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Abstract

Signal finding (pattern discovery in unaligned DNA se-
quences) is a fundamental problem in both computer
science and molecular biology with important applica-
tions in locating regulatory sites and drug target identi-
fication. Despite many studies, this problem is far from
being resolved: most signals in DNA sequences are so
complicated that we don’t yet have good models or re-
liable algorithms for their recognition. We complement
existing statistical and machine learning approaches to
this problem by a combinatorial approach that proved
to be successhfl in identifying very subtle signals.
Keywords: pattern discovery, multiple alignment

Introduction

Perhaps the first signal in DNA was found in 1970 by
Hamilton Smith after the discovery of the Hind II re-
striction enzyme. Finding the palindromic site of this
signal was not a simple problem in 1970; in fact, Hamil-
ton Smith published two consecutive papers on Hind II,
one on enzyme purification and the other one on finding
the enzyme’s recognition signal (Kelly & Smith 1970).

Looking back to the early 1970s, we realize that
Hamilton Smith was lucky: restriction sites are the sim-
plest signals in DNA. Thirty years later, despite many
studies, the signal finding problem is far from being
resolved. Most signals in DNA sequences (promoters,
splicing sites, etc.) are so complicated that we don’t yet
have good models or reliable algorithms for their recog-
nition. In particular, we are unaware of any algorithm
that solves the following "simple" problem:

Challenge Problem. Find a signal in a sample of
sequences, each 600 nucleotides long and each contain-
ing an unknown signal (pattern) of length 15 with 
mismatches.

Such a (15, 4)-signal is rather strong, stronger than
the (6, 0)-signal of Hind II restriction site (it appears
approximately once per 10,000 nucleotides in an i.i.d.
sample). However, some of the best currently available
algorithms, like CONSENSUS (Hertz & Stormo 1999),
Gibbs sampler (Lawrence et al. 1993; Neuwald, Liu,
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Lawrence 1995), and MEME (Bailey & Elkan 1995) fail
to find such a signal even in i.i.d, samples with prob-
abilities of each nucleotide 1/4 (Table 1). This paper
explains why the problem above presents a bottleneck
for the current algorithms and proposes new combina-
torial approaches to signal finding that solves the Chal-
lenge Problem and other problems that are beyond the
possibilities of current algorithms.

In its simplest form, the signal finding problem can
be formulated as follows: given a sample of sequences
and an unknown pattern (signal) that appears at dif-
ferent unknown positions in each sequence, can we find
the unknown pattern? ff an /-letter pattern appears
exactly in each sequence, one can find the signal by
a straightforward enumeration of all/-letter substrings
that appear in the sample. However, biological signals
are subject to mutations and usually don’t appear ex-
actly. A natural model is to allow the unknown pattern
to appear with some number of mismatches, insertions,
and deletions in sample sequences.

Why is finding a rather strong (15, 4)-signal so dif-
ficult? The problem is that any two instances of the
mutated (/, d)-signal may differ in as many as 2d posi-
tions. As a result, any two instances of the signal in
the Challenge Problem may differ by as many as 8 mu-
tations, a rather large number. The numerous spurious
similarities with 8 mutations in 15 positions disguise
the real signal and lead to difficulties in signal finding.

We will approach the problem from the combinatorial
viewpoint. In the first winnowing approach, we, in con-
trast to many signal finding algorithms, concentrate on
non-signals (spurious similarities) rather than the signal
itself. Given a sample of sequences, the WINNOWER
algorithm constructs a graph with vertices correspond-
ing to substrings from the sample sequences and edges
corresponding to similar substrings. Some edges in this
graph connect the instances of the signal in the sam-
ple sequences (signal edges), while others correspond
to spurious similarities (spurious edges). The spurious
edges disguise the signal edges and make signal finding
difficult. For example, in the Challenge Problem, there
are ~ 20,000 spurious edges for each signal edge. WIN-
NOWER deletes the spurious edges from this possibly
very large graph and guarantees that all signal edges
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sequence length
CONSENSUS

GibbsDNA
MEME

WINNOWER (k = 2)
WINNOWER (k = 3)

SP-STAR

100 200 300 400 500 600 700 800 900 1000
0.92 0.94 0.53 0.31 0.29 0.07 0.15 0.09 0.01 0.04
0.93 0.96 0.51 0.46 0.29 0.12 0.09 0.34 0.00 0.12
0.91 0.78 0.59 0.37 0.17 0.10 0.02 0.03 0.00 0.00
0.98 0.98 0.97 0.95 0.97 0.92 0.58 0.02 0.02 0.02
0.98 0.98 0.97 0.94 0.97 0.92 0.90 0.93 0.90 0.88
0.98 0.98 1 0.96 0.96 0.84 0.83 0.69 0.64 0.23

Table 1: Comparison of performance of the various algorithms for samples with implanted (15, 4)-signals (FM model).
The sequence length n varies from 100 to 1000. Every entry in the table represents the average performance coefficient
over eight samples each containing 20 i.i.d, sequences of length n. For WINNOWER (k = 3), the performance stays
over 0.80 even for sequence length 1300.

are preserved. In most cases, the final graph is small
enough to reveal the signal edges and to detect the un-
known signal. An important feature of WINNOWER
is that it can find multiple signals.

Our winnowing approach reduces the signal finding
problem to finding large cliques in multipartite graphs.
Other signal finding algorithms implicitly try to find
large cliques in the same graph either by a greedy al-
gorithm (e.g., CONSENSUS) or by a Metropolis style
algorithm (e.g., Gibbs sampler). In fact, there are
some similarities between the Gibbs sampler and the
Metropolis process on cliques studied by Jerrum (1992).
However, while Metropolis style algorithms are success-
ful for some combinatorial optimization problems, they
are notorously inefficient for others. In particular, in
the paper titled Large cliques elude the Metropolis pro-
cess, Jerrum (1992) proves that the Metropolis process
takes super-polynomial time to find a clique that is only
slightly better than that produced by the greedy heuris-
tic. This result probably helps to explain why Gibbs
sampler was just slightly better than the greedy CON-
SENSUS algorithm in our tests (Table 1).

Probably the best tools for finding short/-letter sig-
nals are the pattern-driven algorithms (Brazma et al.
1998) that test all t / -letter p atterns, score each pat-
tern by the number of approximate occurrences in the
sample (or by a more involved function) and find the
high-scoring patterns (Staclen 1989; Pesole et al. 1992;
Wolfertstetter et al. 1996; van Helden, Andre,
Collado-Vides 1998; Tompa 1999). However, an ex-
haustive search through all 4t/-letter patterns becomes
impractical for l > 10 and Tompa (1999) raised the
problem of extending this approach for longer patterns.
One way around this problem is to limit the search
to the patterns appearing in the sequences from the
sample (Bailey & Elkan 1995; Li, Ma, & Wang 1999;
Gelfand, Koonin, K: Mironov 2000). If, by chance, the
signal pattern has an exact occurrence in the sample,
this approach is as good as the rigorous pattern-driven
approach. If not (which is usually the case for bio-
logical samples), the hope is that the instances of the
pattern appearing in the sample will reveal the pat-
tern itself. However, in the case of subtle signals, this
approach needs to be taken with caution. The prob-

lem is that numerous spurious similarities disguise the
instances of the signal since the scores of random pat-
terns may exceed the scores of the instances of the real
pattern (although it does not exceed the score of the
real pattern itself!). In our second SP-STAR approach,
we emulate the pattern-driven algorithm by selecting
a scoring function and a local improvement heuristic
that allow one to better separate a signal from noise.
We further extend the proposed algorithms to handle
corrupted samples (i.e., samples with a signal present
only in a portion of all sequences) and samples with
biased nucleotide composition.

Finding Signals via Winnowing

Let S -- {Sl,..., st} be a sample of t n-letter sequences,
each sequence containing an (1, d)-signal, i.e., a signal 
length l with d mismatches. Since every two instances
of the signal differ by at most 2d mismatches, one may
generate (~) pairwise sequence comparisons that reveal
all pairs of substrings of length l that have at most
2d mismatches. However, for a (15,4)-signal, only 
small portion of these pairs correspond to the real sig-
nal while most pairs correspond to spurious similari-
ties. Most existing algorithms try to find the subtle
signal in this forest of spurious similarities, a very dif-
ficult problem. For example, CONSENSUS (Hertz
Stormo 1999) assembles the best pairwise similarities
into a multiple similarity in a hope that the best pair-
wise similarities capture the signal. This may not be
true for the subtle (15, 4)-signals. We use a different
approach: instead of trying to find a signal in a forest
of spurious similarities, we first try to cut the forest.
After it is done, the signal finding problem becomes
simple since in most cases the remaining similarities
correspond to the signal. However, the forest-cutting
procedure is non-trivial and time-consuming since we
have to ensure that only the spurious similarities are
being cut-off and the signal is retained.

Following Vingron ~ Pevzner (1995), we represent
the signal finding problem in a simple geometric frame-
work. Consider an integer point (pl,-..,pt) in t-
dimensional space, for which we do not know the coor-
dinates (Pi is the position of the signal in the sequence
si from the sample). Suppose we observe the projec-
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tions (Pi, Pj) of this point onto each pair of dimensions
i and j (1 < i < j <_ t) as well as some other points
(spurious similarities or noise). Suppose also that 
cannot distinguish the point representing the projec-
tion of the signal from the ones representing noise. The
winnowing problem is to reconstruct the t-dimensional
point (Pl,...,Pt) given (~) projections (with noise).

For the Challenge Problem, the signal point in every
pairwise comparison is hidden among ~ 20,000 spu-
rious points and finding the signal among that many
spurious similarities is a daunting task. However, the
signal (Pl,..., Pt) generates consistent points in (~) pro-
jections (in the sense of Vingron & Pevzner (1995)), 
constrast to inconsistent points corresponding to spu-
rious similarities. This observation allows one to filter
out most (though possibly not all) spurious similarities.

A naive version of the winnowing idea was first
studied in a context of multiple alignment by Vihinen
(1988). Later, Roytberg (1992) proposed superimpos-
ing pairwise dot-matrices by choosing one reference se-
quence and using it as an instrument for filtering spu-
rious edges. Vingron & Argos (1991) and Vingron 
Pevzner (1995) further developed this idea (for multi-
ple alignment) by using any two reference sequences for
edge filtration in an iterative fashion. In this paper, we
further develop the winnowing approach and improve
the filtration efficiency by using any number of refer-
ence sequences, adjusting this idea for finding subtle
signals and arriving at an algorithm that can detect in-
creasingly more and more subtle signals at the expense
of an increase in the running time.

The WINNOWER Algorithm

Given a sample S = {81,. ¯., st}, a parameter l (length
of the signal), and a parameter d (maximum number 
mutations), construct a graph G(S, l, d) as follows. For
each position j in sequence si, construct a vertex repre-
senting the substring sij of length I starting at position
j in si, where 1 < j <_ n - l + 1 ranges over all valid
starting positions. Connect vertex sij with vertex spq
by an edge if i ~ p and the distance between si~ and spq
does not exceed d. For simplicity, we consider signals
with substitutions only (Hamming distance), although
the approach can be generalized to include insertions
and deletions (compare with Rocke ~: Tompa (1998)).

A clique in a graph is a set of vertices any two of which
are connected by an edge. Any two occurrences of an
(1, d)-signal in S correspond to an edge in the G(S, l, 2d)
graph (the expected number of mismatches between any
two occurrences of the signal is 2d- 4d2/3l, slightly
less than 2d). Therefore, any (l, d)-signal corresponds
to a clique of size t in G(S, l, 2d) thus reducing the sig-
nal finding problem to finding large cliques in a graph.
Finding large cliques in a graph is a difficult problem
in general (Garey ~c Johnson 1979). However, in signal
finding, we usually deal with special kinds of multipar-
rite graphs with "almost random" edges corresponding
to spurious similarities. This problem is related to the

hidden clique problem in random graphs (Jerrum 1992;
Alon, Krivelevich, & Sudakov 1998). We explore the
specifics of such graphs and propose an approach based
on removing edges that surely are not contained in a
large clique.

WlNNOWER uses the notion of an extendable
clique. A vertex u is a neighbor of a clique C =
{vl,...,vk} if {vl,...,vk~u} is a clique in the graph.
A clique is called extendable if it has at least one neigh-
bor in every part of the multipartite graph G. An edge
is called spurious if it does not belong to any extendable
clique of size k. One way to impose increasingly strict
conditions as k increases is to ensure that all spuri-
ous edges are deleted after winnowing and only extend-
able cliques remain in the final graph. This approach
was taken in Vingron & Argos (1991) and Vingron 
Pevzner (1995) for k = 2. However, deleting the edges
that do not belong to extendable cliques is too weak for
filtering spurious edges in the case k > 2. WlNNOWER
is based on the observation that every edge in a maxi-
mal t-clique in G belongs to at least (~[~) extendable
cliques of size k. This observation leads to filtering
inconsistent edges, i.e., edges that belong to less than

t-2
(k-2) extendable cliques. For k = 3, this condition re-
moves edges that belong to less than t - 2 extendable
cliques, a rather powerful filtering procedure.

For k = 1, a vertex u is a neighbor of vertex v if
(u, v) is an edge in the graph. The simplest strategy
for winnowing is to ensure that in the final graph, ev-
ery vertex has at least one neighbor in every part of G
and to delete the vertices that do not satisfy this con-
dition (compare with Roytberg (1992)). This approach
is often inadequate, giving a large final graph even for
relatively simple signals. For k = 2, a vertex u is a
neighbor of an edge (v, w) if {u, v, w) is a triangle 
the graph. WINNOWER ensures that every edge has
at least one neighbor in every part of G (compare with
Vingron ~ Pevzner (1995)). This algorithm works well
in many cases (better performance than CONSENSUS,
GibbsDNA and MEME for the Challenge Problem),
but requires further improvement in finding very sub-
tle signals that are beyond the possibilities of existing
algorithms. This improvement is achieved by running
WINNOWER for cliques of size k > 2 (Table 1).

WINNOWER is an iterative algorithm that con-
verges to a collection of extendable cliques by deleting
inconsistent edges. Define zi,j,p,q as 0 if the jth letter
in si coincides with the qth letter in sp, and as 1 oth-
erwise. If the number of mismatches between sij and
Spa is di,j,p,q, the number of mismatches between si,j+l
and sp,q+l is dij+~,p,q+l --- di,j,p,q- 2i,j,p,q’-~- ~gi,j +l,p,q+~.
This observation leads to an O(N2) algorithm for the
construction of the graph G(S,l,d), where N is the
total number of nucleotides in S. Below we estimate
WINNOWER’s running time and demonstrate that it
can be run with k = 3 and even larger clique sizes for
many challenging signal finding problems (in contrast
to its rather high O(Nk+l) complexity in the general
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case).

We estimate the running time of WINNOWER for
a random multipartite graph with t n-vertex parts and
with probability of every edge being p. The expected
number of edges between vertex v and a given part of
this graph is D = pn. A given set of k vertices in differ-
ent parts of this graph forms a clique with probability
p(~), and therefore, the expected number of k-cliques 

this graph is [k) P . Checking whether each clique is
extendable in this graph requires roughly O(ktD) time
per clique, and therefore, the running time of the algo-

rithm can be estimated as o((tk)nkpG)ktD) provided
that the list of k-cliques is given. For k = 3, it gives
an O((tD)4) estimate of the running time (D ~ 30 for
the Challenge Problem). A simple probabilistic analy-
sis demonstrates that the practical values of p for WIN-
NOWER with k-cliques are limited to p _< 1/~/-ff. It im-
plies that the running time of WINNOWER for prac-
tical values of p is bounded by O(tSnls) for k = 2
and by O(t4nTM) for k = 3. For many practical in-
stances, WINNOWER has about the same running time
for k = 2 and for k = 3. The explanation for this sur-
prising observation is that, for k = 3, Wl-NNOWER
converges in a smaller number of iterations since the
condition for edge removal is much stronger.

In the absence of prior knowledge about the signal,
it is difficult to choose the parameters I and d for graph
construction. One way to solve this problem is to run
the algorithm with progressively increasing d until the
final graph is not empty (for a fixed 1). This approach
does not lead to a significant increase in the running
time since, for small d, the graph G has very few edges.
Tests of WINNOWER demonstrated that usually, de-
pending on l and d, the final graph is either almost
empty (no signal), small with one large clique (signal),
or very large (noise). As a result, the size of the final
graph can be used to evaluate the reliability of found
signals and to estimate the length of the signal I. To
generalize WINNOWER for the case of corrupted sam-
pies and samples with biased nucleotide composition,
we further relax the edge removal condition and con-
struct the multipartite graph based on the notion of
the statistical significance of edges rather than the dis-
tance between substrings. As a result, biases in fre-
quencies, irregularities, and repeats in DNA sequences
affect only the pre-processing stage of the algorithm
(graph construction) and do not affect the algorithm
itself. It amounts to assigning to every edge the prob-
ability that slj and svq differ by the observed number
of mutations (assuming the empirical probabilities of
nucleotides in the biased sample). Afterwards, we re-
tain only the edges in the graph that reflect significant
similarities.

The SP-STAR Algorithm
WINNOWER requires substantial computational re-
sources (both time and memory) and becomes rather
slow for finding subtle signals in very large samples.
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Another drawback is that it treats all edges of the graph
G(S, l, d) equally without distinguishing between edges
corresponding to high and low similarities. An alter-
native approach is to score each candidate signal (col-
lection of substrings in S) and to formulate the signal
finding problem as a combinatorial optimization prob-
lem. For simplicity, we first assume that the length
of the signal is known and that it appears (with some
mutations) in every sequence. Later we extend the ap-
proach to deal with biologically more adequate cases of
corrupted samples and samples with biased nucleotide
composition.

Define the distance d(P, si) between a pattern P and
a sequence si from the sample as the minimum distance
between P andsij for 1 < j < n-l+1. Define the
distance between the pattern P and the sample S as
d(P, S) ~_,l<i<t d(P, si ). A pattern-driven al gorithm
for the Consensus Problem tests all 4t /-letter patterns
P and finds a median string P (Li, Ma, & Wang 1999)
with the minimum distance d(P, S) to the sample. The
pattern-driven approach was first advocated by Staden
(1989) and proved to be very successful in a recent work
by Tompa (1999) (with a different scoring function).
However, an exhaustive search through all 41 /-letter
patterns to compute mir~ll/-letter patterns P d(P, S) be-
comes impractical for large l and Tompa (1999) raised 
problem of extending this approach for longer patterns.
To emulate the pattern-driven approach for long pat-
terns, Fraenkel et al. (1995) and Rigoutsos &: Floratos
(1998) proposed first building a dictionary of frequent
short patterns and combining them into longer patterns
afterwards. Recently, Li, Ma, ~ Wang (1999) proposed
a different alternative to exhaustive search by devis-
ing a polynomial time approximation scheme for find-
ing the median string. Their approach is based on the
generation and analysis of all combinations of r/-letter
substrings from the sample. Since it is prohibitively
time-consuming for large r, the question arises of hoff
good this approach is for practical values of r, in par-
ticular, for r = 1. In this case, one first computes
minpes d(P, S) where the search is limited to all/-letter
patterns P appearing in the sequences from the sample.
Gelfand, Koonin, ~ Mironov (2000) recently applied 
similar approach for finding regulatory sites in Archaea.

We explain the bottleneck of this approach for finding
subtle signals. Let P be an (l, d)-signal that appears 
P1,. ¯., Pt in sequences sl, ¯ ¯., st from the sample S.
The Gelfand, Koonin, ~z Mironov (2000) approach 
based on a hope that

min d(P, S) min d(Pi, S)
PeS i<_i<_t

since in this case the selected pattern Pi represents an
instance of the signal, and therefore approximates the
signal well. However, it is not true for subtle signals and
instead of selecting Pi, minpes d(P,S) often selects a
random pattern that has nothing in common with the
signal. The problem is that in the case of subtle sig-
nals, there is a good chance that d(W, S) is less than



minl<i<t d(Pi, S) for a random pattern W. If the best
instances of Pi in sequences Sl,..., st are P1,..., Pt, we
expect that d(P~, S) is close to 2d(t- 1) (since Pi and
Pj typically differ in 2d positions). However, for subtle
signals, any pattern W often has approximate occur-
rences W1,..., Wt in every sequence within distance 2d
and therefore d(W, S) is close to 2d(t- 1) with high
probability for a randomly chosen pattern W. As a re-
sult, d(W, S) for a random pattern W may turn out to
be lower than d(Pi, S), thus leading to the selection 
a random pattern instead of Pi and missing a signal.

The following sum-of-pairs scoring used in SP-STAR
provides a better separation between the signal pat-
tern and random patterns and allows one to detect
subtle signals. Let W C ,.q be a string of length
l and let 14/1,...Wt be the best instances of W in
sample sequences sl,...,st (ties are broken arbitrar-
ily). SP-STAR uses a sum-of-pairs function D(W, S) 
~’~l<_i<j<,, d(Wi, Wj) that better separates signal from
noise than d(W, 8). The reason is that the typical value
of d(Wi, Wj) for a random string W may be as large as
4d (since Wi and Wj are strings typically distance 2d
apart from W), while the typical value for d(Pi, Pj) 
2d (since Pi and Pj are correlated through (unknown)
signal pattern P and are expected to be distance 2d
apart).

SP-STAR is a heuristic that first finds a pattern
W correspondin~ to minwes D(W, S). This can be
achieved in O(Nz) time by using the same argument as
in the graph construction phase of the WINNOWER al-
gorithm, where N is the total number of nucleotides in
S. The advantages of the sum-of-pairs scoring for sig-
nal finding were also demonstrated in a recent work by
Akutsu, Arimura, & Shimozono (2000). However, 
the case of subtle signals, sum-of-pairs scoring points
out to some instances of the signal rather than to the
signal itself and some further work is needed to find
the signal. SP-STAR further uses a local improve-
ment strategy to improve the initially found signal.
Define the majority string for a collection of strings
IV = {W1,..., Wt} as the string W~, whose ith letter
is the most frequent ith letter in IV, with ties broken
arbitrarily. The best occurrences of a majority string
WI in each sequence si define a new potential signal
W~,...,W[. SP-STAR repeats this procedure until
there are no more improvements in the score. Since
local improvements may take a long time, they are per-
formed only on a fraction of the best initial signals.

Instead of the majority string approach, this local
improvement strategy can be performed in many ways,
for example, using profiles, Gibbs sampler or any other
local improvement algorithms. Computational exper-
iments indicate that the following local improvement
procedure gives good results in practice. The idea is
that some of the positions of the patterns found at in-
termediate steps may not be significant and should be
ignored while looking for the best instances of the ma-
jority strings. The pattern score D(W, S) can be de-
composed into a sum of position scores and a position

is defined as significant if the corresponding position
score is below a threshold. Insignificant positions are
ignored while finding the best instances of the majority
strings. The procedure is repeated until there are no
more improvements. At this point, several variants of
the (possibly gapped) majority string are constructed
to define new potential signals and to test for further
improvements. These steps are repeated again until
there are no improvements.

Extensions to the SP-STAR Algorithm

Signals with Unknown Length. When the length
of the signal l is unknown, SP-STAR can be run for
each length in consideration over a range of lengths.
The problem with this approach is that (i) it is rather
slow, and (ii) the sum-of-pairs distance is not suitable
for comparing signals of different lengths and it is un-
clear what the "best" length is. We found that a sim-
ple transition from distance-based scores to similarity-
based scores allows us to analyze signals of different
lengths. The resulting algorithm has approximately the
same running time as the original distance-based algo-
rithm with the fixed signal length I.

If a candidate signal W is represented by a collection
of the best instances W1,..., Wt, the similarity score
for W is defined as S(W) -- ~-]~x<i<j<tS(Wi, Wj)/(tz),
where S(W~, Wj) is the similarity between W~ and Wj,
defined as the sum of premiums for matches and penal-
ties for mismatches (e.g., we found that using +2 as the
match premium and -1 as the mismatch penalty works
well). With the similarity score S(W), we usually define
a position as significant if its score is positive.

Let [Imin,lmaz] be the range of target lengths un-
der investigation. We run SP-STAR with strings of
length lma~ but change the scoring approach by scor-
ing the best subregion of length between l,~i,, and l,~
with maximum sum-of-column score (instead of the full-
length region of length l,~). For the local improve-
ment step, instead of finding a majority nucleotide for
all l,na~ positions, only the positions of the best-scoring
subregion are considered while other positions are ig-
nored when finding the best instances of the majority
string in each sample sequence. Each instance is again
of length Ima~ and the best scoring subregion instead of
the entire region is used to define the new signal. The
local improvement procedure also tries to incorporate
an extra position to the left or to the right of the best
subregion (within the entire region) as variants of the
majority string in order to better estimate the signal
length.

Gapped Signals. The version of SP-STAR de-
scribed in the previous section already can deal with
gapped signals by returning only significant positions
of the found signal. Another way to deal with gapped
signals is to change the definition of the score of a signal
(collection of strings) by summing up only positive col-
umn scores and to use only these positions while looking
for the best instances of the majority strings. This score
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only considers significant positions and thus may better
reflect the alignment.

Finding Signals in Samples with Biased Nu-
cleotide Composition. To deal with samples with
biased nucleotide composition, we use the background
probabilities to define new (information-theoretic)
match premiums and mismatch penalties. As a result,
the best instances of the string in the sample are con-
trolled by the background distribution of nucleotides.

Finding Signals in Corrupted Samples. Most
biological samples are corrupted, i.e., the signal is
present only in a fraction of sequences from the sam-
ple. For example, usually only a third of sequences in
the bacterial Ribosome Binding Site samples contain an
analog of the Shine-Dalgarno signal. This raises a prob-
lem of comparing the candidate signals that appear in a
different number of sequences. An elegant approach to
this problem was recently suggested by Tompa (1999).
We found that a naive normalization of the score by the
number of its occurrences in the sample works well in
practice. In the future, we plan to incorporate Tompa
(1999) scoring in our algorithm.

The algorithm for corrupted samples sorts the best
instances of the signal in decreasing order of fitness to
the majority string, and computes the normalized score
for the top i instances (1 _~ i ~ t). The next sig-
nal (collection of strings) is set to be the one with the
best normalized score over all i. The next majority
string is computed from these i instances rather than
from all the instances. Although experimental results
show that this approach often overestimates the number
of sequences containing the signal, the error is usually
small.

Test Samples and Performance

Evaluation

A common test set for signal finding in DNA sequences
is a sample of experimentally confirmed E. coli CRP
binding sites containing 18 105-nucleotide sequences
(Stormo & Hartzell III 1989). There are a total of 
CRP binding sites in this sample, so some sequences
contain more than one site. Similar to other signal
finding algorithms, SP-STAR finds the correct sites in
17 (out of 18) sequences and forms a majority string
TGTGAnnnngnTCACA, which is close to the con-
sensus. A good performance of most signal finding al-
gorithms for this sample is not surprising since the aver-
age mutation rate among ten conservative positions of
the CRP signal is p -- 0.23, a bit below the level when
difficulties in signal finding begin to occur (for samples
with 105-nucleotide sequences).

To compare the performance of different signal find-
ing algorithms, it is important to have complete con-
trol over the characteristics of test samples. Following
Workman and Stormo (2000), we generate samples 
from i.i.d, sequences of fixed length and implant ran-
domly mutated signals at randomly chosen positions
in these sequences. Two different approaches are used
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to implant a signal pattern in sample sequences. In
the first approach, a randomly mutated pattern with
exactly d substitutions is implanted in each sequence
(Fixed number of Mutations or FM model). In the sec-
ond approach, each nucleotide of the signal pattern is
mutated with probability p into any of the three re-
maining nucleotides (Variable number of Mutations or
VM model). The FM model with d mutations is similar
to the VM model with probability of mutation p - d/l.

Let K be the set of known signal positions in a sample
and let P be the set of predicted positions. For WIN-
NOWER, P consists of all positions covered by vertices
in the final graph, where vertex sii covers all positions
from j to j + I - 1 in s~. We use either the performance
coefficient IK N PI/]K [3 PI or the standard correlation
coefficient (Brazma et al. 1998) for performance evalu-
ation.

Figure 1 illustrates the performance of CONSENSUS,
GibbsDNA and MEME, while Figure 2 illustrates the
performance of WINNOWER (k = 2) and SP-STAR
(FM model with unbiased nncleotide composition). The
tests revealed a sharp drop in the performance as soon
as the number of mutations exceeds a certain thresh-
old. This phenomenon makes it difficult to compare the
performance of different algorithms in terms of the per-
formance coefficient or the correlation coefficient (since
it is either close to 0 or close to 1).

To better reveal the merits and demerits of differ-
ent algorithms, we fix the parameters l and d and vary
the length n of the sequences in the sample (Table 1).
CONSENSUS, GibbsDNA and MEME start to break at
length 300 to 400, while WINNOWER (k = 2) starts
to break at length 700 to 800. WINNOWER (k = 3)
works through the whole range of lengths. SP-STAR
breaks at length 800 to 900 (random patterns start to
out-score the signal pattern at these lengths).

Figure 3 illustrates the performance of SP-STAR,
CONSENSUS, GibbsDNA and MEME under the VM
model with unbiased nucleotide composition. The per-
formance of these algorithms in the VM model improves
due to the fact that, with high probability, one of the
implanted strings becomes very close to the signal string
and therefore is easier to detect. SP-STAR still per-
forms better than CONSENSUS, GibbsDNA or MEME
for subtle signals. Performance for WINNOWER falls
since it is not designed to capture instances of the sig-
nals that are more than 2d apart. The VM model allows
such signals and the constraints used by WINNOWER
need to be relaxed to deal with this situation (to be de-
scribed elsewhere). We also remark that in our tests of
existing algorithms, MEME turned out to be the best
in correctly identifying the length of the signal.

Figure 4 shows the performance of the SP-STAR
algorithm on a biased sample and a corrupted sam-
ple (FM model). For many biased samples, the per-
formance of SP-STAR, CONSENSUS, GibbsDNA and
MEME is about the same, probably due to the fact
that the randomly generated signal "stands out" better
against the non-uniform background and the problem
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Figure 1: Performance of existing signal finding Mgorithms. The algorithms used in the tests are CONSENSUS,
GibbsDNA (the version of the Gibbs sampler modified for work with DNA sequences obtained from Dr. Michael
Zhang, Cold Spring Harbor Laboratory) and MEME. [Top left] The entries of the table represent the maximum
number of mismatches that are tolerated by the algorithms (average performance coefficient exceeds 50%). For
example, CONSENSUS, GibbsDNA and MEME find (15, 3)-signals but all fail to find (15,4)-signals (for samples 
20 sequences, each 600-nt long). The performance of these three algorithms is remarkably consistent, with GibbsDNA
slightly better than the other algorithms (CONSENSUS fails for (13, 3)-signals while MEME fails for (11, 2)-, (13, 
and (20, 6)-signals). [Graphs] Each algorithm is tested for eight samples of 20 random i.i.d, sequences of length
600 nucleotides with uniform nucleotide composition (FM model). The known signal length l is used as an input
parameter to all programs. For CONSENSUS, the first matrix among the list of matrices from the final cycle is used
as the output alignment. GibbsDNA is set to disregard fragmentation and the alignment with the best complete
log-likelihood ratio over 100 runs is returned. MEME is run in oops mode. For each (l, d) pair, eight different random
samples are generated and the performance is taken to be the average over these samples. Numbers on the graphs
show the signal length 1. The number of mismatches d ranges from 0 to 7. The x-axis represents the percent of
mismatches. Data points with the same signal length are connected.
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Figure 2: Performance of WINNOWER (k = 2) (left) and SP-STAR (right). Samples are constructed in the 
way as in Figure 1 (FM model). SP-STAR is run with local improvement on the top 10% initial signals.

becomes easier. For corrupted samples (12 out of 20 se-
quences retain the signal), SP-STAR is less accurate in
estimating the number of sites when the signal is short,
but more accurate with long subtle signals. The per-
formance coefficient drops by 5 to 10% when compared
to the non-corrupted samples.

Discussion
Most existing signal finding algorithms are either proba-
bilistic or machine learning implementations of different
local search strategies. The shortcoming of these algo-
rithms is that, for subtle signals, they often converge
to local optima that represent random patterns rather
than a signal. Li, Ma, & Wang (1999) recently pro-
posed a different combinatorial paradigm with a proven
performance that avoids local optima. However, the
running time of the Li, Ma, & Wang (1999) algorithm
is too high for practical implementations. This paper
proposes two new combinatorial algorithms for signal
finding. The first one, based on the winnowing idea, is
able to find rather subtle signals that are difficult to find
for existing algorithms. Although WINNOWER shows
an excellent performance on simulated samples in FM
mode, further work is needed to retain this performance
for biological samples and for samples simulated in VM
mode. The second algorithm, SP-STAR, is based on
a new insight into the design of scoring functions. For
future development of these algorithms, we emphasize
the following remaining problems (among many): (i)
finding multipart signals in SP-STAR; (ii) using more
than one best instance of the candidate signals in every
sequence while selecting majority strings; (iii) further
reducing the WINNOWER’s running time and mem-
ory requirement for k > 2; (iv) taking into account
the "edge scores" in WINNOWER; and (v) relaxing ill-

tering conditions to adjust WINNOWER for corrupted
samples. To address these problems, we have recently
implemented and tested a hybrid algorithm that com-
bines the ideas of WINNOWER and SP-STAR in a sin-
gle framework (to be described elsewhere).
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