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Abstract. We present upper and lower bounds for extremal problems defined for 

arrangements of lines, circles, spheres, and alike. For example, we prove that the 

maximum number of edges bounding m cells in an arrangement of n lines is 
O(m2/~n 2/~ + n), and that it is O(m2/an2/3~(n) + n) for n unit-circles, where p(n) (and 

later/~(m, n)) is a function that depends on the inverse of Ackermann's function and 

grows extremely slowly. If we replace unit-circles by circles of arbitrary radii the upper 
bound goes up to O(m3/Sn*/513(n) + n). The same bounds (without the B(n)-terms) 

hold for the maximum sum of degrees of m vertices. In the case of vertex 

degrees in arrangements of lines and of unit-circles our bounds match previous results, 

but our proofs are considerably simpler than the previous ones. The maximum sum of 

degrees of m vertices in an arrangement of n spheres in three dimensions is 
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O(m4/Tng/713(m, n) + n2), in general, and O(m3/4na/413(m, n) + n) if no three spheres 
intersect in a common circle. The latter bound implies that the maximum number of 
unit-distances among m points in three dimensions is O(m3/2fl(rn)) which improves the 
best previous upper bound on this problem. Applications of our results to other 
distance problems are also given. 

1. Introduction 

Combinatorial distance problems for finite point sets have a long history in the 

mathematical literature (see [49] and [51]). Some of this literature was originated 
by the following question asked by Paul Erdrs  in 1946 [24] (see also [25]): 

What is the maximum number of pairs in a set of m points in two (or three) 

dimensions, that are exactly at distance 1 from each other? 

By scaling we can make any distance the unit-distance, so this question is 
equivalent to asking how often the most popular distance can occur. This 

seemingly innocent problem turned out to be one of the most difficult problems in 
combinatorial geometry, and it is still far from being solved--in spite of some 
recent progress in its analysis to which this paper significantly contributes. In 
particular, we give a new and simpler proof of the O(m 4/3) upper bound in the plane 

[55] and improve the upper bound in three dimensions from O(m s/5) [10] to 
O(m3/2fl(m)), where/~(m) is an extremely slowly growing function. The two upper 

bounds are corollaries of more general results about arrangements of curves in two 

dimensions and surfaces in three dimensions obtained in this paper. We change 
gears now and introduce these more general concepts and talk about the 

philosophy that motivates and directs our work. 

Let us consider a collection H = {h 1, h 2 . . . . .  hn} of n bounded or unbounded 
(d - 1)-dimensional manifolds in the Euclidean d-dimensional space. The arrange- 
ment sg(H) is the subdivision of the space defined by these manifolds. Intuitively, 

we think of space as being filled with some solid material; the space is then "cut"  

along each of the manifolds in H, resulting in a collection of connected pieces, 
called cells or d-faces. The formal notion of an arrangement includes not only these 

"top-level" faces, but also the lower-dimensional ones that form the boundaries of 
these d-dimensional faces, as well as the incidence relationships between all these 

faces of various dimensions. Arrangements of lines and planes have been exten- 

sively considered in the literature; see [34] or [15] for further details. For  

additional material on the data structures needed to capture the topological 

information present in an arrangement, see also [35] and [14]. 

As an example, if the hi are straight lines in the Euclidean plane, then the 
arrangement of these lines is a decomposition of the plane into open convex regions 

(the 2-faces or cells), relatively open line segments bounding these convex regions 

(the 1-faces or edges), and the intersection points of the lines h~ (the O-faces or 

vertices). Every point of the plane belongs to exactly one face of the arrangement 
~¢(H) when these additional lower-dimensional faces are considered. 
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Arrangements are ubiquitous structures in geometric computing: many geomet- 
ric objects of interest can naturally be specified as a collection of cells or lower- 
dimensional faces in an appropriate arrangement. For instance, the convex hull ofn 
points in the plane corresponds to the cell containing the origin in the arrangement 
of the lines dual to the points [15]. The Voronoi diagram of  n points in the plane 
can be viewed as the planar projection of a cell's boundary complex in a three- 
dimensional arrangement of planes [50], [15] or cones [31]. In general, semi- 
algebraic sets (that is, geometric sets specified by unions and intersections of half- 
spaces bounded by algebraic surfaces) naturally correspond to collections of faces 
in the arrangement of the underlying surfaces. In fact, a whole branch of solid 
modeling has arisen, constructive solid geometry [47], which bases its solid shape 
descriptions on these boolean operations. 

Although arrangements are commonly occurring objects, they are expensive to 
manipulate and to store in their entirety. An arrangement of n hyperplanes in E a 
has @(n a) faces E15], so even an arrangement of lines in E 2 is an unwieldy object. Of 
course, if our computation requires us to visit every cell of the arrangement, then 
we must pay at least this ®(n d) cost in time. In some situations [16], however, we 
can sweep over the arrangement by a topological wavefront while performing the 
computation, thus reducing the working storage required by our algorithm to that 
of storing only the cells intersected by the wavefront, plus some auxiliary 
structures. We omit further details here, because in this paper we focus on 
situations where not all but only some of the cells are of interest. We further assume 
that the "interesting" cells are given to us explicitly indicating a point contained in 
each cell we must consider. 

In this and several companion papers [19], [20] we deal with the combinatorial 
problem of estimating the worst-case combinatorial size of m cells in an arrange- 
ment of n manifolds, and the algorithmic problem of computing (a boundary 
representation of) those cells--for various dimensions, and for various types of 
manifolds. We have a collection of powerful tools which in various combinations 
can be used to attack each specific problem. Section 2 spells out the specific results 
contained in this paper. For now we just wish to remark that our algorithmic and 
combinatorial tools are closely intertwined. We design efficient algorithms because 
we have access to detailed combinatorial knowledge about the underlying geomet- 
ric objects. At the same time, we are able to prove purely combinatorial results by 
using algorithms as proof tools. We believe that this work fits well within the 
paradigm of the analysis of algorithms initiated by Knuth [42]-[44]. We should 
remark, however, that in contrast to [19] and [20] this paper is predominantly 
combinatorial and refrains from discussing algorithmic issues that do not also 
serve combinatorial ends. In another companion paper !17] some of the algor- 
ithmic problems suggested by the investigations of this paper are studied. 

The Many-Faces Problem. In the many-faces problem our input consists of m 
points and n manifolds. We wish to count or construct the faces bounding the cells 
containing these points. Let K(m, n) be used to denote the maximum number of 
faces of the m cells in a generic sense where the context defines the type of the n 

manifolds. 
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The techniques for studying this problem, both here and in [ t9]  and [20], can be 
viewed as divide-and-conquer attacks on this problem. In the approach taken in 
this paper, which we call the primal approach, the points are partitioned into groups 

according to an underlying subdivision of space into cells, to be specified shortly. 

We call this subdivision the funneling subdivision and its cells funnels, to distinguish 
them from the cells of the arrangement that we are trying to compute. The funnels 

define the subproblems for the divide-and-conquer attack: the subproblem of a 
funnel f is the many-faces problem for the points lying in f and the manifolds 
intersecting f .  Notice that this means that each point is passed to only one 

subproblem, while a manifold may be passed to many subproblems (all those 
corresponding to funnels it intersects). In fact, a key issue for the success of our 
method is the design of a strategy for choosing the funneling subdivision so that the 

average funnel is not cut by too many manifolds. 

The technique we use for accomplishing this involves probabitistic methods: we 
choose a random sample R of our given manifolds and "triangulate" the cells of the 

arrangement ~ ( R ) ;  the resulting decomposition is the funneling subdivision. The., 
size r of the random sample R is a parameter that we use to optimize the effectivity 
of the method. The goal is that in an average funnel the number of points that lie in 

it is substantially smaller than the number of manifolds that cross it. In such cases 

we invoke a different kind of argument, specially tailored for each specific type of 
manifold, to obtain a bound on K(m, n). We call these bounds Canham thresholds, 
after Raymond J. Canham who was the first to prove such a bound for the case of 

lines [6]. 
The "triangulation" involves breaking each cell of the arrangement ~ ( R )  into 

pieces such that each of them has constant descriptive complexity. We need this 

refining of the cells in order to be able to apply to funnels arguments related to the 
e-net theory [38], [11], [12]. The triangulation method is specific to the manifolds 

that we have in each case. For  instance, in the case of lines we can draw a vertical 
line segment through each vertex and thus cut the cells right above and right below 

the vertex. This results in a decomposition of each cell into trapezoids which have 

finite description since they have at most four sides each. 
Unfortunately there is one more difficulty to overcome. It can happen that the 

cell surrounding a point p in a subproblem need not be the same as the cell 

surrounding p in the full problem. The two can be different if the cell surrounding p 

in the full problem "spills out"  of the funnel in which p happens to fall. But then all 
these problematic cells are cells intersected by the triangulation manifolds, the 

manifolds introduced to cut down to constant size the complexity of the funnels 
forming the funneling subdivision. All cells intersecting a specific manifold define 

the zone of that manifold, and good combinatorial bounds for the complexity of 

zones are already known for many interesting cases. Thus we are able to deal with 

these difficult cells by a special argument. 
In the approach taken [19] and [20], which we call the dual approach, we 

essentially use a funneling subdivision in the dual space. Our manifolds are 
partitioned into "bundles," and a point is distributed to all the bundles that it splits, 

where points not splitting a bundle lie on the same side of all manifolds of the 
bundle. In this approach a new difficulty arises: since a point may be distributed to 



Combinatorial Complexity Bounds for Arrangements of Curves and Spheres 103 

many subproblems, we need efficient ways to merge the cells for that point returned 

by each of the relevant subproblems. We refer the reader to [19] and [20] for 
details. 

The Incidence Problem. The incidence problem is similar to the many-faces 

problem in that its input consists of m points and n manifolds. An incidence is 
defined as a point-manifold pair so that the point lies on the manifold. The problem 

is to count or bound the number of incidences that are possible for certain classes of 
manifolds. We use l(m, n) generically to denote the maximum number of such 

incidences. 

The approach to proving bounds on l(m, n) is essentially the same as to the 

many-faces problem, so we just note the differences that arise simply because the 
problems are different. Overall, the incidence problem is easier since we do not 
have to worry about cells of the arrangement that cross boundaries in the funneling 

subdivision. On the other hand, we have to worry about points that lie on the 
boundary between two funnels. In the case of the many-faces problem, we could 
assume that the points do not lie on any manifolds. But by the nature of the 

incidence problem configurations that maximize l(m, n) will most likely be 
degenerate. For instance, we cannot assume that the points do not lie on any of the 

manifolds. This creates the need for upper bounds on the maximum number of 
incidences between the original manifolds and the points that lie on the sampled 

manifolds. 

The results of this paper are summarized in the next section. There we also give 

pointers to the literature and to the places in this paper where the results can be 
found. Roughly, the structure of this paper is as follows. In Section 3 we describe 
the details of our method for the case of the many-faces problem in line 

arrangements. This problem has a relatively easy proof and is used to describe the 
general proof method without too much interference by technical difficulties that 
arise for particular types of manifolds. Section 4 gives a general technique for 

proving Canham thresholds. The major tools in that section are an extremal 
theorem for bipartite graphs and various elementary geometry and topology 

lemmas. All two-dimensional many-faces and incidence results, including applica- 
tions to two-dimensional distance problems, are described in Section 5. In Section 

6 we derive results on the incidence problem for points and spheres in three 
dimensions and on related distance problems in space. Finally, we discuss the 

contributions of this paper and mention a few problems that remain open in 
Section 7. Throughout the paper we ignore constants and concentrate on asymp- 

totic results when we state and prove theorems. We do, however, remark on the 

constants that follow from our methods whenever this seems advisable. 

2. Summary of Results 

The results of this paper are in three categories: bounds for many-faces problems, 

bounds for incidence problems, and bounds for combinatorial distance problems. 
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Table 2.1. Summary of bounds for many-faces 
problems. 

K(m, n) Section(s) 

Lines O(m2/3n 2/3 + n) 3 and 5.6 
Pseudolines O(m2/3n 2/3 + n) 5.6 
Unit-circles O(m2/3n213fl(n) + n) 5.6 
Ci rc les  O(m3/~n4/~(n) + n) 5.6 
Pseudocircles O(m3/~n4I~t~(n) + n) 5.6 

We summarize the results of each category using tables which give the bounds and 

provide pointers to places in this paper  where the final results are obtained. Some 

of these bounds are given in terms of a generic function fl(n) or fl(m, n) which 

changes from case to case. However, in each case it is a function that depends on 

the inverse of Ackermann's function and grows extremely slowly. In addition we 

briefly discuss each bound and relate it with earlier results in the literature. Beyond 

the three categories, we also list here a few results of this paper which are needed to 

obtain the combinatorial bounds and are of independent interest. 

Many-Faces Bounds. The general theme in this category is to derive upper and 

lower bounds on K(m, n), the maximum number of edges bounding m distinct cells 

in an arrangement of n curves of a certain kind. We have results for lines, 

pseudolines, 1 unit-circles, circles, and pseudocircles 2 (see Table 2.1). 

The upper bounds for lines and pseudolines improve previous bounds given in 

[6] and [23]; the matching lower bound can be found in [23] (see also [15]). The 

lower bound for lines extends to unit-circles (and therefore also to circles and 

pseudocircles) since they can be blown up so as to approximate any pattern of lines 

arbitrarily closely within a bounded region. This implies that our upper bound for 

unit-circles is off by at most a factor of fl(n) from the best-known lower 

bound-- th is  factor is probably an artifact of the proof technique used. The most 

difficult part  of the upper bound proof  for unit-circles is the Canham threshold 

(Section 4.5) which states that any m cells in an arrangement of n unit-circles have 

at most O(mn 1/2 + n) edges. 

The upper bounds for circles and pseudocircles are also new and follow readily 

from the general techniques of this paper. No matching lower bounds are known. 

In fact, the currently best lower bound is the same as for unit-circles except for a 

small range of values of m where a slightly better bound can be shown (see remark 

(2) after Corollary 5.6). 

1 For technical reasons we assume that a pseudoline intersects any vertical line in one point. 
2 A family of pseudocircles is a set of simple closed curves with the property that any two intersect in 

at most two points where they cross. For technical reasons we assume that any vertical line meets a 
pseudocircle in at most two points. 
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Table 7.2. Summary of bounds for incidence problems. 

t(m, n) Section(s) 

Lines O(rn2/3n2/3 + m + n) 3 and 5.3 
Pseudolines O(rn2/3n2/3 + m + n) 5.3 
Unit-circles O(m2/3n 2/3 + m + n) 5.3 
Circles O(m3/Sn '~/~ + m + n) 5.3 
Pseudocircles O(m3/Sn4/S + m + n) 5.3 
Spheres in general position O(m3/4n3/41~(m, n) + m + n) 6.4 
Spheres and vertices O(m4/Tng/'TjS(m, n) + n 2) 6.4 

Incidence Bounds. As in the introduction, we use I(m, n) generically for the 
maximum number of incidences between rn points and n curves or surfaces in two 
or three dimensions. Recall that we have an incidence if a point lies on a curve or 
surface. In two dimensions we have results for lines, pseudolines, unit-circles, 
circles, and pseudocircles. In three dimensions we consider spheres and distinguish 

two cases: (i) no three spheres intersect in a common circle (referred to as spheres in 
"general position"), and (ii) the points are restricted to vertices of the sphere 

arrangement. The bounds are listed in Table 2.2. 
The bound for lines is not new and goes back to Szemerrdi and Trotter [57]; 

however, our proof is much simpler than theirs. Furthermore, the constant of 

proportionality in our analysis is only ~ (see Section 3) whereas [57] establishes 
the upper bound with a constant equal to 106°. Our proof also extends to 

pseudolines for which case our upper bound appears to be new. 
The upper bound for unit-circles is also not new and was derived earlier in [55]. 

Again, our proof is simpler and the constant that follows from our proof is much 
smaller than theirs. It seems likely that the upper bound is not tight; the best lower 
bound known for the case m = n is n 1 ÷c/Ioglog~ for some constant c (see [24]). 

For  circles (and pseudocirctes) our upper bound improves the O(m3t4n3/4+ 

m + n) bound of [5] and [I0]. Again, no matching lower bound is known, 
although ta(mZ/3n 2/3 + m + n) can be derived from the lower bound for lines (see 

remark (3) after Theorem 5.4) and a slight improvement of this lower bound for a 
small range of values of m follows from a result by Erdrs [24] (see remark (2) after 

Corollary 5.6). 
Our bounds for spheres in general position improves the O(m4/~n 4/5 + m 1/2 + 

m) bound of Chung [10]. A lower bound of f2(m4/31og log m) can be obtained in the 

case m = n from the currently best lower bound for the unit-distance problem in 

three dimensions discussed below. The most difficult step in the proof of the upper 
bound is the triangulation of an arrangement of spheres into a number of funnels 

which is only slightly supercubic in the number of spheres (see Section 6.3). This 

decomposition (Theorem 6.6) is of independent interest. 
For the case of spheres where the points must be vertices of the arrangement our 

bound is the first known nontrivial upper bound. No matching lower bound is 
known ifm _> cn 5/4 for some constant c. To prove the upper bound for spheres and 
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Table 2.3. Summary of results on repeated distances. 

Bound Section 

Unit-distance in the plane 
Unit-distance on a sphere 
Unit-distance in space 
Bichromatic maximum distance 
Bichromatic minimum distance 

O(m 4/3 ) 5.4 
®(m ./3) 5.4 
O(m3/2#(m)) 6.5 

O(m) 6.5 
O(m3/2p(m)) 6.5 

vertices we derive an extension of an extremum result for bipartite graphs with 
certain complete subgraphs prohibited (see Lemma 6.2); this result is of indepen- 
dent interest. 

Distance Problems. Using the bounds for incidence problems summarized in 
Table 2.2 we derive new bounds for a variety of combinatorial distance problems in 
two and three dimensions. In each such problem we consider a set of m points and 

the multiset of (2 )d i s tances ,  one for each point pair. For example, weask how 
\ / 

often a certain distance can be repeated and how many different distances the 
multiset must contain. We first list our results on repeated distances (see Table 2.3). 

The upper bound on unit-distances in the plane is not new and dates back to 
Spencer et al. [55J--however, their constant of proportionality is much larger than 
the one that follows from our proof. Our upper bound proof for unit-distances in 
the plane carries over to points on a sphere in three dimensions (see remark (4) 
after Theorem 5.4) in which case a matching lower bound can be constructed from 
an arrangement of m/2 lines and m/2 points with t2(m */3) incidences (see [29]). It is 
interesting that for this lower bound it is necessary that the unit-distance is exactly 
one-fourth of the length of a great-circle. For other distances the currently best 
lower bound is f~(m log* m) [29]. The upper bound for unit-distances in three 
dimensions improves the best previous bound which was O(m s/5) [10]. We 
consider this the most important new result on counting distances derived in this 
paper. The currently best lower bound for this problem is f~(m */3 log log m) [25]. 

In the bichromatic case we have a total of m red and blue points in three- 
dimensional space and we consider only distances between points of different color. 
The linear upper bound on the number of times the maximum bichromatic 
distance can occur appears to be new although the proof is only a minor extension 
of the proofs of the same asymptotic bound for the number of diameters in the 
monochromatic case (see [33], [39], and [56]). For  the minimum bichromatic 
distance our upper bound is new; however, no superlinear lower bound is known. 

A problem related to repeated distances is that of the maximum number of 
furthest neighbor pairs in a set of m points in three dimensions. If no three points 
are collinear we show that O(m3/Z~(m)) is an upper bound which improves the 
O(m s/~) bound of [I0] (see Section 6.5). No superlinear lower bound is known. 

Finally, we have some new results on different distances. Let P =  
{Pl,P2 . . . . .  Pro} be a set of points either in two or in three dimensions. For 
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Table 2.4. Summary of results on different distances. 

Bound Section 

g(m) in the plane t2(m 7/4) 5.4 
g(m) in space (no collinearity) f~(mS/a/~(m)) 6.5 
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1 < i < m define gi as the number of different distances from p~. Furthermore, 

define g(P) = ~m=~ gl, and g(m) = minl~, 1 =m {g(P)}. Our results are listed in Table 

2.4. 
The lower bound in two dimensions improves the f~(m s/a) bound which follows 

from the bounds in [5] and [10] on the number of incidences between points and 
circles in the plane. In three dimensions our lower bound is established only for the 

case where no three points are collinear; it improves the f~(m al2) bound which 

follows from the incidence bound on points and spheres in [10]. 

3. Arrangements of Lines--An Example 

In this section we show that the maximum number of edges, K(m, n), bounding m 
cells in an arrangement of n lines is O(m2[an 213 -k n). This improves the known 
upper bounds O(m 2 + n) [6] and O(mn t/2 + n) and O(ml/2n + m) [23]. The proof 

illustrates the use of the general proof components listed in the introduction. 

Indeed, this section serves as an introduction to our techniques before they are 
discussed in greater generality and different contexts in Sections 4-6. We also 

extend the proof to the related incidence problem and show that l(m, n)= 
O(m2/an 2/3 + m + n). Another purpose of this section is to demonstrate that our 

techniques yield a proof for this result which is simpler than that in [57]. In 

addition, we get the extra benefit that the constant of proportionality that we get is 
reasonably small whereas the constant in [57] is astronomically large. 

Let L = {dl, ~2 . . . . .  ~n} be the given collection of lines, and assume that the m 

desired cells are designated by a collection of points P = {Pt, P2 . . . . .  Pro}, where 
each Pi lies in a unique cell. The proof proceeds through the following six steps. 

(1) Establishing a Canham Threshold. Canham's upper bound of O(m 2 + n) on 

K(m, n) can readily be transformed (by breaking the given cells into groups of n 1/2 
cells each) to K(m, n) = O(mn 1/2 + n) which is the form that we use. An alternative 

proof of the latter bound can be derived from a well-known extremal theorem on 
graphs (see [45], [26], and [52]). We restate this theorem as Lemma 4.1 in a form 

that is convenient and allows us to derive immediately many similar bounds for 

curves other than lines and for spheres in three dimensions. 

(2) Sampling and Triangulating. We choose a subset R ~_ L of size r, where r is an 

integer to be specified later. Let ~ '(R) be the arrangement defined by R and assume 

that each cell is further decomposed into trapezoids by drawing a maximal vertical 
(relatively open) line segment through each vertex of ~qC(R) so that the only 
intersection of the line segment with the lines in R is this vertex (see Fig. 3.1). This 
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t I 

I 

Fig. 3.1. Each cell is decomposed into trapezoids. 

results in a collection of k = O(r  2) (open) trapezoids, 3 the aforementioned funnels. 

For  each funnel or trapezoid Ai, 1 _< i < k, define Pi = P n A~ and let Li be the 

subset of lines that have a nonempty intersection with Ai. Set m~ = [P~] and 
k n~ -- ILi[ and note that ~ = 1  mi is equal to m, the number or points. 4 

(3) Probabilistic Counting. Using the method of probabilistic counting we can 
show that there exists a subset R ~_ L of size r so that ~k= 1 m i n ~ / 2  = O ( m ( n / r ) l / 2 )  • 

The idea of the proof of this claim is that if R is chosen at random, then the 
expected value of ~ =  1 min~/2 is O ( m ( n / r ) l / 2 ) .  It follows that there exists a sample 

with this property (in fact, most samples have this property). To compute the 

expected value of the above random variable, we observe that the sum is the same 
as ~ =  1 -,ja!/2, where qj is the number of lines intersecting the funnel that contains 

pj~ P. Clearly, q~ = ni if p je  Ai. Since the expectation is additive, even if events are 
dependent, we can concentrate on showing that the expected value of _1/2 deno-'.ed q j  , 

by E[qJ/2], is O((n/r)~/2). E[qJ/2] is bounded from above by E[qj] 1/2 since 
E[q~] - E[qJ/2] 2 is the variance of qj/2 and therefore always nonnegative; so it 

suffices to show that E[qj] = O(n/r). 
The crucial step in proving E[q~] = O(n/r) is the decomposition of the cells into 

regions of constant size, such as trapezoids which are determined by four or fewer 

lines (see Fig. 3.2 for the various ways how four or fewer lines can define a 

trapezoid). Such a trapezoid A has the property that it is in the triangulation of 
d ( R )  if and only ifA is in the triangulation of d ( R ' )  for some R' _~ R, IR'I -< 4, and 

A does not intersect any line in R - R'. Based on this observation the following 

intuitively plausible statement can be made concrete: the fact that A meets few lines 

of the random sample means that it probably meets few lines of L. The rest of the 

argument is technical and the details can be found in Section 5.2. 

(') s A tight upper bound on k is 3 2 + r + 1 since every one of the at most  vertices gives rise to 

(') two cell splits and the initial number  of cells is at most  2 + r + 1. 

4 Equality holds because we can assume that the points in P are in general position so that none of 

them lies on the boundary of a funnel. 
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/ 
Fig. 3.2. Every trapezoid is defined by four or fewer lines. 

(4) Divide-and-Conquer. Using the triangulation of the sample arrangement 

~/(R) we solve a subproblem in each funnel. Specifically, within A i we consider the 

nl lines of L~ and count the edges of d(L~)  bounding the m~ cells marked by the 

points in P~. The division of the original problem into k = O(r 2) subproblems, 

however, is not as straightforward as might be hoped. Take, for example, a point 

p ~ P~ and let c~(p) be the cell in ~ ( L i )  not necessarily restricted to A~, that contains 

p. If ci(p) is contained in A~, then ct(p) = c(p), the cell in the full arrangement ~¢(L) 

that contains p. In this case the edges of c(p) are all accounted for in the subproblem 

for A t. But what if ci(p) intersects the boundary of Aft In this case we have 

c~(p) c~ A t = c(p) c~ Ai. The edges of c(p) that are or contain edges of cl(p) n At are 

accounted for, but it is possible that c(p) also has other edges that lie fully outside 

A~. For example, there can be a funnel Aj , j  ~ i, and a cell cj in ~¢(L~) so that 

cj n A i = c(p) n Aj. The difficulty with this case comes from the fact that Aj does 

not contain p and c i is therefore not marked as a cell whose edges must be counted. 

An important observation which facilitates a way to overcome this difficulty is that 

cj intersects the boundary of Aj since c(p) ~_ c i and c(p) is not contained in A I. Thus, 

cj belongs to what we call the "inner zone" of A~ (more about this concept in the 

next step of the proof). To be on the safe side we count the edges (within Aj) of all 

inner zone cells for all 1 < j < k. 

(5) Complexity of  Zones. The inner zone of Aj in s / (L j )  is defined as the collection 

of c n A i for all cells c in ~¢(Lj) that intersect the boundary of A i (see Fig. 3.3). The 

combinatorial complexity of the inner zone of Aj is defined as the total number of 

edges bounding its cells. 5 

Fig. 3.3. 

"N 

The inner zone of a funnel. 

X 

/ .  

5 Not that it matters much but an edge is counted twice if it bounds two cells of the inner zone. 
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The above discussion implies that the total number of edges bounding the m 
k cells in M(L) is thus bounded from above by ~ i=  tO(mlnl/Z+ hi) (using the 

Canham threshold for the cells contained in their funnels) plus the combinatorial 

complexity of all inner zones, one per funnel. In the case of line arrangements, the 

complexity of a zone is linear in the number of lines (see [81 [21], o r  [15 ] ) .  6 

Therefore, the complexity of the inner zone of Aj is O(nj) which implies that all 

inner zones together have combined combinatorial complexity ~k= 10(nj). 

This and the preceding sum of Canham bounds make it necessary to bound the 

sum of the nj taken over all funnels A~. Of  course, ~k= 1 n~ = ~7= 1 I ,  where I i is the 

number of funnels intersected by line :v  7 Since :~ intersects the lines of R in at most 

r points it intersects at most r + 1 cells of a ' (R) .  By the zone result, invoked again, 

the total number of edges bounding those cells is O(r). Since a cell with t edges is 

decomposed into at most  t funnels, this implies that :~ intersects O(r) funnels of 

d ( R ) .  Therefore ~k= 1 n~ = O(rn) which implies ~ =  x O(nj) = O(rn + k) = O(rn). 

(6) Wrapping It Up. By what we have said so far, assuming R is a sample that 

satisfies the property discussed in (3), 

K(m, n) = O(min~/2 + n~) = O(m r + rn). 
i = 1  

We choose r so as to balance the two terms of the above bound, namely 
r = O(m2/3n - 1/3). Note  that this is meaningful only if m is larger than nl/2; 
fortunately for us, Canham's  bound implies K(m, n )= O(n) in the other case. 

Putting the two cases together we thus obtain the asserted bound 

K(m, n) = O(m2/3n 2/3 + n). 

Remark. The upper bound on K(m, n) whose proof is sketched above is tight. The 

lower bound example is based on arranging the points in a square grid and 

choosing the lines close to highly populated (not necessarily horizontal or vertical) 

rows of points (see [15] for details). 

Computing the Constant of the Upper Bound. The above proof is simple enough so 

that we can compute a reasonable constant of proportionality without adding too 

much complication to the proof. We do this by computing in turn the constants in 

the Canham threshold, the probabilistic counting result, and the complexity of 

zones. For this we use results that are derived later in this paper, specifically in 

Sections 4.1 and 5.2. The reader may choose to skip the rest of this section on first 

reading and return to it after these results are presented. 

6 In these sources a zone is defined as the collection of cells in a line arrangement that intersect 
another line. It is plain that the maximum number of edges bounding the inner zone of a trapezoid A i 
(not counting the edges that lie on sides of A j) is at most four times as large as the maximum number of 
edges bounding a (standard) zone in d(Ll). 

7 If di ~ R, then  1~ = 0 s ince we  treat funnels  as o p e n  sets. 
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Any two cells in a line arrangement can have at most four lines contributing 

edges to both cells. Using remark (1) after the bipartite graph lemma (Lemma 4.1) 

we can set s = 2 and t = 5 and thus get 2min~/2 + n~ as an upper bound on the 

number of edges bounding ms cells in an arrangement of n~ lines. When we take the 

sum of the first term over all funnels A~ we can use the probabilistic counting result 

(to be established in Section 5.2) which says that there exists a sample R _ L of size 
r such that )-'~, m i n t i / 2  <_ 2m/n(r - 4) 1/2. To get a good constant in the bound for 

the sum of the n~ is more difficult; it is treated implicitly when we get a bound on the 

number of edges contributed by the zones of the funnels. 
First we need to observe that the inner zone of a half-plane (a degenerate 

trapezoid) in an arrangement of ni lines has at most 4n~ - 2 edges that do not also 

lie on the bounding line of the half-plane (see [151). Here and later we count an 

edge twice (each side once) if the cells on both sides belong to the inner zone. 

Second, notice that a cell of ~¢(L) that lies in more than one funnel must intersect at 

least one vertical side of each funnel it meets. This is because the top and bot tom 

sides of a funnel are part  of two original lines. Thus, we count at most 8n~ - 4 inner 

zone edges for A~. If  such a counted edge meets a vertical side of A~ (and there are at 

most 4n~ - 4 edges which do notS), then this edge is double counted because it 

reaches into the neighboring funnel where it is part  of the inner zone again. This 

shows that the contribution of all inner zones is at m o s t  

Z (4n, - 4) + ½ Z 4n, = Z (6n( - 4). 
A~ At A~ 

To get a bound on this sum we use ~A, ni = ~7= 1 It, where li is the number of 

funnels intersected by line ~.  We now show l~ < 5r - 5. Line ~ intersects at most 

r + 1 cells of the sample arrangement, and by the zone theorem (see 1-15]) theses 

cells have a total of at most 6r - 6 vertices (where we count a vertex once for each 

such cell to which it belongs). The two endpoints of each edge of d ( R )  that 

intersects f~ are counted at least twice which shows that there are at most 4r - 6 

distinct vertices. Each of these vertices is an endpoint of a vertical funnel side that 

potentially intersects ~.  Adding to this the at most r intersections with lines in R 

gives at most 5r - 6 intersections with sides of funnels and therefore l~ < 5r - 5. 

We now put these partial results together and choose r to minimize the resulting 
constant. We have 

[ n ,,1/2 
K(m, n) < ~'. (2min:/2 + ni + 6n~- 4) < 4mL~_4 ) + ~, 7n, 

A~ A~ 

{ n \ 1 / 2  

< 4 ,n i t  _ ~ / \  / + 35rn-  35n. 

s We arrive at the 4n i - 4 as follows. First assume that all n~ lines intersect both vertical sides of the 

trapezoid, In this case, there are 2hi edges meeting each side; thus at most 4hi - 4 edges remain. Without 

this assumption the number of edges that do not meet a vertical side can only be smaller since we could 

extend the trapezoid vertically until all lines that intersect it also meet its two vertical sides. 
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If we choose r = cm2/3n- 1/3 + c', with c = (~)2/3 and 4 < c' < 5 so that r is an 

integer, we get 

A 
K(m, n) < " m2/3n 2/3 + 35cm2/3n 2/3 + 35(c' -- 1)n < 3 3 ~ m 2 / 3 n  2/3 -k 140n, 

cl /2  

where 3 3 ~ ,  the constant factor of the leading term, is approximately 15.58. The 

above choice of r is appropriate as long as m > ~ n  1/2. In the other case the 
Canham threshold implies K(m, n) < 36n which shows that the above bound is 

correct without any restriction on the number of cells. 

Extension to Incidence Problem for Lines. It is rather straightforward to prove 

2m<g~(m, 2n), where K(m, 2 n ) = K ( m ,  2 n ) i f m < _ ( 2 n ) + 2 n +  1, the 2I(m, n) - 
\ - - /  

maximum number of cells in an arrangement of 2n lines, and /((m, 2n) = 4n 2, 

otherwise. Start with a configuration that maximizes l(m, n) and remove all points 
that do not lie on any vertex of the arrangement; this decreases the number of 

incidences by at most m. Now, replace each of the remaining m' < m points by a 
sufficiently small disk, each with the same radius, and replace each line by two 

parallel lines that are tangent to all disks corresponding to points on the original 
line (see [23]). We thus arrive at an arrangement of 2n lines with m' cells bounded 
by a total of at least 2(I(m, n) - m) edges. This implies I(m, n) < ½K(m', 2n) + m 

and, using the above bound on K(m, n), l(m, n) < 3~'~m213n 2/3 + m + 14On. We 

improve the constants of this bound below. 

We follow the analysis given above for the many-faces problem but modify it in 

two significant ways. The first change addresses the fact that we can no longer 
assume that the lines are in general position. More specifically, we have to permit 

parallel and concurrent lines but we may still assume that no line is vertical and 
that no point is vertically aligned with another vertex of the arrangement, since we 
can rotate the configuration of lines and points without changing their incidences. 

The second assumption turns out to be very convenient since it implies that no 
point lies on a vertical side of a trapezoid defined by four or fewer lines. The second 

change has to do with the fact that in order to maximize the number of incidences 

all points lie on the lines rather than in the cells of the arrangement. Since we do not 

count edges of the cells we ignore the contribution of zones altogether, but now we 
have to take into account the number of incidences that happen on the lines of the 
sample arrangement. We address the first issue first and then derive the upper 

bound with the improved constants of proportionality. 
A crucial assumption in the probabilistic counting argument is that a trapezoid 

is a funnel of a sample arrangement if and only if it is a trapezoid defined by a 
certain unique set of four or fewer lines of the sample and it does not intersect the 

other lines of the sample. This is because two such trapzoids are necessarily 

disjoint. Notice, however, that this disjointness property is lost if the lines are not in 

general position. To avoid the technical difficulties in dealing with lines in special 



Combinatorial Complexity Bounds for Arrangements of Curves and Spheres I 13 

position we perturb the lines ever so slightly so that they are in general position. 

The trapezoid defined by four or fewer original lines is just the unperturbed version 

of the trapezoid of the corresponding perturbed lines, and we say that it does not 

"intersect" any sample lines if the corresponding perturbed trapezoid does not 

intersect any of the perturbed sample lines. Observe that the perturbation is only 

used to define and classify trapezoids--the arrangement of the problem is left 

unperturbed so no incidences are changed. Thus the claim about  the existence of a 

sample of r lines with certain properties discussed in (3) above holds for degenerate 

cases as well. 

We can now go ahead with the analysis. For  the Canham threshold we get 
I(m, n) < m n  112 + n since no two points lie on two common lines; setting s = t = 2 

and using remark (1) after the bipartite graph lemma (Lemma 4.1) implies the 

bound. Now take a "good"  sample R _ L of size r, triangulate ~/(R), and consider 

the funnels Ai separately. This gives 

l(m, n) <_ ~ (mln:/2 + ni) + m + rn, 
&i 

where m i is the number of points in the ith funnel and n~ is the number of lines that 

cut it. The term m + rn on the right-hand side accounts for possible incidences 
involving points that lie on sample lines. 9 Using the bound from the probabilistic 

counting argument and ~ a  ni < (5r - 5)n as derived earlier we thus get 

/ n \1/2 
I(m, n) <_ 2 m ~ _  4 ) + 6rn - 5n + m. 

/ , , \  
If  we now choose r=6-2/am2/3n -113 +c '  (assuming 6n 112 < m < ( 2 ) ) ,  with 

\ / 

4 < c' < 5 so that r is integer, we get 

l(m, n) ~ 2~/6m2:3n 2/3 +,~/6m2/an 2/3 + (6c' - 5)n + m. 

Thus, 

I(m, n) < 3 3v/6m2/3n 2/a + 25n + m. 

3 The multiplicative constant of the leading term, 3 3x/~, is approximately 5.45. When 

m < 6n 1/2 we get l(m, n) < 7n from the Canham threshold, and we get I(m, n) < 

( 2 )  + m < 2 m i f m e x c e e d s ( ~ ) s i n c e a t m ° s t ( 2 ) P ° i n t s c a n b e i n c i d e n t w i t h m ° r e  

9 Each line that does not belong to the sample intersects the r sample lines in at most r points and 
therefore contributes at most r incidences. Each sample line has at most r incidences with points that lie 
at vertices of the sample arrangement. Finally, each point that lies on a sample line but is not a vertex of 
the sample arrangement is incident to at most one sample line. 
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than one line each. Thus, if we replace the additive term m by 2m in the above upper 
bound for l(m, n), then it holds without any restriction on the value ofm relative to 

n. In summary we have shown 

Theorem 3.1. For arrangements of lines in the plane we have 

and 

K(m, n) <_ 3 3~Om2/3n z/3 + 140n, 

l(m, n) < 3 3x//-6m2/3n 2/3 + 25n + 2m. 

4. Canham-like Upper Bounds 

Notice that the nature of our partitioning process (exemplified in Section 3) is such 

that each point is passed to exactly one subproblem, while a manifold may be 
distributed to several subproblems, according to the number of funnels it cuts. 

Thus we can expect that in a subproblem the ratio of manifolds to points increases, 
on the average. We use this effect to our advantage when we choose the size of the 

sample which determines the number of subproblems created. The reason is that 
when the number of points is small compared with the number of manifolds, we can 

use a different type of argument to bound the complexity of the cells containing the 
points. 

These other arguments employ techniques from extremal graph theory on 
the bipartite graph defined by the incidences between the points or cells and 

the given manifolds. They usually yield bounds of the form l(m, n) or 
K(m, n) = O(mn 1- a/k + n) for some small integer k (Canham's original bound for 

lines can also be cast in this form). Thus if the number of points is really small, say 
m = O(nX/k), compared with the number of manifolds, then these arguments show 

that l(m, n) or K(m, n) = O(n) and provide the basis for our reduction. 
In this section we extend Canham's bound for lines to arrangements of more 

general curves such as circles and pseudocircles. These results will serve as bases 
which can be lifted to bounds for general values of m using the techniques 
exemplified in Section 3 and described fully in Section 5. Section 4.1 presents the 

extremal graph lemma which will be sufficient to derive the Canham thresholds for 

incidences (see Section 4.2). Additional tools from elementary geometry and 
topology are needed to generalize the bounds to edges bounding cells (see Sections 

4.3-4.5). 

4.1. A Lemma on Bipartite Graphs 

Let r~ = (M O N, A) be a directed bipartite graph with sources in M and sinks in N, 

that is, M n N = 0 and (#, v) e A only if p ~ ld  and v ~ N. Let ff be complete if 

A = M x N in which case we write (# = K=,.,m = IM[ and n = ]NI. Another 

bipartite digraph (#' = (M' ~ N', A') is a subgraph of ~# if there are one-to-one 
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functions f :  M '  ~ M and g: N '  --, N so that (f(/z'), g(v')) ~ A if(#', v') ~ A'. Clearly, if 

f#' is a subgraph of  (#, then I M'I  < I M I and [N'I < I N I. We also say that f# contains 

no K~, t if K~, t is not  a subgraph of fg. 

The following lemma establishes upper bounds  on the size of  A depending on 

the values of s and t such that  ~ contains no K,. r The lemma is a variant of various 

graph-theoretic extremal results obtained by K6vfiri et al. [45] and Erd6s [26]. 

For  completeness we include a proof  of the lemma. 

Lemma 4.1 (Bipartite Graph  Lemma). Let s and t be constants and let ~ = 

( M  © N,  A)  be a bipartite digraph with m = 1MI sources and n = I NI sinks. 

I f  f# contains no K~, t, then IAl = O(mnl-1/" + n) and, symmetrically, 

tAI = O(nm t -1# + m). 

Proof.  We just prove the first upper b o u n d - - t h e  second follows by symmetry.  

Let us define an s-regular hypergraph ~° J~ = (M, H) as follows: 

for every v E N adjacent to #1,/~2 . . . . .  #~ e M we add {#1, ~2 . . . . .  /.ts} to H. 

With this definition the same s-tuple can be added to H two or more  times, thus J~' 

is really a multihypergraph. On  the other hand, any s nodes in M are adjacent to at 

most  t - 1 c o m m o n  nodes in N by assumption which limits the number  of  s-tuples 

in H to at most  ( t - 1 ) ( m ) .  
\ - - /  

N o w  let ni be the number  of  nodes in M adjacent to v i e N for 1 _< i <_ n. By 

def in i t ionof  J~ ,v ,  givesrise  to ( n ' ) s - t u p l e s i n H  (which is 0 when n, < s). Thus, 

F rom this we get 

i = 1  

~ ( n  i - (s - 1))' < (t - 1)m ~, 

where the summat ion extends over all i such that  n i > s. We can now use the 

H61der inequality. 11 to derive 

~ n i  _< (s - 1)n + ~ (n i - (s - 1)) < (s - 1)n + n 1- l/'(t - 1)l/~m. 
i= 1 n~>_s 

This proves the lemma since I AI = ~7= 1 ni and s and t are constants  by assump- 
tion. [ ]  

lo A hypergraph is a pair (X, Y), where X is a set of nodes and Y is a set of subsets of X. It is s-regular 
ff every subset in Y contains exactly s nodes. 

1~ In its full generality the H61der inequality says that (~7~ i af)l/P(~.7= 1 b~) TM > ~.7~ ~ a~bl assum- 

ing the a i and b I are nonnegative,  p > 1, and l ip  + 1/q = 1 [36].  In all applications we set bi = 1 for all i. 
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Remarks. (1) The final inequality in the proof of the bipartite graph lemma holds 

independent of whether or not s and t are constants. We thus get the following 

slightly stronger upper bounds on the cardinality of A: 

Ihl ~ min{mni-1/s( t  - 1) 1/s + n(s - 1), n m l - l n ( s  - 1) in + m(t - 1)}. 

(2) For  s = t = 2 it is known that the bound in the bipartite graph lemma is 

asymptotically t ight-- the best constants have been derived by Reiman [52]. This 

implies that the first bound in the lemma is asymptotically tight if s = 2 as long as t 

is a constant. No matching lower bounds are known for the case s > 2. 

(3) In Section 6.2 we show a generalization of the bipartite graph lemma where 

f9 is allowed to contain some copies of Ks, t but not too many. This generalization 

will prove useful when we count incidences between points and spheres in three 

dimensions. 

4.2. Countino Incidences 

The bipartite graph lemma can be used to obtain upper bounds on the maximum 

number of incidences between m points and n curves of certain kinds. The curves 

that we consider are lines, pseudolines, unit-circles, (general) circles, and pseudo- 

circles. We do not want to imply, however, that the methods of this paper are 

restricted to these curves only. The notions "pseudoline" and "pseudocircle" need 

some explanation. A pseudotine is a simple curve 12 unbounded at both ends, and 

we also reqt,.ire that it intersects any vertical line in exactly one point. A pseudoline 

family has the property that any two pseudolines in the set intersect in exactly one 

point where they cross. A pseudocircle is a simple closed (and thus bounded) 

curve, 13 and we require that it intersects any vertical line in at most two points. A 

pseudocirclefamily is a set of such curves so that any two intersect in at most two 

points and if they intersect in two points then they cross there. 
We do not claim that all of the following bounds are original--in fact some of 

them appear  at various places in the literature. We include them because they are 

needed for our developments in Section 5. 

C a n h a m  Threshold 4.2. The maximum number o f  incidences between a set M of  m 

points and a family  N o f  n curves is 

(i) O(mnll2 + n) and O(nml/2 + m) i f  N is a family  o f  lines, pseudolines, or 

unit-circles, and 
(ii) O(mn 2/3 + n) and O(nm 1/2 + m) i f  N is a family  of  circles or pseudocircles. 

lz A simple curve is the image of a continuous one-to-one mappingf from an open interval to the 
plane. It is unbounded at both ends ill(x) tends to infinity as x approaches either endpoint of the interval. 

a A simple closed curve is the image of a continuous one-to-one mapping from a circle to the plane. 
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Proof. We discuss lines and pseudolines, unit-circles, and circles and pseudo- 
circles in this sequence. In each case we consider the directed graph f# = 
(M C) N, A) with (#, v) ~ A if # ~ v. 

If N is a set of lines or pseudolines, then no two points lie on two or more 
common lines or pseudolines which implies that f~ contains no K2,2. The bounds 
follow from the bipartite graph lemma. 

The case where N is a set ofn unit-circles is slightly less trivial. Any two points lie 

on at most two common unit-circles which shows that f# contains no K2. a. In 
addition, any two unit-circles intersect in at most two points which implies that 

contains no  K3, 2 either. The bounds follow readily from the bipartite graph lemma. 
Finally, when N is a family of circles or pseudocircles, then ff contains no K3. 2 

because no three points can have two common (pseudo-) circles. [] 

R e m a r k s .  (1) Using the bipartite graph lemma we can also show that the number 
of incidences is O(nm 1/2 + m) if N is a family of arbitrary curves, provided any two 

curves intersect in at most some constant number, s -  1, of points; so the 
corresponding ~ contains no Ks.2. 

(2) It is interesting to observe that the asymptotic bounds for lines and 
pseudolines also hold for unit-circles in spite of the fact that fq (defined for unit- 

circles) may contain many K2.2's. This shows that it is useful to formulate the 
bipartite graph lemma for forbidden Ks., in the directed sense (that is, without 

implicitly forbidding Kt.s as well if s ~ t). 
(3) The arguments used in the proof of Canham Threshold 4.2 are purely 

combinatorial--it  is therefore not surprising that there is no difference between 
lines and pseudolines and between circles and pseudocircles. 

(4) The only obstacle to proving O(mn ~/2 + n) for general circles is that two 

points can lie on an arbitrarily large number of common circles. 14 Besides 
unit-circles there are a couple of other natural cases where such configurations are 

prohibited thereby leading to this improved bound. Those include sets of circles 
where the maximum number of collinear centers or the number of different radii is 

bounded from above by some constant. (See also remark (3) in Section 5.4.) 
(5) Canham Threshold 4.2 implies that the number of incidences is O(n) as long 

as m, the number of points, is O(n ~/2) in the case of lines, pseudolines, and 
unit-circles, and as long as m is O(n 1/3) in the case of (general) circles and 
pseudocircles. 

4.3. Cells in (Pseudo-) Line Arrangements 

An asymptotic version of Canham's bound on the number of edges bounding m 
cells in an arrangement of n lines can be obtained from the bipartite graph l e m m a  

using the fact that for any two cells there are at most four lines that contain edges of 

1, In fact, a result of Erdos [24] on counting the number of different distances in a set of points 

shows that this improvement is impossible (see remark (2) in Section 5.4). 
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both cells. This is because any two disjoint convex sets have at most four common 

supporting lines, and cells in a line arrangement are certainly convex and disjoint. 

It is also true that any two cells in a pseudoline arrangement share at most four 

pseudolines supporting edges of both cells--but this is more difficult to show. We 

prove a bound on the number of edges bounding m cells in a pseudoline 

arrangement without showing that two cells share at most four pseudolines. The 

following straightforward topological lemma will be handy. We say that a region 

touches a curve if a nonzero length subset of the curve belongs to the boundary of 

the region. If the region is a cell in an arrangement including the curve, then this 

means that the curve contains an edge of the cell. 

Lemma 4.3. Let C be a simple curve (either closed or unbounded at both ends) that 

is partitioned into three (connected) pieces. There exist no two disjoint connected 

regions so that both lie on the same side of  C and touch all three pieces of  C. 

Proof. Assume that two such regions, R 1 and R2,  exist. We can draw a third 
region, R3, on the other side of C so that R 3 touches all three pieces of C (see Fig. 

4.1). But this implies a plane embedding of K3,3 since the three pieces of C can be 

contracted to points and connected to a point each in R1, R 2 and R 3 without 

creating an intersection. []  

Lemma 4.3 is repeatedly used in arguments about  (pseudo-) circles and also 

unit-circles in Sections 4.4 and 4.5. Again, we do not claim originality for the 

following result. 

Canham Threshold 4.4. The maximum number of edges bounding m cells in an 

arrangement of n lines or pseudolines is O(mn 1/2 + n). 

Proof. We only need to prove the statement for pseudolines. First, we replace 

each pseudoline, g, by two pseudo-half-planes, the connected components of 

E 2 - g. Let N be the set of 2n pseudo-half-planes and consider ff = (M C) N, A), 

where M is the collection of m cells and (/g v)e A if cell # is contained in pseudo- 

half-plane v and the boundary of v contains an edge of #. 

We show that c~ contains n o  K2, 3. Assume ff does contain a Kz, 3. Then there 

are three pseudo-half-planes h 1, h 2, h 3 and two cells in h I n h 2 c~ h 3 so that each 

R 3 

Fig. 4.1. Reduction to a planarity argument. 



Combinatorial Complexity Bounds for Arrangements of Curves and Spheres 119 

cell touches the boundary of each pseudo-half-plane. By definition of a family of 

pseudolines, hi c~ h 2 n h 3 iS connected, its boundary is a simple curve, and the 
pseudoline ~ bounding h~ intersects the simple curve in a connected piece for i = 1, 
2, 3. We thus have a decomposition of this simple curve into three connected pieces 
so that both cells touch all pieces. But this contradicts Lemma 4.3. The assertion 

now follows because each (#, v)~ A contributes one edge to the boundary of 
cell #. [] 

Remark. Notice that the graph ~¢ defined in the above proof can contain 
subgraphs K,, 2 for s up to n - 1 (even in the case of lines). This keeps us from using 
the second bound in the bipartite graph lemma to prove O(nm ~/2 + m) as a bound 
on the number of edges bounding m cells in an arrangement of n lines or 

pseudolines. Nevertheless, this bound is correct and a proof can be found in [15]. 

4.4. Cells in (Pseudo-) Circle Arrangements 

In this section we establish Canham thresholds for cells in arrangements of circles 

and pseudocircles. The bounds are the same in both cases so we can restrict 
ourselves to pseudocircles which are more general than circles. In the proof we 

replace each pseudocircle, c, by the two so-called pseudodisks that are the 
connected components of E 2 -- c. First, we prove a technical lemma about three 

pseudodisks and three connected regions. 

Lemma 4.5. It  is impossible to have three pseudodisks dl, d2, d3 and three pairwise 

disjoint, connected regions contained in d 1 c~ d2 c~ d a so that each region touches the 

boundary of  each d i, i = 1, 2, 3. 

Proof. We can restrict our attention to simple arrangements since a nonsimple 
arrangement can be made simple by adding vertices, edges, and cells, and thus 

making it easier to find three such regions. Consider all topologically different 
simple arrangements of three pseudocircles as shown in Fig. 4.2. We consider three 

cases depending on the shape of D = d 1 c~ dz n da. 

Case 1. In this case D is connected and has three or fewer edgs. (This includes 
cases where D is not simply connected.) Examples are all cells in Fig. 

4.2(a)-(n) not explicitly mentioned in Cases 2 and 3. If D has less than three 

edges than there is nothing to prove. Otherwise, the existence of three disjoint 
regions in D that touch all three edges contradicts the nonplanarity of g30 a. 

Case 2. Here D is disconnected. Examples are the shaded parts in Fig. 4.2(1)-(n). 
In each such case, D consists of two simply connected components bounded 

by three edges each. By Lemma 4.3 each component can contain only one 
region touching all three edges which makes at most two regions altogether. 

Case 3. In this case D is connected and bounded by four edges. There are 13 such 

D's indicated by dashed boundary lines in Fig. 4.2. In each case, D is simply 
connected. Two opposite edges belong to a common pseudocircle (bounding 
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o o,i  
( 

I 

(a) (b) (c) 

(g) (h) 

\ ,! 

(k) (l) 

O 

(d) (e) (f) 

(i) (j) 

(m) (n) 

Fig. 4.2. The fourteen different simple arrangements of three pseudocircles. The dashed lines indicate 
regions with four edges, shading is used for disconnected regions. 

a di) and can be connected by a simple curve that lies completely outside D. 
Thus, the existence of three regions in D each touching one of the two edges 
that belong to the same pseudocircle as well as both of the other two edges 
contradicts the nonplanarity of K3, 3. 

The three cases exhaust all possibilities for d 1 c~ d 2 n d 3. [] 

Remarks. (1) Note that all fourteen different arrangements of three pseudocircles 
can be realized by three circles as shown in Fig. 4.2. 

(2) A possible negative point of the above proof is that it relies on a 
(presumably) exhaustive enumeration of all simple arrangements of three pseudo- 
circles. Alternatively, we could argue directly that D can only assume the three 
types of shapes considered in Cases 1-3. 

We use Lemma 4.5 to prove the main result of this section. 
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C a n h a m  Thresho ld  4.6. The maximum number of edges bounding m cells in an 
arrangement of n circles or pseudocircles is O(mn 2/a + n). 

Proof. Besides Lemma 4.5 we need the following result proved in [41]: 

the intersection of k > 3 pseudodisks is bounded by at most 6k - 12 edges. 

This implies that the number of edges bounding a cell in an arrangement is less 
than six times the number of (pseudo-) circles that contribute edges to the 
boundary of the cell. 

Now let M be the set of m cells and let N be the set of 2n pseudodisks (two for 

each pseudocircle), and consider the graph ~q = (M O N, A) with (g, v) ~ A if cell 
is contained in pseudodisk v and the boundary of v contains an edge of g. By 

Lemma 4.5 ~ contains no K3, 3. The bound stated in the assertion now follows from 
the bipartite graph lemma (Lemma 4.1). [] 

R e m a r k .  Since O(nm 1/2 + m) is an upper bound on the number of incidences 

between m points and n (pseudo-) circles, it might be conjectured that the same 

bound holds for the number of edges bounding m cells. This may be true but the 
currently best upper bound of this form is O(24(n)m 1/2) which follows from the 
investigations in [18]. Here 24(n) is superlinear only by a factor that depends on 
the inverse of Ackermann's function (see Section 5.5). 

4.5. Ceils Defined by Unit-Circles 

For m cells in an arrangement ofn  unit-circles we can prove an upper bound on the 
total number of edges bounding the m cells that is asymptotically smaller than the 

bound derived for general circles (Canham Threshold 4.6). The special property of 
unit-circles that admits this improvement is that no unit-circle encloses an 

antipodal point pair 15 of another unit-circle. This property implies that of the two 
arcs into which a unit-circle is cut by another unit-circle, only the shorter arc can be 
enclosed by the other unit-circle. The upper bound on the number of edges that we 

are going to establish is O(mnl/2+ n) (Canham Threshold 4.7 below) which 

indicates that we use a forbidden K2. t argument, that is, no two cells touch t 
common unit-circles (we choose t = 3). This is, however, not true in general for any 
t as shown in Fig. 4.3. We get around this difficulty by considering a constant 
number of different cases. 

C a n h a m  T h r e s h o l d  4.7. The maximum number of edges boundino m cells in an 
arrangement of n unit-circles in the plane is O(mn 1/2 + n). 

15 Two points of a circle are antipodal if they are collinear with the center of the circle. 
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Fig. 4.3. Cells c~ and c 2 touch five common unit-circles. 

Proof. Let M denote the set of m cells, let N be the set of  n unit-circles, and define 

f9 = (M © N, A), with (c, u) e A if cell c touches unit-circle u. As mentioned above, 

we do a case-analysis which, in effect, considers f¢ as the union of  a constant  

number  of subgraphs. The cases that we distinguish are 

Case 1. Graph  ffi = (M © N, Ai)  where (c, u) ~ A i if c touches u and is enclosed 

by u. 

Case 2. f#o = (M © N, Ao), where (c, u) ~ Ao ifc touches u and is not  enclosed by 

u. Note  that  A = A i u A o. We distinguish two subcases. 

Case 2.1. Cells that lie outside all unit-circles of N. 

Case 2.2. Cells enclosed by unit-circles. 

We next discuss these cases in sequence. Cases 1 and 2.1 are fairly straightfor- 

ward and Case 2.2 is more complicated than one might hope. To simplify the 

discussion we define a unit-disk as the closed disk bounded  by a unit-circle. 

Case 1. Here we show that f¢i contains no K2,3, that  is, it is not  possible that two 

cells contained in three c o m m o n  unit-disks both  touch all three bounding 

unit-circles. To see why this is true for unit-circles (it is not  true for for general 

circles as can be shown for the arrangement  of Fig. 4.2(m)) observe that the 

boundary  of  the intersection of  three unit-disks consists of at most  three 

edges. For  assume that d 1 c~ d 2 n d 3 (dl bounded  by the unit-circle ui) has two 

edges contr ibuted by u2. Then u2 is contained in d 1 c~ d3 which implies that  

one of  the two unit-disks contains an antipodal  point pair of  u 2, a contradic- 

tion. Thus, Lemma 4.3 applies and proves the rest. 

Case 2.1. As proved in [41] the union of n pseudodisks is bounded by at most  

6n - 12 edges if n _> 3. Unit-disks are just  special pseudodisks and thus the 

bound  applies here too. Since 6n - 12 is certainly within O(mn 1/2 + n) we can 

ignore such cells f rom hereon altogether. 

Case 2.2. Before we discuss this case in its generality we show that  if two cells, cl 

and c 2, can be enclosed by a c o m m o n  unit-circle, not  necessarily in N, then 

they cannot  both touch three c o m m o n  unit-circles from the outside. In 

contrast  to Case 2.1, both  cells are fairly small and therefore easier to control. 

To prove this we assume the contrary,  that  is, there are three unit-circles u 1, 

u 2, u 3 so that c 1 and c 2 touch and lie outside all three. Let u o be the unit-circle 

that  encloses cl and c 2, and let d~ denote the unit-disk bounded  by u~, 

0 < i < 3 .  
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(a) 

R ~  R2 ~ R1 

R 3 ~ 

(b) 

Fig. 4.4. 

edges, in (b) it has  three. 

The Voronoi diagram of the centers of u~, u 2, u 3. In (a) the union of the unit-disks has four 

Consider the Voronoi diagram of the centers Pl, P2, P3 of ul ,  u 2, u 3. It 

consists of regions R1, R2, R3 s o  that Ri = { x ~ E 2 1 d ( x ,  Pi) < d(x, p j ) , j  ~ i} 

for i = 1, 2, 3 (see Fig. 4.4). Each Ri is the intersection of two closed 

half-planes and thus convex. The nice property of the Voronoi diagram is that 

d 1 u d: ~) d 3 = (dl n Rt)  u (d 2 ~ R2) W (d 3 n R 3 )  which amounts to a de- 
composition of d 1 ~ d 2 ~ d 3. We distinguish two subcases. 

Case 2.2.1. Here u o n (dl n R~) :~ ~ for i = 1, 2, 3 (see Fig. 4.4(a)). We show 

that if cl and c2 exist with the required properties, then we have a plane 

embedding o fa  K 3 ,  3 and thus a contradiction. By assumption, c~ and c2 are 

contained in do - (d~ w d 2 w d3) .  Since both cells touch u:, u 2, u3 they also 

touch do n d~ n R~, d o n d 2 n R 2, do n d 3 t~ R 3 which are three convex 

regions with pairwise disjoint interiors enclosed by u 0. Since each 

d o n d~ n R~, i = 1, 2, 3, touches Uo by assumption we can construct a 

region outside d o that touches each do n d~ n R~. We arrive at a contraction 

because c 1 , c2, and the four regions give a plane embedding of K 3 ,  3 . 

C a s e 2 . 2 . 2 .  Here U o n ( d  ~ n R 1 ) =  ~ (see Fig. 4.4(b)). We argue that 

d~ w d 2 u d 3 is simply connected and bounded by three edges only; Lemma 

4.3 will prove the rest. As mentioned before, the union of the three unit- 

disks is equal to (d t ~ RI)  u (d~ n R2) u (d 3 n R 3 ) .  Note that d I contains 
the only vertex of the Voronoi diagram. If this were not the case then 

ul n R~ would contain two antipodal points of u:, for example the 

intersections of u~ with the line through p~ and the vertex, which is 

impossible because u~ n R~ is enclosed by Uo. The vertex of the Voronoi 

diagram is equally far from p~, P2, and P3 which implies that it lies in all 

three disks d r Consequently, u~ n R~ is connected for i = 1, 2, 3, which 

implies that d~ w d 2 u d 3 is bounded by only three edges and therefore also 

simply connected. 

Now we are ready to discuss Case 2.2 in its full generality. Our  goal is to show 

that ff~, = (M' © N, A'o) has not too many arcs, where M'  is set of cells in M 

enclosed by unit-circles in N, and A'o = Ao n M '  x N.  We do this by expand- 

ing the graph and proving a bound for the expanded graph. 
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Define ~ = (M" © N", A~) as follows. Draw vertical and horizontal lines 
through the integer grid points. These lines decompose each cell in M' into 
smaller cells, but because each cell in M' is enclosed by a unit-circle it is 
decomposed into at most nine new cells. The lines cut each unit-circle into at 
most eight disjoint arcs, and N" is the set of all such arcs. Finally, (c", u") ~ A" 
if c"~ M", u"~ N", and c" touches u" and lies outside the unit-circle that 
contains u". By construction, we have tM"I < 91M'I, IN"t < 8INt, and IA~I > 
I Aol- If two cells are separated by one of the lines, then they have no common 
neighbor in ~" Otherwise, they can have at most two common neighbors by 
the analysis in Cases 2.2.1 and 2.2.2. It follows that f~  has no K2, 3 and 
therefore IAol = O(mn 1/2 + n). 

In summary, we showed that f#i contains n o  g 2 ,  3 (Case 1) and that after 
removing all cells that lie outside all unit-circles, ~o can be expanded to less than 
nine times as many nodes so that the expanded graph contains no K2, 3. The cells 
outside all unit-circles are bounded by at most 6 n -  12 edges (Case 2.1). The 
removal of these cells from (¢o therefore decreases the number of arcs by at most 
this number. Finally, we note that the number of edges of a cell in the arrangement 
defined by N has fewer than six times as many edges as there are unit-circles that 
contain those edges 16 (again by a result of [41]). This together with the bipartite 
graph lemma (Lemma 4.1) implies the upper bound of the assertion. [] 

5. G e n e r a l  U p p e r  B o u n d s  

This section presents the details of our approach to proving general bounds for the 
incidences problem and the many-faces problem which improve the Canham-like 
bounds obtained in Section 4. The method is fairly modular and consists of three 
major steps--not counting Canham thresholds necessary to get the method off the 
ground--which are triangulating, probabilistic counting, and analyzing zones. At 
the heart of the method is a probabilistic counting result which is presented in 
appropriate generality in Section 5.2. It relies on a decomposition of the cells in an 
arrangement into regions of constant description. We call the decomposition a 
triangulation although the regions (funnels) are not necessarily triangles. Triangu- 
lations are the topic of Section 5.1. The analysis of zones in arrangements is 
discussed in Section 5.5. Putting all three components together, we prove upper 
bounds on the number of edges of many cells in Section 5.6. Upper bounds for 
incidences can be established without the use of zones. These are discussed in 
Section 5.3 immediately followed by applications to counting distances given in 
Section 5.4. 

~6 As a matter of fact, the blow up factor is at most two which can be shown using Davenport- 

Schinzel sequences of order 2 (see, e.g., [54]). 
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5.1. Triangulating Arrangements 

The first tool that we need in order to obtain the funneling partition is the ability to 
"triangulate" the cells of an arrangement, that is, to break them up into finer pieces 
so that each piece is bounded by only a constant number of curves or surfaces. As 
we have already remarked, the reason for. this refinement is to justify the 

probabilistic analysis that we use to prove that the funneling subdivision does a 
good job of distributing the manifolds among the funnels. The refinement is, in 
general, accomplished by using auxiliary manifolds from the same class as the 

manifolds forming the arrangement, or from a reasonably related class. In doing so 
we wish to keep the total number of funnels we obtain fairly close to the number of 
cells of the sample arrangement. 

This section discusses only the two-dimensional case, and we refer to Section 6.3 
for an extension of our triangulation technique to three dimensions. Triangulating 

an arrangement of lines is fairly straightforward and is discussed in sufficient detail 
in Section 3. We therefore confine this section to pseudolines, circles, and 
pseudocircles. The main part consists of the analysis of a particular triangulation of 

a circle arrangement. Thereafter we extend such triangulations to pseudolines and 
pseudocircles. 

Arrangements of Circles. Let C be a set of n circles in the plane.17 Each cell of the 
arrangement, ~ (C) ,  is decomposed by drawing vertical line segments through the 

left- and rightmost points of all circles. These line segments are extended as far as 
possible so that they intersect no other circles. In addition, we draw a maximal 

vertical (relatively open) line segment through every vertex of ~/(C) so that the 
only intersection with the circles is this vertex (see Fig. 5.1). A funnel (also called a 
trapezoid) is thus bounded by four edges: two vertical edges to the left and right 

and two circle edges at the top and the bottom. Up to three of these four edges can 
be degenerate, that is, empty or at infinity (see Fig. 5.1). 

Fig. 5.1. 

1 I I 

I I I 

I I ~ " T " ' ~  I p - . , ~  I 

1 I 

1 I 

t 

I 

Triangulating a circle arrangement using trapezoidal funnels. 

~ We do not distinguish between the general case and the case of unit-circles. 
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In order to count the number of funnels generated, we perform a sweep-line 

argument where the line is vertical and sweeps from left to right. Initially (when the 

line is to the left of all circles), it intersects one funnel. Whenever the sweep-line 

passes the leftmost point of a circle it encounters three new funnels (assuming the 

circles are in general position), and when it passes a rightmost point it encounters 

one new funnel. When the line passes a vertex which is the intersection of two 

circles then it hits three new funnels. This gives an upper bound of 

l + 3 n + n + 6 ( ~ ) = 3 n 2 + n + l  

for the number of funnels in the triangulation. ~s 

Remarks. ( i )  The decomposition of the cells into "trapezoidal" funnels as 

described is not a cell complex since quite frequently we have a vertex of one funnel 

lie in the middle of an edge of an adjacent funnel. This has no consequences in our 

analysis. 

(2) The line-sweep counting argument shows that the majority of the funnels are 

due to intersections of circles. In fact, if we define t as the number of intersecting 

pairs of circles in C, then the number of funnels is at most  6t + 4n + 1. 

Arrangements of Pseudolines and Pseudocircles. The decomposition of the cells 

into trapezoidal funnels as described for lines in Section 3 and for circles above can 

readily be extended to pseudolines as well as pseudocircles. This is in particular 

true because we define a pseudoline without xl-extreme points, 19 and a pseudo- 

circle with only two x~-extreme points. 

Remarks. (1) For  a pseudoline arrangement it is possible to avoid the additional 

assumption of no xl-extreme points using Levi's lemma [46] which can be used to 

construct a different triangulation of the sample arrangement. We repeat the 

lemma in the language of this paper. 

Let ~¢(L) be a pseudoline arrangement and let p and q be any two points not 

both on the same pseudoline. Then there is a pseudoline, d, passing through p 

and q so that ~¢(L u {f}) is still a valid pseudoline arrangement. 

With this we can draw a piece of a pseudoline between any two nonadjacent 

vertices of a cell (of the partially triangulated sample arrangement) that has more 

~s This analysis ignores cases such as vertices that lie on more than two circles and vertices that are, 
at the same time, left- and/or rightmost points of circles. Using a straightforward perturbation argument 
we can show, however, that the occurrence of such cases only decreases the number of funnels that are 
constructed. 

19 A point p of a pseudoline or pseudocircle ~ is xi-extreme if all points on v in an ~-neighborhood of 
p have greater (or smaller) xt-coordinates than p. 
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than three edges. Every funnel of this triangulation is bounded by at most three 

edges and each edge intersects every pseudoline in at most one point where it 
crosses it. For reasons of uniformity we prefer to work with the triangulation using 
trapezoidal funnels, though. 

(2) We pose the generalization of remark (1) to arrangements of pseudocircles as 
an open problem. Let C be a finite set of pseudocircles and let ~1(C) be the 
arrangement defined by C. Prove or disprove that for any two points p and q there 

is a pseudocircle c so that p, q e c and ~¢(C w {c}) is still a pseudocircle arrange- 
ment. 

A crucial property of the triangulations described in this section is a certain 
independence property that allows us to decide whether a trapezoid is part of a 
triangulation without looking at its neighboring trapezoids. This property plays an 
important role in the probabilistic counting analysis of triangulations in the next 

section. 

Lemma 5.1 (Independence Lemma). Let R be a set of r curves (that is, lines, 
pseudolines, unit-circles, circles, or pseudocircles). A trapezoid A is in the triangula- 
tion of d ( R )  if and only if 

(i) A is in the triangulation of d ( R ' )  for some R' ~_ R, I R'I < 4, and 
(ii) A does not intersect any curve in R. 

Proof. The "only if" part is straightforward since a trapezoid A in the triangulation 
of ~¢(R) satisfies (ii) by definition. Furthermore, the top and bottom of A lie in two 

curves, by construction, and two additional curves suffice to determine the left and 
right sides of A, Thus, A is in the triangulation of these at most four curves. (There 
are less than four if a side is empty or at infinity; see also Fig. 3.2) 

To see the "if" part notice that a trapezoid A that satisfies (i) and (ii) does not 
intersect any side used in the triangulation of ~¢(R): no nonvertical side can 

intersect A because A is disjoint from all curves in R, and no vertical side can meet 
A because every vertex in ~¢(R) is shielded from A by at least one of the curves in R'. 
Thus, A is contained in a trapezoid of the triangulation of d (R) .  But then this 
trapezoid must be equal to A since it intersects a line in R', otherwise. []  

Remark. A trapezoid A satisfying (i) is said to be defined by R' The smallest set R' 
that defines A is unique if we assume that the curves in R are in general position. 
This will be important later where we make crucial use of the fact that each 

trapezoid satisfying (i) and (ii) is defined by exactly one set R'. 

5.2. Probabilistic Counting Results 

The key intuition behind our partitioning scheme is that we are likely to do well if 
we partition based on sampling our own data. How well? For any given R of size r, 

on the average we expect roughly O(n/r) manifolds to cut each funnel. Loosely 
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speaking, the reason is that in d dimensions a manifold will typically cut on the 
order of r d- 1 funnels and there are on the order of r a funnels altogether. The e-net 

theory of Haussler and Welzl [381, as well as the probabilistic lemma of Clarkson 

[11] then guarantee that, with high probability over the random selection of R, 

every funnel in the funneling subdivision will behave like the "average" funnel, to 

within an O(log r) factor. Since we want a best-possible bound we need a tighter 

result here. We invoke another result also reported in more generality in Clarkson 

and Shor [12] that states that if we let the sample R vary, the expected number of 

manifolds cutting this funnel will be O(n/r), with no logarithmic factor. We use this 

fact and the additivity of expectation to obtain our result. Recent results of 

Chazelle and Friedman [7] and Matougek [48] show that for some types of input 

there exist triangulations for which every funnel is like the average to within a 

constant factor. This stronger bound is not necessary to obtain our combinatorial 

results. 
The presentation of the probabilistic counting result in this section is general 

enough to cover the cases of lines, pseudolines, unit-circles, (general) circles, and 

pseudocircles. Even more cases (including spheres in three dimensions) are 

included in the more general but also more involved treatment in [12]. 

So let C be a set of n curves (of a type listed above) and let P be a set of m points. 

For  a subset R ~_ C we triangulate the arrangement ~ ' (R)  and denote the funnels 

by A 1 through A k. Define m i = I e  n A~] and let n~ be the number of curves that 

intersect Ai. For  the time being we assume that the curves satisfy appropriate 

general position requirements and that the points avoid all curves as well as 

vertical funnel sides. With these definitions and assumptions we have the following 

preliminary result. 

Lemma 5.2. Let R be a set of r curves in the plane and let (91~ be the set of all 
trapezoids defined by four or fewer curves in R. 

(i) For each point p there are at most four trapezoids in f~R that contain p and 
intersect exactly one curve each. 

(ii) The number of trapezoids in f#R that intersect exactly one curve in R is O(r2). 

Proof. To show (i) notice that only one trapezoid in f#R, we call it AR, contains p 

and meets no curve in R. Similarly, define AR-~c~ for p and R - {c}, c an arbitrary 

curve in R. Let R' be he set of at most  four curves that define A R. A trapezoid A that 

satisfies the conditions in (i) has the property that it is AR-~c~ for exactly one curve 

c ~ R. But A R_~ = A R unless c ~ R'. The claim follows since there are at most four 

curves c in R'. 

I t  is slightly more complicated to establish (ii). Take a curve c e R and consider 

the (unique) triangulation of ~¢(R - {c}). We count the number of trapezoids in 

this triangulation that meet c. This is equal to (or one more than) the number of 

points where c meets trapezoid sides. The number of such points that lie on 

nonvertical sides is O(r) because c intersects the other curves in at most  two points 

each by assumption. When we take the sum over all c e R we get O(r 2) such 

intersections. Each vertical side of  a trapezoid in the triangulation of ~¢(R - {c}) 
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that intersects c overlaps with a vertical side in the triangulation of sO(R) that has 
one endpoint on c at a point where c does not intersect any other curve. It is fairly 
dif~cult to bound the number of such vertical sides for an individual c, but it is easy 
to compute the sum over all c e R. Namely, every vertex in ~¢(R) and every point 
with vertical tangency generates two vertical sides each footing at a single curve c. 
By assumption, there are only O(r 2) points generating vertical sides which implies 
that the total number of such intersections, summed over all c e R, is O(r2). [] 

Remark. With a little more care the above proof can be used to compute the 

constants hidden in the big-Oh notation. For lines and pseudolines we have ( ~ )  

vertices in ~¢(R) and no points of vertical tangency. Thus there are at most 

r 2 +  2 ( ; ) <  2r 2 trapezoids in ~ ,  that meet exactly one line or pseudoline in R. For 

/ s. 

\ / 

unit-circles, general circles, and pseudocircles we have 2( ; )ver t ices  in ~¢(R, and2r 
\ - /  

points of vertical tangency. It follows that the number of trapezoids in f#a that 

intersect exactly one curve in R i s  at most 2 r ( r - 1 ,  + 4 ( r ) +  4 r = 4 r  2. 
\ z /  

We are now ready to present the probabilistic counting argument which leads to 
a result that says in a formal way that every funnel intersects O(n/r) curves on the 
average. 

Lemma 5.3 (Sampling Lemma). Let C be a set o f  n curves in general position, 

triangulated into funnels A 1 through Ak, and let P be a set o f  m points avoiding the 

boundaries of  the funnels. Define m i = IP n All and let n~ be the number o f  curves that 
intersect At. For every 0 <_ ~ < 1 and 4 < r < n there is a subset R ~_ C with r = [RI 
so that 

k (i) ~i= 1 min~ = O(m(n/r) ~) and 

(ii) ~ =  1 ni = O(rn). 

Proof.  The proof consists of two steps each applying a probabilistic counting 
argument. The first step shows that the expectation of ~A, m~nT, taken over all 
subsets R of size r, is bounded from above by fitm(n/(r - 4)) ~ for some constant 61 
independent of ~. It follows that there exists a subset R for which this inequality 
holds. The second step shows that the expected value of ~,A, n~ < 62(kn/r ) for some 
constant 32 . Now, the subset that satisfies the first inequality may not satisfy the 
second and vice versa. However, by the nature of the argument we know that more 
than 50% of all subsets R of size r satisfy ~,t,, mint < 231m(n/(r - 4)) ~, and, by the 
same token, more than 509/0 of the subsets R satisfy ~,t,, nt < 232(knit). It follows 
that there is at least one subset R that satisifies both inequalities. 

Step 1. As indicated above, the idea of the proof is that if R is chosen at random, 
then the expected value of ~ ,  min~ is O(m(n/r)~). To compute the expected value of 
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the above random variable, we observe that the sum is the same as ~ ' =  1 q~, where 

qj is the number of curves intersecting the funnel that contains point Pie P" Clearly, 

q~ = nl if Pie Ai. Since the expectation is additive we can concentrate on showing 

that the expected value of q~, denoted by E[q~], is O((n/r)O. By Jensen's inequality 

(see, for example, [30]), E[q~] < E[q~] ~, so it remains to show that E[qj] = O(n/r). 
As before we write C = {c 1, c 2 . . . . .  c,} for the set of curves and we let R be a set 

of r > 4 sample curves, chosen randomly from C. Let also p be a fixed point in the 

plane, not on any of these curves and not vertically aligned with any vertex of the 

arrangement ~¢(R). We use q for the random variable, depending on R, that counts 

the number of curves which intersect the funnel containing p. 

As described in the previous section, we triangulate ~¢(R), decomposing each 

cell into trapezoidal funnels. We are interested in the particular funnel A R that 

contains p. As observed in Section 5.1 every funnel in the triangulation of ~¢(R) is a 

funnel in the triangulation of some four or fewer curves of R, This observation 

suggests that we could find A R in the following roundabout  way: for all R' ~_ R with 

I R'I < 4, find the trapezoid of the triangulation of ~¢(R') that contains p. The result 

is a set of O(r 4) trapezoids, which we denote ~-R. (Observe that ~-~ is a set which 

implies that it contains a trapezoid only once, even if it is defined by more than one 

set R'.) We know that A R e ~-R, and by the independence lemma (Lemma 5.1) A R is 

the unique trapezoid in ~-R that does not meet any curves of R. 
To continue the proof define #-c  like ~-R so that it contains all trapezoids of the 

arrangement of some four or fewer curves of C that contain the point p. 

Furthermore, let [ A I be the number of curves of C that meet trapezoid A, and for 

A E #-c let PA be the probability that A is A R, that is, 

PA = Prob[A = AR]. 

With these definitions E[q] = ~ a ~ c l A I P A .  To show that E[q-I is O(n/r), we 

determine PA. Since all subsets R of size r are equally likely, Pa is the number of 

subsets R such that A = AR di~vided bY ( n )  ' the number °fsubsets  R °f  size r ' r  We 

can thus compute Pa by determining how many subsets R have A = A R. By the 

independence lemma, the following two conditions are necessary and sufficient for 

A to be A~: A is in ~ '~  and none of the IA[ curves meeting A are in R. Recall that A 

is in the triangulation of some four or fewer curves of C, and using the general 

position assumptions about C, there is a set RA -- C with I Ral = rA < 4 such that 

A ~ ~ if and only if R A _ R. To put A in ~-R we must choose these r A curves. To 

satisfy the second condition, the remaining r - ra curves must be chosen from the 

n - I AI - r~ curves that are not in R A and do not meet A. Any such choice will do, 

so we have 
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Now since 

(n,.) . "  .+ ' : ."  . ) . ,  ' . , )  
r - - r a  --- r - - - r~ - - \ r - - r  a -  [ --<r-----4\ r - - r  A -  1 ' 

we have 

n (n r IAr~ --r/t)/(n) E [ q ] < - -  ~ IA) L 
- r 4 a  c 1 r 

To complete the proof of the estimate for E[q], it is enough to show that the sum in 
this expression is bounded from above by a constant. The key observation here is 

that the summand, 

is the probability that A is a trapezoid in ~'R that meets exactly one curve of R. This 
observation follows from an argument much like that giving Pa: after choosing the 
ra curves defining A, we have to choose exactly one curve from the set of I AI curves 
meeting A, and r - r a - 1 of the remaining ones. The sum is the expected number 

of trapezoids in ~-R that meet exactly one curve of R. By Lemma 5.2(i) the 

expectation is at most four. 
This completes our proof that, for any point pj e P, 

:4.y 
E[qT] <-E[qj]~ < \ r - - 4 )  < 4~ ~ " 

Step 2. The main flow of the argument for part (ii) of the lemma is the same as in 

Step 1. We replace ~-g and ~-c by ~R and (~c, where f#a is the set of all trapezoids 

defined by four or fewer curves in R, and ~c is the same for C. Furthermore, we 
replace PA by Qa, where QA is the probability that A e f#c is a funnel in the 

triangulation of ~ (R) .  Finally, define ZR = ~IAI where the sum is taken over all 
funnels A of the triangulation of ~¢(R). With these definitions we have 

E[XR] = ~ IAIQA. 
A ~ c  

We can compute Q: by observing that A is a funnel in the triangulation of M(R) if 
and only if A e f#a and A does not meet any curve in R. So 

(")/(') (2:= .-IAI- 
r - rA r 
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exactly the same PA only that Qa is defined for all trapezoids in (~c. Thus we have 

n 
E[;CR] = ~ I A I Q ~ _ - -  

~ c  r - 4 a 

r~  n 

lA'(n-lAl-1)/(r)'\ r - r a  

Here, the summand is the probability that A is a trapezoid in f9 R that meets exactly 

one curve in R. Thus, the sum on the right-hand side is the expected number of 

trapezoids in f#R that intersect exactly one curve in R. By Lemma 5.2(ii) this 

number is O(r 2) which implies part (ii) of the assertion. [] 

Remark. The following stronger upper bounds on the sums in the sampling lemma 

are implied by the above proof  and the remark after Lemma 5.2. The expression 

k ~ _ 4~m(n/(r -- 4)) ~ holds for lines, pseudolines, unit-circles, general cir- Ei= 1 mini < 
cles, and pseudocircles. The expression ~kffi 1 ni < 2nr2/( r -- 4) is true for lines and 

pseudolines, and )-'k= 1 ni < 4nr2/( r -- 4) holds for unit-circles, general circles, and 

pseudocircles. 

5.3. Upper Bounds on Incidences in the Plane 

Bounds on the maximum number of incidences between m points and n lines, 

pseudolines, unit-circles, general circles, and pseudocircles have been established in 

Section 4 (Canham Threshold 4.2). We now use the machinery provided in 

Sections 5.1 and 5.2 (as well as Canham Threshold 4.2 itself) to improve these 

bounds for a wide range of values of m depending on n. In each case we start with a 

sample of the curves, triangulate the sample arrangement, and finally do the 

necessary calculations to obtain the result. Beyond the fact that the argument is the 

same in each case, even the calculations are identical for lines, pseudolines, and 

unit-circles and for circles and pseudocircles since the Canham thresholds, the 

triangulation results, and the probabilistic counting bounds are asymptotically the 

same. In view of the fact that the argument and the calculation of the final result for 

lines has been given in Section 3,  we omit the discussion of the first three cases 

altogether. The remainder of this section gives the complete derivation of the 

improved bounds for circles and pseudocircles and finally summarizes the results. 

We phrase the analysis for circles. 
To get the analysis for circles started we randomly choose r of the n circles and 

triangulate the arrangement defined by the r circles. It  consists of k = O(r 2) funnels 

which we index from 1 through k. Let m~ be the number  of points in the ith funnel 

and let n~ be the number of circles that intersect the ith funnel, z° If l(m, n) denotes 

the maximum number of incidences between m points and n circles, we have 

k 

I(m, n) <_ ~ l(mi, ni) + m + 2hr. 
i=1  

20 Recall that a cell as well as a funnel is an open set. Since we can rotate a configuration of circles 
and points arbitrarily we may assume that no point lies on a vertical side of a funnel. Thus, ifa point lies 
on the boundary of a funnel it must necessarily lie on at least one sample circle. 
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Here the sum covers the number of incidences within the funnels and the term 

2nr + m bounds the number of incidences between points that lie on sample circles 

and all n given circles. Indeed, each circle c intersects the sample circles (other than 

c if it is itself in the sample) in at most 2r points, so it can contribute at most 2r 

incidences with points that lie on (other) sample circles. The only incidences that 

are not accounted for by this argument involve incidences between sample circles 

and points that are not vertices of the sample arrangement, but there are at most m 

such incidences total. The probabilistic counting argument in Section 5.2 implies 
that there is a sample so that the average nl is O(n/r) and )-'k= 1 min2/3= 

O(m(n/r)Z/3). Using Canham Threshold 4.2(ii) we thus get 

k 

I(m, n) = ~ O(min 2/3 + ni) + m + 2nr = O(mn2/3r -2:3 + m + nr). 
i = 1  

We now choose r = O(m3/Sn - t/5) which is feasible as long as  n 1/3 <_ m < n 2 and 

obtain 

I(m, n) = O(ma/Sn 4/5) 

for this range of m. We have l(m, n ) =  O(n) if m < n 1/3 and I(m, n ) =  O(m) if 

m > n 2. A combination of these bounds gives he desired result. The above analysis 

applies almost verbatim to the case of lines, pseudolines, and unit-circles, the main 

difference being that we have to use Canham Threshold 4.2(i) in which case the 
choice of r is as in Section 3. We thus have 

T h e o r e m  5.4 (Planar Incidence Theorem). The maximum number o f  incidences 

between a set M o f  m points and a set N of  n curves is 

(i) O(m2/3n 2/3 + m + n) i f  N is a set o f  lines, pseudolines, or unit-circles, and 

(ii) O(m3/Sn4/5 + m + n) if  N is a set o f  n circles or pseudocircles. 21 

Remarks. (1) The bound for lines is not new and is originally due to Szemer6di 

and Trotter  [57-] who also give a number of applications to related geometric 

problems. This bound is tight. 

(2) Also the upper bound for unit-circles is not new and can be found in [55]. In 

contrast to the case of lines, no matching lower bound is known and in fact it is 

conjectured that the bound in (i) is not tight (see [24]). It is worthwhile to remark 
that the same bound, O(m2/an 2/3 + m + n), also holds in the more general case 

when at most  a constant number of circles intersect in two common points (see 

remark (4) after Canham Threshold 4.2). 

2~ It is implicit that we make the claim only for pseudolines that meet any vertical line in one point 
and for pseudocircles that meet any vertical line in at most two points. Since any pseudoline 

arrangement is combinatorially equivalent to one where all pseudolines satisfy this condition [32] this is 

no loss of generality in the case of pseudolines. 
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(3) The upper bound for circles is new and is an improvement of the 
O(m3/4n 3/4 q- m q- n) bound observed in [5] and [10]. It can be used to improve 

known bounds for combinatorial distance problems in the plane (see Section 5.4). 
As for unit-circles, no matching lower bound is known and it seems unlikely that 
our bound is tight. The example of m points and n lines with fl(m2/3n 2/3) incidences 

can be used to show the same lower bound for circles as follows. Choose an origin 
disjoint from all points and lines and perform an inversion with respect to this 

origin. This transform maps every point to a point and every line to a circle, and it 

preserves incidences. The weakness of this lower bound example is that every circle 
contains the origin which is an indication that not all degrees of freedom are 
properly used. Indeed, in the next section we will see a construction that gives a 

slightly higher lower bound for a small range of m. 
(4) A stereographic projection of a sphere onto a plane maps a point to a point 

and a circle to a circle (or a line if the circle passes through the center of the 

projection). This fact can be used to extend the planar incidence theorem to the 
case where the points and circles lie on the surface of a sphere in three dimensions. 
Consequently, for m points and n circles on the sphere we have O(m3/Sn 4/5 + m + 

n) as an upper bound on the number of incidences in the general case and 

O(m2/3n 2/a + m + n) if no three circles intersect in two common points. The latter 

condition is satisified, for example, if the circles are all congruent and are not 

great-circles of the sphere. If the n circles are great-circles, then the second 
bound still holds since two circles can intersect in only one point within any open 

hemisphere. 
(5) The planar incidence theorem can be restated to bound the number of curves 

that contain at least some number of points and the number of points contained in 
at least some number of curves. Let k be larger than some constant that depends on 

the constants hidden in the big-Oh notation of the planar incidence theorem. Given 
a set of m points, the maximum number of lines (pseudolines, or unit-circles) 
containing at least k points each is O(m2/k 3 + re~k). Symmetrically, given n lines, 

pseudolines, or unit-circles, the maximum number of points each of which is 
incident to at least k of them is O(n2/k 3 + n/k). The corresponding bounds for 
circles and pseudocircles are O(m3/k 5 + m/k) and O(n2/k 5/2 Jr n/k). 

5.4. Applications to Distance Problems 

As observed by Spencer et al. [55], the maximum number of unit-distance pairs 22 

in a set of m points in the plane is at most half the maximum number of incidences 

between m points and m unit-circles. To see this draw a unit-circle around each 
point and observe that {p, q} is a unit-distance pair if and only if p lies on the circle 

around q and q lies on the circle around p. It follows that O(m 4/3) is an upper bound 

for the maximum number of unit-distance pairs. This result is not new but the 

proof in this paper is considerably simpler than the one in [55] and the 

22 The pair {p, q} is a unit-distance pair if d(p, q) = 1. 
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multiplicative constant implied by our proof is significantly smaller than theirs. 
Below we derive such an improved constant. 

We start by considering the incidence problem for m points and n unit-circles in 

the plane. Since no two points are incident to three unit-circles (the corresponding 
bipartite digraph has no K2.3) we get l(m, n) <_ 21/2mn I/2 + n from remark (I) after 
the bipartite graph lemma (Lemma 4.1). From the remark after the sampling 
lemma (Lemma 5.3) we get 23/2m(n/(r - -  4)) 1/2 as an upper bound for the expected 
value of~k= X 21/2m~n~/2 and 4nr2/(r - 4) as an upper bound for the expected value 

of ~k= 1 hi- If we take both bounds times 2 we can be sure that there is a sample for 
which the (increased) bounds are true. So we get 

k / n ~1/2 8 n r  2 

I(m, n ) <  ,=1 ~ (2'/2min:/2 + ni) + 2nr + m -< 2'/2m|r--S-4)\ / + r - - 4  + 2nr + m. 

Now choose r = cm2/3n - 1/3 + C', with c = 21/3/52/3 and 4 < c' < 5 so that r is an 

integer. Thus, we get 

l(m, n) < 63x/16m2/Sn 2/s + 90n + m + lO03x/~n4/3m -2/3. 

If we set m = n we get 

l (m,m) <_ 6~FiOm 4/3 + 91m + lOOS l x ~ m  2/3. 

Since the number of unit-distance pairs is at most half this quantity we have the 
following result. 

Theorem 5.5. The maximum number of unit-distance pairs in a set of m points in the 

plane is at most 3 3x/~m 4/a + O(m). 

The question of how often a given distance can occur in a set of points has also 
been asked for m points that lie on a sphere in three dimensions (see [29]). They use 
a geometric transform to show that the maximum number of unit-distance pairs in 
a set of m points on a sphere in three dimensions is tl(m4/3). A matching upper 

bound follows from remark (4) after the planar incidence theorem (Theorem 5.4). 
The example in [29] consists of pairs at distance exactly one-fourth of a great- 
circle, and it seems likely that this is the only distance which can occur fl(m 4/3) 

times. The best lower bound for other distances is fl(m log* m) [29]. 

Different Distances in the Plane. The remainder of this section discusses a problem 

about different distances. For  a point set P = {PI, P2 . . . . .  Pro} let gi be the number 
of different distances from Pi, that is, gi = J{d(pi, Pj)I 1 ~ j <_ m,j  ~ i}l. We define 

g(P) = ~7'=t gi and 

g(m) = min{g(P) lP set of m points in the plane}. 
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Erdds 127] conjectures o(m)= f~(m2(log m) -U2) but proves only ~'~(m3/2). The 
upper bound on the number of incidences between m points and n circles given in 
1"5"1 and [10] implies g(m)= fl(mS/3). We improve this bound using the planar 
incidence theorem. Around each p~ draw 0t circles that contain the other points. 

This gives 2 ( 2  ) incidences between m points and g(P)circles. By the planar 
\ / 

incidence theorem (ii) the number of incidences between that many points and 
circles is bounded by O(m3/Sg(P) 4/5) which implies m3/Sg(P) 4/5 = f~(m 2) for any set 
P of m points in the plane. Thus we have the following result. 

Corollary ~;.6. g(m) = f~(mT/4). 

As a consequence of Corollary 5.6, the average g~ and therefore also the maximum 
gf is ~(rn3:4), always. 

Remarks. (i) The above lower bound on g(m) is new, but that the maximum g~ is 
f~(m 3/4) was known before (although only in unpublished form; see [28]). Recently, 
Chung, Szemer6di, and Trotter claimed to have improved the bound on the 
maximum gf to [~(m4/S). 

(2) Let us indulge in an instructive exercise and assume that we can prove that 
the maximum number of incidences between m points and n circles is O(m2/3n 2/3 + 
m + n) (which we cannot). This would imply that m2/3g(m)2/3 + m + g(m) = f2(m 2) 
and therefore g(m) = f~(m2)- Consequently, the maximum 0~ would be linear in m. 
This is indeed false as Erdds 124] proves that the number of different distances in 

the ~ x ~ grid is O(m(log m)- a/2). We conclude that the maximum number of 
incidences between m points and m2(log m) -1/2 circles is fl(m2). In terms of 
n = m2(log m)-1/2, the number of circles, the maximum number of incidences 
between m = nt/2(log n) 1/4 points and n circles is f~(n(log n)1/2). This improves the 

lower bound on the maximum number of incidences between m points and n circles 
mentioned in remark (3) after the planar incidence theorem for nl/2(log n) 1/4 < 
m < n X/2(log n) 3/4. Of course, the lower bound on the number of incidences derived 
in this paragraph implies the same lower bound for the many-faces problem for 
circles. 

(3) Remark (2) shows that g(m) = O(m 2) if O(m2/3n 2/a + m + n) is an upper 
bound on the number of incidences between the m points and the g((P) = n circles 
whose centers are the m points. This bound holds if the maximum number of circles 
intersecting in two common points is at most some constant, which is true if the 
maximum number of collinear points in P is bounded by some constant. This result 
was originally obtained by Szemer6di in a direct and elegant manner (see [271). 

5.5. The Complexity o f  Zones 

The zone of a manifold in an arrangement is the collection of cells of the 
arrangement crossed by the manifold. We need estimates for the number of faces 
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bounding the cells of a zone, the (combinatorial) complexity of a zone, in order  to 

take care of the cells that  spill outside of  their subprob lem funnel. 

In Edelsbrunner  et al. [18] upper  bounds  on the complexi ty  of  zones for rather  

general curves in the plane are derived. Their  main  theorem establishes upper  

bounds on the complexi ty  of a zone in an a r rangement  of  simple curves 23 that  are 

only slightly superlinear in the number  of  curves. These bounds  apply  as long as 

there is some constant  such that  any two curves intersect in at mos t  this constant  

number  of points. We state their result after reviewing a related combinator ia l  

concept. 
The bounds  on the complexi ty of  zones are given in terms of m a x i m u m  length 

functions of  so-called Davenpor t -Schinze l  sequences. These are sequences of  

symbols so that  no two adjacent  symbols  are the same and there are no long 

alternations of  any two symbols.  More  specifically, a sequence a la  2 . . .  ak, with 

a i e  {1, 2 . . . . .  n} for 1 < i < k, is a Davenport-Schinzel sequence o f  order s (for short  

an (n, s)-sequence) if a s ~ as+ i for 1 < i < k - 1 and there are no s + 2 indices 

ii < i2 < "-" < i~+2 so that  as, = a~3 = . "  # ai2 = ai, . . . .  . Let 2s(n ) be the length 
of the longest (n, s)-sequence. Then the following bounds  on 2,(n) are known, 

where ~(n) is the inverse of Ackermann ' s  function which is notor ious  for growing 

extremely slowly: 

and 

2t(n  ) = n  and 2 2 ( n ) = 2 n - 1 ,  

2a(n) = ®(n~t(n)) (see [37]), 

24(n ) = O(n.  2 ~(n)) (see [1]), 

22s(n ) = n. 2 °(~(n}'- ') (see [1]), 

22s + l(n) = n. ct(n) °(~{")'- ') (see [1"]). 

Besides bounding the complexi ty  of  zones, bounds  on the m a x i m u m  length of 

Davenpor t -Schinze l  sequences will also be used to analyze tr iangulat ions of sphere 

arrangements  in space (see Section 6.3). 

The  theorem below summarizes  the known results on the complexi ty  of  zones. 

T h e o r e m  5.7 (Zone Theorem).  Let  F u {?} be a set o f  n + 1 simple curves in the plane 

with the property that any two intersect in at most s points where they must cross. 

(i) The complexity of  the zone o f  ? in ~¢(F) is O(~,s+ 2(n)). 
(ii) l f F  w {?} is a set o f  lines or pseudolines, then the complexity o f  the zone of  ~ is 

O(n). 
(iii) I f  F is a set o f  unit-circles and ~ is a line or a circle, then the zone o f  y has 

complexity O(,~a (n)). 

2a In this section we define a simple curve as the image of an interval or circle under a continuous 
one-to-one mapping to the Euclidean plane. 
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(Parts (i) and (iii) of the above theorem are taken from [I 8]. Part (ii) dates back 

to [8] and [21]; proofs can also be found in [15] and [18].) 

Remark. Currently, there is only one nontrivial extension of the zone theorem 
known, namely for hyperplanes in d > 3 dimensions. The result is that the zone of a 
hyperplane in an arrangement of n other hyperplanes is bounded by at most 
O(n d- 1) faces of any dimension [21]. The lack of such results for other manifolds is 

the main reason for our lack of nontrivial bounds on the number of faces bounding 
many cells in three- and higher-dimensional arrangements. Bounds for planes and 

hyperplanes can be found in [19]. 

5.6. Upper Bounds on the Complexity of  Many Cells 

This section derives our final bounds on the maximum number of edges bounding 
m cells in an arrangement of n curves. As in earlier sections we consider lines, 
pseudolines, unit-circles, (general) circles, and pseudocircles. 24 In each case the 

proof follows a modular structure, and to go from one case to another only requires 
the adjustment of some parameters. As explained in Section 3, the major steps of 

the proof are 

(1) the establishment of a Canham threshold, 
(2) the triangulation of the arrangement defined by a sample of the curves, 

(3) the analysis of the triangulation by probabilistic counting, 

(4) the accounting done by divide-and-conquer, 
(5) the analysis of the combinatorial complexity of zones, and 

(6) the calculation of the final bound. 

Steps (1)-(3) were discussed in appropriate detail in Sections 4, 5.1, and 5.2. To 

facilitate step (4) we mark each cell by a point somewhere within the cell. Using the 
appropriate Canham threshold we bound the number of edges bounding marked 
cells within the funnels; this covers all cells that do not cross the border between 

funnels. Now we add the complexity of the inner zones of the funnels to cover all 
edges that were not counted in step (4); these edges bound cells that reach into 

more than one funnel. Finally, we wrap it up by choosing the sample size to 

optimize the result. 
The remainder of this section discusses all cases in turn and finally summarizes 

the results. 

lines and Pseudolines. Section 3 proved K(m, n) = @)(m2/3n2/3 + n) for m cells in 

an arrangement of n lines. Because of our assumption that a pseudoline does not 
have any xl-extreme points all steps are exactly the same as for lines. We thus 

obtain the same bound for pseudolines. 

24 Recall that we assume that a pseudoline intersects any vertical line in a point and that a 
pseudocircle intersects any vertical line in at most two points. 
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Unit-Circles. The major  difference between the proofs for lines and for unit- 

circles is step (5), the complexity of  zones. To estimate the contr ibut ion of  the inner 

zones in the arrangement  of  sampled unit-circles we need bounds  on the complex- 

ity of  the zone of  a unit-circle and the zone of  a line in an arrangement  of  n 

unit-circles. 25 In  both  cases we talk about  curves so that  any two intersect in at 

most two points. By Theorem 5.7(iii), the number  of  edges bounding  all zone cells is 

O(23(n)). We can now do the necessary calculations to obtain a good  bound on 

K(m, n). 
Let U be a set of n unit-circles and let R _ U be a sample of  size r so that  

~a, mln~/2 = O(m(n/rl/2) and ~a ,  ni = O(rn). Here, mi is the number  of points in 

funnel A i and n~ is the number  of  unit circles intersecting At. Using part  (iii) of  the 

zone theorem we get 

f nk l l  2 
K(m, n ) =  E O(m,n' t/2 + 23(n , ) )=  O(m|r  ) + rna(n)). 

Ai k ~  

We choose r = O(m2/3n - 1/3cz(n)-2/3), which is meaningful as long as m > nl/2a(n). 
With this choice of r we get 

K(m, n) = O(m2/an2/3a(n)l/3). 

For the case m < nl/2~(2) we still have Canham Threshold 4.7 which gives us the 

bound O(mn 1/2 + n) = O(rn2/3nZ/a~t(n) 1/3 + n), thus covering all cases. 

Circles and Pseudocircles. The arguments  for pseudocircles and circles are 

identical which allows us to ignore pseudocircles altogether. In contrast  to unit- 

circles we now have to deal with a weaker Canham threshold which bounds the 

number  of  edges o f m  cells only by O(mn 2/3 + n), see Section 4.4. All the other steps 

are the same as for unit-circles, except for the complexity of  a zone which is now 

O(24(n)) and that  we need a sample R of size r so that ~a ,  mi n2/3 = O(m(n/r) 2/3) 
and ~__~, n i = O(rn). Such an R exists by the results in Section 5.2. We thus get 

K(m, n) = ~, O(m~n 2/3 + 24(n~) ) = 0 m + rn . 
A~ 

We define tic(n) = 2,(n)/n = 0 ( 2  "(")) and choose r = O(m3/Sn- 1/5flc(n ) -  3/5), which 

is possible if m > nl/3ffc(n ). This choice of  r leads to 

K(m, n) = O(m3/Sn4/5~(n)2:5). 

For  m < nl/3flc(n ) the Canham threshold for circles can be used to get the bound  
O(mn 2/3 + n) = O(m3/Sn4/Sflc(n)2/5 + n) which thus covers all cases. 

We finally summarize the results of  this section. 

2s Since a cell can reach from one funnel to another only by intersecting the vertical side separating 
the two funnels it is actually sufficient to consider only zones of lines in unit-circle arrangements. 
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Theorem 5.8 (Planar Many Edges Theorem). The maximum number of edges 
bounding a set of m cells in an arrangement ~¢(N) of n curves is 

(i) O(m2/3n 213 + n) if  N is a set of lines or pseudotines, 
(ii) O(m2/3n2/3~(n) 1f3 + n) if N is set of unit-circles, where ct(n) is the extremely 

slowly growing inverse of Ackermann's function, and 
(iii) O(m3ISn4/Sflc(n)2/s + n) if N is a set of circles or pseudocircles, where 

tic = ®(2~(~)). 

Remarks. (1) For nl/2< m < nl/2~(n) the bound in (ii) can be improved to 
O(mn 1/2) using Canham Threshold 4.7. Similarly, for nl13< m < nl/3fl~(n) the 
bound in (iii) can be improved to O(mn 213) using Canham Threshold 4.6. 

(2) The upper bound for unit-circles, O(m2/3n2/3~(n)l/3+ n), is almost tight 
which can be seen by extending the ~(m2/an 2/3 4- n) lower bound for lines to 
unit-circles: take a line arrangement with m cells realizing the maximum and 
approximate each line by a large enough "unit-circle" so that no edges of the m 
cells are lost. It would be interesting to see whether or not the ~(n)-factor is an 
artifact of the proof technique. 

(3) No matching lower bound for the case of circles and pseudocircles is 
currently known. Except for a small range of values of m relative to n (see remark 
(2) after Corollary 5.6) the best known lower bound is the same as for unit-circles. 

6. Spheres in Three Dimensions 

This section demonstrates that the techniques laid out in Sections 4 and 5 can be 
used to derive bounds on the maximum number of incidences between m points 
and n spheres in three dimensions which improve upon previously known bounds. 
This problem is interesting because various combinatorial distance problems for 
points in three dimensions can be rephrased as point and sphere incidence 
problems. This relationship is discussed in Section 6.5. 

Observe, however, that we cannot expect a nontrivial upper bound for the 
general problem since we can have all n spheres intersecting in a common circle and 
choose m points on this circle. This gives mn incidences which matches the trivial 
upper bound. We get interesting problems only after imposing some restrictions on 
the spheres or points. Section 6.1 imposes certain general position conditions on 
the spheres (and/or points). This line of investigation will lead to a new upper 
bound on the maximum number of unit-distances of a set of n points in three 
dimensions. In Section 6.2 we discuss the case where the points are required to be 
vertices of the arrangement defined by the spheres. For this case we need to prove 
an extension of the bipartite graph lemma (Lemma 4.1) which is of independent 
interest. 

All steps of the general proof scheme developed in Section 5 go through without 
major difficulties except for the decomposition of sphere arrangements into cells of 
constant description, the funnels. This step is treated in Section 6.3. The results are 
summarized in Section 6.4 and applications to combinatorial distance problems in 
three dimensions are discussed in Section 6.5. 
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The reason for concentrating on spheres, rather than on planes, say, is that our 

techniques do not yield the best bounds for point/plane incidences and for the 

complexity of cells in arrangements of planes. These are best handled by dual 

techniques as demonstrated in the companion paper [19-1. 

6.1. Canham-like Bounds Under General Position Assumptions 

Assume that N, the set of n spheres, contains no three spheres that intersect in a 

common circle. Three points in three dimensions define a unique circle through 

them, unless they are collinear in which case no sphere can contain all three. This 

implies that any three points of the given set M belong to at most two common 

spheres. If we consider f# = (M © N, A) with (#, v) e A if/z ~ v this is equivalent to 

stating that f# contains no  K3, 3. (Observe, however, that (# can contain K2., for t up 

to n and Ks, 2 for s up to m). Using the bipartite graph lemma we immediately get an 

upper bound on the number of incidences. 

Canham Threshold 6.1. The maximum number of  incidences between m points and n 
spheres in three dimensions (assuming no three spheres intersect in a common circle) is 
O(mn 2/3 + n) and O(nm 2/3 + m). 

Remarks. (1) The first bound in Canham Threshold 6.1 implies that the number 
of incidences is O(n) as long as m < n 1/3. 

(2) Natural  cases where the assumption in Canham Threshold 6.1 is satisfied 

include unit-spheres and spheres with no three collinear centers. If we relax the 

condition on the spheres and require that no t spheres intersect in a common circle, 

for some constant t, we still get the first upper bound of Canham Threshold 6.1. 

(3) Suppose we require that no four points in M are cocircular and drop any 

conditions on N. In this case the graph f# that reflects the incidences contains no 

K4,2 which implies that the maximum number of incidences is 

O(mn 3/4 + n) and O(nm 1/2 + m). 

Observe that the next natural but more restrictive condition on the points (no five 

points on a common sphere) trivializes the problem-- in  this case, each sphere can 

account for at most  four incidences. 

6.2. Vertices in Sphere Arrangements 

In this section we assume that N is a set of n spheres in three dimensions whose 

arrangement has at least m vertices, and M is a subset of size m of the set of vertices. 

While the ramification for restricting the general position of spheres (as considered 

in Section 6.1) consists of applications to counting distances in three dimensions, 

the reason why choosing vertices only is interesting is that this problem comes 
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close to counting faces bounding m cells. No good bounds for this many-faces 

problem are known. 
Before we state and prove an extension of the bipartite graph lemma let us 

understand why this lemma is not sufficient to yield any interesting results for the 

problem at hand. For  one thing, an arbitrary number of spheres can intersect in a 

common circle, and up to 2n--4  vertices can be cocircular. To see the lower bound 

take the circle of intersection of two spheres and choose the other n - -2  spheres so 

that each cuts the circle in two unique points. The upper bound follows from the 

fact that a circle can intersect the n spheres in at most 2n points, but at least three 

spheres are needed to make each such point a vertex of the arrangement. It is thus 

easy to construct f~(mn) incidences as long as m < n. This matches the trivial upper 

bound. We see that the'problem is interesting only if m is superlinear in n. As far as 

the bipartite graph lemma is concerned, for every constant s (or t) we cannot find a 

t (or s) that is sublinear in n so that no s points are incident to t common spheres. 

So even the version (mentioned in remark (1) after its proof) that treats s and t as 

variables rather than constants does not generate any reasonable bounds. 

Here is why there is still hope to prove some nontrivial bounds using a forbidden 

K,.t argument. Suppose a sphere v~ contains n i (much larger than n) of the points in 

M. Such a sphere must exist unless the number of incidences is only O(n2). The 

number of cocircdar  4-tuples among the n~ points is at most O(n 3 n). The reason is 

that every three points define a unique circle on the sphere and the circle can 

contain at most 2n - 4 of the points altogether. This leaves a huge number of 

noncocircular 4-tuples. But each such 4-tuple belongs to at most one sphere and 

thus severely limits the number of possible incidences. 

We next prove a generalization of the bipartite graph lemma which captures the 

idea indicated above in combinatorial terms. After that we return to the vertex and 

sphere incidence problem. We use "s-tuple" as a synonym for "set of size s." 

Lemma 6.2 (Extended Bipartite Graph Lemma). Let s and t be constants and let 

f~ = (M ~ N, A) be a bipartite di#raph with m = IMI sources and n = INI sinks, let  r 

be some number so that for any subset ~I  ~_ M with ]~I] >_ r there are at least 

(l M t - r)~/s! s-tuples in ffl with the property that all s nodes in every such s-tuple have 
at most t - 1 common adjacent nodes in N. Then 1At = O(mn 1-1Is + rn). 

Proof. As in the proof  of the bipartite graph lemma we consider an s-regular 

multihypergraph M' = (M, H) - - i t  is constructed as follows: 

for every v e N adjacent to #t ,  #2 . . . . .  #, e M we add {#1, #2 . . . . .  #~} to H - - u n -  

less these s nodes in M are adjacent to more than t - 1 common nodes in N (in 

which case {#1, #2 . . . . .  #~} is not added to H). 

Here H contains at most t - 1 copies of every possible s-tuple which implies ,,(m) 
Define n t as the number  of nodes in M adjacent to vt ~ N for 1 _< i < n. By 
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assumption v i gives rise to at least ( n ~ -  r)S/s! s-tuples in H. (Of course, this 

statement is void if n~ < r.) This implies 

, ( n i  - r y  

i=1/-~ S[ 

(m) 
- -  < ( t -  1) < s! 

where ~ *  indicates that we sum only over those indices i for which n i > r. Using the 

H61der inequality we thus get 

• n i < rn + ~ * (n i - r) <_ rn + (t  - t) l /~mn 1-I / s  
i=I  i=1 

which implies the assertion since I AI = ~7= 1 ni. []  

We now apply the extended bipartite graph lemma to the point and sphere 

incidence problem where M is a subset of m vertices of the arrangment defined by 

the n spheres in N. Let us consider f¢ = (M © N, A) with the usual definition of A, 

and pick s = 4, t = 2, and r = 2n - 4. We argue that those parameters satisfy the 

assumptions of the lemma, provided n > 4. Take any subset A3 of nq > r points. 

Any three points in h4 are cocircular with at most 2 n -  7 other points which 

implies that the number of cocircular 4-tuples in A~ is at most ( 3 ) ( 2 n  - 7)/4. 

Consequently, the number of noncocircular 4-tuples in A~t is at least 

(43 7 m(m - l)(m - 2)(m - 2n + 4) >_ (r~ - r) 4 

4! 4! 

This proves the main result of this section. 

C a n h a m  Thresho ld  6.3. The  m a x i m u m  sum o f  deorees o f  m vert ices 26 in an 

arrangement  o f  n spheres in three dimensions is O(mn 3/4 + n2). 

Remarks. (1) We noted before that the sum of degrees can be quadratic in n if m, 

the number of vertices, is linear in n. Canham Threshold 6.3 shows that the 
maximum sum does not increase beyond O(n 2) as long as m = 0(n5/4). 

(2) The extended bipartite graph lemma can be used to prove that the maximum 

sum of degrees of m vertices in an arrangement of n (d - 1)-spheres in d dimensions 
is O(mn 1-1/¢d+ 1~ + n d-  1) using the same arguments as in three dimensions. 

(3) Another application of the extended bipartite graph lemma is to bound the 

sum of degrees of m vertices in an arrangement of n hyperplanes in d dimensions. 
Using the same line of arguments as for spheres this gives O(mn 1 - lid + n a-  1) as an 

upper bound. Consequently, the maximum sum of vertex degrees is O(n d- 1) for 

26 The degree of a vertex, in this case, is the number of spheres that contain the vertex. 



144 K.L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, and E. Welzl 

r id-2< m <_ n a-2+t/a. This is, however, weaker than the bounds in [19] which 

show that the sum is O(n ~- i) for m < n a- 3/2~og n. 

6.3. Decomposition o f  a Sphere Arrangement  

Let N be a set of n spheres si, 1 < i < n, defining the arrangement off(N). The 

maximum number of vertices, edges, facets, and cells is cubic in the number of 

spheres. 2~ Even if these numbers are maximized, the average number of vertices 

edges, and facets per cell is constant. In contrast to the average case, the maximum 

number of vertices, edges, and facets bounding a single cell is quadratic in n. (To see 

the lower bound of this claim consider the unbounded cell of the arrangement 

defined by the following set of spheres. Half  of the spheres are equally large and 

their centers lie on a short line segment; each pair intersects in a circle and all 

circles are contained in a torus that can be made arbitrarily narrow by decreasing 

the length of the line segment. The other half of the spheres are chosen pairwise 

disjoint so that each one intersects all circles inside the torus. The upper bound of 

this claim can be shown using a lifting transform that maps the spheres to 

hyperplanes in four dimensions; see 115].) 
Our  goal is to "triangulate" off(N), that is, decompose each cell of off(N) into 

subcells, the funnels, each with a constant size description. The main issues that 

arise are 

(i) how to define a funnel and a decomposition of d ( N )  into funnels, and 

(ii) how to bound the number of funnels that arise. 

It goes without saying that our objective is to find a decomposition into as few 

funnels as possible. The type of funnel to be used will be chosen accordingly. 

Figure 6.1 sketches the type of funnel we use. Its combinatorial structure is that 

of a cube. We refer to its front, back, top, bottom, left, and right facets in the sense 

suggested by Fig. 6.1. The front and back facets lie in two planes normal to the 

xl-axis. The top and bot tom facets lie in two hemispheres 2s of the sv In Fig. 6.1 the 

top facet is part of a southern hemisphere and the bot tom facet lies in a northern 

hemisphere, but all other combinations are allowed. The left and right facets are 

parts of two vertical elliptic cylinders. 29 The left (as well as the right) facet can be 

2   ooxact oundsaro  )forthev0rti s   ),ortheo  es   )+2n ortho2 oo or. s 
and 3 + 2n for the cells. 

2s A hemisphere is the part of a sphere that lies above (northern hemisphere) or below (southern 
hemisphere) the horizontal plane through the sphere's center. The drcle that separr.tes the northern 
from the southern hemisphere is the equator of the sphere. 

29 By this we mean a cylinder whose axis is parallel to the x3-axis and whose intersection with the 
x~ x2-plane is an ellipse. The tangent planes normal to the xt-axis meet the cylinder in two lines which 
partition it into its left and right part. 
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Fig. 6.1. 
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A funnel is defined by two planes, two spheres, and two elliptic cylinders. 

part of the left or the right part of such a cylinder; in Fig. 6.1 the left facet lies in the 

right part of a cylinder and so does the right facet. 
Degenerate cases where some facets are empty or at infinity are allowed and, in 

fact, occur frequently in the decomposition of ~¢(N) to be described. We now give a 
constructive definition of the decomposition of ~ (N) .  The construction takes four 
steps. We assume general position of the spheres when we describe the decomposi- 

tion. 

Step 1. From every point of each equator we draw a maximal vertical (relatively 
open) line segment that avoids all other spheres. 3° The union of all line segments 

drawn from a single equator forms a portion of a vertical circular cylinder. 

After Step 1 every cell (of the refinement) has the property that it intersects every 
vertical line in a single (possibly empty) interval. 

Step 2. Perform the same operation for all points of each circle s t n s j ,  i ~ j ,  that is, 
draw maximal vertical line segments that avoid all spheres except that they 

intersect s~ and sj in a common point. (Figure 6.2(a) shows the line segments 
extended vertically upward from a circle; there is a sphere that blocks the line 

segments on the right-hand side). Since the vertical projection of a circle in three 

dimensions onto the x l x2-plane is an ellipse, the union of the line segments coming 
from a single circle forms a portion of a vertical elliptic cylinder. 

The nice effect of Step 2 is that every cell (of the refinement) now has a unique 
top and a unique bottom facet, each lying in a hemisphere. However, the number of 

vertical walls (facets that are part of vertical circular or elliptic cylinders) of a single 

ao If there is no sphere above or below the point, then the line segment extends to infinity and is thus 
unbounded. If the point of the equator belongs to another sphere, then the line segment is empty. 
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Z2 

Fig. 6.2. 
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Vertical walls are raised to decompose the cells into funnels as defined earlier. 

cell can still be arbitrarily large. Since each cell intersects any vertical line in at most 

one interval, the vertical projection of a cell onto the xl x2-plane is a connected (but 

not necessarily simply connected) region whose boundary edges are the vertical 

projections of the wails of the cell. Hence, the edges are portions of circles and 

ellipses (see Fig. 6.2(b)). 

Step 3. Consider the vertical projection of a cell onto the xl x2-plane. From the 

x~-extreme 31 points of each edge we draw a maximal vertical line segment (parallel 

to the x2-axis) that lies inside the region (see the broken vertical line segments in 

Fig. 6.2(b)). The corresponding operation in three dimensions is to raise a wall 

vertically above the line segment inside the cell. We perform this operation for 

every cell created in Steps 1 and2 .  

After Step 3, each cell (of the resulting refinement) has unique top, bottom, front, 

and back facets. Furthermore, it intersects any plane normal to the xl-axis in a 

single (possibly empty) simply connected region. 

Step 4. Finally, from each vertex of the region (the vertical projection of a cell onto 

the xlx2-plane) draw a maximal vertical line segment inside the region (see the 

dotted lines in Figs 6.2(b)). Again the corresponding operation in three dimensions 

is to raise a vertical wall. This is done for all cells. 

After Step 4, each cell has unique top, bottom, front, back, left, and right facets; 

in fact, every cell is a funnel as defined earlier. 

3 ~ A point of a circle or ellipse is x 1-extreme if the circle or ellipse lies on one side of the vertical line 
through the point. The xl-extreme points of an edge that is a subset of a circle or ellipse are the 
x~-extreme points of the circle or ellipse (if on the edge). 
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The remainder of this section bounds the maximum number of funnels created 
in Steps 1-4. We repeatedly use the fact that two (different) ellipses in the plane 

intersect in at most four points. 
The main part of the analysis estimates the increase in the number of cells caused 

by Step 2. This is done by considering all vertical walls raised from a single circle of 

the form sl n s t. The analysis of Step 1 is a special case of that of Step 2 and can 
therefore be omitted. Step 3 adds at most four walls per circle: the projection of the 
circle onto the xlx2-plane, which is an ellipse, has two x~-extreme points--from 

both we send a line segment upward and one downward (parallel to the x2-axis), 

and each of the four line segments in the xlx2-plane is lifted to a wall in three 

dimensions. Since there are at most ( ~ ) +  n such circles, Step 3 increases the 

/ \ 

number of cells by at most 4(~)+4n=O(n2). Step 4 gives rise to two vertical 
\ / 

walls per vertical edge created in Steps 1 and 2, so the number of such walls is 
proportional to the number of these edges. 

In order to bound the increase in combinatorial complexity we bound the 
number of vertical edges created in Step 2. A vertical edge is created where two 

vertical walls intersect. Consider a circle F = sl n s 2 and the vertical cylinder, Cr, 
that is the union of all vertical lines intersecting ~. For 3 < i <  n, we define 

~i = Cr c~ st. Ignoring degenerate cases, 5i is either a simple closed curve in Cr (Fig. 
6.3(a)), it consists of two simple closed curves separated by two vertical lines in Cr 
(Fig. 6.3(b)), or it consists of two simple closed curves both meeting every vertical 

line in Cr (Fig. 6.3(c)). This can be proved by considering the possible ways how the 
vertical projections of the cylinder and the sphere intersect. A vertical edge is 

created in C~ where the intersection of two spheres meets C r (this is where two 51 
meet) or where one sphere meets 7 (this is where one 6~ meets ~). We have the 

following properties. 

~ J 

I @, r 

(a) (b) (c) 

Fig. 6.3. A sphere can intersect an elliptic cylinder in three difl'erent ways. 
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L e m m a  6.4. Unless ~ c_ 51, y c~ 5~ consists of at most two points for 3 <_ i < n. 

Proof. Since 7 = sl c~ s2 and 6~ ~ si every point of~ n 6~ is also in sl n s2 n si (in 

fact, ), c~ 6i = sl n s 2 n si but we do not need this to prove the lemma). Unless the 

three spheres intersect in a common circle (in which case 7 - 6,), the intersection 

consists of at most two points. []  

L e m m a  6.5. Unless s~ = s~ or si c~ sj __ C v, fit n hit consists of  at most four points for 
3 < _ i , j < n .  

Proof. We have fit n ~ _  s~ c~ s t, which is a circle in three dimensions. The 

vertical projection of si c~ s t onto the xlx2-plane is an ellipse and so is the 

intersection of Cr with the xax2-plane. Unless the two ellipses are equal (in which 

case s~ n s t _ C7) they intersect in at most four points. Those points are the 

projections of the points of fit n 3 t. []  

A single 6i has at most four points with vertical tangents in C~ (the intersection 

points of C~ with the equator of s~). We remove from fit these at most four points as 

well as the at most two points of 6i in 7- This leaves us with at most six connected 

curves for each 6i. These curves have the following properties: 

(i) each curve intersects any vertical line in Cr in at most one point, 

(ii) each curve lies either fully above or fully below 7, and 
(iii) any two curves intersect in at most four points. 

Because of property (i) we can think of each curve as a partially defined continuous 

function from (a connected portion of) y to the set of real numbers, where such a 

function, with image f ,  measures the difference in height ofE n f a n d  E c~ 7, where E 

is a vertical line in C~ (ifY n f i s  below 7, then the difference is negative). Because of 

property (ii) each funct ionf is  either always positive or always negative. The lower 
envelope is the pointwise minimum of all positive functions; symmetrically, we 

define the upper envelope as the pointwise maximum of all negative functions. We 

only need to analyze the number  of  pieces 32 of the lower envelope since the analysis 

of the upper envelope is completely symmetric. The number  of pieces of the lower 

envelope is important  since it is the same as the number  of breakpoints between 

adjacent pieces. It  is at the breakpoints where Step 2 creates vertical edges. 

The number of curves, images of functions, above y is at most 5n - 9, five per 

each s~ plus one for the curve at infinity. We assign to each curve a unique integer 

between 1 and 5n - 9, and write down a sequence by taking the pieces of the lower 

envelope and replacing each piece by the number  of the curve containing it. Let 

(a t, a 2 . . . . .  ak) be the resulting sequence. We have a~ ~ a~+ x since the pieces are 

maximal, and there is no alternation of length eight or more between two integers 

32 Here we define a piece as a maximal connected subset of the image of the lower envelope that 
belongs to a single curve. In order to avoid intervals over which the lower envelope is not defined we add 
a function whose image is at infinity--it can also contain pieces of the envelope. 
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(see, e.g., [54]). It follows that we have a (5n - 9, 6)-sequence and its length is at 
most 

26(5n - 9) = 0(26(n)) = n. 2 °~tn:) 

(see Section 5.5). Steps 1 and 2 operate on O(n 2) circles which implies that the 
number of vertical edges and facets created is O(n226(n)). As mentioned earlier, the 
increase in the number of cells caused by Steps 3 and 4 is at most O(n 2) plus a term 
that is proportional to the number of vertical edges created in Steps 1 and 2 which 
is O(n226(n)). We conclude with the main result of this section. 

Theorem 6.6 (Sphere Triangulation Theorem). The cells in an arrangement of n 
spheres in three dimensions can be decomposed into O(n2 26(n)) funnels. 

Remarks. (i) The decomposition of a sphere arrangement described in this section 
is not a cell complex since a facet of one funnel can contain an edge (or part thereof) 
of another funnel. This is, however, irrelevant for our use of such decompositions. 

(2) We do not know whether or not O(n226(n)) is tight for the decomposition 
described. In fact, we do not even have an example where the number of funnels is 
more than cubic in n. This suggests two open problems. First, give the correct 
asymptotic order of the maximum number of funnels constructed by the above 
algorithm. Second, if that bound fails to be cubic, find a decomposition into O(n 3) 
funnels, possibly with a different definition of "funnel" than used in this section. 

(3) We believe that the above decomposition can be generalized to apply to any 
collection of n algebraic surfaces of fixed maximum degree in three dimensions, 
leading to O(n22,(n)) appropriately defined funnels, where s depends on the type of 
surfaces and their maximum degree. This result is significant as we can compare it 
with the standard Collins's cylindrical algebraic decomposition techniques [13], 
[53], [2]. CoUins's technique also produces a decomposition of an arrangement of 
n such algebraic surfaces into cells of constant description, but the number of such 
cells is enormous--doubly exponential in the number of dimensions. For example, 
in three dimensions the number of Collins cells that are produced in general is 
O(n 7) (assuming constant algebraic degree of the surfaces). 

(4) A challenging open problem is to generalize the sphere triangulation 
theorem to arrangements of algebraic surfaces in higher dimensions, or even just to 
arrangements of spheres in four or higher dimensions. An equally challenging 
problem is to obtain a decomposition of any collection C of cells in an arrangement 
of spheres or other surfaces in three dimensions, into funnels of constant descrip- 
tion, whose total number is roughly proportional to the complexity of the cells in C 
plus, say a quadratic or slightly superquadratic overhead term. Some initial 
investigations of these problems in the polyhedral ease are reported in [91 and [3]. 

(5) Section 6.4 uses the decomposition technique presented in this section also 
for degenerate arrangements of spheres. As explained in Section 3 for the case of 
lines, our policy is to perturb the spheres conceptually so that they form a 
nondegenerate arrangement and to triangulate this arrangement. The resulting 
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triangulation corresponds to a triangulation of the unperturbed arrangement 
which contains many zero-measure funnels. 

(6) The triangulation of a sphere arrangement as defined in this section satisfies 

the independence lemma (Lemma 5.1) with the size of sets R' bounded from above 
by six. Based on this observation we can now extend the sampling lemma (Lemma 
5.3) to the case of spheres. This can indeed be done without any difficulty, except 
for one step, namely Lemma 5.2(ii), which is necessary to bound the sum of the ni. 

This step can be replaced by a tail estimation as described in [12] which then shows 
that for every 6 < r < n there exists a sample of size r so that the average number of 
spheres intersecting any one funnel is O(n/r). An even stronger result, that the 

expected value of the square of the number of such spheres is O((n/r)2), can also be 
derived. We refer to [12] for details. The extension of the sampling lemma to 

spheres is used in the next section. 

6.4. General Bounds on the Number of Incidences 

Using the results of Sections 6.1-6.3 we can now derive improved upper bounds on 
the maximum number of incidences between m points and n spheres in three 

dimensions. We do this for the cases where no three spheres intersect in a common 
circle and where the points are vertices of the arrangement defined by the spheres. 

In both cases, the analysis starts with a random sample of r of the spheres and with 
a decomposition of the cells in the arrangement as described in Section 6.3. The 
sampling lemma in Section 5.2 implies that there exists such a sample with the 

desired properties detailed there. 

Spheres in General Position. As mentioned before, we choose r of the n spheres 
and triangulate the arrangement defined by the r spheres. This is a decomposition 
of the cells into a total of k = O(r226(r)) funnels. 33 We number the funnels from 1 

through k, let mt denote the number of points contained in the ith funnel, and let n~ 
be the number of spheres intersection this funnel. 34 If I(m, n) is the maximum 

number of incidences between m points and n spheres in general position, then 

k 

I(m, n) <_ ~, l(m,, ni) + J(m, n, r), 
i = 1  

where J(m, n, r) is the maximum number of incidences between m points and n 

spheres under the restriction that the m points lie on r spheres. The second term of 
the right-hand side bounds the number of incidences that occur on the sample 

spheres, the first term takes care of all other incidences. 

aa Recall that a funnel is an  open set. 

a4 Since we can rotate the configuration of spheres and points we can assume that a point lies on the 

boundary of a funnel only if it belongs to at least one sample sphere. 
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An upper bound on ~= z l(m~, n~) can be obtained using the first bound in 
Canham Threshold 6.1 and the sampling lemma for spheres (see remark (6) at the 
end of Section 6.3). In particular, this lemma implies that there is a sample of r 
spheres so that the average n/is O(n/r) and ~/k= 1 mi n2/3 = O(m(n/r)2/3) • We thus get 

l(mi, ni) = ~, O(mln 2/3 + n~) = O(m r + k = O ( r a n 2 / 3 r  - 2 / 3  -t- r26(r)n). 
i=1 i=1 

The two terms of the final bound balance at 

r =  ®(m318n - '18f 26(m3/n)-~-a/a~ 
k \ ) ) 

(which can be shown using the extremely slow growth of 26(0 /0  in which case we 

have 

k 

I(mi, ni) = O(mS/'n3/*~(m, n)t/4), 
i = l  

where we define fls(m, n) = (26(m3/n))(ma/n). (This choice of r makes sense as long 

as m = f~(nZ/3); see below for the other case.) 
In order to bound J(m, n, r) we index the r sample spheres from 1 through r and 

let ffzj denote the number of points on thej th  sample sphere. The sum of the ~s can 
exceed m since one point can lie on several sample spheres. Nevertheless we have 

~, r~ s <_ I(m, r) = O(rm 2/3 + m) 
j = l  

using the second bound of Canham Threshold 6.1. Plugging in the value of r as 
chosen above gives 

k ff~j = O(m25/24n - z/sfls(m, n) -3/s + m) = O(m) 
j = l  

if m < n 3, which we can assume since any point that is not a vertex of the 

arrangement of spheres is incident to at most two spheres by assumption. The 
number of incidences counted by J(m, n, r) can now be bounded by considering the 

r sample spheres in turn. The j th sample sphere contains n~s points and intersects 

the other spheres in less than n circles all of which are distinct by the general 
position assumption. Thus, the problem becomes an incidence counting problem 

for rfij points and n circles on a sphere. For  this we have an upper bound ofthe form 

0(~/5n4/5 + ~s + n), 
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see remark (4) after the planar incidence theorem (Theorem 5.4). Therefore 

J(m, n, r) = 0 (ff13tsn *t5 + fflj + n) = O(m3ISn4tSr2/5 + m + rn). 

J 

After plugging in the above value of r we get 

J(m, n, r) = O(m3/4n3/4~(m, n)- 3/2o + m + m3/SnT/S~s(m, n) -3/s) 

= O(m3/4n 3/4 + m) 

as long as m = f~(nl/3). Finally, for m = O(n 1/3) Canham Threshold 6.1 implies that 
l(m, n) = O(n). This completes the analysis of incidences for spheres with no three 
intersecting in a common circle. The result is summarized in the following theorem 
which improves the bounds given in Canham Threshold 6.1. 

Theorem 6.7. The maximum number of incidences between m points and n spheres in 
three dimensions (assuming that no three intersect in a common circle) is 
O(m3/4n3/4jffs(m, n) TM + m + n), where 

• ~6(m3/n) = 2ot~t=3/,)2). 
p,(m, n) = m3/n 

Remarks. (1) There is a trivial upper bound of O(n 3 + m) on the number of 
incidences between m points ~ihd-n spheres no three of which intersect in a common 
circle. The bound given in Theorem 6.7 is slightly worse than this bound for 
n3p,(m, n)- 1/3 < m < n3/3,(m, n). In view of the fact that/~,(m, n) is small unless m is 
unreasonably large, the bound in Theorem 6.7 is no t  far off the insignificantly more 
refined bound 

O(min{mS/'*n3/4fl~(m, n) 1/'*, n 3} + m + n). 

We view this as a strong indication that the fl,(m, n) term is an artifact of our 
analysis. Indeed, it is inherited from the analysis of the triangulation method given 
in Section 6.3. 

(2) It is not likely that the bound in Theorem 6.7 turns out to be tight, even if we 
ignore the fls(m,n) term. A lower bound construction which achieves 
fl(n4/31og log n) incidences for m = n can be found in [25"1 (see also Section 6.5 
below). 

(3) The analysis used to derive Theorem 6.7 can also be used to improve 
upon the bound on the maximum number of incidences between m points and 
n spheres where we assume that no four of the points are cocircular (see 
remark (3) after Canham Threshold 6.1). The bounds that we obtain 
a r e  O(m8/ t ln9 / l l~x (m~n)3 / t l  + m + n ) and O(nmt/2 + m), where [Jx(m,n)= 

A6(m*/n)/(m¢/n). 
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(4) Let k be greater than some constant. Theorem 6.7 implies that, given a set of 
m points, the maximum number of spheres that contain at least k points each is 

O((ma/k4)/3(m) + m/k), where fl is a generic and extremely slowly growing function. 
Symmetrically, given a set of n spheres, the maximum number of points that lie on 

at least k spheres each is O((na/k4)fl(n) + n/k). Of course, here we talk only of 
spheres such that no three intersect in a common circle. 

(5) The method in [10] can be used to extend the bound in Theorem 6,7 to four 

and higher dimensions (using our three-dimensional bound as the base case). The 
result is then that the maximum number of incidences between m points and 
n (d - 1)-spheres in d dimensions is 

O(md/(d+l}lld/(d+l)fl(m, n) + m + rl) 

if no d of our ( d -  1)-spheres intersect in a common 1-sphere (a circle). This 
improves the original bound in [10] which is O(mtd+t~/td+2~n{d+l)/~J+2~+ 
ran{d-2}/td-1) + n). It is interesting to compare this with the "in-between" bound 
O(m c2d- l~/t2d+l}nt2d~/t2d+l} + m + n) which we obtain if we base the approach in 

[10] on our bound for points and circles. 

Vertices in Sphere Arrangements. The analysis of this case is similar to that of 
spheres in general position, the main difference being that we now use Canham 
Threshold 6.3 in place of Canham Threshold 6.1 to bound the number of incidences 

in each of the k = O(r2~.6(r)) funnels. Again we write I(m, n) for the maximum 
number of incidences between m points and n spheres, where now the points are 
assumed to be vertices of the arrangement. Furthermore, we write m/ for the 

number of points in the ith funnel, n/for the number of spheres intersecting the ith 
funnel, and J(m, n, r) for the maximum number of incidences if the m points are 

restricted to lie on r spheres. Thus, we have 

k 

l(m, n) <_ ~., I(mi, n/) + J(m, n, r). 
/=1 

Using Canham Threshold 6.3 and the sampling lemma for spheres (see above) we 

bound the first term on the right-hand side as follows: 

i = l  i=1 

= O(mna/4r -3/4 + n22~(r)). 

The two terms in the last bound balance if r = O ( m 4 / 7 n - S / 7 f l v ( m  , n)-4/7), where 

fly(m, n) = (26(m4/nS))(m4/nS). In this case we have 

k 
I(mi, n , )  = O(m'i7.917/Jv(m, n)317). 

t=1 
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Below we show J(m, n, r) = O(rn 2) which, by the above choice of r, is asymptoti- 
cally less than the bound on the sum of the l(m~, n~) and therefore does not affect 
the result. 

Instead of considering only m vertices let us take all vertices of the sphere 
arrangement and define J(n, r) as the maximum number of incidences involving the 
vertices on some r of the n spheres. Clearly, J(n, r) < rJ(n, 1). So consider a single 

sphere, s o , which meets the other spheres in circles. We count each circle once for 
each sphere that intersects s o in this circle. The vertices of the sphere arrangement 
that lie on So are the vertices of the circle arrangement on s o . Since there are at most 
n - 1 circles, considering multiplicities, the number of incidences between vertices 
and circles is at most 

4(n  2 1)_< 2n2. 

Because each vertex is also incident to s o we get J(n, 1 ) <  3n 2 and therefore 

J(n, r) < 3rn 2. This completes the analysis for m vertices in an arrangement of n 
spheres. 

Theorem 6.8. The maximum sum of degrees of  m vertices in an arrangement of n 
spheres in three dimensions is O(m4/Tn9/T fl~(m, n) 3/7 + hE), with 

26(m'/nS) = 2ot~t,n'/~s)2). 
fly(m, n) = m4/n 5 

R e m a r k s .  (1) Clearly the sum of degrees cannot exceed O(mn) and O(n3); the first 

bound improves Theorem 6.8 if m = O(n), the second bound does so if m = 
~(n3flv(m, n)-3/4). A refinement of the bound in Theorem 6.8 is therefore 

O(min{mn, m'/Tn9/Tfl~(m, n) 3/7, n 3} + rain{ran, n2}). 

While the improvement for small m is substantial but trivial, the improvement for 

large m is insignificant and due to an artifact of our analysis which gives rise to the 
nearly constant fl~(m, n)-factor in the bound. 

(2) It is likely that that bound in Theorem 6.8 is not tight, even if we ignore the 

fly(m, n)-factor. A further improvement hinges on an improvement of Canham 
Threshold 6.3. 

(3) Let k be greater than some constant. By Theorem 6.8 the maximum number 
of vertices in an arrangement of n spheres that have degree k or higher is 
O((na/kT/a)fl(n) + n2/k). 

6.5. Applications to Distance Problems 

Theorem 6.7 can be used to improve known upper bounds for various distance 

problems in three dimensions. We briefly discuss the history of two such problems, 
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state our improvements, and remark on additional distance problems. In each case, 
the reduction to Theorem 6.7 is done by drawing spheres of appropriate radii 
around the points so that the counted distances correspond to incidences. 

Unit-Distance Pairs. This problem was originally posed by Erdrs  who reports 
initial results in [24] and [25]. The problem is to bound the maximum number of 

unit-distance pairs 35 in a set of m points in three dimensions. Erd8s [25] proves 
that ~:l(m4/31og log m) is a lower bound and O(m 5/3) is an upper bound for this 
problem. This was subsequently improved by Beck [5] to O(m 13/8 +'), e > 0, and by 

Chung [10] to O(mS/5). All three upper bound proofs draw a unit-sphere around 
each point and base the argument on the fact that {p, q} is a unit-distance pair if 

and only ifp lies on the unit-sphere around q which is equivalent to q lying on the 
unit-sphere around p. The number of incidences for the m points and the m unit 
spheres is thus twice the number of unit-distance pairs. Theorem 6.7 applies since 

no three equally large spheres in three dimensions intersect in a common circle. 

Corollary 6.9 (Unit-Distance Theorem). The maximum number of unit-distance pairs 
in a set of m points in three dimensions is O(m3/2(26(m)/m)l/4 ). 

Remark. (1) Without fear of redundancy we point out that the multiplicative 
factor, (~.6(m)/m) 1/4, is small unless m is unreasonably large. It is probably an 
artifact of our proof technique, more particularly of the triangulation of a sphere 

arrangement described in Section 6.3. 
(2) It is interesting to observe that the method of Chung [10] which improves 

Erdrs '  initial upper bound to O(m 8/~) can be further improved to O(m 11/7)just by 

using the planar incidence theorem for points and circles in the plane (Theorem 

5.4(ii)). This bound is still inferior to the bound in the unit-distance theorem (see 
also remark (5) after Theorem 6.7). 

Furthest Neighbor Pairs. The problem here is to bound the maximum number of 
furthest neighbor pairs a6 in a set of m points in three dimensions. It is easy to see 
that the maximum number of furthest neighbor pairs in a set of m points in three 

dimensions is f~(m2); the constant in front of the m 2 and lower-order terms can be 

found in [4]. As observed by Edelsbrunner and Skiena [221, the worst case cannot 
be realized if no three points are collinear; for this case they prove O(m 5/3) as an 
upper bound. This was improved to O(m s/s) by Chung [10]. The relation to 

incidence counting becomes clear when we draw around each point a sphere that 
goes through all furthest neighbors of the point. Now, (p, q) is a furthest neighbor 

pair if and only if q lies on the sphere around p. No three of the m spheres intersect 

3~ A unit-distance pair consist of two points that are one unit of distance apart. Since any point set 
can be increased or decreased by scaling, one unit is just any fixed positive distance. Thus, the problem is 
really to bound the maximum number of times the most popular distance can occur. 

36A directed pair (p, q) is a furthest neighbor pair of a finite point set P if d(p, q)= 
max{d(p, x)lx ~ P}. 



156 K.L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, and E. Welzl 

in a common circle since their centers are not collinear by assumption. Using 

Theorem 6.7 we thus get the following result. 

Corollary 6.10 (Furthest Neighbor Theorem). The maximum number of furthest 
neighbor pairs in a set of m points in three dimensions (no three of which are collinear) 
is O(ma/2(A6(m)/m)l/4). 

Remarks. (1) In contrast to the unit-distance problem, no superlinear lower 
bound on the maximum number of furthest neighbors pairs is known. A related 
result is that the maximum number of diameter pairs 37 in a set of m points in three 

dimensions is 2m - 2 (see [39], [33], and [56]). This bound also holds for the 
maximum number of symmetric furthest neighbor pairs, as These results can be 

taken as indications that the maximum number of furthest neighbor points is also 

linear in the number of points but no proof is known. 
(2) Of course, Theorem 6.7 can also be used to bound the maximum number of 

minimum distance pairs 39 in three dimensions, but a better (linear) upper bound 
can be proven. This proof (which uses a packing argument) cannot be extended to 

the case where each point is colored either red or blue and only distances between 

differently colored points are considered. Theorem 6.7 still applies and shows that 
O(ma/2(26(m)/m) 1/4) is also an upper bound for the bichromatic version of the 

minimum distance problem. It would be desirable to find a superlinear lower 

bound if there is one. (This problem was also proposed by J/mos Pach at the 
Second Computational Geometry Day in New York, 1986.) In the two-dimen- 

sional case, the maximum number of minimum bichromatic distances is O(m) 
because the graph defined by minimum distance pairs is planar (see [29]). 

(3) For the bichromatic maximum distance problem the proof for the monochro- 

matic case (see remark (1) above) can be extended to show a linear upper bound as 
follows. Around each of the m red point we draw a closed ball with a radius equal to 
the maximum bichromatic distance. Call this distance t~. For  m > 3 the intersection 

of the m balls has the structure of a convex polytope with at most m (spherical) 
facets, at most 3m - 6 edges, and  at most 2m - 4 vertices. The sum of all vertex 

degrees is therefore at most 6m - 12. By construction, this polytope contains all 
blue points. If a red point does not generate a facet of the polytope, then the sphere 

that bounds the ball of the point can touch the polytope in at most one point. It 
follows that the red point can realize the maximum distance to at most one blue 

point. We count the other maximum distance pairs for the blue points. If a blue 

point lies on a facet it has one red point at distance 6, if it lies on an edge it has two 
red points at distance 6, and if it is a vertex of the polytope, then the number of such 

red Points is equal to the degree of the vertex--in the latter two cases we ignored 
red points that do not generate facets. Blue points in the interior of the polytope 

have no red point at distance 6 which implies the claimed linear bound. 

37 A pair {p, q} is a diameter pair of a set P if d(p, q) = max{d(x, y)lx, ye P}. 
3a A pair {p, q} is a symmetric furthest ne~hbor pair if (p, q) and (q, p) are furthest neighbor pairs. 
39 A pair {p, q} is a minimum distance pair of a set P if d(p, q) = min{d(x, y)Ix, y ~ P}. 
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(4) As in Section 5.4, we can use upper bounds on the number of incidences to 
derive lower bounds on the number of different distances defined by m points. Let 
Pl, P2 . . . . .  Pm be the m points of set P and let g~ be the number of different distances 
from point Pi, that is, g~ is the cardinality of {d(p~, Pj)f I < j < n,j  # i}. Around each 
p~ we draw g~ spheres through the other points. Thus, we have m points, n = ~ '=  1 gi 

/ \ 

spheres, and 2 ( 2  ) incidences. If we assume that no three points are collinear we 
", / 

can use Theorem 6.7 and get 

2 ( 2 ) =  O(m3/'*n3/'*fls(m, n) 1/4) 

which implies that 

n = / 3  _ _ . . - -  . 

In words, the average (and therefore also the maximum) gl is ~(mZ/a(26(m)/m)- 1/3). 
Strangely enough, the m points arranged in a cubic grid realize O(m 2/3) different 
distances each, but they violate the collinearity restriction under which the lower 
bound is obtained. 

7. Discussion and Open Problems 

The main contribution of this paper is a uniform and modular approach to a 
variety of combinatorial incidence and many-faces problems. Some of the bounds 
obtained with this approach are tight (for example, the bounds for the incidence 
and many-faces problems for lines and pseudolines), some are tight up to a fl(n)- 
factor (the bound for the many-faces problem for unit-circles), and some still leave 
large gaps to be closed. Bounds on incidence problems can be used to get bounds 
on combinatorial distance problems, such as the problem to count the maximum 
number of unit-distance pairs in a set of n points in three dimensions. For this and 
for other distance problems we obtain improved bounds, but except for the unit- 
distance problem for points on a sphere in three dimensions, no such bound seems 
to be tight. 

Narrowing or dosing the gaps that the approach of this paper leaves is a 
challenging open problem (see Section 2 for a summary of the results of this paper). 
More specialized open problems are mentioned throughout the paper and we hope 
that some will be the starting point for future developments in this area. 

The reader of this paper might wonder why this paper makes no attempt to 
solve incidence and many-faces problems that seem closely related to problems 
successfully tackled in this paper. Examples are the incidence and many-faces 
problems for planes and hyperplanes. The generic answer is that some step of our 
modular proof technique breaks down or gives results that are too weak for any 
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new bounds. Below, we list more specific reasons why our method fails for a few 

interesting cases: 

(1) The Canham threshold obtained for m vertices in an arrangement of n 

(hyper-) planes (using the extended bipartite graph lemma (Lemma 6.2)) is 

weaker than the bounds derived in [19] using a different approach 

altogether. 

(2) The bipartite graph lemmas (Lemmas 4.1 and 6.2) seem to be of little use for 

establishing a Canham threshold for many faces in a line segment arrange- 

ment. Again, a quite different approach (see [20]) leads to bounds that are 

almost tight. 

(3) The bounds on the incidence problem for spheres in three dimensions fail to 

generalize to the corresponding many-faces problem because of the lack of a 

zone result for spheres. 

(4) The major obstacle in generalizing the incidence bound for three-dimen- 

sional spheres to four and higher dimensions is the lack of appropriate 

triangulation results. 
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