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Abstract

Background: Next-generation sequencing (NGS) offers a unique opportunity for high-throughput genomics and

has potential to replace Sanger sequencing in many fields, including de-novo sequencing, re-sequencing, meta-

genomics, and characterisation of infectious pathogens, such as viral quasispecies. Although methodologies and

software for whole genome assembly and genome variation analysis have been developed and refined for NGS

data, reconstructing a viral quasispecies using NGS data remains a challenge. This application would be useful for

analysing intra-host evolutionary pathways in relation to immune responses and antiretroviral therapy exposures.

Here we introduce a set of formulae for the combinatorial analysis of a quasispecies, given a NGS re-sequencing

experiment and an algorithm for quasispecies reconstruction. We require that sequenced fragments are aligned

against a reference genome, and that the reference genome is partitioned into a set of sliding windows

(amplicons). The reconstruction algorithm is based on combinations of multinomial distributions and is designed to

minimise the reconstruction of false variants, called in-silico recombinants.

Results: The reconstruction algorithm was applied to error-free simulated data and reconstructed a high

percentage of true variants, even at a low genetic diversity, where the chance to obtain in-silico recombinants is

high. Results on empirical NGS data from patients infected with hepatitis B virus, confirmed its ability to

characterise different viral variants from distinct patients.

Conclusions: The combinatorial analysis provided a description of the difficulty to reconstruct a quasispecies, given

a determined amplicon partition and a measure of population diversity. The reconstruction algorithm showed

good performance both considering simulated data and real data, even in presence of sequencing errors.

Background

Next-generation sequencing (NGS) techniques [1-5]

allow for a high-throughput DNA sequencing, produ-

cing from thousands to billions of sequence fragments

(reads) composed of tens to hundreds of nucleotide

bases. NGS has the potential to replace Sanger sequen-

cing for many applications, including de-novo sequen-

cing, re-sequencing, meta-genomics and intra-host

characterisation of infectious pathogens [6-9].

De-novo sequencing implies a genome assembly problem,

which is the reconstruction of a unique genome from a set

of sequence fragments. Several methods and software for

genome assembly have been developed [10-14]. These

methods were designed initially for Sanger sequencing, and

have been revised for NGS technology [15-18], given differ-

ent error rates among NGS machineries [19,20]. Re-sequen-

cing conjugates with the problem of single nucleotide

polymorphisms (SNP) discovery. Recent studies charac-

terised SNPs or drug-induced mutations with NGS, consid-

ering the human immunodeficiency virus (HIV) and the

hepatitis B virus (HBV) [21,22]. More specifically, re-

sequencing can be useful for the characterisation of variants

within a quasispecies harbouring an infected host.
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Many RNA viruses are present in a carrier (e.g. an

infected patient) as a swarm of highly genetically related

variants, i.e. a quasispecies, due to the error prone char-

acteristics of the viral polymerases and high viral repli-

cation rates. This intra-host variability represents a

substrate for the selective pressure exerted by the

immune system of the host or by drug exposure, which

leads to the continuous evolution of viruses. Quasispe-

cies reconstruction would allow detailed description of

the composition of individual viral genomes, genetic

linkage and evolutionary history. For example, in HIV

or HBV infection, the development of drug resistance is

a major problem and the early diagnosis of drug-resis-

tant variant selection might help in designing targeted

therapeutic interventions.

Here, we addressed the problem of reconstructing a

viral quasispecies from a NGS data set, which is a rela-

tively new topic that is not widely investigated in litera-

ture. We aimed to reconstruct all coexistent individual

variants within a population, along with their preva-

lence, rather than a reconstruction of a single or predo-

minant genome. Current assembly software is not

designed to accomplish this task, nor to deal easily with

the reconstruction of highly variable genomes. The huge

coverage and base pair output provided by NGS enables

the design of experiments to investigate and validate

theoretical methods for quasispecies reconstruction.

At present, only a few methodological papers have been

published presenting new algorithms for quasispecies

reconstruction that are able to infer both genomes of

population variants and their prevalence [23-25]. In [23],

the authors proposed an algorithm based on a generative

model of the sequencing process and a tailored probabil-

istic inference and learning procedure for model fitting.

In [24], a set of methodologies was proposed both for

error correction and inference about the structure of a

population from a set of short sequence reads as obtained

from NGS. The authors assumed a known mapping of

reads to a reference genome, defined a sliding window

over the reference genome and associated each aligned

read to one or more windows by trimming the reads

accordingly to the windows’ bounds. Sequencing errors

were corrected by locally clustering reads in the windows.

A set of single variants of the quasispecies (defined as

haplotypes) was obtained by constructing an overlap

graph of non-redundant, error-free, aligned reads, and by

calculating a minimal coverage set of paths over the

graph. The frequency estimation was done with an

expectation maximisation algorithm and was proven to

be more efficient than a naïve procedure based on uni-

form read sampling. One drawback of this methodology

is that the variant reconstruction phase did not account

for the relations among frequencies of distinct variants

(counts of each distinct read representative) that were

overlapping consistently across the sliding windows: this

may lead potentially to selection of in-silico recombinants

and the procedure of haplotype frequency may be biased

from the exclusion of real (not selected) paths. After the

paper, free software was released, named ShoRAH [26].

In [25], a scalable assembling method for quasispecies

based on a novel network flow formulation was pre-

sented, applied efficiently for the assembly of Hepatitis C

virus. In [27], a refinement of the original procedures

presented in [24] was given, substituting k-means cluster-

ing with a Dirichlet process mixture for locally inferring

haplotypes and correcting reads.

In this work, a set of formulae for combinatorial ana-

lysis of quasispecies genome fragments sampled by NGS

was derived, and a new greedy algorithm for quasispe-

cies reconstruction was introduced. The formulae deri-

vation provided some theoretical bounds explaining the

difficulty in reconstructing a set of individual variants of

the quasispecies, by conditioning on several parameters,

such as the genome length, the fragment (read) size, or

the overlap length between two sampled fragments. The

reconstruction algorithm was based on combinations of

multinomial distributions and was designed to minimise

the reconstruction of in-silico recombinants. Unlike pre-

vious approaches, the algorithm selects and reconstructs

variants not only by coupling reads that have consistent

overlaps, but also considering reads that have similar

frequencies across the various amplicons.

For our combinatorial analysis, we assumed that the

problem of re-sequencing, including reference alignment

and error correction, is solved. In other words, a set of

error-free reads is available, aligned univocally to a refer-

ence or consensus sequence. Such a reference may either

have been directly reconstructed using assembly software

or selected from literature. The assumption for the

unique mapping of a read against the reference may not

be always fulfilled when in presence of short reads and

genomes with long repeats. However, this problem can

be negligible when considering coding regions of highly-

variable viral pathogens targeted by inhibitors, with a few

regulatory regions where the repeats usually are located.

The sequence quality may be a major concern for recon-

struction algorithms and this is often an experiment- and

machine-dependent problem: procedures for alignment

and error corrections have been investigated elsewhere

[16,17,24,27,21,28-30], with different methodologies,

along with protocols for sample preparation. Another cri-

tical point with NGS is the presence of contaminants that

must be detected and excluded. The problem can be

solved easily when the contamination is from different

organisms, with a test statistic on read/reference align-

ment scores during re-sequencing [31]. It is harder when

the NGS experiment comprises a mixture of closely

related organisms, for instance when samples of patients

Prosperi et al. BMC Bioinformatics 2011, 12:5

http://www.biomedcentral.com/1471-2105/12/5

Page 2 of 13



infected with the same virus are put together in one NGS

experiment [29,30].

As a second assumption, our algorithm required a non

empty set of overlapping regions, called amplicons,

which cover the reference genome. Each read has to be

assigned to one of these amplicons. Roche 454 GSFLX

technology has a double working modality that allows

both for shotgun sequencing and for amplicon sequen-

cing with specific primer design, although the latter

option is generally more expensive. With this technol-

ogy, amplicons can be defined a priori. In contrast, if

shotgun sequencing is performed, additional data ela-

boration has to be made in order to define a set of

amplicons: one solution is to define amplicons via slid-

ing windows over the genome and cluster reads accord-

ingly to their mapping region [24].

The proposed reconstruction algorithm was applied to

1) simulated and error-free data; and 2) then empirical

sequence data derived from blood samples from HBV-

infected patients processed via the Roche 454 GSFLX

Titanium machine. This second dataset was designed to

assess the performance of quasispecies reconstruction in

presence of sequencing errors.

Results

Algorithm: NGS data processing and amplicon definition

This work analysed a re-sequencing experiment of a viral

quasispecies carried out using NGS machinery. Since

currently the maximum read length of a NGS experiment

does not exceed a few hundred of bases, we were inter-

ested in genome regions of quasispecies whose length is

much larger than the average read length, i.e. when it is

not possible that a read spans entirely the genome of

interest. We required then that a reference genome is

available and that reads are significantly aligned

(mapped) against this reference genome. This can be

achieved by aligning each read in forward- or reverse-

strand against the reference genome, using the Smith-

Waterman-Gotoh local alignment [32], which is an exact

algorithm, and keeping the highest alignment score.

Reads then can be filtered by excluding those that do not

show a significant (for example, p < 0.01) alignment

score, as compared to a score distribution obtained from

quasi-random sequences (same average length, standard

deviation and nucleotide content w.r.t. the original read

set) aligned to the reference genome, as described in [31].

We assumed also that sequencing errors were cor-

rected. The condition of error-free reads was required

only for the combinatorial analysis, whilst the quasispe-

cies reconstruction algorithm can be applied also to

noisy data (as it was shown in the testing section, on a

real data experiment).

Given a reference genome g and a read alignment over

g, we define then a sliding window partition of g

composed of w+1 windows, that we call amplicons.

These amplicons cover the entire genome and two adja-

cent amplicons have a partial overlap, for a total of w

overlaps. Amplicons do not need to be necessarily of

the same length. Clearly, each amplicon size has to be

smaller than the average read size, so that a read can

span an amplicon entirely. As stated in the introduction,

amplicons can be designed a priori if Roche 454 GSFLX

technology is used, or determined with a fixed sliding

window approach from any shotgun sequencing. After

defining the amplicons, reads that spanned entirely an

amplicon were trimmed so that their start/end positions

corresponded exactly to the amplicon start/end. Conse-

quently, all the reads in one amplicon had the same

length. Reads that span more than one amplicon entirely

are considered multiple times, whilst those that do

not cover exactly at least one amplicon were discarded.

Figure 1 illustrates with an example a three-amplicon

design over a reference genome, with corresponding

read assignment and trimming.

Algorithm: combinatorial analysis of NGS over a

quasispecies

Consider a number of x variants (that induce a quasis-

pecies) determined by their genomic sequences of length

n, either nucleotidic or amino-acid (or any other desired

alphabetic coding scheme). The number x of variants is

unknown, along with the prevalence of each variant.

We assume that the quasispecies is stable over a fixed

set of variants, in a mutation-selection balance [33,34].

In other words, the number of distinct viral variants in

the quasispecies that a carrier (e.g. an infected patient)

harbours is x, although each variant can be present with

different prevalence, presumably due to different viral

fitness or immune response or drug-induced selection.

After a multiple sequence alignment, a consensus

sequence can be generated or one variant can be used

as a reference. We define a point difference between two

Figure 1 Amplicon design . Sliding-window amplicon design

example for an hypothetical re-sequencing experiment over a NGS

read sample aligned to a reference genome. Reads that cover

entirely the amplicon window are retained and trimmed to fit the

start/end amplicon positions.
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aligned sequences (or a point mutation from one

sequence with respect to another) as the presence of

two different nucleotides in one position of the

alignment. The pairwise difference between two variants

d(si, sj) is the number of point differences divided by the

genome length (n), i.e.

d s s d
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Let us define now a reference sequence sref as the var-

iant with the lowest average pairwise difference as com-

pared to all other variants, i.e. dref = d(sref) = min{d(si)},

for i = 1...x.

If we define the diversity - that we regard as a prob-

ability of mutation - of the quasispecies as m = davg,

then we can also approximate m by doubling the value

of dref, i.e. m/2 is the average pairwise difference of our

reference variant with respect to any other variant

(m/2 = dref). Indeed, this approximation is correct when

no identical base changes (mutations) happen in the

same alignment position of two variants as compared to

the reference, and this is dependent on the genome

length and the mutation probability. The approximation

gets better either if the genome length increases or the

mutation rate decreases (by keeping one of the two

values constant). More details on the efficacy of this

approximation are given in Additional file 1.

We previously defined a joined set of w+1 amplicons,

which induces an overlapping ordered coverage over the

quasispecies genome space. Assume that each amplicon

has a fixed length of k bases and overlaps with its neigh-

bour(s) over q bases for w times. We assume also that,

given three adjacent amplicons and two corresponding

overlaps, these latter do not share any position in com-

mon, i.e. there are no overlapping overlaps. Since there

are no nested amplicons, we can define an amplicon

identification number as its ordinal position with respect

to the reference genome and the other amplicons.

Thus, amplicon1 starts at position 1 and ends at position

k, amplicon2 starts at k-q+1 and ends at 2k-q, et cetera.

The overlaps are clearly at the end of each amplicon

and at the beginning of the adjacent one.

Each amplicon is associated with a set of reads, or

sequence fragments, sampled uniformly from the quasis-

pecies. These reads, by definition, are significantly

aligned to the reference genome, error-free and span

exactly an amplicon region, being trimmed at its ends.

Thus, after sampling, each count of distinct reads across

each amplicon cannot exceed the number of variants x.

Given two reads associated to two adjacent amplicons,

we say that their overlapping region is consistent if the

two reads share in that region the same characters (for

instance over the alphabet {A, C, G, T} when consider-

ing nucleotide sequences).

We aim to calculate the probability that (i) the over-

lapping region of two adjacent reads is consistent and

(ii) at least one overlapping region across the amplicons

is consistent.

For point (i), we first define the probability that i

mutations are present in a sequence fragment of q

length over a genome of length n (that can be concep-

tually associated to one overlap) as
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Note that the diversity m/2 here is multiplied by n

(and assumed integer), obtaining the expected number

of changes (nm/2).

The probability that two random regions of q length

over a genome of length n have both i mutations is
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where the terms of Eq. 4 are the square root of the

terms of Eq. 5.

The probability that these random regions share

exactly i mutations at the same positions (regardless

their positioning in the genome) is
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where the term (1/3)i accounts for the 4-letter alphabet

since we are considering nucleotides. In the binary case,

the term has to be dropped. In the general case, for an

alphabet of size s, it would correspond to (1/(s-1))i.

Thus, the probability that the two sequence fragments

are the same is
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q
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In our context, fragment1 and fragment2 refer to the

overlapping region of two distinct reads in two adjacent

amplicons.

For point (ii), let’s define the set A = {(a1, a2, ..., aw, aw

+1) | ai Î N, a1+a2+...+aw+aw+1 = nm/2}, as the space of

frequency distributions where nm/2 mutations can dis-

tribute either in w overlaps or in the remaining (non

overlapping) parts, grouped in the additional variable w

+1. Given a generic element a = (a1, a2, ..., aw, aw+1) Î

A, each ai contains a certain number of mutations and

the sum is the total number of mutations.

Of note, the formula that gives the number of ele-

ments of the space A, as a function of n, m and w is
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and corresponds to the number of combinations with

repetitions of w+1 elements of nm/2 class.

The probability that nm/2 mutations distribute over

the overlaps and the non-overlapping parts in a mode

(a1, a2, ..., aw, aw+1) is
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Thus, for two vectors a = (a1, a2, ..., aw+1) Î A and b

= (b1, b2, ..., bw+1) Î A, at least one overlapping region

(over the w set) will be consistent if, excluding the non-

overlapping part, either (ii.1) both a and b have the

same element set to zero (i.e. ∃ i | ai = bi = 0, i ≠ w+1)

or (ii.2) both have one or more identical elements in the

same overlap and within this overlap the mutations are

in the same sites (∃ i | ai = bi, i ≠ w+1, ai ≠ 0, fragmen-

tai = fragmentbi).

For case (ii.1), let p(ai) be the probability (which can be

calculated with Eq. 9) for a generic distribution ai = (ai1,

..., aik, ..., ai(w+1)) Î A, where at least one element aij is

equal to zero. Define pij as the joint probability between

two distributions, i.e. pij = p(ai)p(aj). The sum of all joint

probabilities ∑pij, where ∀ i ∃ j, k | aik = ajk = 0, k ≠ w+1,

yields the probability of a consistent overlap.

For case (ii.2) we show how to calculate the probabil-

ity associated to two distributions a and b, when they

share at least one identical element, different from 0,

otherwise the case reduces to (ii.1).

Consider the two products
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and choose one of them, say π1.

If the two distributions have j identical elements

(number of mutations) in the same sites (overlaps, from

1 to w, and non-overlapping part), naming them 1, 2, ...,

j, we can write the following
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Any aj can be interpreted as the number of combina-

tions (at each j, i.e. by considering j overlaps) that do

not present the same elements in the same positions.

Finally
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is the probability for the two generic distributions a

and b to have at least one identical overlap. Note that

Eq. 12 is valid under the constraint q > = nm/2 and (n-

wq) > = nm/2. The sum of all joint probabilities ∑ p ij,

where ∀ i ∃ j, k | aik = bjk, k ≠ w+1, aik ≠ 0, yields the

probability of a consistent overlap.

Eq. 12 is computationally intensive: for a small value

of w and n it is possible to calculate it exactly, but for

larger values (i.e. real cases), it is preferable to rely on

numerical simulations.

Algorithm: Reconstruction of the quasispecies

From the definition in the above paragraph, we have a

set of x variants (v1, ..., vx) over a quasispecies, with a

genome length of n and a mutation probability m. Each
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variant has an associated prevalence p(v1), p(v2), ..., p(vx),

such that p(v1)+p(v2)+...+p(vx) = 1. By using NGS

machinery, we are able to sample (e.g. to sequence) uni-

formly a large number of variant sequence fragments

from the quasispecies population. Upon the definition of

amplicons, we obtain w+1 population samples, each one

of length k, where (w+1)k > n and an amplicon overlap

of q sites.

Previous studies investigated the probability of cover-

ing all bases of a single genome by shotgun sampling

[35] and the probability of covering all bases of different

variants in a quasispecies [24,36]. Nowadays, NGS

machineries are able to cover with high support a qua-

sispecies of genomes of a few kilobases length.

We define the multinomial distribution Ci = (ci1, ci2, ci3,

..., cix), i = 1 ... (w+1), where the generic element cij contains

the number of identical reads (that are referred to variant j)

found in the amplicon i; thus, we have w+1 available distri-

butions. Since x is unknown, we assume initially that x is

the maximum number of distinct reads that can be found

in one amplicon, and we order the cik decreasingly, assum-

ing that, given two distributions Ci and Cj, each cik and cjk
correspond to a sample from the same variant.

Based on the samples and the corresponding distribu-

tions, we aim to reconstruct the genomes associated to

the unknown variants and their number, which even-

tually may be different from the initial value of x.

The objectives may be easier to reach if all the ampli-

cons were designed such that the variants were different

in all the overlaps, if the number of reads sequenced and

covering the amplicons was sufficiently large and if the

reads were completely error-free. The problem becomes

more challenging in presence of ambiguous overlaps (i.e.

different variants that are identical in one or more over-

lap), non-uniform or biased sampling, and uncorrected

read errors. For the latter (real) scenario, we design a set

of algorithms in order to reconstruct a consistent set of

variants that explains the Ci distributions.

Figure 2 shows one example assuming four amplicons

(three overlaps) and two variants, over a binary alphabet.

Assume an ideal sample from the population for each

amplicon and error-free reads. From the figure, if we

attempt to reconstruct the quasispecies based only on

the graph of consistent overlaps, two in-silico recombi-

nants would be constructed.

In the trivial case of a unique amplicon over the whole

genome length, for a sufficiently large sample size, we

may estimate variant probabilities from the distribution

C1 as p(vi) = c1i/∑jc1j. With multiple amplicons, depend-

ing on n, m, q, k and sample size, the distributions Ci

vary: if the hypothesis of error-free reads was fulfilled,

the equations of the previous paragraph permit to calcu-

late some confidence bounds. In the real case, we expect

that the multinomial distributions calculated for the

amplicons are related, but we have to account for the

uncertainty coming from the sampling process, cases of

ambiguous overlaps and uncorrected read errors.

Having a set of C1, ..., Cw+1 distributions, we may be

interested to find which is the most probable distribu-

tion under a given set of parameters or a model, i.e.

which distribution explains better the entire data. This

would be useful when applying a reconstruction algo-

rithm, as explained in the next paragraphs. If the prob-

ability of an event X dependent on parameter set θ (or

model) is written P(X | θ), then the likelihood of the

parameters given the data is L(θ | X). In our case, θ cor-

responds to one of the Cis and X is the set of remaining

distributions X = {Cj | j = 1... w+1, j ≠ i}. We aim to

find i such that L(Ci | X) is the maximum. However,

since the derivation of L(θ | X) may be difficult, we use

a minimum chi-square criterion [37]. For each Ci, i =

1... w+1, calculate and sum the chi-square statistic asso-

ciated with all other Cjs, and pick up the index i for

which the sum of chi-square statistics is the minimum.

We may exclude as candidate model any Ci for which |

Ci| <max{ |Cj| j = 1...w+1 }.

We define now a procedure that reconstructs a set of

candidate variants of the quasispecies: the procedure

takes into account both read distributions over the

amplicons and calculation of consistent overlaps. The

algorithm is as follows:

Figure 2 Overlap graph. Example of amplicon sampling from a

quasispecies constituted by two variants (binary alphabet), with

different prevalence. The reads are aligned to a reference genome,

cover entirely an amplicon and are trimmed to the amplicon start/

end positions (otherwise a question mark is placed). With such a

design of 4 amplicons and 3 overlaps, the last overlap allows for

ambiguous consistency. The overlap graph analysis leads to the

reconstruction of 4 candidate variants, where 2 of them are in-silico

recombinants. Without additional analysis on read distributions over

the amplicons, it is impossible to infer the correct quasispecies.
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1. Construct a matrix M = (mij), i = 1... x, j = 1...

w+1, where the columns represent the absolute fre-

quency (i.e. counts) distributions of distinct reads in

the amplicons and each row contains distinct read

representatives with their associated frequencies.

Thus, the generic element mij is the number of dis-

tinct reads in amplicon j that correspond to a

hypothetical variant i. Each column of the matrix is

ordered decreasingly. Since x is estimated as the

maximum number of distinct reads found consider-

ing each amplicon, in amplicons where the number

of distinct reads is less than x, missing values are all

set to 0.

2. Choose a guide distribution among the amplicon

distributions (either random or based on maximum

likelihood), say the one corresponding to amplicon g

Î {1, 2, ..., w+1}.

3. For each mgj Î M, j = 1... x, check iteratively if mgj

is consistent with any other mik, i ≠ g, k = 1... x. If

there is more than one consistent overlap, choose

the index k whose absolute difference with the actual

j is the lowest (i.e. tend to join distinct reads accord-

ing to their ordered prevalence).

3.1. When a consistent set of distinct reads is

obtained, i.e. one variant is reconstructed with

corresponding read-amplicon indices {ĵ1, ..., ĵ(w

+1)}, subtract the number of distinct reads corre-

sponding to the mgĵ value from the other mjĵ ele-

ments and update them in M. If some of the

subtractions lead to negative values, set them to

zero.

4. If there is not a column of M with all zero ele-

ments (¬∃ j | ∀ i mij = 0) or if one variant has been

constructed or the scan through amplicon distribu-

tions has not ended, go to point 2.

5. Output the variants reconstructed.

In the beginning, the algorithm counts all distinct

reads for each amplicon. Distinct read representatives

are ordered decreasingly by their frequency, creating

w+1 multinomial distributions of size x, which is the

maximum number of distinct reads seen considering

each amplicon. If less than x distinct reads are found in

one amplicon, the remaining elements of the corre-

sponding multinomial distribution are set to zero-

frequency. A guide multinomial distribution is chosen

either at random or by the minimum chi-square criter-

ion. The first read representative of the guide distribu-

tion corresponding to the count mg,1 is compared with

the read representatives of an adjacent amplicon (say

g+1), starting from the first read (at mg+1,1) checking if

there is a consistent overlap between the two

read representatives. If a consistent overlap is found,

then a partial variant is reconstructed (now spanning

2 amplicons) and the step is repeated on another adja-

cent amplicon (g+2 or g-1), until the whole set of ampli-

cons is analysed. If a consistent overlap between two

reads is not found, for instance between read represen-

tatives corresponding to mg,1 and mg+1,1, then the proce-

dure checks for a consistent overlap between the

current read at position mg,1 and the next read in the

same adjacent amplicon g+1, which is mg+1,2 in this

case. Every time that a variant is reconstructed spanning

all the amplicons, the algorithm subtracts the frequency

count of the current read in the guide distribution (say

mg,i) from the counts of all reads in the other amplicons

that concurred to the variant reconstruction. Read fre-

quencies that go to zero or below zero are considered

exhausted and are not further evaluated. Negative values

might appear due to variations generated by the NGS in

the total read counts across the amplicons. Consider the

trivial example of a quasispecies composed by a unique

variant and two amplicons (with error-free sequencing),

where in the first amplicon the total read count is 300

and in the second is 299. If the guide distribution corre-

sponds to the second amplicon, the subtraction leads to

-1. The algorithm stops when all reads have been exam-

ined or if one amplicon distribution has all zero-fre-

quencies. A step-by-step example of the reconstruction

algorithm is given in the Additional file 1. The compu-

tational complexity of the algorithm is O(xw), which

grows exponentially with the number of amplicons.

Clearly, it is desirable to have a limited number of over-

laps, e.g. of amplicons, in order to decrease the compu-

tational burden.

Note that initially the algorithm assumes that the

number of variants in the quasispecies (which is

unknown) is given by the maximum number of distinct

reads observed across all amplicons (x), but the final

number or reconstructed variants can be different,

depending on the frequency distribution and overlap

consistence. Indeed, in [24] it was shown that in some

cases the number of variants is higher than the number

of distinct reads. Using our algorithm, the number of

variants would be exactly x if the multinomial distribu-

tions mi were allowing for just one consistent overlap

between elements in the same row (i.e. variants only of

the type mi1, ..., mij,..., mi(w+1)) and if the frequency sub-

traction was always exhausting all the mij.

In order to evaluate the effectiveness of the recon-

struction algorithm and of the guide distribution choice

policy, we designed and executed multiple simulation

experiments over fixed parameters (x, n, k, q), varying

mutation and sample size. Functions for the goodness of

fit were (i) the prevalence of variants reconstructed cor-

rectly, (ii) the number of false in-silico recombinants,

and (iii) number of reconstructed variants over the set

of full consistent paths. We obtained distributions of
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these loss functions executing multiple simulation runs

and compared them via parametric test statistics.

Testing: combinatorial analysis

In the methods section we derived two main formulae

that provide theoretical bounds for the probabilities of

consistent overlaps. In particular, Eq. 7 describes the

probability that one overlap is consistent, given the gen-

ome length, the number of amplicons and the overlap-

ping region size.

Table 1 summarises these probabilities by varying the

mutation rate, by setting n = 1,100, q = 50, w+1 = 7

(thus k = 200) over a genome described by a 4-letter

alphabet (nucleotides). At a m/2 equal to 0.5%, for

instance, the probability of a consistent overlap is 63%.

At m/2 = 2.5%, the probability is still 8%.

More generally, Eq. 12 calculates the probability that

at least one overlap is consistent. By fixing n, q and w as

above, and by simulating Eq. 12 with 1 million of itera-

tions, we calculated that the probabilities of at least one

consistent overlap for m/2 = {0.5%, 1%, 1.5%, 2%, 2.5%,

3.5%} are p = {0.9992, 0.9460, 0.8018, 0.5720, 0.4003,

0.1584}, respectively. For instance, at an m/2 rate of

2.5% there is 40% of chance that at least one overlap is

consistent. This gives a description of how much it

could be difficult to reconstruct exact variants when the

diversity is low.

Testing: reconstruction algorithm on simulated data

The reconstruction algorithm, along with the investiga-

tion of guide distribution choice, was evaluated using

simulated data. A quasispecies composed by x = 10 var-

iants was designed, considering a genome of length n =

1,100 over a 4-letter alphabet. Variant prevalence was

the following: p(v1) = 2%; p(v2) = 4%; p(v3) = 5%; p(v4) =

7%; p(v5) = 9%; p(v6) = 11%; p(v7) = 13%; p(v8) = 14%;

p(v9) = 17%; p(v10) = 18%. The amplicons consisted of

w+1 = 7 regions, each one of length k = 200 and overlap

q = 50. Different uniform mutation probabilities were

considered, specifically: m/2 = {0.5%, 1%, 1.5%, 2%, 2.5%,

3.5%}. We tested either a random guide distribution or a

guide distribution chosen by maximum likelihood.

We executed NGS simulations for a sample of 10,000

reads. The reads were error-free and uniformly distribu-

ted along the genome. Figure 3 reports simulation

results over a set of 10 independent runs, shuffling the

mutational sites.

With 10,000 read samples, the method reconstructed

on average exactly the 10 variants at values of m/2

around 2%. By decreasing m/2 to 1%, on average more

than a half of the original variants were reconstructed,

but there was higher prevalence of in-silico recombi-

nants. As it concerns the sole reconstruction of correct

variants, comparison of the usage of a random guide

distribution vs. one based on maximum likelihood did

not yield significant differences. However, the maximum

likelihood policy reconstructed, on average, a lower

number of in-silico recombinants. Note that, since the

multinomial distributions are ordered decreasingly, we

expect to reconstruct variants from the most prevalent

to the less prevalent.

Another way to evaluate the robustness of the algo-

rithm is by looking at the number of potential variants

(i.e. paths in the overlap graph) as a function of the per-

site mutation probability, as depicted in figure 4.

In our simulation study, for an m/2 = 1% on average

there would be ≈22,800 paths, i.e. candidate variants.

Our algorithm on average chose 5-6 out of 10 correctly

and did not reconstruct more than 10 variants. By

increasing m to 1.5%, the number of paths would be

still fairly high, i.e. ≈9,900: in this case the algorithm on

average reconstructed > 80% variants correctly and the

total number did not exceed 12.

Using the same sets of simulated data (10 independent

simulation runs with 10,000 read samples), we com-

pared our algorithm with the ShoRAH (ver. 0.3.1, stan-

dard parameter set) program; however it should be

noted that ShoRAH has not been designed to work on

amplicons, but rather on shotgun modality. Although

the current release provides the possibility to vary slid-

ing window and the step size parameters, we could not

reproduce exactly our amplicon settings, since the slid-

ing window procedure is designed to cover multiple

times each base over a uniform (i.e. shotgun) fragment

sequencing. However, the average number of total

reconstructions yielded by ShoRAH was comparable to

our method, across different runs and m values. On

average, at m/2 = 1.5%, the percentage of correct recon-

struction was > 70% over different runs. Figure 5 depicts

Table 1 Probabilities to have a consistent overlap, given

n = 1,100, q = 50, w+1 = 7, by varying the mutation

probability m

m/2

(%)
Number of mutations in the overlap total

0 1 2 3 4 5

0.5 6.27E-
01

2.39E-
04

2.85E-
08

1.24E-
12

1.44E-
15

1.20E-
20

6.28E-
01

1 3.58E-
01

6.67E-
04

5.03E-
07

2.00E-
10

3.73E-
12

1.54E-
15

3.58E-
01

1.5 2.23E-
01

8.89E-
04

1.52E-
06

1.48E-
09

7.37E-
11

9.04E-
14

2.24E-
01

2 1.27E-
01

9.64E-
04

3.27E-
06

6.57E-
09

7.06E-
10

1.97E-
12

1.28E-
01

2.5 7.86E-
02

9.11E-
04

4.79E-
06

1.52E-
08

2.63E-
09

1.21E-
11

7.95E-
02

3.5 2.74E-
02

6.42E-
04

6.98E-
06

4.69E-
08

1.76E-
08

1.81E-
10

2.80E-
02
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a phylogenetic tree constructed by pooling the original

quasispecies together with the reconstructed variants

from ShoRAH and our method, over a single simulation

run at m/2 = 1.5%. Seven ShoRAH variants clustered sig-

nificantly (> = 75% of node bootstrap support) with the

original variants, over a total number of 13 reconstruc-

tions. Interestingly, our method reconstructed 12 variants

(10 correct, 2 recombinants). A figure indicating recom-

bination patterns is available in the Additional file 1.

Testing: reconstruction algorithm on real data

The algorithm was also applied to real NGS data. We

designed an experiment amplifying HBV sequences

from 5 infected patient using a Roche 454 GSFLX Tita-

nium machine based on the amplicon sequencing

modality. Patients’ samples were processed in the same

plate using barcodes [29,30]. Three amplicons were

defined with specific primers, each one with a length of

{329, 384, 394} bases and with two overlaps of length

{166, 109}. See the Additional file 1 for experiment

details.

One patient was infected with a genotype A virus

(12,408 reads) and four with a genotype D (5,874,

20,632, 4,900, and 6,598 reads, respectively). Overall,

average (st.dev.) read length was 398.8 (71.1) bases.

The same HBV reference sequence (gi|22530871|gb|

AY128092.1|) was used for read alignment and indivi-

dual genome re-sequencing of each patient. We selected

only reads that were significantly aligned with the refer-

ence (p < 0.01, using the Smith-Waterman-Gotoh local

alignment with gap-open/extension penalties of 15/0.3

and the test statistic proposed in [31]). Three-percent of

reads was discarded. The average diversity m/2 was

2.3%. According to the amplicon coverage, we reduced

the amplicon lengths to {350, 350, 290} and overlaps to

{150, 90} bases. Finally, we selected those reads that cov-

ered entirely one amplicon region with a gap percentage

below 5%. For each amplicon, exactly 1,000 reads for

patients were retained, selecting them at random, with-

out replacement, from the previous set of filtered

sequences. All reads from the different patients were

pooled together in a unique file, thus obtaining 3,000

reads per patient and 15,000 reads in total, with a fixed

read/amplicon/patient ratio. We were able to recon-

struct virus consensus genomes from each individual

using the read alignment, but we did not know a-priori

the composition of the viral quasispecies of the patients.

However, for each read we knew the corresponding

Figure 3 Performance of the reconstruction algorithm (simulated data). Simulation results (average and standard error) for quasispecies

reconstruction algorithm runs (10) for parameter set of n = 1,100, w+1 = 7, k = 200, q = 50, x = 10, sample size of 10,000, varying m and guide

distribution selection policy (continuous line for maximum likelihood, dashed for random choice). Panel (a) depicts proportion of correct

reconstructions, while panel (b) proportion of total reconstructions.

Figure 4 Uncertainty in reconstructing variants. Number of

potential variants (over a true value of x = 10) by varying m

(average per-site diversity), for parameter set of n = 1100, w+1 = 7,

k = 200, q = 50, sample size of 10,000, executing 10 simulations.
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Figure 5 Phylogeny of the reconstructed quasispecies (simulated data). Comparison between ShoRAH and our method on simulated data.

A single simulation run is considered, consisting of 10,000 reads sampled over a quasispecies of 10 distinct variants (m/2 = 1.5%, n = 1,100, q =

50, w+1 = 7). The phylogenetic tree was constructed via Neighbor-Joining and distance based on simple number of differences, assessing

branch significance through 100 bootstrap runs. Only nodes with a bootstrap support > 75% are indicated.
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patient. The purpose of this experiment was to see if the

reconstruction algorithms were able to reconstruct a

swarm of variants closely related to each patient’s virus

consensus genome, without mixing the population and

without creating incorrect, populations.

Both ShoRAH (ver. 0.3.1, standard parameter set) and

the reconstruction algorithm were run on this joined

data set, considering - as a simple error correction pro-

cedure - only reads with a frequency > = 3, requiring

that at least one read was seen in reverse-strand and

another in forward-strand. ShoRAH identified 854 dis-

tinct variants, with a median (IQR) prevalence of

0.00015 (0.00008-0.00038). The number of ShoRAH var-

iants with prevalence above the 95th percentile of the

overall distribution was 40. Our reconstruction algo-

rithm reconstructed 11 unique variants. We executed a

phylogenetic analysis pooling together the set of recon-

structed genomes, the 40 ShoRAH variants, the 11

unique variants obtained with our algorithms, and two

additional outgroups (HBV genotypes H and E). The

phylogenetic tree was estimated via a neighbour-joining

method and the LogDet distance, assessing node sup-

port with 1,000 bootstrap runs. All the variants recon-

structed with our algorithm clustered with the

corresponding patients, and in four cases out of five the

phylogenetic clusters had a support > 75%. The same

held when looking at the ShoRAH variants, although a

considerable number of variants clustered apart from

the patients. Figure 6 depicts the phylogenetic tree. Of

note, in patient #2, two variants reconstructed with our

algorithm were indeed recombinants between patient #2

and patient #1.

Discussion

In this paper we addressed the problem of quasispecies

determination and variant reconstruction by using NGS

machinery. Original assumptions were: (i) to have a uni-

form random sampling of the population, (ii) a refer-

ence genome, (iii) a unique, error-free, alignment of

each read against the reference, and (iv) a sliding win-

dow partition of the reference into a set of amplicons.

We derived first a set of formulae in order to analyse

the probability of consistent overlaps given two

sequence fragments over a set of amplicons. We showed

that many factors, including diversity and overlap

length, can affect the chance to detect spurious consis-

tent overlaps. We introduced then the concept of multi-

nomial distribution as a model for the classification of

distinct reads and relative prevalence within amplicons.

Upon this, we designed a greedy algorithm that recon-

structs a set of paths through the whole set of ampli-

cons (i.e. reconstructs candidate variants), coupling

elements of different multinomial distributions, and try-

ing to minimise the chance to reconstruct in-silico

recombinants. The algorithm is based on a “guide distri-

bution” policy that can be either random or based on

maximum-likelihood. With a practical example (figure

2), we highlighted the reasons for which any quasispe-

cies reconstruction procedure should consider read fre-

quencies in order to avoid the estimation of false

variants. In fact, our reconstruction algorithm tends to

select variants not only looking at the consistent over-

laps (e.g. reconstruction paths), but also considering

reads that have similar frequencies across the various

amplicons.

Simulation results proved that, exploring a fixed set of

parameters, our method was able to select a compact and

correct set of variants even at low diversities. At m/2 =

1.5%, the algorithm was able to reconstruct on average >

80% of correct variants, with an estimated number of var-

iants close to the real value (12 over 10, where the total

number of candidate variants was in the order of 104).

We also executed a test on real NGS data, prone to

contain sequencing errors, considering a mixed popula-

tion of HBV-infected patients with a low average diver-

sity. In this case our algorithm was able to distinguish

variants corresponding to different patients, with a mini-

mal evidence of in-silico recombination. In addition, the

algorithm did not generate variants that could be differ-

ent from the sequenced population.

In its current definition, though, our model possesses

several limitations. First, a reference genome and a slid-

ing window amplicon partition are needed: thus, the

variant reconstruction method is suitable only for qua-

sispecies for which there is at least one available gen-

ome. However, de-novo quasispecies determination can

be easily achieved by pre-processing NGS data with

existing whole genome assembly software and obtaining

a usable reference genome.

Another important critical point is that we assume a

uniform distribution of diversity along the genome,

which is an ideal hypothesis. One solution may be the

design of amplicons and overlaps of different lengths.

The reconstruction algorithm works even with size-vari-

able amplicons and overlaps, but the formulae introduced

in the preliminary combinatorial analysis should be

derived again, taking into account these modifications.

Another issue is the assumption of a unique mapping

of each read with respect to the reference genome,

which may be not always fulfilled when in presence of

long repeats (compared to the average read length).

However, this problem does not affect the reconstruc-

tion algorithm once the read mapping is given along

with the sliding window amplicon setup. Several

approaches have been proposed in literature [38] and

may be applied to NGS.

As future refinements of the reconstruction algorithm

we foresee the estimation of exact variant prevalence,
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since currently we report variants just in decreasing

prevalence order: one idea is to calculate average and

standard errors of distinct read frequencies from the

various multinomial distributions joined during the

reconstruction phase; another approach could be to

estimate the prevalence a-posteriori, using expectation-

maximisation as it was done in [24]. A broader perspec-

tive would be to relax the need for a reference genome

and to estimate the quasispecies independently from the

read mapping and the amplicon definition, but under

these general settings the theoretical results here

obtained would be hardly reusable.

Conclusions
The presented combinatorial analysis and the recon-

struction algorithm may be a fundamental step towards

the characterisation of quasispecies using NGS. Immedi-

ate applications can be found in analysing genomes of

infectious pathogens, like viruses, currently targeted by

inhibitors and developing resistance. The investigation

of in-depth, intra-host, viral resistance evolutionary

mechanisms and interactions among mutations is crucial

in order to design effective treatment strategies, even at

early disease stages, and to maximise further treatment

options.

Additional material

Additional file 1: This file includes additional details on: (i) average

population diversity estimation; (ii) step-by-step example of the

quasispecies reconstruction algorithm; (iii) information on the

sample preparation and laboratory protocols for the experiment on

Roche GLSFLX platform; (iv) figure of recombination patterns for a

reconstructed quasispecies given a simulation experiment.
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Figure 6 Phylogeny of the reconstructed quasispecies (real

data). Evaluation of reconstruction algorithms on real data (NGS

experiment on 5 HBV-infected patients). The phylogenetic tree was

constructed via Neighbor-Joining and LogDet distance, assessing

branch significance through 1,000 bootstrap runs. Only nodes with

a bootstrap support > 75% are indicated. Boxes comprise distinct

patients’ consensuses and reconstructed variants, when one or

more reconstruction cluster significantly with them.
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