Combinatorial algorithms
for DNA sequence assembly*

John D. K ececioglut
Eugene W. Myers’®

TR 92-37

Revised October 20, 1992; revised January 15, 1993

Abstract

The trend towards very large DNA sequencing projects, such as those being undertaken as
part of the human genomeinitiative, necessitates the devel opment of efficient and precise algo-
rithms for assembling along DNA sequence from the fragments obtained by shotgun sequenc-
ing or other methods. The sequence reconstruction problem that we take as our formulation of
DNA sequence assembly is a variation of the shortest common superstring problem, compli-
cated by the presence of sequencing errors and reverse compl ements of fragments. Since the
simpler superstring problem is NP-hard, any efficient reconstruction procedure must resort to
heuristics. In this paper, however, a four phase approach based on rigorous design criteriais
presented, and has been found to be very accuratein practice. Our method isrobust inthe sense
that it can accommodate high sequencing error rates and list aseries of aternate solutionsin the
event that several appear equally good. Moreover it uses a limited form of multiple sequence
alignment to detect, and often correct, errorsin the data. Our combined al gorithm has success-
fully reconstructed non-repetitive sequences of length 50,000 sampled at error rates of as high
as 10 percent.

! Computer Science Department
University of Californiaat Davis
Davis, Caifornia95616
E-mail: kece@s. ucdavi s. edu

2Department of Computer Science
University of Arizona
Tucson, AZ 85721
E-mail: gene@s. ari zona. edu

Keywords Computationa biology, branch and bound agorithms, approximation a gorithms, frag-
ment assembly, sequence reconstruction

Research supported by the National Library of Medicine under Grant R01 L M4960, by a postdoctoral fellow-
ship from the Program in M athematicsand Molecular Biology of the University of Californiaat Berkeley under Na-
tional ScienceFoundation Grant DM S-8720208, and by a fellowship from the Centre de recherchesmathematiques
of the Université de Montréal.

Combinatorial algorithms
for DNA sequence assembly

1 Introduction

DNA seguences may be viewed abstractly as strings over the four letter alphabet {a, ¢, g, t},
each letter standing for thefirst character of the chemical name of the nucleotidecomprising the
polymer’s chain. Current gel electrophoresis technology permits experimentalists to directly
determine the sequence of a DNA strand 300 to 700 nucleotides in length. Determining the
sequence of alonger strand, of say 10,000 to 100,000 nucl eotides, requiresan indirect approach.
In the shotgun sequencing method, the experimentalist randomly samplesfragments of alength
short enough to be determined by electrophoresis. Whenever two fragments are sampled from
regions that intersect this is detected as an overlap in the sequences of the fragments. With
sufficient sampling one can eventually reconstruct the underlying sequence by assembling the
fragments according to their overlaps. Our problem isto perform the assembly of the current
fragment set at any given point in such a project.

This seemingly simple procedure is made difficult by several exacerbating factors. First,
the fragments may not assembl einto a single reconstruction due to incompl ete coverage of the
original sequence. Second, errors are present in the fragment sequences due to experimental
errorsintheeectrophoresisprocedure. With current technology, anywherefrom .5to 5 percent
of the sequence of a fragment may be incorrect. Third, an overlap may not be due to the fact
that the fragment intervalsintersect, but may simply be due to chance. In a project involving
a thousand fragments, given the presence of error such spurious overlaps do occur. Finaly,
DNA is double-stranded, and a particular fragment may have come from either strand. Hence
a fragment may represent the sequence on one strand or the reverse complement sequence on
the opposite strand. In this case we say the orientation of the fragmentsis not known.

This paper develops an agorithm for sequence assembly in the most general setting, with
incomplete coverage, sequencing errors, unknown fragment location, and unknown fragment
orientation. Asthe error in thefragments decreases, the speed of the algorithmincreases. It can
al so accomodate i nformation concerning fragment order and orientation, and generate alternate
solutionson demand. For the subproblemsthat arise, we either design exact algorithmsthat find
an optimal solution but may take exponentia time, or approximation a gorithmsthat alwaysrun
fast but find a solution close to optimal. For some problems, we design both.

Toformally define the problem, let us denote the minimum number of insertions, del etions,
and substitutions required to edit sequence A into sequence B by d(A, B), the edit distance
between A and B. We denote the reverse complement of sequence A by A. Sequence A is
obtained by reversing A and mapping each character to its complement. We write @ for the
complement of character «. I/:Br the DNA alphabet,a = t andt = a, whilec =gandg = c.
If A = gacct, forexample, A = tccag = aggtc.

Under the principle of parsimony, anatural formulation of the sequence assembly problem
is to determine a shortest sequence that explains al of the fragments. Formally we have the
following.

DNA sequence assembly 2

Definition The DNA sequence reconstruction problem, RECONSTRUCT, is, given a collec-
tion F of fragment sequencesand an error rate 0 < e < 1, find a shortest sequence S such that
for every fragment A € F thereisasubstring B of .S such that

min(d(4, B), d(4, B)) < €|4|.

In the related shortest common superstring problem, SUPERSTRING, one is given a col-
lection of strings and seeks a shortest string .S, called a superstring, such that every string in
the collectionisasubstring of \S. In essence RECONSTRUCT is ashortest common superstring
problem where a fragment is considered to match the superstringif the fragment, or itsreverse
complement, can be aligned to the superstring within alength-relative error threshold of ¢. In
fact, SUPERSTRING can be reduced to the sequence reconstruction problem with ¢ = 0. Since
SUPERSTRING isNP-complete[13], thisimpliesthat RECONSTRUCT isNP-complete. Details
may be found in [18].

Related wor k

Prior work related to DNA segquence assembly may be classified into three categories. In the
first class of papers, Shapiro [32], Hutchinson [17], Smetani¢ and Polozov [33], Gallant [12],
and Foulser [7] examine an early model of the problem where fragments do not contain errors
and are partitionedinto classes such that concatenating the fragmentswithineach class, in some
order, gives the underlying sequence. The problem isto determine when the fragment datais
consistent with a sequence, and if it is, to find such a sequence. These papers show that the
problem can be solved in polynomial time.

The second category of papers analyze approximation al gorithmsfor the shortest common
superstring problem, which we haveindicatedis equival ent to the sequencereconstruction prob-
lemwithout error and with fragment orientation known. Tarhio and Ukkonen[36], Turner [38],
and Ukkonen [39] show that a simple greedy a gorithm finds a superstring whose amount of
compressioniswithinafactor of % of themaximum, and giveefficient implementations. Blum,
Avrim, Jiang, Li, Tromp and Yannkakis[1] prove that the greedy algorithm delivers a super-
string at most 4 times longer than the shortest, and that a simple variant delivers a superstring
at most 3 times longer than the shortest. It isnot known whether these boundsare tight. Li [21]
examines segquence assembly from the viewpoint of computational |earning theory and shows
that an approximation a gorithmfor SUPERSTRING will learn the underlying sequencein poly-
nomial timein the PAC model of learning, given fragments without error and with known ori-
entation.

In the third category of papers, Staden [35], Gingeras, Milazzo, Sciaky and Roberts [14],
and Peltola, Soderlund and Ukkonen [27] develop software for sequence assembly. Peltola,
Soderlund, Tarhio and Ukkonen [26] describes the algorithmsused in [27], and aso givesthe
first statement of the sequence reconstruction problem. These papers deal with error, and with
orientation, but do not characterize the quality of the reconstruction that is output.

In addition, three papers have recently cometo our attention that ook at the subtask of com-
puting overlaps between pairs of fragments. Gusfield, Landau and Schieber [15] show that with
the suffix tree data structure the longest overlap beween a suffix of one fragment and a prefix
of another can be determined for al pairs of fragments in time linear in the size of the input

DNA sequence assembly 3

and output, if no errors are permitted in the overlaps. Cull and Holloway [6] apply the suffix
array data structure of Manber and Myers [22] to find overlaps, where fragments are assumed
to contain only substitution errors, and the suffix and prefix of each fragment is assumed to
match only one other fragment in an overlap longer than agiven threshold. Huang [16] applies
aloca alignment a gorithm of Smith and Waterman [34] to compute an overlap that maximizes
alinear function of the number exact matches and errors in the aignment, and uses a filtering
technique of Chang and Lawler [4] to avoid considering some of the pairs of fragments whose
alignment scoreis below a fixed threshold.

Our work may bedistinguishedfrom prior theoretical investigationsinthat we address both
sequencing errors and unknown orientation, and in contrast to earlier software, each phaseis
awell-defined problem. Like Peltolaet al. [26] we cannot claim that our algorithm as awhole
solves RECONSTRUCT, but in distinction, each phase solves or approximates a precise opti-
mization problem. Moreover, for the case of no error and known orientation we can say that
our agorithm, without modification, solves RECONSTRUCT, which is equivaent to SUPER-
STRING. In this sense the algorithm generalizes earlier theoretical work.

Overview

Our agorithm proceeds in four phases consisting of the following combinatorial problems:
(1) constructing a graph of approximate overlaps between pairs of fragments, (2) assigning an
orientation to the fragments, in other words choosing the forward or reverse complement se-
guence for each fragment, (3) selecting a set of overlaps that induce a consistent layout of the
oriented fragments, and (4) merging the selected overlaps into a multiple sequence aignment
and voting on a consensus. We devote a section of the paper to each of the four phases.

In phase (1) we compute overlapswithinthe error rate that maximize alikelihood function
on alignments. Edgesin an overlap graph correspond to these alignments, and are weighted by
their likelihood. Given fragments of total length N and error rate ¢, our method for computing
the graph modeling these overlapstakes O (e N %) time.

In phase (2) we orient fragments so as to maximize the weight of all edgesin the overlap
graph that are consistent with the chosen orientation. This subproblem is NP-complete. We
present an exact algorithm that computes an optimal orientationin O (K (£ + V')) timefor an
overlap graph of V fragmentsand I edges, where K < 2V isthe size of its branch and bound
search tree. We also present an approxi mation a gorithmthat computes an orientation of weight
at least 1 themaximumin O(E + V log V) time.

In phase (3) we place the fragments in an overlapping layout by selecting a set of edges of
maximum total weight that form a branching satisfying a dovetail chain property. Finding such
abranching isaso NP-complete. We present an exact algorithm that computes an optimal 1ay-
out by finding amaximum weight dovetail-chain branchingin O (K (E+V log V')) time, where
K < 2F isthe size of its search tree. A greedy approximation algorithm for this problem is
well-knownand in contrast findsabranching of weight at | east % themaximuminO (£ log V') time.
We further show how our approach naturally lendsitself to producing aternate solutionsif de-
sired.

In phase (4) we take the set of all overlapsin the graph that agree with the fragment layout
and merge them into a multiple sequence alignment, as follows. The alignments represented
by the set of overlaps match pairs of characters from the fragments. Of these character pairswe
seek a subset of maximum total weight that forms a multiple aignment. This problemisalso
NP-compl ete, thoughit can be sol ved in time exponential inthe maximum number of fragments

DNA sequence assembly 4

Overlap Name Edge

Al AdoetlstoB (A ~(B)
At AcontainsB
B———" | BdovetilstoA
B A A BoontansA (A~—B)

Figure1l Thefour typesof overlaps.

that mutually overlapinthelayout. Givenoverlapsthat match M pairsof charactersfromalay-
out with at most) mutually overlapping fragments, we construct a multiple sequence align-
ment of length L, and a consensus sequence, in O(D?L + M + N) time. The set of matched
pairs that forms the alignment has weight at least % of the maximum.

The paper closeswith a presentation of some preliminary experimental resultsfor the com-
bined algorithm, and we conclude by suggesting some possible extensions.

2 Overlap graph construction

Our agorithm builds a reconstruction by overlapping the fragmentsin pairs. We represent the
set of all pairwise overlapswith adirected edge-weighted graph called an overlap graph. This
section describes the structure of this graph, and how we construct it.

If we consider fragments as intervals and overlaps as intersections of intervals, there are
essentially four waysapair of fragments can overlap, as shownin Figure 1. Each type of over-
lap is an alignment between the sequence for fragment A and the sequence for fragment B. If
the alignment is between a proper suffix of A and a proper prefix of B, we cal it a dovetail
and say A dovetailsto B.! If the alignment is between a substring of A and all of B, we call
it a containment and say A contains B. An overlap is denoted by an ordered pair (A,B) of
sequences, and represents an alignment where either A dovetailsto B or A contains B. The
overlap is at rate e if the number of errors in the alignment is at most ¢| A| + ¢| B|, where an
error istheinsertion, deletion, or substitution of a character. We also attribute an overlap with
areal-valued weight, which is a score for the alignment based on the probability of the over-
lap occurring by chance. There are many possible alignments for a given type of overlap. We
choose an aignment that has maximum score.

Anoverlap graph G = (V, E, w) represents fragments with vertex set V' and overlaps
with edge set F. Edge weight function w givesthe weight of overlaps. In an unoriented over-
lap graph, V' contains two vertices for every fragment £'. One vertex represents sequence £,
and the other vertex represents the reverse complement sequence F'. Anoverlap (A,B) of se-
guence A with sequence B is represented by an edge directed from vertex A to vertex B. An

YA proper suffix of ajas---an iS a substring a;a;y1 ---a, where 1 < i. A proper prefix is a sub-
string ajaz - - - a; where: < n.

DNA sequence assembly 5

(@ (b)

Figure2 Overlap graphs. (a) An unoriented graph. (b) An oriented subgraph.

edge corresponding to adovetail is denoted by A— B. A containment is denoted by A= B.

Note that edge B — A isequivalent to edge A — B. In other words, any alignment be-
tween asuffix of B and aprefix of A isan alignment between a suffix of A and aprefix of B.
Similarly, edge A = B isequivalent to edge A= B. Thisequivalenceisreflected in our rep-
resentation: A — B isalways accompanied by B — A, and A = B is aways accompanied
by A = B. With this pairing of edges, there are essentially four possible overlaps between
two fragments when their orientation is unknown, namely (A,B), (B,A), (4,B), and (B,A).
Each of these overlaps may be a dovetail or a containment.

Our agorithmfor overlap graph construction builds an unoriented graph. We form an ori-
ented overlap graph from an unoriented graph ' by specifying the orientation of fragments.
In this case we restrict our attention to the subgraph of ' induced by the vertices specified in
the orientation.? For example, Figure 2 shows an unoriented overlap graph, and the subgraph
induced by a particular orientation. Section 3 describes how we determine which oriented sub-
graph to submit to the fragment layout algorithm of Section 4.

2.1 Theleast random overlap problem

Given two fragments, we would like to infer how they overlap in the underlying sequence, if
they overlap at all. We model thisinference problem as one of finding, for each type of overlap,
an alignment of minimum probability. If thisaignment is statistically rare, it is not likely to
be due to a chance matching of characters. An overlap poorly explained by chanceislikely to
represent a true overlap of the fragments.?

To determine the probability of an aignment we treat the fragments as random sequences
with each character drawn uniformly and independently from the alphabet {a, c, g, t}. While
the exact probability of an alignment is unknown even for this model, a result of Chvéatal and
Sankoff [5] on random common subsequences gives a good upper bound.

Theaignmentsthat we computematch apair of characters only whenthey are equal. These

% The subgraph of (V, E) induced by asubset V' C V isthegraph (V', E’) where E' C F containsonly edges
joining verticesin V.
7 Of coursethe other possibility is that the sequence contains a repeat.

DNA sequence assembly 6

matches give a common subsequence of the fragments, and each unmatched character is con-
sidered an insertion error or adeletion error. Thus a substi tutionis counted as a deletion error
followed by aninsertion error. The quantitiesthat we measurefor an aignment are /, thelength
of the common subsequence, and d, the number of errors. Sankoff and Chvétal [30] show that
the number of sequences of length [+ d over an aphabet of size s that contain a fixed subse-
guence of length [is

[+ d ;
Ny(l,d) = (,)(8—1)7 D)
o<i<d \ °
independent of the particular subsequence. Thisgivesan upper bound on the probability of an

alignment with [matches and d errors of

Pl dy = > Ny(1,4) Ns(l,d—i)/(d—|- 1) s+,)

0<i<d
We say an overlap minimizing Ps(!, d) isleast random. Our problem is the following.

Definition Theleast random overlap problem, OVERLAP, is, given an ordered pair A, B of
sequences from an alphabet of size s, and an error rate ¢, find an overlap (A, B) at rate e mini-
mizing P;(l, d), where [isthe number of exact matches in the alignment and d is the number
of errors. u

We make afew remarks on the problem. Our sequencesare from an a phabet of four letters,
so we areinterested in minimizing Py (I, d). Minimizing P4(!, d) is equivaent to maximizing

L(lvd) = _10g4P4(lvd)7

whichwecall thelikelihood of thealignment. Likelihood has several nice properties. L(/, d) is
increasing in [, decreasing in d, and bounded by [. While we do not prove it here, asymptoti-
caly L(l,d) = O(l — d log). Likelihood balances more matches against grester error in an
objective manner.*

2.2 Computing overlaps

A simple agorithm for OVERLAP isto (1) compute for all dovetails and containments be-
tween A and B the edit distance between the overlapped substrings, (2) evaluate L (!, d) for
each of these overlapswhere d < ¢|A| + ¢| B| isthe distance between overlapped substrings A
and B and! = L(|A| 4 |B| — d), and (3) output the overlap with maximum L (I, d). It suffices
to consider the alignment of minimum distance for each possible overlap, in other words this
agorithm is correct, because (I, d) is monotone in its arguments. Since apair A, B of se-
quences of length m and n has O (mn) dovetails and O (m?) containments, and since the edit

*Intuitively one would like an overlap with the greatest number of matches, yet matches are often achieved at
the price of error in the alignment. The packages of Staden [35] and Gingeras et al. [14] use rules of thumb, such
as, extend an alignment with 5 matchesif this can be donewith only 3 errors, while the system of Peltolaet al. [26]
triesto minimize d /1, which hasthe rough behavior of L(I, 4), but doesnot discriminate betweenlonger and shorter
overlaps with the same error density. Huang [16] minimizes { — d, which also approximates L(I, d), but trades
matchesagainst errors linearly, which from an objective point of view, isarbitrary. However, both Peltolaet al. [26]
and Huang [16] are able to accomodate substitution errors within their objective function.

DNA sequence assembly 7

distance for each dovetail and containment may be computed in O (mn) time by the standard
dynamic programming algorithm [31], thisgives an O (m?*n?) time agorithm, and it iseasy to
bring this down to O (m?n) time by combining subproblems. Here we assume m < n.

Myers [25] has shown that it is possible to solve all O(mn) subproblemsin O(én) time,
where § is the maximum edit distance allowed.® In our application, § = |[em + en], so this
givesan O(en?) time agorithm.

The idea of Myers' algorithmis to solve the alignment problems incrementally, and rep-
resent the solutionswith a data structure that can be efficiently updated. For S = syss--- sy,
let S; ; denotethe substring s;s;11 - - - s;, ;. denotethe suffix .S; ,,, and S, ; denote the pre-
fix S1,;. Given sequences A and B of length » and m, Myers solves a series of » alignment
problems that compare increasingly longer suffixes Ay . against B. For each suffix Ay ., the
edit distance is obtained between al Ay ; and all B, ; for which d(Ay ;, Bs ;) < é. Notethis
includes the dovetails (Ay, ., B ;) and the containments (A ;, B.). These distances are not
explicity computed, but are represented implicitly by a sparse data structure that encodes their
values. Any particular distance, if needed, can be recovered from the encoding.

Giventheencodingfor Ay . versus B, Myers showsthat the encoding for Ay, . versus B
can beobtainedin O(d) time. Tofind aleast random overlap, the distanceswe need for afixed
are d(Ay, ., B, ;) for the m possible dovetails, and d(Ay ;, B) for the roughly n possible
containments. Of these O(m + n) dovetails and containments, only O(d) can have distance
at most 6. With the encoding for Ay, .. versus B in hand, these O(4) distances can be recov-
ered in O(4) time. Given the distances, we can evaluate the likelihoods. This spends atotal of
O(0) time per problem, and as there are » problems, it gives an O(dn) time agorithm.

Throughout this descri ption we have assumed that the likelihood function can be evaluated
inO(1) time. Computing L (!, d) directly from equations (1) and (2), however, involvesasum
of O(d?) terms. Fortunately, it is possible to precompute a table of (I, d) since ! and d are
both bounded in practice. For fragments of at most 1,000 nucl eotides, and error rates of at most
10 percent, it suffices to storeatable of L(/,d) for0 </ < 1000and 0 < d < 200.

To construct an overlap graph then for fragmentsat error ratee, for every pair A, B of frag-
mentswe solveOVERLAP for (A,B), (B,A), (A,B),and (B,A), usingMyers algorithm. For
fragments of total length IV, thistakes time O (eN?). Each overlap is classified as a dovetail
or acontainment, and we add the appropriate edge to the graph attributed with the correspond-
ing alignment, and weighted by the likelihood of the match. Alignments are encoded by edit
scripts to conserve space (see Section 5.3.4).

2.3 Culling overlaps

The construction we have described gives a complete overlap graph. Most of the edges, how-
ever, will represent chance alignments, rather than true overlaps. We now describe how to cull
such edges from the graph. In practice we observe that culling reduces the number of edges
from O(V?) to O(V). Our orientation and layout algorithms will take advantage of this spar-
sity.

®Thisis possible because only O(én) subproblems can have distance at most 6. Neverthelessit is remarkable
that a subproblem, which in isolation requires O(én) time, can be solved in effectively constant time. Myers does
assume edit distance is measured in terms of insertions and deletions only.

DNA sequence assembly 8

Tablel Number of matchesto achieve L(l, d) > A.

Matches, {
Erors,d | A=5[A=10[A=25] A=50
5 10 25 50
1 7 12 28 53
2 8 14 30 56
3 9 15 32 58
4 10 17 33 60
5 12 18 35 62
10 18 25 44 72
15 24 31 51 81
20 30 38 59 89
25 37 45 66 97
50 69 78 101 136
75 102 111 135 172
100 135 144 169 207

2.3.1 Match significance

We usetwo criteriafor culling edges, thefirst based on match probability. We assume the biol-
ogist hasamatch significancethreshold A for the minimum acceptablelikelihood of an overlap.
An overlap of [matches and d errorsis rejected if

L(l,d) < A.

With edges weighted by likelihood, this means every edge in the graph must have weight at
least A. Since L(I,d) < [, it also implies that every overlap must have at least [A| matches.
Table 1 lists the minimum number of matches to achieve a given threshold, for various values
of Aandd.

2.3.2 Error distribution

Our second criterion for culling edges is based on the distri bution of errorsin an overlap. The
alignment for an edge between fragments A and B isguaranteed to have at most ¢| A| +¢| B| er-
rors, but one expects an overlap that aligns substrings A and B to have around ¢| A| + ¢| B| er-
rors. If the number of errors far exceeds this, it is natural to suspect that the edgeis not atrue
overlap, and reject it. Such an edge isinconsistent with the hypothesisthat errors are roughly
evenly distributed.®

Let us assume that fragments A and B have atotal of n = |¢|A[+ ¢[B|] errors between

them, and that the probability of observing an error in an overlap of substrings A and B isp =
|Al+| B

ATIB] Then if errors are independent, the number of errorsin the overlap, D, isabinomia

% Admittedly, when the fragment sequences are obtained from reading electrophoresis gels, errors occur more
frequently at the fragment ends. We can conservatively treat such errors as evenly distributed according to the max-
imum error rate at the end of a fragment.

DNA sequence assembly 9

Figure3 Culling an overlap by error distribution.

random variable with parameters » and p. The probability of observing d or more errorsis

P{D>d} = Y (’Z) P (1—p)"i
d<i<n
To cull overlaps on the basis of error distribution, we assume that the biologist is willing
to reject asmall fraction of al aignmentsthat do not distributethe » errors evenly but have an
error count d exceeding acritical value. We call thisfractionthe error distributionthreshold £,
and reject an overlap with d errors if

Pr{D > d} < €. ©)

Thisisillustrated in Figure 3. The probability Pr{D > d} isequa to I,(d,n — d + 1),
where I, (a, b) is the incomplete beta function. There are fast numerical methods for evalu-
ating /.. (a, b), which yield an efficient test of inequality (3). (Seefor instance[28, pages 178—
180].)

Finally, wenotethat both thematch significanceand theerror distributioncriteriaare needed.
Without a match significance criterion, time and space are wasted on short overlaps, such as
those that align one character. Without an error distributi on criterion, long but poor overlaps
are permitted, such as those that align many characters, but have an error rate of 50 percent.
Also note that the extreme case A = 0 and £ = 0 is permitted, in which case no overlaps are
rejected.

To summarize, given fragments of total length vV, error rate ¢, amatch significance thresh-
old, and an error distribution threshold, the first phase of our agorithm constructs a graph of
least random overlaps, weighted by likelihood, intime O (e N2).

3 Fragment orientation

Once we have constructed an overlap graph ' and culled its edges, we are left with a collec-
tion of significant overlaps. With high probability these edges represent true overlaps between
fragments, and while some may align reverse complement sequences and others not, the ma-
jority of overlaps should indicate a consistent orientation. This section describes how we find
an oriented subgraph of ¢ in preparation for fragment layout.

DNA sequence assembly 10

3.1 Thefragment orientation problem

To specify an oriented subgraphisto determinefor every fragment I whether sequence £ or F
isused inthereconstruction. If wedecideto use /', we say thefragment isassigned theforward
orientation; if we use F' we say it is assigned the rever se orientation. Assigning orientations
eliminates some overlaps and retains the possibility of using others. For example, assigning
A and B the forward orientation eliminates any overlap between A and B, but allows us to
use (A,B) or (B,A).

For A and B from an overlap graph G with edge weight function w, let

same(A4, B) = 1r1r1:aLX(w(A,B)7 w(B,A))

and L L
opp(A4, B) = max(w(A7 B), w(B,A))7

with the understanding that the weight of an overlap iszero whenitisnot in ¢G. The weight of
the best overlap between fragments A and B is given by same(A, B) when both are assigned
the same orientation; opp(A, B) applies when they are assigned opposite orientations. Note
that same(A, B) and opp(A, B) are symmetric in their arguments. We view these functions
as defining an undirected graph G whose vertices are the fragments and whose edges are the
pairs {A, B} for which same(A, B) or opp(A4, B) isnonzero. With thisinterpretation, same
and opp are two edge-weight functions for ;. For an overlap graph with V' fragments and
E overlaps, G has V' vertices and at most £ edges.

An orientation of a collection F of fragments is represented by a partition (O, F — O)
where O C F isthe set of fragments in the forward orientation, and 7 — O is the set with
the reverse orientation. We write O for 7 — O when F is given by context, and often specify
partition (O, O) by only givingset O. Foranedge{A, B} of G andapartition (0, O) of F,we
use the notation (A, B) € (0, 0) toindicatethat A € © and B € O, and we write (A, B) ¢
(0,0)when A, Be Oor A, Be 0.

Sinceall overlapsremaining after culling are significant, wewouldlikean orientation (O, O)
that minimizes the weight of the overlapsit eliminates, or equivalently maximizes the weight
of the overlapsit retains. Our problem is the following.

Definition Thefragment orientation problem, ORIENT, is, given fragments 7 and functions
same and opp, find an orientation O for F minimizing

w(0) = Z opp(A4, B) + Z same(A, B).
(4,B)€(0,0) (4,B) ¢ (0,0)

We call w(O) theweight of the orientation. Figure 4 gives an illustration.
ORIENT is NP-complete. As may be suspected, it is polynomial-time equivaent to the
maximum weight cut problem [18].

3.2 An approximation algorithm

While finding an optimal orientation is hard, it is easy to find an orientation that is close to
optimal.

DNA sequence assembly 11

o) ¥-0

Figure4 Theweight of an orientation O.

Given an ordering I, I, . .., F,, of F we compute an orientation O asfollows. Initidly,
we set O := {}. At step i, we consider adding F; to O where (O, O) currently partitions
{F, .., Fi 3. fw(OU{E}) > w(OU{F}),weset O := O U {F;}. Otherwise, we
leave O unchanged, which effectively adds F; to O. After n steps, we output O.

Each decision of thisgreedy algorithminvolves only the edgesincident to the current frag-
ment F;. Given an ordering of 7, it runsin O(£ + V') time and O (V') space for a graph of
V verticesand E' edges.

The greedy algorithm guarantees an orientation of weight at least $w(0~), where O* is
an optimal orientation. (We note that the following analysisis virtually identical to that of a
folklore heuristic for maximum weight cut.) To see this, first note that a trivial upper bound
on w(O*) isthetotal weight of the graph,

7> (same(Fs,) + opp(F, F))

i j<i
If the greedy agorithm adds F; to O at step 7, the weight of the orientation increases by
Z(Z same(F;, F;) + Z opp(E,Fj)). 4
Jj<i \F;€0 F,e0
If it doesnot add F; to O, the weight increases by
Z(Z opp(F;, F) + Z same(E,Fj)). (5)
Jj<i \F;€0 F,e0

Denote the actual amount of increaseat step 7 by Aw(QO;). Since the greedy a gorithm chooses
the greater of (4) and (5),

2Aw(0;) > Z(same(E,Fj)—l—opp(E,Fj)).
i<

DNA sequence assembly 12

Summing over all steps,

w(0) = ZAw((’)i) > %ZZ(same(E,Fj)—l—opp(E,Fj)) > lw((’)*)

i j<i

[\

Thisis aworst-case bound, and it holds for any order of the fragments. In a good order,
the difference in weight between being in and out of © should be large for fragments appear-
ing early in the order. Otherwise, unrelated fragments that appear early may get an arbitrary
orientation.

We can determine an order as follows. Given F, same, and opp, we form an undirected
graph with vertex set 7 and edge weight function

w(A,B) = ‘same(A,B) —opp(A,B)‘.

Over this graph we compute a maximum weight spanning tree 7. Such atree clusters vertices
by edge weight. We then select aroot R of greatest total distance from all other vertices, where
the distancebetween vertices A and B isthenumber of edgeson the path connectingtheminT'.
AsT tendstoward asingle path, R tendstoward an endpoint of the path. Finally, we order the
fragments depth-first in 7" from R. The intuition behind this heuristic is that we expect the
graph on which we compute a spanning tree to be theinterval graph given by the correct layout
of the fragments, with some weak edges thrown in. For such agraph, the fragment order given
by the heuristic will tend towards the fragment order given by the underlying layout.

Constructing the graph takes O (' + V') time, where V' isthe number of fragmentsand F'is
the number pairsof fragmentswith nonzero sameor opp. Tree 7" can befoundin O (£ + V log V') time[9].
We canlocate i in O (V') timeby two passesover 1. Thefirst pass computesthe total distance
of each vertex A todl verticesin the subtreerooted at A bottom-up, along with the size of the
subtreeat A. The second pass usesthisinformationto computethetotal distance of each vertex
in the whol e tree top-down, while keeping track of the vertex of maximum total distance.

Determining the fragment order then takes O (£ 4 V' log V) time, and O (£ + V') space,
which dominates the time and space for the greedy algorithm.

3.3 Anexact algorithm

Using the idea of processing fragments in order, we can also design an exact algorithm that
computes an optimal orientation. Given an ordering I, . . ., I, of fragments 7, let ¥ denote
thesubset {F}, Fiy 1, ..., F}.}, and let F* denote F}'. We compute an optimal orientation for
FY F?, ..., F™, using the solutionsfor smaller problemsto solve larger ones.

Each problem F* is solved using the branch and bound technique. The computation can
be viewed as a binary tree of height %, as shown in Figure 5. A node at height : assigns an
orientation to F;, and aroot to leaf path assigns an orientation to all fragmentsin F*. We can
arbitrarily assign the forward orientation to F},, since pairs of solutionswith opposite orienta-
tions are equivalent.

Asthe exact agorithm exploresthe tree from the root to a node of height ¢, it accumulates
an orientation OF of F*. On descending to height i — 1, it extends this orientation first by
adding F;_, to O, whichtakestheleft branchinthetree, and later returning toadd F;_; to OF,
which takes the right branch.

When considering a move, branches are eliminated using subproblems that have already
been solved. When tackling F* for instance, the solutionsto 71, ..., ¥~ arein hand. This

DNA sequence assembly 13

(R) height k
(Ry (E) height k-1

Ny ;

Figure5 The branch and bound search tree for problem F*. A root to leaf path assigns an orientation
to Fk, Fk—l, R Fy.

alows usto quickly compute an upper bound on the weight w () of any completion of OF to
apartition (0, O) of F*.
For subsets.A and B of F*, let uswrite w(0)| 5 for

Z opp(A, B) + Z same(A, B),

AcA AcA
BeB _ BeB
(4,B)€(0,0) (4,B) £ (0,0)

the weight of orientation O restricted to edges that have one endpoint in .A and one endpoint
in B. For any partition (A, B) of F,
w(0) = w(O)((6)

+ w(O) |+ w(0)]

AA B,B AB

Let A = Fi~' and B = FP. For thischoice of .A and B we can upper bound each term of (6),
which represents the weight of an extension of OF to the fragmentsin A = F*~!, asfollows.
The first term, w(O)| 4,4, iSsa most the weight of an optimal orientation for Fi=1 whichis
known. The second term, w(O) |5, is exactly w(OF), which is the weight of the partial ori-
entation. Thethird term, w(O)| 4 5, isa most

Z max(w((’)f u{A}) r

AeA

{A},B’ w(ﬁf Ui4h) ({A},B)'

This bound for w(0)| 4 5 alowsthe fragments of A = Fi~! to optimigtically join OF or O,
independent of how they are partitioned in the first term.

The sum of the bounds for these three terms is an upper bound on w () for F*. Call this
upper bound U7%. We can also maintain alower bound L* on the weight of a solutionto F*.
Initially, L* may be obtained by greedily adding £, to the solution for F*~1. Whenever our
search reaches aleaf corresponding to an orientation of greater weight, weraise L”. If we dis-
cover at height i that UF < L*, itisnot worth searching the subtree further, and we backtrack.
In thisway the exact algorithm avoids exploring the whole search tree.

DNA sequence assembly 14

Evaluating the upper bound at a node takes O (£ + V') time. The bounds for the first and
second terms of (6) can belooked up in constant timeif thewei ghtsof solutionsto subproblems
are saved and the weight of OF is accumulated while descending the tree. Bounding the third
term involveslooking at no morethan £’ edgesand V' vertices. If K nodes are explored in the
search trees for 7! through F7, thetotal timeisO (K (E + V)), where K < 2V,

The space for subproblemsis O(V), as only the weights of solutions need to be stored,”
and the stack to traverse atree has height at most V. The total space thenisO(E + V).

A feature of these exact and approximation algorithms is that they lend themselves to a
hybrid algorithm that enjoys some of the advantages of both. Suppose the biologist places a
bound on the maximum number of nodesto explorein any search tree. When we run the exact
agorithmon problems F!, 72, .. ., we count the number of nodes explored in the current tree.
If on problem F* this count exceeds the bound, we stop the exact algorithm, take the optimal
orientation for problem F#~!, and extend it with the greedy algorithmto an orientation of 7.

The argument of the previous section showsthis hybrid algorithm achievesat | east the fac-
tor of % attained by the greedy algorithm. Moreover, it has the capacity to compute an opti-
mal orientation (and prove that it has found one) while aways running in polynomial time.
Though we have solved problems of 500 fragments with the exact algorithm, some instances
of 250 fragments have proved difficult to solve to optimality. With a bound of say 500 nodes,
the transition from the exact a gorithm to the approximation a gorithm can be made at run time.

Finally, we note that all of these algorithms can accomodate orientation constraints. For
example, the user may know that some fragments should be forward and others reversed, or
that some pairs of fragments should have the same orientation while others should have oppo-
site orientations. Since al of these algorithmsform an ori entation one fragment at atime, any
constraint that applies to the fragment can be checked before an orientation decision. Thus,
constraints can be accomodated in time linear in the number of constrained fragments and con-
strained pairs.

4 Fragment layout

The fragment orientation computed by the second phase of our algorithm induces an oriented
subgraph of the overlap graph. In the third phase, we select edges from this subgraph that are
consistent with an interpretation of fragments as intervals of the line. These intervals repre-
sent substrings of the underlying sequence, and we call the ensemble of fragment intervals a
fragment layout. Section 4.1 describes the structure of a set of edges in an overlap graph that
correspondsto alayout. We call such aset adovetail-chainbranching. Sections4.2 through4.5
describe our algorithm for computing an optimal dovetail-chain branching, and Section 4.6 de-
scribes how to compute alternate branchings for a user who desires alternate layouts.

4.1 Thedovetail-chain branching problem

Consider asequence S thatisareconstructionfor fragments 7. Every fragment /' € F matches
asubstringof S, say the substring from the ith character to the jth character of S. Throughthis
substring, reconstruction § associatestheinterval [4, j] with fragment F'. We call the collection
of intervalsfor the fragments a fragment layout for 7.

"Note that storing the orientations for the solutionsto F*, . .., F™ would take O(V?) space.

DNA sequence assembly 15

For alayout £, let £(F') denote the interval for fragment /7. The length of £, denoted
by |£], is ‘UFef/J(F)‘, the length of the total interval covered by £. Clearly a shortest re-
construction will have the shortest associated layout.

With every fragment layout we can also associate a set of edges in an overlap graph. For
fragments whose intervals are identical, we form an equival ence class, select one representa-
tive fragment for the class, and direct a containment edge from the representativeto every other
fragment initsclass. Now remove any fragment that is not arepresentativefrom consideration.
The remaining fragments can betotally ordered first by increasing left endpoint and second by
decreasing right endpoint. For any fragment F' whoseinterval iscontainedin another’s, thereis
aleast interval in the order that contains £'. We direct a containment edge from thisleast frag-
ment to . Now remove any fragment whoseinterval iscontainedin another’s. Theremaining
fragments have increasing left and right endpoints. Direct a dovetail edge from a fragment to
itssuccessor inthe order if their intervalsoverlap. Theresulting set of edges satisfiesfour prop-
erties:

(1) every vertex has at most one incoming edge,

(2) the edgesdo not form cycles,

(3) notwo dovetail edges |eave the same vertex, and

(4) no containment edge A =- B isfollowed by adovetail edge B — C'.

A set B of edgesthat satisfies properties (1) and (2) iscalled abranching. A branching may
also be characterized asacoll ection of vertex-digoint treeswith edges directed away from their
roots, which are the vertices with no in-edge. Each directed tree of the branching is called an
arborescence. A set of edgesthat in addition satisfies properties (3) and (4) we call adovetail-
chain branching. Its dovetail edges form digjoint chains that procede from the roots.

Following Staden [35], we call amaximal set of fragments that cover acontiguousinterval
in the layout, a contig. Note that the contigs of the layout correspond to the arborescences of
the branching.

Just as with every layout we can associ ate adovetail-chain branching, with every branching
we can associate a fragment layout. For an overlap (A,B), let indent(A,B) be the length of
the prefix of A that isnot aligned to B. Given abranching B of overlaps, we can construct a
contig for each arborescence of 55 asfollows. For afragment F in arborescence A, we define

L(F) = [left(F), left(F) + | F]]

where
0 if I’ istheroot of A;

left(F) = { left(A) _|_inélent(A,F), if (A,F) isin A. ")

For simplicity thislays out every contig from position zero. It should be understood that two
fragments overlapintheresulting layout only if their interval sintersect and they arein the same
arborescence. Layout £ can be computed in linear time by evaluating (7) top-down from the
roots of B.

Recall from Section 2 that edges in our overlap graph are weighted by likelihood func-
tion L (I, d). Each edge represents an alignment of maximum L (I, d), where [is the number
of matches inthe alignment and d isthe number of errors. For aperfect alignment, L(Z,0) = [.
Thuswhen ¢ = 0, theweight of an edge (A4, B) isthelength of thelongest prefix of B that can

DNA sequence assembly 16

be overlapped with A. If wewrite w(B) for the total weight of the edgesin a branching 5, it
isnot hard to show that, for the case of no error, the length of the layout £ induced by B is

L] = > [F|—w(B).

rer

Since} ", | F| isaconstant for any giveninput, a branching of maximum weight givesalayout
of minimum length. We take our problem to be the following.

Definition The maximum weight dovetail-chain branching problem, BRANCHING, is, given
adirected graph (V, £) with edge weight function w, with edges classified as either dovetails
or containments, find a dovetail-chain branching B C £ maximizing w(5). u

Kececioglu [18] generalizes the correspondence between dovetail-chain branchings and
layoutsto the case of error, and reduces the sequence reconstruction problem to the maximum
wei ght dovetail-chain branching problem. Thereduction requirestwo assumptionson fragment
error: that error is evenly distributed and approximate matching is transitive at the input error
rate. In particular he showsthat given these assumptions, an algorithmfor BRANCHING yields
areconstruction feasible at error rate 2 that is at most a factor -~ longer than the shortest
reconstruction that is feasible at error rate e.

This reduction is aso one way of showing that BRANCHING is NP-complete: RECON-
STRUCT isNP-completefor ¢ = 0, whilethe aboveresult statesthat for thiscase BRANCHING
solves RECONSTRUCT exactly. Given that a polynomia time algorithm for BRANCHING is
unlikely, how can we find a maximum weight dovetail-chain branching in practice? Our strat-
egy isto relax the dovetail-chain constraint. We can compute a maximum weight branching,
which may not be dovetail-chain, in polynomial time. Moreover, branchings can be produced
in order of decreasing weight. Hence we generate branchings in order of weight, until finding
one satisfying the dovetail-chain constraint. The first one that we find is guaranteed to be a
dovetail-chain branching of maximum weight. Our premiseisthat for fragments at alow error
rate from a sequence with few repeats, few branchings have to be generated.

It should be emphasi zed, however, that thisapproach requiresexponential timeintheworst-
case. Figure 6 givesasimpleexamplewherethe maximum dovetail-chain branching hasarank
that isexponentia in the number of vertices (though see Section 4.3 for techniquesto deal with
such graphs). Sincefew users can wait for an exponential number of iterations, we place alimit
on the number of branchings generated. For each branching generated, we invoke a procedure
that greedily repairs any defectsit may have. Of the branchingsthat are generated, the repaired
branching of maximum weight is returned as asolution. Asthe limit on iterationsis a constant
and greedy repair is efficient, a dovetail-chain branching, not necessarily of maximum weight,
is delivered in polynomial time. A slight variant of greedy repair is known to be an approxi-
mation algorithm for BRANCHING.

Biologists often have additional conditionson a solution, besides length of reconstruction,
that are difficult to capture formally. In such circumstances it is desirable to see not one so-
lution but several, from which the truly best may be chosen. We show that aternate layouts
are easily computed and that our approach can accomodate various constraints. The next four
sections present our algorithmfor dovetail-chai n branchi ngs, and thefifth section describes our
procedure for alternate layouts.

DNA sequence assembly 17

1 2 n

Figure 6 A graph for which a maximum weight dovetail-chain branching has exponential rank. All
edges are dovetails, so a dovetail-chain branching has only one edge, and is preceded by 2(2") non-
dovetail-chain branchings of greater weight.

4.2 Generating branchings

Efficient agorithms are known for maximum weight branchings and for generating branch-
ings in order of decreasing weight. A maximum weight branching over a graph of F' edges
and V' vertices can be computed in O(E + Vlog V') time and O(L + V') space, as shown
by Gabow, Galil, Spencer and Tarjan [11]. The K branchings of greatest weight can be gen-
erated in O(K Elog V') timeand O(K + £ + V') space, as shown by Camerini, Fratta and
Maffioli [3]. Our method of generating branchings is similar to Camerini et al., which ap-
plies the branchings algorithm of Tarjan [37], but has some differences. These differences are
due to our particular application, namely generating branchingsto meet a dovetail-chain con-
straint, which allows us to apply the algorithm of Gabow et al. [11] to generate K branchings
iNO(K(E+ VlogV)) time.

421 Formingconstraints

Suppose we have computed a maximum wei ght branching, which isnot dovetail-chain. Such a
branching containsapair of dovetail edges e and f that |leaveacommon vertex or acontai nment
edge e that isfollowed by a dovetail edge f. In both cases we say e conflictswith f.

No dovetail-chain branching 8 C F will contain both e and f. Either 5 contains neither
e nor f, f butnot e, or e but not f, which can be expressed as two disjoint conditions:

(1) BCFE—{e}or
(2 BC E—{f}and{e} CB.

Inthefirst case we can continue by searching for amaximum wei ght branching over thegraph (V, £/—
{e}). Inthesecond case, wheree = (A, B) ispart of the solution, we can remove al| out-edges
from A, al in-edgesto B, merge A and B into asinglevertex to obtain graph (f/, E) , and con-
tinue by searching (V, E — {f}), while retaining e as part of the solution. By solving both
problems recursively and returning the branching of greater weight, we will find a solution to
the original problem. Since the subproblemsare of smaller size, we have made progress. Since
they partition the solution space, they give a solution to the larger problem.

Refining one of the subproblems gives three problems, then four problems, and so on. In
genera, at any point in branching generation we havea collection of subproblemsthat partition
the space of dovetail-chain branchings. Each subproblem is represented by two sets of edges:
an in-set that must be contained by a dovetail-chain branching, and an out-set that must not
be contained. Also associated with each subproblem is the weight of the heaviest branching

DNA sequence assembly 18

satisfying the in- and out-set constraints. Thisweight is an upper bound on the solution value
for the subproblem.

Aniteration of the generator involvesfinding asubproblem P of greatest associated weight
and computing amaximum weight branching 58 meeting P’ sconstraints. If 5 isdovetail-chain,
it isan optimal solution to the original problem, and we halt. (5 has weight as great as any
solution to a subproblem.) If B is not dovetail-chain, a pair of conflicting edges {e, f} C B
is located, and P is split into two subproblems. Let / and O be the in- and out-sets for P.
One subproblem receives constraints / and O U {e}, and the other receives constraints / U {e}
and O U {f}. Thisfollowsagenera method of Lawler [20] for generating next-best solutions
to combinatorial optimization problems.

The resulting collection of problems is conveniently represented by a computation tree.
Each node in the tree contains an in-list and an out-list, which consist of the edgesin the in-
and out-sets, aong with the weight of the heaviest branching meeting these edge constraints.
Internal nodes have two children, which refine their parent’s subproblem. Leaves encode the
current partition of the solution space. A heap of leaves prioritized by weight allows usto find
a subproblem of greatest upper bound by extracting aleaf of maximum priority.

4.2.2 Computing constrained branchings

One can find a branching of maximum weight meeting thein- and out-set constraints by trans-
forming the problem into one with no constraints. This transformation has two steps.

First, instead of solving a branchings problem, we solve a rooted spanning arborescence
problem. A rooted spanning arborescenceisabranching where every vertex other than aspeci-
fied root hasan in-edge. The maximum weight branching problem can be reduced to to the max-
imum weight rooted spanning arborescence problem by adding an artificial root to the graph,
and adding edges of zero weight from the root to every vertex in the original graph. Choosing
an edge from the root to vertex v in arooted spanning arborescence means no in-edgeto v is
chosen in the corresponding branching. The branchings algorithms of Camerini et a. [3] and
Gabow et al. [11] actually compute maximum weight rooted spanning arborescences.

The second step of the transformation removes the edge constraints. Every edge in the out-
set is removed from the rooted graph, and for every edge (A, B) inthein-set, all edges of the
form (C,B) areremoved where A and C' aredistinct. Clearly the set of unconstrained arbores-
cences over this new graph isthe same asthe set of constrained arborescences over the original

graph.

423 Timeand space

The method we have outlined, which is essentially the method of Camerini et al. [3], simpli-
fied by the fact that we can more easily identify the edges ¢ and f on which to decompose a
subproblem, can be implemented efficiently in terms of the number of iterations and the size
of the original graph.

Each branching generated requires at most three constrai ned branching computations, two
heap insertions, and one heap deletion. One of the branching computationsis for recovering
the branching that meets the upper bound for the chosen subproblem, and the other two are
for bounding the weight of its children when they are inserted into the heap. Each maximum
weight branching computation involves reducing the constrained branching problem to an un-
constrained arborescence problem. Thereductiontakes O (V') time, and computing amaximum

DNA sequence assembly 19

weight rooted spanning arborescence takes O (£ + V' log V') time [11].

The time for heap operations can be bounded as follows. The heap contains leaves of the
computationtree, and generating abranching creates oneleaf. Thustheheapisof sizeO(K) = O(2%).
Heap insertions and del etions take time logarithmic in the size of the heap, so the time per it-
eration for heap operationsis O (log 2) = O(F).

Combining this with the above, the time per iterationis O (£ + V log V'), and the time to
generate K branchingsis O (K (£ + V' log V')).

Space is required for the constrained branchings algorithm, the computation tree, and the
heap. Computing a branching takes O(F + V') space [11]. The heap uses constant space per
leaf, or O(K') spacein al. The computation tree appears to require O (K F) space—it has
O(K) nodes and each node has an in- and out-list of size O(L)—Dbut this can be reduced to
constant space per node using the following idea of Gabow [10].

Thein- and out-setsfor aleft child [in the computation tree may be obtained fromits par-
ent p by adding one edge e to p’s out-set to form I’s out-set, and by copying p'sin-set. Thein-
and out-setsfor aright child » may be obtained from its parent p and left brother [by adding
one edge f to p’sout-set to form r’s out-set, and by adding I’s edge e to p’sin-set to form »’s
in-set. Thisbeing the case, instead of storing two edge listsat a node, we can store pointersto
its parent, itsleft brother, and the edge it adds to its parent’s out-set. Following these pointers
back to the root, we can recover the in- and out-sets for anode in O(E) time using constant
space er node, for atotal of O(K') space for the tree. With this representation, the space for
generating K branchingsisO(K + E + V).

4.3 Accelerating convergence

We now present two optimizationsthat accel erate convergence to a dovetail-chain branching.
The first optimization addresses edge conflicts.

Before computing a branching for a problem with in-set I and out-set O, we add to O al
edgesin the graph that conflict with an edge of 7. Certainly thisiscorrect, as no dovetail-chain
branching for the problem can contain any of these edges. The edges conflicting with a given
set can be computed in O(E 4 V) time. In the example of Figure 6, this reduces the number
of branchings generated from O (2") to O(n).

The second optimization addresses an inherent redundancy in branching generation. We
generate branchingsas ameans of generating layouts, but because therelation from branchings
to layoutsismany-to-one, several generated branchingscan result inthe samelayout. Factoring
out this redundancy requires a modification to the computati on tree data structure, and a more
careful method of identifying edge conflicts.

We capture the set of edgesin all branchings inducing the same layout as a given branch-
ing B by theclosureof B. Informally, thisset containsall edgesin the graph that overlap frag-
mentsin the same relative position as 5. Formally, the closure of a branching 5 inducing lay-
out £ inoverlap graph (i isthe set

closure(B) = { (A,B) € G such that
indent (4,B) — (lefts(B) — lefts(4))| < e[| + ¢[B] }.

(In this definition, it should be understood that (A, B) isin the closure only when A and B are
in the same arborescence of 5.) In words, we measure the difference between the placement of

DNA sequence assembly 20

Aand Binlayout £ andinoverlap (A,B). If thisdifference can be explained by the error rate,
(A,B) isinthe closure. Given abranching, we can compute its closurein O (£ + V) time:
determining the layout takes O (V) time, after which testing an edge for membership takes
O(1) time.

Removing (A, B) from a branching and replacing it with (C',B) from the closure givesin
essence the same layout. Thisis exactly what we want to avoid. Formally, let the kin of an
edge (A, B) with respect to branching 5 and graph & be the set

king(A,B) = {(C,B) €ed ‘ C#A} N Closure(BU {(A,B)}) .

Weformkinz(A,B) only when BU{(A,B)} isabranching, so that the closureiswell-defined.
Thekinof (A,B) can becomputed in O (V') time: determining the layout for the closure takes
O(V') time, after which we only need to examine edges that enter B and agree with the [ayout,
of which there can be at most V.

We use kin as follows. Before computing a branching for a problem P with in-set 7 and
out-set O that adds (A, B) to theout-set of its parent, weaugment O with kiny(A,B). Weknow
(A,B) was removed from the branching of P’s parent, which contained set /, because it cre-
ated aconflict. Adding kin;(A,B) to O prevents the selection of another edge that places B in
the same position. Note that obtaining O involvesrecovering the out-set of P’s parent, which
requires computing another kin-set, which invol vesanother out-set, and so onup thetree. Com-
puting al kin-sets could take O (K'V') time.

Toretain the O (£') time complexity for recovering in- and out-sets, we modify the compu-
tation tree. A node now stores, along with edge e that it adds to its parent’s out-set, akin-list
for e. Thislist containskin;(e) — O, where I isthein-set for the node and O isthe out-set for
its parent.

To recover an out-set for anode we follow node pointersback to theroot as before, but now
we copy the kin-listsof the nodes visited aswell. We recover in-sets as before. Recovering in-
and out-setsthen takes time O (£'). When creating a node, we recover itsin-set 7, its parent’s
out-set O, compute kiny(e), and store kiny(e) — O at thenode, all intime O(£ + V). Thus
the second optimization does not increase the time complexity of branching generation.

Unfortunately the space complexity increasesto O (K'V') in theworst-case, as the tree has
O(K') nodes and each kin-list can have O (V') edges. In practice, however, kin-sets have con-
stant size, asthein-degree of verticesis bounded by a constant (see Section 6.4). We call such
graphs sparse. For sparse graphs, the spacefor al kin-listsis O (K’), and the space complexity
of branching generation does not increase.

4.4 Resolving conflicts

When incorporating these optimizations we must be careful, since a representative branching
is being chosen for a layout. Consider two branchings By = {A — B, A — ('} and By =
{A— B, B— ('} thatinducethe samelayout. Only 53, isdovetail-chain. If the representative
that is generated for the layout is 51, a consistent layout will be rejected.

Consequently, it no longer suffices to test whether a generated branching 5 is dovetail-
chain. We must ask whether thereis a dovetail-chain branching /3 over the graph that induces
the same layout as 5. If such a3 exists, we say it resolves the conflictsin 5, and we return 5

DNA sequence assembly 21

and halt.8 If no B exists, the conflict we use to generate subproblems must be one that cannot
be resolved. We now present a procedure for identifying irresolvable edge conflicts. Asaside
effect, it will find aresolved branching 3 when one exists.

Given a branching B with conflicts, we compute its layout £ and closure C. Over the con-
tainment edges in C, we compute a maximum weight branching /5;. Every fragment that is
contained by an edge of B, isremoved from consideration. The remaini ng fragments are roots
of 31, and we sort themwithin contigsby increasing left endpointin £. For consecutivepairsof
fragments A, B welook for adovetail A— B inC. Call the set of dovetailsthat are found, l?z.
If no dovetail existsfor some pair of fragments, 55 containsan irresolvable conflict. Otherwise,
resolved branching B = B, U B isreturned. Note 5 is dovetail-chain.

This procedureis correct, as one can show that a contained fragment in £ must have a con-
tainment in-edgein 3, and the remai ning fragments must berelated by a chain of dovetailsinC.
This chain is unique, as two distinct chains through the same set of fragments would create a
dovetail cycle, whichisimpossiblefor agivenlayout. Thusif thereisadovetail-chain branch-
ing in the graph that yields the given layout, our procedure finds it. Moreover, the resolved
branching is unique up to containment edges. By using containments of maximum weight, the
procedure finds an optimal resolved branching.

If adovetail chainisnot found, what pair of edgesin B formsan irresolvableconflict? Cer-
tainly the first consecutive pair A, B with no dovetail A — B inC is the source of a conflict
in B. Depending on whether one fragment is a descendant of the other, there are two cases.

Suppose without loss of generality B isadescendant of A, and let P be the path from A
to Bin 5. Since B isnot contained in C, P must end in adovetail edgee. Since A and B are
adjacent inthelayout and (A,B) ¢ C, P must begin with a containment f. We choose for our
conflicting pair {e, f}. Itisirresolvable, asthereisno edge (A4,B).

Now suppose neither A nor B is a descendant of the other. Let P be the path from their
common ancestor to A, and ¢ be the path from this ancestor to B. Since A and B are not
contained in C, both P and must end in adovetail edge. Let these final edges be e and f.
Since (A,B) ¢ C, thispair isagain an irresolvable conflict.

In both cases, the conflicting pair can belocated in O (V') timeby walkingup B. Determin-
ing layout £ takestime O(V'), and forming closure C takestime O(F). Sorting the fragment
intervalsby left endpoint takesO (V log V') time. Verifying the dovetail chaintakestime O (F).
Thus we can find a resolved branching, or an irresolvable conflict, in O(E 4 V log V') time,
which iswithin the complexity of branching generation.

Before moving on to the next section, we review how the closure optimizationsand conflict
resolution are incorporated into our generator.

An iteration consists of removing a problem of greatest upper bound from the heap, recov-
ering the branching meeting the bound, and splitting the problem into two subproblems. To
recover abranching, we determineitsin- and out-sets and compute a maximum wei ght branch-
ing that meetsthese constraints. To determinethe constrai ntswe walk up the computation tree,
collectinganin-set I and an out-set O. We augment O with the kin-sets encountered during the
walk, and all edges conflicting with 7. The recovered branching istested for irresolvable edge

#In general we cannot claim that w(g) = w(B), hence B may not be:a maximum weight dovetail-chain branch-
ing. In the absence of error, however, the overlapsin B must be as long as the overlaps in B, which does im-
ply w(g) = w(B). Thusfor low error rates it is reasonable to assume that the weight of B is close to the weight
of B. Insuchasituation, B cannot be far from optimal, and is certainly worth reporting. Section 4.6 discusseshow
to generate alternates.

DNA sequence assembly 22

conflicts. If none exist, an equivaent dovetail-chain branching is returned, and we halt. Oth-
erwise, an irresolvable conflict is identified, two subproblems are placed in the heap, and we
iterate. A dovetail-chain branching is deliveredin O(K (£ + V log V')) time, where K isthe
number of iterations. SpaceisO (K V + L) worst-case, and O (K + E + V') for sparsegraphs.

45 Repairingirresolvable conflicts

On every iteration that fails to produce a dovetail-chain branching, conflicts in the generated
branching 55 are repaired by agreedy procedure to give a dovetail-chain branching B. Of these
repaired branchings, one of maximum weight over al iterationsis retained. In the event that
the generator exceeds the limit on iterations, we return a maximum weight repaired branching.

To repair anon-dovetail-chain branching 55, welocate its forbidden subgraphs and remove
their edges. Note that the resulting branching B is dovetail-chain. Edgesin ' — B are ordered
by decreasing weight and considered for inclusionin B. If includi nganedgein B preservesthe
branching property and the dovetail-chain property, it is added to B. After all edges have been
considered, 3 isreturned.

L ocating and removing the forbidden subgraphs of 5 takes O (V) time. Sorting the edges
in £—B takesO (E'log ') = O(FE log V') time. Testingan edgefor the dovetail-chain property
can bedoneinO(1) time by maintaining two bool ean variablesfor each fragment. Onevariable
records whether the fragment has a containment in-edgein B, and the other records whether it
has a dovetail out-edge. Including containment A = B preserves the dovetail-chain property
if B has no dovetail out-edge, while including dovetail A — B preserves the dovetail-chain
property if A hasno dovetail out-edge and no containment in-edge. Including an edge (4, B)
preserves the branching property if B hasno in-edgeand (A, B) doesnot create acycle. Since
(A,B) formsacycleif and only if A and B are members of the same arborescence, we can
test for cycle creation in essentially constant time by maintaining a partition of fragmentsinto
arborescences with digoint sets [37]. Thus the dominant step is sorting the edges. In short
greedy repair can be performed in O(F'log V') time worst-case.

Interestingly it isasymptotically more expensiveto greedily repair abranching than to com-
pute one of maximum weight. Thisis in the worst-case, however. For the sparse graphs of
practice, 2 = O(V), and the time for greedy repair is O(V log V).

We note that greedy repair is essentially a greedy algorithm for dovetail-chain branchings,
started from a partial branching. In asenseit is partially greedy, since theinitia branchingis
obtained by aglobal optimization. Tarhio and Ukkonen [36] and Turner [38] analyzethetotaly
greedy algorithm on overlap graphs with ¢ = 0, and show that it finds a solution of weight at
least % the maximum. For overlap graphs with ¢ £ 0, the tightest analysis we know of for
the totally greedy algorithm gives a factor of % In fact there are graphs where totally greedy
performs better than partially greedy, and vice versa[18].

Even so, we conjecture that the partialy greedy agorithm achieves at least a factor of %
Moreover, the weight of the last branching generated is an upper bound on the weight of an
optimal dovetail-chain branching. If we terminate without finding an optimal solution, we can
report how far from optimal our solutionis. Thisis not possiblewith a purely greedy strategy.

4.6 Producing alternates

Sometimes the biologist has additional criteriafor areconstruction that are difficult to formal-
ize or incorporate into an agorithm. The biologist may have arough idea of the length of the

DNA sequence assembly 23

solution, or know that a section of the reconstruction containing repeatsis not correct. In short,
the biologist may demand an aternate solution, and may wish to specify additional constraints.

4.6.1 Strongly independent alternates

We use the closure of a branching to generate alternate solutions. If closuresC; and C;, of two
branchings differ, their layouts differ. Requiring in additionthat C; € C, and C; € €y en-
sures that one layout is not contained in the other. In general, suppose the closures of the first
n solutionsare Cy, Cs, .. ., C,. We say the nth branching is strongly independent of the first
n — 1 branchingsif
c.z e
<n

Thisguaranteesthat every branching induces a configuration not seen before. Whilewe do not
know how to generate strongly independent branchings on-linein order of weight, there are at
most F of them, so we can afford to generate them all and sort them.

To generate an aternate layout, we find the heaviest edge in the graph not in the union of
the closures of the previous dovetail-chain branchings. We then invoke our generator with the
constraint that the chosen edge ¢ is contained in the branching. Thissimply involvesadding e
to thein-set at the root of the computation tree and forcing greedy repair to retain e.

Generating A alternatestakes O (E'log V +A(FE+4V')) timeon top of branching generation.
Before computing any aternates we form a sorted list of all the edgesin the graph. As each
aternate is produced, we compute its closure and remove its closure edges from the list. To
produce the next alternate, we seed the branching generator with the edge at the head of the
list. Sorting the edgestakes O (£'log V') time, and computing the closure and updating the list
takes O (E + V') timefor each aternate.

Producing all A aternates in order of weight requires
an additional O(Alog A) = O(Elog V) sort, and can take O(AV') additiona space to store
the branchings. The space can be reduced to O(A + V') = O(E + V) at the cost of doubling
thetimeby storing only the A seed edges and regenerating an aternate from its seed once their
order has been established.

Tosummarize, A strongly independent alternates can begenerated off-linein order of weight
iNO(AK(E+VlegV)+ ElogV) timeand O(K + E + V) space, where K is the maxi-
mum number of branchings examined for an alternate.

4.6.2 User-constrained alter nates

We can also produce alternates from constraints provided by the user. Biologists sometimes
know the order in which asubset of the fragments should overl ap, say from adirected sequenc-
ing method or arestriction map. Othertimesthey may simply know that a configuration of frag-
ments is incorrect, and wish to prevent it from appearing again. We can express some of this
information with in- and out-sets of edges.

When the order of some fragmentsis known, we retain in the graph only those edges that
are consistent withtheordering. All inconsistent edgesare placed into our out-set. We notethat
this can fail to enforce apartial order on fragments. For example, if fragment B should follow
fragment A but nothing is known about fragment ', we cannot ruleout C' —+ A and B — C'
individually yet together they form a path placing B before A. When atotal order on some

DNA sequence assembly 24

fragments is known and no fragments are allowed in-between, we can enforce the order by
placing a dovetail chain into our in-set.

Ontheother hand, whilethe order for thelayout may not be known, the biol ogist may know
that what is given isincorrect. Here the user might select a portion of a contig in a generated
layout and ask that the fragments selected be completely rearranged. In this case we would
compute a closure from the sublayout on the fragments, and pl ace these edges into our out-set.
Note that this constraint is very severe, however.

Finally, if the user wishesto freeze a sublayout we can use our conflict resol ution procedure
of Section 4.4 to determine a branching inducing just the sublayout, and place these edgesinto
our in-set.

5 Multiple sequence alignment

At this stage we have a branching that specifies a consistent layout of the fragments. The out-
put of our algorithm is a reconstructed sequence. In this phase we obtain a sequence from the
branching by (1) forming the closure of the branching, which consistsof all overlapsthat agree
with the layout, (2) merging these overlapsinto a multiple sequence alignment, and (3) voting
on aconsensus sequence for thealignment. This procedure can recover a sequence whoseerror
isfar lessthan that of any one fragment.

5.1 Themaximum weight trace problem

In the last section we defined the closure of a branching, which containsal edgesin the graph
that overlap fragments in the same relative position as the induced layout. The multiple se-
quence alignment® that we seek for a layout should agree with these overlaps. Exact agree-
ment, however, is not always possible. We settle for a multiple alignment that is close to the
pairwise alignments, and formalize anotion of closeness as follows.

Anedgeintheclosurethat digns A = aqas - - - a,, and B = by b, - - - b, can be represented
by alist of pairsof positions, (i1, j1), (2, j2), - - (tk, jk), Wherel < iy < iy < --- < ip < m
and1 < j; < jg < -+ < ji < n. Apair (¢, j) matches characters a; and b;.

We treat each pair as a constraint on our multiple aignment, namely, that both characters
must appear in the same column of the alignment. As Figure 7 shows, it may not be possible
to satisfy all the constraintsin a collection of pairwise alignments. We may have to settle for
a subset of the constraints. To discriminate anong subsets we weight each constraint by the
similarity of the pair of characters that are matched, and seek a subset that is satisfiable and of
maximum total weight.

Toformalizewhen constraintsare satisfiable, we definean alignmentgraph (V, F, <) whose
vertices V' correspond to sequence characters, and whose edges F correspond to pairs of char-
acters matched by the aignments. Over the vertices we define a partial order <. In this order,
v < w if v and w are both characters of asequence .S, and character v precedes w in S. Essen-
tially, the order of characters between columnsin any legal alignment must respect <.

In an alignment graph (V, F, <) every subset 7" C £ induces a collection of connected

? A multiple sequence alignment of sequences S, Ss, ..., Sk iSamatrix A = (aij) 1<i<k Where row a;; -
1<5<n

a2 -+ - ain GivesS;. Anentry a;; may equal the null character e, which isthe identity under concatenation.

ONA sequence asambly 2
() (&) (2 (&) by
(&) (5)/ (b alblcl
(&) (o) (o) (o e

€Y (b)

Figure 7 Pairwise aignments may not form a multiple aignment. (a) Three pairwise alignments
of ayasasay, b1bobsby, and ¢y eocscy. Edges join matched characters. (b) The induced connected com-
ponents, which form a cycle under <*.

components!® that partition V. For components X and Y, let X <* Y if thereisanz € X
anday € Y suchthat « < y. Relation <* may not be a partial order, for it is possible to
have both X <* Y andY <* X when X # Y. Whenrelation <* on the componentsof 7" is
a partial order, the constraints of 7' are satisfiable: every component corresponds to a column
of the alignment, and any topological ordering!! of the components that respects <* isavalid
order for the columns.

A topological order exists precisely when <* does not contain acycle. In other words the
constraints of 7" are satisfiable if and only if <* on the components of 7" is acyclic. We call
a satisfiable set 1" a multiple sequence trace. This generalizes the standard notion of trace in
sequence comparison [31, page 12].

Given a trace, we can form a multiple sequence alignment by determining its connected
componentsand topologically sortingthem. For atrace of M edgesover agraph of N vertices,
finding the connected componentstakesO (M + V') time. Thetopol ogical sort takestime linear
in the size of therelation, which can be represented by lessthan N ordered pairs. Thuswe can
recover amultiple alignment from atracein O (M + N) time. Since simply reading the input
and outputing the alignment requires (M + N') time, we concentrate on finding traces rather
than computing alignments. Our problem is the following.

Definition The maximum weight trace
problem, TRACE, is, given an alignment graph (V, F/, <) with edge weight function w, find
atrace T C IV maximizing 3" cr w(e). u

TRACE is NP-complete [18] and remains so even when, as in our application, the edges
between any two sequences form an alignment and the length of a sequence is bounded by a
constant.

We next present afast heuristic for maximum weight trace, and in Section 5.3, adapt it to
the instances that arise in sequence reconstruction.

°The connected components of (V, E) induced by F' C F are the maximal sets C' C V' such that every pair of
verticesin C' is connected by a path in F'. Maximal meansthereis no vertex outside C' connected to avertex in C'
by F.

'L A topological order for aset S with partial order < isatotal ordering of the elements of S that respects <.

DNA sequence assembly 26

5.2 A fast heuristic

Given the NP-completeness of TRACE, our strategy is to design an agorithm that is fast and
in practice delivers near-optimal traces. Our heuristic is based on the well-known observation
that a tree of pairwise alignmentsis atrace.!? In other words, given an aignment graph G,
consider choosing a pairwise trace between every two sequences. A tree over the sequences of
these pairwise traces gives a multiple sequence trace for G.

Note that in our alignment graphs, the edges between any two sequences already form a
pairwisetrace. Since any tree of these pairwisetraces givesamultiple sequencetrace, asimple
heuristic is to choose a tree of maximum total weight.

We can apply thisas follows. The pairwise traces from which we select a tree correspond
to the overlapsin the closure of our branching. Treat each overlap as an undirected edge, and
weight it by the sum of the similarities of the characters matched in the overlap. (Section 5.3.5
definesthe similarity measure we use.) Over these edges compute amaxi mum weight spanning
tree.

Computing theclosuretakes O (£+ V') timefor an overlap graph of £ overlapsand V' frag-
ments. For overlapswithatota of M pairsof matched characters, weighting the overlapstakes
O(M) time. For aclosure of E overlaps, computing a maximum weight spanning tree takes
O(E + Vg V) time[9].

Thisdeliversatracein O(F + M + Vlog V') time. Kececioglu [18] shows the resulting
trace hasweight at | east % of themaximum. Thisboundistight, but pessimistic. Frequently the
alignment graphs that arise can be partitioned into subgraphs of at most 1 fragments, where
D <V isthe maximum number of fragments that mutually overlap in the layout. We call
D the coverage depth of the layout, which in practice is a constant, usually between 5 and 10.
On such inputs, the multitrace is within a factor of % of optimal. For a coverage depth of 6,
this means the heuristic achieves afactor of %

Instances that meet even the coverage depth bound appear unlikely to occur in practice.
Real datahasfew errors, whichlendsstructureto the pairwi setraces. We canrefinetheheuristic
to take advantage of this structure.

5.3 A didingwindow variation

At thelow error rates of current practice, our alignment graphs have aregular underlying struc-
ture. When no error is present, the sequences are identical, and the alignment graph isa series
of columns, each column a complete subgraph. When arare error is present, its effect on this
structureisto displaceor del ete some edgeslocal tothedefect. For such graphs, most edgesina
pairwisetrace (A,C') will coincidewiththetrace of A and C' induced by pairwisetraces (A,B)
and (B,C). In other words, the structure of pairwise traces tends to be transitive due to high
edgetransitivity in the near-complete subgraphs. In such a situation the heuristic performswell
since most trees of pairwise traces induce an alignment of near-optimal weight.

We can further improve these alignments by adapting to local variation in sequence simi-
larity. Errorstend to cluster at fragment ends, so instead of using one tree across a fragment,
we alow the tree to adapt as errors arise, switching to atree that favors similar sequences. To
do this, we start with the alignment produced by the heuristic. A window containing a fixed

12This observation, expressed in different language, can be found in many papers. Perhaps the first occurrence
isin[29].

DNA sequence assembly 27

number of columnsisthen swept across the aignment. The width of the window is a parame-
ter to the algorithm. Over the alignment subgraph defined by the characters in the window, we
compute a maximum weight spanning tree. Thefirst column of the alignment induced by the
tree isoutput. These characters are removed from the window, and the column to the right of
the window is added. Thisadvances the window, and the process is repeated.

Thewindow itself is represented by awindow graph. Thisgraph consists of supervertices,
which represent the sequences spanned by the window, i.e. sequences with a character in the
window, and superedges, which represent pai rwi se traces between the spanned sequences. The
restriction of the alignment graph to the window isgiven by aleft and aright boundary. These
boundariesare the position of the leftmost character in the window, and the rightmost character
in the window, for each spanned sequence. Superverticesare attributed with aleft position, for
the character justinsidetheleft boundary, and aright position, for the character just outsidethe
right boundary.

We assumefor now that each pairwisetraceisgiven by alist of matchesinleft toright order.
Superedges are attributed with aleft match, which pointsto thefirst match on thelistinsidethe
left boundary, and a right match, which points to the first match outside the right boundary.
Superedges also store the total weight of the matches between the left and right boundaries.

In thisdlidingwindow variation, thewindow can be viewed as agenerator of columns. The
next three sections describe the steps in column generation: how we update the window when
advancing theleft boundary, how we advance the right boundary, and how we compute a span-
ning tree over the window graph incrementally. Many of these detail sare simply bookkeeping,
but are given for completeness. Thefinal sections specify our representation of pairwisetraces,
our similarity function for weighting trace edges, our voti ng function for consensus characters,
and a column compression optimization.

5.3.1 Advancing theleft boundary

A spanning tree T over the window graph sel ects pai rwise traces whose matches form amuilti-
plesequencetrace on thecharactersinthewindow. Thesematchesform connected components
of charactersin the alignment graph. The column generated by the window isan initial com-
ponent under <* of characters on theleft boundary. Given our window representation, we can
find aninitial component by a depth-first search over 7.

We first order the children in 7" left to right according to the layout, and pick for the root
of T the leftmost fragment in the layout. Our depth-first search traverses thistree, passing up
the initial component in an alignment over the subtrees. The component isrepresented by alist
of pointersto sequences; the non-null charactersin the column are theleft boundary characters
of the sequences on thislist. Spanned sequences not on thelist contribute null charactersto the
column.

When the search visitsa node A of T', the component list for the subtreeis initiaized to
sequence A. Its children are then examined in order. For each child B, the left match in the
superedgeto A isexamined. Weidentify four cases, asillustratedin Figure 8. Cases(c) and (d)
are handled together.

Casea (Thematchtouchestheleft boundary character of A, butnot B.) Inthiscasethebound-
ary characters of A and B are in different components. Furthermore, the component contain-
ing B must precede the component containing A, since the boundary character of B precedes
the character matched with A.

DNA sequence assembly 28

left boundary

(0 I

B see!O aes

A EQ
© /

B ree! O aus

A EO
@ i

B aes'O ser O ses

Figure8 Left matchesof A and B. Cases (a) through (d) are distingui shed by whether or not the match
touches aleft boundary character of the window.

In this situation, we recursively search the subtree rooted at B. When this search returns
and passes up acomponent C, we short-circuit the search of A’s children and simply return C.

Caseb (Thematch touchesthe boundary characters of A and B.) Inthiscase A and B arein
the same component. Recursively search the subtree rooted at B, and let C be the component
returned by the search. If B isamember of C, we append the members of C onto A’slist and
continue the search from the next child of A. Otherwise, C precedes the component contain-
ing B. In that case we can short-circuit the search from A and smply passup C.

Casescand d (Thematch touches either the boundary character of B but not A, or neither B
nor A.) Againthe componentsof A and B are distinct, but now either A precedes B, or they
are incomparable.

In either case weretain A’s component for the generated column, and instead of searching
B’s subtree, continue the search from A’s remaining children. u

The component returned from the root gives the column generated.

We can account for thetimeto find theinitial component by charging operationsto the edges
of T'. The operations are concatenating component lists, and testing whether a child isin the
component it passes up. With doubly linked lists, concatenation can be performed in constant
time. Each nodeknowswhether itisin thecomponent it passesup. By passing thisinformation
onto its parent, a test can be performed in constant time.

Charging these operations to the edge from a child to its parent, each edge is charged a
constant amount of time. The time then to compute a column is linear in the size of T', which
for alayout of coveragedepth D, isO(D).

Having determined the first column of the aignment in the window, we advance the left
boundary. We increment the left position of each sequence with a character in the column,

DNA sequence assembly 29

which effectively removes the character from the window. If this character is the last in the
sequence, we delete its supervertex and all incident superedges from the window graph. Oth-
erwise, we retain the supervertex and update itsincident superedges. If the left match of a su-
peredge involves the character in the column, we advance the left match pointer to the next
match in the pairwise trace and decrease the weight of the superedge by the match weight. All
thiscan bedoneintimelinear in the size of thewindow graph. Section 5.3.3 describes how we
determinethetree 7.

5.3.2 Advancing theright boundary

Advancing theright boundary invol vesadding acolumnontheright. We determinethiscolumn
exactly as we determined the first column in the window, namely by traversing a tree over the
sequences depth-first, except now the tree isfixed by the branching.

Once we have determined the column, we examine its characters. If the character isfrom
a new sequence (one that is not in the window) we create a supervertex for the sequence. All
overlaps in the closure incident to the sequence are examined, and if the alignment iswith a
sequence in the window graph, asuperedgeis created. Since each sequenceisinserted intothe
window graph once, thetotal time for insertion is linear in the total number of fragments and
overlaps in the closure. When a superedge is created, its weight isinitiaized to zero, and the
left and right match pointers are set to the first match of the pairwisetrace.

Afer creating any new supervertices and edges, theright positionisincremented for every
sequence with acharacter in the new column. We al so examine the superedgesincident to these
sequences. If the right match in the superedge touches characters that are both in the window,
we increase the weight of the superedge by the weight of the match. If either character in the
right match isin the window, we advance the right match pointer to the next match in thetrace.

When we remove a column from the left and add one on the right, we try to maintain the
window at roughly the same width. If we only ever add one column, the window can shrink.
Thiswill happen, for example, when the column removed contains a character from every se-
guence, and the column added contains only one character. On the other hand if we always
add a column, the window may expand. This happenswhen the column removed contains few
characters and the column added contains many. To maintain the size of the window, we use
thefollowingrule. A columnisadded whilehalf the spanned sequencesthat extend beyond the
right boundary havelessthan w characters, where w isthewindow width. Sometimesthisrule
adds no columns, and sometimesit addsmany. It ensuresthat the majority of the sequencesare
at the window width, and tends to maintain the volume of thewindow. Checking theruletakes
O(D) timefor D spanned sequences. Since determining the column on theright takes at least
this much time, it does not increase the time compl exity.

5.3.3 Computing the spanning tree

Thetreewe useto determinethefirst columnin thewindow isamaximum weight spanning tree
over thewindow graph. Aswe noted in Section 5.2, a maximum weight spanning tree can be
foundinO(F +V log V') timefor agraph of V' verticesand £’ edges. For alayout of coverage
depth D, thisisO(D?) time.

In practice we recommend a different spanning tree algorithm. The O(F + V' log V) time
algorithm requires a Fibonacci heap [9] or in practice a pairing heap [8] and since a spanning
tree is computed for every column, the overhead of these data structuresis unappealing.

DNA sequence assembly 30

Moreover, our spanning tree problems often vary only slightly from window to window,
in which case it is unnecessary to repeatedly compute a tree from scratch. When a column is
emitted that contains few characters, as is the case when an insertion error has occurred, the
weight of only afew edgesischanged. Incremental spanning tree algorithmsare availablethat
can quickly recompute an optimal tree after the weight of one edge in the graph has changed.
However when a column is emitted that contains many characters, all identical, asisthe case
when adeletion error has occured, the weight of nearly every edgein the graph is changed, all
by thesame amount. Thiscanrequire O (£') invocationsof anincremental algorithmto arriveat
the same tree astheinitia one. Anincremental algorithm that avoidsthe overhead of apairing
heap, while performing gracefully at both extremes, is preferable.

A well-knowna gorithmwiththesepropertiesisKruskal’s. Recall that thisalgorithm (1) starts
from the empty tree, (2) sorts the edges by non-increasing weight, and (3) considering them
in order, adds an edge to the tree if it does not create a cycle. This can be accomplished in
time O(F'log V'), the complexity being dominated by the sort of step (2). Notice, however,
that if weretain the sorted edge list from the previous column, thislist will be partially sorted
for the current column. An insertion sort, for example, on an n element list with & elements or
m pairsof elements out of order, takes O (n+m) = O(kn) time.'? In the common case where
few edge weights have changed, or nearly all weights have changed uniformly, thisisfast.

5.34 Representing pairwisetraces

Other than the list of matches in the pairwise traces, all data structures are linear in the size
of the window graph. (In fact the sliding window algorithm never constructs the entire align-
ment graph or multiple aignment matrix.) Except for matches, thisis linear in the number of
fragments and overlapsin the closure.

The space for matches can be kept small by representing pairwise traces with edit scripts.
A script specifiestheinsertions, del etions, and substitutionsto edit one sequence into the other.
For low error rates and long sequences, thisisasubstantia savingsover alist of matched char-
acters.

Edit scripts change the algorithm slightly, as our basic operation on an alignment is to ask
for the match at a given position. Notice however that these queries come left to right across a
sequence. (For awindow boundary, we only need to deliver the first match to the right of the
boundary, and update this match when the boundary is advanced.) We can represent an edit
script with apair of vectors giving the ascending positions of unmatched charactersin both the
sequences. For each superedge we maintain the pair of positionsat the current match and two
pointers into the edit script giving the next unmatched character in each sequence. With this
representation, the next match onthe boundary can bedelivered and updated withno increasein
time or space complexity. Finding the next match may require skipping over several unmatched
characters, but thetotal timeisproportiona to the number of aignment columnsand thelength
of the sequences.

13 The time can be reduced to O(n + klog(m/k)) = O(n + klog n) using a balanced tree to perform the in-
sertions [24, pages 222—224] though this is unnecessary for our small window graphs.

DNA sequence assembly 31

5.3.5 Weighting trace edges

Biologists often denote the nucleotides of the DNA sequence for a fragment with ambiguous
base codes. An ambiguous base codeis a subset of {a, ¢, g, t}, and represents the set of pos-
sible nucleotides at a sequence position that cannot be resolved uniquely.

Each character in our sequence thenisreally aset of letters. We can encode each set with
a bit-vector, since only four bits are needed for the DNA alphabet, and each vector will fit in
abyte. When computing pairwise alignments during overlap graph construction, we consider
two characters to match if their encoded sets intersect. Intersection can be tested in constant
time with a bitwise-and operation.

When computing multiple sequence alignments, we favor more precise matches by giving
such trace edges more weight. Theweight of an edge between characterswithsets X and Y is

Xyl /|xuyl.

The denominator isnever zero since X and Y are never empty. Thisgivesan exact match unit
weight, an ambiguous match somewhat |ess, and a complete mismatch zero weight.

We can compute aweight in O(1) time. The intersection and union can be computed with
bitwise-and and bitwise-or operations, and the cardinality of the resulting set can be computed
by table look-up.

5.3.6 Votingon a consensus

Our reconstructed sequenceis determined by consensusfrom the multiple sequence alignment.
Each character in a column places a vote for each letter in its set, where a null character is
equivalent to the empty set. For each letter in the a phabet, the votes are tallied. The consensus
character isthe set of lettersthat receive at least 3 votes, where n isthe number of sequences
spanned by the column.

This rule minimizes the total number of insertions, deletions, and substitutionsto convert
the consensuscharacter intoitscolumn. For alayout of coveragedepth D, thetimeto determine
such acharacter isO(D).

5.3.7 Compressing columns

Thelast detail iscolumn compression. Asdescribed in Section 5.3.1, two characters are placed
in the same column only when thereis a path of matchesthat join them inthetrace given by the
gpanningtree. Thispolicy can overlook matches outsidethetreethat join charactersin adjacent
columns. Since we compute a consensus from the multiple aignment by voting, we want to
merge adjacent columns whenever possible. If characters are spread across severa columns,
their vote gets divided. In the extreme, their vote may be sufficiently divided to prevent them
from appearing in the consensus, which can cause a deletion error in the reconstruction.

We can prevent this to some extent as follows. Generated columns are filtered through a
press before being output. Thisis a simple data structure containing a set of sequences from
the window graph. For each sequence in the set, the press holds a non-null character; these
characters form a column not yet output.

Recall that we aso represent a column generated from the window as a set of sequences
with non-null characters. When a new column is generated, we compare it to the one in the
press. If the sets are digjoint, we form their union, effectively compressing the two columns.

DNA sequence assembly 32

Otherwisethere is some sequence with anon-null character i n both the press and the generated
column. In this case we output the column in the press and replace it with the one from the
window.

Column compression takes time proportional to the number of non-null characters in the
columnsthat enter and leave the press, which does not increase thetime compl exity for multiple
alignment.

To summarize, given an alignment graph of N vertices induced by a closure of F over-
laps from a layout with coverage depth D, the dliding window algorithm computes a multiple
sequence alignment of Z columnsin O(N + D*L) time, and O(D + F + e¢N?) space.

6 Experimental results

To explore the viability of this approach to sequence reconstruction, we have implemented a
software package embodying the preceding suite of algorithms[19]. In both the orientationand
layout phases, the exact algorithms are run first. If the size of a search tree becomes too large,
for example when K = 500, the phases switch to the approximation algorithmsto produce a
solution. This section presents results from tests of thisimplementation on simulated sequenc-
ing data. By using simulated datawe could be certain of the correct solutionto each test. These
experiments do not constitute an exhaustive or conclusive study. Our goal was simply to get a
feel for the performance of our methods.

The experimentswere conducted as follows. Given asequence, we sampled it at randomly
chosen intervals to form a collection of substrings. All substrings were of the same length,
and each was reverse complemented with probability % With the introduction of error, this
collection of substrings constituted our input fragments.

To introduce error at rate ¢ into a substring of length n we formed : insertions, d dele-
tions, and s substitutions by repeatedly selecting an insertion, deletion, or substitution at ran-
dom while satisfying

i+d+s < e(n+1—4d).

Since the rel ationship between the error in the input and the error in the output was of interest,
we wanted to keep the edit distance between overl apping fragments as close as possibleto the
input error rate. Care was taken to ensure that any character was edited at most once when
generating the input.

The input parameters for the experiments were the sampled sequence, the error rate, the
number of fragments, and the substring length, which from now on we call thefragment length.
Since we recorded the positions of the substrings that were sampled, we knew the true layout
of the fragments and the correct reconstructed sequence, and could compare thisto the output
of our software. The software in addition required a match significance and error distribution
threshold for overlap graph construction, and awindow width for multiple sequence alignment.
For the experiments we used a match significance threshold of 10, an error distribution thresh-
old of 5 percent, and awindow width of 4.

Twelve experiments were performed in all, and their parameters are givenin Table 2. For
the first group of experiments, numbered 1 through 3, we generated a random sequence of
length 50,000 with characters drawn uniformly and independently fromthealphabet {a, c, g, t }.
We then sampl ed this sequencewith 500 fragments of 1ength 500, asampl e of roughly 250,000 char-
acters. Samplesizedivided by sequencelengthisthe number of genome equivalents, which for

DNA sequence assembly 33

Table2 Experiment parameters.

Sequence | Sequence | Fragment | Number of | Genome Error

Group | Experiment || type length length fragments | equivalents | rate
1 1 random 50,000 500 500 5 25 %

2 5.0

3 10.0

2 4 human 50,000 500 500 5 0.0

5 25

6 5.0

7 10.0

3 8 human 50,000 250 1,000 5 25

9 5.0

4 10 human 50,000 1,000 250 5 25

11 5.0

5 12 human 73,360 1,000 367 5 25

all experimentswasheld at 5. These values (500 fragments of length 500 and 5 genome equiv-
alents) are intended to reflect laboratory practice. The error rateswe chose (2.5, 5, and 10 per-
cent) far excede those encountered in practice, which are often quoted at less than 1 percent.
Our intention here was to explore the robustness of our approach to error in the data.

A random sequence has no structure, while biological sequences contain repeats. Inthere-
mai ning experiments, numbered 4 through 12, we used the human 3-like globingene cluster se-
guence [23]. This 73,360 character sequence contains many approximate repeats, and presents
achallenging reconstruction problem. Thirteen short interspersed Alu repeats are present, nine
in the forward direction and four in the reverse, as well as eight long interspersed L1HSs re-
peats, of which two are forward and six reversed. The Alu repeats are well separated and each
isroughly 300 baseslong. The L 1IHsrepeats are recursive in structure, and contain as many as
2,000 bases. In addition, the sequence contains many exact repeats of ten to fifteen bases. It
is our understanding that this degree of repetition is unusual. We chose the sequence because
instances of this difficulty apparently arise, and we were interested in testing the limits of our
approach. Experiments 4 through 11 took thefirst 50,000 characters of the human gene cluster
sequence. The first 50,000 nucleotides contain all but two of the Alu repeats and one of the
L1Hs repeats.

We point out that within groups, fragments were formed from the same collection of sub-
strings; only the error rate varied. Moreover between the first and second groups the position
of the substrings as well asthe location of errors was the same; only the underlying sequence
varied. Thus any difference in output between Groups 1 and 2 is due to the structure of the
sequence, rather than the pattern of sampling.

The effect of fragment length was examined in the third and fourth groups. Motivated by
the resultsin Group 4, we decided to perform Experiment 12 in which the entire gene cluster
sequence was sampled at 5 genome equival ents by fragments of length 1,000.

6.1 Synopsisof results

The experiments may be divided into Experiments 1 through 3 on the random sequence, and
Experiments 4 through 12 on the biological sequence. The point to keep in mind is that the

DNA sequence assembly 34

first set of experiments containsessentially no repeats, whilethe second set containsmany. On
the random sequence experiments, the exact algorithm found layouts that were provably op-
timal, as the maximum weight branchings were already dovetail chain. On the biological se-
guence experiments, however, the exact al gorithms could not solveto optimality Experiments4
through 7. Moreover, the greedy algorithmsfound the optimal solutionsof the exact algorithms
on Experiments 1 through 3, and found sol utions equivalent to the exact algorithms on Exper-
iments 4 through 7. In light of this, on Experiments 8 through 12 we ran only the greedy algo-
rithms, by limiting the search with K = 1.

Thelesson we draw from this experience is that the exact algorithmswork well in the ab-
sence of repeats, but for a sequence as repetitive as the human gene cluster sequence, they are
incapabl e of finding an optimal solution. Moreover the greedy a gorithms appear to work just
as well, and produce layouts of acceptable quality.

We now present detailed results with respect to various perf ormance measures. Those of
primary interest are the quality of the layout and consensus sequence, and we report thesefirst.
Layout statistics are for the greedy agorithms as just explained. We follow with some inter-
esting parameters of the overlap graphs and multiple sequence aignments, report computation
times, and describe how the software was run.

6.2 Layout quality

Four measures of layout quality are summarized in Table 3. Thefirst measure, number of con-
tigs, is expressed as a composite number = /y/z. Here x isthe number of contigsin the com-
puted layout, i isthe number in which every fragment was correctly ordered, and = isthe num-
ber of contigsin the correct layout, given that some edges were erroneously culled from the
overlap graph. In other words = isthe number of contigsin a perfect reconstruction that isre-
stricted to the overlapsin the graph. In all experiments the number of contigsin the true layout
is z minus the number of incorrect culls.

All incorrect culls, the second measure, occurred because the score of an overlap was be-
low the overlap threshold. To give an example, the oneincorrect cull in Experiments 8 and 9
occurred because the substringsinvol ved had an overlap in thetruelayout of only thirteen char-
acters. With deletion errors, the score for thisoverlap was lessthan the threshold of 10, causing
it to be culled during overlap graph construction. Whilethe truelayout consisted of seven con-
tigs, without this overlap it broke into eight. To permit a fair comparison with the computed
layout—which can be formed only on the basis of overlapsin the graph—we report the num-
ber of contigsin the correct layout as eight for these two experiments, and give in a separate
column the number of incorrect culls. Correct layout from now on meansthetrue layout given
incorrect culls.

The third measureis the number of incorrect adjacencies. Counting contigs that are com-
pletely correct is a coarse measurement of quality. For instance, while only six of the seven
contigs computed in Experiment 4 were completely correct, much of the seventh contig was
correct aswell. We took as a measure of the degree of correctness the number of pairs of frag-
ments that were adjacent in layout order in both the computed layout and the correct layout,
where fragments are ordered first by increasing left endpoint and second by decreasing right
endpoint. To count the number of incorrect adjacencies, we talied the number of pairs adja
cent in one order but not the other, and took the maximum of the tallies for the two orders.
In Table 3, incorrect adjacencies are expressed as this count, followed by the total number of
adjacencies in the correct layout.

DNA sequence assembly 35

Table3 Layout quality.

Fragment | Number of | Error Number of | Incorrect | Incorrect Overlap
Experiment || length fragments | rate contigs” culls adjacencies’ | savings
1 500 500 | 25 % 6/6/6 0 0/494 0
2 5.0 6/6/6 0 0/494 0
3 10.0 8/8/8 2 0/492 0
4 500 500 | 0.0 7/6/6 0 9/494 268
5 25 7/6/6 0 16/494 767
6 5.0 7/5/6 0 19/494 | 1,076
7 10.0 10/9/8 2 27/492 994
8 250 1,000 | 25 8/7/8 1 21/992 824
9 5.0 8/6/8 1 23/992 | 11110
10 1,000 250 | 25 4/2/3 1 7/247 -56
11 5.0 3/1/2 0 10/248 | 2164
12 1,000 367 | 25 6/5/5 0 5/362 784

“Thenumber of contigsz /y/ = isexpressedasthe number = in the computed layout, followed by the number y in
which every fragment is correctly ordered, followed by the number =z in the correct layout given that some overlaps
were culled.

*The number of incorrect adjacencies « /y is expressed as the maximum « of the number of pairs of fragments
adjacent in the computed layout order or the correct order but not both, followed by the total number y of pairsin
the correct order.

Asan exampl e, consider alayout of six fragmentsinto two contigs, correctly ordered (1, 2, 3)
and (4, 5, 6). Supposewetakefragment 5and moveit after fragment 3, breaking thelayoutinto
(1,2,3,5),(4), and (6). Thislayout has one pair (3,5) which is not present in the original or-
der, while the correct layout has two pairs, (4,5) and (5,6), not present in the incorrect order.
We count this as two incorrect adjacencies.

Thelast measureisoverlap savings. Thisistheweight of the branching inducing the com-
puted layout minus the weight of the branching over the same overlap graph inducing the cor-
rect layout. A positive quantity means that the computed layout has greater overlap, orisin a
sense shorter.

The most striking feature of Table 3isthat al the random sequence experiments, and none
of the biological sequence experiments, were solved correctly. Thissuggeststhat the exact and
greedy algorithms work well in the absence of repeats. In the presence of repeats, the greedy
algorithm found alayout shorter than the correct onefor all except Experiment 10, and at error
rates of 5 percent or lessit correctly determined over 95% of the adjacencies. Perhapswiththe
methods of Section 4.6 for producing alternate layouts and accomodating layout constraints, a
biologist could correct the remaining 5%.

As ageneral trend within a group, the compression and rearrangement within layouts in-
creased at higher error rates. This can be explained by approximate repeats in the gene cluster
sequence, since our criterion of minimizing layout length will compress approximate repeats
assuming they are long and occur at alow error rate. Comparing the second, third, and fourth
groups at the same error rate, the number of incorrect adjacencies increased with the number
of fragments in absoluteterms, but as a fraction of the total number of adjacencies, thereisno
discernablerdation. Thisisprobably dueto changesinthe pattern of repeatsthat were sampled

DNA sequence assembly 36

Table4 Consensuserror.

Output error®
Input error In sample At coverage > 3 With correction
Experiment rate tly | rate tely | rate tlly | rate
5 1in40 | 11/6163 | 1in560 || 5/5379 | 1in 1075 || 0/5374 | 0in 5374
6 1in20 || 29/6158 | 1in212 || 3/5367 | 1in1789 || 1/5365 | 1in5365
7 1in10 || 41/6154 | 1in150 || 9/5422 | 1in602 || 0/5413 | 0in5413

“The output error tally = /y is expressed as the number = of insertion, deletion, and substitution errors between
the computed consensussegquenceand the correct sequence, followed by the number y of charactersin the consensus
seguence, over a sample of the output.

when the fragment length varied across groups.

Onestatistic not presentedin Table 3isthenumber of incorrect orientations. Thisisbecause
for all twelve experiments, the relative orientation of fragmentswas correctly determinedin all
contigs, even when a contig contained incorrectly placed fragments. Thisis somewhat surpris-
ing since, hot counting the experiments within a group at varying error rates, there were more
than 2,500 orientationsto determine, of which roughly half were reverse complements. Either
theinterna reverse complementarity of the gene cluster sequenceissufficiently simple, though
reverse complement repeats are present, or fragment orientationis easier than fragment layout.

6.3 Consensuserror

Measures of the error in the reconstructed sequence are given in Table 4. These aso require
some explanation.

We examined the consensus sequence in Experiments 5 through 7 for two contigsthat were
correctly laid out in all three experiments. These consensus sequences were compared to the
correct sequence by counting the number of insertion, deletion, and substitution errors. The
raw error isgiven in column in sample under tally as the error count followed by the number
of charactersin thesample. The next column expressesthe error as arate, for example, 1 error
in 560 characters.

Most of the errors in the consensus occurred when only one or two fragments participated
in the voting. When only one fragment votes, neither the presence or absence of an error can
be detected. When two vote, an error can be detected, but not how to correct it. Consequently,
counting errors at a coverage of one or two fragments misrepresents the error rate, since few
users would accept such a weak consensus. Column at coverage > 3 gives the error in the
sample when three or more fragments participated in the voting.

Of the seventeen errors at coverage at least three, al but one were insertion errors caused
by the configuration of Figure 9. This configuration is characterized by two adjacent columns
where the first half of the rows contains a- , the middle row contains aa, and the last half
contains - a. Of course the choice of character a is arbitrary, as well as the order of the two
columns, and the order of the rows.

Suppose both halves contain at least [£/2] — 1 rows, where £ counts the total number of
rows. Since each column then containsat least [k /2] characters, the voting procedure of Sec-
tion 5 will interpret the alignment as theresult of & — 1 deletions, and correct them by output-

DNA sequence assembly 37

a- -a
a- -a
aa — aa
-a -a
-a -a

Figure9 A typica configuration causing an error in the consensus, and its correction.

ing AAfor theconsensus. Consider dlidingthe characters of thetop half one columnto theright;
thisaso givesavalid aignment. Our alignment algorithm of Section 5, which approximates
TRACE, may not distingui sh between these two configurations, or may even prefer thefirst con-
figuration to the second. Our consensus a gorithm on the other hand will interpret the second
configuration as the result of oneinsertion, and output asingle A. Thisis amore parsimonious
explanation of the data, and in our experiments, it was the correct one.

The configuration of Figure 9 is not hard to recognize and correct prior to voting. Column
with correction givesthe error in the sample, at coverage at | east three, taking thisinto account.

It is clear from the table that the error in the reconstructed sequence at a coverage of three
or more isaready lessthan 1in 1,000 for input rates of 5 percent or less. With the correction
described above, it islessthan 1in 5,000. Of course, we sampled little more than 5,000 char-
acters, so thisstatistic may be inaccurate.

Nevertheless, 1in 5,000 is a dramatic improvement over an error of 1in 20. These experi-
mentswere at an average coverage of five (see Section 6.4), which indicatesrapid convergence
to the underlying sequence. Perhaps a coverage of eight would yield output of sufficient accu-
racy for most conceivable applications.

6.4 Coveragedepth and vertex degree

In Sections 4 and 5 we claimed that, in practice, the coverage depth of alayout, and the ver-
tex degree in an overlap graph, are both small constants relative to the number of fragments.
Table 5 presents some statistics for these two parameters. Average coverage depth was com-
puted by summing the number of spanned sequences over al columns of the multiple sequence
alignment, and dividing by the number of columns. Average vertex degree was computed by
dividing the number of edgesin the overlap graph by the number of vertices. Maximum vertex
degree was computed by counting the number of in-edges and out-edges of each vertex, and
taking the maximum of the two. Taking the sum would yield afigure that should be compared
with twice the average degree.

The data supportsour assumption that both the expected coverage depth and vertex degree
are near the number of genome equivalents, which in practice is a constant. The maximum
values are much higher, but still more than an order of magnitude less than the number of frag-
ments.

DNA sequence assembly 38

Table5 Coverage depth and vertex degree.

Number of | Error Genome Coverage depth® Vertex degreeb
Experiment || fragments | rate equivalents || average | maximum | average | maximum
1 500 25% | 5 5.1 14 5.0 17
2 5.0 5.1 14 5.0 16
3 10.0 5.2 14 5.2 17
4 500 0.0 5 5.1 14 5.2 17
5 25 5.2 15 5.3 17
6 5.0 5.2 15 5.6 17
7 10.0 5.3 16 6.3 19
8 1000 25 5 5.2 19 5.4 30
9 5.0 5.2 19 5.6 30
10 250 25 5 5.1 12 5.2 14
11 5.0 5.2 12 5.4 15
12 367 25 5 5.2 13 5.3 14

“Average coverage depth is the sum over al columns of the alignment of the number of spanned sequences
divided by the total number of columns.

® Averagevertex degreeis the number of edgesin the overlap graph divided by the number of vertices. Maximum
vertex degreeis the maximum number of in-edges or out-edges for any vertex.

6.5 Computationtime

Our softwaretook asinput the fragments, the error rate, and some additional parameters. These
parameters were the overlap graph thresholds, the multiple alignment window width, and the
maximum search tree size. As mentioned earlier, for al experiments we used a match signifi-
cancethreshold of 10, an error distributionthreshold of 5 percent, and awindow widthof 4. For
the search trees weinitially tried an unbounded number of nodes for fragment orientation, and
an unbounded number of generated branchings for fragment layout. Optimal solutions were
found on Experiments 1 through 3, the random sequence group; maximum weight branchings
for these experiments were dovetail chain. We were unable, however, to find an optimal ori-
entation or layout for Experiments 4 through 7 within overnight runs. Hence we decided to
forego branch and bound and use greedy extension for fragment orientation, and greedy repair
for dovetail-chain branchings, on Experiments 4 through 12. One greedy orientation was com-
puted, and one maximum weight branching was generated. As all fragments were correctly
oriented and al layouts except Experiment 10 had an amount of overlap at or exceeding that
of the correct solution, it appears that the greedy algorithms perform surprisingly well.

Table 6 gives computation times. Overlap timeisthe time for overlap graph construction,
layout time isthe time for fragment orientation and layout by the greedy a gorithms (the algo-
rithmsthat produced layoutsfor Table 3), and alignment timeisthetime for multipleaignment
and consensusvoting. Timesarein unitsof hours, seconds, and minutes on a six-processor Sil-
icon Graphics1ris4D/300GTX running at 33 megahertz with 16 megabytes of RAM. Our code
did not exploit any parallelism in the machine.

AsTable6 shows, nearly al therunningtime wastaken by overlap graph construction. The
data supports alinear growth in overlap time as afunction of error rate, which agrees with the
worst-case timebound of O (¢ /N?) for fragments of total length IV at error rate . Experiments1
through 11 all have roughly the same number of input characters, so another study would be

DNA sequence assembly 39

Table6 Computationtime.

Fragment | Number of | Error Overlap Layout | Alignment

Experiment || length fragments | rate time time time

1 500 500 25 % (| 0.9 hour 6 sec | 2.9 min

2 5.0 18 6 29

3 10.0 25 7 3.0

4 500 500 0.0 0.4 4 2.8

5 25 11 6 3.0

6 5.0 18 6 2.8

7 10.0 33 8 3.0

8 250 1,000 25 13 15 43

9 5.0 18 16 44

10 1,000 250 25 12 2 25

11 5.0 24 3 25

12 1,000 367 25 25 5 45

necessary to observe a quadratic growth in input length.

We point out that while overlap timeis on the order of hours, it may be amortized over the
period of data acquisition. As the sequence for each fragment is obtained, the overlap graph
can be updated with the insertion of one vertex and the comparison of the new fragment to
those currently in the graph. If we dividethetimeto compute the overlap graph by the number
of fragments, the amortized time is less than 10 seconds per fragment for 500 fragments of
length 500 at 2.5 percent error. For 250 fragments of length 1,000 at 2.5 percent error thetime
islessthan 5 seconds, though response will of course degrade for the last fragments inserted.
Note that the time to compute a layout is aso on the order of 5 and 10 seconds. This suggests
that for problems of current size, it is possibleto deliver an updated layout as each fragment
is obtained. And as Section 6.2 indicates, the layout may be of acceptable quality even for
problematic repetitive sequences.

7 Conclusion

A four phase algorithm for sequence reconstruction has been presented. For aproblem involv-
ing V' fragments of total length NV, the first phase constructs a graph of overlaps within error
rate e intime O (e N'%). Generally, the length L of the underlying sequence is known approxi-
mately, and experimentalistssamplefragmentsuntil D = % isbetween2 and 10. Ratio D isthe
number of genome equival ents sampled, and is alwaysasmall constant. In such acase, the ex-
pected outdegree of avertex intheoverlap graphisO (D), implying that the number of edgesis
in expectation O (V). Orientation and layout phases then taketime O (K'V log V'), where K is
the size of their search space. Under most conditionsconvergenceisquick, and performancein
practiceisbasically O (V log V). For thefina multipleaignment phase, O (D? L) timeistaken.
Thusunder empirical conditionsthealgorithmrunsinroughly O (e N? + V log V + D?L) time.

The most time consuming aspect of the computation in practice is the comparison of frag-
ments during overlap graph construction. (Ironically the only phase that is not NP-complete.)
Current work focuses on trying to lever recent methods for fast database searching to produce
a sub-quadratic algorithm for this phase.

DNA sequence assembly 40

Another weaknessof our methodisthat it artificially separatesorientation and layout. (See[18]
for an explanation of why thisisnecessary, given our choice of arelaxation to maximumweight
branchings.) Aswe have noted, solving each of these problems optimally does not guarantee
an optimal solution to the combined reconstruction problem. What is desired is an algorithm
that solvesboth simultaneously. This can be done with a graph theoretic formulation that uses
arelaxation to maximum weight matchings, which isthe subject of afuture paper.

Acknowledgements

The first author wishes to thank Webb Miller for providing the human gene cluster sequence,
and David Sankoff for access to machineswhile at the Universitéde Montréal. Our thanksalso
to anonymous referees for their comments.

References

[1] Blum, Avrim, Teo Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. Linear approximation
of shortest superstrings. Proceedings of the 23rd ACM Symposium on Theory of Computation,
328-336, 1991.

[2] Camerini, P, L. Fratta, and F. Méffioli. A note on finding optimum branchings. Networks 9,
309-312, 1979.

[3] Camerini, P, L. Fratta, and F. Maffioli. The % best spanning arborescences of a network. Net-
works 10, 91-110, 1980.

[4] Chang, William and Eugene Lawler. Approximate string matching in sublinear expected time.
Proceedings of the 31st IEEE Symposium on Foundations of Computer Science, 118-124, 1990.

[5] Chvéta, Vaclav and David Sankoff. Longest common subsequences of two random sequences.
Journal of Applied Probability 12, 306-315, 1975.

[6] Cull, Paul and Jim Holloway. Reconstructing sequences from shotgun data. Manuscript, 1992.

[7] Foulser,David. A lineartimeagorithmfor DNA sequencing. Technical Report 812, Department
of Computer Science, Yae University, New Haven, Connecticut 06520, 1990.

[8] Fredman, Michael, Robert Sedgewick, Daniel Sleator, and Robert Tarjan. The pairing heap: A
new form of self-adjusting heap. Algorithmica 1, 111-129, 1986.

[9] Fredman, Michael and Robert Tarjan. Fibonacci heaps and their usesin improved network opti-
mization algorithms. Journal of the Association for Computing Machinery 34:3, 596-615, 1987.

[10] Gabow, Harold. Two agorithmsfor generating weighted spanning treesin order. SIAM Journal
on Computing 6:2, 139-150, 1977.

[11] Gabow, Harold, Zvi Gdlil, Thomas Spencer, and Robert Tarjan.Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109-122, 1986.

[12] Gallant, John. The complexity of the overlap method for sequencing biopolymers. Journal of
Theoretica Biology 101, 1-17, 1983.

[13] Gallant, John, David Maier, and James Storer. On finding minimal length superstrings. Journal
of Computer and System Sciences 20:1, 50-58, 1980.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

DNA sequence assembly 41

Gingeras, T., J. Milazzo, D. Sciaky, and R. Roberts. Computer programs for the assembly of
DNA sequences. Nucleic Acids Research 7:2, 529-545, 1979.

Gusfield, Dan, Gad Landau, and Baruch Schieber. An efficient algorithm for the all pairs suffix-
prefix problem. Information Processing L etters 41, 181-185, 1992.

Huang, Xiaogiu. A contig assembly program based on sensitive detection of fragment overlaps.
Genomics 14, 18-25, 1992.

Hutchinson, George. Eva uation of polymer sequence fragment datausing graph theory. Bulletin
of Mathematical Biophysics 31, 541-562, 1969.

Kececioglu, John. Exact and Approximation Algorithms for DNA Sequence Reconstruction.
PhD dissertation, Technical Report 91-26, Department of Computer Science, The University of
Arizona, Tucson, Arizona 85721, 1991.

Kececioglu, Johnand EugeneMyers. A procedural interfacefor afragment assembly tool. Tech-
nica Report 89-5, Department of Computer Science, The University of Arizona, Tucson, Ari-
zona 85721, 1989.

Lawler, Eugene. A procedure for computing the k£ best solutionsto discrete optimization prob-
lems and its application to the shortest path problem. Management Science 18, 401-405, 1972.

Li, Ming. Towards a DNA sequencing theory. Proceedings of the 31st IEEE Symposium on
Foundations of Computer Science, 125-134, 1990.

Manber, Udi and Gene Myers. Suffix arrays: A new method for on-line string searches. Pro-
ceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, 319-327, 1990. To
appear in SIAM Journal on Computing.

Margot, Jean, G. WilliamDemers, and RossHardison. Complete nucl eotide sequence of therab-
bit 5-like globin gene cluster: Analysis of intergenic sequences and comparison with the human
(-like globin gene cluster. Journal of Molecular Biology 205, 15-40, 1989.

Mehlhorn, Kurt. Data Structures and Algorithms, Volume 1: Sorting and Searching. Springer-
Verlag, Berlin, 1984.

Myers, Eugene. Incremental alignment agorithmsand their applications. Technical Report 86-
2, Department of Computer Science, The University of Arizona, Tucson, Arizona 85721, 1986.

Peltola, Hannu, Hans Soderlund, Jorma Tarhio, and Esko Ukkonen. Algorithmsfor some string
matching problems arising in molecular genetics. Proceedings of the 9th IFIP World Computer
Congress, 59-64, 1983.

Peltola, Hannu, Hans Soderlund, and Esko Ukkonen. SEQAID: aDNA sequence assembly pro-
gram based on a mathematical model. Nucleic Acids Research 12:1, 307-321, 1984.

Press, William, Brian Flannery, Saul Teukolsky, and William Vetterling. Numerical Recipesin
C: TheArt of Scientific Computing. Cambridge University Press, New York, 1988.

Sankoff, David. Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics
28:1, 3542, 1975.

Sankoff, David and Véaclav Chvatal. An upper bound technique for lengths of common subse-
guences. Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison, David Sankoff and Joseph Kruska editors, Addison-Wesley, Reading, Massachu-
setts, 353-357, 1983.

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

DNA sequence assembly 42

Sankoff, David and Joseph Kruskal, editors. Time Warps, String Edits, and Macromol ecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, Massachusetts,
1983.

Shapiro, Marvin. An algorithm for reconstructing protein and RNA sequences. Journa of the
Association for Computing Machinery 14, 720-731, 1967.

Smetani¢, Y. and R. Polozov. On the algorithms for determining the primary structure of
biopolymers. Bulletin of Mathematical Biology 41, 1-20, 1979.

Smith, Temple F. and Michael S. Waterman. I dentification of common molecular subsequences.
Journal of Molecular Biology 147, 195-197, 1981.

Staden, R. A strategy of DNA sequencing employing computer programs. Nucleic Acids Re-
search 6:7, 2601-2610, 1979.

Tarhio, Jorma and Esko Ukkonen. A greedy approximation algorithm for constructing shortest
common superstrings. Theoretical Computer Science 57, 131-145, 1988.

Tarjan, Robert. Finding optimum branchings. Networks 7, 25-35, 1977.

Turner, Jonathan. Approximation algorithms for the shortest common superstring problem. In-
formation and Computation 83, 1-20, 1989.

Ukkonen, Esko. A linear time a gorithmfor finding approximate shortest common superstrings.
Algorithmica 5, 313-323, 1990.

