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A method for compressing large dictionaries is proposed, based on transforming words into lexicographically ordered
strings of distinct letters, together with permutation indexes. Algorithms to generate such strings are described.
Results of applying the method to the dictionaries of two large databases, in Hebrew and English, are presented. The
main message is a method of partitioning the dictionary such that the 'information bearing fraction' is stored in fast
memory, and the bulk in auxiliary memory.

1. INTRODUCTION

A method for compressing very large dictionaries—the
larger the better!—based on combinatorial transforma-
tions of words is proposed. The main idea is to replace
each word w by a pair (L, / ) , where L is an ordered string
of the distinct letters of w, and /is an index which permits
transforming L back into w. The information contained
in the L's is almost the same as that of the w's: the entropy
increase in transforming the latter to the former is very
small. The main variation investigated is when the L's
reside in fast memory and the /'s are relegated to disk.
This results in very high savings of fast memory.

Specifically, let w = wt w2 • • • wk be a word over a finite
alphabet S, linearly ordered (under <). A lexicographic
form {lexform for short) of w is a lexicographically ordered
sequence wq{l). . . wq(l) (for suitable / < k) of the distinct
letters (also called characters) of w. Thus w^ precedes
wq(j) if and only if wq(i) < wq{j). Every word over Z maps
into a unique lexform, but any given lexform may be
induced by several distinct words.

We define a few basic notions. If a word
w = wiw2: . . wk maps into a lexform v = vxv2 • • • vt (/ <
k), then the index of w is a sequence of length k consisting
of the numbers 1, 2, . . . , / , such that if w, = Vj, then the
/th sequence number isy (1 <j<l, 1 < i < k). Denoting
by L the lexform of w and by / its index, we observe that
the transformation w -* (L, /) is a bijection. Thus the
transformation w -» (L, /) has a unique inverse. A text is
a sequence of words, counting repetitions. The set of
distinct words of a text is a dictionary of the text. (Of
course a dictionary is a special case of a text, namely the
case in which every word appears exactly once.) The
length of a word is the number of its letters, counting
multiplicities. For example, 'of the people, by the people,
for the people' is a text of size 9, whose dictionary has
size 5. The word 'people' has length 6, its lexform is
'elop', and its index is (4,1,3,4,2,1).

* This work was done within the Responsa Retrieval Project, developed
initially at the Weizmann Institute of Science and Bar-Ilan University,
now located at the Institute for Information Retrieval and Computa-
tional Linguistics (IRCOL), Bar-Ilan University, Ramat Gan, Israel.
The work reported herein was done at the Weizmann Institute,
t Partial affiliation with IRCOL.
j Supported in part by a grant of Bank Leumi Le' Israel.

The proposed compression and partitioning method is
based on replacing words by lexforms, storing only
distinct lexforms and their corresponding indexes. The
number of distinct lexforms of length / over an alphabet
£ of size | Z | = n is evidently ("). Since every combination
can be represented by its serial number in some linear
ordering of all combinations,1'2 a serial combination
number (conumber for short) can be used to represent
every lexform, thus achieving additional compression. In
Proposition 1 it is proved that the fraction of storage
needed when replacing dictionary words of length k by
conumbers is at most (2nk)~1/2 (ek~ ')* if |£ | is large. In
Proposition 3 it is shown that the number of distinct
indexes of words of length k is £ £ , i* 2~'~', which is the
number of Cayley-permutations (C-permutations for short)
of length k.3 Thus if we replace every index by its serial
number (called rank) in some linear ordering of all
indexes, a further compression is achieved.

The combinatorial compression method can thus be
viewed as consisting of two phases:

A. Compression by transforming dictionary words into
lexforms and indexes.

B. Further compression by transforming lexforms into
conumbers and indexes into ranks.

A natural partition of the dictionary is obtained by
storing the file £ of lexforms (or their corresponding
conumbers) in fast memory, and the file 5 of indexes (or
their ranks) on disk. Such a partition may enable storage
of a large dictionary in form of its lexforms in fast
memory, which otherwise could not be kept in it because
of lack of space. This is important in many applications
such as data retrieval over legal material or other non-
numeric material. Typical cases are: (1) most accesses to
the dictionary are unsuccessful, that is, the word sought
is not in the dictionary. (2) Many accesses are successful,
but additional Boolean or metrical constraints (which
can be verified without consulting 5) reject the word. In
both of these cases there are many accesses to £ in fast
memory, and few accesses to 9 on disk, whose access time
is typically 104 times slower than that of fast memory.

The method was tested on the dictionaries of two large
databases, one of which was in fact a database of legal
material, namely a subset of the database of the Responsa
retrieval project.4 The subset contained some 114 million
letters—excluding punctuation characters and blanks—
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comprising 28 million words (436 000 distinct (dictionary)
words) mainly in Hebrew; and a subset of the database
of seven biweekly updates of NTIS (U.S. National
Technical Information Services), containing some 14
million letters of two million English words of length at
least three (57 000 distinct words). Any word of length
exceeding 13 was truncated to length 13.

The highlights of the results are that if phases A and B
are used, then the above mentioned partitioning results
in a fast memory space requirement of only 15% of the
Responsa dictionary space; 55-60% of the NTIS diction-
ary. This rather large difference in compression is due
not so much to language idiosyncracies as to dictionary
size: the efficiency of the method increases with diction-
ary size! (We remark that the above saving is on top of
an additional saving factor (not counted) obtained by
replacing standard character representation by a minimal
representation using only [lg|E|l bits per character (lg
stands for log to the base 2, here and below). This is
natural to do when working with conumbers and ranks,
and is quite consistent with other compression methods.
For example, if 1£1 = 32, a 5-bit code instead of the
customary 8-bit code can be used, resulting in an
additional 37.5% saving factor, not counted in the sequel.)

The details of the method—in form of phases A and
B—are presented in Section 2. In Section 3 we briefly
explore an extension and a variation of the main method.
The extension is front compression applied to the file of
lexforms; the variation is the use of performs instead of
lexforms. A perform is a lexicographically ordered string
of the letters of a word without deleting multiple letters.
The final Section 4 contains highlights of the results of
tests run on the two databases mentioned above. It ends
with a short summary on decoding times, where decoding
is the process of restoring the original word from its
compressed version.

2. THE TWO PHASES OF COMBINATORIAL
COMPRESSION

Phase A

This phase consists of two steps:
(i) Generation of lexforms and calculation of indexes,

(ii) Compression by sorted lexforms.

Step (i). This step transforms every word w in the
dictionary D into a pair (L, I), where L is the lexform
and / the index of w. The lexform is obtained by sorting
the letters of w, deleting identical letters. Since the
number of elements is small, any simple sorting algorithm
such as insertion sort5 will be more efficient than elaborate
algorithms. If the lexform has length /, its characters are
numbered consecutively from 1 to /. To get the index /of
w, every letter of w is replaced by its corresponding
number.

Step (ii). We start by sorting the pairs (L, /) lexicographi-
cally, where L is more significant than /. The input is a
set of pairs P — {(Lk, 4)}£ =, , where d = \ D | is the number
of dictionary words, Lk is the lexform of the Ath word and
4 its index (1 < k < d). The sort produces a sequence

S = { ( !» , / * ) : ( L l f / , ) < • • • < ( I * Q)-

In particular, Lx< •• • <Ld. Thereafter, all maximal
blocks (LkU Ikl),...ALta, / J for which Lfcl_i <
Lkl = • • • = Z,ta < Lta+1 are collapsed into a single ele-
ment consisting of a single lexform Lk = Lkl, and a
sequence of indexes (Ikl,..., /te). The result is a sequence

A = {{Lk; Ikl,..., / J : Ikl < • • • < /to,
1 < k < r, L, < • • • < Lr}

where r = \A\ (1 < r < d). Since d is normally large, it is
advisable to use an efficient sorting method. For example,
if D fits into fast memory at least temporarily, then
quicksort, heapsort or radix exchange sort5 may be used.

We now partition the sequence A into two sequences
£ = {/,,,..., Lr} of lexforms and $ = {/n,. . ., / l t (1 ) , . . .,
Irl,. . ., /„(,.)} of indexes. The sequence £ can be stored in
fast memory, S on disk. No pointers from £ to 9 are
required if the lexforms are repeated in 5, serving there
as key-fields.

Phase B

In phase B, lexforms and indexes produced in phase A
are transformed into conumbers and ranks, respectively.

Step (i). Transformation of lexforms into conumbers. The
number of distinct lexforms of length / over Z is ("),
where n = |S|. Instead of representing a lexform v of
length / by means of a string of / letters with a range of ri,
the same as a word of length /, we may represent it by its
conumber, with a range of only ("). This saving is on top
of the saving achieved by using in the lexform only / out
of k letters of the original word.

'Saving' here means the compression achieved in £ not
in S. For the overall compression achieved, 5 must also
be considered, but since <t normally resides on disk, its
storage is normally much cheaper than that of £.

Since (") grows rapidly with / (< n/2), it is useful to
consider only words of length k < 8, which holds for 96%
of the Responsa database and 62% of the NTIS database.
Longer words may be partitioned into segments of length
< 8 .

Note that for full use of the compression of phase B,
the internal representation of characters should be
reduced to the minimum number of bits required, whence
the saving is counted in bits rather than bytes. This is
consistent with common data compression techniques,
in which characters over £ are normally represented by
a minimal number of [lg n] bits which may be shorter
than the standard internal computer representation of
characters.

We now get an asymptotic lower bound on the saving
gained up to this point.

Proposition 1

The fraction of storage needed when replacing diction-
ary words of length k by conumbers is at most t =
(2nk)- 1/2(efc- lf if | I | is large.

Proof. We use the following form of Stirling's formula
(Ref. 6: 6.1.38):

jQ.nr) Q ' < r! < J(2nr) Q''e'"2'

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 3 3 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/336/377426 by guest on 20 August 2022



A. S. FRAENKEL AND M. MOR

for all r > 0. Letting n = |Z|, we thus get

n\ n\ 1 -*-•/"»

oo,

since (1 — (k/n))" -»e * as n -* oo.
Thus even if every lexform induced by words of length

k has length k, the number of distinct lexforms is
asymptotically bounded below by tn*. Since the number
of distinct words of length k over £ is n*, the fraction of
storage needed is at most t. |

Note that the fraction of storage needed is independent
of |£ | as long as \1\ is large. Table 1 exhibits the savings
projected by Proposition 1. The column headed by — lg t
gives the projected savings in terms of the difference of
the number of bits between a representation by words
and by conumbers.

Table 1. Asymptotic lower bounds on savings
(in bits) obtained by replacing dic-
tionary words by conumbers

k

2
3
4
5

- Igf

0.9
2.5
4.5
6.8

6
7
8

- i g '

9.5
12.3
15.2

Let Ni{k) = [lg /i*l and N2(k) = fig © I Then the actual
saving in bits is at least S = N^k) — N2(k). Several of
these values are displayed in Table 2. The first four values
of n are powers of 2. If n is not a power of 2, the savings
are larger, because several possible characters are unused.

Table

n

32
32
32
32
32
32
32
64
64
64
64
64
64
64

128
128
128
128
128
128
128

2.

*
2
3
4
5
6
7
8
2
3
4
5
6
7
8
2
3
4

O
l

6
7
8

Actual lower bounds on savings obtainable by
replacing dictionary words by conumbers

Actual
savings
(bits)

1
2
4
7

10
13
16

1
2
4
7
9

12
15

1
2
4
7
9

12
15

n

256
256
256
256
256
256
256

26
26
26
26
26
26
26

36
36
36
36
36
36
36

k

2
3
4

O
l

6
7
8

2
3
4

O
l

6
7
8

2
3
4
5
6
7
8

Actual
savings
(bits)

1
2
4
6
9

12
15

1
3
6
8

12
15
19
2

O
l

8
11
15
19
23

501-/,

40

30

I

20

10

QW,

J

/1 i

/ P

t I I

s

I I

= 36
= 26

= 32

= 64

= 128

= 256

5 6 7
Word length k

Figure 1. Percentage of actual savings achieved by replacing
dictionary words by conumbers (lower bounds).

This situation is reflected in the last two w-values of Table
2, for n = 26 and n = 36 (Latin alphabet supplemented
by the digits 0-9, say). Comparing the last columns of
Tables 1 and 2, it is seen that the estimate of Propo-
sition 1 is rather close to the actual lower bound for word
lengths 2-8. Figure 1 displays graphically the percentage
S/Ni(k) of the actual savings. Note that Table 2 and
Figure 1 reflect lower bounds on the actual savings, since
we assumed that lexforms have the same length as words.

For formulating transformations between a lexform
and its conumber, define the combinatorial representation
of any non-negative integer AT with respect to a fixed
positive integer k, to be (a,,. . ., a j , where

1

subject to 0 < «i < a2 < • • • < ak for uniqueness (see Ref.
l.P-8).

A combination c out of a set of (") combinations is
fixed by selecting / positions blt . . .,bt with 1 < bx < • • •
< bt<n out of n positions. The conumber r (0 < r < ("))
of c is defined to be

7 - Y ( R e f - i ' p - 2 8 ; R e f -

Conversely, the conumber of a combination c determines
the positions by, . . ., bt: Given the conumber r of a
combination out of (") combinations (0 < r < (")), repre-
sent R = (") — r — 1 in the combinatorial representation,
that is,

Then bs, = n — Cj (1 <j<l) are the desired positions.
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We now partition the set of lexforms into subsets, each
containing lexforms of fixed length / (2 < / < 8). (Note
that a subset containing lexforms of length / is normally
derived from words of various lengths k > I.) The
lexforms in each subset are transformed into conumbers.
The savings thus obtained are those estimated in
Proposition 1 and Tables 1, 2 and Fig. 1.

Decoding involves computing the combinatorial rep-
resentation. For computing the combinatorial represen-
tation of a non-negative integer N with respect to k, we
have to calculate the largest integer ak satisfying

ak
k

the largest integer ak_, satisfying

Ok-

the largest integer ak_ 2 satisfying

k-2 k- 1
It is thus of importance to give an efficient method for
computing the combinatorial representation. Here is one.

Let M be a positive integer. For computing efficiently
the largest integer x = x0 satisfying (?) < M, recall that
the proof of Proposition 1 shows that (?) ~
(2nr)~1/2(exr~1)r (where ~ denotes 'asymptotic to').
Hence it makes sense to start with

Indeed, the following holds:

Proposition 2

For r = 2, x0 = 1(1 +
x0 < x2, where

+ 8AO)/2]. For r > 2, x, <

Proof. For r = 2, the requirement of determining the
largest solution of the quadratic inequality (2) < M is
directly seen to be x0 = [(1 + ^ ( 1 + 8M))/2J.

For any real x, x(x - 2) < x1 - 2x + 1 = (x - I)2.
Hence for any x > 1, x(x — l)(x — 2) < (x — I)3. There-
fore for r > 2,

— 1 ) . . . (JC, — r + 1)

r!

r\ .r\

Thus Stirling's formula (see proof of Proposition 1),
implies

)\<M;

hence xx < x0.
On the other hand,

x 2 \ x2 (x2 - 1) . . . (x2 - r • - r

r\ r\

r\
M

Note that for fixed M, even very large M, we have

as r increases, and the convergence is very fast. Hence
x2 — Xi < r even for r not very large. Thus the computa-
tion of x0 involves relatively few steps. This is illustrated
in Table 3, which exhibits the values x0 — x^ and x2 —
x0 for 1 < M < 3 x 106, 3 < r < 8. It is seen that starting
with xl, at most r steps are required to get to x0.

Step (ii). Transformation of indexes into ranks. Recall
that a rank of an index is the serial number of the index
in some linear ordering of all the indexes.

Proposition 3

The number of indexes of words of length k is

i = l

Table 3. The values x,,

r

xo-x,

0
1
2
3
4
5 and above

X2-X0

0
1
2
3
4
5
6 and above

3

52 744
750965

1920838
275453

0
0

0
482

2985 775
13743

0
0
0

— x, andx2

4

326426
2673574

0
0
0
0

0
0

1533445
1466555

0
0
0

- x0 as a function of r for 1

5

0
2491963
508037

0
0
0

0
0

72773
2927227

0
0
0

6

0
1105362
1894637

1
0
0

0
0
1

1697 737
1302 262

0
0

< M <3 x

7

0
0

2625013
374987

0
0

0
0
0

246082
2753918

0
0

106

8

0
0

1094 734
1905204

2
0

0
0
0
2

1813950
1186048

0
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Proof. A C-permutation p of length k over S = {1,. . . , k)
is a permutation of n elements from S with possible
repetitions, such that if/appears in/?, then also every i <
j appears in it. Note that an index of a word of length k
is precisely a C-permutation of length k on the set S = {1,
. . ., k}. The result now follows since the number of C-
permutations of length k over 5 is Kk.

3 |
The transformation between C-permutations and their

ranks is effected by means of two algorithms given in
Ref. 3.

Assuming words of length k with distinct letters, the
saving gained by transforming indexes into ranks is
k ~ kKk, since kk is the number of A:-digit numbers of length
k. Table 4 shows several savings achievable by replacing
indexes by ranks. Note that this is a saving achieved in <J
rather than in £.

Table 4. Savings achieved by using ranks instead of indexes

k

2
3
4
5
6
7
8

k'

4
27

256
3125

46 656
823 543

16777216

fig**l
Number of
bits of**

2
5
8

12
16
20
24

3
13
75

541
4683

47 293
545835

Number Number
of bits
of/T»

2
4
7

10
13
16
20

of bits
saved

0
1
1
2
3
4
4

Percentage
savings

0
20.0
12.50
16.67
18.75
20.0
16.67

3. EXTENSIONS AND VARIATIONS

Among the various possibilities for extensions and
variations of the method, we point out briefly one
extension and one variation.

(i) Front compression

Instead of transforming lexforms into conumbers, the
sorted file of lexforms can be compressed by front
compression. That is, identical leading characters of
consecutive lexforms are replaced by their count of
identical characters (except for the first lexform in the
sequence).7 It is then natural to apply front compression
also to all words of length exceeding 8.

Front compression can be applied to the file of
conumbers instead of to the file of lexforms. In fact, the
transformation of lexforms into conumbers preserves
order, and so it can be applied without additional sorting.
Experimental results indicate, however, that front
compression of lexforms gives better results overall. If
decoding and retrieval times are critical (as in real-time
applications), then a hash-table method is advantageous.
In this case front compression cannot be used and then
the replacement of lexforms by conumbers (but without
front compression) is preferable. The dictionary can be
stored in an almost full hash table with a good average
and worst case behaviour by using a method such as that
of Schmidt and Shamir.8

(ii) Performs

A permuted form {perform for short) of a word w = wt . . .
wk is a permutation w^,,. . . u^ , of all the—not necessar-
ily distinct—letters of w such that wrt0 precedes wM if
Wpd) < w^y Informally, whereas a lexform is an ordered
string of the distinct letters of w, a perform is an ordered
string of all its letters. If a word w=wl...wk maps into
a perform v = «, . . . vk, then the index of w is a sequence
of length k consisting of the numbers 1, . . ., k such that
if W; = vj, then the fth sequence number isj (1 < i,j <, k).

The perform of any word w is at least as long as the
lexform of w, and the numbers constituting the index of
the perform of a word w are at least as large as the
numbers constituting the index of the lexform of w.
Moreover, normally fewer words map into the same
perform than into the same lexform. Thus transforming
dictionary words into performs and indexes will normally
yield less compression than transforming words into
lexforms. However, fewer indexes have to be checked
per perform than per lexform, so decoding time for
performs is somewhat shorter than for lexforms.

Analogously to phase B above, we may transform
performs into conumbers (serial numbers of linearly
ordered performs) and indexes into ranks. For a word of
length k over an alphabet £ with |Z| = n, the number of
distinct performs is evidently C1^"1). which is the
number of ^-combinations with repetitions. Thus the
number of conumbers of performs is larger than the
number of conumbers of lexforms. The number of
indexes of words of length k with respect to performs,
however, is at most k\. This is less than the number of
indexes of lexforms, which was shown to be the number
Kk of C-permutations. In fact, it is easy to verify that
(e/2y > 2j{2nk) e1/12t for all k > 9. Hence by Stirling's
formula,

2 \ 2

The fact that k\ < Kk also for 2 <, k < 8 is seen from
Table 5.

The rank of an index with respect to a perform can be
computed in one of the following ways:

(1) There is a one-to-one correspondence between
permutations and their ranks based on the factorial
representation of integers (see e.g. Ref. 1, p. 20).
Algorithms realizing the transformations between per-
mutations and their ranks are described by Pleszcynski.9

TableS

Length of
word

(*)

1
2
3
4
5
6
7
8

. No. of bits needed for indexes of lexforms and performs

Perform

Number of

possible

indexes (Ar!)

1
2
6

24
120
720

5040
40320

Lexform

Number of
possible

Number of indexes (C-
bits needed permutations)

1
1
3
5
7

10
13
16

1
3

13
75

541
4683

47293
545835

Number of
bits needed

1
2
4
7

10
13
16
20

Difference in
number of bits
needed

0
1
1
2
3
3
3
4
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(2) An ordered table of permutations can be consulted
(up to size k = 8, say). The order of the table should be
such that the j \ permutations of the first j symbols are
generated before the (j + l)th symbol is moved, so that
indexes of different lengths can use the same permutation
table. Three algorithms with this property are compared
by Roy.10 (Two of them are the well-known algorithms
of Ord-Smith11 for generation of permutations in lexico-
graphic and pseudo-lexicographic order. The third is due
to Wells.'2) An algorithm for permutation generation on
vector processors with this property is given in Ref. 13.

To summarize, the use of performs yields less compres-
sion but gives slightly better decoding times than the use
of lexforms.

are repeated, it seemed likely that the transformation
from dictionary words to lexforms would not increase the
entropy by much. This assumption was tested for the
Responsa and NTIS dictionaries by computing the
frequency of the different letters. The results are
summarized in Table 7, which shows the entropy increase
does not exceed 1.3%.

Table 7. Entropy of original dictionaries and
lexforms

Entropy Responsa NTIS

Original dictionary 4.274 4.271
Lexforms 4.330 4.314

4. EXPERIMENTS

In this section we give some results obtained by applying
the method to the Responsa and NTIS dictionaries. We
end with brief remarks on the decoding speed.

Phase A

Recall that in phase A every dictionary word is
transformed into a lexform and a corresponding index.
During this process, identical characters are deleted.
Table 6 summarizes the data of the dictionaries used for
the experiments. Note that about half the words contain
equal characters, and the number of equal characters is
about 11% of the total number of characters.

Let/?, be the probability of appearance of letter i in the
dictionary(l < i <n = |£|). The'amountof information'
in the dictionary using the entropy measure is H =

Since only about 11% of the characters

Table 6. Database overview
Responsa NTIS

Total number of words (all word
lengths) 436490 56989

Total number of characters (all word
lengths) 2656 217 443672

Number of words (word lengths 3-8) 416 661 35176
Number of characters (lengths 3-8) 2471545 210875
Number of words without equal

characters (3-8) 212503 17046
Number of words with equal

characters (3-8) 204158 18130
Number of repeated characters (3-8) 265948 24404
Percentage of repeated characters

(3-8) 10.76 11.57

Table 8 exhibits some statistics on the lexforms. They
show that the file of lexforms occupies only about 20% of
the dictionary file of the Responsa; 56% for the NTIS
dictionary. Further, the number of distinct lexforms is
only about 20% of the number of distinct Responsa
dictionary words; 60% for the NTIS dictionary. In order
to find out whether these large differences are due to
language idiosyncracies or to dictionary sizes, phase A
was also run on a Hebrew dictionary of one of the
Responsa books containing d = 60 636 distinct words—
only just larger than the NTIS dictionary. It turned out
that the number of distinct lexforms was about 49% of d.
This result indicates that the efficiency is primarily a
function of the size of the dictionary, though the language
does have an effect. In particular, the compression
efficiency of the method increases markedly with diction-
ary size.

Table 8. Some statistics on lexforms

Total number of lexforms

Total number of lexform characters

Number of lexforms
Number of words

Number of lexform characters
Number of word characters

The result of applying front compression to lexforms
is shown in Table 9. It is assumed that a 4-bit string is
adjoined to every lexform of length 3-5 to denote the
length of the identical prefix; a 5-bit string for words of
length 6-8. It is seen that front compression yields a

Responsa

82 770

483451

19.86%

19.56%

NTIS

20892

118010

59.39%

55.96%

Table 9. Compression of lexforms by front compression

Responsa NTIS

256 32 |E| = 256

Number of bits Saving Number of bits Saving Number of bits Saving Number of bits Saving

Size of lexforms 2417 255 3867 608 590050 944080

Lexforms after front
compression 870 925 64.0% 1393480 64.0% 242085 59.0% 387336 59.0%
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Table 10. Some statistics on performs

Responsa NTIS

Total number of performs
Total number of characters
Number of performs
Number of words

Number of perform characters
Number of word characters

186 462
1175141

44.7%

47.5%

29 724
184960

84.5%

87.7%

relatively large saving. As stated earlier, however, it
disables use of hashing, thus slowing down decoding.
Table 10 is the analogue of Table 8 for performs. Note
that the savings are considerably smaller than for
lexforms.

Phase B

In phase B, lexforms are transformed into conumbers,
and indexes into ranks. The amount of additional savings
gained by this transformation depends on the size of the
alphabet S: recall that each letter is represented by
fig | S11 bits only. The results are shown in Table 11.

Overall

The overall savings gained by transforming dictionary
words into conumbers and ranks are exhibited in

into conumbers produces a file £ which occupies only
about 15% of the space required for the Responsa
dictionary; 40-45% of the NTIS dictionary. If the ranks
are kept in fast memory, only about 50% of the original
Responsa dictionary space is needed; about 80% of the
NTIS dictionary. More generally, the latter compression
figures hold if both the lexforms and the ranks are stored
on the same medium; either both in fast memory or both
on disk. If the lexforms are in fast memory and the ranks
on disk, we have to augment the ranks with another copy
of the lexforms. A similar remark applies to the next and
last compression results.

The results of applying phase A, replacing indexes by
ranks and using front compression on the lexforms and
on all words of length exceeding 8, are shown in Table
13. Note in particular that the 6-file in fast memory
occupies only 11% of the Responsa dictionary; 39% of
the NTIS dictionary. If the ranks are also stored in fast
memory, there is a saving of 48-63% for the Responsa
dictionary; 40-48% for the NTIS dictionary.

Table 14. Timing results

Time
(s)

for/W= 1000, M= 109;and/- = 8,A= 13 1.2 x 10"4s
(all four combinations require about same time)

Table 12. I t shows, in particul;ar, that tran:storming words

Table 11. Additional savings gained by applying phase B

Replacing lexforms |£| = 32
by conumbers |£| = 256

Replacing indexes by their ranks

Response

32.7%
18.6%

27.6%

NTIS

32.0%
18.2%

26.6%

A = 3;

Computing

by

(

m = '

V '

; )
I0 3 .
IO3i

; )

or/w = 109

o r m = 109

f r o m(7)
m-r+ l \ r )

4.3
1.2

I 3.8 x

x 10"5s
x10"4s

10"6s

Table 12. Savings achieved by phases A and B (word lengths 3-8)

Responsa NTIS

32 256

Original dictionary

Conumbers

Ranks

Total

Number of bits

12 357 725

1626514

5370160

6 996 674

Saving

86.8%

56.5%

43.4%

Number of bits

19 772 360

3149617

5370160

8519777

Saving

84.1%

72.8%

56.9%

Number of bits

1054375

401336

464086

865422

Saving

61.9%

56.0%

17.9%

Number of bits

1687000

771992

464086

1236078

Saving

54.2%

72.5%

26.7%

Table 13. Overall compression by transforming dictionary words into lexforms with front compression, and
indexes into ranks

Responsa NTIS

Lexforms and front
compression on lexforms

Ranks

Total

in = 32

Number of
characters

291648

1074032

1365680

Saving

89.0%

59.6%

48.6%

HI = 256

Number of
characters

291648

671270

962918

Saving

89.0%

74.7%

63.7%

HI = 32

Number of
characters

171961

92818

264779

Saving

61.2%

79.1%

40.3%

HI = 256

Number of
characters

171961

58011

229972

Saving

61.2%

86.9%

48.2%

3 4 2 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/336/377426 by guest on 20 August 2022



COMBINATORIAL COMPRESSION AND PARTITIONING OF LARGE DICTIONARIES

AcknowledgementsWe close with some timing data relevant to decoding.
The algorithms were written in PL/1 and run on an IBM
370/165 computer. Some programs to compute the basic
functions used in decoding such as f(r/e)(N/(2nr)M)1/rl,
(?) were run for timing purposes. Each program was run
106 times. The times given in Table 14 are the result of
dividing the total time by 106. The table indicates that
decoding is a fast process.
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