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Abstract

Informally, an error-correcting code has “nice” list-decodability properties if every Hamming ball of
“large” radius has a “small” number of codewords in it. Here, we report linear codes with non-trivial
list-decodability: i.e., codes of large rate that are nicely list-decodable, and codes of large distance that
are not nicely list-decodable.

1 Introduction
List decoding was introduced independently by Elias [3] and Wozencraft [15] as a relaxation of the “classi-
cal” notion of decoding by allowing a list of codewords as answers. The decoding is considered successful
as long as the correct message is included in the list. Formally, an instance of the list decoding problem for
a code C consists of a received word r and an error bound e, and the goal is to output a list of all codewords
of C that are within a Hamming distance of e from r.

Early works in this area [3, 15, 10] focused on the probability of error in this more general decoding
model. Research in the eighties applied this notion in a more adversarial setting and investigated what
happens if the error is effected by an adversary or a “jammer”, as opposed to a probabilistic channel. Works
of Zyablov and Pinsker [16], Blinovskii [1] and Elias [4] applied in this setting. (The paper by Elias [4]
also gives a very good summary of the prior work and history.) The basic (purely combinatorial) question
raised in this setting is: How many errors could still be recovered from, with lists of small size? Two basic
parameters of interest thus are the number of errors and the allowed size of the output list. These parameters
are usually studied as a function of some of the more classical parameters of error-correcting codes. How
large can the rate of a code be if we want small list sizes for a certain number of errors? And how do codes of
large minimum distance perform with respect to list decoding? Recently there has been rejuvenated interest
in this line of work thanks to the development of some efficient algorithms for list decoding in [12, 6, 11, 7].
These algorithms decode with polynomial sized lists (and sometimes with constant sized lists) for a number
of errors that is much more than half the minimum distance of the code, and investigations of the tightness of
the algorithms have led Hoholdt and Justesen [9] to re-initiate the investigation of the combinatorial bounds
on list decoding.
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In this paper we continue the investigation of bounds on list decoding. In particular, we investigate
codes that exhibit non-trivial list decoding performance. Specifically, we report the existence of linear codes
of large rate that are nicely list-decodable, and codes of large minimum distance which are not nicely list-
decodable (the precise quantitative versions of these results are stated in the next section). To motivate this
study we first fix some standard notation and then define two fundamental questions (parameters) to study
in the context of list decoding.

2 Definitions and Main Results
For a prime power q, let Fq denote a finite field of cardinality q. An [n, k]q (linear) codeC is a k-dimensional
vector space in Fn2 . Unless explicitly mentioned otherwise, throughout this paper, we will only be interested
in linear codes and will moreover restrict ourselves to the binary case (when q = 2).

For vectors x, y ∈ Fn2 , let distance(x, y) denote the Hamming distance between them. The minimum
distance of a code C, denoted distance(C), is the quantity minx,y∈C,x6=y{distance(x, y)}.

Since the main thrust of this paper is the asymptotic performance of the codes, we define analogs of
the quantities above for infinite families of codes. An infinite family of (binary) codes is a family C =
{Ci|i ∈ Z+} where Ci is an [ni, ki]2 code with ni > ni−1. We define the rate of an infinite family
of codes C to be rate(C) = infi

{
ki
ni

}
, and the (relative) distance of an infinite family of codes C to be

∆(C) = infi
{

distance(Ci)
ni

}
.

We now define the list decoding radius of a code. For non-negative integer r and x ∈ Fn2 , let B(x, r)
denote the ball of radius r around x, i.e., B(x, r) = {y ∈ Fn2 |distance(x, y) ≤ r}.

Definition 1 (List decoding Radius) For an [n, k] binary code C, and list size `, the list of ` decoding
radius of C, denoted radius(C, `) is defined to be

radius(C, `) = max {e|∀x ∈ Fn2 , |B(x, e) ∩ C| ≤ `} .

For a function ` : Z+ → Z+, and an infinite family of codes C, let the list of ` decoding radius of C, denoted
Rad(C, `) be the quantity

Rad(C, `) = inf
i

{
radius(Ci, `(ni))

ni

}
.

It is interesting to study the list decoding radius of infinite families of codes as a function of their distance
and rate, when the list size is either bounded by a constant, or grows as polynomially in the length of the
code. Within this scope the broad nature of the two main questions are: (1) Do there exist codes of large
rate with large list decoding radius for a fixed function `? and (2) Do there exist codes of large distance
with small list decoding radius for a given function `? Note that the other two questions are uninteresting:
specifically, it is possible to construct codes of small rate that have small list decoding radius (for example,
by taking a linear code and just adding few codewords at a small distance to some existing codeword); and it
is possible to construct codes of small distance that have large list decoding radius even for lists of size 2 (for
example by taking a code of large minimum distance and adding one codeword at a small distance to some
existing codeword). In what follows we introduce some formal parameters to study the above questions.



2.1 List decoding radius vs. Rate of the code
Definition 2 (Upper bound on list decoding radius) For real rate 0 ≤ R ≤ 1 and list size l : Z+ → Z+,
the upper bound on list of ` decoding radius for (binary) codes of rate R, denoted U`(R), is defined to be

U`(R) = sup
C | rate(C)≥R

Rad(C, `).

Note that the reason for the term “upper bound” is that U`(R) is the list decoding radius of the best code (i.e.
one with largest possible list decoding radius) among codes that have at least a certain rate. The case where
the list size function is a constant or a polynomial is of special interest to us, and we consider the following
definitions.

Definition 3 For real rate 0 ≤ R ≤ 1 and constant c, the quantity U const
c (R) is defined to be U`(R)

where `(n) = c. The quantity Upoly
c (R) is defined to be supc1 U`c1 (R) where `c1(n) = c1n

c. The quantity

U const(R) (resp. Upoly(R)) will denote the quantity lim supc→∞{U const
c (R)} (resp. lim supc→∞{U

poly
c (R)}).

Thus the quantities U const(R) and Upoly(R) denote the maximum possible value of the (relative) list decod-
ing radius for lists of constant and polynomial size, respectively. These quantities are actually surprisingly
well-understood. Zyablov and Pinsker [16] showed that U const(R) = Upoly(R) = H−1(1 − R) which
matches the Gilbert-Varshamov bound (here H(·) is the binary entropy function: H(x) = −x lg x − (1 −
x) lg(1 − x)). The behavior of the upper bound on list decoding radius for lists of size c, for specific con-
stants c, however, was not known completely. The results of Zyablov and Pinsker [16], stated in our notation,
showed that

U const
c (R) ≥ H−1(1− 1

lg(c+ 1)
−R) , (1)

(this result clearly implies the above-mentioned result U const(R) = H−1(1− R)) and Elias [4] had shown
(again rephrased in our notation) that

U const
c (R) ≥ 1

2

(
1−

√
1− 2(c− 1)

c
H−1(1−R)

)
. (2)

Here we improve the bounds significantly and show the following. In particular this answers the main open
question posed by Elias [4] on whether the bound (1) can be improved.

Theorem 4 For each fixed integer c ≥ 1, and rate 0 < R < 1, U const
c (R) ≥ H−1(1− 1

c −R).

We prove this theorem using the probabilistic/greedy method. We stress that our result is only existential
and not constructive. Surprisingly our proof does not give a high-probability result; and it is open whether
a random code satisfies the above trade-off between rate and list decoding radius with high probability
(the result of Equation (1) above is a high-probability result). For general non-linear codes, the bound of
Theorem 4 is shown in [4] and in fact holds with high probability for a random code.

All the above results (including ours from Theorem 4) provide lower bounds on U const
c (·) (except for

the simple upper bound U const
c (R) ≤ Upoly(R) ≤ H−1(1 − R)). The results of Blinovskii [1] imply non-

trivial upper bounds onU const
c (·) for fixed constants c. His results are not easily stated, but they do imply that

U const
c (R) is strictly less thanH−1(1−R) for every c,R, and thus in order to achieve the Gilbert-Varshamov

bound, we have to allow an unbounded number of elements in the list.

Theorem 5 [Follows from [1]] For every c ≥ 1 and 0 < R < 1, we have U const
c (R) < H−1(1−R).



Comment on Theorem 4: Suppose we want a binary code family C with Rad(C, `) = (1/2 − ε) for
some constant ε > 0 and where ` is the constant function `(n) = c ∀n. Then Theorem 4 tells us that
such code families with rate Ω(ε2) exist for a list size of c = O(ε−2). We remark that the result of Elias
(Equation 2) would give code families of rate Ω(ε4) for a list size c = O(ε−2), while that of Zyablov and
Pinsker (Equation 1) would give code families of rate Ω(ε2) but with a much worse list size of c = 2O(ε−2).
One can also show using the results of Blinovskii [1] that in order to have such families C with rate(C) > 0,
we must have c = Ω(ε−2). In this sense, the result of Theorem 4 is asymptotically the best possible (for
example, the 1/c “loss” term cannot be improved to 1/c1+γ for any positive γ).

2.2 List decoding radius vs. Distance of the code
Next we move on to lower bounds on the list decoding radius. As mentioned earlier, it makes sense to
study this as a function of the minimum distance of the code. A large minimum distance implies a large list
decoding radius by existing combinatorial bounds (see for example [5]), and we want to find the smallest
possible list decoding radius for a code of (at least) a certain minimum distance. This motivates the next
definition.

Definition 6 (Lower bound on list decoding radius) For a distance 0 ≤ δ ≤ 1, and list size ` : Z+ →
Z+, the lower bound on list of ` decoding radius for (binary) codes of distance δ, denoted L`,q(δ), is defined
to be

L`(δ) = inf
C | ∆(C)≥δ

Rad(C, `).

Note that both in the case of the upper bound function U` and the lower bound function L` one could
allow the arguments, i.e., rate and distance to be functions of n, in which case the supremum would be taken
over codes C that satisfy rate(Ci) ≥ R(ni) · ni (or in the case of the lower bound function, we would take
the infimum over codes that satisfy ∆(Ci) ≥ δ(ni) · ni).

As in the case of the upper bound function, we introduce notation to study the special cases when the
list size is a constant or grows as a polynomial.

Definition 7 For real distance 0 ≤ δ ≤ 1/2 and constant c, the quantity Lconst
c (δ) is defined to be L`(δ)

where `(n) = c. The quantity Lpoly
c (δ) is defined to be supc1 L`c1 (δ) where `c1(n) = c1n

c. The quantity

Lconst(δ) (resp. Lpoly(δ)) will denote the quantity lim supc→∞{Lconst
c (δ)} (resp. lim supc→∞{L

poly
c (δ)}).

Note that we restrict δ ≤ 1/2 since binary codes with minimum distance δ > 1/2 have only a polynomial
number of codewords and are thus not interesting. It is clear that L1(δ) = δ/2. It is also easy to see that
Lpoly(δ) ≤ δ (since there exist codes of minimum distance δ with super-polynomially many codewords
at minimum distance.) Thus all lower bounds of interest lie in the range [δ/2, δ]. The exact values are,
however, mostly unknown. The main motivation for our work is the following conjecture.

Conjecture 8 For every 0 < δ < 1/2, Lconst(δ) = Lpoly(δ) = 1
2 · (1−

√
1− 2δ).

Evidence in support of the conjecture comes piecemeal. Firstly, it is known that Lpoly(δ) ≥ Lconst(δ) ≥
Lconst

2 (δ) ≥ 1
2 ·
(

1 −
√

1− 2δ
)

(see for example [5]). Upper bounds on Lpoly and Lconst are not as well
studied. Justesen and Hoholdt [9] demonstrate some MDS code families C of distance δ with Rad(C, c) ≤
(1 −

√
1− δ), but this does not apply for codes over any fixed size alphabet, and in particular for binary

codes.



The quantity Lpoly(δ) is even less well understood. When δ is either very large (of the form 1/2− o(1))
or very small (of the form o(1)), there is some evidence confirming this bound. In particular, Dumer et al. [2]
construct a family of linear codes C, for any ε > 0, for which δ(n) = nε−1 and Lpoly(δ) ≤ δ/(2− ε) which
matches the conjecture above reasonably closely. In unpublished work, Ta-Shma and Zuckerman [13] show
that for every ε > 0, Lpoly(1

2(1 − nε−1/2)) ≤ 1
2(1 − 1

3εn
ε−1/2). This seems to show that the tangent of

the curve Lpoly(δ) has infinite slope as δ → 1/2, which is consistent with the conjecture above (and thus
mild evidence in favor of the conjecture). One additional reason for believing in the conjecture is that if the
definition of codes is extended to allow non-linear codes, then indeed it is known that the conjecture is true
(see for example [5]). All this evidence adds support to the conjecture, however remains far from proving it.
In fact till this paper it was not even known if Lpoly

c (δ) < δ. The following theorem resolves this question.

Theorem 9 For every c and every δ, we have Lpoly
c (δ) < δ.

Further, for the case δ = 1
2 · (1− o(1)), we actually get close to proving the above conjecture. The theorem

below follows from Lemma 12 which is stated and proved in Section 3.3.

Theorem 10 For δ = 1
2(1 − o(1)) for some (explicitly given) o(1) function, for every ε > 0, we have

Lpoly(δ) ≤ 1
2 [1− (1− 2δ)1/2+ε].

Organization of the Paper. We study the lower bound functions Lpoly(δ) and Lpoly
c (δ) in Section 3 and

prove Theorems 9 and 10. In Section 4, we study the function U const
c (R) and prove Theorem 4.

3 List Decoding Radius and Minimum Distance
We now prove upper bounds on the function Lpoly(δ) claimed in Theorems 9 and 10. We will first prove
Theorem 10 which shows that when δ = 1

2 · (1 − o(1)), one “almost” has a proof of Conjecture 8. A
modification of this proof will also yield the proof of Theorem 9. We first review the basic definitions and
concepts from (Discrete) Fourier analysis that will be used in our proof.

3.1 Fourier analysis and Group characters
For this section, it will be convenient to represent Boolean values by {1,−1} with 1 standing for FALSE

and −1 for TRUE. This has the nice feature that XOR just becomes multiplication. Thus a binary code of
blocklength m will be a subset of {1,−1}m. There are 2t linear functions χα : {0, 1}t → {1,−1} on t-
variables, one for each α ∈ {0, 1}t. The function χα is defined by χα(x) = (−1)α·x = (−1)

P
αixi . Fixing

some representation of the field GF(2t) as elements of {0, 1}t, the linear functions χα are the additive
characters of the field GF(2t), and can also be indexed by elements α ∈ GF(2t). We will do so in the rest
of the paper. We also have, for each y ∈ GF(2t),

∑
α χα(y) equals 0 if y 6= 0 and 2t if y = 0, where the

summation is over all α ∈ GF(2t).
We can define an inner product 〈f, g〉 for functions f, g : GF(2t) → R as 〈f, g〉 = 2−t

∑
x f(x)g(x).

The linear functions form an orthonormal basis for the space of real-valued functions on GF(2t) with respect
to this inner product. Thus every real-valued function on GF(2t), and in particular every Boolean function
f : GF(2t)→ {1,−1} can be written in terms of the χα’s as: f(x) =

∑
α∈GF(2t) f̂αχα(x). The coefficient

fα is called the Fourier coefficient of f with respect to α and satisfies f̂α = 〈f, χα〉 = 2−t
∑

x f(x)χα(x).
If we define the distance between functions f, g as ∆(f, g) = Pr

x
[f(x) 6= g(x)], then f̂α = 1− 2∆(f, χα).

The Fourier coefficients of a Boolean function also satisfy the Plancherel’s identity
∑

α f̂
2
α = 1.

Hadamard code: For any integer t, the Hadamard code Hadt of dimension t maps t bits (or equivalently
elements of GF(2t)) into {1,−1}2t

as follows: For any x ∈ GF(2t), Hadt(x) = 〈χα(x)〉α∈GF(2t).



3.2 Idea behind the Construction
Since our aim is to prove lower bounds on the list decoding radius we must construct codes with large
minimum distance with a large number of codewords in a ball of desired radius. The specific codes we
construct are obtained by concatenating an outer Reed-Solomon code over a finite field F = GF(2t)
with the Hadamard code Hadt of blocklength 2t and dimension t. Thus the messages of this code will
be degree ` polynomials over GF(2t) for some `, and such a polynomial P is mapped into the codeword
〈Hadt(P (z1)), . . . ,Hadt(P (z2t))〉 where z1, z2, . . . , z2t is some enumeration of the elements in GF(2t).

It is easy to see that this code has blocklength 22t and minimum distance 1
2(1− `

n)22t. If ` = (1− 2δ)n,
then the relative minimum distance is δ, and for future reference we denote this code by RS-HADt(δ).

To construct the received word (which will be the center of the Hamming ball with a lot of codewords),
consider the following. Suppose we could pick an appropriate subset S of GF(2t) and construct a Boolean
function f : GF(2t) → {1,−1} that has large Fourier coefficient f̂α with respect to α for α ∈ S. Let
v ∈ {1,−1}2t

be the 2t-dimensional vector consisting of the values of f on GF(2t). The word v|F |, i.e.,
v repeated |F | times will be the “received word” (the center of the Hamming ball which we want to show
has several codewords). Since f has large Fourier support on S, v|F | will have good agreement with all
codewords that correspond to messages (polynomials) P that satisfy P (zi) ∈ S for many field elements
zi. By picking for the set S a multiplicative subgroup of GF(2t) suitable size, we can ensure that there are
several such polynomials, and hence several codewords in the concatenated code with good agreement with
v|F |.

The main technical component of our construction and analysis is the following Theorem which asserts
the existence of Boolean functions f with large support on subgroups S of GF(2t). We will defer the proof
of the theorem to Section 3.5, and first use it to prove Theorems 10 and 9.

Theorem 11 There exist infinitely many integers s with the following property: For infinitely many integers
t, there exists a multiplicative subgroup S of GF(2t) of size s such that the following holds: For every β 6= 0
in GF(2t) there exists a function f : GF(2t) → {1,−1} with

∑
α∈βS f̂α ≥

√
s
3 . (Here βS denotes the

coset {βx : x ∈ S} of S.)

Remarks: Our proof of the above theorem in fact gives the following additional features which we make
use of in our applications of the theorem.

1. The integers s exists with good density; in particular for any integer k ≥ 4, there exists an s, with
k ≤ s < 3k, that satisfies the requirements of Theorem 11.

2. We can also add the condition that there exist infinitely many t including one that is at most s, and the
theorem still holds.

For any subset S ⊆ GF(2t), one can show that
∑

α∈S f̂α is at most |S|1/2 using Plancherel’s identity
and Cauchy-Schwartz, and Theorem 11 shows that we can achieve a sum of Ω(|S|1/2) infinitely often for
appropriate multiplicative subgroups S.

3.3 Proof of Theorem 10
We now employ Theorem 11 to prove Theorem 10. We in fact prove the following Lemma which clearly
establishes Theorem 10.

Lemma 12 For every ε > 0, there exist infinitely many t such that the following holds: Let N = 22t. There
exists a vector r ∈ {1,−1}N and δ = 1

2(1− (logN)−e) for some e < 1, such that the number of codewords
C of the code RS-HADt(δ) with distance(r, C) ≤ N

2 (1− (1− 2δ)1/2+ε) is at least NΩ(logε N).



Proof: Let s, t be any pair of integers guaranteed by Theorem 11 with t ≤ s (we are using one of the remarks
following Theorem 11 here). Let S be a multiplicative subgroup of GF(2t) of size s and f : GF(2t) →
{1,−1} a function such that ∑

α∈S
f̂α ≥

√
s

3
. (3)

Let n = 2t, N = 22t and p = (n − 1)/s. Then S ∪ {0} consists of all elements in GF(2t) which are p’th
powers of some element of GF(2t).

We first fix the “received word” r. Let v ∈ {1,−1}n be the vector 〈f(x)〉x∈GF(2t) of all values of f .
Then r = vn, i.e. the vector v repeated n = 2t times, one for each position of the outer Reed-Solomon
code.

Let δ be a parameter to be specified later and ` = (1−2δ)n. Consider the binary code C = RS-HADt(δ)
obtained by concatenating a Reed-Solomon code of dimension ` + 1 = (1 − 2δ)n + 1 over GF(2t) with
Hadt. C has blocklength N and minimum distance δN . We now want to demonstrate several codewords
in C that are “close” to r. We prove this picking codewords in C at random from some distribution and
showing that the agreement with r is “large” with good probability.

Let m = b`/pc and consider a message (degree ` polynomial over GF(2t)) P of C which is of the form
P (x) = R(x)p for a random polynomial R of degree at most m over GF(2t). The Reed-Solomon encoding
(b1, b2, . . . , bn) of P satisfies bi ∈ S ∪ {0} for every i, 1 ≤ i ≤ n. Moreover, for each i and each a ∈ S,
we have Pr[bi = a] = p/n, and Pr[bi = 0] = 1/n. Further, the choices of bi are pairwise independent.
Now, using Equation (3) and a simple probabilistic analysis one can show that, for large enough N , with
probability at least 1/2 (over the choice of the polynomial R), the encoding of P differs from r in at most
(1

2 −
1

2
√

4s
)N codeword positions.

We thus get at least 1
2n

m codewords in a ball of radius (1
2 −

1
2
√

4s
)N . We now pick parameters suitably

to conclude the result. We have t = 1
2 logN and s ≥ t. Picking m ≤ sε, we have (1 − 2δ) ' m/s =

sε−1 ≥ logeN for some constant e < 1, and we can thus have a minimum distance of δ = 1
2(1−(logN)−e)

for some e < 1. Also for ε small enough, (1 − 2δ)1/2+ε ' s(ε−1)(1/2+ε) ≤ (4s)−1/2 and thus we have
Ω(nm) = NΩ(logε N) codewords in a Hamming ball of radius N

2 (1− (1− 2δ)1/2+ε). 2

3.4 Proof of Theorem 9

We now turn to obtaining upper bounds on Lpoly
c (δ) for a fixed constant c. One way to achieve this would be

to pick m ' 2c in the above proof, and then pick s ' 2c/(1−2δ) and this would give (roughly) Lpoly
c (δ) ≤

1
2(1 −

(
1−2δ

6c

)1/2
). However this upper bound is better than δ only for δ large enough, specifically for

δ > 1
2 −

1
12c . We thus have to modify the construction of Lemma 12 in order to prove Theorem 9. We prove

the following lemma which will in turn imply Theorem 9. Since our goal was only to establish Theorem 9,
we have not attempted to optimize the exact bounds in the lemma below.

Lemma 13 For every c and every δ, we have

Lpoly
c (δ) ≤ min

0≤α≤1/2−δ

{
(δ + α)(1− (

α

12(2c+ 1)
)1/2)

}
.

Proof of Lemma 13: To prove the claimed upper bound on Lpoly
c (δ), we will closely follow the construction

from the proof of Lemma 12. Let 0 < δ < 1/2, 0 ≤ α ≤ (1/2 − δ), and c be given. Define α′ = 2α and
pick an integer s, 2(2c + 1)/α′ ≤ s < 6(2c + 1)/α′ such that the conditions of Theorem 11 are met (we



know such an s exists by the remarks following Theorem 11). Let t be any integer for which a subgroup S
of GF(2t) exists as guaranteed by Theorem 11 (there are once again infinitely many such values of t).

Now we describe the actual construction for a particular δ, α′, s, t. Let n = 2t, N = n2 and p =
(n− 1)/s. Let S be a multiplicative subgroup of GF(2t) of size s. As in the proof of Lemma 12, the code
will again be RS-HADt(δ) (the messages of the code will thus be polynomials over GF(2t) of degree at
most ` = (1 − 2δ)n and the code has blocklength N ). The only change will be in the construction of the
received word r. Let B = (1− 2δ − α′)n. We set the first B blocks of r to be all zeroes. The last (n−B)
blocks of r will be vectors v(i) ∈ {1,−1}2t

, B < i ≤ n, defined as follows. Let z1, z2, . . . , zB be the B
elements of GF(2t) that correspond to the first B positions of the Reed-Solomon code. For B < i ≤ n,
define βi = (zi − z1) · · · (zi − zB), and f (i) : GF(2t) → {1,−1} be a function with large Fourier support
on the coset βiS of S as guaranteed by Theorem 11; i.e.

∑
α∈βiS

f̂
(i)
α ≥

√
s/3. We set v(i) to be the table

of values of f (i).
Let m = 2c + 1. We will consider the messages corresponding to polynomials of the form P (x) =

(x − z1) · · · (x − zB)R(x)p where z1, . . . , zB of GF(2t) are the B elements of GF(n) that correspond
to the first B positions of the Reed-Solomon code and R is a random degree m polynomial. Note that
degree(P ) = B + pm = ` − α′n + n−1

s (2c + 1) ≤ ` since we picked s ≥ 2(2c + 1)/α′. Note that the
encoding of every such P agrees with r in the first B blocks.

Using arguments similar to those in the proof of Lemma 12, one can show that with high probability
(say at least 1/2), the codeword P differs from r in at most E = (n − B)(1

2 −
1

2
√

4s
)n positions, and thus

there are at least 1
2n

m codewords within a ball of radius E around r. Since N = n2, m = 2c + 1 and

s < 6(2c + 1)/α′, we have ω(N c) codewords in a Hamming ball of radius N(δ + α′/2)(1 −
√

α′

24(2c+1)),

and recalling that α′ = 2α, the claimed result follows. 2 (Lemma 13)

Proof of Theorem 9: We want to prove Lpoly
c (δ) < δ. Note that when δ > 1

2−
1

48(2c+1) , setting α = 1/2−δ
gives

Lpoly
c (δ) ≤ 1

2
(1− (

1− 2δ
24(2c+ 1)

)1/2) < δ .

When δ ≤ 1
2 −

1
48(2c+1) , setting α = δ2/48(2c+ 1) (this is a valid setting since it is less than 1/2− δ), we

have Lpoly
c (δ) ≤ δ + α− δ( α

12(2c+1))1/2 < δ. Thus we have Lpoly
c (δ) < δ in either case. 2 (Theorem 9)

3.5 Proof of Theorem 11

The proof proceeds in several steps. We first state the following lemma which shows that if a subset S of
GF(2t) satisfies a certain property, then there exists a Boolean function f : GF(2t) → {1,−1} such that∑
f̂α is large when summed over α ∈ S. The proof of the lemma is omitted here for reasons of space and

can be found in the full version of the paper.

Lemma 14 For any integer t, let S be any subset of elements of the field GF(2t) such that no four (distinct)
elements of S sum up to 0. Then there exists a function f : GF(2t)→ {1,−1} with

∑
α∈S f̂α ≥

√
|S|/3.

Given the statement of Lemma 14, we next turn to constructing subgroups of GF(2t) with the property that
no four (or fewer) distinct elements of the subgroup sum up to 0. To construct such subgroups, we make use
of the following simple lemma about the existence of certain kinds of cyclic codes.

Lemma 15 Let k ≥ 4 be any integer. Then there exists an integer s in the interval [k, 3k) such that a
maximal binary BCH code of blocklength s and minimum distance at least 5 exists.



Proof: Let s be an integer of the form 2f − 3 in the range [k, 3k) (such an integer clearly exists). Let β be
the primitive s’th root of unity over GF(2) and let h be the minimal polynomial of β over GF(2). Clearly,
h(β2i

) = 0 for all i ≥ 1, and hence h(β2) = h(β4) = 0. Since β2f
= β3, we also have h(β3) = 0. Now

the consider the cyclic code Ch of blocklength s with generator polynomial h. It is clearly maximal since
h, being the minimal polynomial of β, is irreducible over GF(2). Also h(βi) = 0 for i = 1, 2, 3, 4. Using
the BCH bound on designed distance (see, for example, Section 6.6 of [14]), this implies that the minimum
distance of Ch is at least 5, as desired. 2

Lemma 16 Let k ≥ 4 be any integer. Then there exists an integer s in the interval [k, 3k) with the fol-
lowing property. For infinitely many integers t, including some integer which is at most s, there exists a
multiplicative subgroup S of GF(2t) of size s such that no four or fewer distinct elements of S sum up to 0
(in GF(2t)). Moreover, for any non-zero β ∈ GF(2t) this property holds for the coset βS as well.

Proof: Given k, let k ≤ s < 3k be an integer for which there exists a binary BCH code C of blocklength
s as guaranteed by Lemma 15 exists. Such a code is generated by an irreducible polynomial h where
h(x)|(xs − 1). Let t = degree(h); clearly t ≤ s. Consider the finite field F = F2[X]/(h(X)) which is
isomorphic to GF(2t), and consider the subgroup S of size s of F comprising of {1, X,X2, X3, . . . , Xs−1}.
The fact that C has distance at least 5 implies that

∑
i∈GX

i is not divisible by h(X) for any set G of size at
most 4, and thus no four or fewer distinct elements of S sum up to 0 in the field F . This gives us one value
of t ≤ s for which the conditions of Lemma 16 are met, but it is easy to see that any multiple of t also works,
since the same S is also a (multiplicative) subgroup of GF(2kt) for all k ≥ 1. The claim about the cosets also
follows easily, since if a1+a2+a3+a4 = 0 where each ai ∈ βS, then β−1a1+β−1a2+β−1a3+β−1a4 = 0
as well, and since β−1ai ∈ S, this contradicts the property of S. 2

We now have all the ingredients necessary to easily deduce Theorem 11.
Proof of Theorem 11: Theorem 11 now follows from Lemma 14 and Lemma 16. Note also that the
statement of Lemma 16 implies the remarks made after the statement of Theorem 11. 2 (Theorem 11)

4 List Decoding Radius vs. Rate
We now prove Theorem 4.

Proof of Theorem 4: For each fixed integer c ≥ 1 and 0 < p < 1/2, we use the probabilistic method to
guarantee the existence of a binary linear code C of blocklength n, with at most c codewords in any ball of
radius e = pn, and whose rate is k = b(1−H(p)− 1/c)nc, for all large enough n. This clearly implies the
lower bound on U const

c claimed in the statement of the Theorem.
The code C = Ck will be built iteratively in k steps by randomly picking the k basis vectors in turn.

Initially the code C0 will just consist of the all-zeroes codeword b0 = 0n. The code Ci, 1 ≤ i ≤ k, will be
successively built by picking a random (non-zero) basis vector bi that is linearly independent of b1, . . . , bi−1,
and setting Ci = span(b1, . . . , bi). Thus C = Ck is an [n, k]2 linear code. We will now analyze the list of c
decoding radius of the codes Ci, and the goal is to prove that the list of c decoding radius of C is at least e.

The key to analyzing the list of c decoding radius is the following potential function SC defined for a
code C of blocklength n:

SC =
1
2n

∑
x∈{0,1}n

2
n
c
·|B(x,e)∩C| . (4)

For notational convenience, we denote SCi be Si. Also denote by T ix the quantity |B(x, e) ∩ Ci|, so that
Si = 2−n

∑
x 2T

i
x .



Let B = |B(0, e)|; then B ≤ 2H(p)n where H(p) is the binary entropy function of p. Clearly

S0 = 1−B/2n +B2n/c/2n ≤ 1 + 2n(H(p)−1+1/c) . (5)

Now once Ci has been picked with the potential function Si taking on some value, say Ŝi, the potential
function Si+1 for Ci+1 = span(Ci ∪ {bi+1}) is a random variable depending upon the choice of bi+1.
We consider the expectation E[Si+1|Si = Ŝi] taken over the random choice of bi+1 chosen uniformly
from outside span(b1, . . . , bi). It is not difficult to show that (see the full version of the paper for details),
E[Si+1|Si = Ŝi] = Ŝ2

i if the expectation is taken over all choices of bi+1 in {0, 1}n. We now use the
simple fact that the expectation of a positive random variable taken over bi+1 chosen randomly from outside
span(b1, . . . , bi) is at most (1− 2i−n)−1 times the expectation taken over bi+1 chosen uniformly at random
from {0, 1}n. We thus get

E[Si+1|Si = Ŝi] ≤
Ŝ2
i

(1− 2i−n)
(6)

Applying (6) repeatedly for i = 0, 1, . . . , k − 1 and using the value of S0 from Equation (5), we can show,
after some calculations, that there exists an [n, k] binary linear code C with

SC = Sk ≤ 2(1 + 2 · 2k+(H(p)−1+1/c)n) ≤ 6 (7)

(the last inequality follows since k = b(1−H(p)−1/c)nc). By the definition of the potential Sk in Equation
(4), this implies that 2n/c·|B(x,e)∩C| ≤ 6 · 2n < 2n+3, or |B(x, e)∩C| < (1 + 3

n)c for every x ∈ {0, 1}n. If
n > 3c, this implies |B(x, e)∩C| < c+ 1 for every x, implying that the list of c decoding radius of C is at
least e, as desired. 2 (Theorem 4)

Remark: It turns out that the statement of Theorem 4 can be adapted to guarantee the existence of certain
(linear) codes which serve as excellent (for purposes of list decoding) inner codes in a concatenation scheme
with an outer Reed-Solomon code. This in turn gives an efficiently constructible family of binary linear codes
of rate ε4 which can be efficiently list decoded from up to a (1

2 − O(ε)) fraction of errors. This improves
upon the results claimed in [7] (the best rate achieved by [7] for such families of codes was ε6). Details of
this construction will appear in the full version of this paper.
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