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COMBINATORIAL ASPECTS OF COVERING ARRAYS

CHARLES J. COLBOURN

Covering arrays generalize orthogonal arrays by requiring that t -tuples
be covered, but not requiring that the appearance of t -tuples be balanced.
Their uses in screening experiments has found application in software testing,
hardware testing, and a variety of fields in which interactions among factors
are to be identified. Here a combinatorial view of covering arrays is adopted,
encompassing basic bounds, direct constructions, recursive constructions,
algorithmic methods, and applications.

1. Mathematical Preliminaries.

An orthogonal array OAλ(N; t, k, v) is an N × k array. In every N × t
subarray, each t -tuple occurs exactly λ times, where λ = N

vt
. The parameter t is

the strength; k is the number of factors; and v is the number of levels associated
with each factor, the order. The requirement that every t -tuple arise exactly λ

times can be too restrictive in applications that require only that every t -tuple be
covered at least once. We therefore relax the definition to introduce the covering
array and mixed-level covering array.

A covering arrayCAλ(N; t, k, v) is an N×k array. In every N×t subarray,
each t -tuple occurs at least λ times. Then t is the strength of the coverage of
interactions, k is the number of components (degree), and v is the number of

Keywords: Covering array, qualitative independence, transversal cover, orthogonal array,
transversal design, perfect hash family, interaction testing, group-divisible designs,
heuristic search, greedy algorithm.
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symbols for each component (order). We treat only the case when λ = 1, i.e.
every t -tuple must be covered at least once. The size of a covering array is
the covering array number CAN(t, k, v). The covering array is optimal if it
contains the minimum possible number of rows. Various authors transpose the
array in the definition, and of course this is a matter of personal preference. In
our discussions here, we employ the N × k format, but occasionally construct
the tranposed covering array.

Here is an example of a covering array of strength three with ten factors
having two levels each. It has N = 13 rows.

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1

This combinatorial object is fundamental in developing interaction tests
when all factors have an equal number of levels. However, systems are typically
not composed of components (factors) that each have exactly the same number
of parameters (levels). To remove this limitation of covering arrays, the mixed-
level covering array can be used.

A mixed level covering array MCAλ(N; t, k, (v1, v2, . . . , vk)) is an N × k
array. Let {i1, . . . , it } ⊆ {1, . . . , k}, and consider the subarray of size N × t
obtained by selecting columns i1, . . . , it of the MCA. There are

∏t
i=1 vi distinct

t -tuples that could appear as rows, and an MCA requires that each appear at least
once. We use the notation CAN(t, k, (v1, v2, . . . , vk)) to denote the smallest N
for which such a mixed covering array exists.

An early investigation of covering arrays appears implicitly in Marczewski
[87]. Rényi [107] determined sizes of covering arrays for the case t = v = 2
when N is even. Kleitman and Spencer [76] and Katona [74] independently
determined covering array numbers for all N when t = v = 2. They showed
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that N grows as follows:

k =
(
N − 1
� N2 �

)

For large k, N grows logarithmically. The construction is straightforward. Form
a matrix in which the columns consist of all distinct binary N -tuples of weight
� N2 � that have a 0 in the first position. In 1990 Gargano, Körner and Vaccaro
[58] gave a probabilistic bound when t = 2 and v > 2:

N = v

2
log k(1 + o(1))

Now we explore a dual formulation. Let C be an N×k covering array. Suppose
that rows are indexed by a set R of size N . Then each column can be viewed
as a partition of R into exactly v classes (M1, . . . , Mv); the class Mi of a
symbol r ∈ R is determined by the value i appearing in row r in the chosen
column. In this manner, such an array gives a collection P = {R1, R2, . . . , Rk}
of partitions of R. A family of partitions is t -qualitatively independentwhen for
every t of the partitions Ri1 , . . . Rit , and for every choice of classes Mij ∈ Rij ,
for 1 ≤ j ≤ t , we find that

⋂t
j=1 Mij �= ∅. It follows that covering

arrays of strength t having N rows are the same as t -qualitatively independent
partitions of a set of size N . Many of the early results were established using
this vernacular, but we for the most part translate to the language of covering
arrays. Poljak, Pultr, and Rödl [105] and Körner and Lucertini [79] discuss
combinatorial problems related to qualitative independence.

Covering arrays appear in other mathematical disguises as well. A (k, t)-
universal set is a subset of {0, 1}k such that the projection on every t coordinates
contains all 2t combinations. Hence it is a CA(t, k, 2). Naor and Naor
[94] establish that (k, t)-universal sets arise as probability spaces with limited
independence; indeed these have been extensively studied as ε-biased arrays
[2], [80], [83], [94], [95]. Bierbrauer and Schellwatt [5] extend this framework
to more than two values per symbol.

The nomenclature t -surjective array for a covering array of strength t is
also used, to indicate that on each t columns, every possible outcome arises.
See [1], [17], [28], [29], [56], [111], for example.

2. Bounds and Asymptotics.

An obvious lower bound is:

(1) vt ≤ CAN(t, k, v).



128 CHARLES J. COLBOURN

More generally for a MCAλ(N; t, k, (v1, v2, . . . , vk)),
∏t

i=1 vi is a lower bound
on the size of the mixed covering array. Although the {vi } are listed in a
specified order, reordering the {vi } in the definition results in a simple column
reordering of the MCA. For this reason, we present these sizes in any convenient
order. In this way, the stated bound can be treated as the product of the t largest
values among the {vi }.

Evidently if any of the {vi } is 1, it can be omitted provided that the number
of factors is at least two. With this in mind, a simple inequality establishes that

(2) CAN(t, k, (v1, v2, . . . , vk) ≤ CAN(t, k, (v1 + 1, v2, . . . , vk)

and consequently

(3) CAN(t, k − 1, (v2, . . . , vk) ≤ CAN(t, k(v1, v2, . . . , vk)

Suppose A is a covering array CA(N; t, k, v) and let i be any row and x any
symbol. Then the (k − 1) × N ′ subarray obtained by deleting row i from
A and keeping only those columns of A that had symbol x in row i is a
CA(N ′; t − 1, k − 1, v), where N ′ is the number of occurrences of x in row
i . Hence

(4) CAN(t − 1, k − 1, v) ≤ 1

v
CAN(t, k, v).

By the same token,

(5) CAN(t, k, (v1, v2, . . . , vk)) ≥ v1 · CAN(t − 1, k − 1, (v2, . . . , vk))

More sophisticated bounds have been the subject of much research, as we shall
see. In this section, we outline some asymptotic and probabilistic results.

Godbole, Skipper, and Sunley [60] examine the random process of choos-
ing, in each entry of an N × k array, each of v possible values equiprobably.
They establish that when N is large enough with respect to t , k, and v, such a
random array has nonzero probability of being a CA(N; t, k, v). It follows from
their results that

CAN(t, k, v) ≤ (t − 1)log k

log vt

vt−1

(1 + o(1)).

In [4], [94], [96], it is established that

CAN(t, k, 2) ≤ 2t tO(log t) log k.
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Gargano, Körner, and Vaccaro [57] show that the ratio of CAN(2, k, v) to log k
is asymptotic to 1

2v. Indeed a stronger version in [58] establishes the same
result when only a small fraction of the pairs need to be covered. For higher
strength, considering the largest k for which a CA(N; t, k, v) exists, it has been

established that k is at least et
v
e

N
tvt and at most κv,N√

N
4

N
vt−1 , where κv,N is a constant

depending only upon v and N ; see [105], [106].

Lower bounds are in general not well explored, but see [71], [122], for
example.

3. Algebraic and Combinatorial Methods.

Evidently an orthogonal array OA(N; t, k, v) is a covering array, and when
N = vt it is optimal. The theory of orthogonal arrays is well developed; indeed
a recent book treats many facets of their construction and use [66]. Although
orthogonal arrays both provide many of the best constructions, and motivate
many of the methods to be described, we do not delve into them here but instead
refer the reader to [64] for an overview in the context of covering arrays, to [37],
[38] for OA(2, k, v)s, and to [66] for higher strength.

We mention one important direction here. A group divisible design
(V , G, B) (k − GDD) is a set V of v elements, a partition G of V into groups,
and a collection of k-subsets of V (blocks) with the property that every block
intersects every group in at most one element, and every pair of elements from
different groups appears as a subset of exactly one block. When there are n
groups, and their sizes are g1, . . . , gn , the type of the k-GDD is g1g2 · · · gn .
Exponential notation is used, so that g� indicates � occurrences of the group
size g. A k-GDD of type vk is a transversal design TD(k, v). Such a design is
equivalent to a certain orthogonal array (see [38], [66]), and hence gives a cov-
ering array. Moreover the generalization of transversal designs to allow pairs of
elements in different groups to be covered at least once leads to another formu-
lation of covering arrays, transversal covers. Stevens, Ling, and Mendelsohn
[118] observe that when a k-GDD of type vn exists and k < n, one can simply
extend every block to add points from each group that the block does not inter-
sect. The result is a transversal cover; thus when a k-GDD of type vn exists, we
can deduce that CAN(2, n, v) ≤ v2n(n−1)

k(k−1) . This idea can be carried further, by
adjoining further groups to the k-GDD. See [118] for some constructions in this
vein; of interest is the special case that CAN(2, v+3, v) ≤ v2 +2v when v +1
is a prime or prime power.
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3.1. Some Direct Constructions for Strength Two

Allowing a finite group to act on the symbols of the covering array enables
one to develop arrays more compactly by choosing suitable orbit representa-
tives. Using cyclic groups leads to the notion of difference covering arrays (for
strength two) treated in [138], [139]. In general, let � be a group of order v,
with � as its binary operation. A difference covering array D = (di j ) over �,
denoted by DCA(N, �; 2, k, v), is an N×k array with entries from � having the
property that for any two distinct columns j and �, {di j�d−1

i� : 1 ≤ i ≤ N} con-
tains every non-identity element of � at least once. When � is abelian, additive
notation is used, explaining the “difference” terminology. We often employ the
case when � = Zv , and omit it from the notation. We denote by DCAN(2, k, v)
the minimum N for which a DCA(N, Zv ; 2, k, v) exists.

In a similar manner, in [39], [89], arrays developed with one fixed point
and a (v − 1)-cycle are produced. We outline some work in the latter direction
here. Choose two parameters, � and g. We form a vector (v0, . . . , v�−1) with
entries from Zg−1 ∪ {∞}. The set Ds = {(vj − vi ) modg − 1 : j − i ≡ s
mod�, vi �= ∞, vj �= ∞} consists of the s-apart differences. Consider vectors
in which v0 = ∞ and vi ∈ Zg−1 for 1 ≤ i < �. When Ds = Zg−1 for
1 ≤ s < �, such a vector is a (g, �)-cover starter. When Zg−1 \ {0} ⊆ Ds for
each 1 ≤ s < �, and {v1, . . . , v�−1} = Zg−1 , such a vector is a (g, �)-distinct
cover starter.

When a (g, �)-cover starter exists, Meagher and Stevens [89] note that a
CA(�(g−1) +1; 2, �, g) exists, as follows. Form all � cyclic shifts of the cover
starter. For each, form g−1 vectors by developing each modulo g−1 (keeping
∞ fixed). The resulting �(g − 1) vectors form the rows of an array, so that for
any two columns all pairs are covered except for (∞, ∞). Adding one constant
row consisting only of ∞ completes the covering array. Meagher and Stevens
[89] give numerous examples of cover starters, proving

Lemma 3.1. A (g, �)-cover starter exists when

1. g = 3 and � ∈ {5, 8};
2. g = 4 and � ∈ {5, 6, 7, 8, 9, 10};
3. g = 5 and � ∈ {7, 8, 9, 10, 11, 12};
4. g = 6 and � ∈ {9, 10, 11, 12, 13, 14};
5. g = 7 and � ∈ {10, 11, 12, 13, 14, 15, 16};
6. g = 8 and � ∈ {9, 11, 12, 13, 14, 15, 16, 17, 18};
7. g = 9 and � ∈ {13, 14, 15, 16, 17, 18, 19, 20}.
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Distinct cover starters are instead used in [39]. Next we give examples of
distinct cover starters:

(6,8) (∞,0,1,3,0,2,1,4) (6,9) (∞,0,0,1,0,0,3,2,4)

(6,10) (∞,0,0,0,1,1,4,3,0,2) (6,11) (∞,0,0,0,0,1,0,4,2,3,0)

(6,12) (∞,0,0,0,0,0,1,0,4,2,3,0) (7,7) (∞,0,2,1,4,5,3)

(7,9) (∞,0,0,2,1,4,5,3,3) (7,10) (∞,0,0,0,1,0,3,5,4,2)

(7,11) (∞,0,0,0,0,1,0,3,5,4,2) (7,12) (∞,0,0,0,0,0,1,0,3,5,4,2)

(7,13) (∞,0,0,0,0,0,0,1,0,3,5,4,2) (8,11) (∞,0,1,0,0,0,3,5,4,2,6)

(8,12) (∞,0,0,0,1,0,6,4,6,3,2,5) (8,13) (∞,0,0,0,0,1,2,6,5,3,6,2,4)

(8,14) (∞,0,0,0,0,0,1,0,4,6,4,3,2,5) (9,12) (∞,0,1,6,4,5,0,7,6,2,1,3)

(9,13) (∞,0,0,0,0,2,6,1,7,6,3,4,5) (9,14) (∞,0,0,0,0,0,2,6,1,7,6,3,4,5)

(9,15) (∞,0,0,0,0,0,0,2,6,1,7,6,3,4,5)

3.2. Some Direct Constructions for Strength Three

Here we examine group action focussing on strength three, following the
presentation in [19]. Let � be the set of v symbols on which we are to construct
a CA(N, 3, k, v). Let G be a group acting on the set �. If g ∈ G and M is a
k × � matrix with entries in �, then Mg is the k × � matrix whose [i, j ] entry
is M[i, j ]g , the image of M[i, j ] under g. The matrix obtained by developing
M by G is the k × �|G| matrix

MG = [Mg : g ∈G].

Let C = C(k, �) be the k × |�| matrix that has a constant column with each
entry equal to x , for each x ∈ �. When the k rows are indexed by a set X , the
notation C(X, �) is also used. The goal is to choose the matrix M and group
G so that [MG,C]T or just [MG]T is a CA(N, 3, k, v). For example, when
G = Sym{0, 1, 2} (the symmetric group on {0, 1, 2}), and

M =
⎡
⎢⎣

0 0 0 0
0 1 1 1
1 2 0 1
2 2 1 0

⎤
⎥⎦ ,

[MG,C]T is a CA(3,4,3).

Theorem 3.2. Let v > 2 be a positive integer, and let q ≥ v − 1 be a prime
power. Then there is a CA(2v − 1)(q3 − q) + v; 3, 2v, v).
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Proof. First we construct a CA(N; 3, 2v, q + 1), with

N = (2v − 1)(q3 − q) + q + 1.

Since q is a prime power, the group G = PGL(q) is sharply 3-transitive on the
projective line � = Fq ∪ {∞}. Under this group there are precisely five orbits
of 3-tuples. These five orbits are determined by the pattern of the entries in their
3-tuples:

1. {[a, a, a]T : a ∈ �}
2. {[a, a, b]T : a, b∈ �, a �= b}
3. {[a, b, a]T : a, b∈ �, a �= b}
4. {[b, a, a]T : a, b∈ �, a �= b}
5. {[a, b, c]T : a, b, c∈ �, a �= b �= c �= a}

Let x1, x2, x3 be any three rows of [MG,C(X, �)]. The 3-tuples with all
equal entries occur on rows x1, x2, x3 of [MG,C(X, �)] since they occur in
C(X, �). Thus to construct a CA(N; 3, 2v, q + 1) using this group we need
only find a matrix M such that for each of the orbits 2-5 and each set of 3 rows
there is a column of M that contains an orbit representative for the orbit on the
chosen rows.

Let X be a 2v-element set of vertices and let

F1, F2, . . . , F2v−1

be a one-factorization of the complete graph G on X . Let � : E(G) → � be an
arbitrary function for which �(e) �= �(e′) whenever e, e′ ∈ Fj for some j . Such
a function exists since |�| = q + 1 > v. Define the 2v × (2v − 1) matrix M
with entries in � by M[x , j ] = �(e), where e is the edge of Fj that is incident
to x ∈ X .

It must be shown that each of the orbits 2, 3, 4, and 5 has a representative
on rows x1, x2, x3. The edge e = {x1, x2} is an edge of some one-factor Fj and
x3 is incident to some other edge e′ of Fj . Thus �(e) = a and �(e′) = b for
some a �= b in �. Consequently

[M[x1, j ], M[x2, j ], M[x3, j ]] = [a, a, b]

and so orbit (2) is represented. Similarly, orbits (3) and (4) are repre-
sented. There are 2v − 4 one-factors that do not contain any of the edges
{x1, x2}, {x1, x3}, or{x2, x3}. Thus, since 2v ≥ 5, there is a one-factor Fj ′

in which x1, x2, and x3 are each incident to different edges. Consequently,
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column j ′ of M has distinct entries on rows x1, x2, and x3 and thus or-
bit (5) is represented. Therefore [MG,C(X, �)]T is a CA(N; 3, 2v, q + 1),
with N = (2v − 1)(q3 − q) + q + 1. To obtain a CA(N ′; 3, 2v, v) with
N ′ = (2v − 1)(q3 − q) + v replace q + 1 − v of the non-zero symbols with 0
and delete the q + 1 − v extra columns of 0’s in C(X, �). �

When q = 2, PGL(2, q) is isomorphic to Sym{0, 1, 2}. Figure 1 depicts
the CA(33; 3, 6, 3) array (transposed) that is constructed using this group by
Theorem 3.2.

Theorem 3.3. The covering number CAN(3, 6, 3) = 33.

0 1 2 2 1 1 2 0 0 2 2 0 1 1 0 0 2 1 1 2 1 0 2 2 0 2 1 0 0 1 0 1 2
1 2 2 1 0 2 0 0 2 1 0 1 1 0 2 2 1 1 2 0 0 2 2 0 1 1 0 0 1 2 0 1 2
2 2 1 0 1 0 0 2 1 2 1 1 0 2 0 1 1 2 0 2 2 2 0 1 0 0 0 1 2 1 0 1 2
2 1 0 1 2 0 2 1 2 0 1 0 2 0 1 1 2 0 2 1 2 0 1 0 2 0 1 2 1 0 0 1 2
1 0 1 2 2 2 1 2 0 0 0 2 0 1 1 2 0 2 1 1 0 1 0 2 2 1 2 1 0 0 0 1 2
0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 0 1 2

Figure 1: A minimal CA(33; 3, 6, 3) covering array, transposed

Proof. Östergärd has shown that CAN(2, 5, 3) = 11 (see [115]). Thus by
inequality (4), CAN(3, 6, 3) ≥ 33. But by Theorem 3.2, CAN(3, 6, 3) ≤ 33.
�

Example 3.4 illustrates a situation not using 3-transitive group.

Example 3.4. A CA(88; 3, 8, 4) covering array.

Let X = F8 = Z2[x ]/(x 3 + x +1) be the points of the complete graph K8.
Observe that x is a primitive root of X . Let F be the cosets of H = {0, 1} as a
subgroup of the additive group of F8. Then

F = {{0, 1}, {x , x3}, {x 2, x 6}, {x 4, x 5}}
is a one factor and the partition

{xF , x 2F , x 3F , x 4F , x 5F , x 6F }
is a one-factorization of K8. Let � : E(K8) → � be any function such that
�(e) �= �(e′) whenever e, e′ ∈ x jF for some j and define the 8 × 7 matrix M
with entries in � by M[x , j ] = �(e) where e is the edge of x jF that is incident
to x ∈ X . One such matrix is given in Figure 2.
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Let G = Alt� be the alternating group of permutations of �. Then
[MG,C(X, �)]T is the desired CA(88; 3, 8, 4) covering array. To see this,
consider any three rows x1,x2,x3 of [MG,C(X, �)]. It must be shown that,
for each choice of a, b, c with a �= b �= c �= a, each of the patterns [a, a, a]T ,
[a, a, b]T , [a, b, a]T , [b, a, a]T , and [a, b, c]T occurs on these rows. Patterns
with three equal entries occur in C = C(X, �). Patterns with two equal entries
and one different appear in [MG,C(X, �)] on rows x1, x2, x3 since G is 2-
transitive on � and every pair occurs as an edge. This leaves only patterns
with three distinct entries. There are exactly two orbits of such patterns under
G since G is the alternating group on four symbols. Thus it suffices that in
M there are two triples [x , y, z]T and [x ′, y ′, z′]T on rows i, j, k for which the
unique permutation in the symmetric group that sends one on to the other is an
odd permutation.

0 0 0 0 0 0 0
0 2 3 3 1 2 1
1 0 2 3 3 1 2
2 1 0 2 3 3 1
1 2 1 0 2 3 3
3 1 2 1 0 2 3
3 3 1 2 1 0 2
2 2 2 1 2 1 0

Figure 2: A matrix for the one-factorization in Construction 3.4

Corollary 3.5. The covering number CAN(3, 8, 4) ≤ 88 and CAN(2, 7, 4) ≤
22.

Proof. The construction in Example 3.4 and the inequality (4) establish this
result. �

Generalizations appear in [18], [20].

3.3. Direct Constructions for Strength t ≥ 4

Beyond consequences of known orthogonal arrays [66], Sherwood [114]
develops a compact “vector notation” for covering arrays, and demonstrates
existence of a number of arrays with t = 4. This appears to be a promising
search technique, but is too involved for presentation here.

4. Recursive Constructions.

In this section we describe recursive constructions, primarily for t ∈ {2, 3}.
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4.1. Products of Strength Two Arrays

When a CA(N; 2, k, v) and a CA(M; 2, �, v) both exist, it is an easy
matter to produce a CA(N + M; 2, k�, v). To be specific, let A = (ai j ) be
a CA(N; 2, k, v) and let B = (bi j ) be a CA(M; 2, �, v). Form an (N +M) × k�
array C = (ci, j ) by setting ci,( f−1)k+g = ai,g for 1 ≤ i ≤ N , 1 ≤ f ≤ �, and
1 ≤ g ≤ k. Then set cN+i,( f−1)k+g = bi, f for 1 ≤ i ≤ M , 1 ≤ f ≤ �, and
1 ≤ g ≤ k. In essence, k copies of B are being appended to � copies of A. Since
two different columns of C arise either from different columns of A or from two
different columns of B , the result is a CA(N +M; 2, k�, v). This is the essence
of the block recursive construction from [120], and can be traced back through
work of Cohen and Fredman [27] to a product for qualitative independence by
Poljak and Tuza [106]. Williams et al. [131], [133], [134] use this product
construction in order to design tests for the interactions of nodes in a network
and component based testing, and produce a software package called TConfig.
Recent extensions are given in [39], [91].

It can happen that some of the entries of the array are not needed in order
to cover all t -tuples. In this case, we can replace the entry of the array by �,
to indicate a “don’t care” position. When such a replacement is made, t -tuples
containing a � are deemed not to match a t -tuple of the v symbols. The profile
(d1, . . . , dk) of an N × k array is a k-tuple in which the entry di is the number
of � entries in the i th column.

In [39], two extensions of this simple concatenation are examined, to allow
mixed level covering arrays and to exploit “don’t care” positions. The extension
to mixed levels is treated in [91], without exploiting the � positions. To simplify
the presentation, we assume a factor with v values always takes on values from
{1, . . . , v}, and hence the corresponding column of the array contains only these
symbols, and possibly �.

Theorem 4.1. Suppose that there exist

1. an MCA(N; 2, k, (v1, . . . , vk )), A, with profile (d1, . . . , dk);
2. for each 1 ≤ i ≤ k, an MCA(Mi ; 2, �i, (wi1, . . . , w1,�i )), Bi , with profile

( fi1, . . . , f1,�i ), and for which wi j ≤ vi for 1 ≤ j ≤ �i .

Then for T = N + maxki=1(Mi − di ), there exists an

MCA(T ; 2,

k∑
i=1

�i (w11, . . . , w1,�1 , · · · , wk1, . . . , wk,�k )).
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Proof. Form an array C with N + T rows and
∑k

i=1 �i columns, indexing
columns as (i, j ) for 1 ≤ i ≤ k and 1 ≤ j ≤ �i . On the first N rows,
column (i, j ) is column i of A. (At this stage, it is possible that vi > wi j ; if
so, each occurrence of vi − wi j of the symbols can be changed to �). Now for
i = 1, . . . , k, select the di rows of A in which the i th column contains a �, and
from the last T −N rows choose any Mi −di rows, so that Mi rows are selected
in total. Then on these rows in the chosen order, place the entries of the j th
column of Bi in the column (i, j ), for 1 ≤ j ≤ �i .

Two columns (i1, j1) and (i2, j2) of the result cover all pairs when i1 �= i2;
indeed these are covered on the first N rows. When i1 = i2 , restricting to rows
arising from Bi1 , we find all pairs covered. �

While C is sufficient to cover all pairs, there is much redundant coverage.
A simple argument takes advantage of this. Call a row of an MCA constant
if the only pairs that it covers are of the form (x , x ). Suppose that we require
every ingredient, without loss of generality, to contain a constant row consisting
of all “1” entries. If this is done, then by always selecting the same row of C
in which to place the constant row of each Bi , the resulting matrix C has two
constant rows of “1” entries. One is redundant and can be removed, leaving no
pair uncovered but reducing the size of C . Although this can be done in general,
it saves one test only. This simple argument imposes too stringent a condition,
since we do not need duplicated rows to have redundant rows. Phrased more
generally, then, since the rows of C arising from A, in two columns indexed by
(i, j1) and (i, j2) cover all pairs of the form (x , x ), we can delete all constant
rows of each Bi prior to applying Theorem 4.1. This can reduce the size of C
by many rows in some instances. Moura, Stardom, Stevens, and Williams [91]
exploit constant rows effectively to reduce the size of the resulting array.

Unfortunately, in some cases we must sacrifice columns to obtain many
constant rows. The standard CA(q2; 2, q, q) from the finite field has q disjoint
constant rows, but its extension to a CA(q2; 2, q+1, q) can have at most one, no
matter how the symbols are relabeled. For example, taking two CA(25; 2, 6, 5)s
allows us to produce a CA(49; 2, 36, 5) while using instead one CA(25, 2, 5, 5)
with five disjoint constant rows allows us to obtain a CA(45; 2, 30, 5). We
examine a generalization that enables us to obtain a CA(45; 2, 35, 5), sacrificing
one column in the product rather than one column in an ingredient.

For the sake of clarity, we develop a construction for covering arrays first,
and then generalize to mixed level covering arrays. An SCA(N; 2, (k1, k2), v)
is defined to be a CA(N; 2, k1 + k2, v) in which, for 1 ≤ i ≤ v, row N − v + i
is a (k1 + k2)-tuple in which the first k1 entries are equal to i and the last k2

symbols are equal to 1. When q is a prime power, an OA(2, q + 1, q) yields an
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SCA(q2; 2, (q, 1), q).
Now we turn to the main product construction for covering arrays:

Theorem 4.2. If an SCA(N; 2, (k1, k2), v) and an SCA(M; 2, (�1, �2); v) both
exist, then an SCA(N + M − v; 2, (k1�1, k1�2 + k2�1), v) also exists.

Proof. Let A consist of the first N −v rows of the SCA(N; 2, (k1, k2), v), and
B consist of the first M−v rows of the SCA(M; 2, (�1, �2), v). form the product
C of A and B as above. Now append v new rows indexed N + M − 2v + i ,
1 ≤ i ≤ v, so that in column f (k1 +k2)+g the entry is i if f ≤ �1 and g ≤ k1 ,
and is 1 otherwise. Then suppress all columns indexed f (k1 + k2) + g when
f > �1 and g > k1. This removes k2�2 columns from C .

We claim that the result R is an SCA(N+M−v; 2, ((k1�1, k1�2+k2�1), v).
To verify this, consider a column of the array. Restricting attention to the first
N − v and last v rows of R yields a column of A unless it corresponds to one
of the first k1 columns of A and one of the last �2 columns of B . By the same
token, restricting attention to the last M rows of R yields a column of B unless
it arises from one of the first �1 columns of B and one of the last k2 of A. Hence
for two different columns of R, if both arise from columns of A among the first
k1 and columns of B among the first �1, all pairs are covered since the columns
in either A or B must be distinct. If two columns arise from the last k2 of A,
they necessarily both arise from the first �1 of B (the others were suppressed).
Then provided that the columns arise from distinct columns of A, all pairs are
covered. In the event that they arise from the same column of A, The first N −v

rows cover all constant pairs, i.e. those of the form (x , x ) for 1 ≤ x ≤ v. But the
next M − v rows cover all non-constant pairs. In the same way, if two columns
arise from the last �2 of B , all pairs are covered provided that the columns from
which they arise in B are distinct. In the event that they arise from the same
column of B , again constant pairs are covered in the rows arising from B and
non-constant pairs in the rows arising from A.

It remains to treat cases when one column arises from the first k1 of A, the
other from the last k2; and in addition one column arises from the first �1 of B ,
the other from the last �2. Since columns arising from the last k2 columns of A
and also the last �2 columns of B have been suppressed, we may suppose that
the first column arises from the first k1 of A and last �2 of B ; and the second
from the last k2 of A and first �1 of B . In this case, the first N −v rows cover all
pairs except possibly those of the form (x , 1) for 1 ≤ x ≤ v. But the next M−v

rows cover all pairs except possibly those of the form (1, x ) for 1 ≤ x ≤ v. The
only pair in doubt, namely (1,1), is covered in each of the last v rows. �

The ideas of Theorem 4.1 and Theorem 4.2 can be combined to obtain
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an improved product construction for mixed level covering arrays. In The-
orem 4.2, the repeated use of a single array B is used to ensure that certain
pairs are covered in the product C . In order to generalize, our task is to spec-
ify the relationship required among the ingredients {Bi }. We first define an
SMCA(N; 2, (k1 , k2), (v1, . . . , vk1+k2 )) to be an N × (k1 + k2) array in which
the i th column has entries from a vi -set (which we take to be {1, . . . , vi}),
and for which selecting any two columns, we find all pairs first define an
SMCA(N; 2, (k1 , k2), (v1, . . . , vk1+k2 )) to be an N × (k1 + k2) array in which
the i th column has entries from a vi -set (which we take to be {1, . . . , vi }), and
for which selecting any two columns, we find all pairs covered except possibly

• those of the form (x , x ) if both columns are among the first k1 ;
• those of the form (x , 1) if the first column is among the first k1 , the second

among the latter k2 ; and
• (1,1) if both columns are among the latter k2 .

Theorem 4.3. Suppose that there exist

1. an SMCA(N; 2, (k1, k2), (v1, . . . , vk1+k2 )), A, with profile (d1, . . . , dk1+k2 );
2. for each 1 ≤ i ≤ k1 , an SMCA(Mi ; 2, (�i1, �i2), (wi1, . . . , w1,�i1+�i2 )), Bi ,

for which wi j ≤ vi for 1 ≤ j ≤ �i1 + �i2; and
3. for each k1 < i ≤ k1 + k2 , an SMCA(Mi ; 2, (�i1, 0), (wi1, . . . , w1,�i1 )),

Bi , for which wi j ≤ vi for 1 ≤ j ≤ �i1 .

Write T = N + maxk1+k2
i=1 (Mi − di ). Suppose further that

1. For 1 ≤ i1 < i2 ≤ k1 , for each �i1,1 < j1 ≤ �i1 ,1 + �i1 ,2, and each
�i2 ,1 < j2 ≤ �i2 ,1 + �i2,2, the (T − N ) × 2 matrix whose first column
contains the entries in the first T − N rows of column j1 of Bi1 , and whose
second column contains the entries in the first T − N rows of column j2 of
Bi2 , contains every pair of the form (x , x ) with 1 ≤ x ≤ min(wi1 , j1, wi2, j2);
and

2. For 1 ≤ i1 ≤ k1 and k1 < i2 ≤ k1 + k2 , for each �i1 ,1 < j1 ≤ �i1 ,1 + �i1 ,2,
and each 1 ≤ j2 ≤ �i2 ,1, the (T − N ) × 2 matrix whose first column
contains the entries in the first T − N rows of column j1 of Bi1 , and whose
second column contains the entries in the first T − N rows of column j2 of
Bi2 , contains every pair of the form (x , 1), for 1 ≤ x ≤ wi1, j1 .

Then there exists an

SMCA(T ; 2, (
k1∑
i=1

�i1,

k1+k2∑
i=k1+1

�i1 +
k1∑
i=1

�i2),
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(w11, . . . , w1,�11 , · · · , wk1,1, . . . , wk1,�k1 ,1,

· · · , wk1+1,1, . . . , wk1+1,�k1+1,1 , · · · , wk1+k2 ,1, . . . , wk1+k2,�k1+k2 ,1 ,

· · · , w1,�11+1, . . . , w1,�12 , · · · , wk1 ,�k1,1+1, . . . , wk1 ,�k1,2 )).

Proof. The construction parallels that of Theorem 4.1. When placing the rows
of Bi , the first T − N rows of Bi are always placed on the last T − N rows, in
the same order, in C . Columns are then permuted so that those indexed by (i, j )
with 1 ≤ i ≤ k1 and 1 ≤ j ≤ �i1 are placed in the first

∑k1
i=1 �i1 positions.

The verification is similar. �
Such an SMCA can be completed to an MCA by the addition of at most

m rows, where m = max{wi j : 1 ≤ i ≤ k1, 1 ≤ j ≤ �i1}. This is done by
placing, in the i th additional row, the symbol “1” in columns indexed by (i, j )
with i > k1 or j > �i,1 . In the remaining columns, we place the symbol i if
i ≤ wi j , and � otherwise.

We illustrate the product constructions by establishing some applications
leading to new covering array numbers. We focus on the case when every factor
has the same number of levels, since tables are available in the literature [89],
[120].

Lemma 4.4. When q is a prime power, and r ≥ 0 is any integer, there is
an SCA((r + 1)q2 − rq; 2, (qr+1, (r + 1)qr ), q) and hence a CA((r + 1)q2 −
rq; 2, qr+1 + (r + 1)qr , q).

Proof. Apply Theorem 4.2 inductively r times using an SCA(q2; 2, (q, 1), q).
�

Some small examples are

CA(15; 2, 15, 3) CA(21; 2, 54, 3) CA(27; 2, 189, 3)
CA(28; 2, 24, 4) CA(40; 2, 128, 4) CA(52; 2, 576, 4)
CA(45; 2, 35, 5) CA(65; 2, 200, 5) CA(85; 2, 1125, 5)
CA(91; 2, 63, 7) CA(133; 2, 490, 7) CA(175; 2, 3673, 7)

These improve upon the construction in [120]. In order to exploit the power of
Theorem 4.2 more fully, direct constructions for distinct cover starters can be
employed. Start with a (g, �)-distinct cover starter. Treat this as a row, and form
the � cyclic shifts of this, obtaining an � × � array. Then add a new column
with all entries equal to 0. Develop this � × (� + 1) array modulo g − 1 to
form an �(g − 1) × (� + 1) array. Adding the g constant rows, we obtain a
SCA(�(g−1) + g; 2, (�, 1), g), and hence a CA((�+1)(g−1) +1; 2, �+1, g).
For example, a (5,6)-distinct cover starter yields a CA(29; 2, 7, 5).
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However, distinct cover starters have many more effective applications, via
Theorem 4.2. For purposes of illustration, consider the case when g = 5. Here
are some distinct cover starters:

(5, 5) (∞, 0, 1, 3, 2) (5, 6) (∞, 0, 0, 1, 3, 2)
(5, 7) (∞, 0, 0, 0, 1, 3, 2) (5, 8) (∞, 0, 0, 0, 0, 1, 3, 2)
(5, 9) (∞, 0, 0, 0, 0, 0, 1, 3, 2) (5, 10) (∞, 0, 0, 0, 0, 0, 0, 1, 3, 2)

Each (5, �)-distinct cover starter gives an SCA(4� + 5; 2, (�, 1), 5). Apply
Theorem 4.2 to obtain SCA(4(�1 +�2)+5; 2, (�1�2, �1+�2), 5) for 5 ≤ �1, �2 ≤
10. Choosing �1 and �2 as nearly equal as possible, we obtain the following
covering arrays:

CA(45; 2, 35, 5), CA(49; 2, 41, 5),
CA(53; 2, 48, 5), CA(57; 2, 55, 5),
CA(61; 2, 63, 5), CA(65; 2, 71, 5),
CA(69; 2, 80, 5),

and so on. Comparing with the bounds in [120], these produce improvements
whenever the number of factors exceeds 30. Further, the construction can be
applied recursively. Indeed, with 65 tests we can treat 200 factors with five
values each, obtaining a substantial improvement by applying Theorem 4.2
twice rather than once.

4.2. Roux-type Constructions

In [115], a theorem from Roux’s Ph.D. dissertation [108] is presented.

Theorem 4.5. CAN(3, 2k, 2) ≤ CAN (3, k, 2) + CAN (2, k, 2).

Proof. To construct a CA(3, 2k, 2), we begin by placing two CA(N3, 3, k, 2)s
side by side. We now have a N3 × 2k array. If one chooses any three columns
whose indices are distinct modulo k, then all triples are covered. The remaining
selection consists of a column x from among the first k, its copy among the
second k, and a further column y . When the two columns whose indices agree
modulo k shate the same value, such a triple is also covered. The remaining
triples are handled by appending two CA(N2, 2, k, 2)s side by side, the second
being the bit complement of the first. Therefore if we choose two distinct
columns from one half, we choose the bit complement of one of these, thereby
handling all remaining triples. This gives us a covering array of size N2 + N3 .

�

Chateauneuf et al. [20] prove a generalization, which we repeat here.
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Theorem 4.6.

CAN (3, 2k, v) ≤ CAN (3, k, v) + (v − 1)CAN (2, k, v).

Proof. Begin as in Theorem 4.5 by placing two CA(N3; 3, k, v)s side by side.
Let C be a CA(N2; 2, k, v). Let π be a cyclic permutation of the v symbols.
Then for 1 ≤ i ≤ v − 1, we append N2 rows consisting of C and π i (C) placed
side-by-side. The verification is as for Theorem 4.5. �

See [7], [64], [65], [88] for generalizations, particularly to cases when
t > 3. Cohen, Colbourn, and Ling [34] develop a substantial generalization
to permit the number of factors to be multiplied by � ≥ 2 rather than two; this
is the k-ary Roux construction, described in detail next. To carry this out, we
require difference covering arrays, introduced earlier.

Theorem 4.7.

CAN (3, k�, v) ≤ CAN (3, k, v) + CAN (3, �, v) +

CAN (2, �, v) × DCAN (2, k, v).

Proof. We suppose that the following all exist:

1. a CA(N; 3, �, v) A;
2. a CA(M; 3, k, v) B ;
3. a CA(R; 2, �, v) F ; and
4. a DCA(Q; 2, k, v) D.

We produce a CA(N + M + QR; 3, k�, v) C (see Figure 3). For con-
venience, we index the k� columns of C by ordered pairs from {1, . . . , k} ×
{1, . . . , �}. C is formed by vertically juxtaposing three arrays, C1 of size N×k�,
C2 of size M × k�, and C3 of size QR × k�. We describe the construction for
each in turn.

C1 is produced as follows. In row r and column (i, j ) of C1 we place the
entry in cell (r, j ) of A. Thus C1 consists of k copies of A placed side by side.
This is illustrated in Figure 4.

C2 is produced as follows. In row r and column (i, j ) of C2 we place the
entry in cell (r, i) of B . Thus C2 consists of � copies of the first column of B ,
then � copies of the second column, and so on (see Figure 5).

To construct C3 (see Figure 6), let D = (di j : i = 1, . . . , Q; j = 1 . . . , k)
and F = ( frs : r = 1, . . . , R; s = 1, . . . , �). Choose a cyclic permutation π on
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Figure 5: Construction of C2

the v symbols of the array. Then in row (i − 1)R + r and column ( j, s) of C3

place the entry πdi j ( frs ).
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Figure 6: Construction of C3

We verify that C is indeed a CA(N + M + QR; 3, k�, v). The only issue
is to ensure that every 3 columns of C cover each of the v3 3-tuples. Select
three columns (i1, j1), (i2, j2), and (i3, j3) of C . If j1, j2 and j3 are all distinct,
then these three columns restricted to C1 arise from three different columns of
A, and hence all 3-tuples are covered. Similarly, if i1 , i2 , and i3 are all distinct,
then restricting the three columns to C2 , they arise from three distinct columns
of B and hence again all 3-tuples are covered.

So we suppose without loss of generality that i1 = i2 �= i3 and j1 �= j2 =
j3. The structure of C3 consists of a Q × k block matrix in which each copy
is a permuted version of F (under a permutation that is a power of π ). That
i1 = i2 indicates that two columns are selected from one column of this block
matrix, and that i3 is different means that the third column is selected from a
different column of the block matrix. Now consider a selection (σ1, σ2, σ3) of
symbols in the three chosen columns of C (actually, of C3 ). Each selection of
(σ1, σ2) appears in each block of the Q permuted versions of F appearing in the
indicated column of the block matrix. Now suppose that σ3 = π i (σ2); since π

is a v-cycle, some power of π satisfies this equality. Considering the permuted
versions of F appearing in the columns corresponding to i3, we observe that
since D is an array covering all differences modulo v, in at least one row of the
block matrix, we find that the block X in column i3 and the block Y in column
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i2 satisfy Y = π i (X ). Hence every choice for σ3 appears with the specified pair
(σ1, σ2). �

This can be improved upon: we do not need to cover triples when σ3 = σ2

since these are covered in C1. Nor do we need to cover 3-tuples when σ1 = σ2,
since these are covered in C2 . So we can eliminate some rows from F since
we do not need to cover pairs whose symbols are equal in F . This modification
improves further on the bounds.

4.3 Ordered Design Construction

Often other designs can be used as the basis of a “recursive method”. We
describe an example from [34]. An ordered design ODλ(t, k, v) is a λ·(v

t

)·t!×k
array with v entries such that

1. each column has v distinct entries, and
2. every t columns contain each row tuple of t distinct entries precisely λ

times.

When λ = 1 we write OD(t, k, v). An OD(3, q + 1, q + 1) exists when q
is a prime power [37]. We use an ordered design as an ingredient for building
a CA(3, q + 1, q + 1) since it already covers all triples with distinct entries,
having the minimal number of blocks. This handles many but not all of the
triples required. The covering array is completed by covering the remaining
triples. We describe a general construction next.

Construction 4.8. CAN (3, q+1, q+1) ≤ q3 −q+ (q+1
2

)×CAN (3, q +1, 2)
when q is a prime power.

To create a CA(3, q + 1, q + 1) begin with a OD(3, q + 1, q + 1) of size
N3 = (q + 1) × q × (q − 1). This covers all triples of the form (a, b, c) where
a �= b �= c �= a. To complete the covering array we need to cover all of the
triples of the form (a, a, b), (a, b, b), (a, b, a) and (a, a, a). These are exactly
the triples covered by a CA(N2; 3, q+1, 2) on symbol set {a, b}. Since a and b
can be any of

(q+1
2

)
combinations we append

(q+1
2

)
CA(N2; 3, q + 1, 2)s to the

N3 rows of the ordered design. This gives us a CA(3, q + 1, q + 1).
Unnecessary coverage of triples occurs. In fact, any triple of the form

(a, a, a) is covered at least q times rather than once. We therefore relabel entries
in the CA(N2; 3, q + 1, 2)s to form a constant row; deleting these reduces the
number of rows required by

(q+1
2

)
. We can save even more:

Construction 4.9. CAN (3, q + 1, q + 1) ≤ q3 − q + (q+1
2

) × CAN (3, q +
1, 2) − (q2 − 1) when q is a prime power and there are two disjoint rows in the
CA(3, q + 1, 2).



COMBINATORIAL ASPECTS OF COVERING ARRAYS 145

In Construction 4.8 we exploit overlap in coverage of triples that occurs if
each of the CA(N2; 3, q + 1, 2)s has two disjoint rows. In this case we remap
the two disjoint rows, without loss of generality, to the form (a, a, ..., a) and
(b, b, ..., b). We remove the 2 × (q+1

2

) = q2 + q rows and add back in q + 1
rows of the form (a, a, ..., a).

We give an example using CA(3, 6, 6). The ordered design has 120 rows.
There are 15 combinations of two symbols. In Construction 4.8, we create a
CA(3, 6, 2) with 12 rows. We therefore add back in 180 rows. This gives
us a CA(3, 6, 6) of size 300. This is smaller than the bound reported by a
construction in [20], and matches that found by annealing in [32]. Removing
15 constant rows lowers this bound to 285. For Construction 4.9, we find a
CA(12; 3, 6, 2) having two disjoint rows (see Table 1). Therefore we remove 30
rows of the type (a, a, ..., a) for a total of 270 rows. We add back in six rows,
one for each symbol, to achieve a covering array of size 276. This improves on
both reported bounds above.

We generalize further. A (2,1)-covering array, denoted by

T OCA(N; 3, k, v; σ )

is an N × k array containing σ or more disjoint constant rows, in which
every N × 3 subarray contains every 3-tuple of the form (a, a, b), (a, b, a),
and (b, a, a) with a �= b, and contains every 3-tuple of the form (a, a, a).
T OCAN (3, k, v; σ ) denotes the minimum number N of rows in such an array.

A set B of subsets of {1, . . . , k} is a linear space of order k if every 2-
subset {i, j } ⊆ {1, . . . , k} appears in exactly one B ∈ B.

Construction 4.10. Let q be a prime power. Let B = {B1, . . . , Bb} be a
linear space on K = {1, . . . , k}. Let ∅ ⊆ L ⊆ K . Suppose that for each
Bi ∈ B there exists a T OCA(Ni ; 3, q + 1, |Bi |; |Bi ∩ L|). Then there exists a
CA(q3 − q + |L| + ∑b

i=1(Ni − |Bi ∩ L|); 3, q + 1, q + 1).

We start with an OD(3, q + 1, q + 1) and for each Bi ∈ B , we construct
the TOCA on the symbols of Bi with the constant rows (to be removed) on the
symbols of Bi ∩ L . Then |L| constant rows complete the covering array.

4.4. Construction Using Generalized Hadamard Matrices

There is the opportunity to develop “constructions” when some of the
“ingredients” are not known at all. We illustrate this next, again following the
presentation in [34]. The basic plan is to simply construct a large portion of
a covering array to use as a seed. Consider an OAλ(2, k, v). Each 2-tuple is
covered exactly λ times. Some 3-tuples are also covered. Indeed, among the
v 3-tuples containing a specified 2-tuple, at least one and at most min(v, λ)
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are covered. If λ of the v are covered for every 2-tuple, the orthogonal array
is supersimple. Little is known about supersimple orthogonal arrays except
when k is small. However our concern is only that “relatively many” triples
are covered using “relatively few” rows. This is intentionally vague, since our
intent is only to use the rows of the orthogonal array as a seed for a strength
three covering array. A natural family of orthogonal arrays to consider arise
from generalized Hadamard matrices (see [36]). We have no assurance that
the resulting orthogonal arrays are supersimple, but instead choose generalized
Hadamard matrices since they provide a means to cover many of the triples to
be covered by the covering array. Although orthogonal arrays in general may be
useful in constructions here, those from generalized Hadamard matrices appear
frequently to cover either only one, or all v, of the triples containing a specified
pair; this regularity appears to be beneficial. The most important remark here
is that, given such a generalized Hadamard matrix, it is not at all clear what
“ingredients” are needed to complete it to a covering array in general, despite the
fact that in any specific case we can easily enumerate the triples left uncovered.

0 0 0 0 0 0
1 1 1 1 1 1
0 1 1 0 1 0
0 0 1 1 0 1
0 0 0 0 1 1
0 1 0 1 1 1
1 1 0 1 0 0
1 1 0 0 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 0
0 1 1 1 0 0

Table 1: T OCA(12; 3, 6, 2; 2)

4.5 Using Perfect Hash Families

A (k, n; λ)-difference matrix is a n × kλ matrix D, with entries in Zk , in
which the vector difference of any pair of rows contains every member of Zk

exactly λ times. For example, if gcd((n − 1)!, k) = 1, then the n × k matrix D
defined by D[i, j ] = i j modk is a (k, n; 1)-difference matrix.

Lemma 4.11. (Atici et. al. [3]) Suppose T1, T2, . . . , Tr ⊆ Zk , where Ti �= ∅,
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0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1

Table 2: T OCA(13; 3, 10, 2; 2)

1 ≤ i ≤ r and
r∑
j=1

|Tj | = t .

Suppose also that D is a (k,
( t

2

) + 1; 1)-difference matrix. Then there is an
integer x such that the r sets

T ′
j = {t + D[x , j ] : t ∈ Tj}

1 ≤ j ≤ r are all disjoint.

In [19], Lemma 4.11 is used to establish a slight generalization of Theorem
4.1 in [3]. Let � be a v-element set and let P be a first-order predicate
concerning a collection C of t -tuples with entries in � that is invariant under
coordinate permutation. For example the predicate P could be one of

1. The t -tuple [a, a, ..., a] is in C, where a ∈ � is a fixed symbol.
2. The set of all t -tuples with exactly two distinct entries are in C.
3. There is a t -tuple in C with distinct entries.
4. All of the t -tuples with entries in � occur in C.

A k × N array A with entries in � is called a (N; t, k, v)-P array if each
collection C of t -tuples found among the columns of any t×N subarray satisfies
the predicate P . For example if P is predicate 3 then the array A is a perfect
hash family [3? 6, 15, 129] or a t -separating family [105]. If P is predicate 4,
then A is the transpose of a covering array.
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Theorem 4.12. If gcd (
( t

2

)
!, k) = 1 and a (N; t, k, v)-P array exists, then there

is a ((
( t

2

) + 1)N, t, k2, v)-P array.

Proof. (This proof from [19] parallels one in [3].) Let A be a (N; t, k, v)-
P array with rows labeled by Zk and columns by {1, 2, . . . , N}. Let D be a
(k,

( t
2

) + 1; 1)-difference matrix and for x ∈ Zk , let Ax denote the array

Ax [i, j ] = A[i + x , j ], i ∈ Zk, j = 1, 2, ..., N

Consider the array B defined by

B = ............................................................................................................................................................................................................................................... ....................................................................................................................................
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B0,0 B0,1 B0,(t2)

B1,0 B1,1 B1,(t2)

Bk−1,0 Bk−1,1 Bk−1,( t2)

· · ·
· · ·

· · ·

...
...

...
. . .

where Bi, j = AD[i, j] and the rows of B are indexed by Zk × Zk so that the rows
of
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Bi,0 Bi,1 Bi,( t2)· · ·

are indexed by {i} × Zk . To see that B is the desired ((
( t

2

) + 1)N; t, k, v)-P
array consider a set of t rows R of B . Set Ti = {x ∈ Zk : (i, x ) ∈ R}. Let
Ti1, Ti2, . . . , Tir denote the Ti ’s that are nonempty. Then by Lemma 4.11 there
is an integer x such that the r sets T ′

ij
= {t+D[x , j ] : t ∈ Tij } for 1 ≤ j ≤ r are

all disjoint. Thus they comprise t distinct rows of the k × (
(t

2

) + 1)N subarray
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Bx,0 Bx,1 · · · Bx,( t2)

Each component Bx, j is a copy of A with the rows permuted. Thus the t rows
satisfy predicate P . Therefore B is a ((

( t
2

) + 1)N, t, k2, v)-P array. �
This theorem can be iterated:

Theorem 4.13. If gcd(
(t

2

)
!, k) = 1 and a (N; t, k, v)-P array exists, then there

is a (N (
( t

2

) + 1) j , t, k2 j
, v)-P array.
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Applying this to covering arrays we obtain:

Theorem 4.14. Let v > 2 be a positive integer, and let q ≥ v − 1 be a prime
power. Then, for all j , there is a CA((2v − 1)(q3 − q) + v)4 j3(2v − 1)2 j

v if
v ≡ 0, 1 mod 3, and a CA((2v − 1)(q3 − q) + v)4 j3(2v − 3)2 j

v if v ≡ 2 mod
3.

Proof. There is, by Theorem 3.2, a CA(2v − 1)(q3 − q) + v32vv. Deleting
columns leaves a covering array. If v ≡ 0, 1 mod 3, then gcd(6, 2v − 1) = 1
and if v ≡ 2 mod 3, then gcd(6, 2v − 3) = 1. Apply Theorem 4.13 (to the
transpose of the covering array) with t = 3 and k = 2v − 1 when v ≡ 0, 1 mod
3 or k = 2v − 3 when v ≡ 2 mod 3. �

With the parameters in Theorem 4.14, Chateauneuf et al. [19] establish
that

CAN(3, k, v) ≤

⎧⎪⎪⎨
⎪⎪⎩

(2v − 1)(q3 − q) + v

(log(2v − 1))2
(log k)2 if v ≡ 0, 1 mod 3

(2v − 1)(q3 − q) + v

(log(2v − 3))2
(log k)2 if v ≡ 2 mod3

where q ≥ v − 1 is a prime power. In particular when v = 3,

CAN(3, k, 3) ≤ 33

(log 5)2
(log k)2 ≈ 6.1209(log k)2,

and when v = 4,

CAN(3, k, 4) ≤ 172

(log 7)2
(log k)2 ≈ 21.8240(logk)2 .

For v = 4 this can be improved this using the CA(88;3,8,4) from Example 3.4:

CAN(3, k, 4) ≤ 88

(log 7)2
(log k)2 ≈ 11.1658(log k)2

The bound can be improved asymptotically to be on the order of v2logk using
probabilistic techniques [60]. However, the technique developed in [19] is
entirely constructive.
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5. Algorithms for Covering Arrays.

Few exact existence results are known. Östergärd [101] showed that
N ≤ 11 for v = 3, k = 5, while Sloane [115] mentions that Applegate
showed that N = 11 using an integer programming method. Backtracking
and exact integer programming techniques appear to be infeasible except when
the parameters are quite small; see [135] for a formulation. For this reason, we
concentrate on heuristic techniques.

5.1. Greedy Algorithms

Numerous greedy methods have been proposed to construct covering ar-
rays. We focus first on methods that generate covering arrays “one row at a
time”, following the presentation in [35], [128].

5.1.1 The Logarithmic Guarantee

Suppose that we are to test a system with k factors f1, . . . , fk . The factor
fi is permitted to take on any of vi levels or values, which we denote by
{σi, j : j = 1, . . . , vi}. The objective is to produce an MCA(N; 2, k, (v1 ...vk )).

The AETG system attempts to make a ‘small’ covering array using a
greedy strategy. It selects a single test at a time, repeating this until all pairs are
covered in at least one of the selected tests. Since the objective is to minimize the
number of tests, AETG concentrates on the selection of each test to maximize
the number of previously uncovered pairs that are covered by this test. The
paper makes two main contributions [23]:

1. It shows a logarithmic bound on the number of tests needed as a function
of k.

2. It describes a (greedy) heuristic for the selection of tests.

The first relies on a conceptually simple construction method for covering
arrays. Having selected some (partial) collection of tests, we record the pairs P
yet to be covered. Among the

∏k
i=1 vi possible tests, there can be substantial

variation in the number of pairs in P that the test covers. We select a test that
covers that largest number of pairs in P , add it to the collection of tests, and
repeat this step until P = ∅; at this point, we have the covering array. This is a
greedy method, and by no means guarantees the minimum size of the possible
test suite constructed. However, it does ensure that at each stage, at least |P|/L
new pairs are covered where L is the product of the two largest of the sizes {vi }.
This in turn ensures that the size of the test suite constructed is bounded by a
logarithmic function of the number k of factors (see [23] for details).

However, the authors do not propose an algorithm for finding the test that
covers a maximum number of uncovered pairs, and instead adopt a greedy
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heuristic to produce each new test in turn. We review their method here. Each
test is selected from a pool of M candidate tests, where M is a constant chosen
in advance. To generate each candidate, first select a factor fi and a value σi
for this factor so that the choice of σi for fi appears in the maximum number
of uncovered pairs. Set π (1) = i . Then choose a random permutation of
the indices of the remaining factors to form a permutation π : {1, . . . , k} →
{1, . . . , k}. Now assume that values τ1, . . . , τi have been selected for factors
fπ(1), . . . , fπ(i) . Select a value τi+1 for factor fπ(i+1) by selecting that value
which yields the maximum number of new pairs with the selected values for the
i factors already fixed.

Repeating this process M times exploits the randomness in the factor
ordering, and yields different tests from which to select. Naturally, one selects
the best in terms of newly covered pairs, and adds it to the test suite.

While the authors note that this appears to exhibit a logarithmic perfor-
mance in practice, their earlier guarantee does not apply because the test selec-
tion does not ensure that a selected test covers the maximum possible number
of new pairs. In view of the next result, this is not surprising.

Given a collection P of uncovered pairs, and a specified number p, it is
NP-complete to determine if there exists a test covering at least p pairs. See
[111]. Membership in NP is straightforward, since one can nondeterministically
select a test, and compute in polynomial time (deterministically) the number of
pairs of P covered. To establish NP-hardness, we give a reduction from MAX
2SAT (“Given a logical formula in 2-conjunctive normal form, and an integer p,
is there a truth assignment to the variables that makes at least p clauses true?”).
This problem is NP-complete (see, for example, [59]). Let F be a formula in
2-conjunctive normal form with k logical variables. We form k factors, each
with two levels, ‘true’ and ‘false’. For each clause of F , treat as a covered pair
the truth assignment to the two variables which makes the clause false. Then P
contains all pairs not covered in this way. Now we determine whether there is
a test which covers at least p pairs of P . A test corresponds directly to a truth
assignment for F , and an uncovered pair to a clause which evaluates to true.
Thus the existence of such a test is equivalent to a solution to MAX 2SAT.

In plain terms, what this says is that an efficient technique to select a test
covering the maximum number of uncovered pairs is unlikely to exist. However,
this leaves an unsatisfactory situation. The current proof of logarithmic growth
hinges on selecting such a test! Fortunately, the situation is not as bad as it
first appears. Indeed a more careful reading of the proof of logarithmic growth
establishes that one does not need to find a test which covers the maximum
number of uncovered pairs. All one needs is to find a test that covers the average
number of uncovered pairs.
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It appears that the test selection in AETG does not ensure this, although for
practical purposes unless M is quite small, the likelihood that at least one of the
M candidates has this property is high. Nevertheless, it is reasonable to ask for
a test selection technique that guarantees to cover at least the average number.
We pursue this next.

The lack of a guarantee results primarily from the greedy nature of the
test selection. In particular, when selecting a value for the i th factor, only
its interaction with the first i − 1 factors is considered. This can (and does)
result in a selection which make selections for the later factors less desirable.
Indeed if there are 100 factors, and we are selecting a value for the fifth, for
example, its interaction with the later 95 factors is arguably more important than
its interaction with the first four. We use this intuition to suggest an alternate
approach.

We consider the construction of a test suite with k factors. The number
of levels for factor i is denoted by vi . For factors i and j , we define the local
density to be δi, j = ri, j

vi vj
where ri, j is the number of uncovered pairs involving a

value of factor i and a value of factor j . In essence, δi, j indicates the fraction of
pairs of assignments to these factors which remain to be tested. We define the
global density to be δ = ∑

1≤i< j≤k δi, j . At each stage, we endeavour to find a
test covering at least δ uncovered pairs.

To select such a test, we repeatedly fix a value for each factor, and update
the local and global density values. At each stage, some factors are fixed to a
specific value, while others remain free to take on any of the possible values.
When all factors are fixed, we have succeeded in choosing the test. Otherwise,
select a free factor fs . We have δ = ∑

1≤i< j≤k δi, j , which we separate into two
terms:

δ =
∑

1≤i< j≤k
i, j �=s

δi, j +
∑
1≤i≤k
i �=s

δi,s .

Whatever level is selected for factor fs , the first summation is not affected, so
we focus on the second.

Write ρi,s,σ for 1
vi

times the number of uncovered pairs involving some
level of factor fi , and level σ of factor fs . Then rewrite the second summation
as ∑

1≤i≤k
i �=s

δi,s = 1

vs

vs∑
σ=1

∑
1≤i≤k
i �=s

ρi,s,σ .

We choose σ to maximize
∑

1≤i≤k
i �=s

ρi,s,σ . It follows that
∑

1≤i≤k
i �=s

ρi,s,σ ≥∑
1≤i≤k
i �=s

δi,s . We then fix factor fs to have value σ , set vs = 1, and update
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the local densities setting δi,s to be ρi,s,σ . In the process, the density has not
been decreased (despite some possible – indeed necessary – decreases in some
local densities).

We iterate this process until every factor is fixed. The factors could be
fixed in any order at all, and the final test has density at least δ . Of course it
is possible to be greedy in the order in which factors are fixed. If we apply this
method to the case where each factor has the same number of levels, the density
is the average number of uncovered pairs in a test that could be selected, and we
guarantee to select a test with at least this number of uncovered pairs.

5.1.2 A framework for one-row-at-a-time greedy methods

Following [128], we present pseudocode for greedy methods that build one
row at a time.

set MinArray to ∞
repeat N times

start with an empty covering array C
while there are uncovered t -tuples in C

repeat M times
start with an empty test (row) R
set Best = 0
while free factors remain

rank all free factors according to a
factor selection criterion

among factors tied for best, select a subset T
using a first factor tie-break

among factors in T , select a single factor f
using a second factor tie-break

all possible values for f in R using
a level selection criterion

among all best values for f , select a subset V
using a first level tie-break

among values in V , select value v

using a second level tie-break
fix factor f to value v in test R

end while
If R covers σ > Best t -tuples uncovered

in C , set Best = σ , B = R
end repeat
add row B to C

end while
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if C has Size < MinArray rows, set MinArray = Size
and Best Array = C

end repeat
report Best Array

To instantiate this method, a number of decisions must be made, shown in
boxes in the skeleton above. Greedy algorithms for the construction of covering
arrays have four major decision points to define. These include:

1. the number of covering array repetitions;
2. the number of test case candidates to generate;
3. factor ordering heuristics (including tie-breaking); and
4. level section heuristics (including tie-breaking).

We call these layers in the instantiation of the method. The specification
of the four layers dominates the accuracy and efficiency of such algorithms.

Layer one - covering array repetitions At the top layer, covering arrays
may be generated numerous times and the smallest size covering array is kept.
This is only appropriate for methods that have elements of randomness. Larger
numbers of repetitions require lengthier execution times, and consistency from
one run to the next cannot be ensured when random selections are made.

Layer two - multiple candidates During test generation, an algorithm may
generate multiple candidate tests and then evaluate them to add the best one to
the final covering array. Multiple candidates for a row allow the exploration
of different combinations and can improve the likelihood of obtaining a more
accurate result.

Layer three- factor ordering The order in which factors in a row are fixed
has the largest impact in the framework. Poor selection early in the generation
of a row percolates to the remaining factors in the row that have yet to be fixed.
Factors may be ranked

1. by the number of levels associated with a factor;
2. by number of uncovered pairs involving this factor and the fixed factors;
3. by the expected number of pairs covered including both fixed and free

factors (density); or
4. randomly.

The TCG [127] algorithm exemplifies factor ordering based on the number
of levels associated with a factor. The factors are ordered on decreasing
cardinalities. DDA [35] exemplifies ordering based on a heuristic that calculates
the expected number of pairs that will be covered among fixed and free factors.
AETG [23], [24] utilizes random factor ordering. No published greedy method
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orders factors based only on the number of uncovered pairs; however, we
include this factor ordering method for thoroughness.

Three of the factor ordering methods can suffer from ties. To break ties,
one of the following tie breaking schemes may be used:

1. Take lexicographically first;
2. Take one at random;
3. Take one with the most uncovered pairs remaining.

Not all tie-breaking rules given succeed in completely resolving a tie;
hence a second round of tie-breaking can be needed. Tie-breaking is not usually
needed beyond two levels. However, if a tie still occurs at this point, it is broken
in this implementation by using specified order selection of take first to ensure
that only a single candidate remains.

Layer four - level selection Level selection is the fourth layer in the frame-
work which attempts to locally maximize the number of pairs that will be cov-
ered, or are expected to be covered for the row. Levels can be chosen

1. by number of uncovered pairs involving this value of the current factor and
the fixed factors;

2. by the expected number of pairs involving this value of the current factor
covered including both fixed and free factors (density); or

3. randomly.

AETG [23], [24], [25], [26] and TCG [127] select a level based on the
number of uncovered pairs to be covered. DDA [35] selects a level based on
a heuristic that includes a calculation of the pairs that will be covered, and the
likelihood of pairs that can be covered with free factors.

5.2. Greedy Variations

Cohen, Litsyn, and Zémor [28] suggest a method that, rather than building
the array one row at a time, instead chooses a set of candidate columns, and
iteratively removes columns so that what remains is a covering array. To make
this procedure effective, the initial set of candidate columns must be restricted in
some manner to avoid exponential growth. For the initial selection of columns,
the authors suggest using the codewords of an error-correcting code. This is
extended in Cheng, Dumitrescu, and Schroeder [22], [53].

In terms of practical application, the variant most studied is a scheme
that adjoins both rows and columns in a greedy fashion, called In-Parameter-
Order (IPO) [123], [140]. IPO generates a mixed covering array MCA(2, k,
(v1, . . . , vk)) by first generating an MCA(2, k − 1, (v1, . . . , vk−1)). Then it
adjoins an additional column, greedily choosing the value in each row of the new
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column to maximize the number of uncovered pairs (this is horizontal growth).
It can happen that horizontal growth fails to cover all of the pairs involving
values in the new column. A second expansion, vertical growth, adds rows to
cover all remaining pairs. Vertical growth to add the minimum number of rows
is straightforward, but the method for horizontal growth is heuristic. Moreover,
the structure of pairs remaining to be covered after horizontal growth determines
the number of rows that vertical growth must add.

5.3 Hill Climbing

Hill climbing, simulated annealing, and tabu search are variants of the state
space search technique for solving combinatorial optimization problems. With
a general optimization problem the hope is that the found solution is close to
an optimal one. With many design problems we know (from the cost) when we
have reached an optimal solution. On the other hand, approximations in these
cases are of little value.

An optimization problem can be specified as a set � of feasible solutions
(or states) together with a cost c(S) associated with each S ∈ � . An optimal
solution corresponds to a feasible solution with overall (i.e. global) minimum
cost. We define, for each S ∈ � , a set TS of transformations (or transitions),
each of which can be used to change S into another feasible solution S ′. The
set of solutions that can be reached from S by applying a transformation from
TS is called the neighbourhood N (S) of S .

We start by randomly choosing an initial feasible solution and then gen-
erate a randomly chosen transformation of the current feasible solution S . If
the transformation results in a feasible solution S ′ of equal or lower cost, then
S ′ is accepted as the new current feasible solution. If S ′ is of higher cost, we
reject this solution and check another randomly chosen neighbour of the current
feasible solution. This allows us to randomly walk around � , without reducing
the goodness of our current solution. Hill climbing has the potential to get stuck
in a local minimum (or freeze), so stopping heuristics are required. To increase
the chance of forming a good solution we repeat the random walk (or trial) a
number of times, each time beginning with a random initial feasible solution.

In the hill climbing algorithm the current feasible solution is an approxi-
mation S to a covering array in which certain t -subsets are not covered. The
cost function is based on the number of t -subsets that are not covered, so that a
covering array itself will have a cost of zero. A potential transformation is made
by selecting one of the k sets belonging to S and then replacing a random point
in this k-set by a random point not in the k-set. The number of blocks remains
constant throughout the hill climbing trial.

We set loose upper and lower bounds on the size of an optimal array and
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then use a binary search process to find the smallest sized covering array in this
interval. An alternative method is to start with the size of a known test suite and
search for a solution. This of course uses less computational resources, but the
required test suite size must be known ahead of time. Ideally in a real system
this is the method to use.

5.4. Tabu Search

Tabu search generalizes hill-climbing by allowing the current feasible
solution to be replaced by a poorer one. However it restricts the changes using
tabu and aspiration lists. The first prohibits moves that are deemed unattractive,
such as reversing a move just made. The second assigns higher weight to moves
that achieve a desired property (aspiration). Nurmela [99] describes numerous
successful searches using tabu search.

5.5. Simulated Annealing

Simulated annealing has been used by Nurmela and Östergärd [100], to
construct covering designs which have a structure very similar to covering
arrays. Stevens [117], Stardom [116], and Cohen and her colleagues [30], [31],
[32], [33], [34] have applied simulated annealing to the search for covering
arrays.

Simulated annealing uses the same approach as hill climbing but allows the
algorithm, with a controlled probability, to make choices that reduce the quality
of the current solution. The idea is to avoid getting stuck in a bad configuration
while continuing to make progress. If the transformation results in a feasible
solution S ′ of higher cost, then S ′ is accepted with probability e−(c(S ′)−c(S))/KBT ,
where T is the controlling temperature of the simulation and KB is a constant.
The temperature is lowered in small steps with the system being allowed to
approach “equilibrium” at each temperature through a sequence of transitions
(or Markov chain) at this temperature. Usually this is done by setting T := αT ,
where α (the control decrement) is a real number slightly less than 1. After an
appropriate stopping condition is met, the current feasible solution is taken as
an approximation to the solution of the problem at hand. Again, we improve our
chances of obtaining a good solution by running a number of trials.

5.6. Great Deluge Algorithm

One further heuristic search technique is the great flood or great deluge
algorithm [50], [51], and a variant thereof called threshold accepting. These
follow a strategy similar to simulated annealing but often display more rapid
convergence. Instead of using probability to decide on a move when the cost is
higher, a worse feasible solution is chosen if the cost is less than the current
threshold. This threshold value is sometimes referred to as the water level
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which, in a profit maximizing problem, would be rising rather than falling
(as is happening in this case). As the algorithm progresses, the threshold is
reduced moving it closer to zero. These seem not to have been explored for the
construction of covering arrays.

5.7. Genetic Algorithms

In the world of heuristic search, genetic algorithms have proven to be quite
competitive. The basic idea is to maintain a population of putative solutions,
and to evolve the population from one generation to the next by two operators.
Mutation makes small local changes in putative solutions, while crossover
combines part of one solution and part of another. Survival into the new
generation is determined by the relative fitness of each new putative solution.
Roughly speaking, this determines how “close” it is to the desired covering
array.

Until this time the application to covering arrays has been very little
explored. Stardom [116] reports initial work that is not encouraging. Despite
this, the selection of an appropriate representation aalong with mutation and
crossover operators may well make genetic algorithms competitive in this arena.
More research is needed.

6. Applications.

6.1. Interaction Software Testing

Software testing comprises a significant proportion of the cost of any
software project, yet failures still occur. Indeed a 2002 report from the National
Institute of Standards and Technology (NIST) reports the alarming conclusion
that inadequate software testing incurs a cost of $59.5 billion annually, and
attributes a substantial amount to failures of software embedded in hardware
[97]. Carroll [13], [14] describes the cost of inadequate software testing as
well. In recent years the DOD has begun initiatives to use more commercial
off the shelf software (COTS) [98]. Testing methods have striven to develop
adequate models [43], [55], [63], [102], [110], [126], develop appropriate
coverage measures [12], [136], relate coverage to reliability and fault detection
[42], [68], [75], [84], [137], and develop automatic test generators [10], [44],
[72], [113]. Furthermore, applications in testing communications systems and
storage systems have also been treated [21], [103], [130].

Each component may be tested and certified individually; however, system
faults are likely to occur from unexpected interactions [134]. If even a small
percentage of these faults can be prevented through integration testing this may



COMBINATORIAL ASPECTS OF COVERING ARRAYS 159

have a significant financial impact. When working with components, we would
ideally like to test all combinations of components prior to system release.
However the size of a test suite required to test all possible combinations can be
prohibitive in even a moderately sized project.

As a compromise, combinatorial design techniques may be applied to
instead guarantee a specific fixed level of interaction testing, i.e. pairwise or
t -wise testing. Although this does not provide us with complete coverage, it has
been shown to be successful in finding a large number of faults when used in
interface testing [45], [54], [67], [70], [81], [109].

At the current time there are two distinct areas of active research on combi-
natorial designs for software interaction testing. As we have seen, combinatori-
alists are focusing on building smaller designs of higher interaction strength.
The software testing community is focusing on greedy search algorithms to
build these in a more flexible environment, one that more closely matches real
testing needs [23], [24], [26], [27], [45], [54], [123], [127], [133], [140]. Soft-
ware testers cannot be expected to master each technique for the generation of
software test suites, or even to determine which of the many available methods
is best for their application. A multidimensional approach for this problem is
found in [24], but the solution is limited in scope. What is needed is a usable
tool that puts these techniques at their disposal by presenting a single, unified
means to construct test suites employing the best of each technique individually
and collectively.

We give an example. The following Internet based software system allows
customers to use a variety of browsers. They may also be using different
operating systems, network connection types and printer configurations. In
order to completely test this system we want to test our software on all of the
possible supported configurations. If we have the system shown in Table 3, we
would want to test combinations, such as (Netscape,Windows,LAN,Local) and
(Netscape,Windows,LAN,Networked). In order to test all possible interactions
we would need 34 or 81 configurations. This is perhaps reasonable, but if we
we extend this to 10 components with 4 possible settings each, we would need
410 = 1, 048, 576 test configurations. Instead we can guarantee that we can
test all pairs of interactions or all t -way interactions [9], [23], [86], [54], [119],
[133], [140]. In Table 4 we can cover all pairs of interactions for the example in
Table 3 using only 9 different tests. And in the example of 10 components each
with 4 possible settings we can cover all pairs of interactions using at most 29
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tests.

Component
Web Browser Operating Connection Printer

System Type Config
Config: Netscape(0) Window(0) LAN(0) Local(0)

IE(1) Macintosh(1) PPP(1) Networked(1)
Other(2) Linux(2) ISDN(2) Screen(2)

Table 3: Four components, each with 3 configurations

Test Case Browser OS Connection Printer
1 NetScape Windows LAN Local
2 NetScape Linux ISDN Networked
3 NetScape Macintosh PPP Screen
4 IE Windows ISDN Screen
5 IE Macintosh LAN Networked
6 IE Linux PPP Local
6 IE Linux PPP Local
7 Other Windows PPP Networked
8 Other Linux LAN Screen
9 Other Macintosh ISDN Local

Table 4: Test Suite to Cover all Pairs from Table 3
The concept of pair-wise coverage has been used across many disciplines
including medicine, agriculture and manufacturing [66]. It has entered the
software testing community, appearing in practitioner’s guidebooks [73], [92],
and provided in simple spreadsheet formats [40], [41]. The use of covering
arrays in software testing was pioneered by Mandl [86] and Brownlie et al.
[9], [104], and statistical foundations were explored in [46], [47], [48], [49],
[85], [93]. Empirical results indicate that testing of all pairwise interactions
in a software system indeed finds a large percentage of existing faults [45],
[81]. Indeed, Burr et al. [11] provide more empirical results to show that
this type of test coverage leads to useful code coverage as well. Dalal et al.
present empirical results to argue that the testing of all pairwise interactions in
a software system finds a large percentage of the existing faults [45]. Dunietz et
al. link the effectiveness of these methods to software code coverage. They
show that high code block coverage is obtained when testing all two-way
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interactions, but higher subset sizes are needed for good path coverage [54].
Kuhn et al. examined fault reports for three software systems. They show that
70% of faults can be discovered by testing all two-way interactions, while 90%
can be detected by testing all three way interactions. Six-way coverage was
required in these systems to detect 100% of the faults reported [81]. This study
was followed by similar experiments, such as one of 109 software-controlled
medical devices that were recalled by the U.S. Food and Drug Administration
(FDA) [82]. These experiments found that 97% of the flaws in these 109
cases could be detected with pair-wise testing of parameter settings. Only three
devices required coverage higher than two.

Williams et al. [134] quantify the coverage for a particular interaction
strength. For instance, if we have four factors, any new test case can contribute
at most

(4
2

)
, or 6 new covered pairs. Further, if each factor has three levels, there

are a total of
(4

2

)
32 = 54 possible pairs that must be covered. Therefore any

one new test case increases our coverage by at most 11.1% [134]. A similar
method is described by Dunietz et al. [54]. We would expect that a real
testing environment has the ability to capture variable coverage requirements
for a given test suite. The nature of a covering array as it is defined only
guarantees a coverage of t−subsets. We may also wish to have coverage of
some subsets of size t ′ for values of t ′ > t , where for example, these higher-
order subsets correspond to costly interaction failures. A combinatorial model
for variable strength coverage is introduced in [30], [32], [31]. An interesting
special case arises when a graph G is used to specify that certain pairs of factors
must have all pairs of values covered, while other pairs of factors need not. This
problem of constructing a covering array on the graph G poses many interesting
combinatorial questions [22], [90], but is beyond our scope here.

6.2. Hardware Testing

Imagine a circuit with k inputs that we are to test. Within the circuit, the
input signals interact through arithmetic and logical operations to determine an
output vector. From the specification, we know the output vector that should
be produced, but errors may occur. As with software, we expect errors to be
evinced by setting a fraction of the inputs to specified high or low values. Tang
et al. [124], [125], Boroday et al. [8], and Chandra et al. [17] study hardware
(circuit testing) in this environment, proposing test coverage that includes each
of the 2t input settings for each subset of t inputs. Seroussi and Bshouti [111]
give a comprehensive treatment. In each case, the test suite is a binary covering
array of strength t . Dumer [52] examines the related question of isolating
memory faults, and again uses binary covering arrays.
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6.3. Testing Advanced Materials

Cawse [16] reports on experimental plans for mixture experiments, in
which materials are combined to yield improved strength, flexibility, melting
point, and the like. In this application, avoiding certain combinations is not just
desirable – rather it is necessary, as certain mixtures can be explosive, or toxic.
With this in mind, the goal is to consider a representative sample of mixtures,
under a variety of controlled environmental conditions. Cawse advocates the
use of covering arrays for such experimentation.

6.4. Interactions Regulating Gene Expression

Regulation of developmental and biological processes depends upon cer-
tain signals (hormones) impact the expression of a particular gene. Multiple
signals may interact in regulation, by jointly inhibiting or enhancing gene ex-
pression. Numerous examples are given in [112]. Identification of signal inter-
actions cannot be achieved by examining all possible signal combinations, but
a (by now) familiar theme emerges. Interactions among few signals are those of
most interest. Covering arrays provide precisely the experimental plan to ensure
that all “small” potential interactions are explored. Shasha et al. [112] provide
details on the application.

7. Conclusions.

An exhaustive survey of current knowledge concerning covering arrays
would treat orthogonal arrays, probabilistic techniques, and techniques for
strength t > 3 in more detail than we have done. Instead we have chosen
some specific constructions in order to illustrate direct constructions, recursive
constructions, and heuristic algorithms. At the same time, applications to testing
problems have been outlined, in part to convey to a mathematical audience
problems faced in practical testing.

Perhaps the synergy between the mathematical research and the software
testing application is the most promising for future research on covering arrays.
As first suggested in [24], effective test generators must use both mathematical
insight and heuristic computation to make covering arrays for the broad applica-
tions intended. our emphasis here has been on the combinatorial constructions
that can profit from heuristic computation of ingredients.

Among areas requiring substantial further research, we mention the de-
velopment of more effective lower bounds for “small” covering arrays. In the
arena of heuristic computation, comprehensive evaluations of the great deluge
algorithm and of genetic algorithms are needed. In terms of combinatorial con-
structions, it appears that methods for the construction of orthogonal arrays are
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concerned substantially with balancing appearances of t -tuples, while construc-
tion of covering arrays are relieved of this burden. This is the forte of Roux-type
constructions, on which we have focussed here. We expect investigations of
similar constructions that focus on coverage rather than balance to provide fur-
ther powerful constructions.
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