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Abstract. We show that the equation

si1 + si2 + · · · + sid = sid+1 + · · · + si2d

has O(N 2d−2+2−d+1
) solutions for any strictly convex sequence {si }Ni=1 without any additional

arithmetic assumptions. The proof is based on weighted incidence theory and an inductive
procedure which allows us to deal with higher-dimensional interactions effectively. The
terminology “combinatorial complexity” is borrowed from [CES+] where much of our
higher-dimensional incidence theoretic motivation comes from.

1. Introduction and Statement of Results

Consider a sequence of real numbers {si }Ni=1. It is a classical problem in number theory
to determine the number Nd = Nd(N ) of solutions of the equation

si1 + si2 + · · · + sid = sid+1 + · · · + si2d . (1.1)

The number of solutions Nd will certainly depend on geometric and arithmetic prop-
erties of the sequence {si }. A trivial example is if si = i , when the number of solutions
of (1.1) is approximately N 2d−1. Here and throughout the paper the notations a � b or
a = O(b) mean that there exists C > 0 such that a ≤ Cb, and a ≈ b means that a � b
and b � a. Besides, a � b, with respect to a large parameter N , means that for every
ε > 0 there exists Cε > 0 such that a ≤ CεN εb.

More interesting bounds are available if the sequence {si } is strictly convex in the
sense that the sequence of differences {si+1 − si } is strictly increasing, or, equivalently,
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the set of points {(i, si )} lies on a strictly convex curve inR2. For example, if si = i2 and
d ≥ 4, one has Nd � N 2d−2. The same estimate with an appropriate power of log(N )
holds in the cases d = 2 and d = 3. This example shows that for a general strictly
convex sequence, the best general upper bound for Nd one can hope for is Nd � N 2d−2.

Under additional arithmetic assumptions, the situation may change drastically. For
example, it is known that if si = i k and k >> d, Nd ≈ N d , and in fact (1.1) only has
trivial solutions. See [HB] and the references therein. A non-integer example is given
by si =

√
ki , where {ki } is a sequence of square-free positive integers. A theorem due

to Besicovitch [B] says that these numbers are linearly independent over the field of
rationals Q. It follows that Nd ≈ N d in this case as well.

The examples of the previous paragraph are misleading in the sense that they end
up with good estimates for Nd based on specific arithmetic properties of the sequence.
The main thrust of this paper is to obtain the best possible upper bound on Nd under
the assumption of strict convexity only, without any additional arithmetic or curvature
hypotheses. This is achieved using geometric combinatorics.

As we indicate above, it is reasonable to conjecture that for every strictly convex
sequence {si }Ni=1, Nd � N 2d−2. We prove that this estimate is asymptotically true with
an exponentially vanishing error in the exponent as d tends to infinity. More precisely,
we show (see Theorem 1 below) that Nd � N 2d−2+2−d+1

. Konyagin [Ko1] proved this
estimate in the case d = 2. More precisely, he showed that

N2 � N 5/2. (1.2)

Equation (1.1), with d = 2, arises if one tries to obtain a lower bound for the L1 norm
of trigonometric polynomials, see [Ka]. Namely, if {si }Ni=1 is a convex integer-valued
sequence (in the final section of this paper we show that integer-valuedness does not
cause loss of generality), let �(N ) = N2(N )/N 3. Then

∫ 1

0

∣∣∣∣∣
N∑

j=1

cj e
2πιsj x

∣∣∣∣∣ dx � �−1/2(N ), (1.3)

for any array of complex unimodular coefficients cj .
While the proof in [Ko1] is based on geometric incidence theory, Garaev [Ga] devel-

oped an alternative counting procedure, which lead to (1.2). Unification of these different
points of view should lead to further progress on this problem. We hope to take up this
issue in a subsequent paper.

When d > 2, one is naturally led to consider an inductive procedure, as an alternative
to higher-dimensional incidence theory, where serious topological obstructions often
arise. It turns out that the inductive step requires the use of an appropriate weighted
version of the Szemerédi–Trotter incidence theorem (see Theorem 3 below). In fact,
Theorem 3 can be derived from the generalization of the Szemerédi–Trotter theorem by
Székely [S]. However, we have furnished an independent proof of Theorem 3, which is
not based on the randomization argument.

Unfortunately, a direct application of this weighted incidence result leads to a rather
weak bound for Nd and an ad hoc reduction procedure is needed to replace maximal
weights by average ones, resulting in a much better exponent. Effective handling of the
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weights is the key technical aspect of this paper. It requires an appropriate divide-and-
conquer approach, described in Lemma 6 below.

Our combinatorial technique can be expressed in terms of products of certain specially
constructed matrices, based on [Ko2]. The final section of the paper provides an outlook
of how this can be done.

Notation and Statement of Results. Fix a convex sequence {si }Ni=1, N large. Let B ≡
{1, 2, . . . , N }, which henceforth shall be referred to as the base set. Let f : R→ R be
a fixed strictly convex function such that f (i) = si . Let S = f (B) = {s1, . . . , sN }.

The bounds for the quantity Nd will be obtained by studying the sumset

d S ≡ S + · · · + S = {x : x = si1 + · · · + sid , (i1, . . . , id) ∈ Bd}. (1.4)

Given x ∈ d S, define its multiplicity, or weight,

νd(x) = |{(i1, . . . , id) ∈ Bd : si1 + · · · + sid = x}|. (1.5)

Here and throughout the paper the notation | · | stands for the cardinality of a finite
set. The quantity νd(x) will be referred to as the weight distribution function.

Clearly there is an L1 relation ∑
x∈d S

νd(x) = N d , (1.6)

the right-hand side being referred to as the net weight. Our goal is to obtain an L2 bound
for νd(x), since

Nd =
∑
x∈d S

ν2
d(x). (1.7)

Let d S = {x1, x2, . . . , xt , . . .} be ordered such that for any xt ∈ d S, νd(xt ) ≥
νd(xt+1), if xt+1 is defined. It turns out that in order to estimate Nd , it is sufficient
to have a lower bound for the cardinality |d S| and a majorant for the weight distribution
function. The former lower bound has been obtained by Elekes et al. [ENR] and does
not require the techniques of this paper, yet it is recovered in a slightly different way and
used in the framework of our proof.

Let nd(t) = νd(xt ). The inverse, also a decreasing function n
−1
d , would provide the

bound1

n
−1
d (τ ) ≥ |d Sτ ≡ {x ∈ d S: νd(x) ≥ τ }|. (1.8)

Our main result is the following.

Theorem 1. For d ≥ 2, let αd = 2(1− 2−d) and βd = d − 4
3 (1− 2−d). Then

|d S| � Nαd , (1.9)

nd(t) � Nβd t−1/3, (1.10)

Nd � N 2d−αd . (1.11)

1 Note that n
−1
d is simply the distribution function for nd in the measure-theoretical sense.
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Remark. The main estimates of this paper are (1.10) and (1.11). The estimate (1.9)
on the cardinality of the sumset d S has been included in the statement for the sake
of completeness and is due to Elekes et al. [ENR, Chapter 4] who derived it after
repeated application of the classical Szemerédi–Trotter incidence theorem. However,
while the estimate (1.9) can be easily derived from the estimate (1.11), the converse is
not true. We shall see that the derivation of the estimate (1.11) requires application of
more sophisticated arguments involving weighted incidence with appropriately chosen
weights.

In the case when the set S is a subset of integers, the estimate (1.11) enables one to
bound the L p norm of trigonometric polynomials with frequencies in S.

Corollary. If S ⊂ Z, let

PN (θ) =
N∑

j=1

e2π isj θ . (1.12)

Then

‖PN‖2d ≡
(∫ 2π

0
|PN (θ)|2ddθ

)1/2d

� N 1−(1−2−d )/d . (1.13)

Remark. By expanding the square we see that (1.13) is essentially an identity when
d = 1. When d > 1 observe that (1.13) is much stronger than the estimate that can be
obtained by interpolating the cases d = 1 and d = ∞ using Holder’s inequality.

2. Incidence Theorems

As we mention in the Introduction, the main tool used in [ENR] and [Ko1] is the theorem
of Szemerédi and Trotter [ST] bounding the number of incidences between a collection of
points and straight lines in the Euclidean plane. The theorem was extended to the case of
points and hyper-planes or spheres (with some natural restrictions on the arrangements)
by Clarkson et al. (see [CES+] and the references therein). Incidence theory provides a set
of powerful tools for solving problems in geometric combinatorics and related areas. See
also the books by Pach and Agarwal [PA] and Matoušek [M] for an exhaustive description
of this subject and related issues. It was observed by Székely [S] that geometric graph
theory can deliver a short and elegant proof of the Szemerédi–Trotter theorem, with the
set of lines generalized to a class of curves satisfying generic intersection hypotheses.2

From now on, we use the terms “lines” and “curves” interchangeably.

Theorem 2 [ST]. Let (L,P) be an arrangement3 of m curves and n points in R2.
Suppose that no more than a bounded number of curves pass through a pair of points of

2 There is nothing to prevent one from generalizing the ambient space R2 to a general two-manifold of
finite genus.

3 By an arrangement we further mean an embedding, or drawing, of the curves and points in the plane.
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P and that the intersection of any two curves of L contains a bounded number of points
of P . Then the total number of incidences is

I = |{(l, p) ∈ L× P: p ∈ l}| � (mn)2/3 + m + n. (2.1)

Under the assumptions of Theorem 2, which we refer to as the simple intersection
case, the number of incidences I for an arrangement (L,P) can be expressed in terms
of the counting function δlp. More precisely,

I =
∑
p∈P

m(p) =
∑

l∈L,p∈P
δlp. (2.2)

In this formula, m(p) denotes the number of curves incident to a specific point p, and
δlp = 1 if p ∈ l, and 0 otherwise.

Now we consider the issue of weighted incidences. In this case the numbers (m, n)
in Theorem 2 have a slightly different meaning. Given some µ, ν ≥ 1 (without loss of
generality suppose they are integers) we assign to each line l ∈ L and each point p ∈ P
the weights wl ∈ {1, . . . , µ} and wp ∈ {1, . . . , ν}, respectively, so that∑

l∈L
wl = m,

∑
p∈P

wp = n. (2.3)

We call such a weight assignment a weight distribution with maximum weights (µ, ν)
and net weights (m, n). A single pair (l, p) ∈ L×P contributes as much as wlwpδlp to
the number of weighted incidences, defined as

I =
∑

l∈L,p∈P
wlwpδlp =

∑
p∈P

wpm(p). (2.4)

Now, see (2.2), the quantity m(p) counts the total weight of all the curves incident to
a particular point p. Note that the cardinal numbers of the sets L and P do not enter the
weighted incidence bound (2.4) at all. We make use of the following weighted version
of Theorem 2.

Theorem 3. Given a simple intersection arrangements (L,P) with net weight (m, n),
and a weight distributions with maximum weights (µ, ν), we have

I � (µν)1/3(mn)2/3 + νm + µn. (2.5)

Theorem 3 easily follows from Theorem 2, after a simple weight rearrangement
argument, which is given further in the paper. If one goes through the proof of Székeley’s
generalization of the Szemerédi–Trotter theorem [S], Theorem 3 can be derived as its
corollary. Yet we have chosen to present a short constructive proof, which does not seem
to extend to Székeley’s theorem, which is more general.

Note that for the right-hand side of (2.5) we have

(µν)1/3(mn)2/3 + νm + µn = µν
[(

m

µ

n

ν

)2/3

+ m

µ
+ n

ν

]
, (2.6)
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which indicates that the maximum number of weighted incidences is achieved when
there are m/µ lines and n/ν points with uniformly distributed weights, equal to µ or ν,
respectively.

Observe that unless the weights are distributed uniformly, neither |L| nor |P| enters
estimate (2.5). This suggests that the estimate (2.5) needs to be properly localized to
achieve sufficiently sharp estimates. Localization is possible if there is extra information
about the weight distributions throughout L or P . It then opens up a wide variety of
possibilities for decomposition and divide-and-conquer approaches, partitioning the sets
L orP into pieces such that the estimate (2.4) applied to each piece of the partition leads
to sharp estimates.

The following is a heuristic sketch of the proof of Theorem 1. The proof starts out
with the case d = 2, following [ENR] and [Ko1], based on Theorem 2, and proving
(2.1). Its essence is the interpretation of the estimation of N2 as an incidence problem.
The case d = 2 is followed by induction on “dimension” d. The problem of estimating
Nd+1 in terms of Nd can also be interpreted as an incidence problem, but a weighted
one. Each point in the corresponding set P will have weight equal to 1. However, the set
L will be associated with the d-dimensional problem and will carry non-trivial weights,
which will be in one-to-one correspondence with the weights νd(x) in the sumset d S.
Then Theorem 3 comes into play. Note that the maximum weight µ = supx∈d S νd(x) for
the elements of d S is trivially N d−1, or less trivially N d((d−1)/(d+1)) using the classical
result of Andrews [A] (see also [BL]).

Theorem 4 [A]. The number of the vertices of a convex lattice polytope4 in Rd of
volume V is O(V (d−1)/(d+1)).

Returning to the sketch of proof of Theorem 1, we see that if m, µ are respectively
net and maximum weights for the set of lines L in the underlying incidence problem (m
will be equal to N times N d , the latter being the net weight of d S), then the cardinality
|L| is much greater than mµ−1. In other words, there is a lower bound L on |L|, so the
majority of the members of L will carry weights which are smaller than the maximum
weight µ. This allows us to use the bound for the “average” weight µ̄ = m/L (which
is much smaller than µ) in formula (2.5). This is proved in Lemma 6 below, which
is central to the proof of Theorem 1 and leads quickly to the key estimates (1.10)
and (1.11).

Remark on Notation. In what follows, the quantity µ is always the maximum curves’
weight in the underlying incidence problem, for the weighted arrangement (L,P) of
curves and points, respectively. On the other hand, the notation νd always refers to
the weight distribution function on the sumset d S. Throughout the induction process,
individual weights of curves l ∈ L are in one-to-one correspondence with weights νd(x),
for x ∈ d S.

4 A lattice polytope is a polytope with vertices in the integer lattice Zd .
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3. Proof of Theorem 1

The proof is by induction on d, starting from the case d = 2. Recall the notation
si = f (i), i ∈ B. Let

γ = {(x, f (x)): x ∈ [1, N ]} and γB = {(i, f (i)): i ∈ B}. (3.1)

The case d = 2

Lemma 5. We have

|2S| � N 3/2 (3.2)
and

|2Sτ | ≡ |{x ∈ 2S: ν2(x) ≥ τ }| � N 3τ−3. (3.3)

Proof. Define 2B ≡ B + B. Consider the set of points P = B × S + γB = 2B × 2S
and the set of curves L = γ + B × S. Strict convexity of the curve γ implies that the
arrangement (L,P) satisfies the simple intersection condition.

Since |P| � N 2, the number of incidences I for this arrangement can be estimated
using Theorem 2:

I � N 4/3(|P|)2/3. (3.4)

On the other hand, each curve of L contains at least N points of P (that is why P has
been taken as 2B × S rather than simply B × S). It follows that I � N 3, and

N |2S| ≈ |P| � N 5/2, (3.5)

which implies (3.2).
Let Pτ = {p ∈ P: m(p) ≥ τ }, where m(p) is the number (coinciding in this

case with the total weight) of curves of the arrangement L intersecting at point p.
Applying the estimate (3.4) for the number of incidences for the arrangement (L,Pτ ),
with |Pτ | in place of |P|, and comparing it with the lower bound τ |Pτ |, we see that
τ |Pτ | ≤ I � N

4
3 |Pτ |2/3, which implies that |Pτ | � N 4/τ 3, hence

|2Sτ | ≈ N−1|Pτ | � N 3τ−3, (3.6)

as claimed in (3.3). Note that division by N above is due to the definition ofP = 2B×2S,
and |2B| ≈ N , as the base set B is the set of consecutive integers.

Motivated by (3.2), let ν̄2 =
√

N be the (approximate) upper bound for average
weight over 2S (the net weight of 2S equals N 2). Inverting (3.6), we see that the weight
distribution function in the (ordered) set 2S satisfies

ν2(xt ) � n2(t) = Nt−1/3. (3.7)

It follows that for the set 2Sν̄2 , containing those O(N 3/2) elements of 2S, whose
weights may exceed ν̄2, we have

∑
x∈2Sν̄2

ν2
2(x) � N 2

∫ N 3/2

1
t−2/3 dt ≈ N 5/2. (3.8)
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On the other hand, for the complement 2Sc
ν̄2

of 2Sν̄2 in 2S, where the weight does not
exceed ν̄2, we have ∑

x∈2Sc
ν̄2

ν2
2(x) � ν̄2

∑
x∈2S

ν2(x) � N 5/2. (3.9)

This proves formulas (1.9)–(1.11) in the case d = 2.

Remark. The estimates (3.8) and (3.9) are motivated as follows. One naturally parti-
tions the domain 2S into two subsets. In the first subset, containing x such that ν2(x) � ν̄2

(where the quantity ν̄2 has been obtained as the net weight divided by the lower bound
for cardinality |2S|), we use the (strictly decreasing, convex) majorant n2(t) for ν2(xt )

and get (3.8). The sum of ν2
2(x) over the second subset, where ν2(x) � ν̄2 is bounded

by the product of the L1 norm of the function ν2(x) (equal to N 2) and the L∞ bound
ν̄2 =

√
N for ν2(x), restricted to the latter subset. This yields (3.9). The same idea is

used in the remaining part of the proof. The most difficult point is getting a tight enough
majorant nd(t) in the case d ≥ 2.

The case d ⇒ d+ 1. In order to characterize the weight distribution function νd+1(x),
for x ∈ (d + 1)S, consider the equation

f (i1)+ [ f (i2)+ · · · + f (id+1)] = x . (3.10)

Let u ∈ d S. Extend (3.10) to the system of equations{
f (i1)+ u = x,

i1 + j = k,
∀ (i1, j, k, u, x) ∈ B × 2B × 2B × d S × (d + 1)S. (3.11)

Note that (d + 1)S is considered as a set, rather than a multi-set. The elements of
the set d S = {u1, u2, . . . , ut , . . .} are endowed with non-increasing weights, with the
weight distribution function νd(u), which by the induction assumption should comply
with (1.9)–(1.11). Besides, the L1 norm of νd(u), over d S, is equal to N d . The L∞
bound for νd(u) is O(N d((d−1)/(d+1))), by the Andrews theorem (Theorem 4). By (1.10),
there is a majorant

νd(ut ) � nd(t) = Nβd t−1/3, (3.12)

where βd = d− 4
3 (1−2−d). There is also the estimate (1.9) for the minimum cardinality

of d S. The latter leads us to introduce the upper bound for the average weight ν̄d in d S,

ν̄d � N d−αd , (3.13)

with αd = 2− 2−d+1.
The number of solutions of (3.10) is not greater than the number of solutions of (3.11),

divided by N . On the other hand, (3.11) can be interpreted as a weighted incidence
problem. Let L be the set of the curves given by the translations γju of the curve γ
defined by (3.1), by some ( j, u) ∈ 2B × d S. For such l = γju ∈ L, let the weight
wl = νd(u). Define the set of points P = 2B × (d + 1)S, with unit weights. Then the
number of solutions of (3.11) is bounded by the number of weighted incidences in the
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arrangement (L,P). In particular, if x ∈ (d + 1)S = s+ u, for some s ∈ S and u ∈ d S,
then clearly

νd+1(x) =
∑

(s,u)∈(S×d S): x=s+u

νd(u). (3.14)

Observe that (3.11) applies to the case d = 2 as well, with u ∈ S. Hence now the
problem essentially boils down to the same scheme as it was in the case d = 2, except
that weighted incidences should be counted in order to verify the estimates (1.10) and
(1.11). The estimates result from the following lemma.

Lemma 6. Let ν̄d be defined by (3.13) above. Assuming the estimate (3.12) on the
weight distribution function νd(u) in the set d S, the number of incidences for the above
defined arrangement (L,P), describing the solutions of the system (3.11), is given by

I � ν̄
1/3
d N 2(d+1)/3(N |(d + 1)S|)2/3. (3.15)

Lemma 6 shows that in order to count the weighted incidences in the arrangement
(L,P) by formula (2.5), instead of the maximum weight µ = O(N d((d−1)/(d+1))) in the
set L, given by the Andrews theorem, we can set µ = ν̄d , which is considerably smaller.
Note that by the definition ofL, its net weight boils down to m = N d+1. By construction,
every point p ∈ P has unit weight. The proof of Lemma 6 is given in the next section.
We now use Lemma 6 to complete the proof of Theorem 1.

Assuming Lemma 6, we compare the estimate (3.15)with the fact that on each curve
of L there lies at least N points of P . It follows that I ≥ N d+2, as the net weight of L
is equal to N d+1. Comparing the powers of N , we get

|(d + 1)S| � N 2−2−d = Nαd+1 , (3.16)

having thus verified (1.9).

Remark. As we mentioned in the remark following Theorem 1, one can do without
Lemma 6 and Theorem 3 in order to get (3.16). Namely, if I stood for the number of
non-weighted incidences for the arrangement (L,P) in question, then similarly to the
case d = 2, one would have N (N |d S|) � I � (N |(d + 1)S|)2/3(N |d S|)2/3, using
Theorem 2, resulting in the bound (3.16) for |(d+ 1)S|, under the induction assumption
|d S| � Nαd . This was done by Elekes et al. [ENR].

The relation (3.16) leads us to define the upper bound for the average weight in
(d + 1)S:

ν̄d+1 = N d+1−αd+1 . (3.17)

Let Pτ = {p ∈ P: m(p) ≥ τ }, where m(p) is the total weight of all the curves
of the arrangement L intersecting at the point p, see (2.2) and (2.4). Clearly, Pτ =
2B × (d + 1)Sτ , where (d + 1)Sτ is the subset of (d + 1)S, consisting of all those
elements x whose weight νd+1(x) is not smaller than τ . In order to estimate |(d + 1)Sτ |,
weighted incidences have to be dealt with. Lemma 6 formally enables us to use the
average weight ν̄d instead of µ in the application of formula (2.5) of Theorem 3.
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In view of this, we proceed by comparing the trivial lower bound τN |(d + 1)Sτ | for
the number of weighted incidences for the arrangement (L,Pτ ) with (3.15), but with
|(d + 1)Sτ | in place of |(d + 1)S|. We get

τN |(d + 1)Sτ | � I � ν̄
1/3
d N 2(d+1)/3(N |(d + 1)Sτ |)2/3. (3.18)

By (3.13) this yields

|(d + 1)Sτ | � N 1−αd

(
N d

τ

)3

. (3.19)

If τ = ν̄d+1, defined by (3.17), it follows that

|(d + 1)Sν̄d+1 | � Nαd+1 , (3.20)

which is the same as the right-hand side in (3.16). Inversion of (3.19) yields

νd+1(xt ) � nd+1(t) = N (d−1−2−d+1)/3t−1/3 = Nβd+1 t−1/3, (3.21)

as claimed by (1.10).
The final step of the proof follows the remark at the end of the d = 2 section. More

precisely, we partition

(d + 1)S = (d + 1)Sν̄d+1 ∪ (d + 1)Sc
ν̄d+1

(3.22)

into “heavy” and “light” elements, and obtain the estimate∑
x∈(d+1)Sc

ν̄d+1

ν2
d+1(x) � N d+1ν̄d+1 = N 2(d+1)−αd+1 , (3.23)

along with

∑
x∈(d+1)Sν̄d+1

ν2
d+1(x) � N 2βd+1

∫ Nαd+1

1
t−2/3 dt ≈ N 2(d+1)−αd+1 . (3.24)

The estimates (3.23) and (3.24) are consistent with (1.11). Thus the proof of Theorem
1 is complete up to verification of Lemma 6.

4. Proofs of Lemma 6 and Theorem 3

Proof of Lemma 6. The objective is to partition the set

d S =
M⋃

i=0

d Si (4.1)

into M (a fairly large number of) pieces, trying to make each one of them as large as
possible, yet having control over the number of weighted incidences it can possibly be
responsible for. We aim to get a bound

νd(x) � bi , ∀x ∈ d Si , (4.2)
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for some geometrically decreasing sequence bi (to be constructed) approaching the
quantity ν̄d , defined by (3.13) and appearing in the main estimate (3.15). The sequence
bi will start out from

b0 = N d((d−1)/(d+1)) (4.3)

(the L∞ norm of νd , given by the Andrews theorem5). The number M in (4.1) is chosen
in such a way that bM is close enough to ν̄d , so that the effect of the difference between
them can be swallowed by a constant in the � symbol. The sequence {d Si } will be
constructed, using the weight distribution majorant (3.12).

By the general estimate (2.5) of Theorem 3, in order to prove the lemma it suffices
to show that (

Ĩ ≡
M∑

i=0

b1/3
i m2/3

i

)
� ( Ī ≡ ν̄1/3

d m2/3), (4.4)

where m = N d is the net weight of d S, and mi is the net weight of each subset d Si , for
i = 0, . . . ,M . The difference between (4.4) and (3.15) is that we have dropped those
powers of N in the latter estimate, which arise from the net weight of L as well as the
fact that P = 2B × (d + 1)S (i.e., that to every x ∈ (d + 1)S there correspond at least
N solutions of (3.11)). Each d Si ⊂ d S corresponds to the subset Li = 2B × d Si of L.
Throughout the proof of Lemma 6, mi stands for net weights of d Si only, rather than Li .

It is easy to verify that the linear terms coming from the bound (2.3) are irrelevant.
Indeed, the first linear term is O(N d+1), being the total weight of the set of lines L =
2B × d S. The second linear term can be bounded via bi N d+1. By construction, both
linear terms are dominated by the incidence bound, reflected by the quantity Ĩ , defined
by (4.4). This is verified by formula (4.18) at the end of the proof.

Net weights mi of d Si are to be estimated via bi , using the inverse formula for the
majorant (3.12), i.e.,

|{x ∈ d S: νd(x) ≥ τ }| � n
−1
d (τ )N 3βd τ−3, βd = d − 4

3 (1− 2−d). (4.5)

Note that the majorant (3.12) is good for nothing as far as the elements x ∈ d S, such
that νd(x) � ν̄d , are concerned. Indeed, a calculation yields∫ ∞

ν̄d

n
−1
d (τ ) dτ ≈ m, (4.6)

where m = N d is the net weight of d S.
Also for the terms in the sum in the left-hand side of (4.4) we denote

Ĩi ≡ b1/3
i m2/3

i . (4.7)

The sets d Si and the number M are to be chosen such that

Ĩi � N−εi Ī , (4.8)

5 In fact, it can be seen from the proof that the use of the Andrews theorem is superfluous: one can equally
well start out with the trivial bound b0 = N d , the net weight of d S.
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see (4.4), for some geometrically vanishing sequence of small positive numbers {εi }M−1
i=0

(it will be shown that it suffices to let the ratio for this sequence equal 9). This prompts
the choice

M ≈ log logN , (4.9)

as then εM−1 � ε0 e− log log N ≈ 1/log N , so for a sufficiently small, yet O(1), value
of ε0,

N εM−1 ≈ 1 and
M−1∑
i=0

N−εi ≈
∫ log log N

1
N−ε0 exp(−t) dt �

∫ ∞
1

e−z

z
dz ≈ 1. (4.10)

We describe the first step of the construction. Let a number δ0 be defined via b0 =
N δ0 ν̄d . Define the weight m0 of the set d S0 implicitly, using (4.4):

b1/3
0 m2/3

0 ≈ N−ε0 ν̄
1/3
d m2/3, (4.11)

which yields

m0 = N−(3ε0+δ0)/2m. (4.12)

Then the weight of any element x in the complement d Sc
0 of d S0 in d S should be bounded

from above by some quantity b1, which can be defined implicitly from∫ ∞
b1

n
−1
d (τ ) dτ = m0. (4.13)

This yields

b1 = ν̄d N δ1 , δ1 = 1
4 (3ε0 + δ0). (4.14)

Clearly, for ε0 small enough, say ε0 = 1
9δ0, one has δ1 ≤ 1

3δ0.
The procedure is now repeated for the set d Sc

0, where the maximum weight is bounded
in terms of b1, rather than b0, which will result in some set d S1 having been pulled out of
it, such that the maximum weight in the complement of d S1 in d Sc

0 is bounded in terms
of some b2 (which is much smaller than b1), and so on. After having done so M − 1
times, the set d S will be partitioned, according to (4.1), where the last member of the
partition d SM is the complement of the union

⋃M−1
i=0 d Si in d S. For i = 1, . . . ,M the

maximum individual element weight in d Si is bounded similarly to (4.14), namely,

bi = ν̄d N δi , δi = 1
4 (3εi−1 + δi−1). (4.15)

Thus, if the quantities εi vanish geometrically, with the ratio exceeding say 9, we have

δi ≤ δ0e−i , i = 1, . . . ,M. (4.16)

By construction, each set of linesLi = 2B×d Si , for i = 0, . . . ,M−1, would create
the number of weighted incidences Ii for the arrangement (L,P), bounded as follows:

Ii � N 2d+2−d−εi+1. (4.17)
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See (3.15), (4.4), and (4.7). Note that in comparison with (1.11) we have d → d + 1,
which accounts for an extra N here, as the quantity Nd equals N−1 times the number
of incidences for the arrangement (L,P), introduced in accordance with the system of
equations (3.11), rather than (3.10).

As each εi ≤ 1, the right-hand side of the last expression will exceed the maximum
for the linear term in the estimate (2.5), applied to the arrangement (L,P), as the latter
can be bounded simply via

b0 N d+1 � N 2d2/(d+1). (4.18)

Finally, by (4.9), (4.10), (4.15), and (4.16), we have

bM � ν̄d , (4.19)

and thus the remaining set d SM , as well as (see (4.9) and (4.10)) the union
⋃M−1

i−1 d Si will
not be responsible for more incidences than specified by the right-hand side of (3.15).
This completes the proof of Lemma 6.

Proof of Theorem 3. Without loss of generality, we can assume that all the weights are
integers, the net line weight m is a multiple of the maximum line weight µ, and the net
point weight n is a multiple of the maximum point weight ν. Then the bound (2.5) is
equivalent to the bound (2.1) for the number of incidences between m/µ lines and n/ν
points, provided that, in the latter bound, each incidence has been counted µν times, see
(2.6). In other words, for the uniform weight distribution there is nothing to prove.

Otherwise, consider some arrangement (L,P) and suppose that the weight distribu-
tion over, say, P is not uniform. Then there exist p1, p2 ∈ P such that their weights
wp1 < wp2 < ν. For p ∈ P recall that

m(p) =
∑
l∈L

wlδlp (4.20)

denotes the total weight of all the lines incident to p, the total number of weighted
incidences being given by (2.4). If m(p1) > m(p2), first change the weight distribution
by swapping the values wp1 and wp2 over the points p1 and p2. Then modify the weight
distribution by changing wp1 → wp1 − 1 and wp2 → wp2 + 1. If wp1 has become
zero, remove p1 from P . As a result the weight distribution has been modified, so
that the number of weighted incidences has increased, yet the net weight has stayed
constant. Continue this (greedy) procedure until the weight distribution over P has
become uniform; then do the same thing with the set L. At each single step, the number
of incidences will have increased. However, as a result we still end up with the bound
(2.6), as only m/µ lines and n/ν points will eventually remain. This completes the proof
of Theorem 3.

5. Theorem 1 and Inequalities for Elements of Special Matrices

In this section we present another approach to the proof of Theorem 1 based on the
construction and study of some specially constructed matrices. The same idea was used
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in [Ko2] to get estimates for exponential sums over subgroups of multiplicative groups
in finite fields. The proofs are similar to those in [Ko2], so we only sketch the arguments.

First we observe that it is enough to prove Theorem 1 in the case when each si is an
integer. Indeed, let {si }Ni=1 be an arbitrary convex sequence. By the pigeon-hole principle,
there are integers Si and a positive integer M , such that for i ∈ B we have

|Msi − Si | < 1/(2d). (5.1)

Then the equality

si1 + si2 + · · · + sid = sid+1 + · · · + si2d (5.2)

implies

Si1 + Si2 + · · · + Sid = Sid+1 + · · · + Si2d . (5.3)

Therefore, the number of solutions to (5.2) does not exceed the number of solutions
to (5.3). Moreover, M can be chosen so large that si+1 − 2si + si−1 > 1/M for i =
2, . . . , N − 1. Hence, the sequence {Si }Ni=1 is also strictly convex. We see that (1.11) for
integral strictly convex sequences implies its validity for all strictly convex sequences.

So, let us assume that a sequence {si }Ni=1 is integral and strictly convex. Fix d and
take a large positive integer p. Then the equation si1 + si2 + · · · + sid = x is equivalent
to the congruence si1 + si2 + · · · + sid ≡ x (mod p). We arrange the square matrix A of
order p setting ak,l = 1 if l − k ≡ si (mod p) for some i and ak,l = 0 otherwise.

By a(d)k,l we denote the elements of the matrix Ad . Clearly, νd(x) = 0 if |x | > ds

where s = maxi |si |. It is easy to check that a(d)k,l = νd(l − k) for |l − k| ≤ ds, provided

that p is large enough. By {a(d)1 , . . . , a(d)p } we denote the non-increasing rearrangement
of a row of the matrix Ad . Observe that it does not depend on the choice of a row because
any row of Ad is a cyclic translation of any other row.

Inequality (1.10) then means that

a(d)t � Nβd t−1/3. (5.4)

Also, for any k,

Nd =
p∑

l=1

(a(d)k,l )
2 =

p∑
t=1

(a(d)t )2, (5.5)

and (1.11) is equivalent to
p∑

t=1

(a(d)t )2 � N 2d−αd . (5.6)

It is easy to see that the following equalities hold:

∀k,
∑

l

ak,l = N , (5.7)

∀l,
∑

k

ak,l = N . (5.8)
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Let U be the column of size p whose elements are all equal to 1. Equality (5.7) is
equivalent to AU = NU . This implies AdU = N dU , or

∀k,
∑

l

a(d)k,l = N d . (5.9)

In turn, (5.7) can be rewritten as ∑
t

a(d)t = N d (5.10)

followed by

a(d)t ≤ N d/t. (5.11)

The estimates (5.4) and (5.11) easily imply (5.6).
To prove (5.4) we need some other properties of the matrix A which can be deduced

from the Szemerédi–Trotter incidence theorem.

Lemma 7. For any sets K ⊂ {1, 2, . . . , p} and L ⊂ {1, 2, . . . , p} we have∑
k∈K

∑
l∈L

ak,l � N 1/3(|K | · |L|)2/3 + |K | + |L|. (5.12)

Proof. It is more convenient to work in Z rather than in Z (mod p). We note that∑
k∈K

∑
l∈L

ak,l ≤ S(K , L ′), (5.13)

where L ′ = L ∪ (L − p) ∩ (L + p) and S(K , L ′) is the number of solutions to the
equation

l − k = si , k ∈ K , l ∈ L ′, i ∈ B. (5.14)

Thus, we have to show that

S(K , L ′) � N 1/3(|K | · |L|)2/3 + |K | + |L|. (5.15)

Following the proof of Lemma 5, we consider the set of points P = 2B × L ′ and the
set of curves L = γ + 2B× K . Let I be the number of incidences for this arrangement.
We have

|P| ≤ ∈N |L′|, |L| ≤ N |K|, I = NS(K,L′). (5.16)

Using the Szemerédi–Trotter incidence theorem, we get (5.15). Combining (5.13) and
(5.15), we complete the proof of Lemma 7.

The estimate (5.4) can be now deduced from Lemma 7 and (5.7)–(5.9) by induction
on d similarly to the proof of Lemma 19 in [Ko2], where the reader is referred for further
details.
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[ST] E. Szemerédi and W. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983), 381–

392.

Received August 8, 2004. Online publication September 9, 2005.


