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Abstract. In sparse approximation theory, the fundamental problem is to recon-
struct a signal A ∈ Rn from linear measurements 〈A, ψi〉 with respect to a
dictionary of ψi’s. Recently, there is focus on the novel direction of Compressed
Sensing [9] where the reconstruction can be done with very few—O(k logn)—
linear measurements over a modified dictionary if the signal is compressible, that
is, its information is concentrated in k coefficients with the original dictionary. In
particular, these results [9, 4, 23] prove that there exists a single O(k logn) × n
measurement matrix such that any such signal can be reconstructed from these
measurements, with error at most O(1) times the worst case error for the class
of such signals. Compressed sensing has generated tremendous excitement both
because of the sophisticated underlying Mathematics and because of its potential
applications.
In this paper, we address outstanding open problems in Compressed Sensing. Our
main result is an explicit construction of a non-adaptive measurement matrix and
the corresponding reconstruction algorithm so that with a number of measure-
ments polynomial in k, logn, 1/ε, we can reconstruct compressible signals. This
is the first known polynomial time explicit construction of any such measurement
matrix. In addition, our result improves the error guarantee from O(1) to 1 + ε
and improves the reconstruction time from poly(n) to poly(k logn).
Our second result is a randomized construction of O(k polylog(n)) measure-
ments that work for each signal with high probability and gives per-instance ap-
proximation guarantees rather than over the class of all signals. Previous work on
Compressed Sensing does not provide such per-instance approximation guaran-
tees; our result improves the best known number of measurements known from
prior work in other areas including Learning Theory [20, 21], Streaming algo-
rithms [11, 12, 6] and Complexity Theory [1] for this case.
Our approach is combinatorial. In particular, we use two parallel sets of group
tests, one to filter and the other to certify and estimate; the resulting algorithms
are quite simple to implement.

1 Introduction

We study a modern twist to a fundamental problem in sparse approximation theory,
called Compressed Sensing, recently proposed in the Mathematics community.

Sparse Approximation Theory Background. The dictionary Ψ denotes an orthonor-
mal basis for Rn, i.e. Ψ is a set of n real-valued vectors ψi each of dimension n and
ψi ⊥ ψj . The standard basis is the traditional coordinate system for n dimensions,
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namely, for i = 1, . . . , n, the vector ψi = [ψi,j ] where ψi,j = 1 iff i = j.3 A sig-
nal vector A in Rn is transformed by this dictionary into a vector of coefficients θ(A)
formed by inner products between A and vectors from Ψ . That is, θi(A) = 〈A, ψi〉
and A =

∑
i θi(A)ψi by the orthonormality of Ψ .4 From now on (for convenience of

reference only), we reorder the vectors in the dictionary so |θ1| ≥ |θ2| ≥ . . . ≥ |θn|.
In the area of sparse approximation theory [8], one seeks representations of A that

are sparse, i.e., use few coefficients. Formally, R =
∑

i∈K θiψi, for some set K of
coefficients, |K| = k � n. Clearly, R(A) cannot exactly equal the signal A for all
signals. The error is typically taken as ‖R −A‖22 =

∑
i(Ri −Ai)2. By the classical

Parseval’s equality, this is equivalently ‖θ(A)− θ(R)‖22. The optimal k representation
of A under Ψ , Rk

opt, therefore takes k coefficients with the largest |θi|’s. The error
then is ‖A −Rk

opt‖22 =
∑n

i=k+1 θ
2
i . This is the error in representing the signal A in a

compressed form using k coefficients from Ψ .
In any application (say audio signal processing), one has a “class” of input signals

(A’s) (e.g., sinusoidal waveforms comprising the audio signal), one chooses an appro-
priate dictionary Ψ (say discrete Fourier) so that most of the signals are “compressible”
using that dictionary, and represents the signal using the adequate number (k � n)
of coefficients (θ1, . . . , θk). There are different notions of a signal being compressible
in a dictionary. In the past, e.g., in audio applications, researchers focused on the α-
exponentially decaying case where the coefficients decay faster than any polynomial.
That is, for some α, |θi| = O(2−αi), for all i. More recently, there is focus on the
p-Compressible case. Specifically the coefficients have a power-law decay: for some
p ∈ (0, 1), and for all i, |θi| = O(i−1/p). Consequently, ‖A − Rk

opt‖22 ≤ Cpk
1−2/p

for some constant Cp. A simplification of these models is the k-support case, where the
signal has at most k non-zero coefficients, so Rk

opt = A.
Study of sparse approximation problems involves the art of identifying suitable Ψ

so the signals from an application are compressible, and studying their mathematical
properties. This is a mature area of Mathematics with highly successful applications to
signal processing, communication theory and compression [8].

Compressed Sensing. Recently, Donoho posed a fundamental question [9]: Since most
of the information in the signal is contained in only a few coefficients and the rest of the
signal is not needed for the applications, can one directly determine (acquire) only the
relevant coefficients without reading (measuring) each of the coefficients? In a series of
papers over the past year, the following result has emerged.

Theorem 1. [9, 4, 23] There exists a non-adaptive set V of O(k log(n/k)) vectors in
Rn which can be constructed once and for all from the standard basis. Then, for fixed
p ∈ (0, 1) and any p-compressible signal A in the standard basis, given only measure-
ments 〈A, vi〉, vi ∈ V , a representation R can be determined in time polynomial in n
such that ‖A−R‖22 = O(k1−2/p).

3 Examples of other basis are discrete Fourier where ψi,j = 1√
n

exp(−2π
√
−1ij/n); and

Haar wavelet where every ψi is a scaled and shifted copy of the same step like function. By
applying an appropriate rotation to the basis and signal vectors, our problem can be thought of
in the standard basis only.

4 We refer to θi where A is implicitly clear.
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There are several important points to note. First, since the worst case error for a
p-compressible signal is Cpk

1−2/p, the representation above is optimal, up to constant
factors for the class of all p-compressible signals, for a fixed p. Second, even if the
signal consisted of precisely k nonzero coefficients θi1 , . . . , θik

, one needs k measure-
ments 〈A, ψij 〉 for j ∈ [1, k]; hence, the set V of measurements is only a log(n/k) fac-
tor larger than the naive lower bound of measurements needed. Third, the proof shows
existence of V by showing that a random set of V vectors will satisfy the theorem with
nonzero probability. The proof immediately gives a Monte Carlo randomized algorithm
by using such a random V .

This result has generated much interest, and a sequence of papers have improved
different aspects of the result [9, 25, 4, 23]; found interesting applications including MR
imaging [?] wireless communication [23] and generated implementations [22]; found
mathematical applications to coding and information theory [3]; and extended the re-
sults to noisy and distributed settings [2]. The interest arises for two main reasons. First,
there is deep mathematics underlying the results, with interpretations in terms of high
dimensional geometry [23], uncertainty principles [4], and linear algebra [9]. Second,
there are serious applications—for example, in going from analog to digital represen-
tation of the signals, existing hardware chips can execute measurements 〈A, vi〉 ex-
tremely efficiently, so performing O(k log(n/k)) measurements is significantly more
efficient than measuring each component of the signal (hence “compressed sensing”).
The results have inspired a number of workshops, meetings and talks [?,15, 18].

Outstanding Problems and Our Results. There are several outstanding questions in
Compressed Sensing. The most fundamental issue is to explicitly construct the non-
adaptive measurement set of vectors V (or equivalently, a transformation matrix T in
which T [i, j] = vi[j]) in the theorem. The existing results first show that if T satisfies
certain conditions, the theorem holds; then they show that T chosen from an appropri-
ate random distribution suffices. The necessary conditions are quite involved, such as
computing the eigenvalues of every O(k log n) square submatrix of T [9], and testing
that each such submatrix is an isometry, behaving like an orthonormal system [4]. No
explicit construction is known to produce T ’s with these properties. Instead, algorithms
for Compressed Sensing choose a random T , and assume that the conditions are met.
Thus, these are Monte Carlo algorithms, with some probability of failure. This is a
serious drawback for Compressed Sensing applications motivated by hardware imple-
mentations which will sense many, many signals over time. So it is highly desirable
that there be an explicit construction of T suitable for Compressed Sensing. A natural
approach is to take a random T and test whether it satisfies the necessary conditions.
However, this is much too expensive, taking time at least Ω(nk log n).

There are several other outstanding questions. For example, the time to obtain a rep-
resentation from the measurements is significantly superlinear in n (it typically involves
solving a Linear Program [9, 4, 23]). For large signals, this cost is overly burdensome.
Since we make a small number of measurements, it is much better to find algorithms
with running time polynomial in the number of measurements and hence, sublinear in
n. Lastly, the guarantee given by the above theorem is not relative to the best possi-
ble for the given signal (i.e., per-instance), but to the worst case over the whole class
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of p-compressible signals. Clearly per-instance error guarantees (equivalently, true ap-
proximation algorithms) are preferable.

We address these questions and present the first known explicit algorithms for Com-
pressed Sensing. Our approach is combinatorial, and yields a number of technical im-
provements such as sublinear time reconstruction, and tolerance to error. Our main
results are twofold.

1. We present a deterministic algorithm that in time polynomial in k and n constructs
a non-adaptive transformation matrix T of number of rows polynomial in k log n, and
present an associated reconstruction algorithm in the spirit of Theorem 1. More specif-
ically, our algorithm outputs a representation R for a compressible signal A such that
‖R−A‖22 < ‖Rk

opt−A‖22 + ε‖Ck
opt‖2. Here, ‖Ck

opt‖2 denotes the optimal error over
the whole class of signals considered. This is the first explicit construction known for
this problem in polynomial time.

In addition, this result leads to the following improvements: (a) the reconstruction
time is subquadratic in the number of measurements (and hence sublinear in n), (b) the
overall error is optimal up to 1 + ε of the worst case error ‖Ck

opt‖2 for p-compressible
signals, improving the O(1) approximation factor in prior results, and (c) the approach
applies to other cases of compressible signals with tighter bounds. For the exponentially
decaying and k-sparse family, the size of T is only O(k2 polylog(n)). The algorithms
are simple and easy to implement, without linear programming and without running
into precision-issues inherent in the choice of Gaussian random T in prior methods.

2. We address the issue of obtaining per-instance guarantees for each signal. We present
a randomized algorithm that on any given A, produces a T withO( k

ε2 polylog(n)) rows
such that in time linear in O(k polylog(n)), we can reconstruct a R with ‖A−R‖22 ≤
(1 + ε)‖A−Rk

opt‖22, with probability at least 1− 1
nO(1) .

Notice crucially that this second result does not produce a T that works for all p-
compressible signals, merely, that on any given signal A, we can produce a good R
with high probability. In this regime, which is quite different from the regime in earlier
papers on Compressed Sensing where a fixed T works for all p-compressible signals,
many results in the Computer Science literature apply, in particular, from learning the-
ory [20, 21], streaming algorithms [12, 11] and complexity theory [1]. Some of these
results do not completely translate to our scenario: the learning theory approaches as-
sume that the signal can be probed in the light of the results of prior measurements
(this is similar to adaptive group testing). Other results can be thought of as produc-
ing a T with O(k2+O(1) polylog(n)) rows which is improved by our result here. An
exception is the result in [13] which works by sampling (that is, finding 〈A, vi〉 where
vi,j = 1 for some j and is 0 elsewhere) for the Fourier basis, but can be thought of as
solving our problem using O(k polylog(1/ε, log n, log ‖A‖)) measurements. Our re-
sult improves [13] in the term polylog(‖A‖2) which governs the number of iterations
in [13]. Finally, we extend to the case when the measurements are noisy—an important
practical concern articulated in [14]—and obtain novel results that give per-instance
approximation results.

Technical Overview. The intuitive way to think about these problems is to consider
combinatorial group testing problems. We have a set U = [n] of items and a set D of
distinguished items, |D| ≤ k. We identify the items in D by performing group tests on
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subsets Si ⊆ U whose output is 1 or 0, revealing whether that subset contains one or
more distinguished items, that is |Si ∩D| ≥ 1. There exist collections of O((k log n)2)
nonadaptive tests which identify each of the distinguished items precisely.

There is a strong connection between this problem and Compressed Sensing. We
can treat θi’s as items and the largest (in magnitude) k as the members of D. Each test
set Si can be written as its characteristic vector χSi of n dimensions. A difficulty arises
in interpreting the outcome of 〈A, χSi〉. The discussion so far has been entirely com-
binatorial, but the outcome of this linear-algebraic operation of inner product must be
interpreted as a binary outcome to apply standard combinatorial group testing methods.
In general, there is no direct connection between 〈A, χSi〉 and presence or absence of
the first k coefficients in Si when the signal is from the p-compressible class. This is
also the reason that prior work on this problem has delved into the linear-algebraic and
geometric structure of the problem.

Our approach here is combinatorial. Our first results show that one can focus at-
tention on some k′ > k coefficients, in order to meet our error guarantees. Then, we
show that separating the k′ coefficients using group testing methods serves as a filter
and subsequently, using a different set of group tests serves to certify and estimate the
largest k coefficients in magnitude. This use of two parallel sets of group tests is novel.
For the second set of results, combinatorial group testing has been applied previously in
Learning Theory [20, 21], Streaming Algorithms [11, 12, 6] and Complexity Theory [1].
Here, our contribution is to adapt the approach from our first set of results and provide
a tighter analysis of the error in terms of ‖Rk

opt −A‖2 rather than in terms of ‖A‖2 as
is more typical.
Note. Preliminary versions of this paper have appeared as technical reports [7], which
are superseded by the results here. Several proofs have been omitted, for space reasons.

2 Preliminaries

Definition 1. A collection S of l subsets of {1 . . . n} is called k-selective if for any X
such that X ⊂ {1 . . . n} and |X| ≤ k, there exists Si ∈ S such that |Si ∩X| = 1, i.e.
there is a member of X which is separated from all other members of X in some Si.

Definition 2. A collection S of m subsets of {1 . . . n} is called k-strongly selective if
for anyX with |X| ≤ k, and for all x ∈ X there exists Si ∈ S such that Si∩X = {x},
i.e. every member of X occurs separated from all other members of X in some Si.

We note that the k-strongly selectivity is a stronger condition than k-selectivity,
and so the former implies the latter. Explicit constructions of both collections of sets
are known for arbitrary k and n. Strongly selective sets are used heavily in group test-
ing [10], and can be constructed using superimposed codes [19] withm = O((k log n)2).
Indyk provided explicit constructions of k-selective collections of size l = O(k logO(1) n),
where the power depends on the degree bounds of constructions of disperser graphs [16].
Probabilistic constructions are also possible [5] of near-optimal size O(k log(n/k)),
which yield a more expensive Las Vegas-style algorithm for constructing such a set
in O(nk poly(k log n)): after randomly constructing a collection of sets, verify the re-
quired property holds for all (n

k ) choices of X .
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We will also make use of the Hamming code matrix Hn, which is the d1 + log2 ne
matrix whose ith column is 1 followed by the binary representation of i. We will com-
bine matrices together to get larger matrices by (a) concatenating the rows of N to M
and get matrix denoted M

⋃
N , or (b) a Tensor product-like operation we denote ⊗,

defined as follows:

Definition 3. Given matrices V and W of dimension v × n and w × n respectively,
define the matrix (V ⊗W ) of dimension vw × n as (V ⊗W )iv+l,j = Vi,jWl,j .

3 Non-adaptive Constructions

We must describe the construction of a set of m (row) vectors Ψ ′ that will allow us to
recover sufficient information to identify a good set of coefficients. We treat Ψ ′ as an
m×nmatrix whose ith row is Ψ ′

i . When given the vector of measurements Ψ ′A we must
find an approximate representation of A. Ψ ′ is a function of Ψ , and more strongly (as
is standard in compressed sensing) we only consider matrices Ψ ′ that can be written as
a linear combination of vectors from the dictionary Ψ , i.e., Ψ ′ = TΨ , for some m × n
transform matrix T . Thus Ψ ′A = T (ΨA) = Tθ. Recall that the best representation
under Ψ using k coefficients is given by picking k largest coefficients from θ. We use
T to let us estimate k large coefficients from θ, and use these to represent A; we show
that the error in this representation can be tightly bounded.

Observe that we could trivially use the identity matrix I as our transform matrix
T . From this we would have Tθ = θ, and so could recover A exactly. However, our
goal is to use a transform matrix that is much smaller than the n rows of I , preferably
polynomial in k and log n. In general for most classes of signals, the only way to achieve
exact recovery of the optimal representation is to take a linear number of measurements:

Lemma 1. Any deterministic construction which returns k coefficients and guarantees
error exactly ‖Rk

opt −A‖2 requires Θ(n) measurements.

3.1 p-compressible signals

In the p-compressible case the coefficients (sorted by magnitude) obey |θi| = O(i−1/p)
for appropriate scaling constants and some parameter p. Previous work has focused on
the cases 0 < p < 1 [4, 9]. Integrating shows that

∑n
i=k+1 θ

2
i = ‖Rk

opt − A‖22 =
O(k1−2/p). Our results, like those of [4, 9], are stated with respect to the error due to
the worst case over all signals in the class, which we denote ‖Ck

opt‖2 = O(k1−2/p).
For any signal that is p-compressible with fixed p andCp it follows that ‖Rk

opt−A‖2 ≤
‖Ck

opt‖2. We give two results on the p-compressible case, one that applies when p < 1
2 ,

the other that applies for all 0 < p < 1 provided the p-compressible case is tight, i.e.
|θi| = θ(i−1/p). The measurements made are the same, but the analysis varies.

Our transform collects information based on two collections of strongly separating
sets. The first ensures that sufficient separation occurs, allowing all large coefficients to
be recovered. The second allows accurate estimates of the weight of each coefficient to
be made.
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Transform Definition. We define our transform matrix as follows. Let k′ and k′′ be
functions of k, ε, log n to be defined later. Let S be a k′-strongly separating collection
of sets (so that the number of sets in the collection is k′′), and write T1 as the matrix
formed by the concatenation of χSi for all Si in S. Similarly, let R be a k′′-strongly
separating collection of sets, and write T2 as its characteristic matrix. We form our
transform matrix Tp as (T1 ⊗H)

⋃
T2.

The intuition is that rather than ensuring separation for just the k largest coefficients,
we will guarantee separation for the top-t coefficients (even though we do not know a
priori which those top-t coefficients are), where t is chosen so that the remaining coef-
ficients are so small that even if taken all together, the error introduced to the estimation
of any coefficient is still within our allowable error bounds.
Reconstruction Algorithm. Our algorithm for recovering a representation from the re-
sults of the measurements TpΨA is as follows: for each set of d1+log nemeasurements
due to Si ⊗H , we recover x0 . . . xdlog ne = (Si ⊗H)ΨA, and decode identifier ji as

ji =
log n∑
b=1

2b−1 |xb| −min{|xb|, |x0 − xb|}
max{|xb|, |x0 − xb|} −min{|xb|, |x0 − xb|}

.

This generates a set of coefficients J = {j1, j2 . . . jk′′}. We then use the measurements
due to T2 to estimate the weight of each coefficient named in J : for each j ∈ J , we
set θ̂j = χRiΨA for J ∩ Ri = {j}. The strong separation properties of R ensure that
there will be at least one such Ri, and if there is more than one, then we can pick one
arbitrarily. Our output is the set of k pairs (j, θ̂j) with the k largest values of |θ̂j |.

Lemma 2. Consider the case when the p-compressible case is tight within constant
factors for all coefficients, i.e. |θi| = Θ(i−1/p). Let k′ = c′(kε−p)1/(1−p)2 and k′′ =
c′′(k′ log n

log k′ )
2 for appropriately chosen c′ and c′′.

Let K ′ denote the set of the k′1−p largest coefficients.
1. ∀1 ≤ j ≤ n : θ2j ≥ ε2

25k‖C
k
opt‖22 ⇒ j ∈ K ′

2. ∀j ∈ K ′ : j ∈ J .
3. ∀j ∈ J : |θ̂j − θj | ≤ ε

5
√

k
‖Ck

opt‖2.

Proof. Observe that the square of the (absolute) sums of coefficients after removing
the top t is (

∑n
i=t+1 |θi|)2 = O(t2−2/p). Over the whole class of p-compressible

signals, this is bounded by O(t2−2/p/k1−2/p)‖Ck
opt‖22. Substituting in t = k′1−p ≥

C(kε−p)1/(1−p) for an appropriate constantC ensures (
∑n

i=k′+1 |θi|)2 ≤ ε2

25k‖C
k
opt‖22;

Further, we have |θj | ≥
∑n

i=k′+1 |θi|, provided j < k′1−p. This shows (1).
Now consider θj that satisfies the condition in the lemma. AlthoughK ′ is unknown,

we can be sure that, since R is k′-strongly separating, there is at least one set Ri such
that K ′ ∩ Ri = {j}, and more strongly, K ′′ ∩ Ri = {j}, where K ′′ is the set of the
k′ largest coefficients. Consider the vector of measurements involving this set, x =
(χRi

⊕ H)ΨA. When Hj,b = 1, |xb| ≥ |θj | −
∑

l 6=j∈Ri
Hl,b|θl| and |x0 − xb| ≤∑

l 6=j∈Ri
(1−Hl,b)|θl|. Since θ2j > (

∑n
l=k′+1 |θl|)2 we have |θj | >

∑
l 6=j∈Ri

Hl,b|θl|+
(1−Hl,b)|θl|.Hence min{|xb|, |x0−xb|} = |x0−xb|, and max{|xb|, |x0−xb|} = |xb|.
Thus |xb|−min{|xb|,|x0−xb|}

max{|xb|,|x0−xb|}−min{|xb|,|x0−xb|} = 1 = Hj,b. Symmetrically, the results are
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reversed when Hj,b = 0, where |xb|−min{|xb|,|x0−xb|}
max{|xb|,|x0−xb|}−min{|xb|,|x0−xb|} = 0 = Hj,b. Thus

the decoded identifier ji =
∑log n

b=1 2b−1Hj,b = j and so j ∈ J , showing (2).
For (3), observe that |J | ≤ k′′, since each Ri ∈ R generates at most one j ∈ J ,

and k′′ is chosen as the number of sets forming the collection of k′-strongly separating
sets. Hence, we can guarantee for each j ∈ J there is at least one Si such that J ∩
Si = j. We chose our k′ to be sufficiently large that we can identify the k′1/(1−p) =
O(kε−p)1/1−p) largest coefficients. Since J contains the identities of the (kε−p)1/1−p

largest coefficients, we can choose the estimate of θj as any measurement of θj that
avoids all other members of J . Thus, we can be sure that |θ̂j − θj | = |χRiΨA− θj | =
|
∑

l∈Ri,l 6=j θl| ≤
∑n

l=(kε−p)1/1−p+1 |θl| ≤ ε
5
√

k
‖Ck

opt‖2.

Lemma 3. Consider the p-compressible case with p < 1
2 . Let k′ = c′(kε−p)1/(1−2p)

and k′′ = c′′(k′ log n
log k′ )

2 for appropriately chosen c′ and c′′.
Let K ′ denote the set of the k′ largest coefficients.

1. ∀1 ≤ j ≤ n : θ2j ≥ ε2

25k‖C
k
opt‖22 ⇒ j ∈ J

2. ∀j ∈ K ′ : θ2j > ckk
′2−2/p ⇒ j ∈ J , for appropriate scaling constant ck.

3. ∀j ∈ J : |θ̂j − θj | ≤ ε
5
√

k
‖Ck

opt‖2.

Proof. Consider j ≤ k′. We know that R is k′-strongly separating, so there is some
set Ri so that K ′ ∩ Ri = {j}. From the vector of measurements involving this set,
we know that the identity j will be recovered, as in the previous lemma, provided that
j is the majority items in this set, i.e. if |θj | >

∑
l 6=j∈Ri

|θl|. This can be at most∑
l>k′ |θl| ≤ ckk

′1−1/p. Provided |θj | > ckk
′1−1/p, j will be found and so j ∈ J ,

showing (2). By our choice of k′, ckk′2−2/p ≥ ε
5
√

k
‖Ck

opt‖2, so (2) implies (1).

For (3), we consider the error in the estimation of θj . We have |θ̂j−θj | ≤
∑

l 6∈J |θl|,
and from (2), we have that l 6∈ J ⇒ θ2j ≤ k′2−2/p ∨ l > k′ (for p ≥ 1

2 , this bound is
not useful). Hence,

|θ̂j − θj | ≤
∑

l<k′,l 6∈J

|θl|+
∑
l>k′

|θl| ≤ ck(k′ − 1)k′1−1/p + ckk
′1−1/p ≤ ckk

′2−1/p.

By our choice of k′ and ck, we ensure that ckk′2−1/p ≤ ε
5
√

k
‖Ck

opt‖2, as required.

Lemma 4 (Reconstruction accuracy). Given θ̂(A) = {θ̂i(A)} such that (θ̂i−θi)2 ≤
ε2

25k‖C
k
opt‖22 if θ2i ≥ ε2

25k‖C
k
opt‖22, picking the k largest coefficients from θ̂(A) gives an

error ‖Rk
opt −A‖22 + ε‖Ck

opt‖22 k-term representation of A.

Proof. As stated in the introduction, the error from picking the k largest coefficients
exactly is ‖θ(A) − θ(Rk

opt)‖22 =
∑n

i=k+1 θ
2
i (where we index the θis in decreasing

order of magnitude). We will write φ̂i for the ith largest approximate coefficient, and
φi for its exact value. Let π(i) denote the mapping such that φi = θπ(i), and let σ(i)
denote a bijection satisfying σ(i) = j ⇒ (i > k ∧ π(i) ≤ k ∧ j ≤ k ∧ π(j) > k).

Picking the k largest approximate coefficients has energy error
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‖R−A‖22 =
k∑

i=1

(φi − φ̂i)2 +
n∑

i=k+1

φ2
i

=
∑
i≤k

(φi − φ̂i)2 +
∑

i>k,π(i)>k

φ2
i +

∑
i>k,π(i)≤k

φ2
i

≤
∑
i≤k

ε2

25k
‖Ck

opt‖22 +
∑

i>k,π(i)>k

φ2
i +

∑
i>k,π(i)≤k

φ2
i

Consider i such that i > k but π(i) ≤ k: this corresponds to a coefficient that
belongs in the top-k but whose estimate leads us to not choose it. Then either φ2

i ≤
ε2

2k‖C
k
opt‖22, i.e. the top-k coefficient is small compared to the optimal error, or else our

estimate of φ2
σ(i) was too high. In this case φ̂2

i < φ̂2
σ(i) but φ2

σ(i) ≤ φ2
i . Assuming this,

we can write

φ2
i − φ2

σ(i) = (φi + φσ(i))(φi − φσ(i))
= (|φi|+ |φσ(i)|)(|φi| − |φσ(i)|)

= (2|φσ(i)|+ |φi| − |φσ(i)|)(|φi + φ̂i − φ̂i| − |φσ(i) + φ̂σ(i) − φ̂σ(i)|)

≤ (2|φσ(i)|+ |φi| − |φσ(i)|)(|φi − φ̂i|+ |φσ(i) − φ̂σ(i)|+ |φ̂i| − |φ̂σ(i)|)

≤ (2|φσ(i)|+
ε

5
√
k
‖Ck

opt‖2)(
2ε

5
√
k
‖Ck

opt‖2)

In the case that φ2
i ≤ ε2

25k‖C
k
opt‖22 we can immediately write

φ2
i − φ2

σ(i) ≤ φ2
i ≤

ε‖Ck
opt‖2

5
√

k
· ε‖Ck

opt‖2

5
√

k
≤ (2|φσ(i)|+ ε

5
√

k
‖Ck

opt‖2)( 2ε
5
√

k
‖Ck

opt‖2)
Substituting this bound into the expression above, we use the facts that

∑k
j=1 |aj | ≤√

k(
∑k

j=1 a
2
j )

1/2 and
∑

i>k,π(i)≤k φ
2
σi

=
∑

j≤k,π(j)>k φ
2
j , to bound ‖R−A‖22 by∑

i≤k,π(i)≤k

ε

25k
‖Ck

opt‖22 +
∑

i>k,π(i)>k

φ2
i

+
∑

i>k,π(i)≤k

(φ2
σ(i) + (2|φσ(i)|+

ε

5
√
k
‖Ck

opt‖2)(
2ε

5
√
k
‖Ck

opt‖2))

≤ ε

25
‖Ck

opt‖22 + (2
√
k +

ε
√
k

5
)

2ε
5
√
k
‖Ck

opt‖22 +
∑

π(i)>k

φ2
i

≤23ε
25

‖Ck
opt‖22 +

∑
i>k

θ2i < ‖Rk
opt −A‖22 + ε‖Ck

opt‖22

Theorem 2. We can construct a set of measurements for a signal A in time polynomial
in k and n and return a R for A of at most k coefficients θ̂ under Ψ such that ‖θ̂ −
θ‖22 = ‖R − A‖22 < ‖Rk

opt − A‖22 + ε‖Ck
opt‖22, and (i) if p < 1

2 , then the number
of measurements is O((kεp)4/(1−2p) log4 n) and the time to produce the coefficients
from the measurements is O((kεp)6/(1−2p) log6 n). (ii) if the p-compressible case is
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tight, then the number of measurements is O((kεp)4/(1−p2) log4 n) and the time to find
coefficients is O((kεp)6/(1−p)2 log6 n).

Combining the above lemmas shows that the result of the algorithm has the desired
accuracy. The reconstruction time can be broken down into the time to build J from the
coefficients and the time to estimate the weight of each j in J . Building J takes time
O(k′′ log n), since it requires a linear pass over the results of the measurements. To
choose the location to find estimates quickly, we can build a vector y = T2χ

T
J in time

O(|J |(k′′ log n)2), by selecting and summing the necessary columns. Then for each
j ∈ J , we find some i such that yi = T2j,i = 1 and return the measurement (T2ΨA) as
θ̂j . This takes O((k′′ log n)2) time per coefficient. Lastly, picking the k largest of the
estimated coefficients can be done with a linear pass over them. The dominating cost is
O(|J |(k′′ log n)2) = O((k′′ log n)3)

The number of measurements is polynomial in k, log n (recall that p is fixed inde-
pendent of n and A). We have not fully optimized the various polynomial factors, but
still, our methods will not yield less than k4 measurements, due to the use of the two
collections of k-strongly separating sets. It is an open problem to further improve the
number of measurements in explicit non-adaptive constructions. Note although we need
to use p to define the measurements, we do not need the exact value of p. Rather, we
need an upper bound on the true value of p (recall, the smaller the value of p, the faster
the coefficients must reduce) — this is because our construction will simply take more
coefficients than is necessary to get the required approximation accuracy.

3.2 Exponential Decay

As in the p-compressible case we state our results for the exponential decay case relative
to the worst case error in the class for given α and Cα. In the case that |θi| ≤ Cα2−αi,
we write ‖Ck

opt‖22 =
∑n

i=k+1 θ
2
i as the worst case error over the class.

Measurements. The set of measurements we make is similar to the p-compressible
case at the high level, but differs in the details. We set k′ = k + O( log((k log n)/ε)

α ),
and k′′ = O((k′ log n)2) As before, we build S, a k′-strongly separating collection
of sets, and write T3 as the concatenation of χsi

for all Si ∈ S (k′′ is chosen as the
number of sets in the collection). However, we set Q to be a k′′-separating collection
of sets (not strongly separating), and write T4 as its characteristic matrix. We form
Tα = (T3 ⊗H)

⋃
T4, and use TαΨ as the measurement matrix.

Reconstruction algorithm. We recover a representation from the measurements from
T3 ⊗ H as before, to build a set J of identifiers. To make our estimates, we proceed
iteratively to build θ̂, the vector of approximate coefficients. Initially θ̂ = 0, andM = ∅.
Let j1 ∈ (J\M) satisfy (J\M) ∩ Qi = {j1} (there will be at least one such Qi and
j1). We set θ̂j = χQi(ΨA − θ̂) and M = M ∪ {j1}. We now proceed to find a new
j2 ∈ (J\M) with (J\M)∩Qi′ = {j2} as the next coefficient to estimate, and proceed
until J = M . We then return the k highest estimated coefficients as before.

Lemma 5. Let K ′ denote the set of the k′ largest coefficients.
1. ∀1 ≤ j ≤ n : θ2j > (

∑n
l=k′ |θl|)2 ⇒ j ∈ J
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2. ∀j ∈ K ′ : θ2j ≥ ε2

25k‖C
k
opt‖2 ⇒ j ∈ J

3. ∀j ∈ J : |θ̂j − θj | ≤ ε
5
√

k
‖Ck

opt‖2.

Proof. To show (1) and (2), we must bound the tail sums of coefficients ofα-exponentially
decaying signals. One can easily show that

∑n
i=k+1 θ

2
i ≤ cα2−2αk and (

∑n
i=k′+1 |θi|)2 ≤

c′α2−αk′ . Over the class ofα-exponentially decaying signals, (
∑n

i=k′ |θi|)2 ≤Cα2−α(k′−k)

‖Ck
opt‖22. Setting k′ = k+O( 1

α log k
ε ) gives (

∑n
i=k′ |θi|)2 ≤ ε2

25k‖C
k
opt‖22. The remain-

der of the proof of (2) continues as in Lemma 2 (2), and (1) follows immediately as a
consequence of the identification process.

To show (3), we scale ε by a factor of O(kk′′). Note that this does not affect the
asymptotic sizes of k′ or k′′. This now ensures that the first coefficient j1 is esti-
mated with error |θ̂j1 − θj1 | ≤ k′

∑n
l=k′+1 |θi| ≤ ε

k5/2 ‖Ck
opt‖2. Now consider the

estimation of the next coefficient j2: it is possible that j2 and j1 occur in the same
set Qi′ , in which case the error is bounded by |θ̂j2 − θj2 | ≤ |(

∑
l 6=j2,l∈Qi2

θl) −
θ̂j | ≤

∑
l 6=j1,l 6=j2,l∈Qi2

|θl| + |θ̂j1 − θj1 | ≤ 2ε
(k′ log n)5/2 ‖Ck

opt‖2; else the error is

bounded by ε
(k′ log n)5/2 ‖Ck

opt‖2 as before. One can therefore show inductively that

|θ̂jm − θjm | ≤ mε
5(k′ log n)5/2 ‖Ck

opt‖2, and so, since |J | ≤ k′′ = O((k′ log n)2), we have

∀j ∈ J.|θ̂j − θj | ≤ ε
5
√

k
‖Ck

opt‖2, as required.

Theorem 3. We can construct a set ofO(k2 polylog(n)) measurements in time polyno-
mial in k and n. For any α-exponentially decaying signal A, from these measurements
of A, we can return a representation R for A of at most k coefficients θ̂ under Ψ such
that ‖θ̂− θ‖22 = ‖R−A‖22 < ‖Rk

opt−A‖22 + ε‖Ck
opt‖22. The time required to produce

the coefficients from the measurements is O(k2 polylog(n))

Proof. Using the results of Lemma 5 allows us to apply Lemma 4 and achieve the main
theorem. For the time cost, we must first generate J , which takes time O(k′′ log n), and
then iteratively build the estimates. This can be done efficiently in timeO(k′′ polylog(n))
per coordinate, a constant number of operations on each of the O(k′′ polylog(n)) mea-
surements. For constantα and ε = O(poly(1/n)), we have k′ = O(k), k′′ = O((k log n)2)
and the total number of measurements = k′′ polylog(n) = O(k2 logO(1) n).

k-support case We note that the same approach can be used to give an explicit construc-
tion with Õ(k2) measurements for signals that have ‖Rk

opt−A‖2 = 0, i.e., there are at
most k non-zero coefficients. This “k-support” case is a simplification of realistic sig-
nals, but has attracted interest in prior work (see [24] and references therein). The same
approach outlined above, of using a combination of measurements based on k′-strongly
separating sets and k′′-separating sets, with an appropriate setting of k′ = Õ(k) and
k′′ = Õ(k2), is sufficient to recover the signal exactly.

4 Randomized Constructions

Here we focus on providing per-instance error estimates. For compressible signals (this
section also works for arbitrary signals) one can give randomized constructions which
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guarantee to return a near-optimal representation for that signal, with high probability
for each signal.

Transform Definition. Instead of using collections of sets with guaranteed separating
properties, we make use of sets defined implicitly by hash functions to give a ran-
domized separation property. We also use a random ±1 valued vector to improve the
accuracy of estimation of the coefficients. The necessary components are as follows:
Separation matrixM .M is a 0/1 s×nmatrix with the property that for every column,
exactly one entry is 1, and the rest are zero. We will define M based on a randomly
chosen function g : [n] → [s], where Pr[g(i) = j] = 1/s for i ∈ [n], j ∈ [s]. Hence,
Mi,j = 1 ⇐⇒ g(i) = j, and zero otherwise. The effect is to separate out the
contributions of the coefficients: we say i is separated from a set K if ∀j ∈ K.g(i) 6=
g(j). For our proofs, we require that the mapping g is only three-wise independent, and
we set s = O(k log n

ε2 ). This will ensure sufficient probability that any i is separated
from the largest coefficients.
Estimation vector E. E is a ±1 valued vector of dimension n so Pr[Ei = 1] =
Pr[Ei = −1] = 1

2 . We will use the function h : [n] → {−1,+1} to refer to E, so
that Ei = h(i). For our proofs, we only require h to be four-wise independent.
Lastly, we compose T from M , Hamming matrix H and E by: T = M ⊗H ⊗ E.

Reconstruction Procedure. We consider each set of inner-products generated by the
row Mj . When composed with (H ⊗ E), this leads to 1 + log2 n inner products,
x0 . . . xlog n = (TΨA)j(1+log n) . . . θ

′
(j+1)(1+log n)−1. From this, we attempt to recover

a coefficient i by setting i =
∑log n

b=1 2b−1 x2
b−min {x2

b ,(x0−xb)
2}

max {x2
b ,(x0−xb)2}−min {x2

b ,(x0−xb)2}
, and add

i to our set of approximate coefficients, θ̂. We estimate θ̂i = h(i)x0, and output the k
approximate coefficients obtaining the k largest values of |θ̂i|.

Lemma 6 (Coefficient recovery). (1) For every coefficient θi with θ2i >
ε2

25k‖R
k
opt −

A‖22, there is constant probability that the reconstruction procedure will return i (over
the random choices of g and h).
(2) We obtain an estimate of θi as θ̂i such that (θi − θ̂i)2 ≤ ε2

25k‖R
k
opt − A‖22 with

constant probability.

Proof. The outline of the proof is as follows: for each coefficient θi with θ2i >
ε2

25k‖R
k
opt−

A‖22, we show that there is constant probability that it is correctly recovered. Let xb =
(Ψ ′A)g(i)(1+log n)+b =

∑
g(j)=g(i)Hj,bh(j)θj . One can show that

(i) E(x2
b) ≤ Hi,bθi +O( ε2

k log n )‖Rk
opt −A‖22 and

(ii) Var(x2
b) ≤ O( ε2

k log nθ
2
iHi,b‖Rk

opt −A‖22 + ε4

k2 log2 n
‖Rk

opt −A‖42).
Using the Chebyshev inequality on both x2

b and (x0 − xb)2, and rearranging it can

then be shown that Pr[θ2i − Hi,b(x2
b) − (1 − Hi,b)(x0 − xb)2 ≤ θ2

i

2 ] ≤ 2
9 log n and

Pr[(1 − Hi,b)x2
b + Hi,b(x0 − xb)2 ≥ θ2

i

2 ] ≤ 2
9 log n . Combining these two results en-

ables us to show that Pr[ x2
b−min {x2

b ,(x0−xb)
2}

max {x2
b ,(x0−xb)2}−min {x2

b ,(x0−xb)2}
6= Hi,b] ≤ 4

9 log n . Thus,

the probability that we recover i correctly is at least 5
9 .
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For (2), we consider θ̂i = h(i)x0 = h(i)
∑

g(j)=g(i) h(j)θj . One can easily verify

that E(θ̂i) = θi and Var(θ̂i) = E(
∑

g(j)=g(i),j 6=i θ
2
j ). We argue that with constant

probability none of the k largest coefficients collide with i under g, and so in expectation
assuming this event Var(θ̂i) = 1

s‖R
k
opt −A‖22. Applying the Chebyshev inequality to

this, we show (2) with (better than) constant probability:

Pr[|θ̂i − θi| >
√

ε2

9k‖R
k
opt −A‖2] < Var(θ̂i)

ε2
9k ‖R

k
opt−A‖2

2

≤ 1
9 log n .

Lemma 7 (Failure probability). By taking O( ck log3 n
ε2 ) measurements we obtain a set

of estimated coefficients θ̂i such that (θi − θ̂i)2 ≤ ε2

25k‖R
k
opt −A‖22 with probability at

least 1− 1
nc .

Proof. In order to increase the probability of success from constant probability per
coefficient to high probability over all coefficients, we will repeat the construction of
T several times over using different randomly chosen functions g and h to generate
the entries. We take O(c log n) repetitions: this guarantees that the probability of not
returning any i with θ2i >

ε2

25k‖R
k
opt−A‖22 is n−c, polynomially small. We also obtain

O(c log n) estimates of θi from this procedure, one from each repetition of T . Each
is within the desired bounds with constant probability at least 7

8 ; taking the median
of these estimates amplifies this to high probability using a Chernoff bounds. T has
m = s(log n+ 1) = O(k log2 n

ε2 ) rows, O(c log n) repetitions gives the stated bound.

Theorem 4. We can construct a dictionary Ψ ′ = TΨ of O( ck log3 n
ε2 ) vectors, in time

O(cn2 log n). For any signal A, given the measurements Ψ ′A, we can find a repre-
sentation R of A under Ψ such that with probability at least 1 − 1

nc ‖R − A‖22 ≤
(1 + ε)‖Rk

opt −A‖22. The reconstruction process takes time O( c2k log3 n
ε2 ).

The proof follows by combining the results of Lemma 6 with those of Lemma 4 to
get the main result. We modify Lemma 4 to use ‖Rk

opt −A‖2 in place of ‖Ck
opt‖2; the

proof is essentially the same. It is easy to verify that the number of coefficients identified
by the first part of the reconstruction process is O( ck log2 n

ε ) (taking time linear in m).
We find an accurate estimate of each recovered coefficient by taking the median of
O(c log n) estimates of each one. If we spend linear time or more on reconstruction, we
can work with fewer measurements:

Theorem 5. We can construct a dictionary Ψ ′ = TΨ of O( ck log n
ε2 ) vectors, in time

O(cn2 log n). For any signal A, given the measurements Ψ ′A, we can find a repre-
sentation R of A under Ψ such that with probability at least 1 − 1

nc ‖R − A‖22 ≤
(1 + ε)‖Rk

opt −A‖22. The reconstruction process takes time O(cn log n).

The construction is similar to our main randomized result, but we do not use H
and reduce s by a log n factor. Using only the separation and estimation matrices, we
estimate each of the n coefficients, and take the k largest of them as before. By a similar
argument to Lemma 6 (2), each coefficient is estimated with accuracy ε2

25k‖R
k
opt−A‖22,

and we can again apply Lemma 4.
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Tolerance to Error. Several recent works have shown that compressed sensing-style
techniques allow accurate reconstruction of the original signal even in the presence of
error in the measurements (i.e. omission or distortion of certain θ′is). We adopt the same
model of error as [3, 23]5 and show:

Lemma 8. 1. If a fraction ρ = O(1) of the measurements are chosen at random to be
corrupted in an arbitrary fashion, we can still recover a representation R with error
‖R−A‖22 ≤ (1 + ε)‖Rk

opt −A‖22 in time O(cn log n).
2. If only a ρ = O(log−1 n) fraction of the measurements are corrupted we can recover
a representation R with error ‖R−A‖22 ≤ (1 + ε)‖Rk

opt −A‖22 in time O(kc2 log n
ε2 ).

Proof. 1. Consider the estimation of each coefficient in the process outlined in Theo-
rem 5. Estimating θi takes the median of O(log n) estimates, each of which is accurate
with constant probability. If the probability of an estimate being inaccurate or an error
corrupting it is still constant, then the same Chernoff bounds argument guarantees accu-
rate reconstruction. As long as ρ is less than a constant (say, 1/10) then every coefficient
is recovered with error ε‖Rk

opt −A‖2, with high probability.
2. Consider the recovery of θi from T . We will be able to recover i provided the

previous conditions hold, and additionally the some set of log n measurements of θi are
not corrupted (we may still be able to recover i under corruption, but we pessimisti-
cally assume that this is not the case). Provided ρ ≤ 1/(3 log n) then each set of log n
measurements are uncorrupted with constant probability at least 2/3 and with high
probability i is recovered, and θi is estimated accurately (as in case (1)).

5 Concluding Remarks

We have presented a simple combinatorial approach of two sets of group tests with
different separation properties that yields the first known polynomial time explicit con-
struction of a non-adaptive transformation matrix and a reconstruction algorithm for
the Compressed Sensing problem. The polynomial dependency is large, but we empha-
size that no other construction with polynomial creation time is known, and the cost
may be improved in future work. Our approach yields other results including sublin-
ear reconstruction, improved approximation in error and others. Given the excitement
about Compressed Sensing in the Applied Mathematics community, we expect many
new results soon. The main open problem is to reduce the number of measurements
used by explicit algorithms: our result here gives a cost polynomial in k, which is not
close to the linear factor k in the existential results of [4, 9, 23]. For the case of k-sparse
signals, (which have no more than k nonzero coefficients) Indyk recently developed a
set of measurements, near linear in k in number (but has other superlogarithmic factors
in n) [17]. Another outstanding question is to tease apart other properties of Com-
pressed Sensing results—such as their ability to measure in one basis and reconstruct
in another—and study their algorithmics.
Acknowledgments. We thank Ron Devore, Ingrid Daubechies, Anna Gilbert and Mar-
tin Strauss for explaining compressed sensing.

5 These consider the exact recovery of a signal by taking Ω(n) measurements, and so do not
compare to our result above of approximately recovering a signal using o(n) measurements.
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