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COMBINATORIAL Bn-ANALOGUES

OF SCHUBERT POLYNOMIALS

SERGEY FOMIN AND ANATOL N. KIRILLOV

Abstract. Combinatorial Bn-analogues of Schubert polynomials and corre-
sponding symmetric functions are constructed and studied. The development
is based on an exponential solution of the type B Yang-Baxter equation that
involves the nilCoxeter algebra of the hyperoctahedral group.

0. Introduction

This paper is devoted to the problem of constructing type B analogues of the
Schubert polynomials of Lascoux and Schützenberger (see, e.g., [L2], [M] and the
literature therein). We begin with reviewing the basic properties of the type A
polynomials, stating them in a form that would allow subsequent generalizations
to other types.

Let W = Wn be the Coxeter group of type An with generators s1, . . . ,sn (that
is, the symmetric group Sn+1). Let x1, x2, . . . be formal variables. Then W
naturally acts on the polynomial ring C[x1, . . . , xn+1] by permuting the variables.
Let IW denote the ideal generated by homogeneous non-constant W -symmetric
polynomials. By a classical result [Bo], the cohomology ringH(F ) of the flag variety
of type A can be canonically identified with the quotient C[x1, . . . , xn+1]/IW . This
ring is graded by the degree and has a distinguished linear basis of homogeneous
cosets Xw modulo IW , labelled by the elements w of the group. Let us state for the
record that, for an element w ∈W of length l(w),

(0) Xw is a homogeneous polynomial of degree l(w) ; X1 = 1 ;

the latter condition signifies proper normalization.
As shown by Bernstein, Gelfand, and Gelfand [BGG], one can construct such

a basis using the divided difference operators ∂i acting in the polynomial ring.
Namely, define an operator ∂i associated with a generator si by

∂if =
f − sif
xi − xi+1

, i = 1, 2, . . . .

Then recursively define, for each element w ∈W , a polynomial Xw by

(1) ∂iXwsi = Xw if l(wsi) = l(w) + 1 .

The recursion starts at the “top polynomial” Xw0 that corresponds to the element
w0 ∈W of maximal length. Choose Xw0 to be an arbitrary and sufficiently generic
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homogeneous polynomial of degree l(w0). Then the Xw are well defined by (1), and
provide a basis for the quotient ring H(F ). The normalization condition X1 = 1
(see (0)) can be ensured by multiplying all the Xw by an appropriate constant. The
basis of the quotient ring thus obtained is canonical in the sense that it does not
depend (modulo the ideal IW ) on the particular choice of Xw0 . One can as well
replace the recursion (1) by a weaker condition

(1a) ∂iXwsi ≡ Xw mod Iw if l(wsi) = l(w) + 1

which is exactly equivalent to saying that the Xw represent the right cohomology
classes.

In order to be able to calculate in the cohomology ring, one would also like to
know how the basis elements multiply, i.e., find the structure constants cwuv such
that XuXv =

∑
w c

w
uvXw mod IW . Lascoux and Schützenberger [LS] discovered

that a particular choice of the top element (viz., Xw0 = xn−1
1 · · ·x2

n−2xn−1) makes
it possible to get rid of the unpleasant “mod Iw” provision from the last identity.
More precisely, they constructed a family of polynomials Xw (called the type A
Schubert polynomials and denoted Sw elsewhere in this paper) which satisfy (0)-
(1) and have the following property:

(2) for any u, v ∈Wn and for a sufficiently large m,

XuXv =
∑

w∈Wm

cwuvXw .

Another remarkable property of the Schubert polynomials of Lascoux and
Schützenberger that also makes good geometric sense is the following:

(3) the Xw are polynomials with nonnegative integer coefficients.

One can give a direct combinatorial explanation of this phenomenon by providing
an alternative definition of the Schubert polynomials in terms of reduced decompo-
sitions and compatible sequences [BJS] or, equivalently, via noncommutative gen-
erating function in the nilCoxeter algebra of W (see [FS]). This alternative descrip-
tion of the Schubert polynomials that avoids the recurrence process proved to be a
helpful tool in deriving their fundamental properties and dealing with their general-
izations, such as the Grothendieck polynomials of Lascoux and Schützenberger [L1],
[FK2].

It is transparent from the combinatorial formula — and not hard to deduce from
the original definition — that the Schubert polynomials are stable with respect to a
natural embedding Wn ↪→Wm , n < m (as a parabolic subgroup with generators s0,
. . . ,sn−1) and the corresponding projection pr : C[x1, . . . , xm+1]→ C[x1, . . . , xn+1]
defined by

pr : f(x1, . . . , xm+1) 7→ f(x1, . . . , xn+1, 0, . . . , 0) .

In other words,

(4) for w ∈Wn ⊂Wm , X
(n)
w = prX

(m)
w

where X
(n)
w denotes the Schubert polynomial for w treated as an element of Wn ,

and pr simply takes the last m − n variables xi to zero. (Actually, the Schubert
polynomials of type A are stable in an even stronger sense, but for the other types
we will only require condition (4), as stated above.)
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COMBINATORIAL Bn-ANALOGUES OF SCHUBERT POLYNOMIALS 3593

It seems reasonable to attempt to reproduce all of the above for other classical
types, and as a first step for type B where Wn = Bn is the hyperoctahedral group.
There is a natural action of Bn on the polynomial ring (see Section 1); as before,
the cohomology ring can be identified with the quotient C[x1, x2, . . . ]/IW , and its
basis can be constructed via divided differences in the similar way. (There are
some peculiarities related to the definition of the divided differences for type B; see
Section 1.)

Ideally, Bn-Schubert polynomials would be a certain family of polynomials that
satisfy the verbatim B-analogues of the conditions (0)-(4) above. Unfortunately,
such a family of polynomials simply does not exist. We will show in Section 10
that, already for the hyperoctahedral group B2 with two generators, one cannot
find 8 polynomials satisfying all relevant instances of conditions (0)-(3), even if we
replace (1) by a weaker condition (1a).

Since having all of (0)-(3) is impossible, we have to sacrifice one of the basic
properties. Abandoning condition (0) seems extremely unreasonable. We are then
led to the problems of finding polynomials satisfying (0) and two of the properties
(1)-(3): (1) and (2), (2) and (3), or (1) and (3). To sweeten the pill, let us also
require that (4) be satisfied. We arrived at the following three problems whose
solutions could be viewed as Bn-analogues (in the three different senses specified
below) of the Schubert polynomials.

Problem 0-1-2-4. (Bn-Schubert polynomials of the second kind.) Find

a family of polynomials Xw = X(n) = B
(n)
w (x1, . . . , xn), one for each element w of

each group Wn = Bn , which satisfy the type B versions of conditions (0), (1), (2),
and (4).

In this problem, conditions (0)-(1) ensure that the Xw represent the correspond-
ing cosets of the B-G-G basis, and condition (2) means that they multiply exactly
as the cohomology classes do. In Section 7, we construct a solution to Problem 0-
1-2-4 by giving a simple explicit formula for the generating function of the Xw in
the nilCoxeter algebra of the hyperoctahedral group. We also prove that the stable
limits of our polynomials coincide with the power series introduced by Billey and
Haiman [BH] whose definition involved a λ-ring substitution and Schur P -functions.
This also allows us to replace a long and technical verification of (1) in [BH] by a
few lines of a transparent computation.

Problem 0-2-3-4. (Bn-Schubert polynomials of the first kind.) Find a

family of polynomials Xw = X(n) = b
(n)
w (x1, . . . , xn) satisfying the type B versions

of conditions (0), (2), (3), and (4).

This problem may at first sight look unnatural since these polynomials no longer
represent Schubert cycles. However, if one really wants to compute in the quotient
ring H(F ), property (1) is not critical, once it is known that the structure constants
are correct. On the other hand, the solution of Problem 0-2-3-4 that we suggest in
Section 6 is very natural combinatorially and much easier to work with than in the
previous case of the polynomials of the second kind. The formulas become much
simpler; for example, the Schubert polynomial of the first kind for the element
w0 ∈ B3 is given by

b
(3)
w0

= x1x
2
2x

3
3(x1 + x2)(x1 + x3)(x2 + x3)(5)
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whereas, for the same element w0 , the Schubert polynomial of the second kind is

B
(3)
w0

=
1

512

(
−4x6

1x2x
2
3 − 12x5

1x
3
2x3 + 4x5

1x2x
3
3 + 4x4

1x
3
2x

2
3 − 4x4

1x
2
2x

3
3 + 4x7

1x2x3

(6)

− 2x4
1x

4
2x3 − 2x4

1x2x
4
3 + 4x3

1x
2
2x

4
3 + 16x2

1x
4
2x

3
3 + 4x2

1x
3
2x

4
3 + 4x2

1x
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2
3
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2
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5
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1x
3
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7
2x3 − 12x1x

5
2x

3
3 − 8x2

1x
6
2x3

− 8x1x
6
3x

2
2 − 4x6

1x
3
2 + 4x7

1x
2
2 + 5x8

1x2 − 2x5
1x

4
2 − 8x6

1x
3
3 + 3x8

1x3 − 6x5
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8
2 + 8x3
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6
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2x

7
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5
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3 + 7x8
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7
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2x

4
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5
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1x
6
3x2 + 2x4

2x
4
3x1 + x9

1 + 5x9
2 − x9

3

)
.

We also show (see Section 7) that, in fact, the Bn-Schubert polynomials of the first
and second kinds are related to each other by a certain “change of variables.” (This
explains why the structure constants are the same in both cases.) Thus one can
switch between polynomials of the two kinds, if necessary.

Problem 0-1-3-4. (Schubert polynomials of the third kind.) Construct
a family of polynomials Xw satisfying conditions (0), (1), (3), and (4).

This is simply a question of finding explicit “combinatorial” representatives for
the cohomology classes. In Section 9, we conjecture1 a solution of Problem 0-1-
3-4 for the type C; the corresponding type B polynomials differ from these by a
factor of the form 2−k. Recently, we discovered that our “Schubert polynomials of
the third kind” can also be obtained from the polynomials in two sets of variables
introduced by Fulton in [Fu], by setting y1 = y2 = · · · = 0.

We now briefly describe the general framework of our constructions and the
organization of the paper. In [FS], [FK1]-[FK3] an approach to the theory of
Schubert polynomials was developed that was based on an exponential solution
of the Yang-Baxter equation (YBE) in the nilCoxeter algebra of the symmetric
group, the latter being the abstract algebra isomorphic to the algebra of divided
differences. In this paper, we adapt this approach to the case of the hyperoctahedral
group.

Section 2 presents a straightforward Bn-analogue of the main geometric con-
struction used in [FK1] and inspired by Cherednik’s work [Ch]; the role of the YBE
is briefly explained. (At this point, an acquaintance with our “An-paper” [FK1]
would be very helpful.) In Section 3, some exponential solutions of the Bn-YBE are
given; we refer to [FK3] for details. Section 4 introduces Bn-symmetric functions
(generalized Stanley symmetric functions of type B) which can be associated with
any such solution. Type B Schubert expressions of the first kind are introduced
in Section 5. For the nilCoxeter algebra solution of the YBE, these expressions

give rise to the Bn-Schubert polynomials b
(n)
w of the first kind which are studied

in Section 6. In Section 7, we define the Schubert polynomials B
(n)
w of the second

kind and relate them to the Billey-Haiman construction. In Section 8, we introduce
and study the Stanley symmetric functions of type B; this study was continued in

1Note added in proof . This conjecture is now a theorem. Tao Kai Lam has proved, in November
1995, that our Schubert polynomials of the third kind do indeed satisfy property (3). Properties
(0), (1), and (4) are checked in Section 9.
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[TKL1], [TKL2] and [BH]. In Section 9, the Schubert polynomials of the third kind
are discussed. Section 10 contains the proof that it is impossible to simultaneously
satisfy conditions (0)-(3).

We provide tables of the Schubert polynomials of the three kinds for the types
B2 and B3 , except for the table of the B3-polynomials of the second kind, which
would occupy several pages. An 18-page table of the 384 B4-Schubert polynomials
of the first kind was produced by Sébastien Veigneau using his wonderful Maple
package ACE; this table is available from the authors upon request.

As earlier in [FK1], we intentionally use in this paper the geometric approach
that allows us to derive algebraic identities in the nilCoxeter algebra by modifying,
according to certain rules, corresponding configurations of labelled pseudo-lines. A
typical example is Theorem 4.4 that is proved by Figure 7. A formal algebraic
version of this proof would be a straightforward (albeit messy and unreadable)
translation from the geometric language.

The combinatorial constructions of this paper can be adapted to describe the
Schubert polynomials of types C and D, reproducing, in particular, the corre-
sponding results in [BH]. A more or less straightforward modification of these
constructions leads to combinatorial formulas for the Grothendieck polynomials of
types BCD, in the spirit of [FK2], and also to the double Schubert polynomials of
respective types. We plan to discuss these generalizations in a separate publication.
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1. The hyperoctahedral group: definitions and conventions

The hyperoctahedral group Bn is the group of symmetries of the n-dimensional
cube. We define Bn formally as the group with generators s0, . . . ,sn−1 satisfying
the relations

sisj = sjsi , |i− j| ≥ 2;

s2
i = 1 ;

sisi+1si = si+1sisi+1 , i ≥ 1 ;

s0s1s0s1 = s1s0s1s0 .

The indexing in this definition differs from the usual one (namely, what we call s0,
. . . ,sn−1 would have to be denoted by sn, . . . ,s1, respectively; cf. [B]). However,
we find this labelling more convenient since it is respected by the natural embedding
Bn ↪→ Bn+1.

The elements of Bn can be thought of as signed permutations: a generator si ,
i > 0, swaps the i’th and (i + 1)’st entries and the generator s0 changes the sign
of the first entry. As in any Coxeter group, the length l(w) of an element w is the
minimal number of generators whose product is w. Such a factorization of minimal
length (or the corresponding sequence of indices) is called a reduced decomposition
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of w. The weak order on the group is defined as the transitive closure of the covering
relation wsi m w ⇐⇒ l(wsi) > l(w).

The weak orders of the hyperoctahedral groups B2 and B3 are given in Figures
A and B. To represent signed permutations, we circle their negative entries.

The hyperoctahedral group Bn acts on the polynomial ring C[x1, . . . , xn] in the
natural way. Namely, si interchanges xi and xi+1 , for i = 1, . . . , n − 1, and the
special generator s0 acts by

s0f(x1, x2, . . . ) = f(−x1, x2, . . . ) .
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The reversal of the indexing of generators has an annoying drawback: we have
to change the sign in the usual definition of the divided differences. Rather than
doing that (and creating a lot of confusion), we simply change the recurrence rule
(1) into

(1′) ∂iXwsi =

{
−Xw if l(wsi) = l(w) + 1,

0 otherwise.

To include the special case i = 0 in (1′), we also define

∂0f =
f − s0f

−x1
;

the negative sign in the denominator compensates for the one in (1′).
Thus one should replace condition (1) by (1′) in the formulations of the Prob-

lems 0-1-2-4, 0-2-3-4, and 0-1-3-4, while treating the Bn case.

2. Generalized configurations and the Yang-Baxter equation

The notion of a generalized configuration was introduced in [FK1]. It is a con-
figuration of contiguous lines which cross a given vertical strip from left to right;
each line is subdivided into “segments”; each segment has an associated variable.
A configuration is assumed to be generic in the following sense: (i) no three lines
intersect at the same point; (ii) no two lines intersect at an endpoint of any segment;
(ii) no two intersection points lie on the same vertical line.

In the Bn case, this notion assumes an additional flavor. Namely, configurations
are contained in a semi-strip bounded from below by a bottom mirror (cf. [Ch]). The
lines of a configuration are allowed to touch the bottom; corresponding points are
called points of reflection. Whenever this happens, an associated variable changes
its sign. An example of a Bn-configuration is given on Figure 1.

Intersection points and points of reflection will be of a particular interest to us.
Each intersection point has a level number which indicates how many lines there
are below this point (the point itself contributes 1). For example, the intersection
points on Figure 1 have level numbers (from left to right) 1, 1, 2, and 1. By
definition, the level number of a point of reflection is 0.

Let C be a configuration of the described type. Order its intersection and reflec-
tion points altogether from left to right; then write down their level numbers. The
resulting sequence of integers a(C) = a1a2 . . . is called a word associated with C.
In our running example, a(C) = 101201. Now it is time to bring the variables into
the picture. Assume that A is an associative algebra and {hi(x) : i = 0, 1, . . . }
is a family of elements of A which depend on a formal variable x (we always as-
sume that the main field contains all participating formal variables as independent
transcendentals). Then the associated expression for a configuration C is

Φ(C) = ha1(z1) ha2(z2) . . .

where, as before, a1a2 . . . is an associated word and zi is one of the following: if
ai = 0, then zi is the variable related to the corresponding point of reflection (to
the left of it); if ai > 0, then zi = xi − yi where xi and yi are the variables for
the segments intersecting at the corresponding point, xi being a variable for the
segment which is above to the left of this point. In the example of Figure 1,

Φ(C) = Φ(C;x, y, z, u, v) = h1(y − u)h0(y)h1(v + y)h2(x+ y)h0(v)h1(x + v) .
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Figure 1

Figure 2

Informally, the variables associated with the segments are their “slopes”; an argu-
ment of each factor in Φ(C) is the corresponding “angle of intersection”.

The Yang-Baxter equations (see, e.g., [Ch] and references therein) are certain
conditions on the hi(x) which allow us to transform configurations without changing
their associated expression. The type B YBE are

hi(x)hj(y) = hj(y)hi(x) if |i− j| ≥ 2 ;(2.1)
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yx

i i i

= x+y

Figure 3

hi(x)hi+1(x+ y)hi(y) = hi+1(y)hi(x+ y)hi+1(x) if i ≥ 1 ;(2.2)

h1(x− y)h0(x)h1(x+ y)h0(y) = h0(y)h1(x+ y)h0(x)h1(x− y) .(2.3)

Each of these equations has its pictorial interpretation; see Figure 2.
Following [FK3], we introduce the additional condition

hi(x)hi(y) = hi(x + y) , hi(0) = 1 for i ≥ 1(2.4)

(cf. Figure 3) which means that we are interested in exponential solutions of the
YBE. Relations (2.1)-(2.4) have various nice implications which can be derived by
braid manipulation that replaces cumbersome algebraic computations. Informally,
algebraic identities can be proved by moving lines according to the rules of Figures 2
and 3.

3. Examples of solutions

There is a natural approach to constructing solutions of the equations (2.1)-(2.4).
Assume that A is a local associative algebra (in the sense of [V]) with generators
u0, u1, u2, . . . which means that

uiuj = ujui if |i− j| ≥ 2 .(3.1)

Define hi(x) by

hi(x) = exp(xui) .(3.2)

Then (2.1) and (2.4) are guaranteed, and we only need the Yang-Baxter equations
(2.2)-(2.3) to be satisfied. Rewrite (2.2)-(2.3) as

exuie(x+y)ui+1eyui = eyui+1e(x+y)uiexui+1(3.3)

and

[exu0exu1exu0 , eyu0eyu1eyu0 ] = 0(3.4)

where [X,Y ] denotes a commutator XY − Y X . These equations were studied in
[FK3] where the following solutions were suggested.

3.1 Example. The nilCoxeter algebra of the hyperoctahedral group. This is the
algebra defined by

uiuj = ujui , |i− j| ≥ 2;

u2
i = 0 ;

uiui+1ui = ui+1uiui+1 , i ≥ 1 ;

u0u1u0u1 = u1u0u1u0 .

These relations are satisfied by the divided differences ∂i ; thus one can think of the
nilCoxeter algebra as of the algebra of divided difference operators.
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Example 3.1 will be the main one in this paper. The relation u2
i = 0 implies

that (3.2) can be rewritten as hi(x) = 1 + xui . Checking that these hi(x) satisfy
the conditions (2.1)-(2.4) is straightforward.

The nilCoxeter algebra (of any Coxeter group W ) has the following alternative
description. For w ∈W , take any reduced decomposition w = si1 · · · sil and identify
w with the element ui1 · · ·uil of the nilCoxeter algebra. These elements form a linear
basis of the nilCoxeter algebra, and the multiplication rule is

w · v =

{
usual product wv if l(w) + l(v) = l(wv),

0 , otherwise .

In this paper, we will frequently make use of this description, while expanding
various expressions in the nilCoxeter algebra of Bn in the basis of group elements.

3.2 Example. Universal enveloping algebra of U+(so (2n+ 1)). This algebra can
be defined as the local algebra with generators u1, u2, . . . subject to Serre relations

[ui, [ui, ui±1]] = 0 , i ≥ 1 ;

[u0, [u0, u1]] = 0 ;

[u1, [u1, [u1, u0]]] = 0 .

As shown in [FK3], this universal enveloping algebra provides an exponential solu-
tion to the Yang-Baxter equation, that is, (3.3) and (3.4) are satisfied.

4. Symmetric expressions

By analogy with [FK1], we will show now that the basic relations (2.1)-(2.4) (or
(3.1)-(3.4)) imply that certain configurations produce symmetric expressions in the
corresponding variables. In what follows we assume that (2.1)-(2.4) are satisfied.

4.1 Theorem. For the configuration C of Figure 4,

Φ(C;x, y) = Φ(C; y, x) .

In other words, Φ(C) is symmetric in x and y.

This statement has the following straightforward reformulation.

4.2 Proposition. Let

B(x) = hn−1(x) · · · h1(x)h0(x)h1(x) · · · hn−1(x) .(4.1)

Then B(x) and B(y) commute.

Special case: n = 2. Then B(x) = h1(x)h0(x)h1(x). Now use (2.3) and (2.4)
to show that

B(x)B(y) = h1(x)h0(x)h1(x)h1(y)h0(y)h1(y)

= h1(x)h0(x)h1(x + y)h0(y)h1(y)

= h1(x)h0(x)h1(x + y)h0(y)h1(y − x)h1(x)

= h1(x)h1(y − x)h0(y)h1(x+ y)h0(x)h1(x)

= h1(y)h0(y)h1(y + x)h0(x)h1(x)

= B(y)B(x) .
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The same proof can be performed in the language of configurations — see Fig-
ure 5. Moreover, the geometric proof has the advantage of being easily adjustable
for the general case of an arbitrary n.

Proof of Theorem 4.1 (and Proposition 4.2). Same transformations as in Figure 5,
with additional horizontal lines added near the bottom mirror.
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4.3 Corollary. Let

H(n)(x1, x2, . . . ) = B(x1)B(x2) · · ·(4.2)

where B(x) is defined by (4.1), and the hi(x) satisfy the relations (2.1)-(2.4). Then
the expression H(n)(x1, x2, . . . ) is symmetric in the xi. Moreover, H(n) obeys the
following cancellation rule:

H(n)(x1,−x1, x2, , x3, . . . ) = H(n)(x2, x3, . . . ) .(4.3)

Proof. The symmetry is an immediate consequence of Proposition 4.2. The cancel-
lation rule follows from the identity B(−x)B(x) = 1.

Corollary 4.3 suggests that one can construct non-trivial examples of symmet-
ric functions by taking any solution of (2.1)-(2.4), then any representation of the
corresponding algebra A , then applying the operator representing H(n)(x1, x2, . . . )
to any vector and, finally, taking any coordinate of the image. Not only will those
functions be symmetric; by a theorem of Pragacz [P], the cancellation rule (4.3)
implies that they will belong to the subring Ω(x1, x2, . . . ) of the ring Λ(x1, x2, . . . )
of symmetric functions that is generated by odd power sums; equivalently, any such
function is a linear combination of Schur P -functions.

Surprisingly enough, the expressionH(n)(x1, x2, . . . ) can be alternatively defined
by a quite different configuration.

4.4 Theorem. Let C be the configuration defined by Figure 6. Then

Φ(C;x1, . . . , xn) = H(n)(x1, . . . , xn) .

Proof. See Figure 7.

Remark. If the number of generators is m > n, then, to get H(m)(x1, . . . , xn), one
only needs to add m−n horizontal lines near the bottom mirror in the configuration
of Figure 6.

Theorem 4.4 allows us to relate the type B and type A constructions to each
other. Note that the configuration of Figure 6 coincides with one of [FK1, Fig-
ure 14], up to renumbering the variables xi in the opposite order (this is not essen-
tial since the expression is symmetric in the xi), setting yi = −xi, and attaching the
bottom mirror. Since Figure 14 of [FK1] defines the ordinary (i.e, type A) double
stable Schubert expression G(x1, . . . , xn; y1, . . . , yn), the above observation has the
following precise formulation.

4.5 Theorem. Let {hi(x) : i = 1, . . . , n− 1} be any solution of (2.1), (2.2), and
(2.4); in other words, let {hi(x)} be an exponential solution of the YBE of type
An−1. Define h0(x) = 1. Then (2.3) obviously holds and so H(n) is well-defined.
Moreover, in this case

H(n)(x1, . . . , xn) = G(x1, . . . , xn;−x1, . . . ,−xn)

where G(. . . ) is the double stable Schubert expression (see [FK1]).

In the special case of the nilCoxeter solution of Example 3.1 we obtain the Bn-
analogues of the Stanley symmetric functions [S], or stable Schubert polynomials.
These functions are studied in Section 8.
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5. Schubert expressions

Define the Bn-analogue of the generalized Schubert expression by

b
(n)(x1, . . . , xn) = H(n)(x1, . . . , xn)S(−x1, . . . ,−xn−1)(5.1)
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where S(x1, . . . , xn−1) is the An−1-Schubert expression as defined in [FS], [FK1].
In other words,

b(n)(x1, . . . , xn) = B(x1) · · ·B(xn)A1(−x1) · · · An−1(−xn−1)(5.2)

where

Ai(x) = hn−1(x)hn−2(x) · · · hi(x)(5.3)

(recall that B(x) is defined by (4.1)).
The formula (5.2) can be simplified.

5.1 Theorem. b(n)(x1, . . . , xn) is equal to the expression defined by Figure 8. In
other words,

b(n)(x1, . . . , xn) = S(xn, xn−1, . . . , x2)
n−1∏
i=0

(
h0(xn−i)

n−i−1∏
j=1

hj(xn−i−j + xn−i)

)(5.4)

where, as before, S(xn, xn−1, . . . , x2) = A1(xn) · · · An−1(x2) and in the products∏
· · · the factors are multiplied left-to-right, according to the increase of i and j,

respectively.

Note that the total number of factors h...(. . . ) in (5.4) is n2, the length of the
longest element w0 of the hyperoctahedral group Bn with n generators. More-
over, it can be immediately seen from Figure 8 that these factors are in a natural
order-respecting bijection with the entries of the lexicographically maximal reduced
decomposition of w0:

n− 1, n− 2, . . . , 2, 1, 0, n− 1, n− 2, . . . , 2, 1, 0, . . . ,

n− 1, n− 2, . . . , 2, 1, 0 .

5.2 Examples.

b(1)(x1) = h0(x1),

b(2)(x1, x2) = h1(x2)h0(x2)h1(x1 + x2)h0(x1),

b(3)(x1, x2, x3) = h2(x3)h1(x3)h2(x2)h0(x3)h1(x2 + x3)

× h2(x1 + x3)h0(x2)h1(x1 + x2)h0(x1).

Proof of Theorem 5.1. Let Φ6 and Φ8 be the expressions defined by configurations
of Figures 6 and 8, respectively. Then

Φ6 = Φ8Ãn−1(xn−1) · · · Ã2(x2)Ã1(x1)

where

Ãi(x) = hi(x)hi+1(x) · · · hn−1(x) .

Since (2.4) implies that (Ãi(x))−1 = Ai(−x), it follows from Theorem 4.4 that

Φ8 = Φ6A1(−x1)A2(−x2) · · · An−1(−xn−1)

= H(n)(x1, . . . , xn)S(−x1, . . . ,−xn−1)

= b
(n)(x1, . . . , xn).
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6. Schubert polynomials of the first kind

In the rest of this paper we study the main example of solution of (2.1)-(2.4),
namely, the one related to the nilCoxeter algebra of the hyperoctahedral group
(Example 3.1). In this example, hi(x) = 1 + xui where ui is the i’th generator.
By analogy with the case of the symmetric group (cf. [FK1]), we define the type B
Schubert polynomials of the first kind by expanding the corresponding expression
in the nilCoxeter algebra in the basis of group elements:

b(n)(x1, . . . , xn) =
∑
w∈Bn

b(n)
w (x1, . . . , xn) w .(6.1)

6.1 Examples. (Cf. Examples 5.2.) In B1 ,

b(1)(x1) = 1 + x1u0

and therefore b
(1)
1 = 1 and b

(1)
u0 = x1 .

In B2 ,

b(2)(x1, x2) = (1 + x2u1)(1 + x2u0)(1 + (x1 + x2)u1)(1 + x1u0) .

Expanding in the basis of group elements, we obtain the B2-Schubert polynomials
of the first kind

w b
(2)
w

1 1
u0 x1 + x2

u1 x1 + 2x2

u0u1 x2(x1 + x2)
u1u0 (x1 + x2)2

u0u1u0 x1x2(x1 + x2)
u1u0u1 x2

2(x1 + x2)
w0 x1x

2
2(x1 + x2)
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In B3 ,

b(3)(x1, x2, x3) = (1 + x3u2)(1 + x3u1)(1 + x2u2)(1 + x3u0)(1 + (x2 + x3)u1)

× (1 + (x1 + x3)u2)(1 + x2u0)(1 + (x1 + x2)u1)(1 + x1u0).

Expanding the right-hand side, we obtain the table of the polynomials b
(3)
w given

in Figure 9.
It immediately follows from the definitions that, in general, the top polynomial

of the first kind is given by

b(n)
w0

(x1, . . . , xn) =
n∏
k=1

(xk)k
∏

1≤i<j≤n
(xi + xj)

(cf. (5)).

By analogy with (6.1), let us define the Stanley polynomials of type B by

H(n)(x1, . . . , xk) =
∑
w∈Bn

H(n)
w (x1, . . . , xk) w ;(6.2)

here, as before, w is identified with the corresponding product of generators of the
nilCoxeter algebra. For example,

H(2)(x1, x2) = (1 + x2u1)(1 + x2u0)(1 + (x1 + x2)u1)(1 + x1u0)(1 + x1u1)

and thus, e.g., H
(2)
w0 (x1, x2) = x1x2(x1 + x2)2. (Note that, in general, k and n

in (6.2) need not be equal.) As shown in Section 4 (see Corollary 4.3 and the
paragraph immediately following its proof), these functions are indeed symmetric,
and the following result holds.

6.2 Lemma. The Stanley polynomials H
(n)
w of type B belong to the ring Ω gen-

erated by odd power sums. They are integer linear combinations of Schur P -
functions.

We discuss these polynomials in greater detail in Section 8.
The definitions (6.1) and (6.2) can be straightforwardly restated in terms of

reduced decompositions and “compatible sequences”. Use (4.1)-(4.2) to rewrite
(6.2) as

H(n)
w (x1, . . . , xk) =

∑
a1,...,al∈R(w)

∑
1≤b1≤···≤bl≤k

ai<ai+1>ai+2 =⇒ bi<bi+2

2γ(a,b)xb1xb2 · · · xbl(6.3)

where R(w) is the set of reduced decompositions of w and

γ(a,b) = #{bi} −#{i : ai = 0}
(here #{bi} denotes the number of different entries in the sequence b1, . . . ,bl).
Correspondingly, (5.1) can be presented as

b
(n)
w (x1, . . . , xn) =

∑
uv=w

l(u)+l(v)=l(w)
v∈An−1

H(n)
u (x1, . . . , xn)Sv(−x1, . . . ,−xn−1)(6.4)

where Sv is the ordinary Schubert polynomial for the symmetric group An−1 = Sn.
It is also possible to entirely rewrite the definition of Theorem 5.1 in terms of
reduced decompositions and compatible sequences. We avoid doing so since the
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w |R(w)| b
(3)
w

123 1 1 1
123 u0 1 x1 + x2 + x3

213 u1 1 x1 + 2x2 + 2x3

132 u2 1 x1 + x2 + 2x3

213 u0u1 1 (x2 + x3)(x1 + x2 + x3)
132 u0u2 2 (x1 + x2 + 2x3)(x1 + x2 + x3)
213 u1u0 1 (x1 + x2 + x3)2

231 u1u2 1 x1x2 + 2x1x3 + 2x2x3 + 2x2
3

312 u2u1 1 (x1 + x2 + x3)2 + (x2 + x3)2

213 u0u1u0 1 (x1 + x2)(x1 + x3)(x2 + x3)
231 u0u1u2 1 x3(x1 + x3)(x2 + x3)
312 u0u2u1 2 (x2 + x3)((x1 + x2 + x3)2 + x2x3)
123 u1u0u1 1 (x2 + x3)(x1x2 + x1x3 + x2

2 + x2x3 + x2
3)

231 u1u0u2 2 x2
1x2 + x1x2

2 + 2x2
1x3 + 4x1x2x3 + 3x1x2

3

+2x2
2x3 + 3x2x2

3 + x3
3

321 u1u2u1 2 x2
1x2 + 2x1x2

2 + 2x2
1x3 + 4x1x2

3 + 4x2
2x3

+6x2x2
3 + 2x3

3 + 6x1x2x3

312 u2u1u0 1 (x1 + x2 + x3)(x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3)

+x1x2x3

123 u0u1u0u1 2 (x1 + x2)(x1 + x3)(x2 + x3)2

231 u0u1u0u2 2 x3(x1 + x2)(x1 + x3)(x2 + x3)
321 u0u1u2u1 3 x3(x2 + x3)(x1 + x3)(x1 + 2x2 + x3)
312 u0u2u1u0 2 (x1 + x2)(x1 + x3)(x2 + x3)(x1 + x2 + x3)
132 u1u0u1u2 1 x2

3(x2 + x3)(x1 + x3)
321 u1u0u2u1 2 (x2 + x3)(x2

1x2 + x1x2
2 + x2

1x3 + x1x2
3

+ 2x2
2x3 + 2x2x2

3 + 3x1x2x3)
321 u1u2u1u0 3 3x1x3

3 + 3x2x3
3 + x4

3 + x3
1x2 + 2x2

1x
2
2 + 6x2

1x2x3

+2x3
1x3 + 4x2

1x
2
3 + 6x1x2

2x3 + 8x1x2x2
3 + x1x3

2

+2x3
2x3 + 4x2

2x
2
3

132 u2u1u0u1 1 (x2 + x3)((x2
2 + x2

3)(x1 + x2 + x3) + x1x2x3)
132 u0u1u0u1u2 3 x2

3(x1 + x2)(x1 + x3)(x2 + x3)
321 u0u1u0u2u1 2 x2x3(x1 + x2)(x1 + x3)(x2 + x3)
321 u0u1u2u1u0 5 x3(x1 + x2)(x1 + x3)(x2 + x3)(x1 + x2 + x3)
132 u0u2u1u0u1 3 (x1 + x2)(x1 + x3)(x2 + x3)(x2

2 + x2x3 + x2
3)

312 u1u0u1u2u1 3 x2
3(x1 + 2x2)(x1 + x3)(x2 + x3)

321 u1u0u2u1u0 2 (x1 + x2)(x1 + x3)(x2 + x3)(x1x2 + x1x3 + x2x3)
231 u1u2u1u0u1 3 6x1x2

2x
2
3 + 4x3

2x
2
3 + 4x2

2x
3
3 + 2x4

2x3 + 4x1x3
2x3

+4x1x2x3
3 + 2x2x4

3 + x2
1x

3
2 + 2x2

1x
2
2x3 + 2x2

1x2x2
3

+x2
1x

3
3 + x1x4

3 + x1x4
2

123 u2u1u0u1u2 1 x3
3(x2 + x3)(x1 + x3)

312 u0u1u0u1u2u1 5 x2x2
3(x1 + x2)(x1 + x3)(x2 + x3)

321 u0u1u0u2u1u0 2 x1x2x3(x1 + x2)(x1 + x3)(x2 + x3)
231 u0u1u2u1u0u1 5 x2x3(x1 + x2)(x1 + x3)(x2 + x3)2

123 u0u2u1u0u1u2 4 x3
3(x1 + x2)(x1 + x3)(x2 + x3)

312 u1u0u1u2u1u0 5 x2
3(x1 + x2)2(x1 + x3)(x2 + x3)

231 u1u0u2u1u0u1 5 (x1x2
2 + x1x2

3 + x1x2x3 + x2
2x3 + x2x2

3)
(x1 + x2)(x1 + x3)(x2 + x3)

213 u1u2u1u0u1u2 4 x3
3(x1 + 2x2)(x1 + x3)(x2 + x3)

312 u0u1u0u1u2u1u0 7 x1x2x2
3(x1 + x2)(x1 + x3)(x2 + x3)

231 u0u1u0u2u1u0u1 7 x1x2x3(x1 + x2)(x1 + x3)(x2 + x3)2

213 u0u1u2u1u0u1u2 9 x2x3
3(x1 + x2)(x1 + x3)(x2 + x3)

132 u1u0u1u2u1u0u1 5 x2
2x

2
3(x1 + x2)(x1 + x3)(x2 + x3)

213 u1u0u2u1u0u1u2 9 x3
3(x1 + x2)2(x1 + x3)(x2 + x3)

132 u0u1u0u1u2u1u0u1 12 x1x2
2x

2
3(x1 + x2)(x1 + x3)(x2 + x3)

213 u0u1u0u2u1u0u1u2 16 x1x2x3
3(x1 + x2)(x1 + x3)(x2 + x3)

123 u1u0u1u2u1u0u1u2 14 x2
2x

3
3(x1 + x2)(x1 + x3)(x2 + x3)

123 u0u1u0u1u2u1u0u1u2 42 x1x2
2x

3
3(x1 + x2)(x1 + x3)(x2 + x3)

Figure 9. Type B3 Schubert polynomials of the first kind
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resulting formulas are rather messy; we also think that the following geometric
approach (cf. [FK1, Section 6]) is more natural.

Both b
(n)
w and H

(n)
w have a direct combinatorial interpretation in terms of “re-

solved configurations”; this interpretation can actually be applied to a family of
polynomials which come from any configuration C. Take all the intersection points
of C and “resolve” each of them either as × or as � . Then take all points of
reflection and resolve each of them either as ^ or as ∨ ; the latter corresponds to
changing a “sign”, or a “spin”, of the corresponding string. If a configuration has N
intersection and reflection points altogether, then there are 2N ways of producing
such a resolution. Each of the 2N resolved configurations is a “signed braid” which
naturally gives an element w of the hyperoctahedral group. Reading the ×- and
∨-points from left to right produces a decomposition of w into a product of gener-
ators. Let Cw, for a given w, denote the set of resolved configurations which give w
and for which this decomposition is reduced. Then the polynomials Φw associated
with C, that is,

Φ(C;x1, x2, . . . ) =
∑
w

Φw(x1, x2, . . . ) w,

can be expressed as

Φw(x1, x2, . . . ) =
∑
c∈Cw

((∏
(xi − xj)

)(∏
xk
))

(6.5)

where the first product is taken over all intersections in C and the second one —
over all “change-of-sign” (i.e., ∨-) points.

This interpretation enables us to prove the stability of b
(n)
w and H

(n)
w .

6.3 Theorem. Let Bn and Bm, n < m, be the hyperoctahedral groups with gener-
ators s0, . . . ,sn−1 and s0, . . . ,sm−1, respectively. Then, for any w ∈ Bn ⊂ Bm,

b(n)
w (x1, . . . , xn) = b(m)

w (x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸
m−n

)(6.6)

and

H(n)
w (x1, . . . , xk) = H(m)

w (x1, . . . , xk) .(6.7)

In other words, the H
(n)
w do not depend on the superscript n (so we may drop it),

and the b
(n)
w are stable in the weaker sense of (4): the coefficient of any monomial in

b
(n)
w (x1, . . . , xn) stabilizes as n→∞. Thus we can introduce a well-defined formal

power series

bw(x1, x2, . . . ) = lim
n→∞

b
(n)
w (x1, . . . , xn) = H(n)(x1, x2, . . . )S(−x1, . . . ,−xn−1)

(6.8)

which could be viewed as a limiting form of the type B Schubert polynomial of
the first kind. Here H(n)(x1, x2, . . . ) is a symmetric expression in infinitely many
variables x1,x2, . . . .
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Proof of Theorem 6.3. Let I>n denote the two-sided ideal in the nilCoxeter algebra
that is generated by un+1,un+2, . . . Then (6.6) and (6.7) can be restated, respec-
tively, as

b
(n)(x1, . . . , xn) ≡ b

(m)(x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸
m−n

) mod I>n

and

H(n)(x1, . . . , xk) ≡ H(m)(x1, . . . , xk) mod I>n

for m > n. The latter congruence is immediate from the definition of H(n) (one
can also interpret it geometrically; cf. Figure 4). As to the former one, note that
the stability of the ordinary (type A) Schubert polynomials can be reformulated as

S(n)(x1, . . . , xn) ≡ S(m)(x1, . . . , xm) mod I>n ,

implying

b(n)(x1, . . . , xn) = H(n)(x1, . . . , xn)S(n)(−x1, . . . ,−xn−1)

≡ H(m)(x1, . . . , xn)S(m)(−x1, . . . ,−xn−1, 0, . . . , 0) mod I>n

= H(m)(x1, . . . , xn, 0, . . . , 0)S(m)(−x1, . . . ,−xn−1, 0, . . . , 0)

= b(m)(x1, . . . , xn, 0, . . . , 0).

Recall that the divided difference operator ∂i is defined by

∂if(x1, . . . ) =
f(x1, . . . )− f(. . . , xi+1, xi, . . . )

xi − xi+1
.(6.9)

We will show now that the Schubert polynomials of the first kind satisfy the divided
difference recurrences (1′) for all i ≥ 1.

6.4 Theorem. For any w ∈ Bn and i ≥ 1,

−∂i b(n)
wsi =

{
b

(n)
w if l(wsi) = l(w) + 1

0 otherwise.
(6.10)

(Unfortunately, (6.10) is false for i = 0. Otherwise the polynomials b
(n)
w would

satisfy the conditions (0)-(4) of the introduction, which is impossible.)

Proof. As before, let ui be the generators of the nilCoxeter algebra. Then the
theorem is equivalent to the identity

−∂i
∑
w

b
(n)
wsi · (wsi) =

∑
w

b
(n)
w wui ,(6.11)

where in the left-hand side w is interpreted as an element of the symmetric group,
and in the right-hand side w is identified with the basis element of the nilCoxeter
algebra. In turn, (6.11) can be rewritten as

−∂ib(n) = b(n)ui .

Now recall that H(n) is symmetric in the xi and therefore

−∂ib(n) = −H(n)(x1, . . . ) ∂iS(−x1, . . . ) = H(n)(x1, . . . )S(−x1, . . . )ui = b
(n)ui .
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In this computation, we used (5.1) and the identity ∂iS = Sui (see [FS, Lemma
3.5]) which is just another way of stating the divided-differences recurrence for the
ordinary Schubert polynomials.

By taking limits, one can obtain an analogue of Theorem 6.4 for the power series
bw defined in (6.8).

A proof of property (2) for the Schubert polynomials of the first kind will be
given in Section 7.

7. Schubert polynomials of the second kind

The Schubert expression of the second kind is defined in the nilCoxeter algebra
of the hyperoctahedral group by the formula

B
(n)(x1, . . . , xn) =

√
H(n)(x1, . . . , xn) S(−x1, . . . ,−xn−1)(7.1)

(cf. (5.1)). In this formula, H(n)(x1, . . . , xn) has constant term 1, so we interpret

the square root via the expansion
√

1 + α = 1 + α
2 −

α2

8 + . . . . Note that in our
case this expansion is finite since every noncommutative monomial of degree > n2

in the nilCoxeter algebra of Bn vanishes. We then define the Schubert polynomials
of the second kind by expanding B(n) in the basis of the nilCoxeter algebra formed
by the group elements:

B(n)(x1, . . . , xn) =
∑
w∈Bn

B(n)
w (x1, . . . , xn) w ;(7.2)

(cf. (6.1)). For example, the B2-Schubert polynomials of the second kind can be
obtained by expanding the expression

B(2)(x1, x2) =
√

(1 + x2u1)(1 + x2u0)(1 + (x1 + x2)u1)(1 + x1u0)(1 + x1u1)

· (1− x1u1) .

7.1 Theorem. The Schubert polynomials of the second kind satisfy the recurrence
relations (1′):

∂iB
(n)
wsi =

{
−B

(n)
w if l(wsi) = l(w) + 1,

0 otherwise
(7.3)

for i = 0, 1, 2, . . . .

Proof. The verification of (7.3) for i ≥ 1 is exactly the same as in the proof of

Theorem 6.4, only replacing H(n) by
√
H(n). As to i = 0, we obtain, using Propo-

sition 4.2 and (5.3),
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− ∂0B
(n) =

1

x1

(√
B(x1)B(x2) · · · S(−x1,−x2, . . . )

−
√
B(−x1)B(x2) · · · S(x1,−x2, . . . )

)
=

1

x1

√
B(x1)B(x2)B(x3) · · ·

(
A1(−x1)−B(−x1)A1(x1)

)
A2(−x2)A3(−x3) · · ·

=
1

x1

√
B(x1)B(x2) · · · A1(−x1)

(
1− h0(−x1)

)
A2(−x2)A3(−x3) · · ·

=
1

x1

√
B(x1)B(x2) · · · A1(−x1)x1 u0A2(−x2)A3(−x3) · · ·

=
√
B(x1)B(x2) · · · A1(−x1)A2(−x2)A3(−x3) · · · u0

= B(n)u0 .

7.2 Theorem. The Schubert polynomials of the second kind satisfy the stability
condition (4):

B(n)
w (x1, . . . , xn) = B(m)

w (x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸
m−n

)(7.4)

for i = 0, 1, 2, . . . .

Proof. The proof duplicates that of Theorem 6.3, with
√
H(n) instead of H(n).

Analogously to (6.8), the stability of the Schubert polynomials of the second
kind allows us to introduce their stable limits, i.e., the power series

Bw(x1, x2, . . . ) = lim
n→∞

B(n)
w (x1, . . . , xn)

=
√
H(x1, x2, . . . ) S(−x1, . . . ,−xn−1)

(7.5)

in infinitely many variables x1,x2, . . . . These power series were first defined (in a
different way) by Billey and Haiman [BH]. We will soon demonstrate the equiva-
lence of the two definitions of the Bw .

The next theorem directly relates the symmetric power series
√
H and H to each

other; this relation will enable us to establish a connection between the Schubert
polynomials of the two kinds.

7.3 Theorem. Assume that the variables x1,x2, . . . and t1,t2, . . . are related by

pk(x1, x2, . . . )

2
= pk(t1, t2, . . . ), k = 1, 3, 5, . . . ,(7.6)

where pk(x1, x2, . . . ) =
∑
xki and pk(t1, t2, . . . ) =

∑
tki are (odd) power sums.

Then √
H(x1, x2, . . . ) = H(t1, t2, . . . ) .(7.7)
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Proof.

log
(√

H(x1, x2, . . . )
)

=
1

2
log
(
H(x1, x2, . . . )

)
=

1

2
log
(∏

i

B(xi)
)

=
1

2

∑
i

log
(
B(xi)

)
=
∑
i

log
(
B(ti)

)
= log

(∏
i

B(ti)
)

= log
(
H(t1, t2, . . . )

)
.

Note that, in view of Lemma 6.1, the relation (7.6) can be regarded as a “change
of variables”. A λ-ring substitution essentially equivalent to (7.6) was first used by
Billey and Haiman [BH] in their alternative definition of the power series Bw . In
[BH], the Bw are defined, in our current notation, by∑

w

Bw(x1, x2, . . . ) w = H(t1, t2, . . . )S(−x1,−x2, . . . )(7.8)

where the xi and the tj are related to each other via (7.6). By virtue of (7.7),
this definition is equivalent to our formula (7.5). (To be precise, the definition of
Bw in [BH] differs from ours in sign. Denoting their polynomials by BBH

w to avoid
confusion, we get

BBH
w = (−1)l(w)Bw .(7.9)

We chose our definition to make it consistent with the recurrence relations (1′)
whereas the definition of [BH] respects (1).)

7.4 Relations between the type B Schubert polynomials of the two kinds.
One can directly compute the type B Schubert polynomials of the first kind from
their counterparts of the second kind, and vice versa, using the following application
of the substitution (7.6). Suppose we know a polynomial bw(t1, t2, . . . ) of the first
kind. Expand it in the basis of type An−1 Schubert polynomials, the coefficients
being symmetric functions in the ti :

bw(t1, t2, . . . ) =
∑
v∈Sn

αv(t1, t2, . . . ) Sv(t1, t2, . . . ) .(7.10)

(Such an expansion is unique and can be found, e.g., by a repeated use of di-
vided differences.) The symmetric functions αv will necessarily belong to the ring
Ω generated by the odd power sums pk. Express each αv(t1, t2, . . . ) in terms of
the pk(t1, t2, . . . ) and apply the substitution (7.6), thus obtaining the functions
γv(x1, x2, . . . ) = αv(t1, t2, . . . ). The polynomial of the second kind is now given by

Bw(x1, x2, . . . ) =
∑
v

γv(x1, x2, . . . ) Sv(x1, x2, . . . ) .(7.11)

To compute bw from Bw , one can use the same algorithm with the inverse substi-
tution.

To give an example, let us compute Bw0 in B2 . We know (see Example 6.1)

that b
(2)
w0 (t1, t2) = t1t

2
2(t1 + t2). This can be uniquely expanded in the ordinary

A1-Schubert polynomials, which are 1 and t1, with symmetric coefficients. The
expansion is

b
(2)
w0

(t1, t2) = t1t
2
2(t1 + t2) = t1t2(t1 + t2)2 · 1− t1t2(t1 + t2) · t1 .
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Denoting p1 = t1 + t2 and p3 = t31 + t32 , we obtain

α1(t1, t2) = t1t2(t1 + t2)2 = p1(p3
1 − p3)/3

and

αu1(t1, t2) = −t1t2(t1 + t2) = (−p3
1 + p3)/3 .

Now plug in p1 = (x1 + x2)/2 and p3 = (x3
1 + x3

2)/2 (cf. (7.6)) to get

γ1(x1, x2) =
1

3
· x1 + x2

2
·
((

x1 + x2

2

)3

− x3
1 + x3

2

2

)
= − 1

16
(x1 − x2)2 (x1 + x2)2

and

γu1(x1, x2) =
1

3
·
(
−
(
x1 + x2

2

)3

+
x3

1 + x3
2

2

)
=

1

8
(x1 − x2)2 (x1 + x2) .

Finally, use (7.11) to compute

B(2)
w0

(x1, x2) = −(x1 − x2)2 (x1 + x2)2/16 + x1 · (x1 − x2)2 (x1 + x2)/8

= (x1 − x2)3 (x1 + x2)/16 .

The rest of the B2-Schubert polynomials of the second kind can be computed from
the divided difference recurrence relations (1′), producing the following table:

w B
(2)
w

1 1
u0 (x1 + x2)/2
u1 x2

u0u1 −(x1 − x2)(x1 + x2)/4
u1u0 (x1 + x2)2/4
u0u1u0 −(x1 − x2)2(x1 + x2)/8
u1u0u1 −x2(x1 − x2)(x1 + x2)/4
w0 (x1 − x2)3(x1 + x2)/16

The above algorithm allows us to avoid calculations based on the expansion of
the square root in (7.1). However, the λ-ring substitution (7.6) becomes progres-
sively harder to compute, as n increases, so the computational advantages of this
approach are questionable. Another problem that we hid while treating the B2 case
(fortunately, it did not affect our computations) is that the very definition of the
substitution (7.6) is ambiguous in the case of finitely many variables, since the pk
are not algebraically independent. To resolve this problem, one can use the stability
property (7.4): increase the number of variables n (thus going to a hyperoctahedral
group Bn of a larger order) while keeping w fixed. The maximal degree of a coeffi-
cient αv in (7.10) is l = l(w). Therefore a representation of αv as a polynomial in
the pk may only involve first

⌊
l+1
2

⌋
odd power sums. If n ≥

⌊
l+1
2

⌋
or, equivalently,

2n ≥ l, then these power sums are algebraically independent. Thus an expression
for each αv is uniquely determined, and the above algorithm works. (In fact, the
inequality 2n ≥ l can be strengthened.) For w0 ∈ B2, we had n = 2 and l = 4, so
the problem did not come up.
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Type B3 Schubert polynomials B
(3)
w of the second kind can be obtained by

applying the divided difference operators to the top polynomial

B
(3)
w0

(x1, x2, x3)

= ((P 6
1 − 5P 3

1P3 + 9P1P5 − 5P 2
3 )(−x2

1x2 + (P 3
1 − P3)/3

− P 2
1 x1 + P1(x2

1 + x1x2))/45

− (P 8
1 − 7P 5

1P3 + 14P 3
1P5 + 7P3P5 − 15P1P7)x2/105

where Pk = (xk1 + xk2 + xk3)/2 for k = 1, 3, 5, 7; see (6) for the expansion of this
polynomial in the variables x1, x2, and x3.

7.5 Multiplication of the Schubert polynomials. We are now going to show
that the Schubert polynomials of the two kinds satisfy condition (2). First note
that, in view of the stability property (4) which was proved in Theorems 6.3 and
7.2, it suffices to prove (2) for the power series bw and Bw defined by (6.8) and (7.5).
In view of Theorem 7.3 (see also Subsection 7.4), the structure constants for the
bw and the Bw are the same, since they are not affected by the substitution (7.6).
Thus it sufices to prove property (2) for the power series Bw of the second kind:

BuBv =
∑
w

cwuvBw .(7.12)

A two-line proof of (7.12) (based on definition (7.8)) was given in [BH]. We repro-
duce it here to make the paper self-contained.

Recurrences (1′) imply that (7.12) holds modulo the ideal IW of B-symmetric
functions. Since both sides of (7.12) belong to the ring R = C[x1, x2, . . . ; p1, p3, . . . ],
and the only element in the intersection R ∩ IW is 0, (7.12) follows.

8. Stanley symmetric functions of type B

This section is devoted to studying the basic properties of the type B Stanley
symmetric functions Hw defined by (6.2), (4.2), and (4.1).

In the nilCoxeter case, Theorem 4.5 immediately allows us to establish the fol-
lowing connection between the Hw and the ordinary (type A) Stanley symmetric
functions Gw.

8.1 Corollary. Let x = (x1, . . . , xn). Let w be an element of the parabolic subgroup
of type An−1 of the hyperoctahedral group Bn that is generated by s1, . . . , sn−1.
Then

H(n)
w (x) = Gsuper

w (x,x)

where Gsuper
w is the super-symmetric function that canonically corresponds to the

stable Schubert polynomial Gw . (In the λ-ring notation, it means that Gsuper
w (x,y)

= Gw(x+y).)

The last formula implies that, for such w, Hw is a nonnegative integer linear
combination of Schur P -functions. (Recall that, by Lemma 6.1, any Hw is an
integer linear combination of Schur P -functions.) Tao Kai Lam [TKL1], [TKL2] has
recently found a proof that, in fact, Hw is always a nonnegative integer combination
of P -functions (see also [BH]).

It can be shown that the [skew] P -functions themselves are a special case of
the Hw. To do that, we generalize, in a more or less straightforward way, the
corresponding Sn-statement about 321-avoiding permutations (see [BJS]).
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8.2 Theorem. Let σ be a skew shifted shape presented in a standard “English”
notation (see, e.g., [SS]). Define a “content” of each cell of σ to be the difference
between the number of column and the number of row which this cell is in. (For
example, the content of a cell lying on the main diagonal is 0.) Read the contents
of the cells of σ column by column, from top to bottom; this gives a sequence a1,
. . . , al. Define an element wσ of the hyperoctahedral group Bn by wσ = sa1 · · · sal
(in fact, a1, . . . , al is a reduced decomposition of wσ). Then Hwσ = Pσ where Pσ
is the skew Schur P -function corresponding to the shape σ.

One could also ask: which elements w ∈ Bn can be represented as wσ (see
Theorem 8.2)? The answer (informal though unambigous) is: those w which avoid
the following patterns:

3 2 1 3 2 1 3 2 1 3 2 1 1 2 1 2

where i denotes the element i of a signed permutation that has changed its sign.
Technical proofs of the last statement and of Theorem 8.2 are omitted.

Similarly to the type A case, the symmetric functions H
(n)
w can be obtained as

some kind of limit of b
(m)
w as m→∞.

8.3 Theorem. For w ∈ Bn,

lim
N→∞

b(n+N)
w (0, . . . , 0︸ ︷︷ ︸

N

, x1, . . . , xn) = H(n)
w (x1, . . . , xn) .

Furthermore: if N ≥ n− 1, then

b(n+N)
w (0, . . . , 0, x1, . . . , xn) = H(n)

w (x1, . . . , xn) .

Proof. Similar to the proof of Theorem 6.3.

Here is another useful property of the polynomials Hw .

8.4 Lemma. H
(n)
w = H

(n)
w−1 .

Proof. Follows from the symmetry of the defining configuration for H(n) (see Fig-
ure 7).

One can also study the Stanley symmetric functions “of the second kind” defined

by expanding the symmetric expression
√
H(n) (cf. Section 7) in the basis of group

elements. These symmetric functions can be viewed as stable Schubert polynomials
(of the second kind); they clearly are linear combinations of Schur P -functions with
rational coefficients.

9. On Schubert polynomials of the third kind

In this section, we introduce a family of polynomials C
(n)
w which we call the type

C Schubert polynomials of the third kind. For these polynomials, the respective
versions of properties (0) and (1′) are immediate from their definition; we will
also prove property (4). Unfortunately, we were unable to prove (3), which would
provide a solution to Problem 0-1-3-4 of the Introduction2. However, we found
significant computational evidence that condition (3) is indeed satisfied by these

2This was recently proved by Tao Kai Lam.
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polynomials. The type B Schubert polynomials of the third kind B
(n)
w are then

defined by

B(n)
w = 2−σ(w)C(n)

w(9.1)

where σ(w) denotes the number of sign changes in w. It will immediately follow that
the Bw satisfy the type B conditions (0), (1′), and (4), and, under the conjecture
stated above, have nonnegative coefficients which are multiples of 2−l(w).

First, let us make clear what are the type C divided differences. For i ≥ 1, they
are the same ∂i as before. For i = 0, define

∂C0 f =
∂0f

2
=
f(x1, x2, . . . )− f(−x1, x2, . . . )

−2x1
(9.2)

which explains (9.1). Now set

C(n)
w0

= b(n)
w0

=
n∏
k=1

(xk)k
∏

1≤i<j≤n
(xi + xj)(9.3)

and define the rest of the C
(n)
w by applying the type C divided differences to the

top polynomial C
(n)
w0 given by (9.3), in accordance with (1′).

9.1 Example. For n = 2, we have C
(2)
w0 = x1x

2
2(x1 + x2). Applying the divided

differences −∂C0 and −∂1 (cf. (1′)), we obtain the following table:

w C
(2)
w

1 1
u0 x1 + x2

u1 x2

u0u1 x2
2

u1u0 x2
1 + x1x2 + x2

2

u0u1u0 x1x2(x1 + x2)
u1u0u1 x3

2

w0 x1x
2
2(x1 + x2)

Using (9.1), we then compute the Schubert polynomials of the third kind of type
B2:

w B
(2)
w

1 1
u0 (x1 + x2)/2
u1 x2

u0u1 x2
2/2

u1u0 (x2
1 + x1x2 + x2

2)/2
u0u1u0 x1x2(x1 + x2)/4
u1u0u1 x3

2/2
w0 x1x

2
2(x1 + x2)/4

The table of the type C3 Schubert polynomials of the third kind is given in
Figure 10.
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w C
(3)
w

123 1
123 x1 + x2 + x3

213 x2 + x3

132 x3

213 x2
3 + x2

2 + x2x3

132 x2
1 + x3x1 + 2x2

3 + x2
2 + x2x3

213 x2
1 + x2x1 + x3x1 + x2

3 + x2
2 + x2x3

231 x2
3

312 x2
1 + x2

3 + x2
2 + x2x3

213 x2
1x2 + x2

1x3 + x2
3x1 + x1x2

2 + x2x3x1 + x2
3x2 + x2

2x3

231 x3
3

312 (x2 + x3)(x2
1 + x2

3 + x2
2 + x2x3)

123 x3
3 + x2

3x2 + x3
2 + x2

2x3

231 x3(x2
1 + x3x1 + x2

3 + x2
2 + x2x3)

321 x3(x2
1 + x2

3 + x2
2 + x2x3)

312 x3
1 + x2

1x2 + x2
1x3 + x2

3x1 + x1x2
2 + x2x3x1 + x3

3 + x2
3x2 + x3

2 + x2
2x3

123 x3
3x1 + x2x3

3 + x2
1x

2
3 + 2x2

2x
2
3 + x2

3x2x1 + x3
2x3 + x2x2

1x3 + x1x2
2x3 + x2

1x
2
2 + x1x3

2

231 x2
3(x2

1 + x3x1 + x2
2 + x2x3)

321 x2
3(x2

1 + x2
3 + x2

2 + x2x3)
312 (x1 + x2 + x3)(x2

3x1 + x2
3x2 + x2

1x3 + x2
2x3 + x2

1x2 + x1x2
2)

132 x4
3

321 x2x3
3 + x2

1x
2
3 + 2x2

2x
2
3 + x3

2x3 + x2x2
1x3 + x2

1x
2
2

321 x3
1x3 + 2x2

1x
2
3 + x2

1x
2
2 + x2x2

1x3 + x2
3x2x1 + x3

3x1 + x1x2
2x3 + x4

3 + 2x2
2x

2
3 + x2x3

3 + x3
2x3

132 x2x3
3 + x3

2x3 + x4
2 + x4

3 + x2
2x

2
3

132 x3
3(x2

1 + x3x1 + x2
2 + x2x3)

321 x2x3(x2 + x3)(x2
1 + x2x3)

321 x3(x3
1x3 + 2x2

1x
2
3 + x2

1x
2
2 + x2x2

1x3 + x2
3x2x1 + x3

3x1 + x1x2
2x3 + 2x2

2x
2
3 + x2x3

3 + x3
2x3)

132 x4
3x1 + x4

3x2 + x3
3x

2
1 + 2x2

2x
3
3 + x3

3x2x1 + x2x2
1x

2
3 + 2x3

2x
2
3+

x2
3x1x2

2 + x4
2x3 + x2

1x
2
2x3 + x1x3

2x3 + x2
1x

3
2 + x1x4

2

312 x3
3(x2

1 + x2x3 + x2
2)

321 x1x2x3(x1 + x2 + x3)2 + x3
1x

2
3 + x3

1x
2
2 + x3

3x
2
1 + x2

1x
3
2 + x3

2x
2
3 + x2

2x
3
3

231 x4
3x2 + x3

3x
2
1 + 2x2

2x
3
3 + x2x2

1x
2
3 + 2x3

2x
2
3 + x4

2x3 + x2
1x

2
2x3 + x2

1x
3
2

123 x5
3

312 x2x2
3(x2 + x3)(x2

1 + x2x3)
321 x1x2x3(x1 + x2)(x2 + x3)(x1 + x3)
231 x2x3(x2 + x3)2(x2

1 + x2x3)
123 (x2

1 + x3x1 + x2
2 + x2x3)x4

3

312 (x3
1x3 + x2

1x
2
3 + x2

1x
2
2 + x2x2

1x3 + x2
3x2x1 + x1x2

2x3 + x2
2x

2
3 + x3

2x3)x2
3

231 x2
1x

4
3 + x1x2x4

3 + x2
2x

4
3 + x3

1x
3
3 + 2x3

2x
3
3 + 2x2

1x2x3
3 + 2x1x2

2x
3
3 + 3x2

1x
2
2x

2
3 + x4

2x
2
3+

x3
1x

2
3x2 + 2x2

3x1x3
2 + 2x2

1x
3
2x3 + x1x4

2x3 + x3
1x

2
2x3 + x2

1x
4
2 + x3

1x
3
2

213 x4
3(x2

1 + x2x3 + x2
2)

312 x1x2x2
3(x1 + x2)(x2 + x3)(x1 + x3)

231 x1x2x3(x2 + x3)2(x1 + x2)(x1 + x3)
213 x2x3

3(x2 + x3)(x2
1 + x2x3)

132 x2
2x

2
3(x2 + x3)(x2

1 + x2x3)
213 x3

3(x3
1x3 + x2

1x
2
3 + x2

1x
2
2 + x2x2

1x3 + x2
3x2x1 + x1x2

2x3 + x2
2x

2
3 + x3

2x3)
132 x1x2

2x
2
3(x1 + x2)(x2 + x3)(x1 + x3)

213 x1x2x3
3(x1 + x2)(x2 + x3)(x1 + x3)

123 x2
2x

3
3(x2 + x3)(x2

1 + x2x3)
123 x1x2

2x
3
3(x1 + x2)(x2 + x3)(x1 + x3)

Figure 10. Type C3 Schubert polynomials of the third kind
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The polynomials C
(n)
w and B

(n)
w are obviously homogeneous of degree l(w) and,

by definition, they satisfy the respective recurrences (1′). We are now going to

prove the stability property (4); this will also imply that C
(n)
1 = B

(n)
1 = 1, since

we have already checked it for n = 2.
To prove stability, we need to demonstrate that the rule (9.3) is consistent with

the divided difference recurrences. This is shown in the following theorem.

9.2 Theorem. Let w = w
(n−1)
0 be the element of maximal length in the parabolic

subgroup Bn−1 ⊂ Bn generated by s1, . . . ,sn−2. Then

C(n)
w (x1, . . . , xn−1, 0) = C(n−1)

w (x1, . . . , xn−1) .(9.4)

Proof. Let us observe that the elements of maximal length in Bn−1 and Bn are
related by

w
(n)
0 = w

(n−1)
0 sn−1sn−2 · · · s1s0s1 · · · sn−2sn−1 .(9.5)

This allows to restate (9.4) as

(−∂n−1 · · · ∂1∂
C
0 ∂1 · · ·∂n−1fn)(x1, . . . , xn−1, 0) = fn−1(x1, . . . , xn−1)(9.6)

where we used the notation

fn(x1, . . . , xn) =
n∏
k=1

(xk)k
∏

1≤i<j≤n
(xi + xj)(9.7)

(cf. (9.3)). Keeping in mind that symmetric functions behave as constants with
respect to divided differences, we first obtain

(−1)n−1∂1 · · · ∂n−1fn = x1x2x
2
3 · · ·xn−1

n

∏
1≤i<j≤n

(xi + xj) = x1F

where

F = x2x
2
3 · · ·xn−1

n

∏
1≤i<j≤n

(xi + xj) .(9.8)

Then, by the Leibniz rule,

(−1)n∂C0 ∂1 · · · ∂n−1fn = F − x1∂
C
0 F .(9.9)

Thus the claim (9.6) can be reformulated as

Dn−1(F − x1∂
C
0 F )

∣∣
xn=0

= fn−1(x1, . . . , xn−1)(9.10)

where we used the notation

Dk = (−1)k∂k · · · ∂1 .

To prove (9.10), we will need the following lemma.

9.3 Lemma.

Dn−1(x2x
2
3 · · ·xn−1

n )
∣∣
xn=0

= x2x
2
3 · · ·xn−2

n−1 .(9.11)
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Proof. Induction on n. For n = 2, we check that, indeed, −∂1x2 = 1. Suppose
we know that Dn−2(x2x

2
3 · · ·xn−2

n−1) = x2x
2
3 · · ·xn−3

n−2 +xn−1f for some polynomial f .
Then

Dn−1(x2x
2
3 · · ·xn−1

n )

= −∂n−1

(
xn−1
n Dn−2(x2x

2
3 · · ·xn−2

n−1)
)

= −∂n−1

(
x2x

2
3 · · ·xn−3

n−2x
n−1
n + xn−1

n xn−1f
)

= x2x
2
3 · · ·xn−3

n−2

(
xn−2
n−1 + xn−3

n−1xn + · · ·+ xn−2
n

)
− xnxn−1∂n−1

(
xn−2
n f

)
.

Setting xn = 0, we obtain (9.11), as desired.

We continue the proof of Theorem 9.2. From (9.8) we get

∂C0 F = x2x
2
3 · · ·xn−1

n ∂C0
∏

1≤i<j≤n
(xi + xj)

and therefore

Dn−1(x1∂
C
0 F ) = Dn−1(x1x2 · · ·xn g) = x1x2 · · ·xnDn−1 g

for a certain polynomial g, implying

Dn−1(x1∂
C
0 F )

∣∣
xn=0

= 0 .(9.12)

Then

Dn−1(F − x1∂
C
0 F )

∣∣
xn=0

= Dn−1F
∣∣
xn=0

by (9.12)

=
∏

1≤i<j≤n
(xi + xj)Dn−1(x2x

2
3 · · ·xn−1

n )
∣∣∣
xn=0

by (9.8)

=
∏

1≤i<j≤n
(xi + xj)

∣∣∣
xn=0

· x2x
2
3 · · ·xn−2

n−1 by (9.11)

=
∏

1≤i<j≤n−1

(xi + xj) · x1x
2
2x

3
3 · · ·xn−1

n−1

= fn−1(x1, . . . , xn−1) , by (9.7)

proving (9.10) and hence Theorem 9.2.

10. A negative result

10.1 Lemma. Let W = B2 be the hyperoctahedral group with two generators. As-
sume that {Xw(x1, x2) : w ∈ W} is a family of polynomials satisfying condi-
tions (0) and (1a) (see Introduction) and the following instances of condition (2):
X2
s0 = Xs1s0 , Xs0Xs1 = Xs1s0 +Xs0s1 . Then

(a) for some w ∈W , the polynomial Xw has both positive and negative coefficients;
(b) for some w ∈W , the polynomial Xw has non-integer coefficients.

The same statement is true with condition (1) replaced by (1′).

Proof. Conditions (0)-(1) imply Xs0 = − 1
2 (x1 + x2) and Xs1 = −x2 . We then use

(2) to compute Xs0s1 = Xs0Xs1 − X2
s0 = 1

4 (x2
2 − x2

1), which proves both (a) and
(b).
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The second version of the lemma is equivalent to the first one, under the trans-
formation (7.9).
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