
Technical Report 2004-03 March 2004

Universiteit Leiden

Leiden Institute of Advanced Computer Science

Combinatorial Aspects of

Minimal DNA Expressions (ext.)

Rudy van Vliet
rvvliet@liacs.nl

Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Technical Report 2004-03 March 2004

Universiteit Leiden

Leiden Institute of Advanced Computer Science

Combinatorial Aspects of

Minimal DNA Expressions (ext.)

Rudy van Vliet
rvvliet@liacs.nl

Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Preface

On March 8, 2004, Rudy van Vliet, Hendrik Jan Hoogeboom and Grzegorz Rozenberg
submitted a paper entitled Combinatorial Aspects of Minimal DNA expressions as full
paper to DNA 10, the Tenth International Meeting on DNA Based Computers, which
will be held at the University of Milano-Bicocca from June 7 till June 10, 2004. Due to
space limitations, we could not include the formal proofs of the results in this paper.
These proofs can be found in the present technical report.

The following table specifies the definitions and results in the technical report which
correspond to the definitions and results in the paper.

In paper In technical report

Definition 1 Definition 2.1
Definition 2 Definition 2.3
Lemma 3 Lemma 2.4
DNA expression Definition 2.8, Definition 2.9
Theorem 4 Theorem 3.4, Theorem 3.5
Lemma 5 Lemma 4.1
Definition 6 Definition 4.3, Definition 4.8
Lemma 7 Lemma 4.11(1),(2)
Theorem 8 Theorem 4.18, Corollary 4.19
Theorem 9 Theorem 4.23, Theorem 4.53, Theorem 4.77
construction of operator-

minimal DNA expression Theorem 4.65, Theorem 4.78
Theorem 10 Theorem 4.67, Theorem 4.79
Theorem 11 Lemma 4.83, Corollary 4.95, Corollary 4.96
Theorem 12 Definition 4.97, Theorem 4.100

In the paper, we use the notation |X|A to count the A-letters occurring in a formal
DNA molecule X. This is equal to the quantity |ν(X)| we use in this technical report.
The function ν is introduced in § 2.5.

III

Abstract

We describe a formal language/notation for DNA molecules that may con-
tain nicks and gaps. The elements of the language, DNA expressions, denote
formal DNA molecules. Different DNA expressions may denote the same
formal DNA molecule. We analyse the shortest DNA expressions denoting a
given formal DNA molecule: what is their length, how are they constructed,
how many of them are there and how can they be characterized.

V

Contents

1 Introduction 1

2 Terminology and notation 3
2.1 Strings and N -words . 3
2.2 Formal DNA molecules . 5
2.3 A simplified notation for formal DNA molecules 7
2.4 Properties of and relations between formal DNA molecules 10
2.5 Functions on formal DNA molecules . 11
2.6 Operators and DNA expressions . 12
2.7 Brackets, arguments and DNA subexpressions 20
2.8 The functions L and R for DNA expressions 22
2.9 Recognition of DNA expressions . 23
2.10 Concatenation of DNA expressions . 24
2.11 DNA expressions and trees . 24
2.12 Equivalent DNA expressions . 26

3 Basic results on DNA expressions 29
3.1 Expressible formal DNA molecules . 29
3.2 Some equivalences . 31

4 The length of a DNA expression 39
4.1 Lower bounds for the length of a DNA expression 41
4.2 Minimal DNA expressions . 58

4.2.1 Minimal DNA expressions for a nick free formal DNA molecule . 59
4.2.2 Minimal DNA expressions for a formal DNA molecule with nick

letters . 89
4.2.3 All minimal DNA expressions for a formal DNA molecule 98
4.2.4 The number of minimal DNA expressions 111
4.2.5 Recurrence relation for the number of operator-minimal ↑-expressions

and ↓-expressions . 132
4.2.6 Recognition of minimal DNA expressions 133
4.2.7 Trees of minimal DNA expressions 142

5 Conclusions and directions for future research 146

A Recognition of DNA expressions (an implementation) 147

List of symbols 152

Index 153

VII

VIII TR 2004-03, LIACS, Leiden University, Contents

References 158

Chapter 1

Introduction

Since the discovery of the structure and function of DNA molecules, DNA has become
an ‘intense’ research topic among biologists and biochemists. Formal study of compu-
tational properties of DNA really began when Head [1987] defined formal languages
consisting of strings that can be modified by operations based on the way that restric-
tion enzymes process DNA molecules. Theoretical computer scientists explored the
generative power and other properties of such languages (see, e.g., [Kari et al., 1996]
and [Head et al., 1998]). The interest of the computer science community in the com-
putational potential of DNA was boosted when Adleman [1994] described a solution of
an instance of the direct Hamiltonian path problem using DNA, enzymes and standard
biomolecular operations. His approach exploited the massive parallellism of the huge
number of molecules in a test tube of DNA. Since then, research on DNA computing is
really flourishing, see, e.g., [Hagiya & Ohuchi, 2003], [Chen & Reif, 2004] and [Păun et
al., 1998]. Recent developments include research on computations in living cells, see,
e.g., [Landweber & Kari, 1999], [Daley et al., 2003] and [Ehrenfeucht et al., 2004]).

Neither in the theoretical, nor in the applied publications, much attention is paid
to the notation used to denote DNA molecules – exceptions are [Boneh et al., 1996]
and [Li, 1999]. In most cases, one simply uses the standard double-string notation (like
ACATG
TGTAC

) to describe a double-stranded DNA molecule.

In this report, we describe a concise and precise notation for DNA molecules, based
on the letters A, C, G, and T and three operators ↑, ↓ and l. The resulting DNA
expressions denote formal DNA molecules – a formalization of DNA molecules. We
do not only account for perfect double-stranded DNA molecules, but also for single-
stranded DNA molecules and for double-stranded DNA molecules containing nicks
(missing phosphodiester bonds between adjacent nucleotides in the same strand) and
gaps (missing nucleotides in one of the strands).

Our three operators bear some resemblance to the operators used in [Boneh et al.,
1996] and [Li, 1999], but their functionality is quite different. The operator ↑ acts as
a kind of ligase for the upper strands: it creates upper strands and connects the upper
strands of its arguments. The operator ↓ is the analogue for lower strands. Finally,
l fills up the gap(s) in its argument. The effects of the operators do not perfectly
correspond to the effects of existing techniques in real-life DNA synthesis. Yet, the
operators are useful to describe certain types of DNA molecules.

In our formal language, different DNA expressions may denote the same formal
DNA molecule. We examine which DNA expressions are minimal, i.e., have the shortest
length among DNA expressions denoting the same formal DNA molecule, and what
their length is. Moreover, there may be different minimal DNA expressions denoting

1

2 TR 2004-03, LIACS, Leiden University, Ch. 1: Introduction

the same formal DNA molecule. We calculate the number of these minimal DNA
expressions. Finally we give a characterization of minimal DNA expressions, which
makes it easy to check wether or not a given DNA expression is minimal.

In Chapter 2, we define the formal DNA molecules and DNA expressions. We also
introduce most of the terminology related to them and the notation that we use. In
Chapter 3, we present some basic results on DNA expressions. We consider the length
of our DNA expressions in Chapter 4. This chapter contains the most important results
of the present report. Finally, in Chapter 5, we draw the conclusions from our work
and indicate directions for future research.

Chapter 2

Terminology and notation

In this chapter, we introduce the terminology and the notation that we use in this
report. We start with some basic notions related to strings and we define N -words.
Next, we describe a formalization of DNA molecules called formal DNA molecules. We
then define DNA expressions – character strings which denote (formal) DNA molecules.
This is the central concept of this report. Among other things, we consider a natural
tree representation of DNA expressions and introduce the notion of equivalence, for
DNA expressions that denote (almost) the same formal DNA molecule.

2.1 Strings and N -words

An alphabet is a finite set, the elements of which are called symbols or letters . A finite
sequence of symbols from an alphabet Σ will be called a string over Σ. For a string
X = x1x2 . . . xr over an alphabet Σ, with xi ∈ Σ for i = 1, 2, . . . , r, the length of X is
r and it is denoted by |X|. The length of the empty string λ equals 0.

For a non-empty string X = x1x2 . . . xr, we define L(X) = x1 and R(X) = xr.
The concatenation of two strings X1 and X2 over an alphabet Σ is usually denoted by
X1X2; sometimes, however, we will write X1 · X2.

The set of all strings over an alphabet Σ is denoted by Σ∗, and Σ+ = Σ∗ \ {λ} (the
set of non-empty strings). A language over Σ is a subset L of Σ∗.

Let N = {A, C, G, T} be the alphabet of nucleotides. The elements of N are
called N -letters . We will reserve the symbol a (possibly with a subscript) to denote
N -letters. A non-empty string over N is called an N -word . Clearly, the set N+ of
N -words is closed under concatenation. We will reserve the symbol α (possibly with a
subscript) to denote N -words.

Substrings

A substring of a string X is a (possibly empty) string Xs such that there are (possibly
empty) strings X1 and X2 with X = X1X

sX2. If Xs 6= X, then Xs is a proper substring
of X. We call the pair (X1, X2) an occurrence of Xs in X. If there exists a (possibly
empty) string X2 such that X = XsX2, then Xs is a prefix of X; if there exists a
(possibly empty) string X1 such that X = X1X

s, then Xs is a suffix of X.
If (X1, X2) and (Y1, Y2) are different occurrences of Xs in X, then (X1, X2) precedes

(Y1, Y2) if |X1| < |Y1|. Hence, all occurrences in X of a given string Xs are linearly
ordered, and we can talk about the first, second, . . . occurrence of Xs in X. Although,
formally, an occurrence of a substring Xs in a string X is the pair (X1, X2) surrounding

3

4 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

Xs in X, the term will also be used to refer to the substring itself, at the position in
X determined by (X1, X2).

Note that for a string X = x1x2 . . . xr of length r, the empty string λ has r + 1
occurrences: (λ,X), (x1, x2 . . . xr), . . . , (x1 . . . xr−1, xr), (X,λ).

If Xs = a for a letter a from the alphabet Σ, then the number of occurrences of Xs

in X is denoted by #a(X). Obviously, when X = x1x2 . . . xr with x1, x2, . . . , xr ∈ Σ,
#a(X) is the number of xi’s that are equal to a. Sometimes, we are not so much
interested in the number of occurrences of one letter in a string X, but rather in the
total number of occurrences of two different letters a and b in X. This total number is
denoted by #a,b(X).

If a string X is the catenation of k times the same substring Xs, hence X =
Xs . . . Xs
︸ ︷︷ ︸

k times

, then we may write X in the form (Xs)k.

Let (Y1, Y2) and (Z1, Z2) be occurrences in a string X of substrings Y s and Zs,
respectively. We say that (Y1, Y2) and (Z1, Z2) are disjoint , if either |Y1| + |Y s| ≤ |Z1|
or |Z1| + |Zs| ≤ |Y1|. Intuitively, one of the substrings occurs (in its entirety) before
the other one.

If the two occurrences are not disjoint, hence if |Z1| < |Y1| + |Y s| and |Y1| <
|Z1| + |Zs|, then they are said to intersect . Note that, according to this formalization
of intersection, an occurrence of the empty string λ may intersect with an occurrence
of a non-empty string. For example, in the string X = ACATGAT over the alpha-
bet N , the third occurrence of λ (the occurrence (AC, ATGAT)) intersects with the
(only) occurrence of CAT. In the remainder of this thesis, however, we will not come
across intersections of λ with other strings. Occurrrences of two non-empty substrings
intersect, if and only if the substrings have at least one (occurrence of a) letter in
common.

We say that (Y1, Y2) overlaps with (Z1, Z2), if either |Y1| < |Z1| < |Y1 + |Y s| <
|Z1|+ |Zs| or |Z1| < |Y1| < |Z1|+ |Zs| < |Y1|+ |Y s|. Hence, one of the substrings starts
before and ends inside the other one.

Finally, the occurrence (Y1, Y2) of Y s contains the occurrence (Z1, Z2) of Zs, if
|Y1| ≤ |Z1| and |Z1| + |Zs| ≤ |Y1| + |Y s|.

If it is clear from the context which occurrences of Y s and Zs in X are considered,
e.g., if these strings occur in X exactly once, then we may also say that the substrings
Y s and Zs themselves are disjoint, intersect or overlap, or that one contains the other.

Note the difference between intersection and overlap. If (occurrences of) two sub-
strings intersect, then either they overlap, or one contains the other, and these two
possibilities are mutually exclusive. For example, in the string X = ACATGAT over
N , the (only occurrence of the) substring Y s = ATGA intersects with both occurrences
of the substring Zs = AT. It contains the first occurrence of Zs and it overlaps with
the second occurrence of Zs.

In Figure 2.1, we have schematically depicted the notions of disjointness, intersec-
tion, overlap and containment.

Functions on strings

Let Σ be an alphabet. A function h on Σ∗ is called a homomorphism if h(X1X2) =
h(X1)h(X2) for all X1, X2 ∈ Σ∗. Hence, to specify h if suffices to give its values for the
letters from Σ. Note that h(λ) = λ.

2.2: Formal DNA molecules 5

X

Y1 Y s Y2

Z1 Zs Z2 (a)

Y1 Y s Y2

Z1 Zs Z2 (b)

Y1 Y s Y2

Z1 Zs Z2 (c)

Figure 2.1: Examples of disjoint and intersecting occurrences (Y1, Y2) of Y s and (Z1, Z2)
of Zs in a string X: (a) the occurrences are disjoint: |Y1| + |Y s| ≤ |Z1|; (b) the
occurrences overlap: |Z1| < |Y1| < |Z1| + |Zs| < |Y1| + |Y s|; (c) the occurrence of Y s

contains the occurrence of Zs: |Y1| ≤ |Z1| and |Z1| + |Zs| ≤ |Y1| + |Y s|.

If, additionally, h maps the elements of Σ∗ into Σ∗, then h is called an endomor-
phism.

The symbol c will denote the complement function. It is an endomorphism on N ∗,
specified by

c(A) = T, c(C) = G, c(G) = C, c(T) = A.

Thus, for an N -word α, c(α) results by replacing each letter of α by its Watson-Crick
complement. For example, c(ACATG) = TGTAC.

2.2 Formal DNA molecules

Before we define the expressions in our DNA language, we want to be more precise
about their meaning – the semantics of the DNA expressions. For this purpose, we
formalize the double-word notation for DNA molecules that may contain nicks and
gaps.

Every symbol in the upper word of a double word corresponds to a symbol in the
lower word. If there are no gaps, then two such corresponding symbols denote a base
pair – two complementary nucleotides that are connected through a hydrogen bond.
In the formal semantics of our DNA expressions, a pair of corresponding elements in

the upper and the lower word is denoted by a composite symbol x =
(
x+

x−

)
. Here x+

stands for the nucleotide in the upper word and x− stands for the nucleotide in the
lower word. If we happen to have a gap in either of the strands, the missing nucleotide
is denoted by −. Hence, x+, x− ∈ N ∪ {−}. For convenience, we will speak of a base
pair also if one of two complementary nucleotides is missing. If both nucleotides are
present, we may call the base pair complete.

6 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

ACATG
TGTAC

(a)

ACATG
TGTAC

▽

△

(b)

CATG
TG C

(c)

Figure 2.2: Examples of possible DNA molecules: (a) a perfect double-stranded DNA
molecule; (b) a DNA molecule with nicks; (c) a DNA molecule with gaps.

Of course, the value of x+ restricts the value of x−, and vice versa. Because of
the Watson-Crick complementarity and the fact that a missing nucleotide cannot face

another missing nucleotide, only 12 out of the 25 possible composite symbols
(
x+

x−

)
are

really allowed:
(
A
T

)
,
(
C
G

)
,
(
G
C

)
,
(
T
A

)
,
(
A
−

)
,
(
C
−

)
,
(
G
−

)
,
(
T
−

)
,
(
−
A

)
,
(
−
C

)
,
(
−
G

)
,
(
−
T

)
. The set of

these 12 composite symbols is denoted by A.

For the future use, we partition A into three subsets: A± =
{(

A
T

)
,
(
C
G

)
,
(
G
C

)
,
(
T
A

)}
,

A+ =
{(

A
−

)
,
(
C
−

)
,
(
G
−

)
,
(
T
−

)}
and A− =

{(
−
A

)
,
(
−
C

)
,
(
−
G

)
,
(
−
T

)}
. The elements of A are

called A-letters , the elements of A± are called double A-letters , the elements of A+ are
called upper A-letters , and the elements of A− are called lower A-letters. Consequently,
a non-empty string over A is called an A-word , a non-empty string over A± is called
a double A-word , a non-empty string over A+ is called an upper A-word , and a non-
empty string over A− is called a lower A-word .

We also need symbols to denote nicks in a double word. There are three possibilities
for the connection structure of two adjacent base pairs in a double word: there can
be a nick in the upper word, there can be a nick in the lower word, or there can be
no nick at all between the base pairs. Note that there cannot be both a nick in the
upper word and a nick in the lower word between two adjacent base pairs. In such a
situation, there would be no connection whatsoever between the base pairs, so they
would be parts of different DNA molecules.

The case that there is no nick at all is the default; it is not denoted explicitly. A
nick in the upper word is denoted by ▽ and a nick in the lower word by △. We call ▽

and △ the nick letters – ▽ is the upper nick letter, and △ the lower nick letter.
Now, a complete description of a linear DNA molecule possibly containing nicks

and gaps can be given by a non-empty string X over A▽△
= A ∪ {▽, △}.

For example, the DNA molecules depicted in Figure 2.2 are denoted by

X1 =
(
A
T

)(
C
G

)(
A
T

)(
T
A

)(
G
C

)
, (2.1)

X2 =
(
A
T

)
▽
(
C
G

)(
A
T

)
△

(
T
A

)(
G
C

)
, and (2.2)

X3 =
(
−
T

)(
C
G

)(
A
−

)(
T
−

)(
G
C

)
, (2.3)

respectively. X1 and X3 have length 5, and X2 has length 7.
Not every string over A▽△

represents a DNA molecule. The requirements that
strings over A▽△

need to satisfy follow from three observations on DNA molecules:

1. to enable at least one phosphodiester bond between adjacent base pairs, a gap in
one strand cannot be adjacent to a gap in the other strand (see Figure 2.3(a));

2.3: A simplified notation for formal DNA molecules 7

ATG
TG AC

(a)

ACATG
TGTAC

△

(b)

CATG
TG C

▽ ▽

(c)

Figure 2.3: Examples of impossible DNA molecules: (a) adjacent gaps in different
strands of the molecule; (b) a nick at an extremity of the molecule; (c) nicks between
base pairs that are not (both) complete.

2. a nick may occur only between two base pairs; in particular, it cannot occur at
an extremity of a DNA molecule (see Figure 2.3(b));

3. since a nick is a missing phosphodiester bond between two adjacent nucleotides
in the same strand, we really need to have nucleotides on both sides of the nick;
moreover, the complementary nucleotides in the other strand must be present
and they must be connected by a phosphodiester bond; hence, a nick may occur
only between two complete base pairs (see Figure 2.3(c)).

Now, we are ready to define our notation for DNA molecules that may contain nicks
and gaps:

Definition 2.1 A formal DNA molecule is a non-empty string X = x1x2 . . . xr with
xi ∈ A▽△

for i = 1, . . . , r, satisfying

1. if xi ∈ A+, then xi+1 /∈ A− (i = 1, 2, . . . , r − 1),

if xi ∈ A−, then xi+1 /∈ A+ (i = 1, 2, . . . , r − 1),

2. x1, xr ∈ A,

3. if xi ∈ {▽, △}, then xi−1, xi+1 ∈ A±. (i = 2, 3, . . . , r − 1).

The language of all formal DNA molecules is denoted by F . Since X ∈ F is called a
molecule (albeit ‘formal’), we will refer to the sequence of (possibly missing) nucleotides
x+

i and upper nick letters in X as the upper strand of X. The lower strand of X is
defined analogously.

Note, however, that it does not make sense to talk about the upper and lower
strands of a (physical) DNA molecule, because a rotation of the molecule over an angle
π would change the upper strand into a lower strand and vice versa.

If a formal DNA molecule does not contain upper nick letters, then we say that its
upper strand is nick free. Similarly, if a formal DNA molecule does not contain lower
nick letters, then its lower strand is nick free. If a formal DNA molecule does not
contain nick letters at all, then the molecule is called nick free.

2.3 A simplified notation for formal DNA molecules

Let X = x1 . . . xr be a formal DNA molecule, with xi ∈ A▽△
for i = 1, . . . , r. A formal

DNA submolecule of X is a substring Xs of X such that Xs is a formal DNA molecule.
It is easy to see that

8 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

Lemma 2.2 A substring Xs of a formal DNA molecule X is a formal DNA molecule
if and and only if |Xs| ≥ 1 and L(Xs), R(Xs) ∈ A.

Hence, Xs should not be empty and neither its first symbol nor its last symbol should
be a nick letter.

If a formal DNA submolecule Xs of X is an upper A-word, a lower A-word or a
double A-word, and |Xs| ≥ 2, it is possible to simplify the notation for Xs and X. Let
α = a1 . . . al be an N -word with ai ∈ N (i = 1, . . . , l), and let Xs be a formal DNA
submolecule of X with Xs = xi0 . . . xi0+l−1 for some i0 with 1 ≤ i0 ≤ r − l + 1 (so
|Xs| = l).

If Xs =
(
a1

−

)
· · ·

(
al

−

)
, we may write

Xs =
(
α

−

)
and X = x1 . . . xi0−1

(
α

−

)
xi0+l . . . xr.

Similarly, if Xs =
(
−
a1

)(
−
a2

)
· · ·

(
−
al

)
, we may write

Xs =
(
−
α

)
and X = x1 . . . xi0−1

(
−
α

)
xi0+l . . . xr.

Finally, if Xs =
(

a1

c(a1)

)(
a2

c(a2)

)
· · ·

(
al

c(al)

)
, we may write

Xs =
(

α

c(α)

)
and X = x1 . . . xi0−1

(
α

c(α)

)
xi0+l . . . xr.

For an N -word α, we call the set
{(

α

−

)
,
(
−
α

)
,
(

α

c(α)

)}
the set of A-words determined by

α, and denote it by WA(α).
By simplifying the notation we seem to extend the alphabet of F with infinitely

many symbols
(
α

−

)
,
(
−
α

)
and

(
α

c(α)

)
. We want to remark, however, that we actually only

simplify the presentation of the formal DNA molecules. The formal DNA molecules
themselves do not change; they are still strings over the finite alphabet A▽△

. In partic-
ular, the length of a formal DNA molecule X = x1 . . . xr with xi ∈ A▽△

for i = 1, . . . , r
remains r, even if X is written in a simplified notation.

Definition 2.3 Let X be a formal DNA molecule. Then the decomposition of X is the
sequence x′

1, . . . , x
′
k of k ≥ 1 non-empty strings over A▽△

such that

• X = x′
1 . . . x′

k,

• for i = 1, . . . , k, x′
i is either an upper A-word, or a lower A-word, or a double

A-word, or a nick letter, and

• for i = 1, . . . , k − 1, if x′
i is an upper A-word, then x′

i+1 is not an upper A-word,
and similarly for lower A-words and double A-words.

Hence, the decomposition of X cannot be simplified any further. For the ease of
notation, we will in general write x′

1 . . . x′
k instead of x′

1, . . . , x
′
k.

For example, the decompositions of the formal DNA molecules from (2.1), (2.2)
and (2.3) (denoting the molecules shown in Figure 2.2) are

X1 =
(
ACATG
TGTAC

)
, (2.4)

X2 =
(
A
T

)
▽
(
CA
GT

)
△

(
TG
AC

)
and

2.3: A simplified notation for formal DNA molecules 9

X3 =
(
−
T

)(
C
G

)(
AT
−

)(
G
C

)
, (2.5)

respectively.
If x′

1 . . . x′
k for some k ≥ 1 is the decomposition of a formal DNA molecule X, then

the substrings x′
i are called the components of X. For i = 1, . . . , k, if x′

i is an upper
A-word (lower A-word or double A-word), then x′

i is called an upper component (lower
component or double component , respectively) of X. If x′

i is either an upper component
or a lower component, then we may also call it a single-stranded component of X.

We now have the following result:

Lemma 2.4 Let X be a formal DNA molecule and let x′
1 . . . x′

k for some k ≥ 1 be the
decomposition of X. Then

• for i = 1, . . . , k − 1, if x′
i is an upper component, a lower component or a nick

letter then x′
i+1 is a double component;

• for i = 1, . . . , k−1, if x′
i is a double component, then x′

i+1 is an upper component,
a lower component or a nick letter.

Hence, the components of a formal DNA molecule are double components and other
types of components, alternately.
Proof: If for some i with 1 ≤ i ≤ k − 1, x′

i is a double component, then by the
definition of the decomposition, the next component x′

i+1 is an upper component, a
lower component or a nick letter. Because nick letters can only occur between two
double components and because an upper component cannot occur next to a lower
component (see Definition 2.1), the reverse is also true: if for some i with 1 ≤ 1 ≤ k−1,
x′

i is an upper component, a lower component or a nick letter, then the next component
x′

i+1 is a double component.
Two special cases of this result will also appear to be useful:

Corollary 2.5 Let X be a nick free formal DNA molecule and let x′
1 . . . x′

k for some
k ≥ 1 be the decomposition of X. Then

• for i = 1, . . . , k, x′
i is either an upper component, or a lower component, or a

double component;

• for i = 1, . . . , k− 1, if x′
i is an upper component or a lower component, then x′

i+1

is a double component;

• for i = 1, . . . , k − 1, if x′
i is a double component then x′

i+1 is an upper component
or a lower component.

When we observe that by definition the first and the last component of a formal
DNA molecule cannot be nick letters, we also find

Corollary 2.6 Let X be a formal DNA molecule and let x′
1 . . . x′

k for some k ≥ 1 be
the decomposition of X.

If X does not contain any single-stranded component, then

• for i = 1, . . . , k, x′
i is either a double component, or an upper nick letter, or a

lower nick letter;

10 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

• k is odd and

X =
(

α1

c(α1)

)
y1

(
α2

c(α2)

)
y2 . . . y k−1

2

(α k+1

2

c(α k+1

2

)

)

for N -words α1, . . . , α k+1

2

and nick letters y1, . . . , y k−1

2

.

2.4 Properties of and relations between formal DNA

molecules

Let X = x1 . . . xr be a formal DNA molecule, with xi ∈ A▽△
for i = 1, . . . , r. Then the

upper strand of X is said to cover the lower strand to the right if R(X) = xr /∈ A−,
hence, if x+

r 6= −; note that, since xr is not allowed to be a nick letter (condition 2 of
Definition 2.1), x+

r is well defined. Intuitively, the upper strand extends at least as far
to the right as the lower strand then.

If also R(X) = xr ∈ A+, hence x−
r = − (the upper strand extends even beyond the

lower strand to the right), then the upper strand strictly covers the lower strand to the
right. In an analogous way we can define ‘(strict) covering to the left ’.

Of course, the definition of ‘(strict) covering’ can also be formulated for the lower
strand. For example, in the formal DNA molecule from (2.3) the lower strand strictly
covers the upper strand to the left. Here, the strands extend equally far to the right,
and so we say that the upper strand covers the lower strand to the right and vice versa.

We say that a formal DNA molecule X1 prefits a formal DNA molecule X2 by
upper strands, denoted by X1❁X2, if the upper strand of X1 covers the lower strand
to the right and the upper strand of X2 covers the lower strand to the left, hence, if
R(X1) /∈ A− and L(X2) /∈ A−; we also say that X1 is an upper prefit for X2 then.
Intuitively, when we write X1 and X2 after each other in such a case, the respective
upper strands ‘make contact’.

Analogously, we define X1 to prefit X2 by lower strands (to be a lower prefit for X2)
if R(X1) /∈ A+ and L(X2) /∈ A+, and write then X1❁X2. If either X1❁X2 or X1❁X2,
we say that X1 prefits X2 or that X1 is a prefit for X2, and write then X1 ❁ X2.

If X1 prefits X2 (by upper/lower strands), then, from the perspective of X2, we say
that X2 postfits X1 (by upper/lower strands), or that X2 is an (upper/lower) postfit
for X1.

If the order of the formal DNA molecules is clear, then we may also say that X1

and X2 fit together (by upper/lower strands).
In fact, we used the notion of prefitting (or postfitting) already in the definition

of a (single) formal DNA molecule X. When we demanded that an element of A+

cannot be followed or preceded by an element of A− (condition 1 in Definition 2.1), we

actually demanded that the formal DNA molecule
(
x+

i

x−
i

)
(of length 1) should prefit the

formal DNA molecule
(
x+

i+1

x−
i+1

)
(for each i such that neither xi, nor xi+1 is a nick letter).

Unlike the set of all N -words N+, the set of formal DNA molecules F is not
closed under concatenation. Let, for instance, X1 and X2 be formal DNA molecules
such that the upper strand of X1 strictly covers the lower strand to the right and

2.5: Functions on formal DNA molecules 11

X1 X2

Figure 2.4: Schematic representation of two formal DNA molecules X1 and X2 such
that the concatenation X1X2 is not a formal DNA molecule.

that the lower strand of X2 strictly covers the upper strand to the left. Then the
concatenation X1X2 is not a formal DNA molecule, because condition 1 of Definition 2.1
is violated for i = |X1| – this is illustrated in Figure 2.4. Thus in particular, even if

X1 =
(
A
T

)(
C
G

)(
A
T

)(
T
−

)(
G
−

)
and X2 =

(
−
A

)(
−
C

)(
C
G

)(
A
T

)(
T
A

)
(so that the respective sticky

ends of the DNA molecules form a perfect match), then X1X2 is not a formal DNA
molecule.

As a matter of fact, the following property holds:

The concatenation of two formal DNA molecules X1 and X2 is again a
formal DNA molecule if and only if X1 ❁ X2.

2.5 Functions on formal DNA molecules

We define four endomorphisms on the set A∗
▽△

: ν+, ν−, ν and κ. Let x ∈ A▽△
. Then

ν+(x) =

{
x if x ∈ A ∪ {△}
λ if x = ▽ (2.6)

ν−(x) =

{
x if x ∈ A ∪ {▽}
λ if x = △

(2.7)

ν(x) =

{
x if x ∈ A
λ if x ∈ {▽, △}

(2.8)

κ(x) =

x if x ∈ A± ∪ {▽, △}(
a

c(a)

)
if x =

(
a

−

)
for a ∈ N

(
c(a)
a

)
if x =

(
−
a

)
for a ∈ N

(2.9)

Thus, ν+ removes all upper nick letters from its argument, ν− removes all lower nick
letters from its argument, ν removes both the upper nick letters and the lower nick
letters from its argument, and κ replaces every symbol from A+ and A− in its argument
by the ‘corresponding’ symbol from A±.

From the point of view of the molecules represented, ν+ replaces all nicks in the
upper strand of its argument by phosphodiester bonds, and ν− does the same for nicks
in the lower strand of its argument. The function ν replaces all nicks in both the upper
and the lower strand by phosphodiester bonds. Finally, κ provides a complementary
nucleotide for every nucleotide in its argument which is not complemented yet. The
nicks are not affected by κ.

It is easy to see (by inspecting the action of the functions on the symbols from
A▽△

), that the composition of functions from the set {ν+, ν−, ν, κ} is commutative,
i.e.,

h2(h1(X)) = h1(h2(X)) for all h1, h2 ∈ {ν+, ν−, ν, κ} and X ∈ A∗
▽△

. (2.10)

12 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

For example, κ(ν+(X)) = ν+(κ(X)) for each X ∈ A∗
▽△

.
Further, applying the same function more than one time, does not change the result:

h(h(X)) = h(X) for each h ∈ {ν+, ν−, ν, κ} and X ∈ A∗
▽△

. (2.11)

For example, ν(ν(X)) = ν(X) for each X ∈ A∗
▽△

.
Finally, one can verify that

ν−(ν+(X)) = ν(X) for each X ∈ A∗
▽△

. (2.12)

Hence, ν is equal to the composition of ν+ and ν− (and, by commutativity, ν is equal
to the composition of ν− and ν+).

Because F , the set of formal DNA molecules, is a subset of A∗
▽△

, ν+, ν−, ν and κ

can be applied to F . It is easy to verify that for each X ∈ F and h ∈ {ν+, ν−, ν, κ, },
also h(X) ∈ F .

For example, because of condition 3 of Definition 2.1, every nick letter in X is both
preceded and followed by an element of A±. If such a nick letter is removed from X,
by either ν+, ν− or ν, these elements of A± become adjacent and this does not violate
any condition of Definition 2.1.

Since we are really interested in F , we will consider the restriction of the functions
ν+, ν−, ν and κ to this subdomain. In order not to burden our notation too much, we
will still use the notation ν+, ν−, ν and κ, respectively for these restricted functions,
instead of ν+|F , etc. – this should, however, not lead to confusion.

For the composition of functions from {ν+, ν−, ν, κ} with the functions L and R we
have the following results (they follow directly from the definitions of L, R, ν+, ν−, ν
and κ and the definition of a formal DNA molecule):

Lemma 2.7 For each X ∈ F ,

L(ν+(X)) = L(ν−(X)) = L(ν(X)) = L(X),

R(ν+(X)) = R(ν−(X)) = R(ν(X)) = R(X),

L(κ(X)), R(κ(X)) ∈ A±.

2.6 Operators and DNA expressions

The formal DNA molecules constitute the foundation of our DNA language. They
allow us to define the elements of the DNA language: the DNA expressions.

The basic building blocks of DNA expressions are N -words. DNA expressions result
by applying operators to N -words. The set of operators we consider in this thesis is
O = {↑, ↓, l}. DNA expressions also contain opening and closing brackets: 〈 and 〉,
which delimit the scope of the operators – each (occurrence of an) operator acts only on
the part of the expression that is contained between its opening and closing brackets.
Hence, the set of all DNA expressions, denoted by D, is a language over the alphabet
ΣD, where ΣD = N ∪O ∪ {〈 , 〉} = {A, C, G, T, ↑, ↓, l, 〈 , 〉}.

We will use the symbol E (possibly with a subscript) to denote a DNA expression.
If a string can be either an N -word or a DNA expression, then we use ε (possibly with
a subscript) to denote it.

2.6: Operators and DNA expressions 13

Informally, a DNA expression is a string of the form 〈↑ ε1ε2 . . . εn〉, 〈↓ ε1ε2 . . . εn〉
or 〈l ε1〉, where n ≥ 1 and the εi’s are either N -words or DNA expressions themselves.
The εi’s are called the arguments of the operator involved. We say that an operator is
applied to its arguments. The arguments of the operators ↑ and ↓ must satisfy certain
conditions, which will be explained shortly.

Clearly, not every string over ΣD is a DNA expression. In particular, every DNA
expression contains brackets and at least one operator, which implies that N -words
are not DNA expressions.

If E is a DNA expression, then the semantics of E, denoted by S(E), is the formal
DNA molecule represented by E. For every DNA expression, there will be exactly one
such formal DNA molecule, so S is a mapping from the DNA language into F .

Properties of formal DNA molecules carry over in a natural way to DNA expressions
by the following convention:

property P holds for a DNA expression E1 (DNA expressions E1 and E2)
⇐⇒

property P holds for S(E1) (S(E1) and S(E2), respectively).

Thus, e.g., we may say that the upper strand of DNA expression E1 strictly covers the
lower strand to the right, or that DNA expression E1 prefits DNA expression E2 by
upper strands. We can also extend the definition of the functions L and R to DNA
expressions. If E is a DNA expression, then L(E) = L(S(E)) and R(E) = R(S(E)).
The reader must take good notice of this. Often, in a statement or in a proof, we will
implicitly make the step from a DNA expression to its semantics, e.g., from L(E) to
L(S(E)), or vice versa.

Before we present the formal definition of a DNA expression, we want to provide
some intuition for the action of the three operators and for the restrictions that are
imposed onto their arguments.

The most elementary expressions in our DNA language are the applications of the
operators to a (single) N -word α: 〈↑ α〉, 〈↓ α〉 and 〈l α〉. The expression 〈↑ α〉 denotes

the upper A-word
(
α

−

)
(which, in turn, denotes the strand 5′-α-3′), 〈↓ α〉 denotes the

lower A-word
(
−
α

)
(the strand 3′-α-5′), and 〈l α〉 denotes the double A-word

(
α

c(α)

)

with upper strand α (the double-stranded DNA molecule
α

c(α)
5′- -3′

3′- -5′ without nicks).

For example, if α = ACATG, then 〈↑ α〉 denotes
(
ACATG

−

)
, 〈↓ α〉 denotes

(
−

ACATG

)

and 〈l α〉 denotes
(
ACATG
TGTAC

)
.

In the basic DNA expressions, the three operators have one argument, an N -word
α. In general, however, the operators ↑ and ↓ may have more than one argument.
Moreover, the arguments of an operator do not have to be N -words; they may also
be DNA expressions. Then, starting from the simple, basic DNA expressions, one can
build more and more complex DNA expressions. There are, however, some restrictions
on the arguments, which we will describe now for each of the operators.

The operator ↑ can have an arbitrary number n ≥ 1 of arguments. Each argument
εi (i = 1, 2, . . . , n) must be either an N -word α, or a DNA expression E. We further
demand that for i = 1, 2, . . . , n − 1 the argument εi prefits εi+1 by upper strands.
Since we have defined ‘prefitting each other by upper strands’ only for formal DNA

14 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

〈

↑ C
G

AT GC
CG

▽
〉

= CATGC
G CG

〈

↑ A
T

T
A

〉

= AT
TA
△

(a)

〈

↓ T CATGC
G CG

AT
TA
△

〉

= CATGCAT
TG CGTA

▽

(b)

〈

l CATGCAT
TG CGTA

▽
〉

= ACATGCAT
TGTACGTA

▽

(c)

Figure 2.5: Examples of (a) the action of the operator ↑; (b) the action of the operator
↓; (c) the action of the operator l.

molecules and for DNA expressions, we consider an N -word α here as the DNA ex-

pression 〈↑ α〉, which represents the upper A-word
(
α

−

)
. The resulting DNA expression

is 〈↑ ε1ε2 . . . εn〉.
From the molecular point of view, the operator ↑ connects all pairs of adjacent

nucleotides in the upper strands of its arguments. So it repairs all nicks inside these
strands by establishing the missing phosphodiester bonds and it fixes such connections
between the upper strands of the successive arguments. This is illustrated by the first
example of Figure 2.5(a). However, nicks that are present in the lower strands of
its arguments are not repaired. As a matter of fact, the operator ↑ introduces nicks
between the lower strands of successive arguments if these successive arguments happen
to prefit each other by lower strands, i.e., if they have a blunt edge at each other’s side.
The second example of Figure 2.5(a) shows such a situation.

We have to say that establishing phosphodiester bonds within one strand only is
not realistic from the molecular point of view.

The operator ↓ is the dual of ↑. It can have an arbitrary number n ≥ 1 of arguments,
with each argument εi (i = 1, . . . , n) being either an N -word or a DNA expression.
Here we require εi to prefit εi+1 by lower strands for i = 1, 2, . . . , n− 1. Further, when
an argument εi is an N -word α, it is interpreted as the DNA expression 〈↓ α〉, which

denotes the lower A-word
(
−
α

)
. The resulting DNA expression is 〈↓ ε1ε2 . . . εn〉. The

effect of this operator is similar to that of ↑; the only difference is that the roles of the
upper strands and the lower strands of the arguments are changed. This is illustrated
by Figure 2.5(b).

Unlike the other two operators, l can have only one argument ε1. It is either an
N -word or an (arbitrary) DNA expression. The resulting DNA expression is 〈l ε1〉.

If ε1 is a DNA expression E, then, intuitively, in the DNA molecule denoted by E,
the operator l provides a complementary nucleotide for every nucleotide which is not
yet complemented. So it fills up every gap in the DNA molecule. Further, the operator
establishes phosphodiester bonds between the nucleotides added and their respective
neighbours in the strand. Hence, it does not introduce new nicks. On the other hand,
if the DNA molecule denoted by E has nicks already, these nicks are not repaired by
l. The action of this operator is illustrated in Figure 2.5(c).

The basic DNA expression 〈l α〉 was the result of applying l to an N -word α. This
result can also be explained in terms of complements, as follows: if the argument of
l is an N -word α, the operator conceives it as the DNA expression 〈↑ α〉 and then
performs the same action as for ‘ordinary’ DNA expressions.

2.6: Operators and DNA expressions 15

A

❞

❄ C

❞
A

❞
T

❞
G

❞
C

❞
A

❞
T

❞

T❞ G❞

T❞

✻

A❞

✻ C❞ G❞ T❞ A❞

−→

A

❞
C

❞
A

❞
T

❞
G

❞
C

❞
A

❞
T

❞

T❞ G❞ T❞ A❞ C❞ G❞ T❞ A❞

Figure 2.6: Pictorial representation of the action of the operator l.

The notation l may be a bit misleading. It may suggest to be a combination of the
operators ↑ and ↓. It would, e.g., repair nicks in both upper and lower strands then,
like the function ν does with formal DNA molecules. In fact, an operator with such
effect might be more realistic than the separate operators ↑ and ↓ that we have, as this
effect comes closer to the action of the enzyme ligase than the separate effects of ↑ and
↓. In this thesis, however, we will build a theory with the operators ↑, ↓ and l as we
have introduced them.

There is a nice pictorial interpretation of the operators’ actions. We can consider a
nucleotide as a puppet, the phosphate group at the 5′-site and the hydroxyl group at
the 3′-site being its arms. When there is a horizontal connection between two adjacent
nucleotides, we can view that as if both puppets raised one arm and joined hands.
A phosphate group or a hydroxyl group that is not used for a phosphodiester bond
corresponds to an arm hanging down. So in case of a nick, the two nucleotides involved
keep the arm on the other one’s side down.

Now when the ↑-operator is applied, the puppets in the upper strand raise their
arms and, if there is an adjacent puppet, they connect. The action of the ↓-operator can
be viewed similarly. Finally, when the l-operator complements a nucleotide, it inserts
a puppet with both arms raised. Either of these arms seizes the arm of a neighbour
and makes a connection. This case is depicted in Figure 2.6.

We are ready now to give a formal definition of DNA expressions and their seman-
tics.

Definition 2.8 A DNA expression is a string in any of the following forms:

• 〈↑ ε1ε2 . . . εn〉,
where n ≥ 1, εi is an N -letter or a DNA expression for i = 1, 2, . . . , n, and
S+(εi)❁S+(εi+1) for i = 1, 2, . . . , n − 1, where the function S+ is defined by

S+(ε) =

{ (
α

−

)
if ε is an N -word α

S(ε) if ε is a DNA expression
. (2.13)

Further,

S(〈↑ ε1ε2 . . . εn〉) = ν+(S+(ε1))y1ν
+(S+(ε2))y2 . . . yn−1ν

+(S+(εn)) (2.14)

16 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

with

yi =

△ if S+(εi)❁S+(εi+1), i.e., if both R(S+(εi)) ∈ A±

and L(S+(εi+1)) ∈ A±

λ otherwise, i.e., if either R(S+(εi)) ∈ A+

or L(S+(εi+1)) ∈ A+ (or both)

(i = 1, 2, . . . , n − 1).

(2.15)

• 〈↓ ε1ε2 . . . εn〉,
where n ≥ 1, εi is an N -letter or a DNA expression for i = 1, 2, . . . , n, and
S−(εi)❁S−(εi+1) for i = 1, 2, . . . , n − 1 where the function S− is defined by

S−(ε) =

{ (
−
α

)
if ε is an N -word α

S(ε) if ε is a DNA expression
. (2.16)

Further,

S(〈↓ ε1ε2 . . . εn〉) = ν−(S−(ε1))y1ν
−(S−(ε2))y2 . . . yn−1ν

−(S−(εn))

with

yi =

▽ if S−(εi)❁S−(εi+1), i.e., if both R(S−(εi)) ∈ A±

and L(S−(εi+1)) ∈ A±

λ otherwise, i.e., if either R(S−(εi)) ∈ A−

or L(S−(εi+1)) ∈ A− (or both)

(i = 1, 2, . . . , n − 1).

• 〈l ε1〉,
where ε1 is either an N -word or a DNA expression.

Further,

S(〈l ε1〉) = κ(S+(ε1)).

for the function S+ defined above.

An example of a DNA expression which uses all three operators, is

〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉 〈l T〉〉〉 . (2.17)

It represents the DNA molecule of Figure 2.5(b).
We call a DNA expression of the form 〈↑ ε1 . . . εn〉 a ↑-expression, one of the form

〈↓ ε1 . . . εn〉 a ↓-expression, and one of the form 〈l ε1〉 a l-expression. Thus, DNA
expression (2.17) is a ↓-expression.

Note that, in the informal description of the expressions 〈↑ ε1 . . . εn〉 and 〈↓ ε1 . . . εn〉,
we allowed the εi’s to be N -words of arbitrary length, whereas, in the definition above,
we require them to be N -letters, hence N -words of length 1 (if they are not DNA
expressions). We will eliminate this discrepancy soon.

2.6: Operators and DNA expressions 17

Note that for each of the three operators, we write the result of its application in
a kind of prefix style, i.e., we write the operator before its argument(s). This style
is only violated by the closing bracket 〉, which typically belongs to the operator but
is written after the arguments. This violation is hard to avoid; since the number of
arguments of the operators ↑ and ↓ is not fixed, we have to explicitly delimit the scope
of these operators. And a closing bracket is quite appropriate for that.

The formal DNA molecule S+(ε), occurring in the definition of a DNA expression
of the form 〈↑ ε1ε2 . . . εn〉, can be considered as a kind of ‘upper semantics’ of the
argument ε. Similarly, the formal DNA molecule S−(ε), occurring in the definition
of a DNA expression of the form 〈↓ ε1ε2 . . . εn〉, can be considered as a kind of ‘lower
semantics’ of the argument ε.

If we define functions Exp+ and Exp− by

Exp+(ε) =

{
〈↑ α〉 if ε is an N -word α

ε if ε is a DNA expression
(2.18)

and

Exp−(ε) =

{
〈↓ α〉 if ε is an N -word α

ε if ε is a DNA expression
, (2.19)

then it is easy to see that for every N -word or DNA expression ε, S+(ε) = S(Exp+(ε))
and S−(ε) = S(Exp−(ε)). The DNA expressions Exp+(ε) and Exp−(ε) can be consid-
ered as a kind of ‘upper DNA expression’ and ‘lower DNA expression’ corresponding
to ε, respectively.

Note finally that, indeed, the operator l does not introduce nicks in its argument.
This follows from the fact that there could not be a nick next to a missing nucleotide
before the addition of this nucleotide (by condition 3 of Definition 2.1), and from the
fact that the function κ does not introduce new nicks.

We now introduce the possibility for ↑-expressions (and ↓-expressions) to have ar-
guments that are N -words α of length |α| ≥ 2. Consider a DNA expression E =
〈↑ ε1 . . . εi0−1 εi0 . . . εj0 εj0+1 . . . εn〉 with 1 ≤ i0 < j0 ≤ n, where the consecutive
arguments εi0 , . . . , εj0 are N -letters ai0 , . . . , aj0 , respectively. Then, to simplify the
notation for E, we might replace the sequence ai0 . . . aj0 by the symbol α, yielding
E = 〈↑ ε1 . . . εi0−1 α εj0+1 . . . εn〉. Because Definition 2.8 does not allow N -words α of
length |α| ≥ 2 to be arguments of the operator ↑, α would be merely an abbreviation
for the j0−i0+1 arguments ai0 , . . . , aj0 . For evaluating (i.e., determining the semantics
of) E, we would have to consider the arguments ai separately. Hence, we have

S(E) = S(〈↑ ε1 . . . εi0−1 α εj0+1 . . . εn〉) = ν+(S+(ε1))y1 . . . yi0−2ν
+(S+(εi0−1))·

yi0−1ν
+(S+(εi0))yi0 . . . yj0−1ν

+(S+(εj0))yj0 · ν
+(S+(εj0+1))yj0+1 . . . yn−1ν

+(S+(εn)),

where the yi’s are defined by (2.15).
Let us zoom in on the substring yi0−1ν

+(S+(εi0))yi0 . . . yj0−1ν
+(S+(εj0))yj0 of S(E).1

As εi = ai ∈ N for i = i0, . . . , j0, we have S+(εi) =
(
ai

−

)
for these i’s. This implies

that also ν+(S+(εi)) =
(
ai

−

)
for i = i0, . . . , j0, and, by the definition of yi, that yi = λ

1If i0 = 1 or j0 = n, then, of course, yi0−1 or yj0 , respectively, does not exist. In our considerations,
we may substitute λ for the respective variable then.

18 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

for i = i0 − 1, . . . , j0. Thus, our substring reduces to
(
ai0

−

)
· · ·

(
aj0

−

)
=

(
ai0 . . . aj0

−

)
=

(
α

−

)

and

S(E) = S(〈↑ ε1 . . . εi0−1 α εj0+1 . . . εn〉) =

ν+(S+(ε1))y1 . . . yi0−2ν
+(S+(εi0−1))

(
α

−

)
ν+(S+(εj0+1))yj0+1 . . . yn−1ν

+(S+(εn)).

A similar result can be obtained if consecutive arguments εi0 , . . . , εj0 of the operator ↓
are N -letters. This motivates a generalization of the definition of a DNA expression.
From now on, we allow the arguments εi of the operators ↑ and ↓ to be N -words of
arbitrary length. As the definitions of the functions S+ and S− and the variables yi

are already suited for such εi’s, we do not have to make any other modification to
Definition 2.8. Thus the new definition of a DNA expression is

Definition 2.9 A DNA expression is a string in any of the following forms:

• 〈↑ ε1ε2 . . . εn〉,
where n ≥ 1, εi is an N -word or a DNA expression for i = 1, 2, . . . , n, and
S+(εi)❁S+(εi+1) for i = 1, 2, . . . , n − 1 and the function S+ from (2.13).

• 〈↓ ε1ε2 . . . εn〉,
where n ≥ 1, εi is an N -word or a DNA expression for i = 1, 2, . . . , n, and
S−(εi)❁S−(εi+1) for i = 1, 2, . . . , n − 1 and the function S− from (2.16).

• 〈l ε1〉,
where ε1 is either an N -word or a DNA expression.

For each type of DNA expression (i.e., 〈↑ ε1 . . . εn〉, 〈↓ ε1 . . . εn〉 or 〈l ε1〉) the semantics
is defined by the same equation(s) as in Definition 2.8. One can verify that, indeed,
this semantics is always a formal DNA molecule.

Now, the formal language D is the set of all DNA expressions as defined in Defini-
tion 2.9.

Let us return to the DNA expression E = 〈↑ ε1 . . . εi0−1 α εj0+1 . . . εn〉 with α =
ai0 . . . aj0 and j0 > i0. If we consider the N -word α itself as an argument of ↑ (which
is allowed now), then again we obtain

S(E) = ν+(S+(ε1))y1 . . . yi0−2ν
+(S+(εi0−1))

(
α

−

)
ν+(S+(εj0+1))yj0+1 . . . yn−1ν

+(S+(εn)).

Hence, whether we interpret α as one argument or as a sequence of j0 − i0 +1 separate
arguments, the semantics of our example DNA expression is the same. So the extension
of our definition has not caused semantical problems.

By a similar argument, this can be generalized to the following result:

Theorem 2.10 Let E = 〈↑ ε1 . . . εi0−1εi0 . . . εj0εj0+1 . . . εn〉 be a DNA expression where
εi is either an N -word or a DNA expression for i = 1, . . . , i0−1, j0+1, . . . , n and εi = αi

is an N -word for i = i0, . . . , j0. Let α = αi0 . . . αj0. Then S(E) is the same, regardless
of the interpretation of α as one argument or as a sequence of separate arguments
αi0 , . . . , αj0.

2.6: Operators and DNA expressions 19

Of course, an analogous result holds for ↓-expressions.
Thus, although the admission of N -words α of length |α| ≥ 2 as arguments of ↑

and ↓ does introduce ambiguity with respect to the question what the arguments of an
operator are, there can still be no doubt about the (formal) DNA molecule denoted by
a DNA expression.

Note that the interpretation of N -words α of length |α| ≥ 2 as argument(s) of an
operator is unambiguous for the operator l, because this operator can have only one
argument.

For example, let E = 〈↑ ACATG〉. Then under Definition 2.8, we should interpret
E as a ↑-expression with five arguments a1 = A, a2 = C, a3 = A, a4 = T and a5 = G.
Now, there are many more possible interpretations. We may, e.g., interpret E as
〈↑ α1α2〉 with two arguments α1 = AC and α2 = ATG, as 〈↑ α1α2〉 with two arguments
α1 = ACAT and α2 = G, or as 〈↑ α1〉 with only one argument α1 = ACATG. Whatever

interpretation we choose, S(E) =
(
ACATG

−

)
.

In particular, we are free to interpret consecutive N -words in a DNA expression
as one N -word. This motivates the definition of a maximal N -word occurrence in a
string X (for instance a DNA expression E) as an occurrence (X1, X2) of an N -word
α in X such that (1) if X1 6= λ then R(X1) /∈ N and (2) if X2 6= λ then L(X2) /∈ N .
Hence, the N -word α ‘cannot be extended either to the left or to the right’.

For example, in the DNA expression

〈↓ T 〈↑ 〈l C〉AT 〈l GCAT〉〉〉

the first occurrence of C and the first occurrence of AT are maximal N -word occur-
rences. This is, however, not the case with the second occurrences of these N -words,
as they can be extended to GCAT.

We say that an operator governs its argument(s) and everything inside its argu-
ment(s). In every DNA expression we can identify an outermost operator. This is the
operator which has been performed last. It governs the entire DNA expression.

Because of the 1–1 correspondence between a DNA expression and its outermost
operator, we will sometimes interchange the terms. In particular, we may speak of
the arguments of a DNA expression, while we actually mean the arguments of the
outermost operator of a DNA expression. For instance, the (three) arguments of DNA
expression (2.17) are T, 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 and 〈↑ 〈l A〉 〈l T〉〉.

We call (an occurrence of) an operator in a DNA expression E which is not the
outermost operator, an inner occurrence of this operator in E.

An operator may occur more than once in a DNA expression. To denote a specific
occurrence of an operator, we may provide the operator with an index. For example,
we may have ↑0 or ↓1.

A DNA subexpression Es of a DNA expression E is a substring of E which is itself
a DNA expression. If Es 6= E, we call Es a proper DNA subexpression of E. Clearly,
the outermost operator of a proper DNA subexpression of E is an inner occurrence of
this operator in E.

We will use the term ↑-subexpression of E to refer to a DNA subexpression of
E which is a ↑-expression. Analogously, we may have a ↓-subexpression and a l-
subexpression of E.

For every N -word α occurring in a DNA expression E and for every proper DNA
subexpression Es of E we define its parent operator to be the operator which has the
N -word or DNA subexpression as an immediate argument. For instance, in DNA

20 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

0

1

2

3

4

5

level

〈 ↓ T 〈
✁
✁✁. .

✁
✁✁. .

↑ 〈 l C

✁
✁✁.

〉 A T 〈

❆
❆❆ ✁

✁✁.

↓ 〈 l G

✁
✁✁.

〉 〈 l C

❆
❆❆✁

✁✁.

〉 〉 〉 〈

❆
❆
❆
❆
❆
❆❆✁

✁✁.

↑ 〈 l A

✁
✁✁.

〉 〈 l T

❆
❆❆✁

✁✁.

〉 〉 〉

❆
❆
❆
❆
❆
❆❆

Figure 2.7: Level structure for DNA expression (2.17); horizontal dotted lines connect
level changes due to pairs of corresponding brackets.

expression (2.17) the parent operator of the N -word AT is the first occurrence of the
operator ↑ in the DNA expression; for the last occurrence of the N -word T it is clearly
the operator l standing in front of it; and the parent operator of the DNA subexpression
〈l G〉 is the second occurrence of the operator ↓.

If an argument of a certain (occurrence of an) operator is a ↑-expression, then we
may call this argument a ↑-argument of the operator. In an analogous way, we define
a ↓-argument and a l-argument of an operator. If an argument of an operator is an
N -word, then we may call it an N -word-argument of the operator.

2.7 Brackets, arguments and DNA subexpressions

The brackets in a DNA expression can be thought of as determining a structure with
different levels. An opening bracket 〈 corresponds to an increase of the level by 1, a
closing bracket 〉 to a decrease of the level by 1. The resulting levels are also known as
the nesting levels of the brackets.

It is natural to start a DNA expression at level 0. Since every opening bracket
precedes the corresponding closing bracket, the level in a DNA expression is always
non-negative. Further, because the number of opening brackets equals the number of
closing brackets, the level is back at 0 at the end of a DNA expression. In Figure 2.7
we show the different levels for DNA expression (2.17).

The notion of the level of a DNA expression can be used for identifying substrings
of a DNA expression. This is done in the following two results, which we state without
a proof.

Lemma 2.11 Suppose that the opening bracket of a DNA subexpression Es of a DNA
expression E raises the level of E from l − 1 to l for a certain positive integer l. Then
the closing bracket of Es is the first one after this opening bracket to lower the level
from l to l − 1. In particular, between the opening bracket and the closing bracket of
Es, the level is at least l.

To illustrate this lemma, we have drawn dotted lines between corresponding increases
and decreases of the level in Figure 2.7.

2.7: Brackets, arguments and DNA subexpressions 21

E: 〈 . 〉

Es
1: 〈 〉

Es
2: 〈.〉

Figure 2.8: Schematic representation of two (hypothetically) overlapping DNA subex-
pressions Es

1 and Es
2 of a DNA expression E

Theorem 2.12 Let |0 be an operator at level l of the level structure of a DNA expres-
sion E. Then (an occurrence of) a substring beween |0 and the closing bracket of |0 is
an argument of |0 if and only if

• either it is a maximal N -word occurrence in E at level l

• or it starts with an opening bracket raising the level from l to l +1 and ends with
the corresponding closing bracket.

Clearly, as every DNA (sub-)expression is of the form 〈|0ε1 . . . εn〉 for an operator |0 and
arguments ε1, . . . εn, the arguments are indeed substrings between |0 and the closing
bracket of |0. Hence, this theorem covers all arguments of |0.
The theorem is important, because it enables us to determine the structure of a DNA
expression, i.e., how the DNA expression has been built up, even though it is just a
sequence of symbols.

The proof of this theorem relies on the observation that, without loss of generality,
consecutive N -words αi in a DNA expression can be considered as one N -word (see
Theorem 2.10), and on Lemma 2.11. Lemma 2.11 is also useful to prove the following
result:

Theorem 2.13 Two (occurrences of) DNA subexpressions in a DNA expression E
cannot overlap. So either one is contained in the other, or they do not have a common
(occurrence of a) substring at all.

Proof: Suppose that two DNA subexpressions Es
1 and Es

2 do overlap. Without loss of
generality we assume that the opening bracket of Es

2 is contained in Es
1 and that the

closing bracket is not. This situation is depicted in Figure 2.8.
The opening bracket of Es

1 raises the level of the DNA expression from l1 − 1 to l1
for a certain positive l1 and the opening bracket of Es

2 raises the level from l2 − 1 to
l2. By assumption, this latter bracket is between the opening bracket and the closing
bracket of Es

1. Then, by Lemma 2.11, we must have l2 − 1 ≥ l1.
On the other hand, by the same lemma, the closing bracket of Es

1 lowers the level of
the DNA expression from l1 back to l1−1. As this bracket is assumed to be between the
opening bracket and the closing bracket of Es

2, Lemma 2.11 also tells us that l1−1 ≥ l2.
But then we would have l2 − 1 ≥ l1 > l1 − 1 ≥ l2, which is not possible.

Corollary 2.14 If Es is a proper DNA subexpression of a DNA expression E, then
Es is contained in an argument of E.

Proof: Because Es is a proper DNA subexpression of E, it is a substring of ε1 . . . εn,
the concatenation of the arguments of E. Let εi be the first argument that has a

22 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

non-empty intersection with Es. Then εi contains the opening bracket of Es, which
implies that εi is a DNA expression (and not an N -word).

If the opening bracket of Es is the opening bracket of εi, then also the closing
brackets must match, so Es is equal to εi. In particular, Es is contained in εi. If the
opening bracket of Es is not the opening bracket of εi, then εi is clearly not contained
in Es. By Theorem 2.13, Es must be (properly) contained in εi then.

We conclude this section with a simple, but useful result:

Lemma 2.15 Let E ∈ D be a DNA expression. Every argument of every operator in
E contains at least one N -word α.

Proof: Straightforward by induction on the number of operators occurring in an
argument.

2.8 The functions L and R for DNA expressions

An important aspect of the definition of ↑-expressions and ↓-expressions is that their
arguments must fit together by upper strands or lower strands, respectively (see Defi-
nition 2.8). This requirement can be reformulated in terms of L(Ei) and R(Ei), where
every Ei is a DNA expression corresponding to the argument εi.

The functions L and R that occur in these terms have been defined for formal DNA
molecules first, and later, via the function S, also for DNA expressions. However, when
we only want to check if two arguments of an operator fit together by upper strands
or lower strands, we are not interested in the complete semantics of these arguments.
Therefore, it would be convenient if we could compute L(E) and R(E) for a DNA
expression E without computing S(E) explicitly. Actually, we only need to know
whether L(E) and R(E) are elements of A+, A− or A±.

This can be decided in a recursive manner, using the following result:

Lemma 2.16 Let E be a DNA expression.

1. If E = 〈↑ α〉 for an N -word α, then L(E), R(E) ∈ A+.

2. If E = 〈↓ α〉 for an N -word α, then L(E), R(E) ∈ A−.

3. If E = 〈↑ ε1 . . . εn〉 where n ≥ 1 and εi is an N -word or a DNA expression for
i = 1, . . . , n, then L(E) = L(E1) and R(E) = R(En) where E1 = Exp+(ε1) and
En = Exp+(εn).

4. If E = 〈↓ ε1 . . . εn〉 where n ≥ 1 and εi is an N -word or a DNA expression for
i = 1, . . . , n, then L(E) = L(E1) and R(E) = R(En) where E1 = Exp−(ε1) and
En = Exp−(εn).

5. If E = 〈l ε1〉 where ε1 is an N -word or a DNA expression, then L(E), R(E) ∈
A±.

Proof:

1. The claim follows immediately from the observation that S(〈↑ α〉) =
(
α

−

)
.

2. Analogous to the proof of the previous case.

2.9: Recognition of DNA expressions 23

3. According to the definition of a DNA expression and its semantics,

S(E) = ν+(S+(ε1))y1 . . . yn−1ν
+(S+(εn))

for the yi’s from (2.15). Consequently,

L(E) = L(ν+(S+(ε1))) = L(S+(ε1)) = L(S(Exp+(ε1))) = L(Exp+(ε1)) = L(E1).

The second equality in this derivation follows from Lemma 2.7.

In a similar way, we find R(E) = R(En).

4. Analogous to the proof of the previous case.

5. By the definition of the semantics of a l-expression, S(E) = κ(S+(ε1)). Hence,
L(E) = L(κ(S+(ε1))) and R(E) = R(κ(S+(ε1))). By Lemma 2.7, these are in
A±.

2.9 Recognition of DNA expressions

The preceding two sections provide the tools we need to decide whether or not an
arbitrary string E over ΣD, hence consisting of N -words α, operators and brackets, is
a DNA expression.

According to Definition 2.8, a DNA expression is a string of the form 〈|0 . . .〉, where
|0 ∈ O is an operator. In particular, the first symbol of the string has to be an opening
bracket 〈 and the last symbol of the string has to be the corresponding closing bracket
〉.

A first thing we can do now, is to determine the level structure of the string, like we
did in Figure 2.7 for DNA expression (2.17). The first symbol of the string (an opening
bracket) raises the level of the string from 0 to 1. By Lemma 2.11, the last symbol of
the string (the corresponding closing bracket) must lower the level back from 1 to 0,
and the level of the string between these two symbols has to be strictly positive.

There have to be as many operators in the string as there are opening brackets
(and closing brackets). Each operator must be immediately preceded by an opening
bracket.

Next, by using Theorem 2.12, we can determine the arguments εi of the outermost
operator |0 of the string. If |0 is l, then there has to be exactly one argument; if it
is either ↑ or ↓, then the number of arguments has to be positive. In particular, we
cannot have E = 〈↑〉, E = 〈↓〉 or E = 〈l〉.

For those arguments that are no (maximal) N -word occurrences, we can check
recursively whether they are DNA expressions.

If, up to here, all requirements are met and |0 has only one argument, then the
string is a DNA expression. If the number of arguments n is greater than 1 (which
implies that |0 is ↑ or ↓), then we have to do some more work. We use Lemmas 2.16,
to compute L(Ei) and R(Ei) where the Ei’s are defined by

Ei =

{
Exp+(εi) if |0 is ↑
Exp−(εi) if |0 is ↓

(i = 1, 2, . . . , n). (2.20)

24 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

Then, with the L(Ei)’s and R(Ei)’s we check whether or not the arguments fit together
by upper strands (if |0 is ↑) or lower strands (if |0 is ↓). If so, then the string is a DNA
expression; otherwise, it is not.

The entire algorithm for the recognition of a DNA expression takes a time linear
in the length of the string. In principle, it can be implemented with one pass through
the string. In Appendix A, we give a two-phase implementation. First, we check the
positioning of the brackets and the corresponding operators in the string in a straight-
forward iterative way. Then we recursively check if all arguments of the operators are
indeed N -words or DNA expressions and, if so, if they fit together by upper or lower
strands for operators ↑ and ↓, respectively.

2.10 Concatenation of DNA expressions

We have seen that the concatenation of two formal DNA molecules is not necessarily
a formal DNA molecule itself. For DNA expressions, the situation is even worse. The
mere concatenation of two DNA expressions E1 and E2 is never a DNA expression,
not even if E1 and E2 fit together.

This conclusion follows immediately from an examination of the brackets. The first
and the last symbol of a DNA expression have to be corresponding opening and closing
brackets. However, although the first and the last symbol of the string E1E2 are an
opening and a closing bracket, respectively, they are not corresponding opening and
closing brackets.

Thus, E1E2 is just a string consisting of two separate DNA expressions. This
links up with the (natural) interpretation of DNA expressions as DNA molecules. By
putting two DNA molecules in each other’s vicinity, we do not automatically get a new
DNA molecule. It requires a chemical reaction to achieve that. In the world of DNA
expressions, the analogue of such a chemical reaction is an operator. In particular,
the operators ↑ and ↓ that we have defined can be used to combine two or more DNA
expressions into one new DNA expression.

2.11 DNA expressions and trees

Expressions in a context free language have a convenient representation as ordered,
directed trees with labelled nodes. Before we discuss the trees that can be used to
represent DNA expressions, we want to fix some terminology concerning directed trees
in general.

A directed tree is a tree with one designated node, which is called the root of the
tree. A non-root in a tree is a node that is not the root of the tree. Let X be a non-root
in a directed tree. The nodes on the path from the root of the tree to X (including the
root, but excluding X) are the ancestors of X. The last node on this path is the parent
of X. X is called a child of its parent. All nodes ‘below’ X in the tree, i.e., nodes that
X is an ancestor of, are called descendants of X. The subtree rooted in X is the subtree
of t consisting of X and all descendants of X, together with the arcs connecting these
nodes. A leaf in a directed tree is a node without descendants. Nodes that do have
descendants are called internal nodes. We thus have two ways to partition the nodes
in a directed tree: either in a root and non-roots, or in leaves and internal nodes.

A directed tree is ordered if for each internal node X, the children of X are linearly
ordered (‘from left to right’). Finally, an ordered, directed, node-labelled tree is an

2.11: DNA expressions and trees 25

♠

♠ ♠

♠ ♠ ♠ ♠

♠ ♠

✧
✧

✧✧
✂✂

PPPPPPP

¡
¡

❅
❅ ✡✡ ❏❏

✡✡ ❏❏

↓

T ↑ ↑

l AT ↓ l l

C l l A T

G C

Figure 2.9: The tree of DNA expression (2.17).

ordered directed tree with labels at the nodes.
We now define the tree of DNA expression E as follows. For each N -word α and each

operator occurring in E we have a node. The label of this node is the corresponding
N -word or operator. Recall that there is a 1–1 correspondence between (occurrences
of) DNA subexpressions and operators in E. Therefore, every node labelled by an
operator corresponds to a DNA subexpression of E.

Because of the close relationship (through the labelling function) between nodes on
the one hand, and N -words and operators (or DNA subexpressions) occurring in E on
the other hand, we will often say ‘N -word’ or ‘operator’ (‘DNA subexpression’) when
we actually mean the corresponding node in the tree. This meaning will be clear from
the context then.

In the tree we draw arcs from operators to their arguments. By definition, these
arguments are N -words or DNA subexpressions of E. Indeed, as we just noticed, for
every occurrence of an N -word or a DNA subexpression of E, there is a corresponding
node. Hence, the arcs are well defined.

Clearly, the node corresponding to an operator is the parent of (the nodes corre-
sponding to) its arguments. These arguments are the children of the operator. If an
operator has two or more arguments, its children in the tree are arranged from left to
right in the same order as the corresponding arguments in the DNA expression.

Because every N -word and every proper DNA subexpression of E has exactly one
parent operator, we indeed obtain a tree. The leaves of the tree are labelled by the
N -words α in E, the internal nodes by the operators, and, in particular, the root by
the outermost operator of E. As an example, in Figure 2.9 we have drawn the tree of
DNA expression (2.17).

We just recalled the correspondence between DNA subexpressions and operators.
In fact, in the tree of a DNA expression E, a DNA subexpression of E is stored in the
subtree rooted in its outermost operator.

The transformation from DNA expressions to trees is injective. This means that
when we are given a ‘syntactically correct’ ordered, directed, node-labelled tree, we can
perform the inverse transformation. The syntactic demands we impose on the trees are
similar to those for a string to be a DNA expression:

• internal nodes are labelled by operators and leaves by N -words

• a node labelled by l has only one child

• if a node labelled by ↑ or ↓ has two or more children, the DNA subexpressions

26 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

corresponding to these children fit together by upper strands or lower strands,
respectively.

This final requirement is in fact a recursive one, as it presupposes that the subtrees
rooted in the children can be interpreted as DNA expressions.

If this assumption is valid, the prefitting requirement can be checked in a way
similar to that for DNA expressions. Suppose that the ith child of a node labelled by
↑ corresponds to an N -word or a DNA expression εi, which has to prefit the (i + 1)st

child by upper strands. Then, e.g., R(S+(εi)) must be an element of A± ∪ A+.
We can check this condition by walking the rightmost path in the subtree rooted in

εi. This path ends in a certain N -word α. If the parent of α is a node labelled by l or
↑, R(S+(εi)) certainly belongs to A± ∪A+. If not (hence, if the parent of α is labelled
by ↓), the composite symbol R(S+(εi)) cannot be an element of A+, as the lower part
of the symbol is not equal to −. In order for R(S+(εi)) to be in A±, there has to be
a node labelled by l on the path from εi down to α (including εi), and this is easy to
verify.

If (and only if) a tree satisfies the three requirements mentioned, it represents a
DNA expression: the DNA expression of the tree.

In order to obtain this DNA expression, we have to perform a depth first search
walk through the tree. In this walk, when entering an internal node X for the first
time, we collect the opening bracket 〈 and the operator of the node. Next, we collect
the argument(s) of the operator by recursively visiting the child(ren) of the node, and
finally, when returning to X, we obtain the closing bracket 〉. Apart from this closing
bracket, the walk can be considered as a preorder walk.

2.12 Equivalent DNA expressions

Different DNA expressions may correspond to the same DNA molecule. It is, for
instance, easy to verify that the DNA expressions 〈↑ α〉 and 〈↑ 〈↑ α〉〉 have the same
semantics. It is also possible that different DNA expressions denote ‘almost the same’
DNA molecule for a certain interpretation of ‘almost the same’. To express these
things, we give a number of definitions. Before that, however, we recall some general
notions.

A binary relation R on a set X is a subset of X × X = {(x, y)| x, y ∈ X}. If
(x, y) ∈ R, we also write xRy; if (x, y) /∈ R, we may write x /Ry. A binary relation R
on X is
- reflexive if for every x ∈ X, xRx
- symmetric if for every x, y ∈ X, xRy implies yRx
- antisymmetric if for every x, y ∈ X, (xRy and yRx) implies x = y
- transitive if for every x, y, z ∈ X, (xRy and yRz) implies xRz
If a relation R is reflexive, symmetric and transitive, R is called an equivalence relation;
if R is reflexive, antisymmetric and transitive, we call R a partial order .

Given a binary relation R, the set R∂ = {(y, x)| (x, y) ∈ R} is the dual relation of
R. A binary relation R1 is a refinement of a binary relation R2 if R1 ⊆ R2, in other
words: if xR1y implies xR2y. In this case R2 is called an extension of R1.

We return to the world of DNA. We define four binary relations on D.

2.12: Equivalent DNA expressions 27

Definition 2.17 Two DNA expressions E1 and E2 are strictly equivalent, or equivalent
for short, if S(E1) = S(E2). We write E1 ≡ E2 then.

Hence two DNA expressions are equivalent if they denote exactly the same DNA
molecule.

A somewhat weaker version of this relation is

Definition 2.18 Two DNA expressions E1 and E2 are equivalent modulo nicks, if
ν(S(E1)) = ν(S(E2)). We write E1=▽E2 then.

Intuitively, E1 and E2 are equivalent modulo nicks, if they denote DNA molecules
with the same nucleotides at the same positions; the DNA molecules may, however,
have nicks at different positions. E1 may have nicks not occurring in E2 and/or

the other way round. For instance, if S(E1) =
(
A
T

)
▽
(
C
G

)(
A
T

)
△

(
T
A

)(
G
C

)
, and S(E2) =

(
A
T

)(
C
G

)
△

(
A
T

)(
T
A

)(
G
C

)
then E1=▽E2

2

We further define a variant of this last relation.

Definition 2.19 A DNA expression E1 is equivalent to a DNA expression E2 pre-
modulo nicks, if there are strings X1, . . . , Xr with r ≥ 1 over A▽△

and symbols c1, . . . , cr−1

∈ {▽, △} such that S(E1) = X1c1 . . . cr−1Xr and S(E2) = X1 . . . Xr. We write E1 ▽≡
E2 then.

Hence, if E1 ▽≡ E2, then E1=▽E2 with the restriction that the DNA molecule denoted
by E2 does not contain nicks not occurring in the DNA molecule denoted by E1. For

instance: if S(E1) =
(
A
T

)
▽
(
C
G

)(
A
T

)
△

(
T
A

)(
G
C

)
, and S(E2) =

(
A
T

)(
C
G

)(
A
T

)
△

(
T
A

)(
G
C

)
then

E1 ▽≡ E2. On the other hand, if S(E1) is as before and S(E2) =
(
A
T

)(
C
G

)
△

(
A
T

)(
T
A

)(
G
C

)
,

then E1 ▽ 6≡ E2.
If E1 ▽≡ E2, we may also write E2 ≡▽ E1 and say that E2 is equivalent post-modulo

nicks to E1. Thus, the relations ▽≡ and ≡▽ are each other’s duals: ▽≡ = ≡∂
▽
.

It is easy to verify that each of the binary relations ≡, =
▽ , ▽≡ and ≡▽ is reflexive and

transitive. Further, ≡ and =
▽ are symmetric, so these relations are (indeed) equivalence

relations.
The relations ▽≡ and ≡▽ are not symmetric. Hence, despite of their names, they

are no equivalence relations. At first glance, one might think that ▽ ≡ and ≡▽ are
antisymmetric: ‘if a formal DNA molecule S(E1) has more nicks than another formal
DNA molecule S(E2), then certainly S(E2) does not have more nicks than S(E1)’.
However, if E1 ≡ E2, then both E1 ▽≡ E2 and E2 ▽≡ E1 (and analogously for ≡▽).
Since equivalent DNA expressions E1 and E2 are not necessarily the same, ▽≡ and
≡▽ are not antisymmetric. Consequently, they are no partial orders, either. At most
we can say that they are antisymmetric (and thus partial orders) up to equivalence.

It follows immediately from the definition that E1 ▽≡ E2 implies E1=▽E2 and that

E1 ≡▽ E2 implies E1=▽E2, so ▽≡ and ≡▽ are refinements of =
▽ . On the other hand,

the equivalence relation ≡ is a refinement both of ▽≡ and of ≡▽ (and thus certainly

of =
▽). Finally, the equivalence relation = on D (containing only (x, x) for x ∈ D), is a

trivial refinement of ≡.

2Actually, this example is not really appropriate. As we will see in § 3.1, a DNA expression with
the semantics attributed to E1 does not exist. At the level of formal DNA molecules, however, this
example is a good illustration of the notion of equivalence modulo nicks.

28 TR 2004-03, LIACS, Leiden University, Ch. 2: Terminology and notation

equivalence relation:
reflexive, symmetric, transitive

reflexive, not symmetric,
transitive

equivalence relation:
reflexive, symmetric, transitive

≡

▽≡ ≡▽

=
▽

✓
✓✓✴

❙
❙❙✇

❙
❙❙✇

✓
✓✓✴

≡ = ▽≡ ∩ ≡▽, the largest equivalence
relation contained in both ▽≡ and ≡▽

▽≡ = ≡∂
▽

the smallest equivalence relation
containing both ▽≡ and ≡▽

Figure 2.10: Properties of and relations between four different binary relations on D.

We can combine the notions of transitivity and refinement, for instance: if E1 ≡ E2

and E2 ≡▽ E3, then E1 ≡▽ E3. The following is also clear: if E1 ▽≡ E2 and E1 ≡▽ E2

then E1 ≡ E2. Thus, the equivalence relation ≡ is the intersection of the relations ▽≡
and ≡▽. Clearly, ≡ is the largest equivalence relation contained in both ▽≡ and ≡▽.

We finally have the following result:

Lemma 2.20 The relation =
▽ is the smallest equivalence relation containing both ▽≡

and ≡▽.

Note that there is indeed a unique smallest equivalence relation containing both ▽≡
and ≡▽, namely the intersection of all equivalence relations containing ▽≡ and ≡▽.
Proof: Let R0 be the smallest equivalence relation containing both ▽≡ and ≡▽. We

just observed that =
▽ is an equivalence relation containing ▽ ≡ and ≡▽. Hence, R0

must be a subset of =
▽ .

Consider two arbitrary DNA expressions E1 and E2 such that E1=▽E2. By definition,

ν(S(E1)) = ν(S(E2)), or, in words, E1 and E2 denote DNA molecules that have the
same nucleotides at the same positions, but may have different nicks.

If we let E3 = 〈↓ 〈↑ E1〉〉, then E3 ∈ D and S(E3) = ν−(ν+(S(E1))) = ν(S(E1)) by
(2.12). Thus, S(E3) = ν(S(E1)) = ν(S(E2)), or, in words, E3 denotes a DNA molecule
with the same nucleotides at the same positions as E1 and E2, but without nicks.

We have E1 ▽≡ E3 and E3 ≡▽ E2, implying E1R0E3 and E3R0E2. The transitivity
of R0 yields that also E1R0E2. Because E1 and E2 were arbitrary DNA expressions
with E1=▽E2, the equivalence relation =

▽ must be a subset of R0.

Thus, we can conclude that R0 is equal to =
▽ .

The results of this section are summarized in Figure 2.10.
Note that, because ▽≡ and ≡▽ are each other’s duals and symmetry is an inherent

property of equivalence relations, every equivalence relation contained in ▽≡ is also
contained in ≡▽, and vice versa. Similarly, every equivalence relation containing ▽≡
also contains ≡▽, and vice versa. Therefore, we may rephrase two statements we made,
as follows: (1) the relation ≡ is the largest equivalence relation contained in ▽≡, and

(2) the relation =
▽ is the smallest equivalence relation containing ▽≡. Of course, in

the rephrased statements, we may replace the relation ▽≡ by ≡▽.

Chapter 3

Basic results on DNA expressions

In this chapter, we present some basic results on DNA expressions, which will be used
in the next chapter of this report. We first discuss which formal DNA molecules can be
denoted by a DNA expression. After that, we derive a number of results on equivalence
(modulo nicks) between different DNA expressions.

3.1 Expressible formal DNA molecules

Many formal DNA molecules can be denoted by DNA expressions. We call such formal
DNA molecules expressible. In particular, there exist DNA expressions which denote
molecules with gaps and nicks. An example of this was DNA expression (2.17), which
denotes the molecule of Figure 2.5(b), with two gaps and a nick.

Unfortunately, there also exist formal DNA molecules that are not expressible. We
will see that the presence of nick letters in a formal DNA molecule determines wether or
not it is expressible. We have a number of results concerning nicks in DNA expressions.

Lemma 3.1 Let E be a ↑-expression, E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and εi is an
N -word or a DNA expression for i = 1, . . . , n. Then

1. the upper strand of E is nick free;

2. the lower strand of E is nick free if and only if

(a) for i = 1, . . . , n, the lower strand of S+(εi) is nick free, and

(b) for i = 1, . . . , n− 1, either R(S+(εi)) ∈ A+ or L(S+(εi+1)) ∈ A+ (or both).

Proof: By definition,

S(E) = ν+(S+(ε1))y1 . . . yn−1ν
+(S+(εn))

with the yi’s from (2.15).

1. Because the function ν+ removes all upper nick letters from its arguments, and
yi is either △ or λ (in particular, yi is not an upper nick letter), the upper strand
of S(E) is nick free.

29

30 TR 2004-03, LIACS, Leiden University, Ch. 3: Basic results on DNA expressions

2. “=⇒” Assume that the lower strand of E is nick free.

Suppose then that condition 2(a) is not valid. Hence, for some i ∈ {1, . . . , n},
S+(εi) contains a lower nick letter. Then also ν+(S+(εi)) and thus S(E) contains
a lower nick letter, which contradicts the assumption.

Suppose that condition 2(b) is not valid. Hence, for some i ∈ {1, . . . , n − 1},
both R(S+(εi)) ∈ A± and L(S+(εi+1)) ∈ A±. By definition, yi = △ and the
lower strand of E is not nick free then, which again contradicts the assumption.

“⇐=” Assume that conditions 2(a) and 2(b) hold for the arguments of E. Because
S+(εi) does not contain lower nick letters by condition 2(a), and the function ν+

certainly does not introduce lower nick letters, the lower strand of ν+(S+(εi)) is
nick free for i = 1, . . . , n.

Further, condition 2(b) ensures that yi = λ for i = 1, . . . , n − 1.

As a result, the lower strand of S(E) is nick free.

In an analogous way we prove

Lemma 3.2 Let E be a ↓-expression, E = 〈↓ ε1 . . . εn〉, where n ≥ 1 and εi is an
N -word or a DNA expression for i = 1, . . . , n. Then

1. the lower strand of E is nick free;

2. the upper strand of E is nick free if and only if

(a) for i = 1, . . . , n, the upper strand of S−(εi) is nick free, and

(b) for i = 1, . . . , n− 1, either R(S−(εi)) ∈ A− or L(S−(εi+1)) ∈ A− (or both).

We finally have

Lemma 3.3 Let E be a l-expression, E = 〈l ε1〉, where ε1 is an N -word or a DNA
expression. Then

1. the upper strand of E is nick free if and only if either ε1 is an N -word α or ε1 is
a DNA expression with a nick free upper strand;

2. the lower strand of E is nick free if and only if either ε1 is an N -word α or ε1 is
a DNA expression with a nick free lower strand.

Proof: If ε1 is an N -word α, then S(E) =
(

α

c(α)

)
and E is altogether nick free.

If, on the other hand ε1 is a DNA expression E1, then S(E) = κ(S(E1)). As the
function κ does not introduce and does not repair nicks, the upper (or lower) strand of
E is nick free if and only if the upper (lower, respectively) strand of E1 is nick free.

Lemmas 3.1 and 3.2 are useful for proving the following result:

Theorem 3.4 There do not exist DNA expressions denoting molecules with nicks in
both strands. In other words: if E is a DNA expression, then either the upper strand
or the lower strand (or both) of E is nick free.

3.2: Some equivalences 31

ACATG
TGTAC

▽

△

CATG
TAC

▽

ACATG
T TAC

(a) (b) (c)

Figure 3.1: (a) A molecule which cannot be denoted by a DNA expression, because it
has nicks in both strands; (b) a molecule which can be denoted by a DNA expression,
but not by a DNA expression in D′, because it contains a nick; (c) a molecule which
can be denoted by a DNA expression in D′, because it is nick free.

Proof: By Lemmas 3.1 and 3.2, every ↑-expression and every ↓-expression has at least
one strand without nicks.

For l-expressions E = 〈l ε1〉, with ε1 an N -word or a DNA expression, we prove
the claim by induction on the number p of operators occurring in E.

• If p = 1, then E = 〈l α〉 for an N -word α and S(E) =
(

α

c(α)

)
. Clearly, E is

altogether nick free.

• Let p ≥ 1, and suppose that the claim holds for all l-expressions containing p
operators (induction hypothesis). Then consider an arbitrary l-expression E =
〈l ε1〉 with p + 1 operators.

As p + 1 ≥ 2, ε1 must be a DNA expression E1 containing p operators. If E1 is
a ↑-expression or a ↓-expression, at least one of the strands of E1 is nick free by
Lemmas 3.1 and 3.2. If E1 is a l-expression, we know by the induction hypothesis
that at least one of the strands of E1 is nick free.

Because S(E) = κ(S(E1)) and the function κ does not introduce (nor repair)
nicks in its argument, the claim holds also for E.

Consequently, there is, e.g., no DNA expression for the molecule depicted in Fig-
ure 3.1(a).

Given Theorem 3.4, we may wonder if there are other limitations on the DNA
molecules with gaps and nicks that can be expressed in D. Does there exist a DNA
expression for every DNA molecule with nicks in at most one strand? In Chapter 4,
we will see that indeed there is. In particular, in Theorem 4.65 and Theorem 4.67, we
describe constructions of DNA expressions denoting nick free formal DNA molecules
and formal DNA molecules containing lower nick letters, respectively. We thus have

Theorem 3.5 A formal DNA molecule X is expressible, if and only if X does not
contain both upper nick letters and lower nick letters.

Hence, some DNA molecules with nicks are expressible, whereas others are not.

3.2 Some equivalences

There are many general rules concerning equivalence between different DNA expres-
sions. Some of them follow immediately from the definition of the semantics of a DNA
expression. For example, for every N -word α,

〈l α〉 ≡ 〈l 〈↑ α〉〉 ≡ 〈l 〈↓ c(α)〉〉 . (3.1)

32 TR 2004-03, LIACS, Leiden University, Ch. 3: Basic results on DNA expressions

Another example is: for every DNA expression 〈↑ ε1 . . . εn〉, where n ≥ 1 and for
i = 1, . . . , n, εi is an N -word or a DNA expression,

〈↑ ε1 . . . εn〉 ≡ 〈↑ E1E2 . . . En〉 , (3.2)

where for i = 1, . . . , n, Ei = Exp+(εi).
Other rules are intuitively clear, but a bit less easy to prove. To demonstrate how

such rules are proved, we state one rule as a lemma here and give its formal proof.

Lemma 3.6 Let 1 ≤ i0 ≤ j0 ≤ n, and let εi for i = 1, . . . , n be an N -word or a DNA
expression. Then

〈↑ ε1 . . . εi0−1 〈↑ εi0 . . . εj0〉 εj0+1 . . . εn〉 ≡ 〈↑ ε1 . . . εn〉 (3.3)

if either the left-hand side or the right-hand side of the equivalence is a DNA expression.

Proof: Let us (again) consider Ei = Exp+(εi) for i = 1, . . . , n and let Ei0j0 =
〈↑ εi0 . . . εj0〉.

First, we need to prove that if either side of the equivalence in the claim is a
DNA expression, then so is the other. If, e.g., the left-hand side is a DNA expression,
then in particular Ei0j0 = 〈↑ εi0 . . . εj0〉 is a DNA expression. This implies that Ei❁Ei+1

(i = i0, . . . , j0−1). We further know that Ei❁Ei+1 for i = 1, . . . , i0−2, j0+1, . . . , n−1.
Finally, we have Ei0−1❁Ei0j0 and Ei0j0❁Ej0+1.

The last two relations are equivalent to R(Ei0−1), L(Ei0j0) ∈ A± ∪ A+ and to
R(Ei0j0), L(Ej0+1) ∈ A±∪A+, respectively. Now, by Lemma 2.16(3), L(Ei0j0) = L(Ei0)
and R(Ei0j0) = R(Ej0). Hence, L(Ei0), R(Ej0) ∈ A± ∪ A+. We already knew that
R(Ei0−1), L(Ej0+1) ∈ A± ∪ A+. Thus, Ei0−1❁Ei0 and Ej0❁Ej0+1.

We can conclude that Ei❁Ei+1 for i = 1, 2, . . . , n− 1, so that 〈↑ ε1 . . . εn〉 is a DNA
expression. The proof in the other direction proceeds along the same lines.

Now, we can concentrate on the claim itself. By definition,

S+(Ei0j0) = S(Ei0j0) = ν+(S+(εi0))yi0 . . . yj0−1ν
+(S+(εj0))

and

S(〈↑ ε1 . . . εi0−1 〈↑ εi0 . . . εj0〉 εj0+1 . . . εn〉) =

ν+(S+(ε1))y1 . . . yi0−2ν
+(S+(εi0−1))yi0−1 · ν

+(S+(Ei0j0))· (3.4)

yj0ν
+(S+(εj0+1))yj0+1 . . . yn−1ν

+(S+(εn)),

where the yi’s are defined by

yi =

△ if Ei❁Ei+1, i.e., if both R(Ei) ∈ A±

and L(Ei+1) ∈ A±

λ otherwise, i.e., if R(Ei) ∈ A+

or L(Ei+1) ∈ A+ (or both)

. (3.5)

for i = 1, . . . , i0 − 2, i0, . . . , j0 − 1, j0 + 1, . . . , n − 1,

yi0−1 =

△ if Ei0−1❁Ei0j0 , i.e., if both R(Ei0−1) ∈ A±

and L(Ei0j0) ∈ A±

λ otherwise, i.e., if R(Ei0−1) ∈ A+

or L(Ei0j0) ∈ A+ (or both)

3.2: Some equivalences 33

yj0 =

△ if Ei0j0❁Ej0+1, i.e., if both R(Ei0j0) ∈ A±

and L(Ej0+1) ∈ A±

λ otherwise, i.e., if R(Ei0j0) ∈ A+

or L(Ej0+1) ∈ A+ (or both)

We already observed that L(Ei0j0) = L(Ei0) and R(Ei0j0) = R(Ej0). But then the
definitions of yi0−1 and yj0 fit exactly into the general framework of definition (3.5).
Hence, definition (3.5) is valid for i = 1, . . . , n − 1.

Now we will elaborate on the middle term of the right-hand side of (3.4). Because
ν+ is a homomorphism,

ν+(S+(Ei0j0)) = ν+(ν+(S+(εi0))yi0 . . . yj0−1ν
+(S+(εj0))) =

(3.6)

ν+(ν+(S+(εi0)))ν
+(yi0) . . . ν+(yj0−1)ν

+(ν+(S+(εj0)))

For every i, yi is either △ or λ. Consequently, ν+(yi) = yi for every i, and in particular
for i = i0, . . . j0 − 1. Combining this with property (2.11), we can rewrite the result of
(3.6) into

ν+(S+(εi0))yi0 . . . yj0−1ν
+(S+(εj0))

We can substitute this into (3.4), which yields

S(〈↑ ε1 . . . εi0−1 〈↑ εi0 . . . εj0〉 εj0+1 . . . εn〉) =

ν+(S+(ε1))y1 . . . yi0−2ν
+(S+(εi0−1))yi0−1 ν+(S+(εi0))yi0 . . . yj0−1ν

+(S+(εj0))

yj0ν
+(S+(εj0+1))yj0+1 . . . yn−1ν

+(S+(εn))

with yi as in (3.5) for i = 1, . . . , n − 1. But this exactly equals S(〈↑ ε1 . . . εn〉).

In fact, (3.2) is a special case of Lemma 3.6. Another special case is

〈↑ 〈↑ ε1 . . . εn〉〉 ≡ 〈↑ ε1 . . . εn〉 (3.7)

if either side of the equivalence is a DNA expression. Under the same condition, we
find

〈↑ 〈↑ ε1〉 〈↑ ε2〉〉 ≡ 〈↑ ε1ε2〉 (3.8)

by applying the lemma twice.
For every result on ↑-expressions there exists an analogous result for ↓-expressions

(and vice versa). For example, the analogous version of Lemma 3.6 is

Let 1 ≤ i0 ≤ j0 ≤ n, and let εi for i = 1, . . . , n be an N -word or a DNA
expression. Then

〈↓ ε1 . . . εi0−1 〈↓ εi0 . . . εj0〉 εj0+1 . . . εn〉 ≡ 〈↓ ε1 . . . εn〉

if either the left-hand side or the right-hand side of the equivalence is a
DNA expression.

34 TR 2004-03, LIACS, Leiden University, Ch. 3: Basic results on DNA expressions

Often, we will not formulate the analogous result explicitly. As a matter of fact, we
will refer to the result for ↑-expressions, even if we need the analogous version of it.

The analogue of (3.7) for l-expressions is clear from the definition of the operator
l (see Definition 2.8) and from property (2.11):

〈l 〈l ε〉〉 ≡ 〈l ε〉 (3.9)

for every N -word or DNA expression ε.

We proceed with three results concerning the substitution of (occurrences of) N -
words or DNA subexpressions in a DNA expression by N -words or DNA subexpressions
which are equivalent ((pre/post-)modulo nicks).

Lemma 3.7 Let E be a DNA expression and let Es be (an occurrence of) a DNA

subexpression in E. Let Es′ be a DNA expression such that Es=
▽Es′.

When we substitute (the occurrence of) Es in E by Es′, the resulting string E ′ is

again a DNA expression, and E=
▽E ′.

Proof: By induction on the number p of operators in E which are not in Es.

• If p = 0, then E = Es, and the claim is trivially valid.

• Let p ≥ 0, and suppose that the claim holds for every DNA expression E and
(occurrence of a) DNA subexpression Es of E such that the number of operators
in E which are not in Es is at most p (induction hypothesis). Now let E be a
DNA expression and let Es be (an occurrence of) a DNA subexpression of E
such that there are p + 1 operators in E which are not in Es.

Because p + 1 ≥ 1, Es is a proper DNA subexpression of E, and Es is the
immediate argument of a DNA subexpression Eσ = 〈|0ε1 . . . εi0−1E

sεi0+1 . . . εn〉
of E, for some operator |0, i0 and n with 1 ≤ i0 ≤ n, and N -words or DNA
expressions εi.

Let us define Eσ ′ = 〈|0ε1 . . . εi0−1E
s′εi0+1 . . . εn〉. Then by condition 2 of Def-

inition 2.1, L(Es), R(Es), L(Es′) and R(Es′) are not nick letters, and thus
L(Es) = L(Es′) and R(Es) = R(Es′). Consequently, the arguments of Eσ ′

fit together just like those of Eσ, so that Eσ ′ is a DNA expression. Now it follows
from the definition of the semantics of a DNA expression that Eσ=

▽Eσ ′.

Substituting Es in E by Es′ produces the same overall string E ′ as substituting
Eσ by Eσ ′. Because the number of operators in E which are not in Eσ is at most
p, it follows by induction that E ′ is a DNA expression satisfying E=

▽E ′.

It is easy to see that this result remains valid if we replace every occurrence of the
relation =

▽ by ≡, ▽≡ or ≡▽.

Lemma 3.8 Let E be a DNA expression and let ε be (an occurrence of) an N -word
or a proper DNA subexpression in E, such that the parent operator of ε is ↑. Let ε′ be
an N -word or a DNA expression satisfying Exp+(ε)=▽Exp+(ε′).

When we substitute (the occurrence of) ε in E by ε′, the resulting string E ′ is again

a DNA expression, and E=
▽E ′.

3.2: Some equivalences 35

Proof: If both ε and ε′ are DNA expressions, then we simply have a special case of
Lemma 3.7.

If both ε and ε′ are N -words, then they must be equal, because Exp+(ε) =
(

ε

−

)

and Exp+(ε′) =
(
ε′

−

)
are assumed to be equivalent modulo nicks. Then also E = E ′

and the claim follows immediately.
If ε is an N -word and ε′ is a DNA expression, then let Es be the DNA subexpression

of E which ε is an immediate argument of: Es = 〈↑ ε1 . . . εi0−1εεi0+1 . . . εn〉 for some
i0 and n with 1 ≤ i0 ≤ n and N -words or DNA expressions εi. Now, by Lemma 3.6,
Es ≡ 〈l ε1 . . . εi0−1 〈↑ ε〉 εi0+1 . . . εn〉. Let us use Es′ to denote the right-hand side of
this equivalence.

By Lemma 3.7, we can replace Es in E by Es′ and the overall result E ′′ is a DNA
expression equivalent to E. In E ′′ we can replace 〈↑ ε〉 by the DNA expression ε′, and
again by Lemma 3.7, the resulting overall string E ′ is a DNA expression satisfying
E ′′=

▽E ′. By the transitivity of the relation =
▽ , we also have E=

▽E ′.

For the case that ε is a DNA expression and ε′ is an N -word, the claim can be
proved analogously.

When we apply a special case of Lemma 3.8 n times, we obtain

Corollary 3.9 Let n ≥ 1, and let for i = 1, . . . , n, εi and ε′i be an N -word or a DNA
expression, Ei = Exp+(εi) and E ′

i = Exp+(ε′i).
Then

if Ei=▽E ′
i for i = 1, . . . , n, then 〈↑ ε1 . . . εn〉=

▽ 〈↑ ε′1 . . . ε′n〉

if either of 〈↑ ε1 . . . εn〉 and 〈↑ ε′1 . . . ε′n〉 is a DNA expression, i.e. if, e.g. εi❁εi+1 for
i = 1, . . . , n − 1.

Both in Lemma 3.8 and in Corollary 3.9, we might also replace every occurrence of
the relation =

▽ by ≡, ▽ ≡ or ≡▽, and the operator ↑ by ↓ (in which case we must

use the function Exp− instead of Exp+) or l (in which case n must be equal to 1 in
Corollary 3.9).

Finally, we will give four results that deal with the exchange of outermost operators
between a DNA expression and its argument(s). We will need them when we prove the
correctness of an algorithm for rewriting DNA expressions. Again, we will state (and
prove) only one of two possible versions of each of the results. There exist analogous
results in which every occurrence of the operator ↑ is replaced by ↓ and (if applicable)
vice versa.

Lemma 3.10 Let E = 〈l 〈↑ ε1 . . . εn〉〉 with n ≥ 1 be a l-expression, such that for i =
1, . . . , n, εi is a DNA expression (and not an N -word). Then E ≡▽ 〈↑ 〈l ε1〉 . . . 〈l εn〉〉.

Note that the right-hand side of the equivalence in the claim is indeed a DNA expres-
sion. By Lemma 2.16, case 5, L(〈l εi〉), R(〈l εi〉 ∈ A± for i = 1, . . . , n, and thus the
arguments of the operator ↑ in the right-hand side fit together by upper strands.
Proof: By definition,

S(E) = S(〈l 〈↑ ε1 . . . εn〉〉) = κ(S(〈↑ ε1 . . . εn〉)) =

κ(ν+(S+(ε1))y1 . . . yn−1ν
+(S+(εn))) = κ(ν+(S+(ε1)))y1 . . . yn−1κ(ν+(S+(εn))),

36 TR 2004-03, LIACS, Leiden University, Ch. 3: Basic results on DNA expressions

where for i = 1, . . . , n − 1, yi ∈ {△, λ}, and the actual value of yi depends on εi and
εi+1 (see (2.15)). Because εi is a DNA expression, S+(εi) = S(εi) for i = 1, . . . , n,
and because of the commutativity of κ and ν+ (see (2.10)), these functions may be
interchanged. Hence, we get:

S(E) = ν+(κ(S(ε1)))y1 . . . yn−1ν
+(κ(S(εn))).

On the other hand,

S(〈↑ 〈l ε1〉 . . . 〈l εn〉〉) = ν+(S+(〈l ε1〉))y
′
1 . . . y′

n−1ν
+(S+(〈l εn〉)) =

ν+(κ(S(ε1)))y
′
1 . . . y′

n−1ν
+(κ(S(εn))),

where, for i = 1, . . . , n − 1, y′
i ∈ {△, λ}, and the value of y′

i is determined by the
arguments 〈l εi〉 and 〈l εi+1〉. However, by Lemma 2.16, case 5, L(〈l εi〉), R(〈l εi〉) ∈
A± for i = 1, . . . , n, so that every y′

i is equal to △.
Consequently, E ≡▽ 〈↑ 〈l ε1〉 . . . 〈l εn〉〉.

If, for instance, n = 2, and S(ε1) =
(
A
T

)
▽
(
C
G

)
and S(ε2) =

(
A
−

)(
T
A

)
△

(
G
C

)
, then

S(〈l 〈↑ ε1ε2〉〉) =
(
A
T

)(
C
G

)(
A
T

)(
T
A

)
△

(
G
C

)
, while 〈↑ 〈l ε1〉 〈l ε2〉〉 =

(
A
T

)(
C
G

)
△

(
A
T

)(
T
A

)
△

(
G
C

)
.

Lemma 3.10 cannot always be reversed. For instance, if we have a DNA expression
〈↑ 〈l ε1〉 . . . 〈l εn〉〉, we do not a priori know that 〈l 〈↑ ε1 . . . εn〉〉 is a DNA expression,
because the arguments ε1, . . . εn of ↑ may not fit together by upper strands. Only if
they do, we can say that 〈↑ 〈l ε1〉 . . . 〈l εn〉〉 ▽≡ 〈l 〈↑ ε1 . . . εn〉〉.

Sometimes, however, reversing is possible without worrying about syntactic con-
straints.

Corollary 3.11 For all N -words α1, . . . , αn with n ≥ 1, we have

〈↑ 〈l α1〉 . . . 〈l αn〉〉 ▽≡ 〈l α1 . . . αn〉 .

Note that the concatenation of n ≥ 1 N -words αi is itself a (one) N -word, so that the
right-hand side of the claim is indeed a DNA expression.
Proof: We can rewrite 〈l α1 . . . αn〉 backwards as follows:

〈l α1 . . . αn〉 ≡ 〈l 〈↑ α1 . . . αn〉〉 ≡ 〈l 〈↑ 〈↑ α1〉 . . . 〈↑ αn〉〉〉 ≡▽

〈↑ 〈l 〈↑ α1〉〉 . . . 〈l 〈↑ αn〉〉〉 ≡ 〈↑ 〈l α1〉 . . . 〈l αn〉〉

The first and the last equivalence follow from (3.1), the second one from Lemma 3.6
and the third one from Lemma 3.10.

Theorem 3.12 Let ε1, . . . , εm, ε̂2, . . . , ε̂n with m ≥ 0 and n ≥ 1 be DNA expressions
or N -words, and let Ê1 be a DNA expression, such that

• S+(εi)❁S+(εi+1) for i = 1, . . . ,m − 1,

• S+(εm)❁S(Ê1),

• S(Ê1)❁S−(ε̂2) and

• S−(ε̂i)❁S−(ε̂i+1) for i = 2, . . . , n − 1.

3.2: Some equivalences 37

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

¡
¡

¡¡

❅
❅

❅❅

✡
✡

✡

❏
❏
❏

¡
¡

¡¡

❅
❅

❅❅

✡
✡

✡

❏
❏
❏

↑

ε1 εm ↓

Ê1 ε̂2 ε̂n

=
▽

↓

↑ ε̂2 ε̂n

ε1 εm Ê1

.

. . .

.

. . .

✎☞
❄

✎☞
❄

Figure 3.2: Analogue of Theorem 3.12 for trees of DNA expressions.

Then the strings E =
〈
↑ ε1 . . . εm

〈
↓ Ê1ε̂2 . . . ε̂n

〉〉
and E ′ =

〈
↓

〈
↑ ε1 . . . εmÊ1

〉
ε̂2 . . . ε̂n

〉

are DNA expressions satisfying E=
▽E ′.

What we actually do in this theorem, is moving the outermost operator ↓ of the last
argument

〈
↓ Ê1ε̂2 . . . ε̂n

〉
of the DNA expression E to the left of the DNA expression.

To ensure that the arguments of the two operators ↑ and ↓ still fit together by upper
or lower strands, respectively, i.e., that the resulting string is still a DNA expression,
we also have to shift one of the closing brackets.

For the tree of the DNA expression E, this action corresponds to a rotation to the
left on the root of the tree. If we want to transform the tree of E ′ back into the tree
of E, then we have to perform a rotation to the right on the root of the tree. This is
depicted in Figure 3.2.

Note that our requirement that Ê1 be a DNA expression (and not an N -word) is
quite natural. If m ≥ 1 (or n ≥ 2), it simply has to be a DNA expression, in order
for E (or E ′, respectively) to be a DNA expression. If Ê1 were an N -word α here, the
lower strand of 〈↓ αε̂2 . . . ε̂n〉 would strictly cover the upper strand to the left, and thus
εm and 〈↓ αε̂2 . . . ε̂n〉 would not fit together by upper strands in E (and similarly for
E ′ if n ≥ 2).

Proof: By Definition 2.9 and Lemma 2.16, E and E ′ are indeed DNA expressions.
Now by definition,

S(E) = ν+(S+(ε1))y1 . . . ym−1ν
+(S+(εm))ym ·

ν+(ν−(S(Ê1))ŷ1ν
−(S−(ε̂2))ŷ2 . . . ŷn−1ν

−(S−(ε̂n)))

and

S(E ′) = ν−(ν+(S+(ε1))y1 . . . ym−1ν
+(S+(εm))ymν+(S(Ê1))) ·

ŷ1ν
−(S−(ε̂2))ŷ2 . . . ŷn−1ν

−(S−(ε̂n))

where the yi’s are either △ or λ and the ŷi’s are either ▽ or λ (depending on the formal
DNA molecules preceding and succeeding them). It is not hard to see that each yi in
S(E) is equal to the corresponding yi in S(E ′), and that the same property holds for
each ŷi.

When we observe that ν+(▽) = ν−(△) = λ and that for each X ∈ A∗
▽△

, ν−(ν+(X)) =

ν+(ν−(X)) = ν(X), we can rewrite the expressions for S(E) and S(E ′) into:

S(E) = ν+(S+(ε1))y1 . . . ym−1ν
+(S+(εm))ymν(S(Ê1))ν(S−(ε̂2)) . . . ν(S−(ε̂n))

38 TR 2004-03, LIACS, Leiden University, Ch. 3: Basic results on DNA expressions

and

S(E ′) = ν(S+(ε1)) . . . ν(S+(εm))ν(S(Ê1))ŷ1ν
−(S−(ε̂2))ŷ2 . . . ŷn−1ν

−(S−(ε̂n)).

Indeed, S(E) and S(E ′) can differ only in the occurrences of nicks. Hence, E=
▽E ′.

For a special case we can combine Theorem 3.12 with Corollary 3.11:

Corollary 3.13 Let ε1, . . . , εm with m ≥ 0 be DNA expressions or N -words, and α̂1

and α̂2 be N -words, such that

• S+(εi)❁S+(εi+1) for i = 1, . . . ,m − 1 and

• S+(εm)❁S(〈l α̂1〉).

Then the strings E ′ = 〈↓ 〈↑ ε1 . . . εm 〈l α̂1〉〉 〈l α̂2〉〉 and E ′′ = 〈↑ ε1 . . . εm 〈l α̂1α̂2〉〉 are

DNA expressions satisfying E ′=
▽E ′′.

Proof: By Theorem 3.12, E ′ and E = 〈↑ ε1 . . . εm 〈↓ 〈l α̂1〉 〈l α̂2〉〉〉 are DNA expres-

sions for which E ′=
▽E. By Corollary 3.11, the DNA subexpression Es = 〈↓ 〈l α̂1〉 〈l α̂2〉〉

of E satisfies Es
▽≡ 〈l α̂1α̂2〉. Consequently, by Lemma 3.7, also E ′′ is a DNA expres-

sion and E ′=
▽E ′′.

Chapter 4

The length of a DNA expression

The complexity of an algorithm can often be considered as a function of the length of
its input. Hence, when we want to analyse the complexity of algorithms that operate
on DNA expressions, it is important to know the length of the DNA expressions at
hand. Apart from this application, it is also intrinsically interesting how long a DNA
expression denoting a certain formal DNA molecule may be.

In this chapter, therefore, we examine the length of a DNA expression. We start
with a basic observation.

Lemma 4.1 Let E be a DNA expression denoting a formal DNA molecule X, and let
p be the number of operators occurring in E. Then

|E| = 3 · p + |ν(X)|.

As a DNA expression consists of operators and corresponding brackets on the one
hand, and N -letters on the other hand, the term |ν(X)| apparently counts the number
of N -letters occurring in E.
Proof: By induction on p.

• If p = 1, then E is 〈↑ α1〉, 〈↓ α1〉 or 〈l α1〉 for an N -word α1. The corresponding

formal DNA molecule X is
(
α1

−

)
,

(
−
α1

)
or

(
α1

c(α1)

)
, respectively. In each of the

cases,

|E| = 3 + |α1| = 3 · p + |X| = 3 · p + |ν(X)|.

• Let p ≥ 1, and suppose that the claim holds for all DNA expressions containing
at most p operators (induction hypothesis). Now assume that E contains p + 1
operators. E is either a ↑-expression, or a ↓-expression or a l-expression.

If E is a ↑-expression, hence E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words
and DNA expressions ε1, . . . , εn, then by definition,

X = S(E) = ν+(S+(ε1))y1ν
+(S+(ε2))y2 . . . yn−1ν

+(S+(εn)),

where the yi’s are △ or λ (see (2.15)). The function ν is a homomorphism that
removes all nick letters occurring in its argument. This implies that

|ν(X)| = |ν(S+(ε1))ν(S+(ε2)) . . . ν(S+(εn))|

= |ν(S+(ε1))| + |ν(S+(ε2))| + · · · + |ν(S+(εn))|.

39

40 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Apart from the outermost operator, all operators in E occur in the arguments
ε1, . . . , εn. For i = 1, . . . , n, let pi be the number of operators occurring in εi.
Then

p1 + p2 + · · · + pn = p.

If an argument εi is an N -word αi, then S+(εi) =
(
αi

−

)
, pi = 0 and

|εi| = |αi| = 3 · pi + |ν(S+(εi))|.

If, on the other hand, an argument εi is a DNA expression, then S+(εi) = S(εi),
1 ≤ pi ≤ p and by the induction hypothesis,

|εi| = 3 · pi + |ν(S(εi))| = 3 · pi + |ν(S+(εi))|.

When we combine all equations, we obtain

|E| = 3 + |ε1| + · · · + |εn|

= 3 + (3 · p1 + |ν(S+(ε1))|) + · · · + (3 · pn + |ν(S+(εn))|)

= 3 · (p + 1) + |ν(X)|.

If E is a ↓-expression containing p + 1 operators, then the proof is analogous.

Finally, if E is a l-expression, then E = 〈l E1〉 for a DNA expression E1

containing p ≥ 1 operators. Hence,

X = S(E) = κ(S(E1)).

Because the functions ν and κ are commutative and κ does not change the length
of its argument, we have

|ν(X)| = |ν(κ(S(E1)))| = |κ(ν(S(E1)))| = |ν(S(E1))|.

We can apply the induction hypothesis to E1:

|E1| = 3 · p + |ν(S(E1))|.

We then find

|E| = 3 + |E1| = 3 + 3 · p + |ν(S(E1))| = 3 · (p + 1) + |ν(X)|.

Hence, the claim is also valid for every DNA expression E that contains p + 1
operators.

We will concentrate on the minimal length of a DNA expression E denoting a given
(expressible) formal DNA molecule X. First we derive lower bounds for the length
of a DNA expression with the desired semantics. Subsequently, we demonstrate that
these lower bounds are tight, i.e., that they can actually be achieved. We describe and
analyse the DNA expressions that achieve the lower bounds.

Obviously, there does not exist an upper bound on the length of DNA expressions
denoting a certain formal DNA molecule. Indeed, consider an arbitrary DNA expression
E = 〈|0ε1 . . . εn〉, where |0 is an operator, n ≥ 1 and ε1, . . . , εn are the arguments of E.
Then E ′ = 〈|0E〉 is an equivalent DNA expression, but |E ′| = |E| + 3. This way, we
can extend a DNA expression infinitely.

4.1: Lower bounds for the length of a DNA expression 41

4.1 Lower bounds for the length of a DNA expres-

sion

Obviously, the minimal length of a DNA expression denoting a certain (expressible)
formal DNA molecule X depends on X. We will see that it particularly depends on a
few simple counting functions of X, to be defined in Definition 4.8 below. Apart from
one, each of these functions counts the number of components of X of a certain type.

A formal DNA molecule may have double components, upper components, lower
components, upper nick letters and lower nick letters. The last four types of compo-
nents are categorized as follows:

Definition 4.2 Let X be a formal DNA molecule and let x′
1 . . . x′

k for some k ≥ 1 be
the decomposition of X.

• A ↑-component x′
i of X is an upper component or a lower nick letter occurring

in X.

• A ↓-component x′
i of X is a lower component or an upper nick letter occurring

in X.

Recall that if X = S(E) for a DNA expression E, then upper components and lower
nick netters occurring in X are the products of an operator ↑. Similarly, lower compo-
nents and upper nick letters are produced by an operator ↓. This explains the terms
↑-component and ↓-component.

We are not interested in all ↑-components and ↓-components, but only in ↑-components
and ↓-components with an additional property:

Definition 4.3 Let X be a formal DNA molecule and let x′
1 . . . x′

k for some k ≥ 1 be
the decomposition of X.

• An opening ↑-component of X is a ↑-component x′
i of X, such that either i ≤ 2,

or x′
i−2 is a ↓-component of X.

• A closing ↑-component of X is a ↑-component x′
i of X, such that either i ≥ k−1,

or x′
i+2 is a ↓-component of X.

• An opening ↓-component of X is a ↓-component x′
i of X, such that either i ≤ 2,

or x′
i−2 is a ↑-component of X.

• A closing ↓-component of X is a ↓-component x′
i of X, such that either i ≥ k−1,

or x′
i+2 is a ↑-component of X.

An opening ↑-component can be intuitively understood as the first of a series of ↑-
components of X at the beginning of X or following a ↓-component. It represents
a transition (from ↓) to ↑. There are analogous interpretations of a closing upper
component and of opening and closing lower components.

In the DNA molecule depicted in Figure 4.1, the opening ↑-components are
(
α4

−

)
,

(
α8

−

)
and

(
α13

−

)
, the closing ↑-components are

(
α4

−

)
,

(
α10

−

)
and

(
α13

−

)
, the opening ↓-

components are the first nick letter,
(
−
α6

)
, the third nick letter and the fourth nick

letter, and the closing ↓-components are the second nick letter,
(
−
α6

)
, the third nick

42 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

▽ ▽ ▽ ▽α1 α2 α3 α4 α5
α6

α7 α8 α9 α10 α11 α12 α13 α14 α15
α16

Figure 4.1: Pictorial representation of an example formal DNA molecule X that con-
tains (upper) nick letters.

letter and
(
−

α16

)
. In this example, some, but not all opening ↑-components are also

closing ↑-components, and some, but not all opening ↓-components are also closing
↓-components.

Lemma 4.4 Let X be a formal DNA molecule.

1. The number of opening ↑-components of X is equal to the number of closing
↑-components of X.

2. The number of opening ↓-components of X is equal to the number of closing
↓-components of X.

Proof: By Lemma 2.4, X is an alternating sequence of double components and
other types of components. The other types of components can be categorized as
↑-components and ↓-components. Let x′

1 . . . x′
k for some k ≥ 1 be the decomposition of

X.

1. Let x′
i0

with 1 ≤ i0 ≤ k be an arbitrary opening ↑-component of X. Then we
define j0 as the largest index with i0 ≤ j0 ≤ k and i0 ≡ j0 (mod 2) such that
each of x′

i0
, x′

i0+2, x
′
i0+4, . . . , x

′
j0

is a ↑-component. Clearly, j0 is well defined. If
j0 ≤ k− 2, then x′

j0+2 must be a ↓-component, which implies that x′
j0

is a closing
↑-component. If j0 ≥ k − 1, then by definition x′

j0
is a closing ↑-component.

This way, for each opening ↑-component x′
i0

of X, we find a corresponding closing
↑-component x′

j0
. It is easy to verify that different opening ↑-components x′

i0

correspond to different closing ↑-components x′
j0

. Hence, the number of opening
↑-components is at most as large as the number of closing ↑-components.

In a completely analogous way, we can prove that the number of closing ↑-
components is at most as large as the number of opening ↑-components. Thus,
these numbers are equal.

2. The proof of this claim is analogous to that of the previous claim.

The above proof is based on a natural correspondence between opening ↑-components
and closing ↑-components. This correspondence will appear to be useful at several other
places in this chapter. Therefore, we also define it formally:

Definition 4.5 Let X be a formal DNA molecule and let x′
1 . . . x′

k for some k ≥ 1 be
the decomposition of X.

• For an opening ↑-component x′
i0
, the corresponding closing ↑-component is the

component x′
j0

for which j0 is the largest index with i0 ≤ j0 ≤ k and i0 ≡ j0

(mod 2), such that each of x′
i0
, x′

i0+2, . . . , x
′
j0−2, x

′
j0

is a ↑-component. Conversely,
x′

i0
is the corresponding opening ↑-component for the closing ↑-component x′

j0
.

4.1: Lower bounds for the length of a DNA expression 43

• For an opening ↓-component x′
i0
, the corresponding closing ↓-component is the

component x′
j0

for which j0 is the largest index with i0 ≤ j0 ≤ k and i0 ≡ j0

(mod 2), such that each of x′
i0
, x′

i0+2, . . . , x
′
j0−2, x

′
j0

is a ↓-component. Conversely,
x′

i0
is the corresponding opening ↓-component for the closing ↓-component x′

j0
.

It is useful to realize what type of components may occur between an opening ↑-
component (or opening ↓-component) and the corresponding closing ↑-component (or
closing ↓-component, respectively).

Lemma 4.6 Let X be a formal DNA molecule and let x′
1 . . . x′

k for some k ≥ 1 be the
decomposition of X.

1. Let x′
i0

be an opening ↑-component and let x′
j0

be the corresponding closing ↑-
component. Then for i = i0 +2, i0 +4, . . . , j0 −2, j0, x′

i is a ↑-component, but not
an opening ↑-component. For i = i0 + 1, i0 + 3, . . . , j0 − 3, j0 − 1, x′

i is a double
component.

2. Let x′
i0

be an opening ↓-component and let x′
j0

be the corresponding closing ↓-
component. Then for i = i0 +2, i0 +4, . . . , j0 −2, j0, x′

i is a ↓-component, but not
an opening ↓-component. For i = i0 + 1, i0 + 3, . . . , j0 − 3, j0 − 1, x′

i is a double
component.

Proof:

1. By the definition of a corresponding closing ↑-component, for i = i0 + 2, i0 +
4, . . . , j0 − 2, j0, both x′

i−2 and x′
i are ↑-components. Hence, none of x′

i0+2, x
′
i0+4,

. . . , x′
j0−2, x

′
j0

is an opening ↑-component.

For i = i0 +1, i0 +3, . . . , j0−3, j0−1, i ≡ i0 +1 (mod 2). Hence, by Lemma 2.4,
x′

i is a double component of X.

2. The proof of this claim is analogous to that of the previous claim.

Lemma 4.4 allows us to concentrate either on the opening ↑-components and the
opening ↓-components, or on the closing ↑-components and the closing ↓-components.
We arbitrarily choose for the first alternative.

Lemma 4.7 Let X be a formal DNA molecule. The opening ↑-components and open-
ing ↓-components occur in X alternately.

Proof: Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X.
Let x′

i0
with 1 ≤ i0 ≤ k be an arbitrary opening ↑-component of X and let x′

j0
with

i0 ≤ j0 ≤ k be the corresponding closing ↑-component.
By Lemma 2.4, the components x′

i with i ≡ i0+1 (mod 2) are double components.
Hence, none of them is an opening ↑-component or an opening ↓-component. By
Lemma 4.6(1), none of the components x′

i0+2, x
′
i0+4, . . . , x

′
j0

is an opening ↑-component
or an opening ↓-component, either.

If j0 ≥ k − 1, then apparently, X does not contain any opening ↑-component or
opening ↓-component after x′

i0
. If, on the other hand, j0 ≤ k − 2, then x′

j0+2 is a
↓-component. In particular, it is an opening ↓-component.

44 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Consequently, for each opening ↑-component x′
i0

of X, if X contains opening ↑-
components or opening ↓-components after x′

i0
, then the first one of them (x′

j0+2) is an
opening ↓-component.

In a completely analogous way, we can prove: for each opening ↓-component x′
i0

of
X, if X contains opening ↑-components or opening ↓-components after x′

i0
, then the

first one of them is an opening ↑-component.

Hence, the opening ↑-components and opening ↓-components of X alternate.

We now define functions that count the opening ↑-components, the opening ↓-
components and the double components occurring in a formal DNA molecule X.

Definition 4.8 Let X be a formal DNA molecule. Then

• T↑(X) is the number of opening ↑-components of X,

• T↓(X) is the number of opening ↓-components of X,

• nl(X) is the number of double components of X.

For the formal DNA molecule X from Figure 4.1, we have T↑(X) = 3, T↓(X) = 4
and nl(X) = 10.

We are interested in the values of the functions T↑, T↓ and nl for formal DNA
molecules X. Sometimes, however, it will be convenient to have the possibility to
provide an argument X = λ. In line with the intuition, we define

T↑(λ) = T↓(λ) = nl(λ) = 0.

In addition to the three new counting functions, we will frequently use #▽(X), #
△
(X),

#▽,△(X), #↑,↓(E) and #l(E). Here, X and E may be arbitrary strings, but often X
will be a formal DNA molecule and E will be a DNA expression.

The following result is immediate from Lemma 2.4:

Lemma 4.9 Let X be a formal DNA molecule and let x′
1 . . . x′

k for some k ≥ 1 be the
decomposition of X.

If x′
1 is a double component, then nl(X) = ⌈k

2
⌉. If x′

1 is not a double component,
then nl(X) = ⌊k

2
⌋.

Another simple result is

Lemma 4.10 Let X be a nick free formal DNA molecule.

1. T↑(X) = 0 if and only if X does not contain any upper component.

2. T↓(X) = 0 if and only if X does not contain any lower component.

Proof: Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X.

4.1: Lower bounds for the length of a DNA expression 45

1. =⇒ Assume that T↑(X) = 0 and suppose that X contains at least one upper
component. Let i0 be the smallest index such that x′

i0
is an upper component of

X.

If i0 ≤ 2, then by definition, x′
i0

is an opening ↑-component. If, on the other
hand, i0 ≥ 3, then by Corollary 2.5, x′

i0−2 is either an upper component, or a
lower component of X. By the definition of i0, x′

i0−2 has to be a lower component.
Then, however, x′

i0
is an opening ↑-component.

In both cases, T↑(X) would be greater than 0, which contradicts our assumption.
Hence, X does not contain any upper component.

⇐= Because X is nick free, each opening ↑-component is an upper component.
If X does not contain any upper component, then X certainly does not contain
any opening ↑-component. Thus, T↑(X) = 0.

2. The proof of this claim is analogous to that of the previous claim.

The different counting functions on formal DNA molecules can be related to each
other:

Lemma 4.11 Let X be a formal DNA molecule.

1. T↑(X) ≤ T↓(X) + 1.

2. T↓(X) ≤ T↑(X) + 1.

3. If X does not contain upper components, nor lower components, then nl(X) =
#▽,△(X) + 1.

4. If X contains at least one nick letter, then nl(X) ≥ #▽,△(X) + 1.

5. nl(X) ≥ #▽,△(X).

6. #▽,△(X) = #▽(X) + #
△
(X).

Proof: Because, by Lemma 4.7, the opening ↑-components and opening ↓-components
occur in X alternately, the difference between their numbers of occurrences can be at
most 1. Now Claims 1 and 2 follow immediately.

We proceed with the other claims.

3. This claim follows immediately from Corollary 2.6.

4. Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X. By the definition of a
formal DNA molecule, every nick letter occurring in X is preceded and succeeded
by a double component. Hence, for each component x′

i of X that is a nick letter,
x′

i−1 is a double component. Further, if x′
i0

is the last nick letter occurring in X,
then also x′

i0+1 is a double component. Obviously, all these double components
are different, and thus nl(X) ≥ #▽,△(X) + 1.

5. If X is nick free (hence #▽,△(X) = 0), then the claim holds because nl(X) ≥ 0.
If X is not nick free, then the claim follows from Claim 4.

46 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

α1 α2 α3 α4 α5
α6

α7 α8 α9 α10 α11 α12 α13 α14 α15
α16

Figure 4.2: Pictorial representation of ν+(X) for the formal DNA molecule X from
Figure 4.1.

6. This claim is valid by definition.

For nick free formal DNA molecules, we study some specific cases of Lemma 4.11(1)
and (2). Note that for such formal DNA molecules, each opening ↑-component is an
upper component and each opening ↓-component is a lower component.

Lemma 4.12 Let X be a nick free formal DNA molecule that contains at least one
single-stranded component.

1. If the first single-stranded component of X is an upper component and the last
single-stranded component of X is an upper component, then T↑(X) = T↓(X)+1.

2. If the first single-stranded component of X is a lower component and the last
single-stranded component of X is an upper component, then T↑(X) = T↓(X).

3. If the first single-stranded component of X is an upper component and the last
single-stranded component of X is a lower component, then T↑(X) = T↓(X).

4. If the first single-stranded component of X is a lower component and the last
single-stranded component of X is a lower component, then T↑(X) = T↓(X) − 1.

Proof: Let x′
1 . . . x′

k be the decomposition of X.
By Corollary 2.5, there exists i ∈ {1, 2} such that x′

i is a single-stranded component.
If x′

i is an upper component, then it is an opening ↑-component. If it is a lower
component, then it is an opening ↓-component.

Analogously, there exists j ∈ {k−1, k} such that x′
j is a single-stranded component.

If x′
j is an upper component, then it is a closing ↑-component. By Lemma 4.6(1) (and

Corollary 2.5), the corresponding opening ↑-component is not succeeded in X by any
other opening ↑-component or opening ↓-component. If, on the other hand, x′

j is a lower
component, then it is a closing ↓-component. The corresponding opening ↓-component
is not succeeded in X by any other opening ↑-component or opening ↓-component.

Now, all claims follow from the observation that, by Lemma 4.7, the opening ↑-
components and the opening ↓-components of X alternate.

Next, we investigate the effect of applying the function ν+ to a formal DNA
molecule, i.e., the effect of removing the upper nick letters. Of course, we can achieve
analogous results for ν−.

In Figure 4.2, we have depicted ν+(X) for the formal DNA molecule X from Fig-
ure 4.1. As we have established before,

T↑(X) = 3, T↓(X) = 4, nl(X) = 10 and #▽(X) = 4
Now,

T↑(ν
+(X)) = 2, T↓(ν

+(X)) = 2, nl(ν
+(X)) = 6 and #▽(ν+(X)) = 0.

In general, we have:

4.1: Lower bounds for the length of a DNA expression 47

Lemma 4.13 Let X be a formal DNA molecule.

1. T↑(ν
+(X)) ≤ T↑(X).

2. T↓(ν
+(X)) ≤ T↓(X).

3. T↓(ν
+(X)) ≥ T↓(X) − #▽(X).

4. nl(ν
+(X)) = nl(X) − #▽(X).

5. #▽(ν+(X)) = 0.

6. #
△
(ν+(X)) = #

△
(X).

Proof: We will only prove Claims 1 – 4, because the other two claims are immediate
from the definition of the function ν+.

Let x′
1 . . . x′

k1
for some k1 ≥ 1 be the decomposition of X and let x̂′

1 . . . x̂′
k2

for some
k2 ≥ 1 be the decomposition of ν+(X).

When the function ν+ is applied to X, the only effect is that upper nick letters oc-
curring in X are removed. By the definition of a formal DNA molecule (Definition 2.1),
(upper) nick letters may occur only between two double components. When an upper
nick letter is removed, the two double components become adjacent and thus form one
larger double component.

Upper components, lower components and lower nick letters are not affected by
the application of ν+. Hence, every upper component x′

i of X uniquely corresponds to
an (equal) upper component x̂′

j of ν+(X), and vice versa, and there exist analogous
correspondences between lower components and between lower nick letters.

1. Let x̂′
j0

be an opening ↑-component of ν+(X). Because x̂′
j0

is an upper component
or a lower nick letter, it corresponds to an equal component x′

i0
of X.

If i0 ≤ 2, then by definition x′
i0

is an opening ↑-component of X.

If i0 ≥ 3, then by Lemma 2.4, x′
i0−1 is a double component and x′

i0−2 is an upper
component, a lower component or a nick letter. If x′

i0−2 is an upper component
or a lower nick letter, then so is x′

j0−2, because such components are not affected
by the application of ν+ (and the double component x′

i0−1 is not removed). As
a result, x′

j0
would not be an opening ↑-component of ν+(X). Because this

contradicts our prior assumption, x′
i0−2 must be a lower component or an upper

nick letter, which implies that x′
i0

is an opening ↑-component of X.

Hence, for each opening ↑-component x̂′
j0

of ν+(X), the corresponding compo-
nent x′

i0
of X (an upper component or a lower nick letter) is also an open-

ing ↑-component. Because of the 1–1 correspondence between upper compo-
nents of X and upper components of ν+(X) and between lower nick letters
occurring in X and lower nick letters occurring in ν+(X), different opening ↑-
components of ν+(X) correspond to different opening ↑-components of X. Thus,
T↑(ν

+(X)) ≤ T↑(X).

2. Let x̂′
j0

be an opening ↓-component of ν+(X). Because ν+(X) is free of upper
nick letters, x̂′

j0
is a lower component of ν+(X). Let x′

i0
be the corresponding

lower component of X.

If i0 ≤ 2, then by definition x′
i0

is an opening ↓-component of X.

48 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

If i0 ≥ 3, then we examine the possibilities for the component x′
i0−2. First,

it cannot be a lower component of X. Otherwise, also x̂′
j0−2 would be a lower

component and x̂′
j0

would not be an opening ↓-component of ν+(X). Next, if x′
i0−2

is an upper component or a lower nick letter, then x′
i0

is an opening ↓-component
of X.

Finally, if x′
i0−2 is an upper nick letter (which is removed by ν+), then the double

component x̂′
j0−1 is the concatenation of at least two double components x′

i of
X, which are separated in X by upper nick letters. Let x′

i1
be the first of these

upper nick letters, i.e., the leftmost one.

If i1 ≤ 2, then x′
i1

is an opening ↓-component. If i1 ≥ 3, then by definition x′
i1−2

is not another upper nick letter. Further, x′
i1−2 cannot be a lower component,

for the same reason that x′
i0−2 could not be a lower component. Hence, x′

i1−2

must be an upper component or a lower nick letter and thus x′
i1

is an opening
↓-component.

Hence, for each opening ↓-component x̂′
j0

of ν+(X) (a lower component), we have
found a corresponding opening ↓-component of X (either the corresponding lower
component x′

i0
or the upper nick letter x′

i1
).

Because, by Lemma 4.7, opening ↑-components and opening ↓-components of a
formal DNA molecule alternate, different opening ↓-components of ν+(X) are
separated by at least an upper component or a lower nick letter. It follows from
the construction that the corresponding opening ↓-components of X are also
separated by at least an (equal) upper component, or a lower nick letter, respec-
tively. In particular, these opening ↓-components of X are different. Therefore,
T↓(ν

+(X)) ≤ T↓(X).

3. Let x′
i0

be an opening ↓-component of X which is not an upper nick letter.
Then it must be a lower component of X, which corresponds to a(n equal) lower
component x̂′

j0
of ν+(X).

If i0 ≤ 2, then, because the function ν+ does not add components to its argument,
certainly j0 ≤ 2, so that by definition x̂′

j0
is an opening ↓-component.

If i0 ≥ 3, then x′
i0−2 is an upper component of X or a lower nick letter. Because

such components are not affected by ν+, also j0 ≥ 3 and x̂′
j0−2 is an (equal) upper

component of ν+(X) or a lower nick letter, respectively. Also in this case, x̂′
j0

is
an opening ↓-component.

Hence, for each opening ↓-component x′
i0

of X which is a lower component,
the corresponding lower component x̂′

j0
of ν+(X) is an opening ↓-component of

ν+(X). Because of the 1–1 correspondence between lower components of X and
lower components of ν+(X), T↓(ν

+(X)) ≥ T↓(X) − #▽(X).

4. As we have mentioned at the beginning of the proof, when an upper nick letter
x′

i0
is removed, the two double components x′

i0−1 and x′
i0+1 become adjacent and

thus form one larger double component. That way, both the number of upper
nick letters and the number of double components are decreased by 1. Because
all upper nick letters occurring in X are removed and this is the only effect of
the application of ν+, the number of double components is decreased by #▽(X).

4.1: Lower bounds for the length of a DNA expression 49

By the above result, we can derive invariants for the functions ν+, ν− and ν: the
function nl(·) − #▽(·) is an invariant for the function ν+, the function nl(·) − #

△
(·)

is an invariant for the function ν−, and the function nl(·)−#▽,△(·) is an invariant for
the function ν.

Corollary 4.14 Let X be a formal DNA molecule

1. nl(ν
+(X)) − #▽(ν+(X)) = nl((X)) − #▽((X))

2. nl(ν
−(X)) − #

△
(ν−(X)) = nl((X)) − #

△
((X))

3. nl(ν(X)) − #▽,△(ν(X)) = nl((X)) − #▽,△((X))

Proof: Claim 1 follows immediately from Lemma 4.13(4) and (5). Then by analogy, we
also have Claim 2. Finally, Claim 3 follows from the other two and from Lemma 4.13(6),
because the function ν is the composition of ν+ and ν−:

nl(ν(X)) − #▽,△(ν(X))

= nl(ν
+(ν−(X))) − #▽(ν+(ν−(X))) − #

△
(ν+(ν−(X)))

= nl(ν
−(X)) − #▽(ν−(X)) − #

△
(ν−(X))

= nl(X) − #▽(X) − #
△
(X)

= nl(X) − #▽,△(X).

We also study the effect of applying the function κ to a formal DNA molecule, i.e.,
the effect of making the molecule double stranded.

Lemma 4.15 Let X be a formal DNA molecule.

1. T↑(κ(X)) ≤ T↑(X).

2. T↓(κ(X)) ≤ T↓(X).

3. #▽,△(κ(X)) = #▽,△(X).

4. nl(κ(X)) ≤ nl(X) + 1.

Proof: The function κ replaces each occurrence of an upper A-letter and a lower
A-letter in X by the corresponding double A-letter. This is all the function does.
Consequently, κ(X) does not contain upper components, nor lower components. Be-
cause κ does not introduce, nor remove nick letters, there exist a 1–1 correspondence
between the nick letters occurring in X and the (same) nick letters occurring in κ(X).

Let x′
1 . . . x′

k1
for some k1 ≥ 1 be the decomposition of X and let x̂′

1 . . . x̂′
k2

for some
k2 ≥ 1 be the decomposition of κ(X).

1. Let x̂′
j0

be an opening ↑-component of κ(X). By the above, it must be a lower
nick letter △. Let x′

i0
be the corresponding (occurrence of a) lower nick letter in

X. By Lemma 2.4, each component x′
i of X with i ≡ i0 (mod 2) is either an

upper component, or a lower component, or a nick letter.

Now, we define i1 as the smallest index with 1 ≤ i1 ≤ i0 and i1 ≡ i0 (mod 2)
such that each of x′

i1
, x′

i1+2, x
′
i1+4, . . . , x

′
i0

is a ↑-component of X.

50 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

If i1 ≤ 2, then by definition x′
i1

is an opening ↑-component of X. If i1 ≥ 3,
then apparently x′

i1−2 is a ↓-component. Also in this case, x′
i1

is an opening
↑-component of X.

Hence, for each opening ↑-component x̂′
j0

of κ(X) (a lower nick letter), we find an
opening ↑-component x′

i1
of X. By Lemma 4.7, different opening ↑-components

of κ(X) are separated by at least an opening ↓-component, which must be an
upper nick letter. Then it follows from the construction that the corresponding
opening ↑-components of X are also separated by at least an upper nick letter.
In particular, these opening ↑-components of X are different. Consequently,
T↑(κ(X)) ≤ T↑(X).

2. The proof of this claim is entirely analogous to that of the previous claim.

3. This claim follows immediately from the 1–1 correspondence between the nick
letters occurring in X and the nick letters occurring in κ(X).

4. When we combine Lemma 4.11(3), Claim 3 and Lemma 4.11(5), we obtain:

nl(κ(X)) = #▽,△(κ(X)) + 1 = #▽,△(X) + 1 ≤ nl(X) + 1.

When a formal DNA molecule is denoted by a DNA expression, the counting num-
bers for the full molecule can be related to the numbers for the arguments of the DNA
expression.

Lemma 4.16 Let E be a DNA expression, and let X = S(E).

1. If E = 〈↑ ε1 . . . εn〉, where n ≥ 1, the arguments ε1, . . . , εn are N -words or DNA
expressions and for i = 1, . . . , n, Xi = S+(εi), then

T↑(X) − #
△
(X) ≤ T↑(X1) + · · · + T↑(Xn) − #

△
(X1) − · · · − #

△
(Xn), (4.1)

T↓(X) ≤ T↓(X1) + · · · + T↓(Xn), (4.2)

T↓(X) ≥ T↓(X1) + · · · + T↓(Xn) − #▽(X1) − · · · − #▽(Xn), (4.3)

nl(X) = nl(X1) + · · · + nl(Xn) − #▽(X1) − · · · − #▽(Xn), (4.4)

and nl(X) ≤ nl(X1) + · · · + nl(Xn). (4.5)

2. If E = 〈↓ ε1 . . . εn〉, where n ≥ 1, the arguments ε1, . . . , εn are N -words or DNA
expressions and for i = 1, . . . , n, Xi = S−(εi), then

T↓(X) − #▽(X) ≤ T↓(X1) + · · · + T↓(Xn) − #▽(X1) − · · · − #▽(Xn),

T↑(X) ≤ T↑(X1) + · · · + T↑(Xn),

T↑(X) ≥ T↑(X1) + · · · + T↑(Xn) − #
△
(X1) − · · · − #

△
(Xn),

nl(X) = nl(X1) + · · · + nl(Xn) − #
△
(X1) − · · · − #

△
(Xn),

and nl(X) ≤ nl(X1) + · · · + nl(Xn).

4.1: Lower bounds for the length of a DNA expression 51

〈↑ 〉
=

▽ ▽

△

△ △ △

α1 α2 α3 α4
α5

α6

α1 α2 α3 α4
α5

α6

α7
α8

α9

α7
α8

α9

α10
α11

α12 α13 α14

α10
α11

α12 α13 α14

α15 α16 α17

α15 α16 α17

Figure 4.3: Pictorial representation of the example ↑-expression E with S(E) = X for
which T↑(X), T↓(X) and nl(X) are calculated.

3. If E = 〈l E1〉 for a DNA expression E1 with X1 = S(E1), then

T↑(X) ≤ T↑(X1), (4.6)

T↓(X) ≤ T↓(X1), (4.7)

#▽,△(X) = #▽,△(X1) and (4.8)

nl(X) ≤ nl(X1) + 1. (4.9)

As an example of Claim 1, consider

E = 〈↑〈↓ 〈l α1〉 〈↑ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉〉 〈↓ 〈l α7〉α8 〈l α9〉〉
〈↓ 〈l α10〉α11 〈l α12〉 〈↑ 〈l α13〉α14〉〉 〈↑ α15 〈l α16〉 〈l α17〉〉〉 .

(4.10)

Here n = 4 and

X1 =
(

α1

c(α1)

)
▽
(

α2

c(α2)

)(
α3

−

)(
α4

c(α4)

)(
−
α5

)(
α6

c(α6)

)
,

X2 =
(

α7

c(α7)

)(
−
α8

)(
α9

c(α9)

)
,

X3 =
(

α10

c(α10)

)(
−

α11

)(
α12

c(α12)

)
▽
(

α13

c(α13)

)(
α14

−

)
, and

X4 =
(
α15

−

)(
α16

c(α16)

)
△

(
α17

c(α17)

)
.

Then

X =
(

α1α2

c(α1α2)

)(
α3

−

)(
α4

c(α4)

)(
−
α5

)(
α6

c(α6)

)
△

(
α7

c(α7)

)(
−
α8

)
·

(
α9

c(α9)

)
△

(
α10

c(α10)

)(
−

α11

)(
α12α13

c(α12α13)

)(
α14α15

−

)(
α16

c(α16)

)
△

(
α17

c(α17)

)

and

T↑(X) − #
△
(X) = 4 − 3 < (1 + 0 + 1 + 1) − (0 + 0 + 0 + 1),

T↓(X) = 3 < 2 + 1 + 1 + 0,

T↓(X) = 3 > (2 + 1 + 1 + 0) − (1 + 0 + 1 + 0),

nl(X) = 9 = (4 + 2 + 3 + 2) − (1 + 0 + 1 + 0) < (4 + 2 + 3 + 2).

This example is depicted in Figure 4.3.

Note that for ↑-expressions as described in Claim 1, the inequality

T↑(X) ≤ T↑(X1) + · · · + T↑(Xn)

52 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

does not hold in general. Lower nick letters added between the arguments of ↑ may
induce an increase of the number of opening ↑-components. For example, for the ↑-
expression we considered above, T↑(X) = 4, whereas T↑(X1) + T↑(X2) + T↑(X3) +
T↑(X4) = 3.

Proof of Lemma 4.16:

1. Let E be a ↑-expression as described in the claim. By the definition of the
semantics of a DNA expression,

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn), (4.11)

where for i = 1, . . . , n − 1, yi = △ if R(Xi), L(Xi+1) ∈ A±, and yi = λ otherwise.

Before we prove the separate inequalities, we first analyse the consequences of
(4.11) on the components of the formal DNA (sub)molecules.

For i = 1, . . . , n, by Lemma 2.7, the first (last) component of ν+(Xi) is of the
same type (double component, upper component or lower component) as the first
(last) component of Xi. Further, ν+(Xi) does not contain upper nick letters ▽.
Because only lower nick letters yi may be added by the application of ↑, the entire
formal DNA molecule X is free of upper nick letters.

For i = 1, . . . , n − 1, if both the last component of ν+(Xi) and the first com-
ponent of ν+(Xi+1) are upper components, then they merge into one new upper
component of X. If both the last component of ν+(Xi) and the first component
of ν+(Xi+1) are double components, then a lower nick letter yi = △ is inserted
between them. Hence, they are not joined and there is a 1–1 correspondence
between the double components of the ν+(Xi)’s and the (same) double compo-
nents of X. Because the arguments of ↑ have to fit together by upper strands,
there cannot be a lower component at the end of any of X1, . . . , Xn−1, nor at
the beginning of any of X2, . . . , Xn. Hence, there is also a 1–1 correspondence
between the lower components of the ν+(Xi)’s and the (same) lower components
of X.

Now let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X. Further, for i =
1, . . . , n, let x′

i,1 . . . x′
i,ki

for some ki ≥ 1 be the decomposition of ν+(Xi).

• In order to show (4.1), we first prove

T↑(X) − #
△
(X) ≤ T↑(ν

+(X1)) + · · · + T↑(ν
+(Xn))

−#
△
(ν+(X1)) − · · · − #

△
(ν+(Xn)).

(4.12)

Let x′
j be an opening ↑-component of X, which is not a lower nick letter yi

introduced by the outermost operator ↑. Hence, either x′
j is an upper component

of X, or x′
j is a lower nick letter which already occurred in some ν+(Xi).

In the former case, as we have just seen, x′
j may be the concatenation of several

upper components of different, consecutive ν+(Xi)’s. Assume that the first (and
possibly only) upper component that has merged into x′

j is the jth
0 component of

ν+(Xi0): x′
i0,j0

. In the latter case, let x′
i0,j0

be the lower nick letter corresponding
to x′

j.

If j0 ≤ 2, then by definition x′
i0,j0

is an opening ↑-component of ν+(Xi0).

4.1: Lower bounds for the length of a DNA expression 53

If j0 ≥ 3, then by Lemma 2.4, x′
i0,j0−1 is a double component and x′

i0,j0−2 is an
upper component, a lower component or a nick letter. It cannot be an upper
nick letter, because ν+(Xi0) does not contain upper nick letters. If x′

i0,j0−2 were
an upper component or a lower nick letter, then x′

j−2 would also be an upper
component (possibly extended) or a lower nick letter, respectively. This would,
however, contradict the assumption that x′

j is an opening ↑-component of X.
Hence, x′

i0,j0−2 is a lower component, which implies that x′
i0,j0

is an opening ↑-
component of ν+(Xi0).

Hence, for each opening ↑-component of X which is not a lower nick letter yi

introduced by the outermost operator ↑, there is at least one opening ↑-component
of ν+(Xi) for a certain i. Because, obviously, each upper component of an ν+(Xi)
merges into exactly one upper component of X, different opening ↑-components
of X correspond to different opening ↑-components of the ν+(Xi)’s.

The number of opening ↑-components of X which are lower nick letters yi intro-
duced by the outermost operator ↑, is at most as large as the total number of
lower nick letters yi introduced. The latter number can be written as |y1 . . . yn−1|.
We thus have

T↑(X) − |y1 . . . yn−1|

≤ T↑(X) − |{yi|(1 ≤ i ≤ n − 1) ∧ (yi is an opening ↑-component of X)}|

≤ T↑(ν
+(X1)) + · · · + T↑(ν

+(Xn)).

When we subtract the number of lower nick letters occurring in the ν+(Xi)’s
(#

△
(ν+(X1)) + · · · + #

△
(ν+(Xn))), we obtain (4.12).

Now, (4.1) follows from Lemma 4.13(1) and (6).

• In order to show (4.2) and (4.3), we first prove

T↓(X) = T↓(ν
+(X1)) + · · · + T↓(ν

+(Xn)). (4.13)

Let x′
j be an opening ↓-component of X. Because X does not contain upper nick

letters, x′
j must be a lower component. The lower components of X are exactly

the ones from ν+(X1), . . . , ν
+(Xn). Hence, x′

j is equal to a lower component of
ν+(Xi0) for a certain i0, say to x′

i0,j0
.

If j0 ≤ 2, then by definition x′
i0,j0

is an opening ↓-component of ν+(Xi0).

If j0 ≥ 3, then by Lemma 2.4, x′
i0,j0−2 is an upper component, a lower component

or a nick letter. It obviously cannot be an upper nick letter. It cannot be a
lower component either, because otherwise x′

j−2 would be a lower component of
X and x′

j would not be an opening ↓-component of X. Hence, x′
i0,j0−2 is an upper

component or a lower nick letter. In both cases, x′
i0,j0

is an opening ↓-component
of ν+(Xi0).

Hence, for each opening ↓-component of X (a lower component) the correspond-
ing lower component x′

i0,j0
of ν+(Xi0) is also an opening ↓-component.

On the other hand, let x′
i0,j0

for some i0 and j0 be an opening ↓-component of
ν+(Xi0). Then x′

i0,j0
is a lower component and is equal to a lower component x′

j

of X.

54 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

If j0 ≤ 2, then we consider two subcases. If i0 = 1 (hence εi0 = ε1 is the first
argument of ↑), then j = j0 ≤ 2 and x′

j is an opening ↓-component of X. If i0 ≥ 2,
then j0 must be 2, because Xi0−1 and Xi0 have to fit together by upper strands.
By Lemma 2.4, x′

i0,j0−1 = x′
i0,1 is a double component. Now let us consider the

last component of ν+(Xi0−1), x′
i0−1,ki0−1

. Again because Xi0−1 and Xi0 have to fit

together by upper strands, x′
i0−1,ki0−1

must be an upper component or a double

component. In the former case, yi0−1 = λ and also x′
j−2 is an upper component

(ending with x′
i0−1,ki0−1

, but possibly longer); in the latter case, a lower nick letter

is added by the application of ↑: yi0−1 = △ = x′
j−2. In both cases, x′

j is an opening
↓-component of X.

If j0 ≥ 3, then by definition x′
i0,j0−2 is an upper component or a lower nick letter.

Then obviously, also x′
j−2 is an upper component (possibly longer than x′

i0,j0−2)
or a lower nick letter, respectively. Again x′

j is an opening ↓-component of X.

Hence, for each opening ↓-component of an ν+(Xi0) (a lower component), the
corresponding lower component of X is an opening ↓-component.

Because the correspondence between the lower components of the ν+(Xi)’s and
the lower components of X is 1–1, we have thus proved (4.13). Now, (4.2) and
(4.3) follow from Lemma 4.13(2). and Lemma 4.13(3), respectively.

• Because of the 1–1 correspondence between the double components of the
ν+(Xi)’s and the double components of X,

nl(X) = nl(ν
+(X1)) + · · · + nl(ν

+(Xn)).

Now, (4.4) follows from Lemma 4.13(4).

• Because, obviously, for each formal DNA molecule Xi, #▽(Xi) ≥ 0. inequality
(4.5) follows from (4.4).

2. The proof of this claim is analogous to that of the previous claim.

3. Let E be a l-expression 〈l E1〉 for a DNA expression E1 with X1 = S(E1). By
definition, X = κ(X1). Now, equations (4.6)–(4.9) are just special cases of the
claims from Lemma 4.15.

At several places in the proof of Lemma 4.16(1), we used Lemma 4.13. In fact,
for expressible formal DNA molecules X, Claims 1 – 4 of Lemma 4.13 are special
cases of equations (4.1) – (4.4). If we take n = 1 and let ε1 be a DNA expression
denoting X, then the first four claims of Lemma 4.13 follow from the observation that
S(〈↑ ε1〉) = ν+(S+(ε1)) = ν+(X).

In the proof of Lemma 4.16(3), we observed that equations (4.6)–(4.9) are special
cases of the four claims from Lemma 4.15. For expressible formal DNA molecules X,
we can also walk the opposite direction; when we substitute for E1 in Lemma 4.16(3)
a DNA expression denoting X, we obtain Lemma 4.15.

By inequalities (4.6) and (4.7) from Lemma 4.16(3), the values of the functions T↑

and T↓ do not increase when we apply the operator l to a DNA expression E1. There
exists, however, a much stronger result concerning T↑ and T↓ for l-expressions:

4.1: Lower bounds for the length of a DNA expression 55

Lemma 4.17 Let E be a l-expression, and let X = S(E). Then T↑(X) + T↓(X) ≤ 1.

Proof: Let E = 〈l ε1〉, where ε1 is an N -word or a DNA expression. By the definition
of the semantics of a l-expression, X = κ(S+(ε1)). In particular, X does not contain
upper components, nor lower components.

Hence, each opening ↑-component of X has to be a lower nick letter and each
opening ↓-component of X has to be an upper nick letter. By Theorem 3.4, X does
not both contain lower nick letters and upper nick letters. This implies that either
T↑(X) = 0, or T↓(X) = 0 (or both). Now, the claim follows from Lemma 4.11(1) and
(2).

After all this introductory work, we are ready to calculate lower bounds for the
number of occurrences of the operators ↑ and ↓ and for the number of occurrences of
the operator l in a DNA expression.

Theorem 4.18 Let E be a DNA expression, and let X = S(E).

1. If E is a ↑-expression, then

#↑,↓(E) ≥ 1 + T↓(X) and

#l(E) ≥ nl(X).

2. If E is a ↓-expression, then

#↑,↓(E) ≥ 1 + T↑(X) and

#l(E) ≥ nl(X).

3. If E is a l-expression, then

#↑,↓(E) ≥ T↑(X),

#↑,↓(E) ≥ T↓(X) and (4.14)

#l(E) ≥ nl(X).

Proof: By induction on the number p of operators occurring in E.

• If p = 1, then E is 〈↑ α1〉, 〈↓ α1〉 or 〈l α1〉 for an N -word α1.

If E = 〈↑ α1〉, then #↑,↓(E) = 1, #l(E) = 0, X =
(
α1

−

)
and T↓(X) = nl(X) = 0.

Hence, the inequalities in Claim 1 are valid.

If E = 〈↓ α1〉, then Claim 2 is applicable and the inequalities in this claim are
verified analogously.

If E = 〈l α1〉, then #↑,↓(E) = 0, #l(E) = 1, X =
(

α1

c(α1)

)
, T↑(X) = T↓(X) = 0

and nl(X) = 1. Indeed, these values satisfy the inequalities in Claim 3.

56 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

• Let p ≥ 1, and suppose that the lower bounds have been proved to hold for all
DNA expressions containing at most p operators (induction hypothesis). Now let
E be an arbitrary DNA expression that contains p + 1 operators. E is either a
↑-expression, or a ↓-expression or a l-expression. We consider each of these cases
separately.

If E is a ↑-expression 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are the arguments
of E, then let for i = 1, . . . , n, Xi = S+(εi). The arguments are N -words, ↑-
expressions, ↓-expressions and l-expressions.

By definition, if an argument εi is an N -word α, then #↑,↓(εi) = #l(εi) = 0,

Xi = S+(εi) =
(
α

−

)
and T↓(Xi) = nl(Xi) = 0. If, on the other hand, an argument

εi is a DNA expression, then Xi = S+(εi) = S(εi). Because such an argument
contains at most p operators, the induction hypothesis provides us with lower
bounds for #↑,↓(εi) and #l(εi). For l-expressions εi, we use lower bound (4.14)
for #↑,↓(εi).

We first consider #↑,↓(E):

#↑,↓(E) = 1 +
n∑

i=1

#↑,↓(εi)

= 1 +
∑

N -words εi

#↑,↓(εi) +
∑

↑-expr. εi

#↑,↓(εi)

+
∑

↓-expr. εi

#↑,↓(εi) +
∑

l-expr. εi

#↑,↓(εi)

≥ 1 +
∑

N -words εi

T↓(Xi) +
∑

↑-expr. εi

(1 + T↓(Xi))

+
∑

↓-expr. εi

(1 + T↑(Xi)) +
∑

l-expr. εi

T↓(Xi).

Obviously, the term 1 + T↓(Xi) for a ↑-expression εi is greater than T↓(Xi). For
the ↓-expressions εi, we use Lemma 4.11(2) to replace the terms 1 + T↑(Xi) by
T↓(Xi). When subsequently, we apply inequality (4.2) from Lemma 4.16(1), we
obtain the desired lower bound for #↑,↓(E):

#↑,↓(E) ≥ 1 +
n∑

i=1

T↓(Xi) ≥ 1 + T↓(X).

The lower bound for #l(E) is easy to calculate. First, we observe that for each
argument εi, either by definition (if εi is an N -word), or by the induction hypoth-
esis (if εi is a DNA expression), #l(εi) ≥ nl(Xi). Next, we apply inequality (4.5)
from Lemma 4.16(1):

#l(E) =
n∑

i=1

#l(εi) ≥
n∑

i=1

nl(Xi) ≥ nl(X).

If E is a ↓-expression, then the proof is analogous.

If E is a l-expression, then its only argument must be a DNA expression E1:
E = 〈l E1〉. Let X1 = S(E1). Because E1 contains p operators, we can apply
the induction hypothesis to it.

4.1: Lower bounds for the length of a DNA expression 57

If E1 is a ↑-expression, then we additionally apply inequality (4.7) from Lemma 4.16(3)
and Lemma 4.11(1):

#↑,↓(E) = #↑,↓(E1) ≥ 1 + T↓(X1) ≥ 1 + T↓(X) ≥ T↑(X).

Analogously, if E1 is a ↓-expression, then

#↑,↓(E) = #↑,↓(E1) ≥ 1 + T↑(X1) ≥ 1 + T↑(X) ≥ T↓(X).

Finally, if E1 is a l-expression, then X = κ(X1) = X1. Hence, by the induction
hypothesis,

#↑,↓(E) = #↑,↓(E1) ≥ T↑(X1) = T↑(X) and

#↑,↓(E) = #↑,↓(E1) ≥ T↓(X1) = T↓(X).

To calculate a lower bound for #l(E), we do not have to distinguish different
cases. By the induction hypothesis, #l(E1) ≥ nl(X1), regardless of the outermost
operator of E1. Then by inequality (4.9) from Lemma 4.16(3),

#l(E) = 1 + #l(E1) ≥ 1 + nl(X1) ≥ nl(X).

It is only a small step from the number of operators occurring in a DNA expression
to the length of that DNA expression:

Corollary 4.19 Let E be a DNA expression, and let X = S(E).

1. If E is a ↑-expression, then |E| ≥ 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|.

2. If E is a ↓-expression, then |E| ≥ 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)|.

3. If E is a l-expression, then

|E| ≥ 3 · T↑(X) + 3 · nl(X) + |ν(X)| and

|E| ≥ 3 · T↓(X) + 3 · nl(X) + |ν(X)|. (4.15)

4. If E = 〈l α1〉 for an N -word α1, then |E| = 3 · nl(X) + |ν(X)|.

5. If E = 〈l E1〉 for a DNA expression E1, then |E| ≥ 3 + 3 · nl(X) + |ν(X)|.

6. Unless E = 〈l α1〉 for an N -word α1, |E| ≥ 3 + 3 · nl(X) + |ν(X)|.

Proof: Claims 1, 2 and 3 follow immediately from Lemma 4.1 and Theorem 4.18.

4. If E = 〈l α1〉 for an N -word α1, then ν(X) = X =
(

α1

c(α1)

)
and nl(X) = 1.

Hence, both sides of the equality in the claim evaluate to 3 + |α1|.

58 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

5. Assume that E = 〈l E1〉 for a DNA expression E1, and let X1 = S(E1). By
definition, X = κ(X1) and hence |ν(X)| = |ν(X1)|. We distinguish three cases.

If E1 is a ↑-expression, then by Claim 1 and inequality (4.9) from Lemma 4.16(3),

|E| = 3 + |E1|

≥ 3 + 3 + 3 · T↓(X1) + 3 · nl(X1) + |ν(X1)|

≥ 3 + 3 + 0 + 3 · nl(X1) + |ν(X1)|

≥ 3 + 3 · nl(X) + |ν(X)|.

If E1 is a ↓-expression. then the inequality |E| ≥ 3+3·nl(X)+|ν(X)| is obtained
in an analogous way.

Finally, if E1 is a l-expression, then X = X1. Hence, by Claim 3,

|E| = 3 + |E1| ≥ 3 + 0 + 3 · nl(X1) + |ν(X1)| = 3 + 3 · nl(X) + |ν(X)|.

For each type of DNA expression E1, we obtain the inequality from the claim.
Hence, the claim is valid.

6. This claim follows immediately from Claims 1, 2 and 5.

4.2 Minimal DNA expressions

If a formal DNA molecule is expressible, then there exist (infinitely) many DNA ex-
pressions denoting it. We are interested in the one(s) with the smallest length.

Definition 4.20 A DNA expression E is minimal if for every DNA expression E ′ with
E ′ ≡ E, |E ′| ≥ |E|.

Hence, when a DNA expression is minimal, we cannot find a shorter DNA expression
with the same semantics.

In principle, there may be different minimal DNA expressions for the same formal
DNA molecule. For example, both

E = 〈↑ α1 〈↓ 〈l α2〉α3〉〉 and E ′ = 〈↓ 〈↑ α1 〈l α2〉〉α3〉 (4.16)

denote X =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)
, and |E| = |E ′|. It is easy to verify that E and E ′

achieve the lower bounds given in Corollary 4.19 for ↑-expressions and ↓-expressions,
respectively. Hence, there do not exist shorter ↑-expressions or ↓-expressions for X.
Because X contains an upper component and a lower component, it cannot be denoted
by a l-expression. Consequently, E and E ′ are indeed minimal.

The following result is immediately deduced from Lemma 4.1:

Corollary 4.21 A DNA expression E containing p operators is minimal if and only
if every DNA expression E ′ with E ′ ≡ E contains at least p operators.

The next result is so natural that we will not refer to it when we use it. Nevertheless,
it is good to state it explicitly:

4.2: Minimal DNA expressions 59

Lemma 4.22 A DNA expression E is minimal if and only if each DNA subexpression
of E is minimal.

Proof: Let E be an arbitrary DNA expression.
From right to left, the claim is obvious, because by definition E is a DNA subex-

pression of itself.
Now suppose that a DNA subexpression Es of E is not minimal. Then there must

exist a DNA expression Es′ such that Es′ ≡ Es and |Es′| < |Es|. Let us substitute
Es in E by Es′. By Lemma 3.7, the resulting DNA expression E ′ is equivalent to E.
Because |E ′| < |E|, E cannot be minimal.

In this section, we first describe how to construct minimal DNA expressions for
nick free formal DNA molecules. We then do the same for expressible formal DNA
molecules that do contain nicks. We subsequently demonstrate that each minimal DNA
expression satisfies the description we have given, i.e., that there do not exist other
minimal DNA expressions. After that, we calculate the number of different minimal
DNA expressions for a given expressible formal DNA molecule. We also present a
characterization of minimal DNA expressions. By this, we can recognize a minimal
DNA expression without determining its length, Finally, we consider the trees that
correspond to minimal DNA expressions.

4.2.1 Minimal DNA expressions for a nick free formal DNA
molecule

Minimal l-expressions are limited to one simple type of formal DNA molecules:

Theorem 4.23 A l-expression E is minimal if and only if E = 〈l α1〉 for an N -word
α1.

In that case, E is the unique minimal DNA expression denoting S(E) =
(

α1

c(α1)

)
.

Proof: Let E = 〈l ε1〉 be a l-expression for an N -word or DNA expression ε1 and let
X = S(E). We consider the two possibilities for ε1 separately.

• If ε1 is an N -word α1, hence E = 〈l α1〉, then X =
(

α1

c(α1)

)
.

Now let E ′ be another, equivalent DNA expression. E ′ is not equal to 〈l α〉 for

an N -word α, because the only N -word α such that S(〈l α〉) =
(

α1

c(α1)

)
is α = α1.

Because nl(X) = 1, Corollary 4.19(6) implies that E ′ is longer than E:

|E ′| ≥ 3 + 3 · 1 + |ν(X)| = 6 + |X| > 3 + |X| = |E|.

Thus, E is the unique minimal DNA expression denoting X.

• If ε1 = E1 for a DNA expression E1, hence E = 〈l E1〉, then by definition
X = κ(X1) with X1 = S(E1).

Consequently, X does not contain upper components, nor lower components.
Because X is expressible, the nick letters occurring in X must be all of the same
type: either they are all upper nick letters, or they are all lower nick letters (see

60 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Theorem 3.4). Hence, by Corollary 2.6, there exist N -words α1, . . . , αk for some
k ≥ 1 and a nick letter y ∈ {▽, △} such that

X =
(

α1

c(α1)

)
y
(

α2

c(α2)

)
y . . . y

(
αk

c(αk)

)
.

If k = 1, hence X =
(

α1

c(α1)

)
is nick free, then E is not minimal, because we

have just observed that the unique minimal DNA expression denoting
(

α1

c(α1)

)
is

〈l α1〉.

If k ≥ 2, then E1 cannot be a l-expression 〈l α〉 for an N -word α, because

otherwise S(〈l E1〉) = S(〈l 〈l α〉〉) =
(

α

c(α)

)
would be nick free. Hence, by

Corollary 4.19(6),

|E| = 3 + |E1| ≥ 3 + 3 + 3 · nl(X1) + |ν(X1)| (4.17)

The fact that X = κ(X1) implies that |ν(X1)| = |ν(X)| and that #▽,△(X1) =

#▽,△(X) ≥ 1. Combining the latter observation with Lemma 4.11(4) and Lemma

4.11(3), we find

nl(X1) ≥ #▽,△(X1) + 1 = #▽,△(X) + 1 = nl(X).

When we substitute everything into (4.17), we obtain:

|E| ≥ 3 + 3 + 3 · nl(X) + |ν(X)| = 6 + 3k + |ν(X)|.

Now without loss of generality, assume that y = △ and consider the DNA expres-
sion E ′ = 〈↑ 〈l α1〉 〈l α2〉 . . . 〈l αk〉〉. It is easily verified that

S(E ′) =
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△

. . .
△

(
αk

c(αk)

)
= X

and that

|E ′| = 3 + 3k + |ν(X)| < |E|

Thus, also in this case, E = 〈l E1〉 is not minimal.

Formal DNA molecules of the form
(

α1

c(α1)

)
for an N -word α1 will come back fre-

quently in the remainder of this section. Often, we are not interested in the actual
N -letters occurring in such a molecule (hence in α1), but only in the shape of the
molecule, for instance when we want to except molecules of this type from a certain
statement. In order not to burden the text with unnecessary details, we may speak
of a double-complete formal DNA molecule, when we mean a formal DNA molecule of

the form
(

α1

c(α1)

)
for an N -word α1.

The fact that the only minimal l-expressions are 〈l α1〉 for N -words α1, implies
the following:

4.2: Minimal DNA expressions 61

Corollary 4.24 Let X be an expressible formal DNA molecule which is not double-
complete. Then each minimal DNA expression denoting X is either a ↑-expression or
a ↓-expression.

Theorem 4.23 describes the (unique) minimal DNA expression denoting a double-
complete formal DNA molecule. This result is quite straightforward. For other nick
free formal DNA molecules, the construction of minimal DNA expressions and the
corresponding proof of correctness is more involved. We start, however, with a simple
observation, which is immediate from Corollary 2.5.

Lemma 4.25 Let X be a nick free formal DNA molecule. Then X is not double-
complete, if and only if X contains at least one single-stranded component.

In the previous section, we defined the opening and closing ↑-components and the
opening and closing ↓-components of a formal DNA molecule. Here, these notions
appear to be useful, again. For a nick free formal DNA molecule, however, each ↑-
component is an upper component and each ↓-component is a lower component. To
reflect this in our terminology, we will speak of opening and closing upper compo-
nents instead of opening and closing ↑-components, and of opening and closing lower
components instead of opening and closing ↓-components. We will use the new, but
equivalent terminology only in the context of nick free formal DNA molecules.

We will find that, in general, there may be different minimal DNA expressions
denoting the same nick free formal DNA molecule. Sometimes, there exist minimal
DNA expressions for a formal DNA molecule with different outermost operators, ↑ or
↓, as is the case for the example we have seen in (4.16). Moreover, given an outermost
operator, there may be different ways to partition a formal DNA molecule into parts
that are (intuitively speaking) generated by the outermost operator and parts that are
generated by other operators in the DNA expression, at a higher nesting level. Each
of these ways may lead to one or (many) more minimal DNA expressions.

In order to determine what a useful partitioning of a certain formal DNA molecule
is, we need a number of definitions and auxiliary results.

Definition 4.26 Let X be a nick free formal DNA molecule and let x′
1 . . . x′

k for some
k ≥ 1 be the decomposition of X.

A maximal upper sequence of X is an occurrence (X1, X2) of a non-empty substring
Y of X such that X1 = x′

1 . . . x′
a−1 and X2 = x′

b+1 . . . x′
k for some a and b with 1 ≤ a ≤

b ≤ k (hence Y = x′
a . . . x′

b), and

• for i = a, . . . , b, x′
i is either a double component or an upper component, and

• – either a = 1 (hence X1 is empty),

– or a ≥ 3 and x′
a is an opening upper component,

and

• – either b = k (hence X2 is empty),

– or b ≤ k − 2 and x′
b is a closing upper component.

A maximal upper sequence of a nick free formal DNA molecule X is formally defined
as an occurrence (X1, X2) of a substring Y of X satisfying certain conditions. However,
when the occurrence is clear from the context, we will often refer to a maximal upper
sequence by the substring Y itself.

62 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

︸︷︷︸
Y0

︸︷︷︸
Y1

︸ ︷︷ ︸
Y2

︸ ︷︷ ︸
Y3

Figure 4.4: The maximal upper sequences of a formal DNA molecule X. Y0 is the
maximal upper prefix and Y3 is the maximal upper suffix of X.

As an example, Figure 4.4 shows all maximal upper sequences of a certain formal
DNA molecule.

As another example, consider X =
(

α1

c(α1)

)
for a certain N -word α1. It is easily

verified that Y = X =
(

α1

c(α1)

)
satisfies all conditions of a maximal upper sequence.

Note that in this case, Y does not contain any upper component.

Intuitively, a maximal upper sequence Y of X is ‘maximal’ in the sense that it
cannot be extended either to the left or to the right by a ‘block’ or by a ‘block’

. We make this intuition more formal in the next result.

Lemma 4.27 Let X be a nick free formal DNA molecule, let x′
1 . . . x′

k for some k ≥ 1
be the decomposition of X, and let Y = x′

a . . . x′
b for some a and b with 1 ≤ a ≤ b ≤ k

be a maximal upper sequence of X.

1. If a ≥ 2, then a ≥ 3, x′
a−2 is a closing lower component, x′

a−1 is a double
component and x′

a is an opening upper component.

2. If b ≤ k−1, then b ≤ k−2, x′
b+2 is an opening lower component, x′

b+1 is a double
component and x′

b is a closing upper component.

Proof:

1. Assume that a ≥ 2. Then by definition a ≥ 3 and x′
a is an opening upper

component. By Corollary 2.5, x′
a−1 is a double component and by the definition

of an opening upper component, x′
a−2 is a lower component. In particular, x′

a−2

is a closing lower component.

2. The proof of this claim is analogous to that of the previous claim.

As expected, the opening and closing upper components occurring in the defini-
tion of a maximal upper sequence are not just arbitrary opening and closing upper
components. They are related, as follows:

Lemma 4.28 Let X be a nick free formal DNA molecule, let x′
1 . . . x′

k for some k ≥ 1
be the decomposition of X, and let Y = x′

a . . . x′
b for some a and b with 1 ≤ a ≤ b ≤ k

be a maximal upper sequence of X.

If Y contains at least one upper component, then the first upper component occurring
in Y is an opening upper component and the last upper component occurring in Y is
the corresponding closing upper component.

4.2: Minimal DNA expressions 63

In particular, each maximal upper sequence Y = x′
a . . . x′

b with a ≥ 2 and b ≤ k − 1
starts with an opening upper component and ends with the corresponding closing upper
component.

Proof: Assume that Y contains at least one upper component. Then ‘the first upper
component’ and ‘the last upper component’ occurring in Y are well defined.

If a ≥ 2, then by the definition of a maximal upper sequence, x′
a is an opening

upper component of X. Obviously, x′
a is the first upper component occurring in Y .

If a = 1 and x′
a is an upper component, then by definition x′

a is an opening upper
component.

If a = 1 and x′
a is not an upper component, then x′

a must be a double component,
because the maximal upper sequence Y does not contain lower components. Because
Y contains at least one upper component, we must have a < b, and by Corollary 2.5,
x′

a+1 = x′
2 is an upper component. In particular, it is an opening upper component of

X.
In every case, the first upper component occurring in Y (either x′

a, or x′
a+1 with

a = 1) is an opening upper component. Analogously, we can prove that the last upper
component occurring in Y (either x′

b or x′
b−1) is a closing upper component. Let us call

these opening and closing upper components x′
a0

and x′
b0

, respectively.
By Corollary 2.5, a0 ≡ b0 (mod 2), and because Y does not contain lower compo-

nents, each of x′
a0

, x′
a0+2, . . . , x

′
b0−2, x

′
b0

is an upper component. Consequently, x′
a0

and
x′

b0
are corresponding opening and closing upper components.

For the case that X has more than one maximal upper sequence, we have the
following result:

Lemma 4.29 Let X be a nick free formal DNA molecule. Then the maximal upper
sequences of X are pairwise disjoint.

Proof: Let Y1 = x′
a1

. . . x′
b1

and Y2 = x′
a2

. . . x′
b2

be two different maximal upper se-
quences of X. Without loss of generality, assume that a1 6= a2 (otherwise consider the
bi’s and mirror the arguments). In particular, assume that a1 < a2. By definition,
a1 ≥ 1, and thus a2 ≥ 2. By Lemma 4.27(1), a2 ≥ 3 and x′

a2−2 is a lower component.
Suppose that a1 = a2 − 1 (hence a1 − 1 = a2 − 2). Then a1 ≥ 2, and thus a1 ≥ 3

and x′
a1−2 would be a lower component. Now, X would have two consecutive lower

components x′
a1−2 and x′

a1−1 = x′
a2−2, which would contradict Corollary 2.5.

Consequently, a1 ≤ a2 − 2. Because (the maximal upper sequence) Y1 = x′
a1

. . . x′
b1

does not contain lower components, we must have b1 < a2−2. This implies in particular
that b1 ≤ k − 1. Then by Lemma 4.27(2), b1 ≤ k − 2 and x′

b1+2 is a lower component.
Again, because X cannot have two consecutive lower components, we must have b1+2 ≤
a2 − 2.

We thus have a1 ≤ b1 < b1 + 2 ≤ a2 − 2 < a2 ≤ b2. Clearly, Y1 and Y2 are disjoint.

Because of this result, we can unambiguously order the different maximal upper
sequences of a nick free formal DNA molecule X according to their occurrence in X.
Hence, we can speak of the first, the second, . . . , the last maximal upper sequence of
X.

Upper components are important in the definition of a maximal upper sequence.
The next result deals with the relation between upper components and maximal upper

64 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

sequences.

Lemma 4.30 Let X be a nick free formal DNA molecule.

1. If X is not double-complete, then each maximal upper sequence of X contains at
least one upper component.

2. Each upper component of X occurs in a (exactly one) maximal upper sequence.

Proof: Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X.

1. Assume that X is not double-complete. Then by Lemma 4.25, X contains at
least one single-stranded component. Let Y = x′

a . . . x′
b with 1 ≤ a ≤ b ≤ k be

an arbitrary maximal upper sequence of X.

If a ≥ 2, then by definition, x′
a is an (opening) upper component. Similarly, if

b ≤ k − 1, then x′
b is a (closing) upper component. In particular, in these cases,

Y contains at least one upper component.

If a = 1 and b = k, then Y = X, and hence, Y contains at least one single-
stranded component. Because Y does not contain lower components, this has to
be an upper component.

2. Let x′
i0

be an arbitrary upper component of X. By Corollary 2.5, each component
x′

i with i ≡ i0 (mod 2) is an upper component or a lower component, and each
component x′

i with i ≡ i0 + 1 (mod 2) is a double component.

Now, let a0 be the smallest index with 1 ≤ a0 ≤ i0 and a0 ≡ i0 (mod 2) such
that each of x′

a0
, x′

a0+2, . . . , x
′
i0−2, x

′
i0

is an upper component. Further, let b0 be
the largest index with i0 ≤ b0 ≤ k and b0 ≡ i0 (mod 2) such that each of
x′

i0
, x′

i0+2, . . . , x
′
b0−2, x

′
b0

is an upper component. Because x′
i0

itself is an upper
component, a0 and b0 are well defined.

We subsequently define indices a and b by

a =

{
1 if a0 = 2
a0 otherwise

and b =

{
k if b0 = k − 1
b0 otherwise

,

and let Y = x′
a . . . x′

b. It is easy to see that 1 ≤ a ≤ a0 ≤ i0 ≤ b0 ≤ b ≤ k.
Indeed, Y contains x′

i0
.

It follows from the foregoing that for i = a, . . . , b, x′
i is an upper component or

a double component. Further, either a = 1, or a ≥ 3. In the latter case, a = a0,
and hence x′

a−2 is a lower component and x′
a is an opening upper component.

Similarly, either b = k, or b ≤ k − 2. In the latter case, b = b0, and hence x′
b+2

is a lower component and x′
b is a closing upper component. Consequently, Y is a

maximal upper sequence.

Because, by Lemma 4.29, maximal upper sequences are pairwise disjoint, the
upper component x′

i0
does not occur in any other maximal upper sequence of X.

We now examine some specific cases of formal DNA molecules and their maximal
upper sequences.

4.2: Minimal DNA expressions 65

Lemma 4.31 Let X be a nick free formal DNA molecule and let x′
1 . . . x′

k for some
k ≥ 1 be the decomposition of X.

1. X contains a maximal upper sequence Y = x′
i which equals a double component

x′
i of X, if and only if X is double-complete.

In that case, Y = X is the only maximal upper sequence of X.

2. X is a maximal upper sequence of itself, if and only if X does not contain any
lower component.

In that case, Y = X is the only maximal upper sequence of X.

3. X does not contain any maximal upper sequence, if and only if X does not contain
any upper component and contains at least one lower component.

Proof:

1. =⇒ A maximal upper sequence Y which equals a double component x′
i of X does

not contain any upper component of X. If X contains such a maximal upper
sequence, then by Lemma 4.30(1), X must be double-complete.

⇐= If, on the other hand, X =
(

α1

c(α1)

)
for an N -word α1, then k = 1 and

x′
1 =

(
α1

c(α1)

)
. As we observed before, Y = x′

1 =
(

α1

c(α1)

)
= X is a maximal upper

sequence. It is, in fact, a special case of the next claim.

Obviously, in this case, Y = X is the only maximal upper sequence of X.

2. =⇒ If X is a maximal upper sequence of itself, then by definition, it only contains
double components and upper components. Hence, it does not contain any lower
component.

⇐= If, on the other hand, X does not contain any lower component, then, be-
cause X is nick free, it only contains double components and upper components.
Now, obviously X = x′

1 . . . x′
k satisfies all conditions of a maximal upper sequence.

In this case, Y = X is the only maximal upper sequence of X, because, by
Lemma 4.29, maximal upper sequences are pairwise disjoint.

3. =⇒ Assume that X does not contain any maximal upper sequence.

By Claim 1, X cannot be double-complete, because otherwise X would be a
maximal upper sequence itself. Hence, by Lemma 4.25, X contains at least one
single-stranded component.

Because, by Lemma 4.30(2), each upper component of X occurs in a maximal up-
per sequence, X cannot contain any upper component. Consequently, X contains
at least one lower component.

⇐= Assume, on the other hand, that X does not contain any upper component
and contains at least one lower component.

Because X contains at least one lower component, X is not double-complete.
Then by Lemma 4.30(1), each maximal upper sequence of X contains at least
one upper component. Now, because X does not contain any upper component,
it certainly does not contain a maximal upper sequence.

66 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

There is a simple relation between the number of maximal upper seqences of a
nick free formal DNA molecule X and T↑(X). We only consider the case that X is
double-complete separately, as T↑(X) = 0 for such a formal DNA molecule.

Lemma 4.32 Let X be a nick free formal DNA molecule. Then the number of maximal
upper sequences of X is equal to

{
1 if X is double-complete,

T↑(X) otherwise.

Proof: If X is double-complete, then by Lemma 4.31(1), Y = X is the only maximal
upper sequence of X.

Now, let us assume that X is not double-complete.
Let Y = x′

a . . . x′
b be an arbitrary maximal upper sequence. By Lemma 4.30(1),

Y contains at least one upper component. Further, by Lemma 4.28, the first upper
component occurring in Y is an opening upper component of X and the last upper
component occurring in Y is the corresponding closing upper component of X. Finally,
by Lemma 4.6(1), Y does not contain any other opening upper component.

Hence, each maximal upper sequence contains exactly one opening upper compo-
nent. On the other hand, by Lemma 4.30(2), each opening upper component occurs in
a (exactly one) maximal upper sequence. This implies that the relation between open-
ing upper components and maximal upper sequences that is induced by occurrence is
bijective.

Consequently, the number of opening upper components (T↑(X)) is equal to the
number of maximal upper sequences.

In addition to maximal upper sequences, we have separating lower sequences.

Definition 4.33 Let X be a nick free formal DNA molecule and let x′
1 . . . x′

k for some
k ≥ 1 be the decomposition of X.

A separating lower sequence of X is an occurrence (Y1, Y2) of a non-empty substring
X1 of X such that Y1 = x′

1 . . . x′
b and Y2 = x′

a . . . x′
k for some b and a with 1 ≤ b + 1 ≤

a − 1 ≤ k (hence X1 = x′
b+1 . . . x′

a−1), and

• for i = b+1, . . . , a−1, x′
i is either a double component or a lower component, and

there is at least one i with b + 1 ≤ i ≤ a − 1 for which x′
i is a lower component,

and

• – either b + 1 = 1 (hence Y1 is empty),

– or b + 1 ≥ 2 and x′
b is an upper component,

and

• – either a − 1 = k (hence Y2 is empty),

– or a − 1 ≤ k − 1 and x′
a is an upper component.

For the formal DNA molecule from Figure 4.4, we have indicated the separating
lower sequences in Figure 4.5. It is easy to see that in this example, each pair of
consecutive maximal upper sequences are separated by a separating lower sequence. We
will prove that this holds in general. This, of course, explains the adjective separating
in the term separating lower sequence.

4.2: Minimal DNA expressions 67

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

Figure 4.5: The separating lower sequences of the formal DNA molecule X from Fig-
ure 4.4.

Note that a separating lower sequence is not just the ‘lower analogue’ of a maximal
upper sequence. A separating lower sequence of a nick free formal DNA molecule X
has to contain at least one lower component of X, whereas a maximal upper sequence
does not necessarily contain an upper component. Further, if the first component
x′

b+1 of a separating lower sequence is not the first component x′
1 of X, then it is a

double component (because x′
b is an upper component). If, on the other hand, the

first component of a maximal upper sequence is not the first component of X, then it
is an (opening) upper component. There is an analogous difference between the last
component of a separating lower sequence and the last component of a maximal upper
sequence.

The question which type of components we find at the edges of a separating lower
sequence is dealt with in the following result.

Lemma 4.34 Let X be a nick free formal DNA molecule, let x′
1 . . . x′

k for some k ≥ 1
be the decomposition of X, and let X1 = x′

b+1 . . . x′
a−1 for some b and a with 1 ≤ b+1 ≤

a − 1 ≤ k be a separating lower sequence of X.

1. If b + 1 ≥ 2, then b + 1 < a − 1 ≤ k, x′
b is a closing upper component, x′

b+1 is a
double component and x′

b+2 is an opening lower component.

2. If a− 1 ≤ k− 1, then 1 ≤ b + 1 < a− 1, x′
a is an opening upper component, x′

a−1

is a double component and x′
a−2 is a closing lower component.

Proof:

1. Assume that b + 1 ≥ 2. Then, by definition, x′
b is an upper component, and

by Corollary 2.5, x′
b+1 is a double component. Because X1 contains at least one

lower component, we must have b + 1 < a − 1. Hence, x′
b+2 is part of X1, and

by the definition of a separating lower sequence, it is a double component or a
lower component. By Corollary 2.5, it has to be a lower component. Indeed, x′

b

is a closing upper component and x′
b+2 is an opening lower component.

2. The proof of this claim is analogous to that of the previous claim.

The above result is the ‘separating lower sequence-version’ of Lemma 4.27. Such
versions also exist for Lemma 4.28 – Lemma 4.32:

Lemma 4.35 (cf. Lemma 4.28) Let X be a nick free formal DNA molecule, let
x′

1 . . . x′
k for some k ≥ 1 be the decomposition of X, and let X1 = x′

b+1 . . . x′
a−1 for some

b and a with 1 ≤ b + 1 ≤ a − 1 ≤ k be a separating lower sequence of X.
Then the first lower component occurring in X1 is an opening lower component and

the last lower component occurring in X1 is the corresponding closing lower component.

68 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Combining this with Lemma 4.34, we find that each separating lower sequence X1 =
x′

b+1 . . . x′
a−1 with b+1 ≥ 2 and a−1 ≤ k−1 starts with a double component followed by

an opening lower component, and ends with the corresponding closing lower component
followed by another double component.

Proof: The proof of this result is similar to that of Lemma 4.28. However, for the case
b+1 ≥ 2 (and analogously, for the case a−1 ≤ k−1), we use Lemma 4.34 rather than
the definition of a separating lower sequence to argue that x′

b+2 (x′
a−2) is an opening

(closing) lower component.

Lemma 4.36 (cf. Lemma 4.29) Let X be a nick free formal DNA molecule. Then
the separating lower sequences of X are pairwise disjoint.

Proof: Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X, and let X1 =
x′

b1+1 . . . x′
a1−1 and X2 = x′

b2+1 . . . x′
a2−1 be two different separating lower sequences.

Without loss of generality, assume that b1 6= b2, and in particular that b1 < b2.
Because 1 ≤ b1 + 1 < b2 + 1, we have b2 + 1 ≥ 2 and thus, by definition, x′

b2
is an

upper component. Further, because b1 + 1 ≤ b2, we must have a1 − 1 < b2, because
otherwise (the separating lower sequence) X1 would contain the upper component x′

b2
.

Consequently, b1 + 1 ≤ a1 − 1 < b2 < b2 + 1 ≤ a2 − 1, and thus X1 and X2 are
disjoint.

Lemma 4.37 (cf. Lemma 4.30) Let X be a nick free formal DNA molecule. Then
each lower component of X occurs in a (exactly one) separating lower sequence.

Proof: The proof of this result is similar to that of Lemma 4.30(2). However, because
at crucial positions the technical details are different, we give the complete proof.

Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X, and let x′
i0

for some i0 with
1 ≤ i0 ≤ k be a lower component of X.

By Corollary 2.5, each component x′
i with i ≡ i0 (mod 2) is an upper component

or a lower component, and each component x′
i with i ≡ i0 + 1 (mod 2) is a double

component.
Now let b0 be the smallest value such that each of x′

b0+2, x
′
b0+4, . . . x

′
i0−2, x

′
i0

is a lower
component, and let a0 be the largest value such that each of x′

i0
, x′

i0+2, . . . x
′
a0−4, x

′
a0−2

is a lower component. Because x′
i0

is a lower component, b0 and a0 are well defined,
and −1 ≤ b0 ≤ i0 − 2 < i0 + 2 ≤ a0 ≤ k + 2.

We subsequently define indices b and a by

b =

{
0 if b0 = −1
b0 otherwise

and a =

{
k + 1 if a0 = k + 2
a0 otherwise,

and let X1 = x′
b+1 . . . x′

a−1.
Because −1 ≤ b0 and a0 ≤ k+2, we have 0 ≤ b and a ≤ k+1 and thus 1 ≤ b+1 and

a − 1 ≤ k. Further, because b0 ≤ i0 − 2 < i0 + 2 ≤ a0, we have b ≤ i0 − 1 < i0 + 1 ≤ a
and thus b + 1 ≤ i0 ≤ a− 1. Hence, X1 is well defined and non-empty. It follows from
the foregoing that each of x′

b+1, . . . x
′
a−1 is a double component or a lower component.

At least one of them is a lower component, viz. x′
i0
.

Now, either b + 1 = 1, or b + 1 ≥ 2. In the latter case, b = b0 and x′
b = x′

b0
is an

upper component. Similarly, either a − 1 = k, or a − 1 ≤ k − 1. In the latter case,

4.2: Minimal DNA expressions 69

a = a0 and x′
a = x′

a0
is an upper component. Because X1 has all properties required in

the definition, we conclude that it is a separating lower sequence.
Hence, x′

i0
occurs in the separating lower sequence X1. Because, by Lemma 4.36,

separating lower sequences are pairwise disjoint, x′
i0

does not occur in any other sepa-
rating lower sequence of X.

Lemma 4.38 (cf. Lemma 4.31) Let X be a nick free formal DNA molecule.

1. X is a separating lower sequence of itself, if and only if X does not contain any
upper component and contains at least one lower component.

In that case, X1 = X is the only separating lower sequence of X.

2. X does not contain any separating lower sequence, if and only if X does not
contain any lower component.

Proof: Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X.

1. The proof of this claim is similar to that of Lemma 4.31(2).

2. The proof of this claim is even more direct than that of Lemma 4.31(3), because
we do not have to exclude the case that X is double-complete. The claim follows
immediately from the definition and from Lemma 4.37.

Lemma 4.39 (cf. Lemma 4.32) Let X be a nick free formal DNA molecule. Then
the number of separating lower sequences of X is equal to T↓(X).

Proof: This proof is similar to that of Lemma 4.32. However, we do not have to
consider the case that X is double-complete separately. Each separating lower sequence
of X contains exactly one opening lower component and each opening lower component
of X occurs in exactly one separating lower sequence.

Now, we have come to the relation between maximal upper sequences and separating
lower sequences:

Lemma 4.40 Let X be a nick free formal DNA molecule.

1. For each maximal upper sequence Y1 of X and each separating lower sequence X2

of X, Y1 and X2 are disjoint.

2. Each pair of consecutive maximal upper sequences are separated by a separating
lower sequence.

3. Assume that X contains at least one maximal upper sequence. Let Y1 be the first
maximal upper sequence of X, with occurrence (X1, X2), and let Y2 be the last
maximal upper sequence of X, with occurrence (Z1, Z2).

(a) If X1 6= λ, then X1 is a separating lower sequence.

(b) If Z2 6= λ, then Z2 is a separating lower sequence.

70 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Proof: Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X.

1. Let Y1 = x′
a1

. . . x′
b1

be a maximal upper sequence, and let X2 = x′
b2+1 . . . x′

a2−1

be a separating lower sequence of X. Then Y1 and X2 must be different, because
X2 contains at least one lower component, whereas Y1 does not contain any lower
component at all. Without loss of generality, assume that a1 6= b2 + 1.

If a1 < b2 + 1, then b2 + 1 ≥ 2 and thus, by Lemma 4.34(1), b2 + 1 < a2 − 1 ≤ k,
x′

b2
is an upper component, x′

b2+1 is a double component and x′
b2+2 is a lower

component. Because Y1 does not contain any lower component, we must have
b1 < b2 + 2. By Lemma 4.27(2), x′

b1
is an upper component. Finally, because

X2 does not contain any upper component, b1 cannot be equal to b2 + 1. Hence,
b1 < b2 + 1.

If, on the other hand, b2 + 1 < a1, then a1 ≥ 2 and thus, by Lemma 4.27(1),
a1 ≥ 3, x′

a1−2 is a lower component and x′
a1

is an upper component. Because X2

does not contain any upper component, we must have a2 − 1 < a1.

In both cases, we find that Y1 and X2 are disjoint.

2. Let Y1 = x′
a1

. . . x′
b1

and Y2 = x′
a2

. . . x′
b2

be two consecutive maximal upper se-
quences. Without loss of generality, assume that Y1 precedes Y2. In the proof
of Lemma 4.29, we have established that b1 < b1 + 2 ≤ a2 − 2 < a2 (hence,
a2 − b1 ≥ 4). By Lemma 4.27, x′

b1+2 and x′
a2−2 are lower components, x′

b1+1 and
x′

a2−1 are double components and x′
b1

and x′
a2

are upper components of X.

By Lemma 4.30(2), each upper component occurs in a maximal upper sequence of
X. Thus, the existence of an upper component between Y1 and Y2 would contra-
dict the assumption that they are consecutive. Hence, the sequence x′

b1+1 . . . x′
a2−1

only consists of double components and lower components.

This implies that x′
b1+1 . . . x′

a2−1 satisfies all conditions of a separating lower se-
quence.

3. The proof of this claim is similar to that of the previous claim.

For the first subclaim, we first establish that the last two components of X1

are a lower component and a double component, respectively, and that the first
component of Y1 is an upper component. We subsequently prove that X1 does
not contain any upper component, because otherwise we could find a maximal
upper sequence within X1, i.e., before the first maximal upper sequence. These
properties together imply that X1 is a separating lower sequence.

The proof of the second subclaim is completely analogous.

When we combine Lemma 4.31(3) and Lemma 4.38(1) with Lemma 4.29, Lemma 4.36
and Lemma 4.40, we obtain:

Theorem 4.41 Each nick free formal DNA molecule is an alternating sequence of (all
its) maximal upper sequences and (all its) separating lower sequences.

When we take a subsequence Xs of the maximal upper sequences and separating
lower sequences of a nick free formal DNA molecule X, we can, in turn, consider the
maximal upper sequences and separating lower sequences of Xs:

4.2: Minimal DNA expressions 71

Lemma 4.42 Let X be a nick free formal DNA molecule, and consider X as an al-
ternating sequence of maximal upper sequences and separating lower sequences (see
Theorem 4.41). Let Xs be a non-empty subsequence of consecutive maximal upper
sequences and separating lower sequences of X.

Then the maximal upper sequences of Xs are exactly the maximal upper sequences of
X occurring in the definition of Xs. The separating lower sequences of Xs are exactly
the separating lower sequences of X occurring in the definition of Xs.

Proof: Because X is nick free and Xs is a non-empty substring of X, by Lemma 2.2,
Xs is a nick free formal DNA molecule. This implies that indeed maximal upper
sequences and separating lower sequences are defined for Xs.

First, we consider a special case. If X is double-complete, then by Lemma 4.31(1),
it only consists of one maximal upper sequence, which is equal to X. Hence, Xs,
which is a non-empty subsequence of the maximal upper sequences and separating
lower sequences of X, must be equal to X. Then the claims are trivially valid.

Conversely, if Xs is double-complete, then it cannot contain any separating lower
sequence of X, because by definition, a separating lower sequence contains at least
one lower component. Hence, Xs must be equal to one maximal upper sequence of
X. Apparently, X contains a maximal upper sequence that is double-complete. By
Lemma 4.31(1), X must be double-complete itself, and X must be equal to this double-
complete maximal upper sequence. Again, we conclude that Xs = X and that the
claims are trivially valid.

Now, let us assume that X is not double-complete and (thus) that Xs is not double-
complete. Let x′

1 . . . x′
k for some k ≥ 1 be the decomposition of X. Because by

definition maximal upper sequences and separating lower sequences of X are built up
of components of X, so is Xs. Hence, there exist i0 and j0 with 1 ≤ i0 ≤ j0 ≤ k such
that Xs = x′

i0
. . . x′

j0
. Clearly, each component of Xs is also a component of X. The

remainder of the proof consists of four steps.

1. Let Y s = x′
a . . . x′

b with i0 ≤ a ≤ b ≤ j0 be a maximal upper sequence of Xs.
By Lemma 4.30(1), Y s contains at least one upper component. By definition, Y s

does not contain any lower component.

If a = i0, then the first single-stranded component of Xs is an upper component.
Because by definition, a separating lower sequence of X does not contain any
upper component and contains at least one lower component, Xs (seen as a sub-
sequence of maximal upper sequences and separating lower sequences of X) starts
with a maximal upper sequence. In particular, x′

a = x′
i0

is the first component of
a maximal upper sequence Y1 of X.

If a ≥ i0 +1, then by Lemma 4.27(1), a ≥ i0 +2, x′
a−2 is a lower component, x′

a−1

is a double component and x′
a is an upper component of Xs (and thus of X). By

Lemma 4.30(2), x′
a occurs in a maximal upper sequence Y1 of X. By definition,

(the lower component) x′
a−2 is not part of Y1. Hence, the first component of Y1

must be either (the double component) x′
a−1 or (the upper component) x′

a. By
Lemma 4.27(1), it must be x′

a. Also in this case, x′
a is the first component of a

maximal upper sequence Y1 of X.

Analogously, we can prove that x′
b is the last component of a maximal upper

sequence Y2 of X.

72 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Now we observe that (by Theorem 4.41) different maximal upper sequences of
X are separated by at least one separating lower sequence, that each separating
lower sequence of X contains at least one lower component, and that Y s =
x′

a . . . x′
b does not contain any lower component. Consequently, Y1 and Y2 must

be the same maximal upper sequence of X: Y s = Y1 = Y2 is a maximal upper
sequence of X.

2. In a similar way, we can prove that each separating lower sequence of Xs is also
a separating lower sequence of X. References to results about maximal upper
sequences must, of course, be replaced by references to the ‘separating lower
sequence versions’ and vice versa.

3. Let Y be a maximal upper sequence of X which occurs in the definition of Xs (as
sequence of consecutive maximal upper sequences and separating lower sequences
of X).

Y cannot intersect with a separating lower sequence Xs
1 of Xs, because, as we

have established in step 2, Xs
1 would also be a separating lower sequence of Y .

Then X would have a maximal upper sequence Y and a separating lower sequence
Xs

1 that are not disjoint, which would contradict Lemma 4.40(1).

By Theorem 4.41, Xs is an alternating sequence of maximal upper sequences and
separating lower sequences (of itself). Hence, Y must be contained in a maximal
upper sequence Y s of Xs. As we have proved in step 1, Y s is also a maximal
upper sequence of X.

If Y were not equal to Y s, then X would have different maximal upper sequences
Y and Y s that are not disjoint, which would contradict Lemma 4.29. Conse-
quently, Y is equal to Y s.

4. Analogously, we can prove that each separating lower sequence of X occurring
in the definition of Xs (as sequence of consecutive maximal upper sequences and
separating lower sequences of X) is also a separating lower sequence of Xs.

The first and the last maximal upper sequence occurring in a nick free formal DNA
molecule may be of special interest, in particular when they lie at the borders of the
molecule.

Definition 4.43 Let X be a nick free formal DNA molecule and let x′
1 . . . x′

k for some
k ≥ 1 be the decomposition of X.

• The maximal upper prefix of X is

– the occurrence (λ,X) of the empty string λ if

∗ either X does not contain any maximal upper sequence,

∗ or X contains at least one maximal upper sequence, and the first maxi-
mal upper sequence of X has occurrence (X1, X2) for a non-empty prefix
X1 and a suffix X2 of X.

– the first maximal upper sequence of X otherwise, i.e., if X contains at least
one maximal upper sequence and the first maximal upper sequence of X has
occurrence (λ,X2) for a suffix X2 of X.

4.2: Minimal DNA expressions 73

• The maximal upper suffix of X is

– the occurrence (X,λ) of the empty string λ if

∗ either X does not contain any maximal upper sequence,

∗ or X contains at least one maximal upper sequence, and the last maximal
upper sequence of X has occurrence (X1, X2) for a prefix X1 and a non-
empty suffix X2 of X.

– the last maximal upper sequence of X otherwise, i.e., if X contains at least
one maximal upper sequence and the last maximal upper sequence of X has
occurrence (X1, λ) for a prefix X1 of X.

Again, although formally the maximal upper prefix and the maximal upper suffix of
a nick free formal DNA molecule X are defined as occurrences of substrings of X, we
will often refer to them by the substrings themselves. Implicitly, however, we keep
associating to them a position in X. For example, if both the maximal upper prefix
and the maximal upper suffix of X are equal to λ, then they are not equal, because the
occurrence of the maximal upper prefix is (λ,X) and the occurrence of the maximal
upper suffix is (X,λ).

In Figure 4.4, the maximal upper prefix and the maximal upper suffix of the formal
DNA molecule depicted are also indicated.

Sometimes, the maximal upper prefix and the maximal upper suffix of a nick free
formal DNA molecule are equal:

Lemma 4.44 Let X be a nick free formal DNA molecule. Then the maximal upper
prefix of X is equal to the maximal upper suffix of X, if and only if X does not contain
any lower component.

In that case, the maximal upper prefix and the maximal upper suffix are equal to X.

Proof: Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X.
If the maximal upper prefix and the maximal upper suffix are equal, then, as we have

just mentioned, they are not empty. Hence, by definition, the maximal upper prefix
is the first maximal upper sequence Y0 = x′

a0
. . . x′

b0
of X, with occurrence (λ,X2) for

a suffix X2 of X. Clearly, a0 = 1 for this maximal upper sequence, and 1 ≤ b0 ≤
k. Analogously, the maximal upper suffix is the last maximal upper sequence Y0 =
x′

a1
. . . x′

b1
of X, with 1 ≤ a1 ≤ k and b1 = k. It follows that Y0 = Y1 = x′

1 . . . x′
k = X.

In particular, X is a maximal upper sequence of itself.
If, on the other hand, X is a maximal upper sequence of itself, then it is both the

first and the last maximal upper sequence of itself. In that case, by definition, both
the maximal upper prefix and the maximal upper suffix are equal to X. In particular,
they are equal to each other.

Now, the claim follows from Lemma 4.31(2).

By definition, there are two cases in which the maximal upper prefix or the maximal
upper suffix of a nick free formal DNA molecule are empty. To sharpen the intuition,
we give two other characterizations of this situation.

Lemma 4.45 Let X be a nick free formal DNA molecule, and consider X as an al-
ternating sequence of maximal upper sequences and separating lower sequences (see
Theorem 4.41).

74 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

1. The following three statements are equivalent:

(a) The maximal upper prefix of X is empty.

(b) The alternating sequence starts with a separating lower sequence.

(c) X contains at least one single-stranded component and the first single-stranded
component of X is a lower component.

2. The following three statements are equivalent:

(a) The maximal upper suffix of X is empty.

(b) The alternating sequence ends with a separating lower sequence.

(c) X contains at least one single-stranded component and the last single-stranded
component of X is a lower component.

Proof:

1. (1a) =⇒ (1b) Assume that the maximal upper prefix of X is empty.

Then either X does not contain any maximal upper sequence, or X contains
at least one maximal upper sequence but the first maximal upper sequence has
occurrence (X1, X2) for a non-empty prefix X1 and a suffix X2 of X. In the former
case, the alternating sequence only consists of a separating lower sequence. In
the latter case, by Lemma 4.40(3a), X1 is a separating lower sequence. In both
cases, the alternating sequence starts with a separating lower sequence.

(1b) =⇒ (1c) This transition is clear, because by definition, a separating lower
sequence does not contain any upper component and contains at least one lower
component.

(1c) =⇒ (1a) Assume that X contains at least one single-stranded component
and that the first single-stranded component is a lower component.

By Lemma 4.30(1), each maximal upper sequence of X contains at least one
upper component. Further, by definition, a maximal upper sequence does not
contain any lower component.

If X contains at least one maximal upper sequence, then the first maximal upper
sequence cannot be x′

1 . . . x′
b for an index b with 1 ≤ b ≤ k. Otherwise, it would

not only contain the required upper component, but also the first single-stranded
component of X, which is a lower component. Hence, the maximal upper prefix
of X is empty.

2. The proof of this claim is analogous to that of the previous claim.

Those maximal upper sequences of a nick free formal DNA molecule X which are
not equal to the maximal upper prefix, nor to the maximal upper suffix of X are called
internal maximal upper sequences. We denote the number of internal maximal upper
sequences of X by nimus(X).

Lemma 4.46 Let X be a nick free formal DNA molecule, and consider X as an al-
ternating sequence of maximal upper sequences and separating lower sequences (see
Theorem 4.41).

4.2: Minimal DNA expressions 75

1. A maximal upper sequence of X is internal if and only if it is both preceded and
succeeded in X by a separating lower sequence.

2. (a) If X does not contain any lower component, then nimus(X) = 0.

(b) If X contains at least one lower component, then nimus(X) = T↓(X) − 1.

Proof:

1. If the alternating sequence mentioned starts with a maximal upper sequence,
then by definition, this is the maximal upper prefix of X. Analogously, if the
alternating sequence ends with a maximal upper sequence, then this is the max-
imal upper suffix. Consequently, if a maximal upper sequence is internal, then it
must be both preceded and succeeded by a separating lower sequence.

Conversely, if a maximal upper sequence is both preceded and succeeded by a
separating lower sequence, then it certainly is not a prefix or a suffix of X, and
thus it is internal.

2. (a) If X does not contain any lower component, then by Lemma 4.38(2), it does
not contain any separating lower sequence. By Claim 1, there cannot be
any internal maximal upper sequence, either.

(b) Assume that X contains at least one lower component. Then because max-
imal upper sequences do not contain lower components, there is at least one
separating lower sequence.

By Claim 1, a maximal upper sequence is internal if and only if it is both
preceded and succeeded in X by a separating lower sequence. Hence, the
number of internal maximal upper sequences is 1 less than the number of
separating lower sequences. By Lemma 4.39, the latter number is T↓(X).

We now define partitionings of a nick free formal DNA molecule which will appear
to be useful to construct minimal DNA expressions.

Definition 4.47 Let X be a nick free formal DNA molecule.
A maximal upper partitioning of X is a sequence Y0, X1, Y1, X2, Y2, . . . , Xr, Yr for

some r ≥ 0 such that

• X = Y0X1Y1X2Y2 . . . XrYr, and

• Y0 is the maximal upper prefix of X and Yr is the maximal upper suffix of X, and

• for j = 1, . . . , r − 1, Yj is an internal maximal upper sequence of X.

If Y1, Y2, . . . , Yr−1 are precisely all internal maximal upper sequences of X, then the
maximal upper partitioning is called complete.

For notational convenience, we will in general write Y0X1Y1X2Y2 . . . XrYr instead of
Y0, X1, Y1, X2, Y2, . . . , Xr, Yr to describe a maximal upper partitioning. In some cases,
we will use the symbol M to refer to a particular maximal upper partitioning.

For each internal maximal upper sequence of a nick free formal DNA molecule X, we
can independently decide whether or not to select it for a maximal upper partitioning.
We therefore have the following result:

76 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣

︸ ︷︷ ︸
Y1

︸︷︷︸
Y2

︸︷︷︸
Y3

Figure 4.6: The maximal lower sequences of the formal DNA molecule X from Fig-
ure 4.5.

♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

︸︷︷︸
Y0

︸ ︷︷ ︸
X1

︸︷︷︸
Y1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
Y2

︸ ︷︷ ︸
X3

︸ ︷︷ ︸
Y3

(a1)

♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

︸︷︷︸
Y0

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
Y1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
Y2

(a2)

♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

︸︷︷︸
Y0

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
Y1

(a3)

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
♣♣♣♣♣ ♣♣♣♣♣

Y0 = λ

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
Y1

︸ ︷︷ ︸
X2

︸︷︷︸
Y2

︸ ︷︷ ︸
X3 Y3 = λ

(b)

Figure 4.7: Different partitionings of the formal DNA molecule X from Figure 4.4, for
which T↑(X) = 4 and T↓(X) = 3. (a1) The complete maximal upper partitioning of
X; (a2) another maximal upper partitioning of X; (a3) yet another maximal upper
partitioning of X: the one defined by zero internal maximal upper sequences; (b) a
maximal lower partitioning of X, which is not complete.

Lemma 4.48 Let X be a nick free formal DNA molecule. Then the number of different
maximal upper partitionings of X is 2nimus(X).

A maximal lower sequence, the maximal lower prefix , the maximal lower suffix ,
and a maximal lower partitioning of a nick free formal DNA molecule are defined
analogously to the upper counterparts. Also, a separating upper sequence is defined
analogously to a separating lower sequence. Only the terms ‘upper component’ and
‘lower component’ in the corresponding definitions have to be interchanged.

In Figure 4.6, we have indicated the maximal lower sequences of the formal DNA
molecule from Figure 4.4 and Figure 4.5. It illustrates the difference between a sepa-
rating lower sequence and a maximal lower sequence.

Figure 4.7 shows three maximal upper partitionings and one maximal lower parti-
tioning of the same formal DNA molecule. In this DNA molecule, both the maximal
lower prefix and the maximal lower suffix are empty. This is not surprising, due to the
next result.

Lemma 4.49 Let X be a nick free formal DNA molecule and let Y0 be the maximal
upper prefix of X, Y1 be the maximal upper suffix of X, Y ′

0 be the maximal lower prefix
of X and Y ′

1 be the maximal lower suffix of X.

4.2: Minimal DNA expressions 77

1. If X is double-complete, then Y0 = Y1 = Y ′
0 = Y ′

1 = X.

2. If X contains at least one single-stranded component, then

• exactly one of the strings Y0 and Y ′
0 is empty, and

• exactly one of the strings Y1 and Y ′
1 is empty.

Proof:

1. This claim follows immediately from Lemma 4.44.

2. Assume that X contains at least one single-stranded component.

Without loss of generality, assume that the first single-stranded component is a
lower component. By Lemma 4.45(1), Y0 = λ. By the analogue of this result for
the maximal lower prefix, Y ′

0 6= λ.

In an analogous way, we prove that exactly one of the strings Y1 and Y ′
1 is empty.

Sometimes, M = X is a maximal upper partitioning of X.

Lemma 4.50 Let X be a nick free formal DNA molecule. Then M = X is a maximal
upper partitioning of X, if and only if X does not contain any lower component.

In that case M = X is the only maximal upper partitioning of X.

Proof: If M = X is a maximal upper partitioning Y0X1Y1X2Y2 . . . XrYr of X, then
apparently r = 0 and both the maximal upper prefix and the maximal upper suffix of
X are equal to X.

Conversely, if both the maximal upper prefix and the maximal upper suffix of X
are equal to X, then the only partitioning of X that starts with the maximal upper
prefix (and ends with the maximal upper suffix) is M = X. This is indeed a maximal
upper partitioning and there does not exist any other maximal upper partitioning of
X.

Now, the claim follows from Lemma 4.44.

Note that if X does not contain any upper component and contains at least one
lower component, then by Lemma 4.38(1) the only separating lower sequence of X
is X1 = X, and by Lemma 4.45 both the maximal upper prefix Y0 and the maximal
upper suffix Y1 of X are empty. Hence, the only maximal upper partitioning of X is
M = Y0X1Y1 = Y0XY1. Even though Y0 = Y1 = λ, we cannot write M = X in this
case, because formally M is the sequence Y0, X1, Y1 (with two commas).

It is important to realize what exactly the substrings Xj and Yj occurring in the
definition of a maximal upper sequence may be.

Lemma 4.51 Let X be a nick free formal DNA molecule and let M = Y0X1Y1X2Y2 . . .
XrYr for some r ≥ 0 be a maximal upper partitioning of X.

1. For j = 0, 1, . . . , r, Yj is either a maximal upper sequence of X, or the empty
string λ. The latter case may occur only for j = 0 and j = r.

2. If M is the complete maximal upper partitioning of X, then

78 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

(a) each maximal upper sequence of X occurs in M as Yj for some (exactly one)
j with 0 ≤ j ≤ r;

(b) the substrings X1, X2, . . . , Xr are exactly all separating lower sequences of
X.

3. For j = 1, . . . , r,

(a) Xj is an alternating sequence of separating lower sequences of X and max-
imal upper sequences of X, which starts and ends with a separating lower
sequence;

(b) Xj contains at least one single-stranded component, and both the first single-
stranded component and the last single-stranded component of Xj are lower
components.

Claims 1 and 3 provide us with the following intuitive understanding of a maximal
upper partitioning. A maximal upper partitioning of a nick free formal DNA molecule
X consists of subsequences Y0, X1, Y1, X2, Y2, . . . , Xr, Yr of components of X, where
each subsequence Yj contains at least one upper component, but does not contain

lower components, and each Xj starts with a ‘block’ and ends with a ‘block’

. Exceptions to this (may) occur if X is double-complete, or if the maximal upper
prefix Y0 or the maximal upper suffix Yr of X is empty.

Proof:

1. This claim is immediate from the definitions of a maximal upper partitioning, a
maximal upper sequence and the maximal upper prefix and suffix of a nick free
formal DNA molecule.

2. (a) A maximal upper sequence is called internal, if it is not equal to the maximal
upper prefix, nor to the maximal upper suffix.

By definition, in the complete maximal upper partitioning of X, the sub-
strings Yj occuring are the maximal upper prefix Y0, all internal maximal
upper sequences and the maximal upper suffix Yr of X, respectively. If the
maximal upper prefix and the maximal upper suffix happen to coincide,
then by Lemma 4.44, they are equal to X and thus r must be 0.

(b) If we disregard empty substrings Yj, which may occur only for j = 0 and
j = r, then by Claims 1 and 2a, the complete maximal upper partitioning is
an alternating sequence of all maximal upper sequences Yj of X and other
substrings Xj. By Theorem 4.41, the Xj’s are exactly the separating lower
sequences of X.

3. Consider Xj for an arbitrary j with 1 ≤ j ≤ r.

(a) Xj is preceded in X by Yj−1 and succeeded in X by Yj. Now, let M′ =
Y ′

0X
′
1Y

′
1X

′
2Y

′
2 . . . X ′

r0
Y ′

r0
for some r0 ≥ r be the complete maximal upper

partitioning of X.

4.2: Minimal DNA expressions 79

Because by definition,

Y0 = Y ′
0 (the maximal upper prefix of X),

{Y1, . . . , Yr−1} ⊆ {Y ′
1 , . . . , Y

′
r0−1}

(internal maximal upper sequences of X), and

Yr = Y ′
r0

(the maximal upper suffix of X),

there exist j0 and j1 with 0 ≤ j0 < j1 ≤ r0 such that Yj−1 = Y ′
j0

and
Yj = Y ′

j1
. Consequently, Xj = X ′

j0+1Y
′
j0+1 . . . Y ′

j1−1X
′
ji
, which is, by Claims 1

and 2b, an alternating sequence of separating lower sequences and maximal
upper sequences of X, starting and ending with a separating lower sequence.

(b) By definition, each separating lower sequence of X contains at least one
lower component and does not contain any upper component of X. Hence,
the first single-stranded component and the last single-stranded component
of a separating lower sequence are well defined, and both of them are lower
components. Now, the claim follows immediately from Claim 3a.

By Lemma 4.51(3), we can easily determine the values of T↓(Xj) and T↑(Xj) for
the substrings Xj occurring in a maximal upper partitioning.

Corollary 4.52 Let X be a nick free formal DNA molecule and let Y0X1Y1X2Y2 . . . XrYr

for some r ≥ 0 be a maximal upper partitioning of X.

1. For j = 1, . . . , r, consider Xj as an alternating sequence of separating lower se-
quences and maximal upper sequences of X (see Lemma 4.51(3a)). Then T↓(Xj)
is equal to the number of separating lower sequences of X occurring in Xj.

2. For j = 1, . . . , r, T↑(Xj) = T↓(Xj) − 1.

Proof:

1. Let M′ = Y ′
0X

′
1Y

′
1X

′
2Y

′
2 . . . X ′

r0
Y ′

r0
for some r0 ≥ r be the complete maximal

upper partitioning of X, and consider Xj with 1 ≤ j ≤ r. Then, as in the
proof of Lemma 4.51(3a), there exist j0 and j1 with 0 ≤ j0 < j1 ≤ r0 such that
Xj = X ′

j0+1Y
′
j0+1 . . . Y ′

j1−1X
′
j1

. By Lemma 4.42, the separating lower sequences of
Xj are (precisely) X ′

j0+1, X
′
j0+2, . . . , X

′
j1

. Now the claim follows from Lemma 4.39,
applied to Xj.

2. This claim is immediate from Lemma 4.51(3b) and Lemma 4.12(4).

Recall that Corollary 4.19 gives lower bounds on the length |E| of a DNA expression
E denoting a certain formal DNA molecule X, in terms of T↑(X), T↓(X), nl(X) and
|ν(X)|. We are now ready to describe how to achieve these lower bounds for nick free
formal DNA molecules with at least one single-stranded component.

Theorem 4.53 Let X be a nick free formal DNA molecule which contains at least one
single-stranded component and let x′

1 . . . x′
k for some k ≥ 1 be the decomposition of X.

80 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

1. If T↑(X) ≥ T↓(X), then let Y0X1Y1X2Y2 . . . XrYr for some r ≥ 0 be an arbitrary
maximal upper partitioning of X, where for j = 0, . . . , r, Yj = x′

aj
. . . x′

bj
for some

aj and bj; further, let

E = 〈↑ εa0
. . . εb0E1εa1

. . . εb1E2εa2
. . . εb2 . . . Erεar

. . . εbr
〉 ,

where for all applicable i,

εi =

αi if x′

i =
(
αi

−

)
for an N -word αi

〈l αi〉 if x′
i =

(
αi

c(αi)

)
for an N -word αi

(4.18)

and for j = 1, . . . , r, Ej is a minimal DNA expression denoting Xj.

Then E is a minimal DNA expression denoting X and

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|. (4.19)

2. If T↓(X) ≥ T↑(X), then let Y0X1Y1X2Y2 . . . XrYr for some r ≥ 0 be an arbitrary
maximal lower partitioning of X, where for j = 0, . . . , r, Yj = x′

aj
. . . x′

bj
for some

aj and bj; further, let

E = 〈↓ εa0
. . . εb0E1εa1

. . . εb1E2εa2
. . . εb2 . . . Erεar

. . . εbr
〉 ,

where for all applicable i,

εi =

αi if x′

i =
(
−
αi

)
for an N -word αi

〈l αi〉 if x′
i =

(
αi

c(αi)

)
for an N -word αi

and for j = 1, . . . , r, Ej is a minimal DNA expression denoting Xj.

Then E is a minimal DNA expression denoting X and

|E| = 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)|.

Note that, because X is nick free, ν(X) = X, so that the term |ν(X)| in the formulae
for |E| may be replaced by |X| – we leave it as it is, as |ν(X)| has become our standard
way of denoting the number of N -letters occurring in X.

Note further that the construction for minimal DNA expressions described in this
result is recursive. The minimal DNA expression specified, which denotes the entire
formal DNA molecule X, may have arguments Ej that are themselves minimal DNA
expressions denoting formal DNA submolecules Xj of X.

This recursion is well defined. Without loss of generality, assume that T↑(X) ≥
T↓(X). As we will see in the proof below, if T↓(X) = 0, then there will be no arguments
Ej at all. If, on the other hand, T↑(X) ≥ T↓(X) ≥ 1, then we will see that for each
formal DNA submolecule Xj occurring in the maximal upper partitioning in Claim 1,
T↓(X) ≥ T↓(Xj) > T↑(Xj). Hence, the minimum of T↑(Xj) and T↓(Xj) is smaller than
the minimum of T↑(X) and T↓(X).

Note finally that if T↑(X) = T↓(X) then both Claim 1 and Claim 2 are applicable,
and we have both a minimal ↑-expression and a minimal ↓-expression denoting X.

4.2: Minimal DNA expressions 81

α1 α2
α3

α4
α5

α6 α7 α8
α9

α10 α11 α12 α13 α14
α15

α16 α17 α18

Figure 4.8: The formal DNA molecule from Figure 4.4 with occurring N -words indi-
cated.

In Figure 4.8, we have specified names for the components of the formal DNA
molecule from (a.o.) Figure 4.4 and Figure 4.7. For this formal DNA molecule X,
we have T↑(X) = 4 and T↓(X) = 3. Hence, by the above result, we can construct a
minimal DNA expression denoting X from a maximal upper partitioning of X. Because

X has two internal maximal upper sequences (
(
α7

−

)
and

(
α11

−

)(
α12

c(α12)

)(
α13

−

)
), there are,

by Lemma 4.48, four different maximal upper partitionings of X. We will consider two
of them, the one depicted in Figure 4.7(a2) and the one depicted in Figure 4.7(a3).

For the former maximal upper partitioning, r = 2 and

Y0 =
(
α1

−

)
,

X1 =
(

α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
−
α5

)(
α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)(
−
α9

)(
α10

c(α10)

)
,

Y1 =
(
α11

−

)(
α12

c(α12)

)(
α13

−

)
,

X2 =
(

α14

c(α14)

)(
−

α15

)(
α16

c(α16)

)
,

Y2 =
(
α17

−

)(
α18

c(α18)

)
.

We have T↓(X1) = 2 > T↑(X1) = 1. When we apply Theorem 4.53(2) to X1 and

Theorem 4.53(1) to the separating upper sequence
(

α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)
of X1, we find

that a minimal DNA expression denoting X1 is

E1 = 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉 .

Further, T↓(X2) = 1 > T↑(X2) = 0, and again by Theorem 4.53(2), a minimal DNA
expression denoting X2 is

E2 = 〈↓ 〈l α14〉α15 〈l α16〉〉 .

Now, by Theorem 4.53(1), a minimal DNA expression denoting X is

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉
α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉 α17 〈l α18〉 〉

(4.20)

According to the maximal upper partitioning depicted in Figure 4.7(a3), r = 1 and

Y0 =
(
α1

−

)
,

X1 =
(

α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)(
−
α5

)(
α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)(
−
α9

)

·
(

α10

c(α10)

)(
α11

−

)(
α12

c(α12)

)(
α13

−

)(
α14

c(α14)

)(
−

α15

)(
α16

c(α16)

)
,

Y1 =
(
α17

−

)(
α18

c(α18)

)
.

We now have T↓(X1) = 3 and T↑(X1) = 2. By Theorem 4.53(2), a minimal DNA
expression denoting X1 can be constructed from a maximal lower partitioning of X1.

82 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Contrary to the previous case, X1 contains an internal maximal lower sequence,
(
−
α9

)
,

and thus there exist two different maximal lower partitionings of X1. We arbitrar-
ily choose the maximal lower partitioning based on all maximal lower sequences of

X1, hence including
(
−
α9

)
. For the separating upper sequences

(
α6

c(α6)

)(
α7

−

)(
α8

c(α8)

)
and

(
α10

c(α10)

)(
α11

−

)(
α12

c(α12)

)(
α13

−

)(
α14

c(α14)

)
of X1, we find a minimal DNA-expression with The-

orem 4.53(1). The resulting minimal DNA-expression for X1 is

E1 = 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉 α9

〈↑ 〈l α10〉α11 〈l α12〉α13 〈l α14〉〉 α15 〈l α16〉 〉

and the corresponding minimal DNA-expression denoting X is

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉 α9

〈↑ 〈l α10〉α11 〈l α12〉α13 〈l α14〉〉 α15 〈l α16〉 〉 α17 〈l α18〉 〉 .

Indeed, both minimal DNA expressions for X have length

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)| = 3 + 3 · 3 + 3 · 9 + |ν(X)| = 39 + |ν(X)|.

Proof of Theorem 4.53: First we prove for Claim 1, that the string E is well defined
and that it is indeed a DNA expression denoting X. The proof for the other claim is
entirely analogous.

• Because X is nick free, by Theorem 3.5 there exist DNA expressions denoting X,
and thus it makes sense to talk about a minimal DNA expression denoting X. For
the same reason, there exist maximal upper partitionings of X (and Lemma 4.48
specifies how many different partitionings there are).

By definition, the maximal upper prefix Y0 = x′
a0

. . . x′
b0

, the internal maximal
upper sequences Yj = x′

aj
. . . x′

bj
for j = 1, . . . , r−1, and the maximal upper suffix

Yr = x′
ar

. . . x′
br

consist of only double components
(

αi

c(αi)

)
and upper components

(
αi

−

)
for N -words αi. Hence, the arguments εi are well defined.

Obviously, for j = 1, . . . , r, the substring Xj of X is nick free. Hence, Xj is
expressible and there exists a (at least one) minimal DNA expression Ej denoting
Xj.

• Clearly, for each applicable i, S+(εi) = x′
i. Because x′

i is either a double compo-
nent or an upper component of X, consecutive arguments εi and εi+1 fit together
by upper strands.

For j = 1, . . . , r, if Yj−1 6= λ (which is certainly the case if j ≥ 2), then by
Lemma 4.51(1), it is a maximal upper sequence. By Lemma 4.27(2), R(S+(εbj−1

)) =
R(x′

bj−1
) = R(Yj−1) ∈ A+ and L(S+(Ej)) = L(Xj) = L(x′

bj−1+1) ∈ A±. Hence,
the argument εbj−1

prefits Ej by upper strands. Analogously, for j = 1, . . . , r, if
Yj 6= λ (which is certainly the case if j ≤ r − 1), then the argument Ej prefits
εaj

by upper strands.

Consequently, E is indeed a DNA expression.

• For notational convenience, we assume that both Y0 and Yr are non-empty. Then
by Lemma 3.6,

E ≡ E ′ = 〈↑ 〈↑ εa0
. . . εb0〉E1 〈↑ εa1

. . . εb1〉E2 〈↑ εa2
. . . εb2〉 . . . Er 〈↑ εar

. . . εbr
〉〉 .

4.2: Minimal DNA expressions 83

For an arbitrary j with 0 ≤ j ≤ r, we consider the argument
〈
↑ εaj

. . . εbj

〉
of

E ′. We established before that for i = aj, . . . , bj, S+(εi) = x′
i is a double com-

ponent or an upper component of X. By definition, such components are nick
free. By Corollary 2.5, the double components and upper components occur in
x′

aj
. . . x′

bj
, alternately. In particular, we do not have two consecutive double com-

ponents. Hence, the operator ↑ does not introduce (lower) nick letters between
its arguments, and

S(
〈
↑ εaj

. . . εbj

〉
) = ν+(x′

aj
) . . . ν+(x′

bj
) = x′

aj
. . . x′

bj
= Yj.

We use this to determine S(E ′):

S(E ′)

= ν+(Y0)y1ν
+(X1)y2ν

+(Y1)y3ν
+(X2)y4ν

+(Y2) . . . ν+(Xr)y2rν
+(Yr) (4.21)

= Y0y1X1y2Y1y3X2y4Y2 . . . Xry2rYr,

where the yi’s are defined as in (2.15). The second equality in (4.21) holds because
each maximal upper sequence Yj and each substring Xj of X is nick free.

By Lemma 4.27, for j = 1, . . . , r, R(Yj−1) ∈ A+, L(Xj), R(Xj) ∈ A± and L(Yj) ∈
A+. Consequently, all yi’s are empty, and thus

S(E) = S(E ′) = Y0X1Y1X2Y2 . . . XrYr = X.

We subsequently prove that E has the specified length, and (thus) is minimal. We do
this simultaneously for Claim 1 and Claim 2, by induction on the lower of T↑(X) and
T↓(X).

• If T↑(X) ≥ T↓(X) = 0, then by Lemma 4.10(2), X does not contain any lower
component, and by Lemma 4.50 the only maximal upper partitioning of X is
M = Y0 = X. Hence,

E = 〈↑ ε1 . . . εk〉 ,

where for i = 1, . . . , k, εi is defined by (4.18). Then obviously,

|E| = 3 + 3 · nl(X) + |X| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|.

By Corollary 4.19(1), this is the minimal length possible for a ↑-expression de-
noting X. In order to conclude that E is a minimal DNA expression for X, we
have to verify that there does not exist a shorter l-expression or ↓-expression for
X.

By assumption, X contains at least one single-stranded component, which must
be an upper component. By definition, the semantics of a l-expression does not
contain any single-stranded component. Consequently, there does not exist any
l-expression denoting X, let alone a l-expression shorter than E.

By Lemma 4.10(1), T↑(X) must be positive, and hence larger than T↓(X). By
Lemma 4.11(1), T↑(X) = 1. Now, let E ′ be an arbitrary ↓-expression denoting
X. Then by Corollary 4.19(2), E ′ is longer than E:

|E ′| ≥ 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)| = 6 + 3 · nl(X) + |X| > |E|.(4.22)

84 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Hence, only ↑-expressions denoting X may be minimal, and in particular, E is
minimal.

• The proof for the case that T↓(X) ≥ T↑(X) = 0 is, of course, analogous.

• Let p ≥ 0, and suppose that for each nick free formal DNA molecule X with
either T↓(X) ≤ p, or T↑(X) ≤ p, a DNA expression E as specified in Claim 1
or Claim 2 (depending on which one is applicable) is a minimal DNA expression
denoting X, with the prescribed length (induction hypothesis).

Now consider a nick free formal DNA molecule X for which T↑(X) ≥ T↓(X) =
p+1. Let M = Y0X1Y1X2Y2 . . . XrYr be an arbitrary maximal upper partitioning
of X, where for j = 0, . . . , r, Yj = x′

aj
. . . x′

bj
for some aj and bj. Let

E = 〈↑ εa0
. . . εb0E1εa1

. . . εb1E2εa2
. . . εb2 . . . Erεar

. . . εbr
〉 ,

be the DNA expression denoting X which corresponds to M, as described in
Claim 1.

By definition, for each applicable i, S+(εi) = x′
i is either an upper component or

a double component of X, and for j = 1, . . . , r, S+(Ej) = S(Ej) = Xj. For each
argument ε of E, S+(ε) is nick free, and in particular #▽(S+(ε)) = 0. Now, by
equations (4.2), (4.3) and (4.4) from Lemma 4.16(1),

T↓(X) =
∑

arguments
ε of E

T↓(S
+(ε)) =

r∑

j=0

bj∑

i=aj

T↓(x
′
i) +

r∑

j=1

T↓(Xj) and (4.23)

nl(X) =
∑

arguments
ε of E

nl(S
+(ε)) =

r∑

j=0

bj∑

i=aj

nl(x
′
i) +

r∑

j=1

nl(Xj). (4.24)

We consider Yj with 0 ≤ j ≤ r. Yj = x′
aj

. . . x′
bj

is an alternating sequence
of upper components and double components x′

i of X. Obviously, T↓(x
′
i) = 0

for each of these components x′
i, and hence,

∑bj

i=aj
T↓(x

′
i) = 0. Because of the

alternation of the upper components and the double components x′
i in Yj, we also

have
∑bj

i=aj
nl(x

′
i) = nl(Yj). We can therefore rewrite (4.23) and (4.24) into

T↓(X) =
r∑

j=1

T↓(Xj) and (4.25)

nl(X) =
r∑

j=0

nl(Yj) +
r∑

j=1

nl(Xj). (4.26)

As T↓(X) = p + 1 ≥ 1, (4.25) implies in particular that r ≥ 1.

For an arbitrary j with 1 ≤ j ≤ r, we now concentrate on the substring Xj.
Obviously T↓(Xj) ≤ p+1. Further, by Corollary 4.52(2), T↑(Xj) = T↓(Xj)− 1 ≤
p. Now, by the induction hypothesis, we can construct a minimal ↓-expression
E ′

j denoting Xj for which

|E ′
j| = 3+3·T↑(Xj)+3·nl(Xj)+|ν(Xj)| = 3·T↓(Xj)+3·nl(Xj)+|ν(Xj)|.(4.27)

4.2: Minimal DNA expressions 85

Because all minimal DNA expressions denoting Xj have the same length, this is
also the length of the DNA expression Ej occurring in E.

When we combine (4.27) with (4.25) and (4.26), we can establish the length of
E:

|E| = 3 +
r∑

j=0

bj∑

i=aj

|εi| +
r∑

j=1

|Ej|

= 3 +
r∑

j=0

(
3 · nl(Yj) + |Yj|

)
+

r∑

j=1

(
3 · T↓(Xj) + 3 · nl(Xj) + |ν(Xj)|

)

= 3 + 3 ·
r∑

j=1

T↓(Xj) + 3 ·

r∑

j=0

nl(Yj) +
r∑

j=1

nl(Xj)

+
r∑

j=0

|ν(Yj)| +
r∑

j=1

|ν(Xj)|

= 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|.

By Corollary 4.19(1), this is the minimal length for a ↑-expression denoting X.

Because X contains at least one single-stranded component (in fact, at least
p + 1 upper components and p + 1 lower components), there does not exist any
l-expression denoting X. If E ′ is a ↓-expression denoting X, then by Corol-
lary 4.19(2), E ′ cannot be shorter than E:

|E ′| ≥ 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)|

≥ 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)| = |E|.

We conclude that E is a minimal DNA expression for X with the prescribed
length.

• The proof for the case that T↓(X) ≥ T↑(X) = p + 1 is, of course, analogous.

Two intermediate results in the above proof are worth to be generalized.

Corollary 4.54 Let X be a nick free formal DNA molecule and let Y0X1Y1X2Y2 . . . XrYr

for some r ≥ 0 be a maximal upper partitioning of X.

1. T↓(X1) + · · · + T↓(Xr) = T↓(X).

2. nl(Y0) + nl(X1) + nl(Y1) + nl(X2) + nl(Y2) + · · · + nl(Xr) + nl(Yr) = nl(X).

Note that if T↓(X) = 0, then by Lemma 4.10(2), X does not contain any lower com-
ponent, and by Lemma 4.50, the only maximal upper partitioning of X is M = X. In
that case, r = 0 and the claims are immediate.

Proof: The claims appeared as equalities (4.25) and (4.26) in the proof of Theorem 4.53
for the case that T↑(X) ≥ T↓(X) ≥ 1. Their validity followed after the construction

86 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

of a (minimal) ↑-expression E denoting X which was based on the maximal upper
partitioning.

If T↓(X) = 0 or T↓(X) > T↑(X), then we can also construct a ↑-expression E de-
noting X according to the description in Theorem 4.53(1). Although this ↑-expression
is not necessarily minimal, the claims can be verified in the same way as for the case
that T↑(X) ≥ T↓(X) ≥ 1.

By Theorem 4.23 and Theorem 4.53, we do not only know how to construct a
minimal DNA expression E for a given nick free formal DNA molecule. We also
know the length |E| of this minimal DNA expression without having to explicitly
construct the DNA expression itself. The length is simply a function of some elementary
structural properties of the formal DNA molecule.

We can combine the two values for |E| from Theorem 4.53(1) and (2).

Corollary 4.55 Let X be a nick free formal DNA molecule which contains at least
one single-stranded component, and let E be a minimal DNA expression denoting X.
Then

|E| = 3 + 3 · p + 3 · nl(X) + |ν(X)|,

where p is the minimum of T↓(X) and T↑(X).

Proof: Let p be the minimum of T↓(X) and T↑(X).
If p = T↓(X) (hence T↑(X) ≥ T↓(X)), then Theorem 4.53(1) specifies the length of

a minimal DNA expression denoting X. In particular, it specifies the length of E:

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)| = 3 + 3 · p + 3 · nl(X) + |ν(X)|.

If, on the other hand, p = T↑(X) (hence T↓(X) ≥ T↑(X)), then by Theorem 4.53(2),

|E| = 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)| = 3 + 3 · p + 3 · nl(X) + |ν(X)|.

We will see later that sometimes it is sufficient to have an upper bound on the
length of a minimal DNA expression for a nick free formal DNA molecule. We give
two such upper bounds here.

Corollary 4.56 Let X be a nick free formal DNA molecule and let E be a minimal
DNA expression denoting X.

1. |E| ≤ 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|. (4.28)

2. |E| ≤ 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)|.

Proof:

1. If X does not contain any single-stranded component, hence X =
(

α1

c(α1)

)
for an

N -word α1, then by definition T↓(X) = 0, nl(X) = 1 and |ν(X)| = |X| = |α1|.
By Theorem 4.23, E = 〈l α1〉 is the unique minimal DNA expression denoting
X. Then the left hand side of (4.28) evaluates to 3+ |α1| and the right hand side
evaluates to 6 + |α1|. Indeed, the inequality holds.

If X contains at least one single-stranded component, then the claim follows from
Corollary 4.55, because obviously the minimum p of T↓(X) and T↑(X) satisfies
p ≤ T↓(X).

4.2: Minimal DNA expressions 87

2. The proof of this claim is analogous to that of the previous claim.

For future reference, we prove two properties of the arguments of the minimal DNA
expressions we construct by Theorem 4.53.

Lemma 4.57 Let X be a nick free formal DNA molecule which contains at least one
single-stranded component, and let E be a minimal DNA expression denoting X as
described in Theorem 4.53.

1. Each N -word-argument of E is a maximal N -word occurrence in E.

2. The arguments of E are N -words and DNA expressions, alternately.

Proof: Without loss of generality, assume that E has been constructed according to
Theorem 4.53(1). Hence, T↑(X) ≥ T↓(X) and E is a ↑-expression.

Let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of X. Further, let Y0X1Y1X2Y2 . . . XrYr

for some r ≥ 0 be the maximal upper partitioning of X that E is based on, where for
j = 0, . . . , r, Yj = x′

aj
. . . x′

bj
for some aj and bj. Finally, let

E = 〈↑ εa0
. . . εb0E1εa1

. . . εb1E2εa2
. . . εb2 . . . Erεar

. . . εbr
〉

as specified in Theorem 4.53(1).

1. Consider an arbitrary N -word-argument of E.

For j = 1, . . . , r, Ej is a minimal DNA expression denoting Xj, and in particular
Ej is not an N -word. Hence, the N -word we consider must be equal to εi = αi

with aj ≤ i ≤ bj for some j with 0 ≤ j ≤ r. By construction, x′
i = S+(εi) =

(
αi

−

)

is an upper component of X, which is part of the maximal upper sequence Yj =
x′

aj
. . . x′

bj
.

If aj ≤ i−1, then by Corollary 2.5, x′
i−1 is a double component

(
αi−1

c(αi−1)

)
of X for

an N -word αi−1, which is also part of Yj. Hence, the argument preceding εi = αi

in E is the l-expression εi−1 = 〈l αi−1〉.

If aj = i and j = 0, then aj = i = 1 and εi is the first argument of E. If aj = i
and j ≥ 1, then εi is preceded by the (minimal) DNA expression Ej.

In none of the cases, εi is preceded in E by an N -word-argument. Analogously, we
can prove that εi is not succeeded in E by an N -word-argument. Consequently,
the N -word εi = αi is a maximal N -word occurrence.

2. Consider an argument ε of E that is not the last argument.

If ε is an N -word, then by Claim 1, it is a maximal N -word occurrence and it is
succeeded by an argument that is a DNA expression.

If, on the other hand, ε is a DNA expression, then by construction, either it is
Ej for some j with 1 ≤ j ≤ r, or it is a l-expression εi = 〈l αi〉 for an N -word
αi with aj ≤ i ≤ bj for some j with 0 ≤ j ≤ r.

In the former case, ε = Ej denotes the substring Xj of X, which is succeeded in
X by the maximal upper sequence Yj = x′

aj
. . . x′

bj
. By Lemma 4.27(1), the first

88 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

component x′
aj

of Yj is an (opening) upper component
(
αaj

−

)
for an N -word αaj

.

Hence, the argument succeeding ε = Ej in E is (the N -word) εaj
= αaj

.

In the latter case, ε = εi = 〈l αi〉 denotes the double component x′
i =

(
αi

c(αi)

)
of

X, which is part of the maximal upper sequence Yj. Suppose that x′
i is the last

component of Yj, hence i = bj. Then, because ε is not the last argument of E,
j ≤ r − 1 and Yj is succeeded in X by the substring Xj+1. This, however, gives
a contradiction, because by Lemma 4.27(2), x′

bj
is a (closing) upper component.

Hence, i ≤ bj −1 and x′
i is succeeded in Yj by the upper component x′

i+1 =
(
αi+1

−

)

for an N -word αi+1. This upper component corresponds to an N -word-argument
εi+1 = αi+1, which succeeds εi = 〈l αi〉 in E.

In both cases, the DNA expression ε is succeeded in E by an N -word-argument.

As we mentioned after the statement of Theorem 4.53, if X is a nick free formal
DNA molecule containing at least one single-stranded component and T↑(X) = T↓(X),
then there both exist a minimal ↑-expression and a minimal ↓-expression denoting X.

We now show that if X is nick free and T↑(X) 6= T↓(X), then all minimal DNA
expressions are of the same type: they are either ↑-expressions or ↓-expressions, de-
pending on which of T↑(X) and T↓(X) is higher.

Lemma 4.58 Let X be a nick free formal DNA molecule and let E be a minimal DNA
expression denoting X.

1. If T↑(X) > T↓(X), then E is a ↑-expression.

2. If T↓(X) > T↑(X), then E is a ↓-expression.

Proof:

1. Assume that T↑(X) > T↓(X). Then X contains at least one (opening) upper
component. Because the semantics of a l-expression does not contain single-
stranded components, E cannot be a l-expression.

By Corollary 4.55,

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|.

By Corollary 4.19(2), each ↓-expression E ′ denoting X satisfies

|E ′| ≥ 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)| > |E|,

because T↑(X) > T↓(X). Consequently, a ↓-expression E ′ denoting X cannot be
minimal and E has to be a ↑-expression.

2. The proof of this claim is analogous to that of the previous claim.

When we combine this result with Corollary 4.52(2), we immediately obtain

4.2: Minimal DNA expressions 89

Corollary 4.59 Let X be a nick free formal DNA molecule.

1. Let Y0X1Y1X2Y2 . . . XrYr for some r ≥ 0 be an arbitrary maximal upper parti-
tioning of X. Then for j = 1, . . . , r, each minimal DNA expression Ej denoting
Xj (in particular, the one occurring in Theorem 4.53(1)) is a ↓-expression.

2. Let Y0X1Y1X2Y2 . . . XrYr for some r ≥ 0 be an arbitrary maximal lower parti-
tioning of X. Then for j = 1, . . . , r, each minimal DNA expression Ej denoting
Xj (in particular, the one occurring in Theorem 4.53(2)) is a ↑-expression.

4.2.2 Minimal DNA expressions for a formal DNA molecule
with nick letters

For expressible formal DNA molecules that contain nick letters, it is easy to say what
type of DNA expressions (↑-expressions, ↓-expressions or l-expressions) can be mini-
mal.

Lemma 4.60 Let X be an expressible formal DNA molecule.

1. If X contains at least one lower nick letter △, then each minimal DNA expression
denoting X is a ↑ expression.

2. If X contains at least one upper nick letter ▽, then each minimal DNA expression
denoting X is a ↓ expression.

Proof:

1. Assume that X contains at least one lower nick letter. By Corollary 4.24, a
minimal DNA expression denoting X is either a ↑-expression or a ↓-expression.
However, by Lemma 3.2(1), there does not exist any ↓-expression denoting X,
let alone a minimal ↓-expression denoting X. Consequently, a minimal DNA
expression denoting X must be a ↑-expression.

2. The proof of this claim is analogous to that of the previous claim.

Given an expressible formal DNA molecule with nick letters, it is, of course, not
sufficient to know the type of the minimal DNA expression(s) denoting it. We want to
construct the minimal DNA expression(s) themselves. For this, we decompose a formal
DNA molecule into nick free pieces and nick letters, as follows:

Definition 4.61 Let X be a formal DNA molecule. The nick free decomposition of X
is the sequence Z1, y1, Z2, y2, . . . , ym−1, Zm for some m ≥ 1 such that

• X = Z1y1Z2y2 . . . ym−1Zm, and

• for h = 1, . . . ,m, Zh is nick free, and

• for h = 1, . . . ,m − 1, yh ∈ {▽, △}.

90 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

α1 α2

α3

α4 α5

α6

α7 α8 α9

α10

α11 α12 α13 α14 α15 α16 α17 α18

α19

α20 α21 α22

△ △ △ △

Figure 4.9: A (pictorial representation of a) formal DNA molecule containing lower
nick letters.

To simplify the notation, we will in general write Z1y1Z2y2 . . . ym−1Zm instead of
Z1, y1, Z2, y2, . . . , ym−1, Zm to denote the nick free decomposition of a formal DNA
molecule X.

Obviously, because the substrings Zh in the definition are nick free and the yi’s are
exactly the nick letters occurring in X, the nick free decomposition of a formal DNA
molecule is well defined.

Consider, for example, the formal DNA molecule X depicted in Figure 4.9. This
molecule contains four lower nick letters and no upper nick letters. The nick free
decomposition of X is Z1△

Z2△
Z3△

Z4△
Z5, where

Z1 =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)(
α4

c(α4)

)
,

Z2 =
(

α5

c(α5)

)(
−
α6

)(
α7

c(α7)

)(
α8

−

)(
α9

c(α9)

)(
−

α10

)(
α11

c(α11)

)
,

Z3 =
(

α12

c(α12)

)(
α13

−

)(
α14

c(α14)

)(
α15

−

)(
α16

c(α16)

)
, (4.29)

Z4 =
(

α17

c(α17)

)
,

Z5 =
(

α18

c(α18)

)(
−

α19

)(
α20

c(α20)

)(
α21

−

)(
α22

c(α22)

)
.

We give two properties of the substrings Zh in a nick free decomposition:

Lemma 4.62 Let X be a formal DNA molecule, let x′
1 . . . x′

k for some k ≥ 1 be the
decomposition of X, and let Z1y1Z2y2 . . . ym−1Zm for some m ≥ 1 be the nick free
decomposition of X.

Then for h = 1, . . . ,m,

1. Zh is a formal DNA submolecule of X and in particular Zh 6= λ.

2. there exist ah and bh with 1 ≤ ah ≤ bh ≤ k such that Z1y1 . . . Zh−1yh−1 =
x′

1 . . . x′
ah−1 and yhZh+1 . . . ym−1Zm = x′

bh+1 . . . x′
k (hence, Zh = x′

ah
. . . x′

bh
).

Proof: Consider Zh with 1 ≤ h ≤ m.

1. By the definition of a formal DNA molecule, X 6= λ, L(X), R(X) ∈ A and nick
letters do not occur in consecutive positions in X. This implies that Zh 6= λ.
Because Zh is nick free, in particular L(Zh), R(Zh) ∈ A.

Now the claim follows from Lemma 2.2.

2. If h = 1, then Z1y1 . . . Zh−1yh−1 = λ and the value ah = 1 suffices for the first
part of the claim.

If h ≥ 2, then R(Z1y1 . . . Zh−1yh−1) = yh−1 ∈ {▽, △}. Because each nick letter
occurring in X is by definition a component of X, there exists an ah ≥ 2 such
that yh−1 = x′

ah−1 and Z1y1 . . . Zh−1yh−1 = x′
1 . . . x′

ah−1.

In an analogous way, we find a bh ≤ k such that yhZh+1 . . . ym−1Zm = x′
bh+1 . . . x′

k.

By Claim 1, Zh = x′
ah

. . . x′
bh

is non-empty. Hence, ah ≤ bh.

4.2: Minimal DNA expressions 91

In order to describe minimal DNA expressions denoting an expressible formal DNA
molecule containing nick letters (e.g., minimal ↑-expressions denoting a formal DNA
molecule with lower nick letters), we need the concept of an operator-minimal DNA
expression.

Definition 4.63 A DNA expression E is operator-minimal if for every DNA expres-
sion E ′ with the same outermost operator as E and with S(E ′) = S(E), |E ′| ≥ |E|.

For example, a ↑-expression E denoting a formal DNA molecule X is operator-minimal
if there does not exist a shorter ↑-expression denoting X. Obviously, each minimal DNA
expression is also operator-minimal.

To illustrate the notion of operator-minimality, we return to the formal DNA
molecule X depicted in Figure 4.9. The second formal DNA submolecule occurring
in the nick free decomposition of X is

Z2 =
(

α5

c(α5)

)(
−
α6

)(
α7

c(α7)

)(
α8

−

)(
α9

c(α9)

)(
−

α10

)(
α11

c(α11)

)
(4.30)

(see (4.29)). We have T↑(Z2) = 1 and T↓(Z2) = 2.
By Lemma 4.58(2), each minimal DNA expression E2 denoting Z2 is a ↓-expression.

When we apply Theorem 4.53(2) to Z2, we obtain

E2 = 〈↓ 〈l α5〉α6 〈↑ 〈l α7〉α8 〈l α9〉〉α10 〈l α11〉〉 ,

for which

|E2| = 3 + 3 · T↑(Z2) + 3 · nl(Z2) + |ν(Z2)| = 3 + 3 · 1 + 3 · 4 + |ν(Z2)| = 18 + |ν(Z2)|.

Now let E ′
2 be a ↑-expression denoting Z2. Then by Corollary 4.19(1),

|E ′
2| ≥ 3 + 3 · T↓(Z2) + 3 · nl(Z2) + |ν(Z2)| = 3 + 3 · 2 + 3 · 4 + |ν(Z2)| = 21 + |ν(Z2)|.

Indeed, a ↑-expression E ′
2 denoting Z2 will never be minimal. If, however, E ′

2 =
21 + |ν(Z2)|, then E ′

2 is operator-minimal. It is not difficult to construct an operator-
minimal ↑-expression denoting Z2. We can simply take

E ′
2 = 〈↑ E2〉 = 〈↑ 〈↓ 〈l α5〉α6 〈↑ 〈l α7〉α8 〈l α9〉〉α10 〈l α11〉〉〉 , (4.31)

because S(E ′
2) = ν+(S(E2)) = S(E2) = Z2. Another operator-minimal ↑-expression

denoting Z2, which is less directly related to E2, is

E ′′
2 = 〈↑ 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉〉 . (4.32)

Lemma 4.22 directly relates the minimality of a DNA expression E to the minimality
of the DNA subexpressions of E. For operator-minimal DNA expressions, we have a
weaker result. Its proof is similar to the second part of the proof of Lemma 4.22:

Lemma 4.64 If a DNA expression E is operator-minimal, then each proper DNA
subexpression of E is minimal.

This result cannot be reversed. It is not sufficient for a DNA expression to be operator-
minimal that all its proper DNA subexpressions are minimal. For example, the DNA
expression E = 〈↑ 〈↑ α1〉〉 has only one proper DNA subexpression: Es = 〈↑ α1〉. It
follows from Theorem 4.53(1) that Es is minimal, whereas E is clearly not operator-
minimal.

The following result specifies how to construct an operator-minimal ↑-expression or
↓-expression for a nick free formal DNA molecule:

92 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Theorem 4.65 Let X be a nick free formal DNA molecule and let x′
1 . . . x′

k for some
k ≥ 1 be the decomposition of X.

1. Let Y0X1Y1X2Y2 . . . XrYr for some r ≥ 0 be an arbitrary maximal upper parti-
tioning of X, where for j = 0, . . . , r, Yj = x′

aj
. . . x′

bj
for some aj and bj. Further,

let

E = 〈↑ εa0
. . . εb0E1εa1

. . . εb1E2εa2
. . . εb2 . . . Erεar

. . . εbr
〉 ,

where for all applicable i,

εi =

αi if x′

i =
(
αi

−

)
for an N -word αi

〈l αi〉 if x′
i =

(
αi

c(αi)

)
for an N -word αi

(4.33)

and for j = 1, . . . , r, Ej is a minimal DNA expression denoting Xj. Then E is
an operator-minimal ↑-expression denoting X and

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|. (4.34)

2. Let Y0X1Y1X2Y2 . . . XrYr for some r ≥ 0 be an arbitrary maximal lower parti-
tioning of X, where for j = 0, . . . , r, Yj = x′

aj
. . . x′

bj
for some aj and bj. Further,

let

E = 〈↓ εa0
. . . εb0E1εa1

. . . εb1E2εa2
. . . εb2 . . . Erεar

. . . εbr
〉 ,

where for all applicable i,

εi =

αi if x′

i =
(
−
αi

)
for an N -word αi

〈l αi〉 if x′
i =

(
αi

c(αi)

)
for an N -word αi

and for j = 1, . . . , r, Ej is a minimal DNA expression denoting Xj. Then E is
an operator-minimal ↓-expression denoting X and

|E| = 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)|.

By Theorem 4.53, we know how to construct minimal DNA expressions Ej denoting
the formal DNA submolecules Xj occurring in both claims. Hence, the specification
above is complete.

Note that there are two subtle differences between Theorem 4.65 and Theorem 4.53.
First, we do not demand the formal DNA molecule X to contain at least one

single-stranded component. There also exist an operator-minimal ↑-expression and an

operator-minimal ↓-expression denoting X =
(

α1

c(α1)

)
for an N -word α1. For this formal

DNA molecule, there exists exactly one maximal upper partitioning and exactly one
maximal lower partitioning, namely M = X. The corresponding operator-minimal
↑-expression is E = 〈↑ 〈l α1〉〉 and the corresponding operator-minimal ↓-expression is
E = 〈↓ 〈l α1〉〉.

4.2: Minimal DNA expressions 93

Second, when we describe an operator-minimal ↑-expression (in Claim 1), we do
not restrict ourselves to formal DNA molecules X with T↑(X) ≥ T↓(X). There exist
operator-minimal ↑-expressions for every nick free formal DNA molecule. Indeed, we
have given operator-minimal ↑-expressions for the formal DNA molecule Z2 from (4.30),
for which T↑(Z2) < T↓(Z2). Analogously, there exist operator-minimal ↓-expressions
for every nick free formal DNA molecule (see Claim 2).

Note finally that the operator-minimal ↑-expression and the operator-minimal ↓-
expression described in Theorem 4.65 achieve the lower bounds from Corollary 4.19(1)
and (2), respectively.

Indeed, the two operator-minimal ↑-expressions we have given in (4.31) and (4.32),
which denote the formal DNA molecule Z2 from (4.30), can be constructed according

to the description in Claim 1. Z2 has one internal maximal upper sequence, viz.
(
α8

−

)
,

and hence, by Lemma 4.48, there are two maximal upper partitionings of Z2. The first
one is M′ = X ′

1 = Z2 and the second one is M′′ = X ′′
1 Y ′′

1 X ′′
2 with

X ′′
1 =

(
α5

c(α5)

)(
−
α6

)(
α7

c(α7)

)

Y ′′
1 =

(
α8

−

)

X ′′
2 =

(
α9

c(α9)

)(
−

α10

)(
α11

c(α11)

)

The DNA expression E ′
2 from (4.31) corresponds to M′ and the DNA expression E ′′

2

from (4.32) corresponds to M′′.

Proof of Theorem 4.65:

1. First, we can prove that the string E is well defined and that it is a DNA ex-
pression denoting X. For this, we refer to the corresponding part of the proof of
Theorem 4.53, because that carries over entirely.

We subsequently prove that E has the specified length and (thus) is operator-
minimal. Contrary to the proof of Theorem 4.53, we do not need induction for
this. Nevertheless, we will see that the main ingredients of the proof are the
same.

By Corollary 4.54(1),

T↓(X1) + · · · + T↓(Xr) = T↓(X).

Further, by Corollary 4.52(2), for j = 1, . . . , r, T↑(Xj) = T↓(Xj) − 1.

When we apply Theorem 4.53(2), we find that a minimal DNA expression Ej

denoting a substring Xj has length

|Ej| = 3 + 3 · T↑(Xj) + 3 · nl(Xj) + |ν(Xj)| = 3 · T↓(Xj) + 3 · nl(Xj) + |ν(Xj)|

We can then calculate the length of E, in the same way as we did in the proof of
Theorem 4.53:

|E| = . . . = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|.

Because, by Corollary 4.19(1), this equals the lower bound for the length of a
↑-expression denoting X, E is operator-minimal.

94 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

2. The proof of this claim is analogous to that of the previous claim.

By a proof identical to that of Lemma 4.57, we find

Lemma 4.66 Let X be a nick free formal DNA molecule and let E be an operator-
minimal DNA expression denoting X as described in Theorem 4.65.

1. Each N -word-argument of E is a maximal N -word occurrence in E.

2. The arguments of E are N -words and DNA expressions, alternately.

We use the operator-minimal DNA expressions from Theorem 4.65 to obtain mini-
mal DNA expressions for expressible formal DNA molecules containing nick letters.

Theorem 4.67 Let X be an expressible formal DNA molecule which contains at least
one lower nick letter △, and let Z1△

Z2△
. . .

△
Zm for some m ≥ 2 be the nick free

decomposition of X.
For h = 1, . . . ,m, let Eh be an operator-minimal ↑-expression denoting Zh and let

the string Êh be the sequence of the arguments of Eh (hence, if Eh = 〈↑ εh,1 . . . εh,nh
〉 for

some nh ≥ 1 and N -words or DNA expressions εh,1, . . . , εh,nh
, then Êh = εh,1 . . . εh,nh

).

Then E =
〈
↑ Ê1 . . . Êm

〉
is a minimal DNA expression denoting X and

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|. (4.35)

Also in this case, the (minimal) ↑-expression described achieves the lower bound for
↑-expressions from Corollary 4.19(1).

Of course, there is an analogous result for expressible formal DNA molecules con-
taining upper nick letters.

We have established before that the nick free decomposition for the formal DNA
molecule from Figure 4.9 is Z1△

Z2△
Z3△

Z4△
Z5, where Z1, . . . , Z5 are given in (4.29).

Because none of Z1, Z3, Z4, Z5 has an internal maximal upper sequence, there exists
exactly one maximal upper partitioning for each of them. Hence, Theorem 4.65 specifies
one operator-minimal ↑-expression for each of them:

E1 = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉〉 ,

E3 = 〈↑ 〈l α12〉α13 〈l α14〉α15 〈l α16〉〉 ,

E4 = 〈↑ 〈l α17〉〉 ,

E5 = 〈↑ 〈↓ 〈l α18〉α19 〈l α20〉〉α21 〈l α22〉〉 .

The formal DNA submolecule Z2 has one internal maximal upper sequence, giving
rise to two different maximal upper partitionings. As we observed before, the DNA
expressions E ′

2 and E ′′
2 from (4.31) and (4.32) are the operator-minimal ↑-expressions

corresponding to these maximal upper partitionings.
To construct a minimal DNA expression denoting the entire formal DNA molecule

X, we may arbitrarily choose either of E ′
2 and E ′′

2 . When we choose E ′′
2 , we obtain

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉
〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉
〈↓ 〈l α18〉α19 〈l α20〉〉α21 〈l α22〉 〉 .

(4.36)

4.2: Minimal DNA expressions 95

Indeed,

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)| = 3 + 3 · 4 + 3 · 13 + |ν(X)| = 54 + |ν(X)|.

Note that both T↑(Z1) = T↓(Z1) = 1 and T↑(Z5) = T↓(Z5) = 1. Hence, by Theo-
rem 4.53(2), E1 and E5 are not only operator-minimal, but also (‘absolutely’) minimal,
and there also exist minimal ↓-expressions denoting Z1 and Z5. In the current context,
however, we must choose the (operator-)minimal ↑-expressions.

Proof of Theorem 4.67: By Theorem 3.4, because X is expressible and it contains
at least one lower nick letter △, it does not contain any upper nick letter. Hence, each
nick letter yh in the definition of the nick free decomposition is a lower nick letter.
Indeed, the nick free decomposition of X is Z1△

Z2△
. . .

△
Zm with m ≥ 2.

By definition, each Zh is nick free. Hence, by Theorem 4.65, there indeed exists an
operator-minimal ↑-expression Eh denoting Zh.

By the definition of a formal DNA molecule, a nick letter may occur only be-
tween two elements from A±. Hence, for h = 1, . . . ,m − 1, R(Zh), L(Zh+1) ∈ A±.
Consequently, the DNA expressions E1, . . . , Em fit together by upper strands (so that
〈↑ E1 . . . Em〉 is a DNA expression), and

S(〈↑ E1E2 . . . Em〉) = ν+(Z1)△ν+(Z2)△ . . .
△
ν+(Zm).

Because Z1, . . . , Zm are nick free, this is equal to X. By Lemma 3.6, also E =〈
↑ Ê1 . . . Êm

〉
is a DNA expression denoting X.

By Theorem 4.65, for h = 1, . . . ,m,

|Eh| = 3 + 3 · T↓(Zh) + 3 · nl(Zh) + |ν(Zh)|,

and thus

|Êh| = 3 · T↓(Zh) + 3 · nl(Zh) + |ν(Zh)|. (4.37)

Since each Zh is nick free, we certainly have #▽(Zh) = 0. Now when we apply equations
(4.2), (4.3) and (4.4) from Lemma 4.16(1) to 〈↑ E1E2 . . . Em〉, we find

T↓(Z1) + · · · + T↓(Zm) = T↓(X) and (4.38)

nl(Z1) + · · · + nl(Zm) = nl(X) (4.39)

We use (4.37), (4.38) and (4.39) to calculate |E|:

|E| = 3 +
m∑

h=1

|Êh|

= 3 +
m∑

h=1

(3 · T↓(Zh) + 3 · nl(Zh) + |ν(Zh)|)

= 3 + 3 ·
m∑

h=1

T↓(Zh) + 3 ·
m∑

h=1

nl(Zh) +
m∑

h=1

|ν(Zh)|

= 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|.

By Corollary 4.19(1), this is the minimal length of a ↑-expression denoting X. Then
by Lemma 4.60(1), E is a minimal DNA expression for X.

96 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

One may wonder if we really need the concept of operator-minimality in the con-
struction of minimal DNA expressions for formal DNA molecules containing nick let-
ters.

Let X be a formal DNA molecule, with nick free decomposition Z1△
Z2△

. . .
△
Zm for

some m ≥ 2. Then a minimal DNA expression denoting X might also be constructed
by (1) determining minimal DNA expressions E1, . . . , Em denoting the nick free formal
DNA submolecules Z1, . . . , Zm, respectively, (2) defining the ↑-expression 〈↑ E1 . . . Em〉
with these minimal DNA expressions as arguments, and (3) removing redundant op-
erators ↑ according to Lemma 3.6, i.e. replacing those DNA expressions Eh that are
themselves ↑-expressions by their respective arguments. In order to make step (3) as
effective as possible, we should in step (1) choose for ↑-expressions Eh whenever we can.
In particular, if, for some h with 1 ≤ h ≤ m, Zh contains at least one single-stranded
component and T↑(Zh) = T↓(Zh), then Eh should be a ↑-expression as specified by
Theorem 4.53(1) (and not a ↓-expression as specified by Theorem 4.53(2)).

Let us apply this alternative method to the formal DNA molecule X from Figure 4.9.
The nick free decomposition of X is Z1△

Z2△
Z3△

Z4△
Z5, where Z1, . . . , Z5 are given in

(4.29).

As we observed before, each minimal DNA expression denoting Z2 =
(

α5

c(α5)

)(
−
α6

)
·

(
α7

c(α7)

)(
α8

−

)(
α9

c(α9)

)(
−

α10

)(
α11

c(α11)

)
is a ↓-expression. According to the alternative method,

such a ↓-expression appears unchanged in a minimal DNA expression. However, in the
minimal DNA expression E denoting X from (4.36), the arguments corresponding to Z2

are 〈↓ 〈l α5〉α6 〈l α7〉〉, α8 and 〈↓ 〈l α9〉α10 〈l α11〉〉, which is not just one ↓-expression.
Hence, E cannot be obtained by the alternative method, whereas it can be ob-

tained by the construction from Theorem 4.67, which is based on operator-minimal
↑-expressions.

There does not exist an analogue of Corollary 4.56 for the case with nicks. For
example, it is not true in general that a minimal DNA expression E denoting a formal
DNA molecule X with at least one nick letter satisfies

|E| ≤ 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)|. (4.40)

Consider, for example, the formal DNA molecule

X =
(

α1

c(α1)

)(
−
α2

)(
α3

c(α3)

)
△

(
α4

c(α4)

)(
−
α5

)(
α6

c(α6)

)
,

where α1, . . . , α6 are arbitrary N -words. When we count the components of X, we find
that T↑(X) = 1, T↓(X) = 2 and nl(X) = 4. By Theorem 4.67,

E = 〈↑ 〈↓ 〈l α1〉α2 〈l α3〉〉 〈↓ 〈l α4〉α5 〈l α6〉〉〉

is a minimal DNA expression denoting X, and

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)| = 21 + |ν(X)|

> 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)| = 18 + |ν(X)|.

The violation of (4.40) is due to the lower nick letter occurring in X. The fact
that T↓(X) > T↑(X) suggests that a minimal DNA expression for X should be a
↓-expression. This is, however, impossible, because by Lemma 3.2(1), a formal DNA
molecule containing a lower nick letter cannot be denoted by a ↓-expression.

4.2: Minimal DNA expressions 97

We finally consider the arguments of a minimal DNA expression denoting a for-
mal DNA molecule containing (lower) nick letters. In one respect, they resemble the
arguments of (operator-)minimal DNA expressions denoting nick free formal DNA
molecules, which we considered in Lemma 4.57 and Lemma 4.66, in one respect they
do not.

Lemma 4.68 Let X be an expressible formal DNA molecule which contains at least
one lower nick letter △, and let Z1△

Z2△
. . .

△
Zm for some m ≥ 2 be the nick free

decomposition of X. For h = 1, . . . ,m, let Eh be an operator-minimal ↑-expression
denoting Zh, and let E be the minimal DNA expression denoting X which is based on
E1, . . . , Eh as described in Theorem 4.67.

1. For h = 1, . . . ,m, each argument of Eh that is a maximal N -word occurrence in
Eh is also a maximal N -word occurrence in E. Hence, if for h = 1, . . . ,m, each
N -word-argument of Eh is a maximal N -word occurrence in Eh, then also each
N -word-argument of E is a maximal N -word occurrence in E.

2. There exist (at least) two consecutive arguments of E which are DNA expressions.
Hence, the arguments of E are not N -words and DNA expressions, alternately.

Proof: Consider any h with 1 ≤ h ≤ m − 1. By definition, the lower nick letter
between Zh and Zh+1 is both preceded and succeeded in X by a double A-letter:
R(Zh), L(Zh+1) ∈ A±. This implies that both the last component of Zh and the first
component of Zh+1 are double components.

If the last argument of Eh (which denotes Zh) were an N -word, then the last
component of Zh would be an upper component. Hence, the last argument of Eh is a
DNA expression. Analogously, the first argument of Eh+1 is a DNA expression.

1. For some h with 1 ≤ h ≤ m, consider an argument α of Eh that is a maximal N -
word occurrence in Eh. By the construction from Theorem 4.67, the arguments of
E are exactly the arguments of E1, . . . , Em. In particular, α is also an argument
of E.

If α is the first argument of Eh, then h must be equal to 1 and α is also the
first argument of E, which is preceded by the outermost operator ↑ of E. If α
is not the first argument of Eh, then the argument preceding it in Eh is a DNA
expression. Obviously, this argument also precedes α in E.

In neither case, α is preceded in E by another N -word. Analogously, we can
prove that α is not succeeded in E by another N -word. Hence, α is a maximal
N -word occurrence in E.

Now, assume that for h = 1, . . . ,m, each N -word-argument of Eh is a maximal N -
word occurrence in Eh. Consider any N -word-argument α of E. By construction,
α is an argument of Eh for some h with 1 ≤ h ≤ m. By assumption, it is a
maximal N -word occurrence in Eh. As we have just proved, α is also a maximal
N -word occurrence in E.

2. Consider any h with 1 ≤ h ≤ m−1. By the construction from Theorem 4.67, the
last argument of Eh and the first argument of Eh+1 are consecutive arguments of
E. As we have observed at the beginning of the proof, both arguments are DNA
expressions.

98 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

4.2.3 All minimal DNA expressions for a formal DNA molecule

By Theorem 4.23, the only minimal DNA expression denoting the formal DNA molecule(
α1

c(α1)

)
for an N -word α1 is 〈l α1〉. For such a formal DNA molecule, we thus have a

(trivial) characterization of its minimal DNA expression. We also want to characterize
the minimal DNA expressions for other types of expressible formal DNA molecules,
hence expressible formal DNA molecules containing single-stranded components and/or
nick letters.

Let X be such a formal DNA molecule. Theorem 4.53 or Theorem 4.67 (depending
on whether or not X contains nick letters) provides a way to construct a minimal DNA
expression denoting X. There may, however, be other minimal DNA expression for the
same molecule, DNA expressions which do not fit the description given in Theorem 4.53
or Theorem 4.67

By Corollary 4.24, we know that each minimal DNA expression denoting X is a
↑-expression or a ↓-expression. In many cases, the outermost operator of the minimal
DNA expression(s) is completely determined. If X is nick free and T↑(X) 6= T↓(X),
then the outermost operator is determined by Lemma 4.58. If X contains nick letters,
then the outermost operator is determined by Lemma 4.60. This is, however, not by
far a characterization of the minimal DNA expressions denoting X.

To achieve a characterization, we will investigate the structure of arbitrary minimal
↑-expressions and arbitrary minimal ↓-expressions. Because results on ↑-expressions
and results on ↓-expressions are completely analogous and can be proved in a completely
analogous way, we will only give the results for the ↑-expressions.

Initially, we consider operator-minimal ↑-expressions rather than minimal ↑-expressions.
However, because minimal DNA expressions are in particular operator-minimal, the
results we achieve for operator-minimal ↑-expressions are certainly valid for minimal
↑-expressions.

We start with a simple result:

Lemma 4.69 Let E be an operator-minimal ↑-expression denoting a certain formal
DNA molecule X (which may contain nick letters).

Then no argument of E is a ↑-expression.

Proof: Assume that E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words or DNA ex-
pressions ε1, . . . , εn. Suppose that for some i, the argument εi is a ↑-expression
Ei = 〈↑ εi,1 . . . εi,ni

〉 for some ni ≥ 1 and arguments εi,1, . . . , εi,ni
. Then by Lemma 3.6,

the DNA expression

E ′ = 〈↑ ε1 . . . εi−1εi,1 . . . εi,ni
εi+1 . . . εn〉 ,

which is 3 letters shorter than E and has the same outermost operator, is equivalent
to E. This contradicts the operator-minimality of E.

If an argument of an operator-minimal DNA expression is itself a DNA expression,
then it must be minimal. Hence, when we combine Theorem 4.23 and Lemma 4.69, we
find

Corollary 4.70 Let E be an operator-minimal ↑-expression denoting a certain formal
DNA molecule X (which may contain nick letters).

Then each argument of E is either an N -word α, or a l-expression 〈l α〉 for an
N -word α, or a ↓-expression.

4.2: Minimal DNA expressions 99

Whether or not the formal DNA molecule denoted by a ↑-expression E contains
nick letters, there may be nick letters in its argument(s). In that case, however, E is
not operator-minimal, let alone minimal, as follows from the next result.

Lemma 4.71 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are N -words or DNA
expressions, be an operator-minimal DNA expression denoting a certain formal DNA
molecule X (which may contain nick letters).

Then for i = 1, . . . , n, Xi = S+(εi) is nick free.

Proof: For i = 1, . . . , n, let Xi = S+(εi). Then

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn), (4.41)

where for i = 1, . . . , n − 1, yi is either equal to λ or to △, depending on R(Xi) and
L(Xi+1) (see Definition 2.8).

Consider an argument εi for some i with 1 ≤ i ≤ n. By Corollary 4.70, εi is either
an N -word α, or a l-expression 〈l α〉 for an N -word α, or a ↓-expression.

If εi is an N -word α, then Xi = S+(εi) =
(
α

−

)
, which is indeed nick free.

If εi is a l-expression 〈l α〉 for an N -word α, then Xi = S(εi) =
(

α

c(α)

)
, which is

also nick free.
Now, assume that εi is a ↓-expression Ei. By Lemma 3.2(1), Xi = S(Ei) does not

contain lower nick letters. Consequently, ν+(Xi) does not contain any nick letters.
By Corollary 4.19(2),

|Ei| ≥ 3 + 3 · T↑(Xi) + 3 · nl(Xi) + |ν(Xi)|, (4.42)

and by Lemma 4.13(1),

T↑(Xi) ≥ T↑(ν
+(Xi)). (4.43)

Suppose that Xi is not nick free. Then it must contain at least one upper nick
letter: #▽(Xi) ≥ 1. Hence, by Lemma 4.13(4),

nl(Xi) > nl(ν
+(Xi)). (4.44)

Substituting (4.43) and (4.44) into (4.42), we obtain

|Ei| > 3 + 3 · T↑(ν
+(Xi)) + 3 · nl(ν

+(Xi)) + |ν(Xi)|.

On the other hand, because ν+(Xi) is nick free, we know by Corollary 4.56(2) that
a minimal DNA-expression E ′

i denoting ν+(Xi) satisfies

|E ′
i| ≤ 3 + 3 · T↑(ν

+(Xi)) + 3 · nl(ν
+(Xi)) + |ν(Xi)|

(obviously, ν(Xi) = ν(ν+(Xi))).
Now, if we replace the argument Ei of E by the shorter DNA expression E ′

i, which
satisfies Ei ▽ ≡ E ′

i, then by Lemma 3.7, the resulting string E ′ is a DNA expression
satisfying E ▽≡ E ′. Because ν+(S+(E ′

i)) = ν+(ν+(Xi)) = ν+(Xi) and by Lemma 2.7,
L(ν+(Xi)) = L(Xi) and R(ν+(Xi)) = R(Xi), we even have S(E ′) = X (see (4.41)). In
other words, E ≡ E ′.

Because E ′ is shorter than E and has the same outermost operator as E, E would
not be operator-minimal, which contradicts our assumption. Hence, also in the case
that Ei is a ↓-expression, must Xi be nick free.

Lemma 4.71 immediately implies:

100 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Corollary 4.72 Let E be an operator-minimal ↑-expression denoting a certain formal
DNA molecule X (which may contain nick letters). Then each nick letter occurring in
X has been introduced by the outermost operator ↑ of E.

Since the arguments of an operator-minimal ↑-expression are nick free, its semantics
as given by Definition 2.8 can be simplified.

Corollary 4.73 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are N -words or
DNA expressions, be an operator-minimal DNA expression denoting a certain formal
DNA molecule X. For i = 1, . . . , n, let Xi = S+(εi).

1. X = X1y1X2y2 . . . yn−1Xn,

where for i = 1, . . . , n− 1, yi = △ if R(Xi), L(Xi+1) ∈ A±, and yi = λ otherwise.

2. If X is nick free, then

X = X1X2 . . . Xn.

Proof:

1. By the definition of the semantics of a ↑-expression,

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn), (4.45)

where for i = 1, . . . , n − 1, yi = △ or yi = λ as specified in the claim.

By Lemma 4.71, for i = 1, . . . , n, Xi is nick free, and hence ν+(Xi) = Xi. Now,
the claim follows immediately.

2. If X is nick free, then all yi’s in Claim 1 are equal to λ.

In Corollary 4.52 and Corollary 4.54(1), we considered the value of the function T↓

for the formal DNA submolecules Xj occurring in a maximal upper partitioning. We
now do the same for the formal DNA submolecules corresponding to the arguments of
an operator-minimal ↑-expression.

Lemma 4.74 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are N -words or DNA
expressions, be an operator-minimal DNA expression denoting a certain formal DNA
molecule X (which may contain nick letters). For i = 1, . . . , n, let Xi = S+(εi).

1. For i = 1, . . . , n, if εi is a ↓-expression Ei, then Xi = S(Ei) and T↑(Xi) =
T↓(Xi) − 1. Hence, Xi contains at least one single-stranded component and both
the first single-stranded component and the last single-stranded component of Xi

are lower components.

2.
∑

↓-expr. εi

T↓(Xi) = T↓(X1) + · · · + T↓(Xn) = T↓(X).

4.2: Minimal DNA expressions 101

Proof:

1. Consider an argument εi that is a ↓-expression Ei. By definition, Xi = S(Ei).
By Lemma 4.71, Xi is nick free. Because E is operator-minimal, Ei is minimal.

Suppose that T↑(Xi) ≥ T↓(Xi). Then by Corollary 4.19(2),

|Ei| ≥ 3 + 3 · T↑(Xi) + 3 · nl(Xi) + |ν(Xi)|

≥ 3 + 3 · T↓(Xi) + 3 · nl(Xi) + |ν(Xi)|.

• If T↑(Xi) = 0, then also T↓(Xi) = 0, and by Lemma 4.10, Xi does not contain

any single-stranded component. Hence, by Lemma 4.25, Xi =
(

α

c(α)

)
for an N -

word α. This, however, leads to a contradiction, because by Theorem 4.23, the

unique minimal DNA expression denoting Xi =
(

α

c(α)

)
is E ′

i = 〈l α〉.

• If T↑(Xi) ≥ 1, then Xi contains at least one upper component. By Theo-
rem 4.53(1), there exists a minimal ↑-expression E ′

i denoting Xi for which

|E ′
i| = 3 + 3 · T↓(Xi) + 3 · nl(Xi) + |ν(Xi)|.

Hence, E ′
i is at most as long as Ei. Because Ei ≡ E ′

i, we can replace Ei in E bij
E ′

i. By Lemma 3.7, the resulting overall string E ′ is a DNA expression satisfying
E ≡ E ′. Obviously, E ′ is at most as long as E and has the same outermost
operator, which implies that E ′ is operator-minimal, just like E.

This, however, contradicts Lemma 4.69, because E ′ is a ↑-expression and one of
its arguments, E ′

i, is also a ↑-expression.

Both if T↑(Xi) = 0 and if T↑(Xi) ≥ 1, we end up in a contradiction. This
implies that T↑(Xi) < T↓(Xi). By Lemma 4.11(2), T↑(Xi) = T↓(Xi) − 1. Hence,
Xi contains at least one lower component and by Lemma 4.12, both the first
single-stranded component and the last single-stranded component of Xi are lower
components.

2. Consider an argument εi for some i with 1 ≤ i ≤ n.

By Corollary 4.70, εi is either an N -word α, or a l-expression 〈l α〉 for an N -

word α, or a ↓-expression. If εi is an N -word α (in which case Xi =
(
α

−

)
) or a

l-expression 〈l α〉 (Xi =
(

α

c(α)

)
), then obviously T↓(Xi) = 0. This gives us the

first equality in the claim.

By Lemma 4.71, Xi = S+(εi) is nick free. In particular, #▽(Xi) = 0. But then
the second equality in the claim follows immediately from inequalities (4.2) and
(4.3) from Lemma 4.16(1).

If a ↑-expression or a ↓-expression has two or more consecutive N -word-arguments,
then these arguments may be substituted by one argument being the concatenation of
the N -words. This substitution does not change the semantics of the DNA expression.
In fact, the original DNA expression and the new DNA expression cannot even be

102 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

distinguished from each other, unless one explicitly indicates what the arguments of
each of them is. Hence, we do not loose generality when we assume that the arguments
of a ↑-expression or a ↓-expression are either maximal N -word occurrences or DNA
expressions.

Indeed, by Lemma 4.57(1) and Lemma 4.66(1), the N -words αi that we speci-
fied as arguments for the (operator-)minimal DNA expressions in Theorem 4.53 and
Theorem 4.65 are maximal N -word occurrences.

In Theorem 4.67, we use operator-minimal DNA expressions to construct a min-
imal DNA expression E for a formal DNA molecule containing nick letters. By
Lemma 4.68(1), the arguments of any operator-minimal DNA expression that are max-
imal N -word occurrences remain maximal N -word occurrences in E.

We now examine the relation between components of the formal DNA molecule X
denoted by an operator-minimal ↑-expression E and the components of the arguments
of E.

Lemma 4.75 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences or DNA expressions, be an operator-minimal DNA expression denoting a
certain formal DNA molecule X (which may contain nick letters). For i = 1, . . . , n,
let Xi = S+(εi), and let x′

1 . . . x′
k for some k ≥ 1 be the decomposition of X. Then for

i = 1, . . . , n,

1. each component of Xi is also a component of X;

2. there exist ai and bi with 1 ≤ ai ≤ bi ≤ k such that Xi = x′
ai

. . . x′
bi
.

Proof:

1. By Corollary 4.73(1),

X = X1y1X2y2 . . . yn−1Xn, (4.46)

where for i = 1, . . . , n−1, yi = △ if both R(Xi) and L(Xi+1) are double A-letters,
and yi = λ otherwise.

Obviously, no component of any Xi is split up over different components of X.
To complete the proof, we have to demonstrate that no component of any Xi

merges into a larger component of X.

Because X satisfies (4.46), it is clear that different components of the same Xi

do not merge into the same component of X. By definition, if for some i with
1 ≤ i ≤ n − 1, yi = △, then it is a component of X by itself. Hence, only if
yi = λ and the last component of Xi and the first component of Xi+1 are of the
same type (upper component, lower component or double component) then these
two components merge into one component of X. No other component of any Xi

merges into a larger component of X.

Let us consider Xi and Xi+1 with 1 ≤ i ≤ n − 1 such that yi = λ. Because
the arguments εi and εi+1 have to fit together by upper strands, both the last
component of Xi and the first component of Xi+1 cannot be lower components.
Because yi = λ, the two components cannot both be double components, either.
At least one of them has to be an upper component.

4.2: Minimal DNA expressions 103

Without loss of generality, assume that the last component of Xi is an upper
component. By Corollary 4.70 and Lemma 4.74(1), εi is a maximal N -word
occurrence. By definition, εi+1 is not an N -word, and thus is either a l-expression
〈l α〉 for an N -word α, or a ↓-expression. In neither case, the first component
of Xi+1 is an upper component. Consequently, the last component of Xi and the
first component of Xi+1 do not merge into one component.

2. This claim follows immediately from the previous claim.

We temporarily focus on operator-minimal ↑-expressions for nick free formal DNA
molecules.

Lemma 4.76 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences or DNA expressions, be an operator-minimal DNA expression denoting a
certain nick free formal DNA molecule X. For i = 1, . . . , n, let Xi = S+(εi) and let
x′

i,1 . . . x′
i,ki

for some ki ≥ 1 be the decomposition of Xi.

1. For i = 1, . . . , n− 1, if εi is a ↓-expression, then ki ≥ 2, x′
i,ki−1 is a closing lower

component of X, x′
i,ki

is a double component of X, εi+1 is a maximal N -word

occurrence α and Xi+1 =
(
α

−

)
is an opening upper component of X.

2. For i = 2, . . . , n, if εi is a ↓-expression, then ki ≥ 2, x′
i,2 is an opening lower

component of X, x′
i,1 is a double component of X, εi−1 is a maximal N -word

occurrence α and Xi−1 =
(
α

−

)
is a closing upper component of X.

3. The arguments ε1, . . . , εn of E are maximal N -word occurrences and DNA ex-
pressions, alternately.

Proof: Claims 1 and 2 are completely analogous and so are their proofs. We give the
proof of Claim 2. We first observe, however, that by Corollary 4.73(2),

X = X1X2 . . . Xn.

2. Assume that εi with 2 ≤ i ≤ n is a ↓-expression. By Lemma 4.71, Xi is nick
free. By Lemma 4.74(1), Xi contains at least one single-stranded component and
the first single-stranded component of Xi is a lower component. Because εi−1

has to prefit εi by upper strands, x′
i,1 cannot be a lower component. Then by

Corollary 2.5, it is a double component of Xi, ki ≥ 2 and x′
i,2 is a lower component

of Xi. By Lemma 4.75(1), x′
i,1 and x′

i,2 are also a double component of X and a
lower component of X, respectively.

By Corollary 4.70, εi−1 is either a maximal N -word occurrence α, or a l-expression
〈l α〉 for an N -word α, or a ↓-expression.

If it is a ↓-expression, then we can prove that the last component of Xi−1 is a
double component, in the same way that we proved that x′

i,1 is a double com-
ponent of Xi. Then, however, the outermost operator ↑ of E would introduce a
lower nick letter between Xi−1 and Xi, which would contradict the fact that X
is nick free. This would also happen if εi−1 were a l-expression 〈l α〉.

104 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Hence, εi−1 is a maximal N -word occurrence α and Xi−1 =
(
α

−

)
is an upper

A-word, and thus an upper component of X. Because it immediately precedes
x′

i,1x
′
i,2 in X, it is a closing upper component of X and x′

i,2 is an opening lower
component of X.

3. Consider an argument εi with 1 ≤ i ≤ n − 1. By Corollary 4.70, εi is either a
maximal N -word occurrence αi, or a l-expression 〈l αi〉 for an N -word αi, or a
↓-expression.

If εi is a maximal N -word occurrence in E, then by the definition of a maximal
N -word occurrence, εi+1 is a DNA expression.

If εi is a l-expression 〈l αi〉 for an N -word αi, then by Claim 2, εi+1 cannot be
a ↓-expression. If εi+1 were a l-expression 〈l αi+1〉 for an N -word αi+1, then the

outermost operator ↑ of E would introduce a nick letter between Xi =
(

αi

c(αi)

)

and Xi+1 =
(

αi+1

c(αi+1)

)
. Because X is nick free, this is not possible. Hence, εi+1 is

a maximal N -word occurrence.

Finally, if εi is a ↓-expression, then by Claim 1, εi+1 is a maximal N -word occur-
rence.

Now we are ready to characterize the minimal ↑-expressions denoting a nick free
formal DNA molecule.

Theorem 4.77 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences or DNA expressions, be a minimal DNA expression denoting a certain nick
free formal DNA molecule X. For i = 1, . . . , n, let Xi = S+(εi).

Let εi1 , εi2 , . . . , εir , with 0 ≤ r ≤ n and i1 < i2 < · · · < ir, be all ↓-arguments of E.
Finally, let Y0, Y1, . . . , Yr be defined by

Y0 =

{
X1 . . . Xn if r = 0
X1 . . . Xi1−1 if r ≥ 1

Yj = Xij+1 . . . Xij+1−1 (j = 1, . . . , r − 1)

Yr =

{
X1 . . . Xn if r = 0
Xir+1 . . . Xn if r ≥ 1

1. Y0Xi1Y1Xi2Y2 . . . XirYr is a maximal upper partitioning of X.

2. E satisfies the description of a minimal DNA expression denoting X given in
Theorem 4.53(1).

Proof: Because a minimal DNA expression is in particular operator-minimal, all earlier
results in this subsection are also valid for E.

By Corollary 4.73(2),

X = X1 . . . Xn.

By Corollary 4.70, each argument εi of E which is not a ↓-expression, is either a maxi-
mal N -word occurrence α, or a l-expression 〈l α〉 for an N -word α. The corresponding

formal DNA molecule Xi = S+(εi) is
(
α

−

)
or

(
α

c(α)

)
, respectively. By Lemma 4.75(1),

this is a component of X; in particular, it is an upper component or a double component
of X.

4.2: Minimal DNA expressions 105

1. We distinguish two cases: r = 0 and r ≥ 1.

• If r = 0, hence if no argument εi of E is a ↓-expression, then for i = 1, . . . , n,
Xi is an upper component or a double component of X. By Lemma 4.50, the
only maximal upper partitioning of X is M = X. Indeed, Y0 = X1 . . . Xn = X
in this case.

• If r ≥ 1, then Y0 is the concatenation of Xi’s preceding the first ↓-expression
εi1 , Yr is the concatenation of Xi’s following the last ↓-expression εir and for
j = 1, . . . , r−1, Yj is the concatenation of Xi’s between the ↓-expressions εij and
εij+1

. Indeed, Y0Xi1Y1Xi2Y2 . . . XirYr = X1 . . . Xn = X. Further, each Yj is the
concatenation of a number of upper components and double components of X.

Let us consider any j with 1 ≤ j ≤ r−1. By Lemma 4.76(3), the two ↓-expressions
εij and εij+1

are not consecutive arguments of E. Hence, ij + 1 ≤ ij+1 − 1 and
Yj is not empty. By Lemma 4.76(1) and (2), Yj starts with an opening upper
component Xij+1 of X and ends with a closing upper component Xij+1−1 of
X. Also, both Xij and Xij+1

contain at least two components of X. Then by
definition, Yj = Xij+1 . . . Xij+1−1 is a maximal upper sequence of X. In particular,
because it is preceded in X by Xij and followed in X by Xij+1

, it is an internal
maximal upper sequence.

If Y0 = λ, then i1 = 1, i.e., ε1 is a ↓-expression. By Lemma 4.74(1), X1 (and
thus X) contains at least one single-stranded component and the first single-
stranded component of X1 (and thus of X) is a lower component. But then, by
Lemma 4.45(1), the maximal upper prefix of X is empty. Hence, Y0 is equal to
the maximal upper prefix.

If Y0 6= λ, then i1 ≥ 2. By Lemma 4.76(2), Y0 ends with a closing upper com-
ponent Xi1−1 of X and Xi1 contains at least two components. This implies that
Y0 = X1 . . . Xi1−1 is a maximal upper sequence of X. It obviously is the first
maximal upper sequence. Because it has occurrence (λ,Xi1 . . . Xn) in X, it is the
maximal upper prefix of X.

We have thus proved that Y0 is equal to the maximal upper prefix of X, both
if it is empty and if it is not. Analogously we can prove that Yr is equal to the
maximal upper suffix of X.

Consequently, Y0Xi1Y1Xi2Y2 . . . XirYr is a maximal upper partitioning of X.

2. We first establish that Theorem 4.53(1) is applicable to X.

By assumption, X is nick free. By Theorem 4.23, X is not equal to
(

α

c(α)

)
for

an N -word α. because the only minimal DNA expression denoting such a formal
DNA molecule is 〈l α〉, wheras E is a ↑-expression. Hence, by Lemma 4.25, X
contains at least one single-stranded component.

Finally, by Lemma 4.58(2), if T↓(X) > T↑(X), then each minimal DNA expression
denoting X would be a ↓-expression. Because E is a ↑-expression, we must have
T↑(X) ≥ T↓(X). Indeed, Theorem 4.53(1) applies to X.

By Claim 1, Y0Xi1Y1Xi2Y2 . . . XirYr is a maximal upper partitioning of X. When
we define indices aj and bj for j = 0, . . . , r by

a0 = 1,

106 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

aj = ij + 1 (j = 1, . . . , r),

bj = ij+1 − 1 (j = 0, . . . , r − 1), and

br = n,

it is easy to verify that for j = 0, . . . , r, Yj = Xaj
. . . Xbj

.

Now consider any argument εi of E such that aj ≤ i ≤ bj for some j with
0 ≤ j ≤ r, in other words: any εi that is not a ↓-expression. As we observed
before, Xi = S+(εi) is an upper component or a double component of X. Then
because εi is either a maximal N -word occurrence α, or a l-expression 〈l α〉 for
an N -word α, it satisfies (4.18) from Theorem 4.53(1).

Finally, consider any argument εij with 1 ≤ j ≤ r. By definition, εij is a ↓-
expression denoting Xij . In particular, because E is minimal, εij is a minimal
↓-expression denoting Xij .

As all auxiliary results in this subsection deal with operator-minimal ↑-expressions,
it is only a small step from Theorem 4.77 to a characterization of the operator-minimal
↑-expressions denoting a nick free formal DNA molecule.

Theorem 4.78 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences or DNA expressions, be an operator-minimal DNA expression denoting a
certain nick free formal DNA molecule X. For i = 1, . . . , n, let Xi = S+(εi).

Let εi1 , εi2 , . . . , εir , with 0 ≤ r ≤ n and i1 < i2 < · · · < ir, be all ↓-arguments of E.
Finally, let Y0, Y1, . . . , Yr be defined by

Y0 =

{
X1 . . . Xn if r = 0
X1 . . . Xi1−1 if r ≥ 1

Yj = Xij+1 . . . Xij+1−1 (j = 1, . . . , r − 1)

Yr =

{
X1 . . . Xn if r = 0
Xir+1 . . . Xn if r ≥ 1

1. Y0Xi1Y1Xi2Y2 . . . XirYr is a maximal upper partitioning of X.

2. E satisfies the description of an operator-minimal ↑-expression denoting X given
in Theorem 4.65(1).

Proof: The proof of Claim 1 is identical to that of Theorem 4.77(1).
The proof of Claim 2 is a bit shorter than that of Theorem 4.77(2) In order to

demonstrate that Theorem 4.65(1) is applicable to X, we do not have to elaborate on
single-stranded components occurring in X, nor on T↑(X) and T↓(X). We only have
to observe that X is nick free. The rest of the proof is identical.

We finally characterize the minimal ↑-expressions for a formal DNA molecule X
containing (lower) nick letters. The characterization in fact reduces to a characteriza-
tion of operator-minimal ↑-expressions denoting nick free formal DNA submolecules of
X, which is provided by Theorem 4.78.

4.2: Minimal DNA expressions 107

Theorem 4.79 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences or DNA expressions, be a minimal DNA expression denoting a certain
formal DNA molecule X which contains at least one nick letter. Let Z1△

Z2△
. . .

△
Zm

for some m ≥ 2 be the nick free decomposition of X.
Then E satisfies the description of a minimal DNA expression denoting X given in

Theorem 4.67. Hence, there exist indices i0, i1, . . . , im, such that

• i0 = 0 < i1 < i2 < · · · < im−1 < im = n, and

• for h = 1, . . . ,m,
〈
↑ εih−1+1 . . . εih

〉
is an operator-minimal ↑-expression denoting

Zh.

Note that the indices i0, i1, . . . , im are unique. Suppose that j0, j1, . . . , jm is another
sequence of indices that satisfies the conditions, and that h0 is the smallest value for
which ih0

6= jh0
. As i0 = j0 = 0, h0 ≥ 1. Then, however, both

〈
↑ εih0−1+1 . . . εih0

〉
and

〈
↑ εjh0−1+1 . . . εjh0

〉
=

〈
↑ εih0−1+1 . . . εjh0

〉
would denote Zh. This is impossible, because

by definition each argument of a DNA expression contributes at least an A-letter to
the semantics.

Proof: By assumption, X contains at least one nick letter, and by Lemma 3.1(1), X
does not contain upper nick letters. Hence, indeed m ≥ 2 and each nick letter occurring
in the nick free decomposition of X is a lower nick letter.

For i = 1, . . . , n, let Xi = S+(εi). By Corollary 4.73(1),

X = X1y
′
1X2y

′
2 . . . y′

n−1Xn, (4.47)

where for i = 1, . . . , n − 1, y′
i is either equal to λ or to △, depending on R(Xi) and

L(Xi+1).
On the other hand, we have

X = Z1△
Z2△

. . .
△
Zm.

Because by Lemma 4.71, the Xi’s themselves are nick free, the lower nick letters
occurring in the nick free decomposition of X do not occur in them. Each of the
lower nick letters must correspond to a y′

i in (4.47). More formally, there exist indices
i1, i2, . . . , im−1 such that

• 1 ≤ i1 < i2 < · · · < im−1 ≤ n − 1,

• for h = 1, . . . ,m − 1, y′
ih

= △ and the occurrence

(X1y
′
1 . . . y′

ih−1Xih , Xih+1y
′
ih+1 . . . y′

n−1Xn) (4.48)

of y′
ih

in X is equal to the occurrence

(Z1△
. . .

△
Zh, Zh+1△

. . .
△
Zm) (4.49)

of △ in X, and

• for i ∈ {1, . . . , n} \ {i1, . . . , im−1}, y′
i = λ.

108 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Let us define i0 = 0 and im = n, and consider any h with 1 ≤ h ≤ m. It is clear from
(4.48) and (4.49) that

Zh = Xih−1+1y
′
ih−1+1 . . . y′

ih−1Xih ,

which is equal to Xih−1+1Xih−1+2 . . . Xih , because every y′
i with ih−1 + 1 ≤ i ≤ ih − 1

is equal to λ. Note that by Lemma 4.62(1) Zh 6= λ. Indeed, because ih−1 < ih,
Xih−1+1Xih−1+2 . . . Xih 6= λ.

Now, consider the ↑-expression Eh =
〈
↑ εih−1+1 . . . εih

〉
. By definition,

S(Eh) = Xih−1+1y
′
ih−1+1 . . . y′

ih−1Xih = Zh.

Hence, Eh is a ↑-expression denoting Zh. Suppose that Eh is not operator-minimal, i.e.,
that there exists a ↑-expression E ′

h = 〈↑ εh,1 . . . εh,nh
〉 for some nh ≥ 1 and N -words

or DNA expressions εh,1, . . . , εh,nh
, such that S(E ′

h) = S(Eh) = Zh and |E ′
h| < |Eh|.

Then apparently,

|εh,1 . . . εh,nh
| < |εih−1+1 . . . εih| (4.50)

and

E = 〈↑ ε1 . . . εn〉

≡
〈
↑ ε1 . . . εih−1

〈
↑ εih−1+1 . . . εih

〉
εih+1 . . . εn

〉

=
〈
↑ ε1 . . . εih−1

Ehεih+1 . . . εn

〉

≡
〈
↑ ε1 . . . εih−1

E ′
hεih+1 . . . εn

〉

=
〈
↑ ε1 . . . εih−1

〈↑ εh,1 . . . εh,nh
〉 εih+1 . . . εn

〉

≡
〈
↑ ε1 . . . εih−1

εh,1 . . . εh,nh
εih+1 . . . εn

〉
.

The second equivalence in this derivation is valid by Lemma 3.7, the other two by
Lemma 3.6. Because of (4.50), the resulting ↑-expression

〈
↑ ε1 . . . εih−1

εh,1 . . . εh,nh
εih+1 . . . εn

〉

is shorter than E. This, however, contradicts the fact that E is minimal. Consequently,
Eh must be operator-minimal.

For each type of expressible formal DNA molecule X, we have described how to
construct a minimal DNA expression denoting X and what the length of this DNA
expression is. We have also demonstrated that there do not exist other minimal DNA
expressions for X than the ones satisfying the description. We give a short overview
of the results:

Corollary 4.80 Let X be an expressible formal DNA molecule.

1. If X =
(

α1

c(α1)

)
for an N -word α1, then the only minimal DNA expression denoting

X is E = 〈l α1〉 (see Theorem 4.23).

The length of this minimal DNA expression is

|E| = 3 · nl(X) + |ν(X)| = 3 + |X|.

4.2: Minimal DNA expressions 109

2. If X is nick free, contains at least one single-stranded component and T↑(X) =
T↓(X), then the only minimal DNA expressions denoting X are ↑-expressions
based on a maximal upper partitioning of X as described in Theorem 4.53(1),
and ↓-expressions based on a maximal lower partitioning of X as described in
Theorem 4.53(2) (see also Theorem 4.77).

The length of a minimal DNA expression E is

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|

= 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)|.

3. If X is nick free and T↑(X) > T↓(X), then the only minimal DNA expressions
denoting X are ↑-expressions based on a maximal upper partitioning of X, as
described in Theorem 4.53(1) (see also Theorem 4.77).

The length of a minimal DNA expression E is

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|.

4. If X is nick free and T↓(X) > T↑(X), then the only minimal DNA expressions
denoting X are ↓-expressions based on a maximal lower partitioning of X, as
described in Theorem 4.53(2) (see also Theorem 4.77).

The length of a minimal DNA expression E is

|E| = 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)|.

5. If X contains at least one lower nick letter, then the only minimal DNA expres-
sions denoting X are ↑-expressions based on operator-minimal ↑-expressions for
the formal DNA submolecules Z1, Z2, . . . , Zm occurring in the nick free decomposi-
tion Z1△

Z2△
. . .

△
Zm of X, as described in Theorem 4.67 (see also Theorem 4.79).

The operator-minimal ↑-expressions denoting a (nick free) formal DNA sub-
molecule Zh are in turn based on a maximal upper partitioning of Zh, as described
in Theorem 4.65(1) (see also Theorem 4.78).

The length of a minimal DNA expression E denoting X is

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|.

6. If X contains at least one upper nick letter, then the only minimal DNA expres-
sions denoting X are ↓-expressions based on operator-minimal ↓-expressions for
the formal DNA submolecules Z1, Z2, . . . , Zm occurring in the nick free decompo-
sition Z1

▽Z2
▽ . . . ▽Zm of X, analogous to the description in Theorem 4.67 (see

also Theorem 4.79).

The operator-minimal ↓-expressions denoting a (nick free) formal DNA sub-
molecule Zh are in turn based on a maximal lower partitioning of Zh, as described
in Theorem 4.65(2) (see also Theorem 4.78).

The length of a minimal DNA expression E denoting X is

|E| = 3 + 3 · T↑(X) + 3 · nl(X) + |ν(X)|.

110 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

In each of the cases, a minimal DNA expression achieves the applicable lower bound
on its length from Corollary 4.19.

Now, we can also say more about the numbers of operators occuring in a minimal or
operator-minimal DNA expression.

A minimal l-expression contains only one occurrence of an operator, the operator
l. We observe once more that minimal ↑-expressions and ↓-expressions achieve the
lower bounds on their lengths from Corollary 4.19.

Next, consider an operator-minimal ↑-expression E denoting a formal DNA molecule
X. If X is nick free, then by Theorem 4.65(1), each operator-minimal ↑-expression de-
noting X, and in particular E, achieves the lower bound from Corollary 4.19(1). If
X contains (lower) nick letters, then E is minimal and thus also achieves the lower
bound. Analogously, each operator-minimal ↓-expression achieves the lower bound
from Corollary 4.19(2).

Because the lower bounds in Corollary 4.19(1) and (2) followed immediately from
Theorem 4.18, we have

Corollary 4.81 Let E be a DNA expression, and let X = S(E).

1. If E is a minimal l-expression, then

#↑,↓(E) = 0 and

#l(E) = 1.

2. If E is a minimal or operator-minimal ↑-expression, then

#↑,↓(E) = 1 + T↓(X) and

#l(E) = nl(X).

3. If E is a minimal or operator-minimal ↓-expression, then

#↑,↓(E) = 1 + T↑(X) and

#l(E) = nl(X).

Because a minimal DNA expression is in particular operator-minimal, we would not
have to mention minimal ↑-expressions and ↓-expressions explicitly in Claims 2 and 3.
We do mention these minimal DNA expressions, because we want to make clear that
the results also hold for them.

We conclude this subsection with two examples of types of formal DNA molecules
for which the minimal DNA expressions are unique.

• Let X be a nick free formal DNA molecule which does not contain any lower
component. By Lemma 4.10(2), T↓(X) = 0.

4.2: Minimal DNA expressions 111

If X does not contain any upper component, then by Lemma 4.25, X =
(

α1

c(α1)

)

for an N -word α1. In that case, the only minimal DNA expression denoting X
is E = 〈l α1〉.

If, on the other hand, X contains at least one upper component, then by Lemma 4.10(1),
T↑(X) > 0. A minimal DNA expression denoting X is based on a maximal upper
partitioning M of X. By Lemma 4.50, there is only one maximal upper parti-
tioning of X: M = Y0 = X. In that case, Theorem 4.53(1) specifies exactly one
minimal DNA expression.

• Let X be an expressible formal DNA molecule which does not contain any
single-stranded component. Then by Corollary 2.6 and Theorem 3.4, X =(

α1

c(α1)

)
y1

(
α2

c(α2)

)
y2 . . . ym−1

(
αm

c(αm)

)
for some m ≥ 1 and N -words α1, α2, . . . , αm,

where either y1 = y2 = . . . = ym−1 = △, or y1 = y2 = . . . = ym−1 = ▽. Without
loss of generality, assume that y1 = y2 = . . . = ym−1 = △.

If m = 1, then X =
(

α1

c(α1)

)
. Again the only minimal DNA expression denoting

X is E = 〈l α1〉.

If m ≥ 2, then X contains at least one lower nick letter. A minimal DNA
expression denoting X is based on operator-minimal ↑-expressions for Z1 =(

α1

c(α1)

)
, . . . , Zm =

(
αm

c(αm)

)
. For h = 1, . . . ,m, an operator minimal ↑-expression

denoting Zh =
(

αh

c(αh)

)
is based on a maximal upper partitioning Mh of Zh.

Because Zh does not contain any lower component, the only maximal upper

partitioning of Zh is Mh = Zh =
(

αh

c(αh)

)
. Hence, the only operator-minimal

↑-expression denoting Zh is 〈↑ 〈l αh〉〉. Now, Theorem 4.67 specifies one minimal
DNA expression denoting X:

E = 〈↑ 〈l α1〉 〈l α2〉 . . . 〈l αm〉〉 .

Note that (regardless of the value of m) T↓(X) = 0 and nl(X) = m. Indeed, the
minimal ↑-expression E for the case that m ≥ 2 has length

|E| = 3 + 3 · m + |α1α2 . . . αm| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|.

4.2.4 The number of minimal DNA expressions

In the preceding sections, we have seen examples of formal DNA molecules for which
the minimal DNA expression is unique and examples of formal DNA molecules for
which there exist more than one minimal DNA expression. Now, we will calculate
the number of minimal DNA expression denoting an arbitrary expressible formal DNA
molecule X.

We first introduce some notation.

Definition 4.82 Let X be an expressible formal DNA molecule. Then

• nmin↑(X) is the number of minimal ↑-expressions denoting X,

• nmin↓(X) is the number of minimal ↓-expressions denoting X,

• nminl(X) is the number of minimal l-expressions denoting X,

112 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

• nmin(X) is the number of minimal DNA expressions denoting X,

• nopermin↑(X) is the number of operator-minimal ↑-expressions denoting X,

• nopermin↓(X) is the number of operator-minimal ↓-expressions denoting X,

• noperminl(X) is the number of operator-minimal l-expressions denoting X.

Obviously, nmin(X) = nmin↑(X) + nmin↓(X) + nminl(X). For each type of expressible
formal DNA molecule, we can easily obtain values for (some of) the seven functions
and relations between the functions:

Lemma 4.83 Let X be an expressible formal DNA molecule.

1. If X is double-complete, then

nmin↑(X) = 0,

nopermin↑(X) = 1,

nmin↓(X) = 0,

nopermin↓(X) = 1,

nminl(X) = noperminl(X) = 1 and

nmin(X) = 1.

2. If X is nick free, contains at least one single-stranded component and T↑(X) =
T↓(X), then

nmin↑(X) = nopermin↑(X) ≥ 1,

nmin↓(X) = nopermin↓(X) ≥ 1,

nminl(X) = noperminl(X) = 0 and

nmin(X) = nmin↑(X) + nmin↓(X).

3. If X is nick free and T↑(X) > T↓(X), then

nmin↑(X) = nopermin↑(X) ≥ 1,

nmin↓(X) = 0,

nopermin↓(X) ≥ 1,

nminl(X) = noperminl(X) = 0 and

nmin(X) = nmin↑(X).

4. If X is nick free and T↓(X) > T↑(X), then

nmin↑(X) = 0,

nopermin↑(X) ≥ 1,

nmin↓(X) = nopermin↓(X) ≥ 1,

nminl(X) = noperminl(X) = 0 and

nmin(X) = nmin↓(X).

4.2: Minimal DNA expressions 113

5. If X contains at least one lower nick letter, then let Z1△
Z2△

. . .
△
Zm for some

m ≥ 2 be the nick free decomposition of X.

nmin↑(X) = nopermin↑(X) = nopermin↑(Z1) × · · · × nopermin↑(Zm) ≥ 1,

nmin↓(X) = nopermin↓(X) = 0,

nminl(X) = 0 and

nmin(X) = nmin↑(X).

(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|.

(b) If X contains at least one single-stranded component, then

noperminl(X) = 0.

6. If X contains at least one upper nick letter, then let Z1
▽Z2

▽ . . . ▽Zm for some
m ≥ 2 be the nick free decomposition of X.

nmin↑(X) = nopermin↑(X) = 0,

nmin↓(X) = nopermin↓(X) = nopermin↓(Z1) × · · · × nopermin↓(Zm) ≥ 1,

nminl(X) = 0 and

nmin(X) = nmin↓(X).

(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|.

(b) If X contains at least one single-stranded component, then

noperminl(X) = 0.

Proof: We only prove the correctness of some of the equations.
It follows immediately from the semantics of a DNA expression that for certain

formal DNA molecules X, there does not exist any ↑-expression, ↓-expression or l-
expression denoting X. Hence, the corresponding number of operator-minimal DNA
expressions is also 0.

The correctness of the remaining equations follows directly from Corollary 4.80.

1. Assume that X =
(

α1

c(α1)

)
for an N -word α1.

By Theorem 4.65(1) and Theorem 4.78, we can construct an operator-minimal
↑-expression denoting X from an arbitrary maximal upper partitioning of X
and there is no other way to construct an operator-minimal ↑-expression. X
obviously does not contain any lower component, By Lemma 4.50, there exists
exactly one maximal upper partitioning of X: M = Y0 = X. Hence, there is
also exactly one operator-minimal ↑-expression denoting X: E = 〈↑ 〈l α1〉〉, and
nopermin↑(X) = 1.

The proof of the equality nopermin↓(X) = 1 is completely analogous.

114 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

3. Assume that X is nick free.

By Theorem 4.65(2), an operator-minimal ↓-expression denoting X can be con-
structed from an arbitrary minimal lower partitioning of X. By (the ‘lower
analogue’ of) Lemma 4.48, the number of maximal lower partitionings of any
nick free formal DNA molecule is positive. Hence, nopermin↓(X) ≥ 1, regardless
of the values of T↑(X) and T↓(X).

4. The proof of this claim is analogous to that of the previous claim.

5. Assume that X contains at least one lower nick letter, and let Z1△
Z2△

. . .
△
Zm

for some m ≥ 2 be the nick free decomposition of X.

By Theorem 4.67, Lemma 4.60(1) and Theorem 4.79, we can construct a mini-
mal DNA expression denoting X from arbitrary operator-minimal ↑-expressions
E1, . . . , Em denoting Z1, . . . , Zm, respectively, and there is no other way to obtain
a minimal DNA expression.

For h = 1, . . . ,m, there are nopermin↑(Zh) ≥ 1 operator-minimal ↑-expressions Eh

denoting Zh. Different choices for an Eh yield different minimal DNA expressions,
because we simply copy the arguments of Eh into the minimal DNA expression.
Finally, let 1 ≤ h1 6= h2 ≤ m. Then the choice of an operator-minimal ↑-
expression for Zh1

is independent of the choice for Zh2
. Hence,

nmin(X) = nopermin↑(Z1) × nopermin↑(Z2) × · · · × nopermin↑(Zm) ≥ 1.

(a) Assume that X does not contain any single-stranded component. Then by

Corollary 2.6, X =
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△

. . .
△

(
αm

c(αm)

)
for N -words α1, α2, . . . , αm.

Apparently, for h = 1, . . . ,m, Zh =
(

αh

c(αh)

)
.

Let E = 〈l ε1〉 be an arbitrary operator-minimal l-expression denoting X.

If ε1 were an N -word α1, then X = S(E) =
(

α1

c(α1)

)
would be nick free, which

would contradict our prior assumption. Hence, ε1 is a DNA expression E1:
E = 〈l E1〉.

Let X1 = S(E1). By definition, X = κ(X1). Because the function κ does
not introduce, nor remove nick letters, X1 contains m− 1 lower nick letters,
just like X. As E is operator-minimal, its argument E1 must be minimal.
Hence, by Lemma 4.60(1), E1 is a ↑-expression, and by Theorem 4.67,

|E1| = 3 + 3 · T↓(X1) + 3 · nl(X1) + |ν(X1)|. (4.51)

Let Z1,1△
Z1,2△

. . .
△
Z1,m be the nick free decomposition of X1. The relation

X = κ(X1) implies that for h = 1, . . . ,m, Zh =
(

αh

c(αh)

)
= κ(Z1,h).

By definition, each lower nick letter occurring in (the formal DNA molecule)
X1 is both preceded and succeeded by a double A-letter. Hence, for h =
1, . . . ,m, Z1,h contains at least one double component: nl(Z1,h) ≥ 1. This
implies

nl(X1) = nl(Z1,1) + nl(Z1,2) + · · · + nl(Z1,m) ≥ m. (4.52)

When we substitute this into (4.51), we obtain

|E1| ≥ 3 + 3 · T↓(X1) + 3 · m + |ν(X1)| ≥ 3 + 3 · m + |ν(X1)|, (4.53)

4.2: Minimal DNA expressions 115

and thus

|E| = 3 + |E1| ≥ 6 + 3 · m + |ν(X1)| = 6 + 3 · m + |ν(X)|. (4.54)

Note that this lower bound on the length of E is higher than the lower
bounds from Corollary 4.19(3) and (5). Apparently, the latter lower bounds
are not tight for l-expressions denoting formal DNA molecules with (lower)
nick letters.

Now consider the l-expression

E ′ = 〈l 〈↑ 〈l α1〉 〈l α2〉 . . . 〈l αm〉〉〉 .

It is easy to verify that S(E ′) =
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△

. . .
△

(
αm

c(αm)

)
= X, and that

|E ′| = 6 + 3 · m + |ν(X)|. As E ′ achieves the lower bound for l-expressions
denoting X which is given in (4.54), E ′ is operator-minimal. Because also
E is operator-minimal, it has the same length as E ′. We thus have equality
in (4.53) and (4.54):

|E1| = 3 + 3 · m + |ν(X1)|

and

|E| = 6 + 3 · m + |ν(X)|.

Consequently, T↓(X1) = 0, nl(X1) = m and in particular, for h = 1, . . . ,m,
nl(Z1,h) = 1. It is not hard to see that if for some h with 1 ≤ h ≤ m,
Z1,h contained an opening ↓-component, then this would also be an opening
↓-component of X1. This would, however, contradict T↓(X1) = 0. Hence,
for h = 1, . . . ,m, T↓(Z1,h) = 0.

By Theorem 4.79, there exist operator-minimal ↑-expressions E1,1, E1,2, . . . , E1,m

denoting Z1,1, Z1,2, . . . , Z1,m, respectively, such that E1 =
〈
↑ Ê1,1Ê1,2 . . . Ê1,m

〉
,

where for h = 1, . . . ,m, Ê1,h is the sequence of the arguments of E1,h. By
Theorem 4.65(1), for h = 1, . . . ,m,

|E1,h| = 3 + 3 · T↓(Z1,h) + 3 · nl(Z1,h) + |ν(Z1,h)|

= 3 + 3 · 0 + 3 · 1 + |ν(Z1,h)|

= 6 + |αh|.

Consider any h with 1 ≤ h ≤ m.

• If 2 ≤ h ≤ m−1, then Z1,h both starts and ends with a double component.
Because nl(Z1,h) = 1, these have to be the same double component: Z1,h =(

αh

c(αh)

)
, as κ(Z1,h) =

(
αh

c(αh)

)
. By Claim 1, there is exactly one operator-

minimal ↑-expression E1,h denoting Z1,h (and E1,h = 〈↑ 〈l αh〉〉).

• If h = 1, then Z1,h = Z1,1 ends with a double component
(

α′′

c(α′′)

)
for an

N -word α′′. Because nl(Z1,1) = 1, Z1,1 does not contain any other double

component. Hence, by Corollary 2.5,
(

α′′

c(α′′)

)
is preceded in Z1,1 by at most

one other component, which then is a single-stranded component.

If
(

α′′

c(α′′)

)
is not preceded in Z1,1 by any other component, then Z1,1 =

(
α′′

c(α′′)

)
=

(
α1

c(α1)

)
.

116 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

If
(

α′′

c(α′′)

)
is preceded in Z1,1 by a single-stranded component, then this

cannot be a lower component. Otherwise, it would be an opening lower
component of Z1,1, which would contradict T↓(Z1,1) = 0. Consequently,(

α′′

c(α′′)

)
is preceded in Z1,1 by an upper component

(
α′

−

)
for an N -word α′:

Z1,1 =
(
α′

−

)(
α′′

c(α′′)

)
. Because κ(Z1,1) =

(
α′

c(α′)

)(
α′′

c(α′′)

)
=

(
α′α′′

c(α′α′′)

)
=

(
α1

c(α1)

)
,

α′α′′ = α1. Both α′ and α′′ must contain at least one N -letter, which implies
that there are |α1| − 1 ways to partition α1 into α′ and α′′.

We thus have 1 + (|α1| − 1) = |α1| possibilities for Z1,1. By Lemma 4.50,

both if Z1,1 =
(

α1

c(α1)

)
and if Z1,1 =

(
α′

−

)(
α′′

c(α′′)

)
for a partitioning (α′, α′′)

of α1, there is exactly one maximal upper partitioning of Z1,1. Hence, by
Theorem 4.65(1) and Theorem 4.78, there is exactly one operator-minimal

↑-expression E1,1 denoting Z1,1: either E1,1 = 〈↑ 〈l α1〉〉 (if Z1,1 =
(

α1

c(α1)

)
),

or E1,1 = 〈↑ α′ 〈l α′′〉〉 (if Z1,1 =
(
α′

−

)(
α′′

c(α′′)

)
for a partitioning (α′, α′′) of

α1). We thus have |α1| possibilities for E1,1 and indeed, for each of the
possibilities, |E1,1| = 6 + |α1|.

• The case h = m is dealt with analogously to the case h = 1. After
having established that Z1,m begins with a double component, which may
be succeeded by an upper component, we find that there are |αm| possibilities
for Z1,m and that each of these possibilities yields one DNA expression E1,m.

We conclude that the operator-minimal ↑-expressions E1,2, . . . , E1,m−1 are
fixed, that there are |α1| = |Z1| possibilities for E1,1 (each one corresponding
to a possibility for Z1,1) and that there are |αm| = |Zm| possibilities for E1,m

(each one corresponding to a possibility for Z1,m). Obviously the choice
for E1,1 is independent of the choice for E1,m, which implies that there are
|α1| × |αm| = |Z1| × |Zm| possibilities for E1 altogether.

It is easily verified that indeed, for each of these possibilities, E = 〈l E1〉

denotes X =
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△

. . .
△

(
αm

c(αm)

)
, and that |E| = 6+3 ·m+ |ν(X)|.

6. The proof of this claim is analogous to that of the previous claim.

The only thing we do not know yet, are the numbers of operator-minimal ↑-
expressions and ↓-expressions denoting a nick free formal DNA molecule which con-
tains at least one single-stranded component. To achieve these numbers, we first con-
centrate on maximal upper partitionings and maximal lower partitionings, which, by
Theorem 4.65 and Theorem 4.78, form the basis for the construction of these operator
minimal DNA expressions.

We define functions fT↓
and fT↑

as follows.

Definition 4.84 Let X be a nick free formal DNA molecule.
For a maximal upper partitioning M = Y0X1Y1X2Y2 . . . XrYr with r ≥ 0,

fT↓
(M) = (T↓(X1), T↓(X2), . . . , T↓(Xr)).

For a maximal lower partitioning M = Y0X1Y1X2Y2 . . . XrYr with r ≥ 0,

fT↑
(M) = (T↑(X1), T↑(X2), . . . , T↑(Xr)).

4.2: Minimal DNA expressions 117

N Ordered partitions of N
0 ()
1 (1)
2 (2), (1, 1)
3 (3), (1, 2), (2, 1), (1, 1, 1)
4 (4), (1, 3), (2, 2), (3, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 1)

Table 4.1: All ordered partitions for N = 0, 1, 2, 3, 4.

Hence, fT↓
maps a maximal upper partitioning onto a sequence of numbers, and fT↑

maps a maximal lower partitioning onto a sequence of numbers. Note that if T↓(X) = 0
for a nick free formal DNA molecule X, then by Lemma 4.10(2) and Lemma 4.50, the
only maximal upper partitioning of X is M = X (with r = 0), for which fT↓

(M) = ().
Analogously, if T↑(X) = 0, then the only maximal lower partitioning of X is M = X,
for which fT↑

(M) = ().
When we apply fT↓

and fT↑
to the three maximal upper partitionings and the

maximal lower partitioning from Figure 4.7, we obtain

fT↓
(Ma1) = (1, 1, 1),

fT↓
(Ma2) = (2, 1),

fT↓
(Ma3) = (3) and

fT↑
(Mb) = (1, 1, 2).

Here, the subscript of M refers to the subfigure of Figure 4.7.
We will examine the relation between maximal upper (or lower) partitionings on

the one hand, and sequences of integers on the other hand, induced by the function
fT↓

(fT↑
, respectively).

Definition 4.85 Let N ≥ 0 be an integer. An ordered partition of N is a sequence of
positive integers (t1, . . . , tr) for some r ≥ 0 such that t1 + · · · + tr = N .

As an illustration of this definition, Table 4.1 contains all ordered partitions for N =
0, 1, 2, 3, 4.

Lemma 4.86 Let X be a nick free formal DNA molecule.

1. The function fT↓
is a bijection from the maximal upper partitionings of X onto

the ordered partitions of T↓(X).

2. The function fT↑
is a bijection from the maximal lower partitionings of X onto

the ordered partitions of T↑(X).

As can be read from Table 4.1, if T↓(X) = 0, then the the only ordered partition of
T↓(X) is the empty sequence () (with r = 0). Indeed, this is the image under fT↓

of
the only maximal upper partitioning in this case.

We want to emphasize that the function fT↓
(or fT↑

) is a bijection from maximal
upper (lower, respectively) partitionings onto ordered partitions, only when the formal
DNA molecule X is given. For example, there are infinitely many maximal upper
partitionings that are mapped by fT↓

to the empty sequence (), namely the maximal

118 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

upper partitionings of all nick free formal DNA molecules X with T↓(X) = 0.

Proof:

1. Let M = Y0X1Y1X2Y2 . . . XrYr for some r ≥ 0 be a maximal upper partitioning
of X. By Corollary 4.52(2), for j = 1, . . . , r, T↓(Xj) = T↑(Xj) + 1 ≥ 1, and by
Corollary 4.54(1), T↓(X1) + T↓(X2) + · · · + T↓(Xr) = T↓(X). Indeed, fT↓

(M) =
(T↓(X1), T↓(X2), . . . , T↓(Xr)) is an ordered partition of T↓(X). Hence, fT↓

is a
mapping from the maximal upper partitionings of X into the set of these ordered
partitions.

We will now prove that fT↓
is surjective and injective, and thus is a bijection. Let

M′ = Y ′
0X

′
1Y

′
1X

′
2Y

′
2 . . . X ′

r0
Y ′

r0
for some r0 ≥ 0 be the complete maximal upper

partitioning of X. By Lemma 4.51(2b), X ′
1, X

′
2, . . . , X

′
r0

are exactly all separating
lower sequences of X, Hence, by Lemma 4.39, r0 = T↓(X).

Let (t1, t2, . . . , tr) for some r ≥ 0 be an arbitrary ordered partition of T↓(X).
Then consider the following maximal upper partitioning:

M = Y ′
0X1Y

′
t1
X2Y

′
t1+t2

. . . Xt1+t2+···+trY
′
t1+t2+···+tr

. (4.55)

Hence, for j = 1, . . . , r, the substring Xj is equal to the subsequence

X ′
t1+···+tj−1+1Y

′
t1+···+tj−1+1 . . . Y ′

t1+···+tj−1X
′
t1+···+tj

of separating lower sequences and maximal upper sequences of X. Since all tj’s are
positive and t1+t2+· · ·+tr = T↓(X) = r0, the sequences Y ′

t1
, Y ′

t1+t2
, . . . Y ′

t1+t2+···+tr−1

occurring in (4.55) are different internal maximal upper sequences and Y ′
t1+t2+···+tr

is the maximal upper suffix Y ′
r0

of X. This implies that, indeed, M is a maximal
upper partitioning of X.

By Corollary 4.52(1), for j = 1, . . . , r,

T↓(Xj) = (t1 + · · · + tj) − (t1 + · · · + tj−1 + 1) + 1 = tj.

Consequently,

fT↓
(M) = (T↓(X1), T↓(X2), . . . , T↓(Xr)) = (t1, t2, . . . , tr).

We have thus created a maximal upper partitioning of X which is mapped by fT↓

onto the ordered partition (t1, t2, . . . , tr). Because this was an arbitrary ordered
partition of T↓(X), fT↓

is surjective.

Let

M1 = Y1,0X1,1Y1,1X1,2Y1,2 . . . X1,r1
Y1,r1

, and

M2 = Y2,0X2,1Y2,1X2,2Y2,2 . . . X2,r2
Y2,r2

for some r1, r2 ≥ 0 be two maximal upper partitionings, for which fT↓
(M1) =

fT↓
(M2) = (t1, . . . , tr) for some r ≥ 0. By the definition of fT↓

, r1 = r2 = r.

We now prove that for j = 0, . . . , r, Y1,j = Y2,j. We do this by induction on j.

4.2: Minimal DNA expressions 119

• If j = 0, then by the definition of a maximal upper partitioning, Y1,0 = Y2,0

is the maximal upper prefix Y ′
0 of X.

• Let 0 ≤ j ≤ r − 1, and suppose that Y1,j = Y2,j (induction hypothesis). We
now consider Y1,j+1 and Y2,j+1. Because M1 and M2 are maximal upper
partitionings of the same formal DNA molecule X, we have

Y1,0X1,1Y1,1 . . . X1,jY1,j = Y2,0X2,1Y2,1 . . . X2,jY2,j (4.56)

Y1,j is succeeded in M1 by X1,j+1 and Y2,j is succeeded in M2 by X2,j+1.
By Lemma 4.51(3a), both X1,j+1 and X2,j+1 are alternating sequences of
separating lower sequences and maximal upper sequences of X, starting
and ending with a separating lower sequence. Because of (4.56), they start
with the same separating lower sequence. By assumption, T↓(X1,j+1) =
T↓(X2,j+1) = tj+1, and hence, by Corollary 4.52(1), X1,j+1 and X2,j+1 contain
the same number of separating lower sequences of X. This implies that they
also end with the same separating lower sequence, and thus that they are
equal.

Now, if j + 1 < r, then both Y1,j+1 and Y2,j+1 are the internal maximal
upper sequence succeeding X1,j+1 = X2,j+1 in X. If j + 1 = r, then by the
definition of a maximal upper partitioning, Y1,j+1 = Y2,j+1 is the maximal
upper suffix Yr′

0
of X. In both cases, Y1,j+1 = Y2,j+1.

Because a maximal upper partitioning is defined by the (internal) maximal upper
sequences Yj occurring in it, M1 and M2 must be equal. We conclude that fT↓

is injective.

2. The proof of this claim is analogous to that of the previous claim.

By the above result, the number of different maximal upper partitionings of a certain
nick free formal DNA molecule X must be equal to the number of ordered partitions
of T↓(X). By Lemma 4.48, the former number is 2nimus(X), which, by Lemma 4.10(2)
and Lemma 4.46(2), is equal to

{
20 = 1 if T↓(X) = 0,

2T↓(X)−1 if T↓(X) > 0.

There is also an elegant, direct way to compute the number of different ordered parti-
tions of T↓(X). It is a standard result in the theory of partitions.

Lemma 4.87 Let N ≥ 0 be an integer. Then the number of different ordered partitions
of N is

{
1 if N = 0,

2N−1 if N > 0.

Proof: As we have observed before, if N = 0, then the only ordered partition of N is
().

For N > 0, we will systematically count the different sequences (t1, . . . , tr) of posi-
tive integers satisfying t1 + · · · + tr = N .

120 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

First we observe that r (the number of integers tj) must be at least 1 and at most
N . With r = 0, the sum t1 + t2 + · · · + tr would be 0 by definition, which is smaller
than N . With r > N , the sum t1 + t2 + · · ·+ tr would be larger than N , because each
tj is at least 1.

Given an integer r with 1 ≤ r ≤ N , we must count all possibilities to distribute
the number N over the variables t1, t2, . . . , tr, such that each tj is at least 1. This is
equivalent to counting the ways to put N indistinguishable balls into r distinguishable
urns, such that each urn holds at least one ball. Because of this last condition, we
may start by putting one ball into every urn. After this, we may freely distribute the
remaining N − r balls over the r urns. This second step is equivalent to lining up the
N − r balls from left to right, and then inserting r − 1 walls (separators) into this line
to indicate how many balls will be put into the first urn, how many will be put into
the second urn, etc.

For example, the ordered partition (1, 4, 2, 5) of N = 12 (with r = 4 and N −r = 8)
corresponds to the sequence |000|0|0000, where | represents a wall and 0 represents
a ball. Note that this particular sequence starts with a wall, which means that the
first urn receives none of the N − r = 8 balls that we may freely distribute. Indeed,
according to the ordered partition, the first urn is supposed to hold exactly 1 ball, i.e.,
only the obligatory ball.

We return to the general case. Inserting r − 1 walls into a line of N − r balls is
equivalent to selecting r−1 positions for the walls from a total of (N−r)+(r−1) = N−1

positions. The number of ways to do this is
(

N − 1
r − 1

)
.

Now the total number of different ordered partitions of N is

N∑

r=1

(
N − 1
r − 1

)
=

N−1∑

r=0

(
N − 1

r

)
= 2N−1.

The last equation can be understood as follows.
N−1∑

r=0

(
N − 1

r

)
counts the number of

subsets from a (N −1)-item set: first the subset containing r=0 items, then the subsets
containing r=1 item, etc. However, to determine the number of subsets from a (N−1)-
item set, it is sufficient to observe that for each item we have two possibilities: it is in
the subset or it is not. Then in total we have 2 · 2 · · · 2︸ ︷︷ ︸

N − 1 times

= 2N−1 possibilities.

Lemma 4.86 relates maximal upper partitionings and maximal lower partitionings
of a nick free formal DNA molecule to ordered partitions. We will now establish a
relation between, on the one hand, operator minimal ↑-expressions and ↓-expressions
denoting such formal DNA molecules and, on the other hand, certain sequences of
brackets.

Definition 4.88 Let p ≥ 0. A sequence of p well-nested pairs of brackets is a string
Z = x1 . . . x2p such that

• for i = 1, . . . , 2p, xi ∈ {〈, 〉}, and

• #〈 (Z) = # 〉(Z), and

• for i = 0, . . . , 2p, #〈 (x1 . . . xi) ≥ # 〉(x1 . . . xi).

4.2: Minimal DNA expressions 121

The number p, i.e., the number of pairs of brackets in a sequence Z of well-nested pairs
of brackets is denoted by npb(Z).

The third condition of the definition intuitively says that, when we read Z from left to
right, the number of closing brackets 〉 we have read so far never exceeds the number
of opening brackets 〈 we have read so far.

Note that the inequality in this third condition is automatically valid for i = 0 and
for i = 2p. In the former case, x1 . . . xi = λ, and #〈 (λ) = # 〉(λ) = 0. In the latter
case, x1 . . . xi = Z, and #〈 (Z) = # 〉(Z) by the second condition.

Note further that if Z is a sequence of well-nested pairs of brackets, then so is 〈Z〉.
The reverse statement is not true. For example, 〈〉 〈〉 is a sequence of well-nested pairs
of brackets (with p = 2), but 〉 〈 is not, because it violates the third condition of the
definition.

Other examples of sequences of well-nested pairs of brackets are

λ (the empty string, with p = 0),
〈〈〉〉 〈〉 (with p = 3) and
〈〉 〈〉 〈〈〉〉 (with p = 4).

The term ‘sequence of well-nested pairs of brackets’ is explained by the following
result:

Lemma 4.89 A string Z is a sequence of well-nested pairs of brackets, if and only if
there exist strings Z1, Z2 . . . , Zr for some r ≥ 0, such that

1. Z = 〈Z1〉 〈Z2〉 . . . 〈Zr〉,

2. for j = 1, . . . , r, Zj is itself a sequence of well-nested pairs of brackets.

In this case, the partitioning of Z as 〈Z1〉 〈Z2〉 . . . 〈Zr〉 is unique.

Proof: =⇒ Let Z = x1 . . . x2p for some p ≥ 0 be a sequence of well-nested pairs of
brackets. Then let i0 = 0, and let 1 ≤ i1 < i2 < · · · < ir ≤ 2p for some r ≥ 0 be all
indices i such that #〈 (x1 . . . xi) = # 〉(x1 . . . xi).

Consider any j with 1 ≤ j ≤ r. By definition, #〈 (x1 . . . xij−1
) = # 〉(x1 . . . xij−1

)
(also if j = 1, i.e., if ij−1 = 0), 1 ≤ ij−1 + 1 ≤ 2p and for i = 1, . . . , 2p, #〈 (x1 . . . xi) ≥
〉(x1 . . . xi). Consequently, xij−1+1 must be an opening bracket 〈 . Analogously, xij is
a closing bracket 〉. Because ij−1 < ij and xij−1+1 6= xij , we even have ij−1 + 1 < ij.

Now define Zj as the substring of Z between the opening bracket xij−1+1 and the
closing bracket xij :

Zj = xij−1+2 . . . xij−1.

We will prove that Z1, . . . , Zr satisfy conditions (1) and (2).
If p = 0, then by definition r = 0. Indeed Z = λ in this case, and conditions (1)

and (2) are satisfied trivially.
Now assume that p ≥ 1. By definition, #〈 (Z) = # 〉(Z), and thus r ≥ 1 and

ir = 2p. Also by definition, i1−1 + 1 = i0 + 1 = 1. Finally, for j = 1, . . . , r,

〈Zj〉 = xij−1+1xij−1+2 . . . xij−1xij .

This all implies

〈Z1〉 〈Z2〉 . . . 〈Zr〉 = xi0+1 . . . xi1xi1+1 . . . xi2 . . . xir−1+1 . . . xir = x1 . . . x2p = Z,

122 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

which gives condition (1).
Consider any j with 1 ≤ j ≤ r. Obviously, Zj consists only of opening brackets 〈

and closing brackets 〉. Their respective numbers of occurrences satisfy

#〈 (Zj) = #〈 (xij−1+2 . . . xij−1)

= #〈 (x1 . . . xij) − #〈 (x1 . . . xij−1
) − #〈 (xij−1+1) − #〈 (xij)

= # 〉(x1 . . . xij) − # 〉(x1 . . . xij−1
) − 1 − 0

= # 〉(xij−1+2 . . . xij−1)

= # 〉(Zj).

This implies in particular that the length |Zj| must be even, i.e., 2pj for some pj ≥ 0.
Finally, let Z ′

j = xij−1+2 . . . xi with ij−1 + 1 ≤ i ≤ ij − 1 be an arbitrary prefix of
Zj (which may be equal to λ, but may also be equal to Zj). Because i is not equal to
any of i1, . . . , ir, we have

#〈 (x1 . . . xi) ≥ # 〉(x1 . . . xi) + 1.

This implies that

#〈 (Z
′
j) = #〈 (xij−1+2 . . . xi)

= #〈 (x1 . . . xi) − #〈 (x1 . . . xij−1
) − #〈 (xij−1+1)

≥ # 〉(x1 . . . xi) + 1 − # 〉(x1 . . . xij−1
) − 1

= # 〉(xij−1+2 . . . xi)

= # 〉(Z
′
j).

Indeed, Zj satisfies the definition of a sequence of well-nested pairs of brackets. Hence,
also condition (2) is satisfied.

⇐= Let Z be a string and let Z1, . . . , Zr for some r ≥ 0 be sequences of well-nested
pairs of brackets, such that Z = 〈Z1〉 . . . 〈Zr〉.

Then obviously, every letter of Z is an opening bracket 〈 or a closing bracket 〉. It
can easily be shown by induction that for j = 0, . . . , r,

#〈 (〈Z1〉 . . . 〈Zj〉) = # 〉(〈Z1〉 . . . 〈Zj〉). (4.57)

In particular, when we take j = r, we have

#〈 (Z) = #〈 (〈Z1〉 . . . 〈Zr〉) = # 〉(〈Z1〉 . . . 〈Zr〉) = # 〉(Z).

This implies that the length of Z is even, i.e., 2p for some p ≥ 0.
Consider any prefix Z ′ of Z that is different from the ones occurring in (4.57). Then

Z ′ is of the form

Z ′ = 〈Z1〉 . . . 〈Zj−1〉 〈 Z ′
j

for some j with 1 ≤ j ≤ r and some prefix Z ′
j of Zj (which may be equal to λ, but

may also be equal to Zj). Because Zj is a sequence of well-nested pairs of brackets,

#〈 (Z
′
j) ≥ # 〉(Z

′
j).

Hence,

#〈 (Z
′) = #〈 (〈Z1〉 . . . 〈Zj−1〉) + 1 + #〈 (Z

′
j)

≥ # 〉(〈Z1〉 . . . 〈Zj−1〉) + 1 + # 〉(Z
′
j)

> # 〉(Z
′)

4.2: Minimal DNA expressions 123

We have thus proved that Z is a sequence of well-nested pairs of brackets.
Moreover, 〈Z1〉 , 〈Z1〉 〈Z2〉 , . . . , 〈Z1〉 . . . 〈Zr〉 are the only non-empty prefixes Z ′ of

Z for which #〈 (Z
′) = # 〉(Z

′). Consequently, when we apply the construction from
the first part of the proof (the proof of =⇒) to Z, we precisely obtain the partitioning
〈Z1〉 . . . 〈Zr〉.

Uniqueness Let Z be a sequence of well-nested pairs of brackets, let r1, r2 ≥ 0 and
let Z1,1, . . . , Z1,r1

and Z2,1, . . . , Z2,r2
be sequences of well-nested pairs of brackets, such

that Z = 〈Z1,1〉 . . . 〈Z1,r1
〉 and Z = 〈Z2,1〉 . . . 〈Z2,r2

〉. By the concluding remark in the
second part of the proof (the proof of ⇐=), we can obtain both partitionings by applying
the construction from the first part of the proof to Z. Because this construction is
unambiguous. the two partitionings must be equal.

Sequences of well-nested pairs of brackets are well-known in combinatorics. The
number of such sequences is one of the many combinatorial interpretations of the

Catalan numbers Cp = 1
p+1

(
2p

p

)
for p ≥ 0:

Lemma 4.90 The number of different sequences of p ≥ 0 well-nested pairs of brackets

is 1
p+1

(
2p

p

)
.

Proof: This result is included as Excercise 6.19(r) in [Stanley, 1999], where 1’s are
substituted for opening brackets and −1’s are substituted for closing brackets. Here,
we give a well-known proof, which is simple and elegant.

Let p ≥ 0. A sequence of p well-nested pairs of brackets is, in particular, a sequence
of p opening brackets and p closing brackets. The number of different sequences of
p opening brackets and p closing brackets is equal to the number of ways to select p

positions for the opening brackets from a total of 2p positions, which is
(

2p

p

)
.

This number, however, also includes ‘wrong’ sequences, sequences that satisfy the
first two conditions of Definition 4.88, but do not satisfy the third condition. Consider
such a ‘wrong’ sequence Z = x1 . . . x2p. There exists at least one index i with 0 ≤
i ≤ 2p for which #〈 (x1 . . . xi) < # 〉(x1 . . . xi). Let i0 be the smallest such index i. By
definition, for i = 0 and i = 2p, #〈 (x1 . . . xi) = # 〉(x1 . . . xi). Hence, 1 ≤ i0 ≤ 2p − 1.
Because of the minimality of i0, #〈 (x1 . . . xi0−1) = # 〉(x1 . . . xi0−1), xi0 is a closing
bracket 〉 and

#〈 (x1 . . . xi0) = # 〉(x1 . . . xi0) − 1. (4.58)

Consequently,

#〈 (xi0+1 . . . x2p) = # 〉(xi0+1 . . . x2p) + 1. (4.59)

Let Z ′ be the sequence of opening brackets and closing brackets that results from Z by
replacing each opening bracket xi with i > i0 by a closing bracket and replacing each
closing bracket xi with i > i0 by an opening bracket: Z ′ = x′

1 . . . x′
2p, where

x′
i =

xi if i ≤ i0
〉 if i > i0 and xi = 〈
〈 if i > i0 and xi = 〉

(i = 1, . . . , 2p).

It follows from (4.58) and (4.59) that

#〈 (Z
′) = # 〉(Z

′) − 2,

124 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

p Cp p Cp p Cp p Cp

0 1 5 42 10 16, 796 15 9, 694, 845
1 1 6 132 11 58, 786 16 35, 357, 670
2 2 7 429 12 208, 012 17 129, 644, 790
3 5 8 1, 430 13 742, 900 18 477, 638, 700
4 14 9 4, 862 14 2, 674, 440 19 1, 767, 263, 190

Table 4.2: The Catalan numbers Cp for p = 0, 1, . . . , 19.

i.e., that Z ′ contains p − 1 opening brackets and p + 1 closing brackets.
It is easy to prove that each sequence Z ′ of p−1 opening brackets and p+1 closing

brackets can be obtained in this way from exactly one ‘wrong’ sequence Z. Hence,
the number of ‘wrong’ sequences of p opening brackets and p closing brackets equals
the number of sequences of p− 1 opening brackets and p + 1 closing brackets, which is(

2p

p − 1

)
. This implies that the number of ‘correct’ sequences, sequences of p well-nested

pairs of brackets is
(

2p

p

)
−

(
2p

p − 1

)
=

(2p)!

p!p!
−

(2p)!

(p − 1)!(p + 1)!
= (1 −

p

p + 1
)
(

2p

p

)
=

1

p + 1

(
2p

p

)
.

Table 4.2 lists the Catalan numbers Cp for p = 0, 1, . . . , 19. As the table suggests,
the sequence of the Catalan numbers exhibits an exponential growth. In fact, we have
for p ≥ 1,

Cp =
1

p + 1

(
2p

p

)
=

2p · (2p − 1)

(p + 1)p
·
1

p

(
2(p − 1)
p − 1

)
= (4 −

6

p + 1
)Cp−1.

Hence, the sequence grows almost as fast as the sequence 4p for p ≥ 0.

When we examined the lengths of ↑-expressions E denoting a formal DNA molecule
X, the value T↓(X) played an important role. For example, it occurs in the lower
bound for |E| from Corollary 4.19(1), a lower bound that is achieved by minimal and
operator-minimal ↑-expressions. Likewise, the value T↑(X) appeared to be important
in our analysis of the lengths of ↓-expressions denoting X.

We will see that to calculate the number of operator-minimal ↑-expressions (or ↓-
expressions) denoting a nick free formal DNA molecule X, we again need the value
T↓(X) (or T↑(X), respectively). To have direct access to these values, we define a
function T¬:

Definition 4.91 Let E be a ↑-expression or a ↓-expression denoting a certain formal
DNA molecule X (which may contain nick letters).

T¬(E) =

{
T↓(X) if E is a ↑-expression,
T↑(X) if E is a ↓-expression.

The subscript ¬ is used in the notation T¬, because, intuitively, the function counts
components in X = S(E) that do not correspond to the outermost operator of E.

We also define mappings from operator-minimal ↑-expressions and ↓-expressions
onto sequences of brackets.

4.2: Minimal DNA expressions 125

Definition 4.92 Let E be an operator-minimal ↑-expression or an operator-minimal
↓-expression, denoting a certain nick free formal DNA molecule X.

If E is a ↑ expression, then let E1, . . . , Er for some r ≥ 0 be the ↓-arguments of E,
in the order of their occurrrence in E.

If E is a ↓ expression, then let E1, . . . , Er for some r ≥ 0 be the ↑-arguments of E,
in the order of their occurrrence in E.

Then

f1(E) = 〈f1(E1) . . . f1(Er)〉 ,

f2(E) = f1(E1) . . . f1(Er).

The definition of the function f1 is recursive: f1(E) is defined in terms of f1(Ej) for
specific arguments Ej of E. We will see soon that this recursion is well defined. Further,
f2(E) can simply be obtained from f1(E) by removing both its first symbol and its
last symbol.

Equation (4.20) contains a minimal (and thus operator-minimal) ↑-expression E for
the formal DNA molecule depicted in Figure 4.8, corresponding to the maximal upper
partitioning in Figure 4.7(a2). For this DNA expression E, we have r = 2 and

f1(E) = 〈〈〈〉〉 〈〉 〉 ,
f2(E) = 〈〈〉〉 〈〉 .

We can use Theorem 4.65(2) to construct the following operator-minimal ↓-expression
E ′ denoting the same formal DNA molecule. It corresponds to the maximal lower
partitioning in Figure 4.7(b):

E ′ = 〈↓〈↑ α1 〈l α2〉〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉α9

〈↑ 〈l α10〉α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉α17 〈l α18〉〉 〉 .

For this DNA expression E ′, r = 3 and

f1(E
′) = 〈〈〉 〈〉 〈〈〉〉 〉 ,

f2(E
′) = 〈〉 〈〉 〈〈〉〉 .

We now prove some properties of the functions f1 and f2.

Lemma 4.93

1. The functions f1 and f2 are well defined.

2. For each operator-minimal ↑-expression or ↓-expression E denoting a nick free
formal DNA molecule,

(a) f1(E) results from E by removing from E all letters except the brackets 〈
and 〉 corresponding to operators ↑ and ↓.

(b) f2(E) is a sequence of T¬(E) well-nested pairs of brackets.

Because f1(E) = 〈f2(E)〉, f1(E) is a sequence of 1 + T¬(E) well-nested pairs of brack-
ets. Indeed, by Corollary 4.81(2) and (3), each operator-minimal ↑-expression or ↓-
expression, and in particular one denoting a nick free formal DNA molecule, contains
1 + T¬(E) occurrences of the operators ↑ and ↓ together.
Proof: We simultaneously prove all claims, by induction on T¬(E), where E is an
arbitrary operator-minimal ↑-expression or ↓-expression denoting a certain nick free
formal DNA molecule X.

126 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

• If E is a ↑-expression and T¬(E) = T↓(X) = 0, then let E1, . . . , Er for some r ≥ 0
be the ↓-arguments of E, and let for j = 1, . . . , r, Xj = S(Ej). By Lemma 4.74(1),
for j = 1, . . . , r, T↓(Xj) = T↑(Xj) + 1 ≥ 1. Further, by Lemma 4.74(2), T↓(X1) +
· · · + T↓(Xr) = T↓(X) = 0. Then, however, r must be 0, and by definition,
f1(E) = 〈〉, which is obviously well defined.

By Corollary 4.70, each argument of (the ↑-expression) E is either an N -word
α or a l-expression 〈l α〉 for an N -word α. Indeed, when we remove from E
all letters except the brackets corresponding to operators ↑ and ↓, we remove
the outermost operator ↑ and all arguments of E, leaving 〈〉 = f1(E). In this
case, f2(E) = λ. Indeed, f2(E) is a sequence of T¬(E) = 0 well-nested pairs of
brackets.

The proof for the case that E is a ↓-expression and T¬(E) = T↑(X) = 0 is
analogous.

• Let p ≥ 0, and suppose that for each operator-minimal ↑-expression or ↓-expression
E denoting a nick free formal DNA molecule, for which T¬(E) ≤ p, the claims
are valid (induction hypothesis).

Now consider an operator-minimal ↑-expression E denoting a certain nick free
formal DNA molecule X, for which T¬(E) = T↓(X) = p + 1. Let E1, . . . , Er for
some r ≥ 0 1 be the ↓-arguments of E, in the order of their occurrence in E.

Consider Ej for an arbitrary j with 1 ≤ j ≤ r. We first observe that Ej is an
operator-minimal (even minimal) ↓-expression, because E is operator-minimal.
Hence, the functions f1 and f2 apply to Ej. Let Xj = S(Ej). By Lemma 4.74(1)
and (2),

T¬(Ej) = T↑(Xj) = T↓(Xj) − 1 ≤ T↓(X) − 1 = p.

Hence, by the induction hypothesis, f1(Ej) and f2(Ej) are well defined, f1(Ej)
results from Ej by removing from Ej all letters except the brackets corresponding
to operators ↑ and ↓, and f2(Ej) is a sequence of T¬(Ej) = T↑(Xj) well-nested
pairs of brackets.

Because j was arbitrary, also f1(E) = 〈f1(E1) . . . f1(Er)〉 and f2(E) = f1(E1) . . . f1(Er)
are well defined. This is Claim 1 for E.

Obviously, a bracket 〈 or 〉 occurring in an argument Ej of E corresponds to an
operator ↑ or ↓ in E if and only if it does so in Ej. Further, by Corollary 4.70, each
argument of E that is not a ↓-expression, is either an N -word α or a l-expression
〈l α〉 for an N -word α. Such an argument does not contain brackets correspond-
ing to an operator ↑ or ↓. Hence, when we remove from (the ↑-expression) E all
letters except the brackets corresponding to operators ↑ and ↓, we remove the
outermost operator ↑ of E, the arguments of E which are not a ↓-expression,
and all letters in the ↓-expressions E1, . . . , Er which are not a bracket 〈 or 〉
corresponding to an operator ↑ or ↓. This leaves 〈f1(E1) . . . f1(Er)〉 = f1(E).
Consequently, Claim 2a is also valid for E.

By Lemma 4.89,

f2(E) = 〈f2(E1)〉 . . . 〈f2(Er)〉

1In fact, since T↓(X) ≥ 1, it follows from Lemma 4.74(2) that r ≥ 1. This is, however, not
important for the proof.

4.2: Minimal DNA expressions 127

is again a sequence of well-nested pairs of brackets. The only thing left to be
done is to calculate the number of pairs of brackets in f2(E):

npb(f2(E)) = (1 + npb(f2(E1))) + · · · + (1 + npb(f2(Er)))

= (1 + T↑(X1)) + · · · + (1 + T↑(Xr))

= T↓(X1) + · · · + T↓(Xr)

= T↓(X).

Here, we again used Lemma 4.74(1) and (2) to establish the last two equations.
Thus, we have also proved Claim 2b for E.

The proof for the case that E is an operator-minimal ↓-expression denoting a
certain nick free formal DNA molecule X, for which T¬(E) = T↑(X) = p + 1, is
analogous.

We now concentrate on the function f2. We extend Lemma 4.93(2b) to the follow-
ing, important result:

Theorem 4.94 Let X be a nick free formal DNA molecule.

1. The function f2 is a bijection from the operator-minimal ↑-expressions denoting
X onto the sequences of T↓(X) well-nested pairs of brackets.

2. The function f2 is a bijection from the operator-minimal ↓-expressions denoting
X onto the sequences of T↑(X) well-nested pairs of brackets.

Proof: By Lemma 4.93(2b), the function f2 is indeed a mapping from the operator-
minimal ↑-expressions (or ↓-expressions) denoting X into the set of sequences of T↓(X)
(T↑(X), respectively) well-nested pairs of brackets.

Now, we will prove that f2 is surjective and injective, both for the operator-minimal
↑-expressions and for the operator-minimal ↓-expressions. Hence, we will prove that

1′ for each sequence Z of p = T↓(X) well-nested pairs of brackets, there is exactly
one operator-minimal ↑-expression E denoting X such that f2(E) = Z, and

2′ for each sequence Z of p = T↑(X) well-nested pairs of brackets, there is exactly
one operator-minimal ↓-expression E denoting X such that f2(E) = Z.

We do this by induction on p.

• If T↓(X) = 0, then the only sequence of p = T↓(X) well-nested pairs of brackets
is Z = λ.

By Lemma 4.10(2) and Lemma 4.50, X does not contain any lower component
and there is exactly one maximal upper partitioning of X, namely M = Y0 =
X. Then by Theorem 4.65(1) and Theorem 4.78, there is exactly one operator-
minimal ↑-expression E denoting X, each of whose arguments is an N -word
αi or a l-expression 〈l αi〉 for an N -word αi. For this ↑-expression E, indeed
f2(E) = Z = λ and we have proved Claim 1′ for p = 0.

The proof of Claim 2′ for p = 0 is analogous.

128 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

• Let p ≥ 0, and suppose that Claim 1′ is valid for each nick free formal DNA
molecule X with T↓(X) ≤ p, and that Claim 2′ is valid for each nick free formal
DNA molecule X with T↑(X) ≤ p (induction hypothesis).

Now consider a nick free formal DNA molecule X with T↓(X) = p + 1. Let Z be
an arbitrary sequence of p + 1 well-nested pairs of brackets.

By Lemma 4.89, there is a (unique) partitioning of Z as 〈Z1〉 . . . 〈Zr〉 for some
r ≥ 0 2 such that for j = 1, . . . , r, Zj is a sequence of well-nested pairs of brackets.

For j = 1, . . . , r, let tj = npb(〈Zj〉). Obviously, for j = 1, . . . , r, tj ≥ 1. Also,
t1 + · · ·+ tr = npb(Z) = p+1 = T↓(X). Hence, (t1, . . . , tr) is an ordered partition
of T↓(X).

By Lemma 4.86(1), there is exactly one maximal upper partitioning M = Y0X1Y1·
X2Y2 . . . Xr′Yr′ of X such that

fT↓
(M) = (T↓(X1), . . . , T↓(Xr′)) = (t1, . . . , tr).

Obviously, r′ = r here.

Consider an arbitrary j with 1 ≤ j ≤ r. We have npb(Zj) = tj −1 ≤ T↓(X)−1 =
p. By Corollary 4.52(2) T↑(Xj) = T↓(Xj) − 1 = tj − 1. Then by the induction
hypothesis there is exactly one operator-minimal ↓-expression Ej denoting Xj

such that f2(Ej) = Zj. By Corollary 4.59(1), Ej is even minimal.

We use E1, . . . , Er to construct an operator-minimal ↑-expression E denoting X
based on the maximal upper partitioning M, as described in Theorem 4.65(1).
According to the construction, the only ↓-arguments of E are E1, . . . , Er. Then
by definition,

f2(E) = f1(E1) . . . f1(Er) = 〈f2(E1)〉 . . . 〈f2(Er)〉 = Z.

We have thus created an operator-minimal ↑-expression E denoting X for which
f2(E) = Z. Because Z was an arbitrary sequence of p + 1 well-nested pairs
of brackets, the function f2 is surjective for operator-minimal ↑-expressions E
denoting X.

In order to complete the proof of Claim 1′ for T↓(X) = p + 1, we must show
that f2 is also injective for such ↑-expressions. For this, let E1 and E2 be two
operator-minimal ↑-expressions denoting X for which f2(E1) = f2(E2) = Z for a
certain sequence Z of p + 1 = T↓(X) well-nested pairs of brackets.

We first analyse what it means that f2(E1) = f2(E2) = Z. Let E1,1, . . . , E1,r1
for

some r1 ≥ 0 be the ↓-arguments of E1, in the order of their occurrence in E1,
and let E2,1, . . . , E2,r2

for some r2 ≥ 0 be the ↓-arguments of E2, in the order of
their occurrence in E2. By definition,

Z = f2(E1) = f1(E1,1) . . . f1(E1,r1
) = 〈f2(E1,1)〉 . . . 〈f2(E1,r1

)〉 (4.60)

= f2(E2) = f1(E2,1) . . . f1(E2,r2
) = 〈f2(E2,1)〉 . . . 〈f2(E2,r2

)〉 . (4.61)

By Lemma 4.89, there is a unique partitioning of Z as 〈Z1〉 . . . 〈Zr〉 for some
r ≥ 0, such that for j = 1, . . . , r, Zj is a sequence of well-nested pairs of brackets.

2In fact, since p + 1 ≥ 1 and thus Z 6= λ, we have r ≥ 1. This is, however, not important for the
proof.

4.2: Minimal DNA expressions 129

Because both (4.60) and (4.61) provide such a partitioning, we must have r1 =
r2 = r and for j = 1, . . . , r, f2(E1,j) = f2(E2,j) = Zj. Then also, for j = 1, . . . , r,
f1(E1,j) = 〈f2(E1,j)〉 = 〈f2(E2,j)〉 = f1(E2,j).

We proceed with the implications of E1 and E2 being operator-minimal ↑-expressions
denoting X. By Theorem 4.78, E1 and E2 are based on maximal upper parti-
tionings of X, as described in Theorem 4.65(1). For i = 1, 2, let Mi be the
maximal upper partitioning corresponding to Ei. We concentrate on M1 first.
Let M1 = Y0X1Y1X2Y2 . . . Xr′Yr′ for some r′ ≥ 0. By the construction from
Theorem 4.65(1) and Corollary 4.59(1), the ↓-arguments E1,1, . . . , E1,r of E1 are
minimal DNA expressions denoting X1, X2, . . . , Xr′ , respectively. This implies in
particular that r′ = r.

By Corollary 4.52(2) and Lemma 4.93(2b), for j = 1, . . . , r,

T↓(Xj) = T↑(Xj) + 1 = npb(f2(E1,j)) + 1 = npb(f1(E1,j)).

Hence,

fT↓
(M1) = (T↓(X1), . . . , T↓(Xr)) = (npb(f1(E1,1)), . . . , npb(f1(E1,r))).(4.62)

Completely analogously, we obtain

fT↓
(M2) = (npb(f1(E2,1)), . . . , npb(f1(E2,r))). (4.63)

As we observed before, for j = 1, . . . , r, f1(E1,j) = f1(E2,j). This implies in partic-
ular that the right-hand sides of (4.62) and (4.63) are equal. By Lemma 4.86(1),
the function fT↓

is a bijection from the maximal upper partitionings of X onto
the ordered partitions of T↓(X). Consequently, M1 and M2 are equal, say
M1 = M2 = M.

Consider an arbitrary j with 1 ≤ j ≤ r. We have observed that E1,j is a
minimal ↓-expression denoting Xj, and so is E2,j. In particular, E1,j and E2,j are
operator-minimal and f2(E1,j) = f2(E2,j) = Zj. By Corollary 4.54(1), T↑(Xj) =
T↓(Xj) − 1 ≤ T↓(X) − 1 = p. This implies that we can apply the induction
hypothesis to Xj, i.e., there exists exactly one operator-minimal ↓-expression Ej

denoting Xj such that f2(Ej) = Zj. In other words, E1,j = E2,j = Ej.

We have thus proved that E1 and E2 are based on the same maximal up-
per partitioning M = Y0X1Y1X2Y2 . . . XrYr and that, in the construction from
Theorem 4.65(1), they use the same minimal ↓-expressions E1, . . . , Er denoting
X1, . . . , Xr, respectively. Because, in this construction, the arguments εi corre-
sponding to the substrings Y0, Y1, . . . , Yr (N -words αi and l-expressions 〈l αi〉
for N -words αi) are fixed, E1 and E2 must be equal. We conclude that f2 is
also injective, and thus bijective, for operator-minimal ↑-expressions denoting X.
Hence, Claim 1′ is valid for formal DNA molecules X with T↓(X) = p + 1.

The proof of Claim 2′ for formal DNA molecules X with T↑(X) = p + 1 is
analogous.

When we combine Theorem 4.94 with Lemma 4.90, we obtain

130 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Corollary 4.95 Let X be a nick free formal DNA molecule.

1. The number of operator-minimal ↑-expressions denoting X is 1
p+1

(
2p

p

)
, with

p = T↓(X).

2. The number of operator-minimal ↓-expressions denoting X is 1
p+1

(
2p

p

)
, with

p = T↑(X).

In Lemma 4.83, we could not specify values for all numbers of (operator-)minimal DNA
expressions denoting certain types of expressible formal DNA molecules. We now can:

Corollary 4.96 Let X be an expressible formal DNA molecule.

1. If X is double-complete, then

nmin↑(X) = 0,

nopermin↑(X) = 1,

nmin↓(X) = 0,

nopermin↓(X) = 1,

nminl(X) = noperminl(X) = 1 and

nmin(X) = 1.

2. If X is nick free, contains at least one single-stranded component and T↑(X) =
T↓(X) = p for some p ≥ 1, then

nmin↑(X) = nopermin↑(X) =
1

p + 1

(
2p

p

)
,

nmin↓(X) = nopermin↓(X) =
1

p + 1

(
2p

p

)
,

nminl(X) = noperminl(X) = 0 and

nmin(X) =
2

p + 1

(
2p

p

)
.

3. If X is nick free, T↑(X) = p1 and T↓(X) = p2 for some p1 and p2 with p1 > p2 ≥ 0,
then

nmin↑(X) = nopermin↑(X) =
1

p2 + 1

(
2p2

p2

)
,

nmin↓(X) = 0,

nopermin↓(X) =
1

p1 + 1

(
2p1

p1

)
,

nminl(X) = noperminl(X) = 0 and

nmin(X) =
1

p2 + 1

(
2p2

p2

)
.

4.2: Minimal DNA expressions 131

4. If X is nick free, T↑(X) = p1 and T↓(X) = p2 for some p1 and p2 with p2 > p1 ≥ 0,
then

nmin↑(X) = 0,

nopermin↑(X) =
1

p2 + 1

(
2p2

p2

)
,

nmin↓(X) = nopermin↓(X) =
1

p1 + 1

(
2p1

p1

)
,

nminl(X) = noperminl(X) = 0 and

nmin(X) =
1

p1 + 1

(
2p1

p1

)
.

5. If X contains at least one lower nick letter, then let Z1△
Z2△

. . .
△
Zm for some

m ≥ 2 be the nick free decomposition of X, and let for h = 1, . . . ,m, ph = T↓(Zh).

nmin↑(X) = nopermin↑(X) =
1

p1 + 1

(
2p1

p1

)
× · · · ×

1

pm + 1

(
2pm

pm

)

nmin↓(X) = nopermin↓(X) = 0,

nminl(X) = 0 and

nmin(X) =
1

p1 + 1

(
2p1

p1

)
× · · · ×

1

pm + 1

(
2pm

pm

)
.

(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|.

(b) If X contains at least one single-stranded component, then

noperminl(X) = 0.

6. If X contains at least one upper nick letter, then let Z1
▽Z2

▽ . . . ▽Zm for some
m ≥ 2 be the nick free decomposition of X, and let for h = 1, . . . ,m, ph = T↑(Zh).

nmin↑(X) = nopermin↑(X) = 0,

nmin↓(X) = nopermin↓(X) =
1

p1 + 1

(
2p1

p1

)
× · · · ×

1

pm + 1

(
2pm

pm

)
,

nminl(X) = 0 and

nmin(X) =
1

p1 + 1

(
2p1

p1

)
× · · · ×

1

pm + 1

(
2pm

pm

)
.

(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|.

(b) If X contains at least one single-stranded component, then

noperminl(X) = 0.

132 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

4.2.5 Recurrence relation for the number of operator-minimal
↑-expressions and ↓-expressions

In the previos subsection we determined the number of operator-minimal ↑-expressions
(or ↓-expressions) denoting a certain nick free formal DNA molecule by establishing a
bijection between such DNA expressions and sequences of well-nested pairs of brackets.
We could have chosen another way to achieve the same result, and we will briefly
describe this alternative now. We leave it to the reader to prove the correctness of the
alternative.

By Theorem 4.65(1) and Theorem 4.78, an operator-minimal ↑-expression denot-
ing a nick free formal DNA molecule X is based on a maximal upper partitioning
of X. By the construction from Theorem 4.65(1), different maximal upper partition-
ings yield different operator-minimal ↑-expressions. Let M = Y0X1Y1X2Y2 . . . XrYr

for some r ≥ 0 be a maximal upper partitioning of X. A corresponding operator-
minimal ↑-expression E has arguments εi for all components x′

i of a Yj, and arguments
E1, . . . , Er that are minimal DNA expressions denoting X1, . . . , Xr, respectively. By
Corollary 4.59(1), E1, . . . , Er are ↓-expressions. The arguments εi are fixed, but an
argument Ej may be any (operator-)minimal ↓-expression denoting Xj. Because the
choice of Ej1 is independent of the choice of Ej2 if 1 ≤ j1 6= j2 ≤ r, the number of
different operator-minimal ↑-expressions corresponding to M is

nopermin↓(X1) × · · · × nopermin↓(Xr).

Hence, the total number of operator-minimal ↑-expressions denoting X is
∑

max. upper part.
Y0X1Y1 . . . XrYr of X

nopermin↓(X1) × · · · × nopermin↓(Xr).

Analogously, an operator-minimal ↓-expression denoting a nick free formal DNA molecule
X ′ is based on a maximal lower partitioning of X ′, different maximal lower partition-
ings of X ′ yield different operator-minimal ↓-expressions, and the total number of
operator-minimal ↓-expressions denoting X ′ is

∑

max. lower part.
Y ′
0
X′

1
Y ′
1

. . . X′
rY ′

r of X′

nopermin↑(X
′
1) × · · · × nopermin↑(X

′
r).

As we have seen in Lemma 4.86, each maximal upper partitioning M = Y0X1Y1X2Y2 . . . XrYr

of X can be identified with the ordered partition (t1, . . . , tr) = fT↓
(M) = (T↓(X1), . . . , T↓(Xr))

of T↓(X), and each maximal lower partitioning M′ of X ′ can be identified with the
ordered partition fT↑

(M′) of T↑(X
′).

Now, we can prove by induction on T↓(X) and T↑(X
′) that the number of operator-

minimal ↑-expressions denoting X only depends on T↓(X), that the number of operator-
minimal ↓-expressions denoting X ′ only depends on T↑(X

′), that these numbers are
equal if T↓(X) = T↑(X

′) = p, say C(p), and that

C(p) =

1 if p = 0,∑

ordered partitions
(t1, . . . , tr) of p

C(t1 − 1) × · · · × C(tr − 1) if p ≥ 1.3 (4.64)

3This summation would also give the right value 1 for p = 0. For the sake of clearness, however,
we mention the case p = 0 separately.

4.2: Minimal DNA expressions 133

When we recall that, by Lemma 4.89, each sequence of p well-nested pairs of brack-
ets, has a unique partitioning as 〈Z1〉 〈Z2〉 . . . 〈Zr〉 for some r ≥ 0 and sequences of
well-nested pairs of brackets Z1, . . . , Zr, we find that recurrence relation (4.64) is also
applicable to the number of sequences of p well-nested pairs of brackets. Hence, indeed

for every p ≥ 0, C(p) is equal to this number, which is the Catalan number 1
p+1

(
2p

p

)
.

Recurrence relation (4.64) is also related to trees. Consider an arbitrary ordered,
directed tree with p + 1 nodes for some p ≥ 0. This tree consists of a root and
r ≥ 0 ordered subtrees. Each of the subtrees contains at least one node and together
they contain p nodes. Hence, the respective numbers of nodes in the subtrees form
an ordered partition (t1, . . . , tr) of p. Now it is not hard to see that the number of
different ordered, directed trees with p + 1 nodes satisfies recurrence relation (4.64).
Indeed, the number of these trees is another well-known combinatorial interpretation

of the Catalan numbers 1
p+1

(
2p

p

)
(see exercise 6.19(e) in [Stanley, 1999]).

4.2.6 Recognition of minimal DNA expressions

In the previous subsections, we have learned how to construct a minimal DNA expres-
sion denoting an arbitrary (expressible) formal DNA molecule. We have also observed
that we can calculate the length of a minimal DNA expression directly from the formal
DNA molecule. We do not have to explicitly construct a minimal DNA expression for
this.

Now suppose that we are given a DNA expression E and that we want to decide
whether or not it is minimal. Then we can use the following three-stage approach:
we first determine the semantics S(E) of E, we subsequently calculate the length of
a minimal DNA expression denoting S(E), and we finally count the length of E and
check if it is equal to this minimal length.

There is, however, also a direct method to check if a DNA expression is minimal.
This method is based on a characterization of minimal DNA expressions by six con-
ditions on (the arguments of) the operators occurring in them. Before we establish a
relation with minimality, we formally define the set of DNA expressions that satisfy
these conditions.

Definition 4.97 The set DMin is the set of DNA expressions E ∈ D such that

(DMin.1) each occurrence of the operator l in E has as its argument an N -word α
(and not a DNA expression), and

(DMin.2) no occurrence of the operator ↑ in E has a ↑-argument, and no occurrence
of the operator ↓ in E has a ↓-argument, and

(DMin.3) unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each occurrence of an
operator ↑ or ↓ in E has at least two arguments, and

(DMin.4) for each inner occurrence of an operator ↑ or ↓ in E, the arguments are
maximal N -word occurrences and DNA expressions, alternately, and

(DMin.5) for each inner occurrence of an operator ↑ or ↓ in E,

• the first argument is either an N -word α or a l-expression 〈l α〉 for an
N -word α,

134 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

• and the last argument is either an N -word α or a l-expression 〈l α〉 for an
N -word α,

and

(DMin.6) if the outermost operator of E is ↑ or ↓, then

• either it has two consecutive arguments which are DNA expressions,

• or its first argument is an N -word α or a l-expression 〈l α〉 for an N -word
α,

• or its last argument is an N -word α or a l-expression 〈l α〉 for an N -word
α.

Membership of DMin carries over to DNA subexpressions:

Lemma 4.98 A DNA expression E is in DMin if and only if each DNA subexpression
of E is in DMin.

Proof: Let E be an arbitrary DNA expression.
Clearly, if each DNA subexpression of E is in DMin, then so is E, because E is a

DNA subexpression of itself.
Now assume that E ∈ DMin and let Es be a proper DNA subexpression of E. We

will prove that Es satisfies all conditions in Definition 4.97, and thus is in DMin.
Each occurrence of an operator in Es is also an occurrence of that operator in E,

with the same arguments. In particular, each inner occurrence of an operator ↑ or
↓ in Es is also an inner occurrence of that operator in E, with the same arguments.
Hence, the Conditions (DMin.1), (DMin.2), (DMin.4) and (DMin.5) are valid for Es, simply
because they are valid for E.

Because we assume that Es is a proper DNA subexpression of E, E cannot be equal
to 〈↑ α〉 or 〈↓ α〉 for an N -word α. Such DNA expressions do not have proper DNA
subexpressions. Hence, by Condition (DMin.3) for E, each occurrence of an operator ↑
or ↓ in E has at least two arguments. Of course, the same holds for such an occurrence
in Es, so Condition (DMin.3) is also valid for Es. Note that indeed, Es cannot be equal
to 〈↑ α〉 or 〈↓ α〉 for an N -word α.

If the outermost operator of Es is ↑ or ↓, then it is an inner occurrence of that
operator in E. Hence, by Condition (DMin.5), both its first argument is an N -word α
or a l-expression 〈l α〉 for an N -word α, and its last argument is an N -word α or a
l-expression 〈l α〉 for an N -word α. This implies that also Condition (DMin.6) is valid
for Es. Note that by Condition (DMin.4) for E, the outermost operator of Es cannot
have two consecutive arguments which are DNA expressions.

We use the conditions in Definition 4.97 to derive other properties of elements of
DMin.

Lemma 4.99 Let E be a DNA expression in DMin.

1. (a) For each proper ↑-subexpression of E, the parent operator is ↓.

(b) For each proper ↓-subexpression of E, the parent operator is ↑.

2. Each proper ↑-subexpression or ↓-subexpression of E has at least two arguments.

4.2: Minimal DNA expressions 135

3. Each proper DNA subexpression of E has at least one N -word-argument α.

4. (a) Each proper ↑-subexpression or ↓-subexpression of E which is not the first
argument of its parent operator has as its (own) first argument a l-expression
〈l α〉 for an N -word α.

(b) Each proper ↑-subexpression or ↓-subexpression of E which is not the last
argument of its parent operator has as its (own) last argument a l-expression
〈l α〉 for an N -word α.

5. For each proper ↑-subexpression or ↓-subexpression of E, either the first argu-
ment, or the last argument is a l-expression 〈l α〉 for an N -word α.

6. Each proper ↑-subexpression or ↓-subexpression of E which is neither the first
argument, nor the last argument of E, has an odd number of arguments (at least
three), the first one and the last one of which are l-expressions 〈l α〉 for N -words
α.

Proof:

1. (a) Consider an arbitrary proper ↑-subexpression Es of E. By Condition (DMin.1),
its parent operator cannot be l, and by Condition (DMin.2), its parent op-
erator cannot be ↑. Hence, the parent operator of Es is ↓.

(b) The proof of this subclaim is analogous to that of the previous subclaim.

2. If E is equal to 〈↑ α〉 or 〈↓ α〉 for an N -word α, then the claim is trivially true,
because such DNA expressions do not have proper DNA subexpressions.

If E is not equal to 〈↑ α〉 or 〈↓ α〉 for an N -word α, then the claim follows from
Condition (DMin.3).

3. Let Es be a proper DNA subexpression of E. If Es is a l-expression, then the
claim follows from Condition (DMin.1). If Es is a ↑-expression or a ↓-expression,
then by Claim 2, Es has at least two arguments. By Condition (DMin.4), at least
one of these arguments is an N -word.

4. (a) Consider an arbitrary proper ↑-subexpression Es
2 of E which is not the first

argument of its parent operator. Let Es
1 be the preceding argument of the

parent operator.

By Claim 1a, the parent operator is ↓. By Condition (DMin.5), the first
argument of Es

2 is either an N -word α or a l-expression 〈l α〉 for an N -
word α. If it were an N -word α, then L(Es

2) would be in A+ and Es
1 and

Es
2 would not fit together by lower strands, which is required by ↓. Hence,

the first argument of Es
2 is a l-expression 〈l α〉 for an N -word α.

The proof for a proper ↓-subexpression of E which is not the first argument
of its parent operator is analogous.

(b) The proof of this subclaim is analogous to that of the previous subclaim.

5. If E is equal to 〈↑ α〉 or 〈↓ α〉 for an N -word α, then again the claim is trivially
true.

Now assume that E is not equal to 〈↑ α〉 or 〈↓ α〉 for an N -word α. Consider an
arbitrary proper ↑-subexpression Es of E.

136 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

By Claim 1a, the parent operator of Es is ↓, and by Condition (DMin.3), this
operator ↓ has at least two arguments. Hence, either Es is not the first argument,
or Es is not the last argument of its parent operator (or both). By Claim 4, in
the former case, the first argument of Es is 〈l α〉 for an N -word α, and in the
latter case, the last argument of Es is 〈l α〉 for an N -word α.

The proof for a proper ↓-subexpression Es of E is analogous.

6. Let Es
1 be a proper ↑-subexpression of E which is neither the first argument, nor

the last argument of E. By Claim 1a, Es
1 is the argument of a ↓-subexpression

Es
0 of E.

If Es
0 = E, then Es

1 is neither the first argument, nor the last argument of its
parent operator ↓. Hence by Claim 4, both the first argument and the last
argument of Es

1 are l-expressions 〈l α〉 for N -words α.

If Es
0 6= E, then the outermost operator of Es

0 is an inner occurrence of ↓. By
Condition (DMin.5), (the ↑-expression) Es

1 cannot be the first argument or the
last argument of Es

0. Again by Claim 4, both the first argument and the last
argument of Es

1 are l-expressions 〈l α〉 for N -words α.

By Claim 2, Es
1 has at least two arguments, which by Condition (DMin.4) are

maximal N -word occurrences and DNA expressions, alternately. Now the claim
follows immediately.

The proof for a ↓-subexpression Es
1 of E is analogous.

As the notation suggests, DMin is exactly the language of minimal DNA expressions:

Theorem 4.100 A DNA expression E is minimal if and only if E ∈ DMin

Proof: =⇒ Let E be a minimal DNA expression, and let X = S(E). If E is a l-
expression, then by Theorem 4.23, E = 〈l α〉 for an N -word α. It is easily verified
that such a DNA expression satisfies all conditions from Definition 4.97, and thus is in
DMin.

We will now prove that E also satisfies these conditions if it is a ↑-expression. The
proof for a ↓-expression E is analogous.

(DMin.1) Consider an arbitrary occurrence of the operator l in E and let Es be the
DNA subexpression of E governed by it. Because E is minimal, so is Es. This
implies that Es is of the form 〈l α〉 for an N -word α.

(DMin.2) Consider an arbitrary occurrence of the operator ↑ in E and let Es be the
DNA subexpression of E governed by it. Because E is minimal, so is Es. By
Lemma 4.69, Es does not have any ↑-argument.

Analogously, no occurrence of the operator ↓ in E has a ↓-argument.

(DMin.3) Assume that E is not equal to 〈↑ α〉 or 〈↓ α〉 for an N -word α.

Consider an arbitrary occurrence of the operator ↑ in E and let Es be the DNA
subexpression of E governed by it. Because E is minimal, so is Es.

Suppose that Es has only one argument ε1: Es = 〈↑ ε1〉. By Lemma 4.71,
S+(ε1) is nick free. Now if ε1 were a DNA expression E1, then by definition,

4.2: Minimal DNA expressions 137

S(Es) = S(〈↑ E1〉) = ν+(S(E1)) = S(E1). Because E1 is 3 letters shorter
than Es, Es would not be minimal. Consequently, ε1 must be an N -word α1:
Es = 〈↑ α1〉.

Because E 6= 〈↑ α〉 for any N -word α, Es 6= E, i.e., Es is a proper DNA subex-
pression of E. By Conditions (DMin.1) and (DMin.2), the parent operator of (the

↑-expression) Es is ↓. Because S(Es) =
(
α1

−

)
does not fit together by lower

strands with any other formal DNA molecule, Es must be the only argument of
its parent operator ↓. Hence, E has a DNA subexpression 〈↓ Es〉 = 〈↓ 〈↑ α1〉〉.
This DNA subexpression is, however, equivalent to the shorter DNA subexpres-
sion 〈↑ α1〉, which contradicts the minimality of E.

Hence, our hypothesis that Es has only one argument must be wrong.

The proof for an occurrence of the operator ↓ in E is analogous.

(DMin.4) Consider an arbitrary inner occurrence of the operator ↑ in E and let Es
0

be the DNA subexpression of E governed by it. Es
0 is the argument of a DNA

subexpression Es
1 of E. Both Es

0 and Es
1 are minimal. Again, because Es

0 is a
↑-expression, Conditions (DMin.1) and (DMin.2) imply that Es

1 is a ↓-expression.

By (the analogue for ↓-expressions of) Lemma 4.71, the argument Es
0 of Es

1 is
nick free. Then by Lemma 4.76(3), the arguments of Es

0 are maximal N -word
occurrences and DNA expressions, alternately.

The proof for an inner occurrence of the operator ↓ in E is analogous.

(DMin.5) Consider an arbitrary inner occurrence of the operator ↑ in E and let Es
0

be the DNA subexpression of E governed by it. Es
0 is the argument of a DNA

subexpression Es
1 of E. Both Es

0 and Es
1 are minimal. Again, Es

1 is a ↓-expression
and Es

0 is nick free.

Let Xs
0 = S(Es

0), and let x′
1 . . . x′

k for some k ≥ 1 be the decomposition of
Xs

0 . By (the analogue for ↓-expressions of) Lemma 4.74(1), Xs
0 contains at

least one single-stranded component and both the first single-stranded compo-
nent and the last single-stranded component of Xs

0 are upper components. Now
by Lemma 4.45, both the maximal upper prefix and the maximal upper suffix of
Xs

0 are not empty.

By Theorem 4.77 and the construction from Theorem 4.53(1), the first argument
of Es

0 corresponds to the first component of the maximal upper prefix of Xs
0 , and

it is either an N -word α or a l-expression 〈l α〉 for an N -word α. Analogously,
the last argument of Es

0 corresponds to the last component of the maximal upper
suffix of Xs

0 , and it is either an N -word α or a l-expression 〈l α〉 for an N -word
α.

The proof for an inner occurrence of the operator ↓ in E is analogous.

(DMin.6) Assume that the outermost operator of E is ↑ and that E does not have
two consecutive arguments that are DNA expressions. Then by the definition of
a maximal N -word occurrence, the arguments of (the outermost operator of) E
are maximal N -word occurrences and DNA expressions, alternately. This implies
that the outermost operator ↑ of E does not introduce nick letters into S(E).
Then by Corollary 4.72, X = S(E) is nick free.

138 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

The fact that E is a minimal ↑-expression restricts the possibilities for X. By
Theorem 4.23, X must contain at least one single-stranded component, and by
Lemma 4.58(2), T↑(X) ≥ T↓(X). Now by Lemma 4.12(1), either the first single-
stranded component or the last single-stranded component of X (or both) is an
upper component.

If the first single-stranded component of X is an upper component, then by
Lemma 4.45, the maximal upper prefix of X is not empty. Then just like we did
for Es in the proof of Condition (DMin.5), we can prove that the first argument of
E is either an N -word α or a l-expression 〈l α〉 for an N -word α. Analogously,
it the last single-stranded component of X is an upper component, then the last
argument of E is either an N -word α or a l-expression 〈l α〉 for an N -word α.

The proof for the case that the outermost operator of E is ↓ is analogous.

⇐= Let E be an arbitrary DNA expression in DMin. We prove that E is minimal, by
induction on the number p of operators occurring in E.

• If p = 1, then apparently the outermost operator of E is the only operator
occurring in E. E does not have any argument that is a DNA expression. Hence,
either E = 〈↑ α〉, or E = 〈↓ α〉 or E = 〈l α〉 for an N -word α. Indeed, these are

minimal DNA expressions, which denote
(
α

−

)
,

(
−
α

)
, or

(
α

c(α)

)
, respectively.

• Let p ≥ 1, and suppose that each DNA expression in DMin that contains at most
p operators is minimal (induction hypothesis).

Now consider a DNA expression E in DMin that contains p+1 operators. Because
E contains p + 1 ≥ 2 operators, Condition (DMin.1) implies that E is not a l-
expression.

Assume that E is a ↑-expression: E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and maximal
N -word occurrences and DNA expressions ε1, . . . , εn. In fact, since E contains
p+1 ≥ 2 operators, it follows from Condition (DMin.3) that n ≥ 2. Let X = S(E)
and for i = 1, . . . , n, let Xi = S+(εi). By definition,

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn),

where the yi’s are as in (2.15).

By Condition (DMin.2), E does not have ↑-arguments. Hence, its arguments
are maximal N -word occurrences, l-expressions and ↓-expressions. Consider an
arbitrary argument εi of E.

If εi is a maximal N -word occurrence α, then Xi =
(
α

−

)
. Because in this case

T↓(Xi) = nl(Xi) = 0,

|εi| = |α| = |ν(Xi)| = 3 · T↓(Xi) + 3 · nl(Xi) + |ν(Xi)|.

If εi is a l-expression, then by Condition (DMin.1), it is of the form 〈l α〉 for an

N -word α. In this case, Xi =
(

α

c(α)

)
, T↓(Xi) = 0 and nl(Xi) = 1. Hence,

|εi| = | 〈l α〉 | = 3 + |ν(Xi)| = 3 · T↓(Xi) + 3 · nl(Xi) + |ν(Xi)|.

4.2: Minimal DNA expressions 139

Finally, assume that εi is a ↓-expression Ei. Because Ei does not contain the
outermost operator ↑ of E, it contains at most p operators. By Lemma 4.98,
Ei ∈ DMin. Hence, by the induction hypothesis, Ei is a minimal DNA expression.
Now by (the analogue for ↓-expressions of) Lemma 4.71, the arguments of Ei are
nick free.

The outermost operator ↓ of Ei is an inner occurrence of ↓ in E. By Condi-
tion (DMin.4), its arguments are maximal N -word occurrences and DNA expres-
sions, alternately. This implies that the operator does not introduce nick letters.
Consequently, Xi = S(Ei) does not contain any nick letters, at all.

By Lemma 4.99(2), Ei has at least two arguments. By Condition (DMin.5), the
first one is either an N -word α1 or a l-expression 〈l α1〉 for an N -word α1. In
the latter case, the second argument is an N -word α2. In both cases, Xi contains
at least one single-stranded component and the first single-stranded component
is a lower component. Analogously, the last single-stranded component of Xi is
a lower component.

Then by Lemma 4.12(4), T↓(Xi) = T↑(Xi)+1. Consequently, by Theorem 4.53(2),

|εi| = |Ei| = 3 + 3 · T↑(Xi) + 3 · nl(Xi) + |ν(Xi)|

= 3 · T↓(Xi) + 3 · nl(Xi) + |ν(Xi)|.

We are now ready to calculate the length of E:

|E| = 3 +
n∑

i=1

|εi|

= 3 + 3 ·
n∑

i=1

T↓(Xi) + 3 ·
n∑

i=1

nl(Xi) +
n∑

i=1

|ν(Xi)|.

For i = 1, . . . , n, Xi is nick free and in particular, #▽(Xi) = 0. But then
Equations (4.2), (4.3) and (4.4) from Lemma 4.16(1) imply that

|E| = 3 + 3 · T↓(X) + 3 · nl(X) + |ν(X)|. (4.65)

If X contains nick letters, then by definition, these must be lower nick letters.
By Theorem 4.67, |E| equals the length of a minimal DNA expression denoting
X. Hence, E is minimal itself.

Now assume that X is nick free. By Theorem 4.65(1), the length |E| of (the ↑-
expression) E is equal to the length of an operator-minimal ↑-expression denoting
X. Hence, E is operator-minimal itself. The only thing left to be proved is that
E is also minimal in this case.

We recall that n ≥ 2. By Lemma 4.76(3), the arguments of E are maxi-
mal N -word occurrences and DNA expressions, alternately. Further, by Con-
dition (DMin.6), either the first argument, or the last argument of E (or both
arguments) is an N -word α1 or a l-expression 〈l α1〉 for an N -word α1. With-
out loss of generality, assume that the first argument of E is an N -word α1 or
a l-expression 〈l α1〉 for an N -word α1. In the latter case, the second argu-
ment must be an N -word α2. In both cases, X = S(E) contains at least one
single-stranded component and the first single-stranded component is an upper

140 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

Cond. E X = S(E) E∗

(DMin.1) 〈l 〈l α1〉〉
(

α1

c(α1)

)
〈l α1〉

(DMin.1) 〈↑ α1 〈l 〈↑ α2 〈l α3〉〉〉〉
(
α1

−

)(
α2α3

c(α2α3)

)
〈↑ α1 〈l α2α3〉〉

(DMin.2) 〈↑ α1 〈↑ 〈l α2〉α3〉〉
(
α1

−

)(
α2

c(α2)

)(
α3

−

)
〈↑ α1 〈l α2〉α3〉

(DMin.3) 〈↑ 〈l α1〉〉
(

α1

c(α1)

)
〈l α1〉

(DMin.3) 〈↓ α1 〈↑ 〈l α2〉〉〉
(
−
α1

)(
α2

c(α2)

)
〈↓ α1 〈l α2〉〉

(DMin.4) 〈↑ α1 〈↓ 〈l α2〉 〈l α3〉〉〉
(
α1

−

)(
α2α3

c(α2α3)

)
〈↑ α1 〈l α2α3〉〉

(DMin.5) 〈↑ α1 〈↓ 〈↑ α2 〈l α3〉〉α4〉〉
(
α1α2

−

)(
α3

c(α3)

)(
−
α4

)
〈↑ α1α2 〈↓ 〈l α3〉α4〉〉

(DMin.5) 〈↑ 〈↓ α1 〈↑ 〈l α2〉α3〉〉α4〉
(
−
α1

)(
α2

c(α2)

)(
α3α4

−

)
〈↑ 〈↓ α1 〈l α2〉〉α3α4〉

(DMin.6) 〈↑ 〈↓ α1 〈l α2〉〉α3 〈↓ 〈l α4〉α5〉〉
(
−
α1

)(
α2

c(α2)

)(
α3

−

)(
α4

c(α4)

)(
−
α5

)
〈↓ α1 〈↑ 〈l α2〉α3 〈l α4〉〉α5〉

Table 4.3: Examples of DNA expressions that satisfy all conditions from Definition 4.97
except one. The first column mentions the condition that is not satisfied, the second
column contains a corresponding DNA expression E, the third column gives the formal
DNA molecule X denoted by E, and the fourth column contains a minimal DNA
expression E∗ denoting X. As usual, the αi’s occurring represent (arbitrary) N -words.

component. Then it follows from Lemma 4.12(1) and (3) that T↑(X) ≥ T↓(X),
and from Theorem 4.53(1) that there exists at least one minimal ↑-expression
denoting X. Consequently, the operator-minimal ↑-expression E is also minimal.

The proof for the case that E is a ↓-expression is analogous.

Definition 4.97 and Theorem 4.100 provide us with a characterization of the minimal
DNA expressions by six conditions, Conditions (DMin.1) – (DMin.6). Of course, one may
replace one or more of these conditions by other, new conditions, and yet retain a valid
characterization. However, none of the six conditions can simply be omitted. For
each of the conditions, there exist DNA expressions that do not satisfy that particular
condition and thus are not minimal, although they do satisfy the other five conditions.
Examples of this are given in Table 4.3.

It is instructive to directly relate each of the six conditions occurring in the def-
inition of DMin to the concept of minimality. We do this in an intuitive way, using
the qualification ‘not efficient’ for a certain type of DNA expression to indicate that it
cannot be minimal. Because the arguments for occurrences of ↓ in a DNA expression
are analogous to those for occurrences of ↑, we will not consider occurrences of the
operator ↓ separately.

(DMin.1) The operator l complements all upper A-letters and lower A-letters occur-
ring in its argument. Any argument that is a DNA expression denotes a formal
DNA molecule, which either contains upper A-letters or lower A-letters, or does
not contain any of these types of A-letters. It is not efficient to first generate
upper A-letters or lower A-letters by means of the operators ↑ and ↓, and then
to complement them by means of l. It is not efficient either to apply l to an ar-
gument having only double A-letters and nick letters, because then the operator

4.2: Minimal DNA expressions 141

would not have any effect.

(DMin.2) It is not efficient to apply the operator ↑ to a ↑-argument, because all effects
of the inner occurrence of ↑ (creating upper A-words, removing upper nick letters
and joining the arguments) can also be achieved by the outermost occurrence of
↑.

(DMin.3) When the operator ↑ is applied to a single argument that is a DNA expres-
sion, the only effect is that upper nick letters occurring in the argument (if any)
are removed. It is certainly not efficient to apply ↑ to a nick free DNA expression,
because then the operator would have no effect at all. It is not efficient either to
first generate upper nick letters (which separate double components) and then to
remove them (and to join the double components).

When the operator ↑ is applied to a single argument that is an N -word α, it

generates an upper A-word
(
α

−

)
. For an inner occurrence of ↑ in a minimal DNA

expression, the parent operator of the corresponding DNA subexpression 〈↑ α〉
is ↓. Because the arguments of ↓ must fit together by lower strands, 〈↑ α〉 must
be the only argument of ↓. In that case, the operator ↓ does not have any effect,
which is not efficient.

(DMin.4) As we mentioned before, it is not efficient to first generate lower nick letters
by the application of ↑, and then to remove them by the application of ↓. Consider
an inner occurrence ↑1 of the operator ↑ in a minimal DNA expression, and let
Es be the DNA subexpression governed by it.

Because Es is the argument of an occurrence of ↓, S(Es) must not contain lower
nick letters (and thus must be nick free altogether). In particular, ↑1 must not
introduce lower nick letters. We can achieve this by requiring that the arguments
of this occurrence of ↑ are maximal N -word occurrences and DNA expressions,
alternately.

(DMin.5) Let ↑1 be an inner occurrence of the operator ↑ in a minimal DNA expression,
and let Es

1 = 〈↑1 ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn be the DNA subexpression governed by it. Es

1 is the argument of a
↓-expression Es

0.

Suppose that the last argument εn of ↑1 is a ↓-argument, hence that Es
0 has the

following shape:

Es
0 = 〈↓0 . . . 〈↑1 ε1 . . . εn−1 〈↓2 εn,1 . . . εn,mn

〉〉 . . .〉

for some mn ≥ 1 and N -words and DNA expressions εn,1, . . . , εn,mn
. Then the

effects of ↓2 can as well be achieved by the operator ↓0, by taking the last mn − 1
arguments away from ↓2 and making them direct arguments of ↓0. Indeed, by
Theorem 3.12 (and Lemma 3.7 and Lemma 3.6),

Es
0 = 〈↓0 . . . 〈↑1 ε1 . . . εn−1 〈↓2 εn,1 . . . εn,mn

〉〉 . . .〉

=
▽ 〈↓0 . . . 〈↓2 〈↑1 ε1 . . . εn−1εn,1〉 εn,2 . . . εn,mn

〉 . . .〉

≡ 〈↓0 . . . 〈↑1 ε1 . . . εn−1εn,1〉 εn,2 . . . εn,mn
. . .〉 (4.66)

142 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

We may assume that in Es
0, the operator ↑1 does not remove upper nick letters

from its arguments. In particular, its last argument εn = 〈↓2 εn,1 . . . εn,mn
〉 is nick

free. This implies that Es
0 is (strictly) equivalent to the result in (4.66).

Consequently, the operator ↓2 in Es
0 is superfluous. We conclude that it is not

efficient if the last argument of ↑1 is a ↓-argument. Analogously, it is not efficient
if the first argument of ↑1 is a ↓-argument.

(DMin.6) Let E = 〈↑0 ε1 . . . εn〉 for some n ≥ 1 and maximal N -word occurrences and
DNA expressions ε1, . . . , εn be a minimal ↑-expression and assume that E does
not have two consecutive arguments that are DNA expressions. Then ε1, . . . , εn

are maximal N -word occurrences and DNA expressions, alternately. Hence, the
outermost operator ↑0 of E does not introduce nick letters.

We may assume that the DNA expressions among the arguments of E are ↓-
expressions and l-expressions 〈l α〉 for an N -word α. By definition, the semantics
of such arguments do not contain lower nick letters. Hence (the ↑-expression) E
is nick free altogether.

Suppose that both the first argument and the last argument of E are ↓-expressions:

ε1 = 〈↓1 ε1,1 . . . ε1,m1
〉 , and

εn = 〈↓n εn,1 . . . εn,mn
〉

for m1,mn ≥ 1 and N -words and DNA expressions ε1,1, . . . , ε1,m1
, εn,1, . . . , εn,mn

.
We may assume that n ≥ 2. Because the arguments of ↑0 must fit together by
upper strands, the arguments ε1,m1

and εn,1 are DNA expressions (and in fact,
we may assume that they are l-expressions 〈l α〉 for an N -word α).

Now by a twofold application of Theorem 3.12 (combined with Lemma 3.7 and
Lemma 3.6), we find

E = 〈↑0 〈↓1 ε1,1 . . . ε1,m1
〉 ε2 . . . εn−1 〈↓n εn,1 . . . εn,mn

〉〉

=
▽ 〈↓1 ε1,1 . . . ε1,m1−1 〈↑0 ε1,m1

ε2 . . . εn−1 〈↓n εn,1 . . . εn,mn
〉〉〉

=
▽ 〈↓1 ε1,1 . . . ε1,m1−1 〈↓n 〈↑0 ε1,m1

ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mn
〉〉

≡ 〈↓ ε1,1 . . . ε1,m1−1 〈↑1 ε1,m1
ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mn

〉 (4.67)

We may assume that in E, the operator ↑0 does not remove upper nick letters.
In particular, its arguments ε1 = 〈↓1 ε1,1 . . . ε1,m1

〉 and εn = 〈↓n εn,1 . . . εn,mn
〉 are

nick free. This implies that also the resulting DNA expression E ′ in (4.67) is nick
free. Hence, it is (strictly) equivalent to E.

In E ′, one occurrence of the operator ↓ has the same effect as the two occurrences
↓1 and ↓n in E. We conclude that it is not efficient if both the first argument
and the last argument of E are ↓-expressions.

4.2.7 Trees of minimal DNA expressions

As we observed in § 2.11, each DNA expression has a unique representation as an
ordered, directed, node-labelled tree. In particular, such a unique tree-representation
exists for every minimal DNA expression. The resulting trees are also called minimal.

4.2: Minimal DNA expressions 143

In § 4.2.6, we have proved that minimal DNA expressions can be characterized by
six conditions on the operators occurring in them. These conditions can be directly
translated into conditions characterizing minimal trees. Also other results on minimal
DNA expressions can be translated into tree-terminology. For several results, we will
now give the tree versions.

Let t be the tree of a DNA expression E.

Corollary 4.21 t is minimal if and only if the tree of every DNA expression E ′ with
E ′ ≡ E contains at least as many internal nodes as t.

Lemma 4.22 and Lemma 4.98 t is minimal if and only if each subtree of t rooted
in an internal node of t is minimal.

Theorem 4.100 (and Definition 4.97) t is minimal if and only if

(DMin.1) each node labelled by l in t has a child labelled by an N -word α, and

(DMin.2) no node labelled by ↑ in t has a child labelled by ↑ and no node labelled
by ↓ in t has a child labelled by ↓, and

(DMin.3) unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each node labelled
by either ↑ or ↓ in t has at least two children, and

(DMin.4) for each non-root labelled by either ↑ or ↓ in t, the children are labelled
by an N -word α or by an operator, alternately, and

(DMin.5) for each non-root labelled by either ↑ or ↓ in t, the first child is labelled
by either an N -word α or the operator l, and also the last child is labelled
by either an N -word α or the operator l, and

(DMin.6) if the root of t is labelled by either ↑ or ↓, then either it has two
consecutive children labelled by an operator, or its first child is labelled by
an N -word α or the operator l, or its last child is labelled by an N -word α
or the operator l.

Lemma 4.99 If t is minimal, then

1. (a) each non-root labelled by ↑ in t has as parent a node labelled by ↓;

(b) each non-root labelled by ↓ in t has as parent a node labelled by ↑;

2. each non-root labelled by either ↑ or ↓ in t has at least two children;

3. each internal node which is not the root of t has at least one child labelled
by an N -word α;

4. (a) each non-root labelled by either ↑ or ↓ in t which is not the the first
child of its parent has as its (own) first child a node labelled by l;

(b) each non-root labelled by either ↑ or ↓ in t which is not the the last
child of its parent has as its (own) last child a node labelled by l;

5. for each non-root labelled by either ↑ or ↓ in t, either the first child, or the
last child is labelled by l;

6. each non-root labelled by either ↑ or ↓ in t which is neither the first child of
the root, nor the last child of the root, has an odd number of children (at
least three), the first one and the last one of which are labelled by l.

144 TR 2004-03, LIACS, Leiden University, Ch. 4: The length of a DNA expression

♥

♥

♥

♥

♥

♥

¡
¡

¡¡

❅
❅

❅❅

✁
✁

✁

❆
❆
❆❆

¡
¡

¡¡

❅
❅

❅❅

✁
✁

✁✁

❆
❆
❆

↑

α1 ↓

l α3

α2

↓

↑ α3

α1 l

α2

(a)

♥

♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥ ♥

♥ ♥

✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥

✦✦✦✦✦✦✦✦✦✦

❆
❆
❆

❅
❅

❅❅

❍❍❍❍❍❍❍❍

PPPPPPPPPPPP
✟✟✟✟✟✟✟✟

✑
✑

✑
✑

✑✑

¡
¡

¡¡

✁
✁

✁✁

❆
❆
❆

◗
◗

◗
◗

◗◗

❍❍❍❍❍❍❍❍

✁
✁

✁

❆
❆
❆

✁
✁

✁

❆
❆
❆

↑

α1 ↓ α11 l α13 ↓ α17 l

l α3 l α5 ↑ α9 l α12 l α15 l α18

α2 α4 l α7 l α10 α14 α16

α6 α8

(b)

♥

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥

✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✦✦✦✦✦✦✦✦✦✦

✟✟✟✟✟✟✟✟

★
★

★
★★

✄
✄
✄

❈
❈
❈❈

❙
❙

❙❙

❝
❝

❝
❝❝

PPPPPPPPPPPP

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

✓
✓

✓✓

✄
✄
✄✄

❈
❈
❈

✓
✓

✓✓

✄
✄
✄✄

❈
❈
❈

✁
✁

✁

❆
❆
❆

✄
✄
✄

❈
❈
❈❈

❙
❙

❙❙

↑

α1 ↓ ↓ α8 ↓ l α13 l α15 l l ↓ α21 l

l α3 l l α6 l l α10 l α12 α14 α16 α17 l α19 l α22

α2 α4 α5 α7 α9 α11 α18 α20

(c)

Figure 4.10: Trees of four minimal DNA expressions: (a) the trees of the two equivalent
minimal DNA expressions from Equation (4.16), denoting the nick free formal DNA

molecule X =
(
α1

−

)(
α2

c(α2)

)(
−
α3

)
; (b) the tree of the minimal DNA expression from

Equation (4.20), denoting the nick free formal DNA molecule from (a.o.) Figure 4.4;
(c) the tree of the minimal DNA expression from Equation (4.36), denoting the formal
DNA molecule from Figure 4.9, which contains four lower nick letters.

4.2: Minimal DNA expressions 145

In Figure 4.10, we have drawn the trees of four minimal DNA expressions we have
considered or constructed in the course of § 4.2. One can verify that these trees exhibit
all properties we have just listed. In the last two trees, especially the last property,
corresponding to Lemma 4.99(6), comes out clearly.

Chapter 5

Conclusions and directions for
future research

We have introduced DNA expressions as a formal notation for DNA molecules that
may contain nicks and gaps. There do exist, however, (formal) DNA molecules with
nicks that cannot be represented. For each expressible formal DNA molecule, we have
described the minimal DNA expression(s) denoting it and we have determined the
number of such minimal DNA expressions. For almost all types of expressible formal
DNA molecules, the number of minimal DNA expressions can be expressed in terms
of the Catalan numbers. Finally, we have characterized minimal DNA expressions by
six properties which can easily be verified.

Because each expressible formal DNA molecule can be denoted by infinitely many
DNA expressions, one may ask for a normal form: a well-defined set of properties such
that for each expressible formal DNA molecule X there is a unique DNA expression
denoting X and satisfying those properties. And given a normal form, one may ask for
an algorithm that, for each DNA expression, determines the equivalent DNA expression
in normal form. We already have a normal form and a corresponding algorithm for
nick free formal DNA molecules. We also have some ideas about another normal form
and a corresponding algorithm, which applies to all expressible formal DNA molecules.
A nice feature of this new normal form is that each DNA expression satisfying it is
minimal.

One may also extend the set of operators that can be used to construct DNA
expressions. The result may be that each formal DNA molecule becomes expressible,
or that two formal DNA molecules with complementary sticky ends can anneal. It
would be desirable/interesting to find extensions such that the new DNA expressions
could be used to denote DNA molecules with a variety of other ‘imperfections’, such
as, e.g., hairpin loops and circular strands.

146

Appendix A

Recognition of DNA expressions
(an implementation)

// check if a string over the operators, opening and closing brackets,

// the letters A, C, G and T and words alpha is a DNA-expression.

//***

enum Symbol {Upa, Doa, Uda, Openbr, Closebr, A, C, G, T, alpha, NulSymbol};

//***

bool Operator (Symbol X)

// check if the symbol X is an operator

{

return ((X>=Upa) && (X<=Uda));

} // Operator

//***

bool WordElt (Symbol X)

// check if the symbol X is (an element of) a word alpha

{

return ((X>=A) && (X<=alpha));

} // WordElt

//***

bool CheckBrackets (String E)

// check if the brackets and the operators in E are positioned correctly

{ bool Check;

int i, // position in the string

Level; // Level of the string

Symbol LastSymbol;

147

148 TR 2004-03, LIACS, Leiden University, App. A: Recognition of DNA expr. . .

if (E[1]!=Openbr)

{ cout << "The string does not start with an opening bracket.\n";

// note that this covers the empty string, as well

Check = false;

}

else // E starts with an opening bracket,

// so in the first iteration of the following do-loop,

// the level is raised to 1

{ Check = true;

i=1;

LastSymbol=NulSymbol;

Level=0;

do

{ if ((LastSymbol==Openbr) && (!Operator(E[i]))

{ cout << "Opening bracket at position " << i-1

<< " is not followed by an operator.\n";

Check = false;

}

else // nothing wrong

{ switch (E[i])

{ case Openbr: Level ++;

break;

case Closebr: Level --;

break;

default: ;

} // switch

LastSymbol = E[i];

i++;

} // else: nothing wrong

} while (Check && (E[i]!=NulSymbol) && (Level!=0));

} // else: E starts with an opening bracket

if (Check)

if (Level!=0) // we must have E[i]==NulSymbol

{ cout << "The string ended at level " << Level << ".\n";

return false;

}

else // Level=0

{ if (E[i] != NulSymbol)

{ cout << "Level 0 was reached at position " << i-1

<< " before the end of the string.\n";

return false;

}

else // Check && E[i]==NulSymbol && Level=0

return true;

}

App. A: Recognition of DNA expressions (an implementation) 149

else // !Check

return false;

} // CheckBrackets

//***

bool CheckExpr (String E, int &i, NPType &L0, NPType &R0)

// check if the substring between E[i] (an opening bracket)

// and the corresponding closing bracket is a DNA-expression;

// assumptions:

// * E satisfies conditions related to the opening brackets

// and the closing brackets;

// * E[i] is an opening bracket

{ Symbol Oper;

int Operi, // position of the operator

n; // number of arguments of the operator

bool Check;

NPType L1, R1; // types of leftmost and rightmost nucleotide pair

// of an argument of the operator

i++; // go to next symbol (past the opening bracket)

Oper = E[i]; // by assumption, Oper is indeed an operator

Operi = i; // remember this position

i++; // go to next symbol (past the operator)

Check = true;

n=0;

while (Check && (E[i] != Closebr))

{ n++; // another argument

if ((Oper==Uda) && (n>1))

{ cout << "Operator Uda with more than one argument at position "

<< Operi << ".\n";

Check = false;

}

else // this argument is in principle allowed

{ if (WordElt(E[i])) // this argument is a word

{ do

i++;

while (WordElt(E[i]));

switch (Oper)

{ case Upa: L1 = Pp;

R1 = Pp;

break;

case Doa: L1 = Pm;

R1 = Pm;

150 TR 2004-03, LIACS, Leiden University, App. A: Recognition of DNA expr. . .

break;

case Uda: L1 = P;

R1 = P;

} // switch

}

else // this argument is a DNA-expression

Check = Expression (E, i, L1, R1);

if (Check) // nothing went wrong yet

if (Oper==Uda) // apparently, n==1

{ L0 = P;

R0 = P;

}

else // operator = Upa or Doa

if (n==1) // first argument

{ L0 = L1;

R0 = R1;

}

else // n>1

switch (Oper)

{ case Upa: if ((R0!=Pm) && (L1!=Pm)) // upper prefit

R0 = R1;

else // not an upper prefit

{ cout << n-1

<< "-th Argument is not an upper prefit for "

<< n

<< "-th argument of operator Upa at position "

<< Operi << ".\n";

Check = false;

}

break;

case Doa: if ((R0!=Pp) && (L1!=Pp)) // lower prefit

R0 = R1;

else // not a lower prefit

{ cout << n-1

<< "-th Argument is not a lower prefit for "

<< n

<< "-th argument of operator Doa at position "

<< Operi << ".\n";

Check = false;

}

} // switch

} // else: argument in principle allowed

} // while

if (Check) // E[i] is a closing bracket

if (n==0)

App. A: Recognition of DNA expressions (an implementation) 151

{ cout << "Operator with no arguments at position " << Operi << ".\n";

return false;

}

else // n>=1

{ i++; // go to next symbol (past the closing bracket)

return true;

}

else

return false;

} // CheckExpr

//***

bool Check (String E)

// check if the string E is a DNA-expression

{ int i;

NPType L1, R1; // types of leftmost and rightmost nucleotide pair

if (CheckBrackets (E))

{ i=1;

if (CheckExpr (E, i, L1, R1))

return true;

else

return false;

}

else

return false;

} // Check

//***

List of symbols

symbol introduced
on page

❁ 10
❁ 10
❁ 10
≡ 27
=
▽ 27

▽≡ 27
≡▽ 27
↑ 13
↓ 14
l 14
▽ 6
△ 6
#a(X) 4
#a,b(X) 4
α, αi 3
a, ai 3
A 6
A± 6
A+ 6
A− 6
A▽△

6
c(a) 5
Cp 123
D 12, 18
DMin 133
ε, εi 12
E,Ei 12
Exp+(ε) 17
Exp−(ε) 17
f1(E) 125
f2(E) 125
fT↑

(M) 116
fT↓

(M) 116
F 7

symbol introduced
on page

κ(X) 11
λ 3
L(X) 3
M 75
ν(X) 11
ν+(X) 11
ν−(X) 11
nl(X) 44
nimus(X) 74
nmin(X) 112
nmin↑(X) 111
nmin↓(X) 111
nminl(X) 111
nopermin↑(X) 112
nopermin↓(X) 112
noperminl(X) 112
npb(Z) 121
N 3
O 12
R(X) 3
xRy 26
ΣD 12
Σ∗ 3
Σ+ 3
S(E) 13
S+(ε) 15
S−(ε) 16
(t1, . . . , tr) 117
T↑(X) 44
T↓(X) 44
T¬(E) 124
WA(α) 8
|X| 3
(Xs)k 4

152

Index

term introduced

on page

↑-argument . 20

↑-compoment . 41

closing ∼ . 41

corresponding ∼ 42

opening ∼ . 41

corresponding ∼ 42

↑-expression . 16

↑-subexpression 19

↓-argument . 20

↓-component . 41

closing ∼ . 41

corresponding ∼ 43

opening ∼ . 41

corresponding ∼ 43

↓-expression . 16

↓-subexpression 19

l-argument . 20

l-expression . 16

l-subexpression 19

A-letter. .6

double ∼ . 6

lower ∼ . 6

upper ∼ . 6

alphabet . 3

ancestor of node 24

antisymmetric binary relation 26

apply operator . 13

argument

↑-∼ .20

↓-∼ .20

l-∼ .20
∼ of DNA expression 19
∼ of operator 13

N -word-∼ . 20

A-word . 6
∼s determined by α 8

double ∼ . 6

lower ∼ . 6

upper ∼ . 6

balls in urns . 120

base pair . 5

complete ∼ 5

binary relation . 26

antisymmetric ∼26

reflexive ∼ .26

symmetric ∼ 26

transitive ∼ 26

block . 62

brackets

sequence of well-nested

pairs of ∼ 120

Catalan numbers 123, 124, 133

child of node . 24

closing
∼ ↑-component 41

corresponding ∼ 42
∼ ↓-component 41

corresponding ∼ 43
∼ bracket of operator 12
∼ lower component 61
∼ upper component61

commutative composition

of functions 11

complement function 5

complete
∼ base pair . 5
∼ maximal

upper partitioning 75

component of formal

DNA molecule 9

↑-∼ .41

closing ∼ 41

opening ∼ 41

↓-∼ .41

closing ∼ 41

opening ∼ 41

double ∼ . 9

lower ∼ .9

closing ∼ 61

opening ∼ 61

single-stranded ∼ 9

upper ∼ . 9

closing ∼ 61

opening ∼ 61

composition of functions

153

154 TR 2004-03, LIACS, Leiden University, Index

commutative ∼ 11

concatenation
∼ of DNA expressions 24
∼ of formal DNA molecules . . . 10
∼ of strings . 3
∼ of words . 3

contain

substring ∼s other substring . . . 4

corresponding
∼ closing ↑-component 42
∼ closing ↓-component 43
∼ opening ↑-component 42
∼ opening ↓-component 43

counting function 41, 44

cover to the left/right 10

strictly ∼ . 10

decomposition of formal

DNA molecule 8

nick free ∼ . 89

depth first search walk 26

descendant of node24

determined

A-words ∼ by α 8

directed
∼ tree . 24

ordered ∼ 24

ordered, ∼,

node-labelled tree24

disjoint substrings4

DNA expression 13, 15

argument of ∼ 19

concatenation of ∼s 24
∼ is not efficient 140
∼ of tree .26

equivalent ∼s 27

length of ∼ . 39

level of ∼ . 20

minimal ∼ . 58

operator-minimal ∼91

semantics of ∼ 13, 15

tree of ∼ . 25

type of ∼ . 18

DNA molecule

formal ∼ .7

DNA subexpression 19

proper ∼ . 19

DNA submolecule

formal ∼ .7

double
∼ A-letter . 6
∼ A-word . 6
∼ complete formal

DNA molecule 60
∼ component of formal

DNA molecule 9

dual relation . 26

efficient

DNA expression is not ∼ 140

empty string . 3

endomorphism . 5

equivalence relation 26

equivalent DNA expressions 27
∼ modulo nicks 27
∼ post-modulo nicks 27
∼ pre-modulo nicks 27

strictly ∼ . 27

expressible formal

DNA molecule 29

expression

↑-∼ .16

↓-∼ .16

l-∼ .16

extension of relation 26

fit together . 10

formal
∼ DNA molecule 7

component of ∼ 9

concatenation of ∼s 10

decomposition of ∼ 8

double-complete ∼60

expressible ∼ 29

lower strand of ∼ 7

transition in ∼ 41

upper strand of ∼ 7
∼ DNA submolecule 7

govern . 19

homomorphism . 4

inner occurrence of operator 19

internal
∼ maximal upper sequence74
∼ node . 24

intersecting substrings 4

labelled

ordered, directed,

node-∼ tree24

language . 3

leaf in tree . 24

length

of DNA expression 39

lower bound on ∼ 40, 57

upper bound on ∼ 40

of string . 3

upper bound on ∼ of

minimal DNA expression . . . 86

Index 155

letter . 3

level
∼ of DNA expression 20

nesting ∼ . 20

lower
∼ A-letter . 6
∼ A-word . 6
∼ bound on length of

DNA expression40, 57

tight ∼ . 40
∼ component of formal

DNA molecule 9

closing ∼ 61

opening ∼ 61
∼ nick letter 6
∼ postfit .10
∼ prefit . 10
∼ semantics of argument 17
∼ strand . 7

maximal ∼

∼ partitioning 76
∼ prefix . 76
∼ sequence 76
∼ suffix . 76

separating ∼ sequence 66

maximal
∼ lower
∼ partitioning 76
∼ prefix . 76
∼ sequence 76
∼ suffix . 76

∼ N -word occurrence 19
∼ upper
∼ partitioning 75

complete ∼ 75
∼ prefix . 72
∼ sequence 61

internal ∼74
∼ suffix . 73

minimal
∼ DNA expression 58

operator-∼ 91

upper bound

on length of ∼ 86
∼ tree . 142

modulo

equivalent ∼ nicks 27

nesting level . 20

nick

equivalent modulo ∼s 27

equivalent post-modulo ∼s 27

equivalent pre-modulo ∼s 27

∼ free .7
∼ decomposition 89

∼ letter . 6

lower ∼ .6

upper ∼ . 6

N -letter . 3

node

ancestor of ∼ 24

child of ∼ . 24

descendant of ∼ 24

internal ∼ . 24

ordered, directed,
∼-labelled tree 24

parent of ∼ . 24

non-root . 24

notation

prefix ∼ . 17

simplified ∼ . 8

N -word. .3

concatenation of ∼s 3

maximal ∼ occurrence 19
∼-argument20

occurrence

inner ∼ of operator 19

maximal N -word ∼ 19
∼ of substring 3

preceding ∼ 3

opening
∼ ↑-component 41

corresponding ∼ 42
∼ ↓-component 41

corresponding ∼ 43
∼ bracket of operator 12
∼ lower component 61
∼ upper component61

operator . 12

apply ∼ . 13

argument of ∼ 13

closing bracket of ∼ 12

inner occurrence of ∼ 19

opening bracket of ∼ 12
∼-minimal DNA expression . . . 91

outermost ∼ 19

parent ∼ . 19

scope of ∼ . 12

ordered
∼, directed
∼ tree . 24
∼, node-labelled tree24

∼ partition 117

outermost operator 19

overlapping substrings 4

156 TR 2004-03, LIACS, Leiden University, Index

parent
∼ of node . 24
∼ operator .19

partial order . 26

partition

ordered ∼ . 117

partitioning

maximal lower ∼ 76

maximal upper ∼ 75

complete ∼ 75

postfit

lower ∼ .10
∼ by lower strands 10
∼ by upper strands 10

upper ∼ . 10

post-modulo

equivalent ∼ nicks 27

preceding occurrence of substring . . 3

prefit . 10

lower ∼ .10
∼ by lower strands 10
∼ by upper strands 10

upper ∼ . 10

prefix

maximal lower ∼ 76

maximal upper ∼ 72
∼ notation . 17
∼ of string . 3

pre-modulo

equivalent ∼ nicks 27

preorder walk . 26

proper
∼ DNA subexpression 19
∼ substring . 3

refinement . 26

reflexive binary relation 26

relation

binary ∼ . 26

antisymmetric ∼26

reflexive ∼26

symmetric ∼ 26

transitive ∼ 26

dual ∼ . 26

equivalence ∼26

root of tree . 24

rotation in tree 37

scope of operator 12

semantics

lower ∼ of argument 17
∼ of DNA expression 13, 15

upper ∼ of argument17

separating

∼ lower sequence 66
∼ upper sequence 76

sequence of well-nested

pairs of brackets 120

single-stranded component of

formal DNA molecule 9

strand

lower ∼ . 7

upper ∼ . 7

strictly
∼ cover to the left/right 10
∼ equivalent

DNA expressions 27

string . 3

empty ∼ . 3

length of ∼ . 3

subexpression

↑-∼ .19

↓-∼ .19

l-∼ .19

substring .3

disjoint ∼s . 4

intersecting ∼s 4

occurrence of ∼ 3

overlapping ∼s 4

proper ∼ . 3
∼ contains other ∼ 4

subtree rooted in node 24

subword

maximal ∼ . 19

suffix

maximal lower ∼ 76

maximal upper ∼ 73
∼ of string . 3

symbol .3

symmetric binary relation 26

tight lower bound 40

transition between operators 41

transitive binary relation 26

tree

directed ∼ . 24

ordered, ∼24

DNA expression of ∼ 26

leaf in ∼ .24

minimal ∼ .142

ordered, directed,

node-labelled ∼24

root of ∼ . 24

rotation in ∼ 37
∼ of DNA expression 25

type of DNA expression 18

upper

Index 157

maximal ∼
∼ partitioning 75

complete ∼ 75
∼ prefix . 72
∼ sequence 61

internal ∼74
∼ suffix . 73

separating ∼ sequence 76
∼ A-letter . 6
∼ A-word . 6
∼ bound on length of
∼ DNA expression 40
∼ minimal

DNA expression 86
∼ component of formal

DNA molecule 9
closing ∼ 61
opening ∼ 61

∼ nick letter 6
∼ postfit .10
∼ prefit . 10
∼ semantics of argument 17
∼ strand . 7

urns
balls in ∼ . 120

well-nested
sequence of ∼ pairs

of brackets 120

References

L.M. Adleman: Molecular computation of solutions to combinatorial problems, Sci-
ence 266 (1994), 1021-1024.

D. Boneh, C. Dunworth, R.J. Lipton: Breaking DES using a molecular computer,
DNA based computers – proceedings of a DIMACS workshop, April 4, 1995,
Princeton University (R.J. Lipton, E.B. Baum, eds.), American Mathematical
Society, Providence, RI (1996), 37-66.

J. Chen, J. Reif (eds.): DNA computing – 9th International workshop on DNA based
computers, DNA9, Madison, WI, USA, June 1-3, 2003 – Revised papers, Lecture
Notes in Computer Science 2943, Springer-Verlag, Berlin, 2004.

M. Daley, L. Kari, I. McQuillan: Families of languages defined by ciliate bio-operations,
Technical Report #2004-a, Theory & Formal Bioinformatics Group, University
of Saskatchewan (2003).

A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in
living cells – Gene assembly in ciliates , Springer-Verlag, Berlin (2004).

M. Hagiya, A. Ohuchi (eds.): DNA computing – 8th International workshop on DNA-
based computers, DNA8, Sapporo, Japan, June 2002 – Revised Papers, Lecture
Notes in Computer Science 2568, Springer-Verlag, Berlin, 2003.

T. Head: Formal language theory and DNA: an analysis of the generative capacity of
specific recombinant behaviors, Bulletin of Mathematical Biology 49(6) (1987),
737-759.

T. Head, Gh. Păun, D. Pixton: Language theory and molecular genetics: generative
mechanisms suggested by DNA recombination, Handbook of formal languages (G.
Rozenberg, A. Salomaa, eds.), Vol. 2, Springer-Verlag, Berlin (1997), 295-360.

L. Kari, Gh. Păun, A. Salomaa: The power of restricted splicing with rules from a
regular language, Journal of Universal Computer Science 2(4) (1996), 224-240.

L.F. Landweber, L. Kari: The evolution of cellular computing: nature’s solution to a
computational problem, Proceedings of the fourth international meeting on DNA
based computers, University of Pennsylvania, Philadelphia, USA, June 15-19,
1998 , BioSystems 52 (1999), 3-13.

Z. Li: Algebraic properties of DNA operations, Proceedings of the fourth interna-
tional meeting on DNA based computers, University of Pennsylvania, Philadel-
phia, USA, June 15-19, 1998 , BioSystems 52 (1999), 55-61.

158

References 159

Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing – New computing paradigms,
Springer-Verlag, Berlin (1998).

R. P. Stanley: Enumerative Combinatorics, Vol. 2 , Cambridge University Press, Cam-
bridge (1999).

