively.

Many of these co-stimulatory molecules and pathways are
already targets for anti-cancer therapy, but there is more limited
experience combining them with RT. Monoclonal antibody ago-
nists of CD40 improve the efficacy of DC based immunotherapy
(162), and are showing promise in combination with standard
chemotherapy (163–165). Antibody agonists to 4-1BB are also
showing promise as immunotherapy, especially in combination
with other immunotherapies (166, 167). For example, overall sur-
vival was improved in a murine glioma model when radiation
was combined with a 4-1BB agonist and blockade of cytotoxic
T-lymphocyte antigen-4 (CTLA-4). As predicted, treatment with
the triple therapy resulted in a higher density of CD4+ and CD8+

tumor-infiltrating lymphocytes when compared to RT or either
immunotherapeutic agent alone (168). Furthermore, 4-1BB acti-
vation augments the effects of RT in the murine M109 lung cancer
and EMT6 breast cancer models, in which a single dose up to 15 Gy
or fractionated RT up to 20 Gy slowed tumor growth to a signifi-
cantly greater extent in combination with an antagonist antibody
to 4-1BB (169).

OX40 is one of the more powerful co-stimulatory receptors
expressed on activated T-cells, and signaling through OX40 is

capable of breaking tolerance (170). Signaling through OX40 by
OX40 ligand or monoclonal antibody agonists stimulates T-cells
to proliferate, produce cytokines, and improve their effector func-
tion (171, 172). In a pre-clinical model of lung cancer transfected
with an experimental antigen, a combination of a monoclonal
antibody OX40 agonist with a single fraction of 20 Gy resulted in
improved tumor response and increased antigen-specific CD8+

T-cells that were not observed with either treatment alone (173).
There is an ongoing phase Ib clinical trial testing the effect
of cyclophosphamide, RT, and an antibody agonist of OX40 in
patients with metastatic prostate cancer (ClinicalTrials.gov iden-
tifier: NCT01303705). In a way, this is actually two types of
immunotherapy combined with RT. Although cyclophosphamide
is a conventional chemotherapy, when given in low doses it tends
to selectively deplete Tregs over effector T-cells, thus removing a
barrier from the anti-tumor-immune response (174, 175). This
effect of cyclophosphamide was first discovered 40 years ago, and
is only now being utilized in clinical trials to modulate anti-tumor
immunity (176). Cyclophosphamide (300 mg/m2) is administered
intravenously on day 1, followed by a single 8 Gy dose of RT on
day 4 treating up to three osseous metastases along with the OX40
agonist treatment, which is repeated every 2 days for a total of three
doses. There is a similar study of patients with metastatic breast
cancer combining OX40 agonist treatment with SBRT utilizing
doses ranging from a single fraction of 15 Gy up to two fractions
of 20 Gy (ClinicalTrials.gov identifier: NCT01642290). Safety and
immune correlates are the primary outcome measures of these
trials, but early results have not yet been reported.

CHECKPOINT BLOCKADE TO BOLSTER CTL EFFECTOR FUNCTION
A reciprocal approach that is also effective for boosting effec-
tor T-cell function is to block the immune checkpoints that
counteract endogenous co-stimulation of activated T-cells (177).
Immune checkpoints are a collection of endogenous mechanisms
for preventing unchecked T-cell activation and runaway immune
responses after effector T-cells have neutralized an infectious
or neoplastic threat. Checkpoint receptors, including CTLA-4
and PD-1, are up-regulated on activated T-cells and transmit
inhibitory signals, which suppress T-cell proliferation and func-
tion (159). For example, in addition to the co-stimulatory receptor
CD28, activated T-cells also express CTLA-4, which directly com-
petes for binding to the co-stimulatory ligands CD80 and CD86
(178). CTLA-4 acts as a natural checkpoint to prevent indefi-
nite activation of T-cells, and inhibition of this immune check-
point with a monoclonal antibody antagonist to CTLA-4 shifts
the balance of co-stimulation toward increased proliferation and
function of activated T-cells, including tumor-specific CTLs.

There is extensive data, both pre-clinical and from patients,
demonstrating the effectiveness of CTLA-4 blockade. Monother-
apy with the CTLA-4 antagonist ipilimumab resulted in a sig-
nificant increase in overall survival of patients with metastatic
melanoma in two large randomized trials, and is now one of
the most promising immunotherapeutic agents (179, 180). In
our pre-clinical studies, CTLA-4 blockade acts synergistically with
RT to induce an abscopal response to RT in murine models of
poorly immunogenic breast cancer and colon cancer (105). Impor-
tantly, these studies demonstrated that oligofractionation of RT
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(8 Gy× 3) was more effective at inducing an abscopal response
than a single large fraction of 20 Gy or more fractionated treatment
(6 Gy× 5). We are currently testing this approach in an ongoing
phase I/II clinical trial for patients with metastatic non-small cell
lung cancer (ClinicalTrials.gov identifier: NCT02221739) and in a
phase III, randomized trial for patients with metastatic melanoma
(ClinicalTrials.gov identifier: NCT01689974). In the lung cancer
study, patients with at least two measurable sites of disease are
treated with 30 Gy in five consecutive fractions to one metastatic
site with concurrent ipilimumab (3 mg/kg) administered intra-
venously every three weeks for four cycles starting within 24 h of
the first fraction of RT. The same treatment is administered in the
melanoma study but half of the patients are randomized to treat-
ment with ipilimumab alone. The primary endpoints are the safety
of the combined therapy and presence of an abscopal response
in measurable metastatic sites on follow-up PET/CT, determined
by immune-related response criteria using the modified WHO
criteria.

Clinical trials using this same combination, but with a different
treatment schedule and RT regimen have been recently published.
An open-label phase I/II trial for men with metastatic castration-
resistant prostate cancer tested escalated doses of ipilimumab from
3 mg/kg up to 10 mg/kg in 33 patients with or without a single
8 Gy dose directed at one to three osseous metastases. The high-
est dose of ipilimumab was well tolerated and an additional 34
patients were treated with concurrent radiation with only 25% of
patients demonstrating progressive disease (181). To further test
this treatment approach, a double-blind, randomized multi-center
trial was conducted including 799 men with castration-resistant
prostate cancer who progressed on docetaxel (182). Patients were
treated with a single fraction of 8 Gy to one to five sites of osseous
metastases and randomized to subsequent treatment with either
10 mg/kg of ipilimumab or placebo within 2 days of RT and con-
tinued every 3 weeks for up to four doses. The regimen was well
tolerated but there was no difference in overall survival in the
population as a whole. However, in subset analysis there was an
improvement in overall survival of patients with a smaller bur-
den of metastatic disease, demonstrated by alkaline phosphatase
less than 1.5 the upper limit of normal, hemoglobin greater than
11 g/dL, and an absence of visceral metastases. While only limited
clinical trial data are available in the published literature justifying
a combined approach, this is an area of extremely active research
(Table 1).

NEUTRALIZATION OF THE IMMUNOSUPPRESSIVE TUMOR
MICROENVIRONMENT
The immunosuppressive tumor microenvironment is one of the
primary means of immune evasion by tumors, yet there are a few
ongoing or completed studies combining this treatment approach
with RT. The use of low-dose cyclophosphamide to deplete intra-
tumoral Tregs is one example of this approach, and is sometimes
used in combination with other immunotherapies. Another inter-
esting study is testing tadalafil with RT. Tadalafil is a small mole-
cule inhibitor of phosphodiesterase 5, which results in inhibition
of myeloid-derived suppressor cell function and can target the
suppressive myeloid response associated with hypofractionated
radiation. An ongoing study for patients with locally advanced

and borderline resectable pancreatic cancer is testing the com-
bination of tadalafil with three fractions of 10 Gy delivered every
other day to the primary tumor and grossly involved nodes, started
after a 21 day cycle of gemcitabine, and patients with resected, sta-
ble, or responding disease continue on to receive an additional
three cycles of gemcitabine. Like the other early phase studies, the
primary endpoints of this study are feasibility and safety, with sec-
ondary endpoints looking at immune-correlates from blood and
serum samples as well as immunohistology of resected tumor spec-
imens and pathologic response rates (ClinicalTrials.gov identifier:
NCT01903083).

CLINICAL APPROACHES: WHAT HAVE WE LEARNED?
Encouraging albeit preliminary results of combining RT and
immunotherapy prompt a pause for reflection to take stock of what
we have learned so far. Probably, the most promising results are
from approaches enhancing the effector function of T-cells primed
by RT. Combinations of RT with therapeutic vaccination have
shown a more modest promise. The immunosuppressive effect of
the tumor microenvironment is one potential reason for this. Vac-
cination, like RT, can induce priming of tumor reactive CTLs, but
given alone it may not be able to overcome local immune suppres-
sion in the tumor. Future combinations of cancer vaccines with
immunotherapeutics that enhance T-cell function or modulate the
tumor microenvironment may prove to be more effective.

One approach that has not been adequately explored is the
use of immunotherapeutics to modify the immune-suppressive
tumor microenvironment prior to RT. RT has its own local effects
on the tumor microenvironment, modifying regulatory lympho-
cytes, and recruiting new naïve myeloid cells such as DCs and
TAMs. In established tumors, MDSCs are another targetable sup-
pressive cell type that inhibit anti-tumor immunity. Modulation
of the tumor microenvironment to counteract suppressive ele-
ments has the potential to act synergistically with RT to boost the
systemic anti-tumor-immune response.

So far, several variables seem to be relevant to the success of
combining immunotherapy and RT. Among them, dose and frac-
tionation, site of irradiation, and sequencing with the selected
modality deserve further discussion. Dose and fractionation are
important factors in the immunogenicity of RT. Pre-clinical data
suggests that when combined with CTLA-4 antibody antagonists,
8 Gy in three fractions or 6 Gy in five fractions are superior to stan-
dard fractionation or a single dose of 20 Gy (105). The underlying
mechanism that explains the difference in immune effect among
different dose and fractionation schedules is unclear, but these
schedules are supported by the recent clinical reports of impres-
sive abscopal effects after palliative RT to a single metastatic site in
malignant melanoma (9.5 Gy× 3) and non-small cell lung cancer
(6 Gy× 5) (101, 102).

The target site of RT may be another important consideration
when combining RT with immunotherapy. Pre-clinical models are
less instructive here, since most models involve radiation to tumors
implanted into the subcutaneous tissue. However, when reviewing
the clinical reports of abscopal effects, these were observed after
irradiation targeting visceral metastases (97–99, 183–188).

The timing of RT relative to immunotherapy is another
important consideration. This question has not been addressed
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Table 1 | Active clinical trials testing the combination of ipilimumab and radiotherapy.

Clinicaltrials.gov

identifier

Disease site Design Phase Primary outcome

measure

Radiation dose/

timing

Institution(s)

NCT01557114 Melanoma (stage

III/IV)

1 arm: ipi with RT I Maximum tolerated

dose

9, 15, 18, 24 Gy in three

fractions with concurrent ipi

Gustave Roussy

NCT01996202 Melanoma (locally

advanced or

unresectable)

Two cohorts: (A)

resected high-risk

patients or (B)

neoadjuvant, locally

advanced

I Safety and

tolerability

No data provided Duke University

NCT01565837 Melanoma

(oligometastatic but

unresectable)

1 arm: ipi with SRT II Safety and

tolerability

SRT one to five lesions with

third cycle of ipi

Comprehensive

cancer centers of

Nevada

NCT01703507 Melanoma (brain

metastases)

Two arms: (A) ipi with

WBRT or (B) ipi with

SRS

I Maximum tolerated

dose

(A) WBRT weeks 1 and 2 (B)

SRT week 1. Ipi delivered

weeks 1, 4, 7, 10

Thomas Jefferson

University

NCT01449279 Melanoma (stage IV) One arm: ipi with RT I Safety Pallitive RT within 2 days of ipi Stanford

NCT01689974 Melanoma (stage IV) Two arms, randomized:

ipil±RT

II Tumor response 6 Gy×5 given on consecutive

treatment days starting on

day 1 with Ipi on day 4

New York

University

NCT01497808 Melanoma

(metastatic)

One arm: ipi with SRT I/II Dose-limiting toxicity SRT 1 lesion prior to ipi University of

Pennsylvania

NCT01970527 Melanoma (stage IV) One arm: SRT before ipi II Immune-related

response, toxicity

and survival

3 fractions of SRT between

days 1–13 followed by ipi

University of

Washington/NCI

NCT01935921 Head and neck

(stage III–IVB)

One arm: ipi, cetuximab

and RT

I Safety and

tolerability

IMRT 5 days a week for

7 weeks with cetuximab and

ipi at week 4 for 3, 21 day

courses

NCI

NCT01711515 Cervical cancer

(stage IB–IVA)

One arm: ipi,

cisplatinum and RT

I Safety and

tolerability

Standard of care

chemoradiation followed by 4,

21 day cycles of ipi within

2 weeks

NCI

NCT02107755 Melanoma

(metastatic)

One arm: ipi followed

by SRT

II Progression-free

survival

Ipi weeks 1, 4, 7, 10 with SRT

two to three fractions on

week 5–6

Ohio State

Comprehensive

Cancer Center

NCT02115139 Melanoma (brain

metastases)

One arm: ipi followed

by WBRT

II One year survival Ipi weeks 1, 4, 7, 10 with

WBRT between cycles 1

and 2

Grupo Español

Multidisciplinar de

Melanoma

NCT01860430 Head and neck

(stage III–IV)

One arm: IMRT with

cetuximab and dose

escalating ipi

II Maximum tolerated

dose

IMRT weeks 2–8 (70–74 Gy),

Cetuximab weeks 1–8, ipi

weeks 1, 5, 8, 11, 14

University of

Pittsburgh/NCI

NCT02097732 Melanoma (Brain

Metastases)

Two arms: (A) SRT

followed by ipi (B) ipi

then SRT then ipi

II Progression-free

survival

(A) SRT followed by 4 cycles

ipi (B) 2 cycles of ipi then SRT

then 2 cycles ipi

University of

Michigan Cancer

Center

Ipilumimab(ipi); Radiation Therapy (RT); Sterotactic Radiotherapy (SRT); Stereotactic Radiosurgery (SRS); Whole Brain Radiotherapy (WBRT); Intensity Modulated

Radiation Therapy (IMRT); National Cancer Institute (NCI).

thoroughly in the pre-clinical models. In studies combining
CTLA-4 blockade with RT using a mouse model of breast cancer,
the antibody was administered at different time-points with the

best abscopal response seen when the first dose of antibody
was given during RT (105). Similarly, the patient with non-
small cell lung cancer who experienced an abscopal effect had
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received concurrent ipilimumab and radiation (102). Yet, the
reported abscopal effect in a patient with metastatic melanoma
occurred after long-term treatment with ipilimumab prior to
RT (101).

Tumor burden and the associated degree of immunosuppres-
sion also play an important role in selection of the best candidates
for trials combining radiation and immunotherapy. Metastatic
tumor burden correlates with immune suppression, probably both
as a marker of a weakened immune system and as an active
player in systemic immune dysfunction (189, 190). The combi-
nation of ipilimumab with RT in men with castration-resistant
prostate cancer resulted in a survival benefit only in patients with
smaller burdens of metastatic disease, demonstrated by alkaline
phosphatase less than 1.5 the upper limit of normal, hemoglo-
bin greater than 11 g/dL, and absence of visceral metastases (182).
Perhaps future trials should initially focus on patients with more
limited metastatic disease.

Prior conventional therapy may also impact the results of
immunotherapy trials. Many chemotherapeutic regimens cause
myelosuppression, which depletes the very cells that are nec-
essary for an effective immune response (191). However, some
chemotherapeutic agents can cause immunogenic cell death and
promote anti-tumor immunity (192). Also, despite the anti-
tumor-immune promoting effects of RT, prior irradiation may
lead to modification of the tumor microenvironment leading to
a more immune-tolerant phenotype (113, 193). The net effect
of these prior treatments is not clear, but it is likely to have an
impact on the immune system and on the effectiveness of cancer
immunotherapy.

Even something as fundamental as defining appropriate clin-
ical endpoints is undergoing a critical re-appraisal, determining
the best way to monitor the immune response to these combi-
nations of immunotherapy and RT is an unresolved question.
Specific immune responses are notoriously difficult to identify and
track since every tumor has a unique complement of mutations
and every patient has a unique MHC haplotype for present-
ing tumor antigens. As a surrogate to immune response and an
alternative to the traditional RECIST criteria used to measure
the effect of cytotoxic therapy, Wolchok et al. have introduced
the immune-related response criteria (194, 195). These crite-
ria take into account the mixed nature of clinical responses to
immunotherapy, with some lesions responding while other lesions
remain stable or even appear to progress. Importantly, overall sur-
vival and toxicity profiles, with their impact on quality of life,
have emerged as the main clinical outcomes for immunother-
apy. In some trials of immune monotherapy, most notably with
sipuleucel-t, no objective response was observed; however, there
was a significant improvement in overall survival (196). Mul-
tidisciplinary efforts to define optimal immunomonitoring are
currently ongoing.

CONCLUSION
Ten years ago our group reported the first pre-clinical studies of
the systemic anti-tumor effects of RT in combination with modern
immunotherapy (104), after providing an immunological expla-
nation for the abscopal effect (104). Now, a decade later, there are
over 50 ongoing and published clinical trials combining RT and

immunotherapy for the treatment of cancer, with more studies in
the pipeline. Future directions may combine multiple approaches
to immunotherapy that augment the effect of RT on anti-tumor
T-cell priming as well as contribute to other steps of immune rejec-
tion (197). Many questions remain with regards to the optimal way
to harness ionizing radiation in combination with immunother-
apy, and how to best select patients for this approach, determining
the most appropriate clinical characteristics, tumor pathology, and
stage. Despite all of these challenges, the burgeoning interest in the
combination of immunotherapy and RT will provide exciting new
insights and avenues to explore as we continue our quest to harness
patients’ innate ability to eliminate evasive tumor cells.
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