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Combinatorial Constructions of Low-Density

Parity-Check Codes for Iterative Decoding
Bane Vasic, Senior Member, IEEE, and Olgica Milenkovic, Member, IEEE

Abstract—This paper introduces several new combinatorial
constructions of low-density parity-check (LDPC) codes, in
contrast to the prevalent practice of using long, random-like
codes. The proposed codes are well structured, and unlike
random codes can lend themselves to a very low-complexity
implementation. Constructions of regular Gallager codes based
on cyclic difference families, cycle-invariant difference sets, and
affine 1-configurations are introduced. Several constructions of
difference families used for code design are presented, as well as
bounds on the minimal distance of the codes based on the concept
of a generalized Pasch configuration.

Index Terms—Cyclic difference families, iterative decoding, low-
density parity-check (LDPC) codes, Pasch configurations.

I. INTRODUCTION

A
FTER the discovery by MacKay and Neal [1] that

long Gallager codes [2] can achieve near-optimum

performance when used for transmission over white additive

Gaussian noise (AWGN) channels, it became a challenge to

construct codes that would come as close as possible to the

Shannon limit [3]. In the past few years, several low-density

parity-check (LDPC) codes were designed with performances

very close to this limit [4], [5]. Also, a significant insight

into iterative decoding was gained due to its interpretation in

terms of message passing and belief propagation in graphical

models [6], as described, among others, by Kschischang et

al. [7], [8], and McEliece et al. [9]. The graphical model

that provides a natural setting in which to describe message

passing was introduced by Tanner [10] and reintroduced by

Wiberg et al. [11]. Although these requirements related to error

performance are important, complexity issues tend to dominate

system architecture and design considerations, especially for

extremely high-speed applications such as magnetic recording

and optical communications. Iterative decoders proposed so

far have very high hardware complexity and are incapable of

operating at rates above 1 Gb/s, the speed of electronics in the

next generation of these channels. The high complexity of the

proposed schemes is a direct consequence of the fact that for

random codes a large amount of information is necessary to
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specify positions of the nonzero elements in a parity-check ma-

trix. In this paper, we introduce well-structured LDPC codes, a

concept opposed to the prevalent practice of using random-like

code constructions, with the exception of the results by Kou,

Lin, and Fossorier [12], [13], Tanner, Sridhara, and Fuja [14],

Rosenthal and Vontobel [15], and Johnson and Weller [16]. The

parity-check matrices of our codes are completely determined

by a small set of parameters, and can lend themselves to very

low complexity implementations.

Although bipartite graphs are quite useful for visualizing

message passing, they are not very convenient for code de-

sign. Several constructions presented in this paper are purely

combinatorial and based on balanced incomplete block designs

(BIBDs) [17], extensively studied in connection with a large

number of problems in applied mathematics and communica-

tion theory [18]. More specifically, our codes are constructed

from the incidence matrix of BIBDs [19]–[21],

where corresponds to the number of parity bits, and

corresponds to the column weight of the regular parity-check

matrix. The bipartite graphs of codes based on BIBDs have

girth six, which is acceptable in high speed–low complexity

applications where one cannot afford more than just a few

iterations (up to five); additionally, BIBD-based codes can be

designed to have very high rate ( ) and relatively short

length (less than 5000 bits). High rates are necessary to keep

down the equalization loss (an important issue in recording

channels), while short block lengths are required to maintain

compatibility with existing data formats and to provide for a

simpler system architecture [22]–[24].

In this paper we present three general code construction tech-

niques. The first is based on difference families and the addi-

tive group of integers , and it makes use of the Bose [25],

[26], Netto [27], and Buratti [28] difference families, leading to

BIBDs for which , where is a power of a prime.

This family of codes gives the best tradeoff between code rate

and code length. Unfortunately, there are not very many high-

rate, short-length codes in this class, especially for large values

of . We also introduce the notion of -fold cycle-invariant dif-

ference sets over (with ), and construct LDPC codes

by using circulant permutation matrices determined by such dif-

ference sets. Codes constructed by using this new class of dif-

ference sets have both minimum distance and girth at least six,

and exhibit excellent performance under iterative decoding. The

third code construction, based on affine -configurations (in-

teger lattices) is conceptually simple and produces a large family

of codes, at the expense of the code rate. The number of parity

bits of these codes is equal to , where is a prime and the



blocks are defined as lines of different slopes connecting points

of a integer lattice and the number of blocks is equal to .

Designs and codes are very closely connected combinato-

rial entities, since one can be used to construct the other. For

example, codewords of fixed weight in many codes, including

the Golay code and the class of quadratic residue codes, sup-

port designs (see, for example, [29] and [30]). On the other

hand, the incidence matrix of a design defines a nonlinear code

if the rows of the matrix are viewed as codewords [31]. De-

signs have also been successfully used for constructing LDPC

codes. A construction method for LDPC codes, based on Eu-

clidean and projective geometries (subclasses of BIBDs) was

recently proposed by Kou et al. [12], [13] (the last section of

[13] mentions block designs, but the authors did not developed

the idea in detail). Two other approaches for designing struc-

tured LDPC codes are a method based on using subgroups of the

multiplicative group of a prime field [14] and a method based

on Ramanujan graphs [15]. Recently, Johnson and Weller [16],

as well as Vasic [32], presented almost identical approaches to

the design of LDPC codes using combinatorial designs. The

ideas in [32] and [33] were further developed in the series of pa-

pers [34]–[37]. MacKay and Davey [38] also used Steiner sys-

tems (a subclass of BIBDs) to construct Gallager codes. The ap-

proach presented in this paper differs from the aforementioned

approaches in the sense that it is both conceptually simpler, and

as will be shown, gives much simpler construction algorithms.

The encoding complexity of our BIBD codes is extremely low

and is basically determined by the size of a cyclic difference

family upon which a block design is based, or by the “ver-

tical” dimension of the lattice in the case of lattice construction.

We will also give the bounds on the minimum distance of the

BIBD codes. Bounds on the minimal distance of regular Gal-

lager codes with column weight three were first discussed by

MacKay in [4]. Here, we present tighter bounds for this case, as

well as new bounds for the case . Our bounds are derived

using simple combinatorial arguments, and are solely a function

of the parity-check matrix column weight. Tanner’s bounds on

the minimum distance based on the eigenvalues of the product

of the adjacency matrix of the code graph and its transpose [39]

can be shown to be trivial for the codes presented in this paper.

The outline of the paper is as follows. Section II introduces

BIBDs and describes their relation to bipartite graphs and

parity-check matrices of regular Gallager codes. Section III

describes a code-design method involving sys-

tems (Steiner triple systems), derived from cyclic difference

families, and presents bounds on the minimum distance of the

codes, derived by using the concept of a Pasch configuration.

Section IV presents three constructions of cyclic difference

families for , , and , and gives a list of known infinite

families. Section V contains the description of several new

construction techniques for designs that can be used to derive

high-rate LDPC codes. Additionally, this section includes

the description of a code construction based on circulant

permutation matrices and a novel class of combinatorial objects

termed cycle-invariant difference sets (CIDSs). The description

of another novel BIBD construction based on integer lattices

is given in Section VI, while Section VII contains the results

of computer simulations. Concluding remarks are presented in

Section VIII.

II. BALANCED INCOMPLETE BLOCK DESIGNS AND THEIR

EQUIVALENCE WITH BIPARTITE GRAPHS

In this section, we introduce the definitions and the notation

used throughout the paper. A BIBD with parameters is

an ordered pair ( ), where is a -element set and is a

collection of -subsets1 of , called blocks, such that every el-

ement of is contained in exactly blocks and every -subset

of is contained in exactly blocks. Notice that , so

that the parameter is uniquely determined by the remaining pa-

rameters of the design. A design for which every block contains

the same number of points, and every point is contained in

the same number of blocks is called a tactical configuration.

Hence, BIBDs are tactical configurations. The notation BIBD

will henceforth be used to specify a BIBD on points,

with block size , and index . A BIBD with block size is

called a Steiner triple system (henceforth, STS). A BIBD is re-

solvable if there exists a partition of its block set into parallel

classes, each of which partitions the set . Resolvable STS with

index are called Kirkman systems [40]. These combina-

torial objects have been intensively studied in the combinato-

rial literature, and some construction methods for them are de-

scribed in [19], [20], [41]. Besides resolvable STSs, we will also

use –configurations for LDPC code design. A –configuration

is an incidence structure of points and blocks such that each

block contains points, each point is incident with blocks, and

two different points are contained in at most blocks.

Definition 2.1: The point-block incidence matrix of a

design is a matrix , in which if the

th element of occurs in the th block of , and

otherwise. The block-point matrix is the transpose of the

point-block incidence matrix.

Example 2.1: The collection

of blocks , , ,

, , , and

is a BIBD system or an STS with

and . The point-block incidence matrix is of the form

If , and hence , the BIBD is symmetric, and is for

equivalent to a finite projective plane [42].

If one thinks of points as parity-check equations and of blocks

as bits of a linear block code, then defines a parity-check

matrix of an LDPC code [2]. The column weight of is ,

1The standard notation for the subset size is k, but we will use c instead; in
this way, we will avoid the subset size being confused with the dimension of the
code, typically denoted by k.



the row weight is , and the code rate is ,

where the rank is evaluated over the field GF . Since the rank

of is usually quite hard to determine, one can bound the rate

of an LDPC code based on a design as follows:

(1)

It should be noticed that the bound given by (1) is generally

loose. For example, for the case of codes constructed from pro-

jective planes, the bound is trivially equal to zero, while the ac-

tual rate of the codes is quite high (see, e.g., [12], [13]). There-

fore, for a given designed code rate, many BIBD codes will have

a larger dimension than predicted by (1).

Remark 2.1: A more precise characterization of the rank

(and “ -rank”) of the incidence matrix of -designs is given by

Hamada [43].

If every -element subset of is contained in exactly

blocks, the underlying design is known as a -design. In this

paper, we will restrict our attention to -designs only; more

specifically, to -designs with index . We will henceforth

refer to them just as BIBDs. The constraint implies that

no more than one block contains the same pair of points, or

equivalently, that no pair of columns of the parity-check matrix

contains two ones at the same positions.

From the lower bound on the code length for a given code

rate for codes based on the BIBD systems one can

see that if the required code rate is higher than (which is

typically the rate of interest in recording and optical communi-

cations channels), it is impossible to construct codes shorter than

approximately 500 bits. Issues regarding the existence and the

number of BIBD families for a given set of parameters are ad-

dressed in Section V. The construction of maximum-rate BIBD

codes with is trivial and reduces to finding , the com-

plete graph [42].

To visualize the decoding algorithm for LDPC codes, the

parity-check matrix is represented as a bipartite graph with two

types of vertices [8]–[10]. The first subset of vertices is

comprised of code bits, and the second subset of vertices is com-

prised of parity-check equations . An edge between a bit and

an equation exists if the bit is involved in the check. Translated to

the terminology of block designs, the two sets of vertices corre-

spond to and , respectively, and an edge between and

exists if and only if . Hence, the parity-check

matrix of the LDPC code is the block-point incidence matrix

.

Example 2.2: The bipartite graph representation of the

Steiner system whose incidence matrix is given in

Example 2.1 is shown in Fig. 1.

In order to have good error-control characteristics, it is desir-

able to have each bit “checked” by as many equations as pos-

sible, but due to the iterative character of the decoding algorithm

it is also important that the bipartite graph does not contain short

cycles. In other words, the girth of the graph (i.e., the length of

the shortest cycle) must be large. The girth constraint is related

Fig. 1. The bipartite graph representation of the Steiner (7; 3; 1) system.

to the constraint that every -element subset of is contained

in as few blocks as possible. On the other hand, check nodes

should not have too large a degree in order to allow for efficient

iterative decoding. These two requirements are contradictory,

and the tradeoff is especially difficult when one is interested in

constructing codes with short length and high rate.

Remark 2.2: The constraint imposed on BIBDs im-

plies that there are no cycles of length four in the bipartite graph

of the code.

III. CODE DESIGN BASED ON DIFFERENCE FAMILIES

As pointed out in Section III, BIBDs offer a combinatorial

tool for designing codes without short cycles. In this section,

we present several simple construction of STSs using difference

families of Abelian groups.

Definition 3.1: Let be a finite additive Abelian group of

order . Then -element subsets of , ,

, form a difference family (henceforth, DF)

if every nonzero element of can be represented in exactly

ways as a difference of two elements within the same member

of the family. In other words, every nonzero element of oc-

curs times among the differences , ,

. The sets are called base blocks. If is iso-

morphic to , the additive group of integers modulo , then the

corresponding DF is called a cyclic difference family

(henceforth, CDF).

Example 3.1: The block is a base block of

a CDF. To illustrate this, we create an array

, of differences

As can be seen, each nonzero element of occurs exactly

once in .

Example 3.2: The blocks and

are the base block of a CDF based on the group

, since the nonzero elements of the difference arrays



TABLE I
THE ORBITS OF BASE BLOCKS f0; 1; 4g AND f0;2; 7g IN A (13; 3; 1) BIBD

formed according to ( and ),

are all different.

Definition 3.2: If is a group that acts on a set , then the

set , , is called the orbit of . For the

case that is a cyclic group of order and , where

is the set of all base blocks of a CDF, a BIBD can be defined as

the union of the orbits of . If the number of base blocks is ,

the number of blocks in a BIBD is .

Generally, given a CDF with base blocks

, , the point-block inci-

dence matrix of the BIBD can be written in the form

(2)

where each submatrix is of dimension . The orbits of the

base block are represented by the positions of nonzero ele-

ments in the submatrix .

Example 3.3: The blocks and

are the base block of a CDF of the group . The

orbits of and are given in Table I.

The parity-check matrix corresponding to the BIBD

in Table I is given by

and contains only columns of weight three. The CDF codes

described above have a quasi-cyclic structure similar in form

to the self-orthogonal quasi-cyclic structure of Townsend and

Weldon’s [44] codes and Weldon’s difference set codes [45].

Each orbit of a base block in the design corresponds to one

circulant submatrix in the quasi-cyclic parity-check matrix of

the code. Hence, the self-orthogonal codes of Townsend and

Weldon represent a special class of LDPC codes.

The codes based on are of special interest because they

are conceptually very simple and have a structure that can be

easily implemented in hardware. Notice also that for a given

constraint the CDF-based construction maximizes the

code rate (see (1)), because for a given the number of blocks

is maximized. The code rate is independent from the choice of

the representation of the underlying group as long as the base

blocks belong to a CDF. Other choices for the groups may lead

to similar or better codes, but they are not considered in this

paper.

The rest of this section is devoted to establishing bounds on

the minimum distance of BIBD-based codes constructed

from CDFs. The minimum distance determines code per-

formances under maximum-likelihood (ML) decoding at high

signal-to-noise ratios (SNRs), the region where most of the prac-

tical systems typically operate. Additionally, small minimum

distance may result in undesirable high error-floors. Bounds for

of Gallager codes with column weight were first de-

rived in [38]. Another, more general technique for establishing

a lower bound for is due to Tanner [39]. It pertains to an

arbitrary linear code with parity-check matrix , represented

by a bipartite graph, and is based on combinatorial optimiza-

tion. The calculation of the bound involves finding the second

largest eigenvalue of the matrix . For the codes based on

CDF, these eigenvalues can be found in closed form, but they

result in trivial bounds (see Lemma 3.1). Here, we present tight

bounds for and also establish bounds for . These

combinatorial bounds are derived using simple counting argu-

ments, and are solely function on the column weight of .

Lemma 3.1: Let be a parity-check matrix of the form

given by (2). Then the largest eigenvalue of is equal to

, while all the remaining eigenvalues are equal

to . In the last expression, denotes the number of

times each point occurs in different blocks belonging to a given

, i.e., for , .

Proof: The proof is given in Appendix A.

Based on Lemma 3.1, one can use Tanner’s lower bounds

[39] to find bounds on the minimum distance of the CDF codes.

Tanner’s bounds are expressed in terms of the second largest



eigenvalue of (see also [61]), and for the case of interest

are of the form

The first bound is trivial for , i.e., for . The

second bound is trivial for , i.e., for

.

A general, nontrivial lower bound on for codes based

on BIBDs with block size can be easily obtained by using

two different arguments. The first one is based on the idea of

majority logic decoding [31]. A code is one-step majority logic

decodable if for every bit there exists a set of parity-check

equations that are orthogonal on that bit. In this context, the or-

thogonality condition imposes the requirement that each of the

check equations include the bit under consideration, and that no

other bit is checked more than once by any of the equations. If a

code is one-step majority decodable, then the minimum distance

of the code is at least . From the described construction

of the LDPC codes based on BIBDs, it follows that and

that therefore . The same result can be obtained

by considering the Tanner graph of the code as follows. Start

by selecting a bit node and assume that its value is one. It has

check nodes at distance one and bit nodes at distance

two. Since , the girth of the code graph is at least six, and

therefore all bit nodes at distance two are distinct. However, to

satisfy the parity-check node equations at distance one, at least

of the bit nodes at distance two must have the value one. There-

fore, the minimum weight of a codeword has to be at least .

In order to improve the previously derived lower bound on

, we need to define a generalized Pasch configuration.

Definition 3.3: An configuration in a D is a

subset of blocks of , whose union is an -element subset

of . A Pasch configuration or a quadrilateral is a

configuration in a STS.

Example 3.4: Consider an STS and a subset of six points,

. Then the set of blocks

forms a Pasch configuration.

Using the definition of a Pasch configuration for , we

can now define a generalized Pasch configuration as a

configuration of a BIBD. A generalized Pasch

configuration can always be visualized by creating a
array of points , as shown 
at the bottom of the page. It is easy to see that no pair of points 
occurs more than once in the same row. Hence, the rows of 
represent blocks of a configuration.

Example 3.5: A generalized Pasch configuration of a BIBD

with and can be represented by the rows of the

matrix shown as follows:

. . .
. . .

Lemma 3.2: The rows of define the smallest configura-

tion of a BIBD in which each point occurs exactly twice.

Proof: The proof is given in Appendix B.

Remark 3.2: The existence of a Pasch configuration in an

STS is directly related to the minimum distance of the derived

LDPC code. If an STS has at least one Pasch configuration, each

point occurs exactly twice in the configuration, and therefore

there exist four linearly dependent columns in . This implies

that . If the triple system is Pasch-free, then the min-

imum distance of the corresponding LDPC code is equal to six.

For example, the Bose construction to be described in Section V

produces LDPC codes with minimum distance . The

CDFs following from the first construction by Netto result in

codes that have , while the ones obtained from the

second construction by Netto result in codes with (see

Section IV). This result can be extended to arbitrary designs. If

a CDF and the underlying design contain a generalized

Pasch configuration, then , and if the underlying

design does not contain a generalized Pasch configuration then

.

Example 3.6: For the example in Table I, ,

, and

and each of the points occurs twice in

this group of blocks. Hence, the minimum distance of the code

constructed from this CDF is . Furthermore, since the



TABLE II
THE ONLY 2-(15; 3; 1) PASCH-FREE DESIGN

sum of all rows of the parity-check matrix is the all-one code-

word, the corresponding LDPC code is even (i.e., all codewords

of the code have even weight). Hence, since no two columns

are identical, the minimum distance of the code also satisfies

.

Remark 3.3: Pash-free STSs are extremely rare. In other

words, most known STSs will result in codes with .

In [19], Colbourn lists 80 nonisomorphic - designs,

only one of which is Pasch-free (see Table II) (this particular

design is also described in [19]). In their recent work, Ling

et al. [46] present a construction techniques for anti-Pasch

STSs. However, these designs do not necessarily lead to codes

with quasi-cyclic structure. The existing connection between

Pasch configurations in designs and bounds on the minimum

distance calls for investigating the effects of other types

of configurations on and the girth of a bipartite graph. For

example, Beezer [47] defines the girth of a -design through the

concept of Erdös configurations, a generalization of the Pasch

configurations.

On the other hand, one can easily establish the following

upper bound for the minimum distance of a code constructed

from a CDF BIBD.

Theorem 3.1: For a CDF BIBD code with column weight ,

one has .

Proof: The proof is given in Appendix C.

IV. CONSTRUCTION OF CDFS BY NETTO AND BURATTI

It is straightforward to construct a BIBD design once the CDF

is known. However, finding the CDF is a much more complex

problem and it is solved only for certain values of , , and .

In this section, we will present several constructions for CDFs.

One of the first known constructions due to Bose [25], [26] is

described next.

The idea for the construction is based on the use of combina-

torial objects known as mixed difference sets. Mixed difference

sets are formed by taking elements from multiple copies of the

additive group (say, ) of the elements of the design, distin-

guished by different subscripts [50]. One can show that the sets

where the elements are taken modulo , and the

subscripts are taken modulo three, form a DF.

Most constructions of CDFs that followed Bose’s work are

based on the use of finite fields. The following constructions

belong to this category.

TABLE III
SOME SMALL PRIME (v; 3; 1) CYCLIC DIFFERENCE FAMILIES

A. The First Construction by Netto

This construction is applicable for and a power of

a prime of the form [27]. For a power of a

prime, is to be replaced by GF , the Galois field of order

. Let be the elements of the multiplicative group of the field

GF . Let be a primitive element of the field, and hence a

generator of the multiplicative group [48]. Write as

, , and for , let be the group of th powers

in GF , and let be a coset of th powers of . Then the

set defines an STS difference family with

parameters [27] (see also [49]). The base blocks

are typically given in the form

rather than as .

Example 4.1: As an illustration, the difference families for

some small primes are given in Table III.

An alternative combinatorial method for constructing a CDF

with parameters , that can also be extended to the

case, was proposed by Rosa in [41]. Furthermore,

in [45], Weldon presents a list of constructions for CDFs with

the same set of parameters as described above, as well as a list

of the resulting codes of rate .

B. The Second Construction by Netto

This construction can be used to create CDFs when the

number of points is a power of a prime and

[27]. As in the first construction, let be a generator of the

multiplicative group of the field GF and let be the group

of th powers in GF . Then the set

defines base blocks that are also called a Netto triple system.

One more design construction technique is known as Netto’s

construction. It is not directly based on CDFs, but is strongly

related to the previously described constructions.

C. The Third Construction by Netto

Let , where is a prime of the form

. Let and be two sixth roots of unity in GF . It is

straightforward to verify that and that

and , and that neither and are

perfect squares in GF . Define a relation as follows:

holds if and only if is a nonzero square in GF .

Then exactly one of the relations is true: or . Define

a function as , for all pairs

such that holds. A Netto system [27] obtained by utilizing

the function is an STS with points and blocks GF ,

, repsectively.

Netto systems are of interest because of the following

property.



TABLE IV
BASE BLOCKS PARAMETER FOR BURATTI CDF

Theorem 4.1: Netto triple systems for a power of a prime

of the form and the third Netto triple system

described above are Pasch-free.

Proof: The proofs can be found in [19] (see also [51]).

Consequence: The Netto triple systems described in

Theorem 4.1 achieve the upper bound on minimum distance,

i.e., .

Example 4.2: The base blocks of the Netto triple system dif-

ference family for , are: ,

, , ,

, , and . The re-

sulting code is quasi-cyclic, has , length ,

and .

D. The Construction by Buratti ( and )

Buratti’s method [28] gives CDFs with points and block

size , provided that is a prime of the form .

The CDF is a set , where base blocks have

the form , and denotes a primitive element in

GF . The numbers GF for several different values of

are given in Table IV. Similarly, for , the CDF is given

by , where , and

GF .

If a difference set family with parameters exists, it

is possible to construct difference set families with parameters

, where , and , by

using the following simple augmentation method due to Col-

bourn and Colbourn [51]: For each block ,

first subtract the smallest element from all elements of the set to

obtain . Then form the difference sets

with addition performed modulo .

V. OTHER RELATED CONSTRUCTION TECHNIQUES

A. Finite Euclidean and Finite Projective Geometries

The existence and construction of short designs

is an active area of research in combinatorial mathematics (the

handbook [19] edited by Colbourn and Dinitz is an excellent

reference). [19, Table 2.3] gives a summary of known results

concerning the existence of short designs. However, very

often the construction of these designs is somewhat heuristic

or works only for a given block size. In many cases, such

constructionsgive a very small set of designs with parameters

of practical interests. An important exception is the subclass of

BIBDs called infinite families [19]. Infinite families of BIBDS

include projective geometries, affine geometries, unitals,

Denniston designs, as well as certain geometric equivalents of

-designs [19]. The known infinite families of BIBDs are listed

in Table V [19], [51]. For designs with a number of points

that is a power of a prime, these families are known as finite

Euclidean and finite projective geometries (for more details the

reader is referred to [51]).

The first class of finite-geometry codes is comprised of codes

with parity-check matrix defined as the point-line incidence ma-

trix of finite geometries, such as the LDPC codes described by

Kou, Lin, and Fossorier [13]. The second class of codes is ob-

tained from algebraic curves in a projective plane. In a projec-

tive plane, an algebraic curve is a collection of points that sat-

isfy a fixed homogeneous algebraic equation of some degree

, i.e., . An algebraic curve is irreducible if

is an irreducible polynomial over the ground field

GF . A line meets the curve in at most points. A conic is an

algebraic curve of degree two, or more specifically

A conic is irreducible if is irreducible over the

ground field GF . For , an -arc in PG is a

set of points such that no points lie on a line. A -arc

in PG is a set of points such that no three points lie on the

same line. A -arc is complete if it is not properly contained in

any -arc. A line of the plane is said to be a secant, a tan-

gent, or an exterior line with respect to the oval, if the number

of common points of the line with the oval is 2,1, or 0, respec-

tively. For a given value of , -arcs of PG odd are

called ovals, and -arcs of PG even together with

a nucleus point (a point for which every line incident to it is a

tangent of the oval) are called hyperovals.

In PG , an oval design is the incidence structure with

points comprised from the lines exterior to the oval and blocks

specified by the points not on the oval. A block contains a point

if and only if the corresponding exterior point lies on the exte-

rior line. An oval design is a resolvable

Steiner -system, where . In the simulation result sec-

tion, we will present the performance of the codes on a hyper-

oval constructed from a nondegenerate conic specified by the

equation . Similar results were presented in [55].

Unitals or Hermitian arcs are defined as follows. In PG ,

a square, a Hermitian arc is a -arc. The

arc is constructed from an algebraic curve of order such

that . The arc intersects any line of

the plane at or points. A unital constructed from an

algebraic curve of order is a

Steiner system. A code based on this unital is described in terms

of the incidence matrix of the corresponding Steiner system. For

a power of , the rank of the incidence matrix is , and

for a power of an odd prime, the rank of the incidence matrix

is . Such designs are treated in great detail

by Assmus and Key and in [56] and in [57].

As it can be seen from Table V, the most known infinite

families of designs do not offer sufficient flexibility in choosing

the code length and column weight, especially for the high-rate

and/or moderate codeword length cases. In this region, the
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KNOWN INFINITE FAMILIES OF 2 � (v; c; 1) DESIGNS

column weight must be small and one solution is to use a

special class of short, cleverly constructed CDF as in [28].

Notice that in [13] different modifications (including code

shortening, for example) of Euclidean and projective geometry

codes are given so as to get a larger set of code parameters.

B. The Latin Square Construction by Bose [59]

In order to describe this construction method for STSs due

to Bose, we will first define a special class of Latin squares. A

Latin square of order is an array such that each row

and column contains the symbols in exactly once.

A Latin square is idempotent if cell contains symbol ,

, and commutative if cells and contain the

same symbol, . Let SQ be an idempotent and commu-

tative Latin square of order , let

and . Define a collection of triples , so that

contains

• all triples of the form , where

;

• all triples of the form

where , and denotes the entry of

the Latin square SQ in row and column .

Then is an STS of order . If the Latin square

SQ is chosen in such a way that , and that

, then the STS resulting from

the Bose construction is Pasch-free. This follows from the fact

that under the given conditions there are no Latin subsquares of

order two in SQ and cannot hold for distinct

symbols . For more details, see [20].

Example 5.1: Consider the following idempotent, commuta-

tive Latin square of order :

This Latin square contains a sub-Latin square of order two, spec-

ified by the coordinates , containing

the elements . The four triples

derived by fixing the last coordinate of the first two pairs and

choosing the first elements of the first two pairs in each block

so as to include the points of the sub-Latin square of order two,

form a Pasch configuration.

Closely related to the construction due to Bose described

earlier is the Skolem construction [59]. This construction is also

based on Latin squares, and it produces STSs of order

In this case, the Latin squares of interest are the so-called

half-idempotent commutative squares of order . A square

of order is half-idempotent if the cells

contain the symbol . For more details about the

Skolem construction, the reader is referred to [59].

C. Circulant LDPC Codes With Permutation Blocks: New

Constructions

Based on the description of the Bose Latin square construc-

tion, it follows that the parity-check matrix of the corresponding

linear code has a block structure, where each block (except for

the set of blocks in the first column of blocks) is a permutation

matrix. Codes with such a structure are well known and have

been used in many applications. For example, in [39], Tanner

presented a class of codes of this type named Sparse Difference

Codes. The so-called array codes introduced by Blaum, Farrell,

and Tilborg [60], have parity-check matrices that are also com-

posed of powers of permutation matrices, and can be viewed as

LDPC codes [61]. Eleftheriou and Olcer [62] proposed this class

of LDPC codes for application in digital subscriber lines. More

recently, Kim et al. [63] presented a construction of families of

LDPC codes based on permutation matrices that have girth at

least eight.

We will present next a novel construction for a simple

family of LDPC codes using a similar idea. We will define the

parity-check matrix to be a block-circulant (cyclic) matrix

with blocks that are permutation matrices. The structure of

these codes is extremely simple and allows for finding simple

lower bounds for the girth, as well as the minimum distance.

The girth of all the constructed codes can be shown to be at least

six, while the minimum distance of a certain subclass of these

codes is at least six. The rate of these codes can have a large

range of values, and the family of codes produced in this way is

quite large. It is interesting to observe that for these codes it is

also possible to find the eigenvalues of either in closed

form, or asymptotically [64]. Unfortunately, the bounds on

minimum distance presented by Tanner in [39] can be shown to

be very loose for these codes and are not included in the paper.

Code Description: Let be an block-circulant

matrix with permutation blocks, i.e., block-circulant with blocks



that are different powers of the basic permutation matrix of

order , i.e.,

(5.1)

where are nonnegative integers and

is an circular permutation matrix.

The row weight of the code is , while the column weight is

. The code generated by of the form given by (5.1) has

to be even (i.e., all codewords of the code have to have even

Hamming weight), because the sum of all codewords over one

row-block is the all-one codeword. We will describe next several

construction techniques for the exponent set that

result in a Tanner graph free of cycles of length four.

Lemma 5.1: Let , and

, where . Then the

LDPC code specified by of the form given by (5.1) has girth

at least six and for girth at least eight. Furthermore,

no two columns of its parity-check matrix are identical, and

no three columns are linearly dependent. Hence, the minimum

distance of the code is at least four.

Proof: The proof is given in Appendix D.

Example 5.2: Let , , and ; then the

parity-check matrix is of the form

It can be easily shown that the generator matrix for this code is

of the form

and is also a block-circulant matrix with permutation blocks.

This special form of the generator matrix can make the encoding

procedure very fast.

Codes described by a parity-check matrix with regular

column weight equal to two are also known as circuit codes

[65]. As pointed out in [66], LDPC codes with column weight

two can outperform LDPC codes with larger column weight in

magnetic recording applications, despite the fact that the min-

imum distance of these codes can increase only logarithmically

with the block length. This is due to two reasons: first, these

codes have girth at least eight; second, in magnetic recoding

applications, LDPC codes are inner codes for Reed–Solomon

(RS) outer codes, and the block-error statistics of LDPC codes

with column weight two is a good match for the RS decoder.

The permutation-matrix codes described above can be easily

shown to have minimum distance . For our example,

it suffices to observe that columns 2, 14, 25, and 39 are linearly

dependent. Because of the symmetry of the construction, codes

with all possible and values will have the same minimum 
distance.

In order to construct codes with minimum distance higher 
than four, the exponents of the permutation matrices have to be 
chosen with more care.

Definition 5.1: Let be an ordered difference set over ,

and let denote the operator that cyclically shifts a sequence

positions to the right. If for the ordered sets

are all different from each other (and

from ), and are themselves ordered difference sets, then we say

that is an -fold cycle invariant difference set over .

Example 5.3: Consider and the ordered difference set

. Then

which is easily seen to be a difference set. Since

is a -fold cycle invariant difference set over . On

the other hand, the difference set over gives rise

to three different ordered sets, namel,y

, none of which is a differ-

ence set. Hence, is a -fold cycle invariant difference

set (classical difference set) over .

The requirement for to be a difference set can be relaxed. It

suffices for to be an incomplete difference set, i.e., a set such

that the differences of its elements are all different, but do not

necessarily cover every possible value. From now on we will

refer to incomplete difference sets as difference sets.

One of the first constructions of classical difference sets is

due to Bose [25], [26]. For this construction, the parameters of

the difference family are , where is an odd prime.

Let be a primitive element in the field GF . Define the

following set of integers:

GF

Clearly, consists of elements. It is also straightforward to

show that is a difference set modulo , with . A

similar construction method, which predates the Bose construc-

tion, is due to Singer [58].

We will present next a construction for the new class of com-

binatorial object described in Definition 5.1; the construction

can be viewed as an extension of the result due to Bose.

Theorem 5.1: Let be a primitive element of the finite field

GF with an odd prime. Define a set of integers by

GF

Then the set forms a -fold cycle-invariant difference set

.

Proof: The proof is given in Appendix E.

Example 5.4: Let and . The set

constructed by using the approach by Bose is

clearly a difference set, since its differences modulo are

. But the set is not two-fold cycle invariant,

since , and for the last set

. On the other hand, the set



constructed according to Theorem 5.1 with and primitive

polynomial , can be easily checked to be a

CIDS of order .

Lemma 5.4: Let , , be elements of an -fold

cycle invariant difference set. Then, the LDPC code specified

by of the form given by (3) has girth at least six.

Proof: The proof follows along the same lines as the proof

of Lemma 5.1.

Theorem 5.2: Let , , be elements of an -fold

cycle-invariant difference set, with . Then, the LDPC

code specified by of the form given by (5.1) has minimum

distance at least six.

Proof: The proof is given in Appendix F.

Example 5.5: Consider the two blocks from Example 3.4,

and , now viewed over rather than .

The first difference set is two-fold cycle-invariant in the general

setting, since ,

and the differences generated by are

, so that each element in appears at most

once. Hence, an LDPC code specified by the parity-check

matrix

where the dimension of is eleven, has minimum distance at

least six and girth at least eight.

Similarly, if we take the two blocks in the cyclic difference

family as exponents for the permutation matrices of two dif-

ferent rows of blocks, we obtain

Notice that is not any longer block circulant, but the set

generates a set of differ-

ences such that each element of appears at

most once. Hence, the underlying code has minimum distance

at least six and girth at least eight.

VI. LATTICE CONSTRUCTION OF LDPC CODES

In this section, we address the problem of constructing LDPC

codes of large block lengths. As shown in the previous sections,

the Buratti-type CDFs and the projective geometry approach

offer a quite limited set of parameters and therefore small fam-

ilies of codes. In this section, we give a novel construction of

-configurations, in which every -tuple is contained in at most

blocks. The blocks of these -configurations are lines

connecting points of a rectangular integer lattice. The construc-

tion problem can be seen as specifying a subset of points and a

subset of lines that will result in a set of desired characteristics

of the code. In this way, one can trade the code rate and number

of blocks for the simplicity of construction and for the flexibility

of choosing the design parameters. Also, as will be shown sub-

sequently, -configurations greatly simplify the construction of

codes with large girth.

Fig. 2. An example of the rectangular grid for q = 5 and c = 3.

A. Codes on a Rectangular Subset of an Integer Lattice

Consider a rectangular subset of the integer lattice defined

by

where is a prime. Let be a one-to-one

mapping from the set to the point set . An example of such

a mapping is the simple bi-linear map .

The numbers are referred to as point labels.

Example 6.1: Fig. 2 depicts a rectangular subset of the in-

teger lattice with and .

A set of points is referred to as a line of slope

, starting at the point , if it contains the points

, where . There are

different classes of parallel lines in this geometry.

Example 6.2: In Example 6.1, the lines of slope are the

triples and so forth. We assume

that the point labels are periodic in the vertical dimension, and

therefore the line containing the points also has

slope . Examples of lines with slope two are and

. Notice that lines of infinite slope are not included in

the -configuration.

Lemma 6.1: The set of point labels of lines with slopes

forms the blocks of a -configuration.

Proof: The proof is given in Appendix G.

Remark 6.1: In the lattice -configuration, the block size is

, the number of points is , the number of blocks is .

Lemma 6.2: A lattice -configuration is Pasch-

free.



Proof: The proof is given in Appendix H.

More generally, we have the following result.

Theorem 6.1: A lattice -configuration with , for

even or , does not contain a generalized Pasch

configuration.

Proof: The proof is given in Appendix I.

Fig. 3 shows the rate–length characteristics of lattice designs

for different line (block) sizes . The solid lines correspond to

the designs with maximal number of blocks. As can bee seen,

lattice families have a rate loss compared to theoretically op-

timal designs. However, this loss becomes negligible for larger

and for longer codes.

The abundance of lattice designs compared to infinite family

BIBDs can be easily observed from Fig. 4. White markers

denote codes resulting from the known infinite family BIBDs,

while dark markers correspond to LDPC codes constructed

using lattice designs.

Remark 6.3: The lattice construction can be extended to

nonprime vertical dimensions , provided that the slopes are

co-prime to .

Fig. 5 shows the growth of the required code length with

an upper bound on the minimum distance (of the form ) as

parameter.

Example 6.3: Table VI illustrates a -configuration based on

a lattice shown in Fig. 2.

Notice that there are parallel classes of blocks (lines),

each corresponding to a different slope. Denote the first

block (the one incident with the point ) in the class as

. In our example ,

, , , and

.

The corresponding parity-check matrix is

Notice that in general, the parity-check matrix of a lattice codes

can be written in the form

Fig. 3. The rate–length characteristics of lattice designs.

Fig. 4. Comparison of finite geometries and lattice design families.

where each submatrix is a circulant permutation matrix.

The power of which determines (i.e., the position of the

bit the first column of ) can be found by using ,

the th element of the first base block of the class of blocks

corresponding to the th slope, and is equal to

.

Remark 6.4: Notice a similarity of the structure of the above

parity-check matrix with that obtained in [63], [67]. The codes

denoted by LU in [63] have a square parity-check matrix,

while our codes have rectangular matrices of parity checks. This

is not surprising because it was shown in [63] that LU and

LU are equivalent to Euclidean geometry code [13], while

a square lattice design (which includes the lines with infinity

slope) is equivalent to the Euclidean plane.



TABLE VI
AN EXAMPLE OF A LATTICE 1-CONFIGURATION

Fig. 5. The rate–length curve for lattice designs with the minimum distance as
a parameter.

Remark 6.5: The ensemble of LDPC codes described

in terms of parity-check matrices constructed from random

permutation matrices has a well-defined asymptotic distance

distribution. Litsyn and Shevelev [68] showed that such an

ensemble (referred to as “Ensemble A”) has superior distance

distribution compared to other ensembles they considered in

[68], in the context of ML decoding.

B. Integer Lattice Codes With Large Girth

In this subsection, we will show that a Tanner graph with high

girth can be obtained by a judicious selection of sets of paral-

lellines included in an integer lattice -configuration. The re-

sulting parity-check matrix is also in the form of a block matrix

with permutation matrices. We will only discuss codes of girth

eight, although a generalization for higher girths is possible.

A lower bound on the minimum distance of LDPC codes with

girth and column weight is given by the following formula

due to Tanner [10]:

odd

even.

Although it still remains unclear whether increasing the girth

of a bipartite graph is the best way to improve code performance

under message-passing decoding, our simulation results indi-

cate that it is a valid approach, especially when the constraint

imposed on a number of iterations is not strict.

Recently, Rosenthal and Vontobel [15] constructed some

short codes and large girth, using ideas by Margulis [53],

including -regular Caley graphs of the special linear group

SL GF , and the projective general group PGL GF .

Kim et al. [63] gave another explicit construction of high-girth

LDPC codes using Lazebnik and Ustimenko’s [67] method for

developing regular graphs. The construction of designs with

high girths appears to be a very difficult problem in general

[47]. However, the designs based on rectangular integer lattices

allow a simple algorithm for finding a girth-eight subdesign.

Moreover, for , there is an interesting connection between

codes of girth eight and “arithmetically constrained” sequences

defined by Odlyzko and Stanley [69].

Denote by a resolvability class corresponding to the set

of lines of slope , and by a set of blocks of a subdesign

composed of resolvability classes corresponding to the slopes

from the set , i.e., . We are interested in

the following problem: find a set of slopes with maximum

possible cardinality such that specifies a set of blocks

that result in a design with girth eight.

Example 6.4: For a subset of an integer lattice shown in

Fig. 2 (with , ), it can be shown by inspection that the

maximal set of slopes leading to a code of girth eight is of car-

dinality two (e.g., ). The resulting parity-check

matrix is obtained by deleting columns of a parity-check matrix

of the original code corresponding to lines with slopes ,

and is of the form

where is of order . Due to the small size of the set ,

this matrix is useless for coding purposes and represents only

an illustration of the key idea.

Definition 6.1: Let be the set of all sequences of inte-

gers that do not contain a -term arithmetic progression. We

will refer to as the “earliest” sequence in if lexico-

graphically precedes all other sequences in . is of the form

, and is cataloged in [70] under number

M2353.

The sequence can be generated by the recurrence relation:

, and it has

the property that it contains all numbers that only have the digits

and in their ternary expansion [69].

Theorem 6.2: For an arbitrary integer and for , the

set of slopes resulting in codes with girth eight is of the

form , i.e., it is a subsequence of

whose elements are less than or equal to .

Proof: The proof is given in Appendix J.

VII. SIMULATION RESULTS

In this section, we present the bit-error rate (BER) perfor-

mance of various regular LDPC codes that were constructed ei-



Fig. 6. Performance of LDPC codes on combinatorial designs under message-passing decoding.

ther combinatorially or randomly. The LDPC codes were de-

coded iteratively by using the standard message-passing algo-

rithm. More details on the message-passing algorithm for bipar-

tite graphs can be found in [6], [7], [72]. The BER performance

of an LDPC code was estimated by running Monte Carlo sim-

ulations for at least 25 000 codewords and 15 message-passing

iterations. Hence, we were able to obtain BER as low as .

Figs. 6–9 show the BER performance of LDPC codes,

constructed using different combinatorial methods presented

in this paper, and random regular LDPC codes obtained from

Mackay’s online resource [73]. The rate of these codes vary

from to , and all the BER curves shown in Figs. 6–9

have been adjusted for their respective rate loss (i.e., the SNR

is determined from ). A legend in each figure gives

the following information in the respective order: method used

to construct the code, and a quadruple .

As can be observed from Fig. 6(a), codes from difference

families, due to Bose and Netto, exhibit an error floor at approx-

imately 5.75 dB, which is expected behavior. Fig. 6(b) shows

the BER performance comparison between difference family

codes and randomly constructed (regular and irregular) codes

of similar length and rate. At BER of , a loss of 0.5 and

0.9 dB with respect to regular/irregular code, respectively, can

be seen. In Fig. 7, a relatively short code from a projective plane

exhibits a very good BER performance. In Fig. 8, we consider

rate- codes on integer lattices for the following parameters:

1) , ; 2) , ; 3) , ;

4) , ; 5) , . In addition, we also con-

sider rate– CDF codes constructed using Buratti’s method

for and , and Wilson’s method

for . The BER curves of an integer lattice

code and a MacKay code [73] of similar parameters is given in

Fig. 8(b), demonstrating that short integer lattice codes have per-

formance comparable to random-like MacKay codes. The BER

performance of a girth-eight LDPC code with column weight

Fig. 7. Performance of LDPC codes on finite geometries.

four is the most impressive among other curves shown in Fig. 9.

This code exhibits a sharp fall and its BER reaches at ap-

proximately 3.25 dB. A BER curve of a regular MacKay code

in Fig. 9(a) is given as a reference point without any attempt to

shorten it to match the length and rate of the given structured

code. The comparison of girth-eight and random codes of the

same lengths and rates is shown in Fig. 9(b). Random codes are

constructed by Neil’s method [74], and are free of cycle-four.

It can be seen from Fig. 9(a) that girth-eight codes have almost

identical performance with randomly constructed codes.

It is important to note that in simulations, that were run to

estimate the BER performance of the girth-eight



Fig. 8. Performance of integer lattice codes.

Fig. 9. Performance of girth-eight integer lattice codes.

code, 100 message-passing iterations were performed before

making the hard decision on a received word. An error floor

was observed if only 15 iterations were performed in the above

simulations.

As already described in the Introduction, due to stringent

delay constraints some applications do not allow for more than

several (5 to 6) iterations of message passing. Fig. 10 shows the

BER performance of two girth-eight integer lattice codes after

iterations, . It can be seen that a significant gain with

respect to the uncoded system is achieved only after five itera-

tions, but that with another 10 iterations a performance gain of

approximately 1 dB can be achieved.

Finally, the performance of several codes based on the con-

structions presented in Section V is shown in Figs. 11 and 12.

Fig. 11 shows the performance of the codes described in

Lemma 1, while Fig. 12(a) plots the performance of block-cir-

culant codes with exponents taken from the Bose difference set

over GF , , with , i.e.,



Fig. 10. Performance of girth-eight integer lattice codes with respect to the
number of iterations i.

Fig. 12(b) shows the performance of CIDS-based codes, with

the construction presented in Theorem 5.1 and .

VIII. CONCLUSION

In this paper, we introduced new combinatorial constructions

for a class of high-rate iteratively decodable codes based on

BIBD and -configurations. The resulting codes have

girth at least six. We also constructed balanced incomplete block

designs using Netto and Buratti cyclic difference families, as

well as novel affine geometry lattice configurations. We derived

tight bounds on a minimum distance of BIBD codes using the

concept of a Pasch configuration.

APPENDIX A

PROOF OF LEMMA 3.1

Observe first that

Based on a well-known result, which states that

for any point-block incidence matrix of a design

[20], it follows that for the STS of interest

where and are the identity matrix and the all-one matrix of

order . The determinant of can be easily found to be

of the form

This proves the claimed result. Q.E.D.

Fig. 11. Performance of codes based on block-circulant parity-check matrices.

APPENDIX B

PROOF OF LEMMA 3.2

Let us start from an empty array and create the rows of

by minimizing the number of used points. The first row can

always be filled with points from the set . Put

in the firstposition of the second row (now occurs twice) and

start filling out the rest of the second row. Since the first element

in the row is , we cannot use any other point from the first row.

Therefore, we must use points from the set .

These points completely describe the second row.

We can put any number as the first element in the third row. If

we choose this entry to be , then since already occurs twice,

another row containing must be added to keep the number of

occurrences of even. Therefore, we chose not to make the first

entry , but rather a different number from the first row. Let this

one be . Now is the first entry in the third row and occurs

twice in the array. We continue filling the rest of the third row.

The points from the first row must be excluded, since is also

in the first row. The points from the second row, except for ,

are all allowed so let us take the first available number .

The rest of the third row ( positions) must be now filled

with (new) numbers that are not in the second row. For these,

we choose . Suppose we continuine

this process until we arrive at the th row. Every point in the

set occurs twice in the first rows of , and

the point occurs exactly once (in the first row). Therefore,

we have to continue appending rows so as to achieve an even

number of occurrences of the point . The above procedure

continues until rows are formed. However, must have

rows because the point and the points in the last column of

occur only once in the array. Since, at this stage, there are

exactly points that do not occur twice, we can take the points

from the last column of and append them as the th row

of , which completes the procedure. The number of “new”

(nonrepeated) points used to fill the th row is . The

total number of points used is which is



Fig. 12. Performance of CIDS-based codes.

equal to , the number of points in a generalized Pasch

configuration. Q.E.D.

APPENDIX C

PROOF OF THEOREM 3.1

Take any distinct and and consider two base blocks and

and the corresponding blocks obtained by adding to

and . Notice that by adding to elements of ,

the resulting blocks remain in the orbit of . Create a

array , where . (Notice that since

and are base blocks, all the elements in are different.)

The columns of contain blocks , and the rows of

contain blocks . Each element of

occurs exactly once in and once in , and,

therefore, exactly twice in the set

. Q.E.D.

Example C.1: For the example in

Table I, the array is

and

is given in Example 3.3.

APPENDIX D

PROOF OF LEMMA 5.1

In order to show that the girth of the code is at least six, we

have to show that there are no “rectangles” in the matrix , i.e.,

four ones that lie at the corners of a rectangle. Without loss of

generality, consider two ones in the first row of . Two ones

that belong to the same row must necessarily belong to different

permutation matrices, and the same is true for ones that belong

to the same column. Hence, the distance between two ones in

the same column is of the form

(D1)

where , , are the exponents of the permutation ma-

trices containing these two ones, respectively, and where the

subscripts are taken modulo .

Next, consider the component-wise difference of the ordered

exponents of the first block-row of permutation

matrices and the ordered exponents

of the th block-row

Then all ’s are different and negative up to subscript number

, and all different and positive for subscripts larger than

. Next, define the following two variables:

Based on (D1), it follows that the distance between two ones in

the same column for the first block-columns is at least

Since



it follows that no two ones in the same column can be at the same

distance as any other pair of ones within a different column.

It can be easily shown that the codes with have girth

at least eight. This follows from the observation that in order to

have a cycle of length six in the Tanner graph, there should exist

three columns containing pairs of ones described by their corre-

sponding row positions . This clearly

implies that one pair of ones must belong to the same column

of one permutation matrix, which is impossible. The result re-

garding the minimum distance of the codes is a straightforward

consequence of the previous argument. Q.E.D.

APPENDIX E

PROOF OF THEOREM 5.1

The proof is an extension of the Bose construction [50] for

difference sets.

Take an arbitrary ordering of the set and define

Consider the following two polynomials:

(E1)

where and the indexes in are taken modulo

.

Assume there exist indexes such that

and . The

polynomial has coefficients in GF , degree at most one,

and as its root. Since is a primitive element of GF ,

no nonzero polynomial over GF of degree smaller than four

can have as a root. Hence, it follows that . There-

fore, which implies

and, consequently, . This contradicts the starting

assumption.

Based on the previous argument, it follows that the elements

of form a difference set modulo .

Assume next that that the indexes are as described

before and

(E2)

where the indexes are taken modulo . If ,

then the polynomial has coefficients from GF , degree

at most three and as one of its root. Since is a primitive

element of GF it follows that . Hence,

and consequently

or equivalently

One can distinguish several possible cases for which the two

sets above are equivalent.

• , which implies

contradicting the starting assumption.

• , contradicting the starting

assumption.

• or . In the

first case, one arrives at the conclusion that ,

and in the second case one arrives at . Both of

these results contradict the starting assumption.

Therefore, is a -fold cycle invariant difference set. Q.E.D.

APPENDIX F

PROOF OF THEOREM 5.2

The codes described by (5.1) are even, and it is straightfor-

ward to see that no two columns in the parity-check matrix are

identical. Hence, it suffices to show that for no two block-rows

of permutation matrices one can find four columns that add up to

the zero-vector. If the number of permutation blocks per row is

less than or equal to three, the result follows trivially. Hence, let

, and assume that, on the contrary, there exist four columns,

that sum up to zero. Furthermore, assume that the row indexes of

the four ones in the first block-row and within the given columns

are .

It is clear from the construction that either

• all four columns belong to different permutation matrices;

• two columns belong to the same permutation matrix and

two belong to two different permutation matrices; or

• two columns belong to one, while the other two belong to

another permutation matrix.

An illustrative example for the first case of options is shown

at the bottom of the page. Consider the first case, and assume

without loss of generality that

(F1)

Based on the cyclic construction of the parity-check matrix, the

positions of the ones in the second block-row of permutation

matrices and within the same columns are given by

, where

(F2)

for some nonnegative integers and for different

(i.e., different elements from one of the cyclic

shifts of the -fold cycle invariant difference set). In order for

the columns to add up to the zero vector, one has to have

which, based on (F1), implies that



But this is impossible, since the integers them-

selves belong to a difference set, and hence no two differences

can be the same. For the second case and for the given row po-

sitions in the first set of blocks, the row-indexes of ones in the

second block-row have to be of the form

. Hence, if then the following equation

has to be satisfied as well:

As in the previous case, this result contradicts the starting as-

sumption that belong to a difference set. The last

case can be treated in a similar manner as the second case,

with , implying

. This again contradicts the assumption that

belong to a difference set.

Notice that since the argument presented above holds for any

choice of two rows of blocks, it follows that the minimum dis-

tance will be at least six for any number of row blocks.

Q.E.D.

APPENDIX G

PROOF OF LEMMA 6.1

Since is a prime, for each lattice point there exists

exactly one line with slope that passes through the point .

For each pair of lattice points, there is no more than one line that

passes through both points. Therefore, the set of lines with

slopes is a -configuration. Q.E.D.

APPENDIX H

PROOF OF LEMMA 6.2

Consider a periodically extended lattice. We will show that

it is not possible to construct a quadilateral (with no sides with

infinite slope allowed), in which each point lies on two lines.

Fig. 5 shows one such quadilateral. Without loss of generality,

we can assume that the starting point of two of the lines is

. The slopes of four lines in Fig. 13 are: , , , and

. The points and are all

different and each of them lies on two lines. The remaining four

points will be on two lines if at lest one of the following three

conditions holds:

1) and

2) and

3) and

with all additions performed modulo . Case 1) implies

which means that the points and are

identical, a contradiction. For the remaining two cases, would

have to be , which would imply that the two leftmost points are

identical, again leading to a contradiction. Q.E.D.

APPENDIX I

PROOF OF THEOREM 6.1

Let be an even integer. Assume that there exists a general-

ized Pasch configuration in the set of lines determined by the

set of ordered pairs , where and

denote the starting point and the slope of the line, respectively.

Fig. 13. Quadrilateral in a lattice finite geometry.

In a generalized Pasch configuration, each point has to occur

exactly twice. This implies that for , the set of points

has to be such that for each , for

exactly one . This is clearly impossible for even values of

. On the other hand, assume that is odd, and that the set of

blocks forming a generalized Pasch configuration is again spec-

ified by the ordered pairs . By rotating

the set of lines in the generalized Pasch configuration appropri-

ately, one of the lines, say , can be taken to correspond to

the line . Since the point has to belong to exactly two

lines, there must exist another line in the configuration specified

by , . Based on the previous discussion regarding the

points with , it follows that without loss of generality, the

blocks can be divided into pairs as follows:

Here, , for for any

. We will show next that that all lines of the configuration,

except for the one defined by , have to intersect the line

(note that there are such lines). Since is prime,

for each pair there exists a unique value of such that

. This implies that all lines differing

from the line intersect the line , and all the points on

this line have to belong to exactly two lines in the configuration.

But this is impossible, since is by assumption equal to the odd

prime . Q.E.D.

Note that for the parity-check matrix (5.1) is of di-

mension and hence of no practical importance for code

description.

APPENDIX J

PROOF OF THEOREM 6.2

In order to construct a -configuration with girth eight, one

has to eliminate those lines from the lattice that lead to the for-

mation of triangles. Before proceeding with the proof of the the-



orem, we need to briefly describe the relationship that exists be-

tween the set of slopes and triangles.

Consider a set of three different slopes: , , and .

Without loss of generality, the equations for lines with the

given slopes are of the form

where . From this point on, we will assume

that all equalities are evaluated modulo . If a set of three slopes

determines a triangle, then the above set of equations has at least

one solution and vice versa. In other words, a set of three slopes

determines a triangle if and only if there exist three ordered pairs

, , and such that

or equivalently

(J1)

The last condition is identical to the condition for three slopes

to form a triangle in the Euclidean space, except that for the

case of interest, the equality is modulo . It can also be shown

that starting from (J1) one can prove that the slopes , , and

define a triangle. The proof is straightforward and therefore

omitted.

Observe that if three lines of slopes , , and form a

triangle, then the same is true of the lines with slopes ,

, and , for any integer .

Lemma J.3: A set of three lines with slopes , , and

forms a triangle if and only if there are two nonzero integers

and , such that and

Proof: An equivalent form of the condition given by (J1)

is

According to this expression, neither nor can be equal to

zero; if either or were zero, one would have

, which is impossible by construc-

tion. For the same reason, one must have .

Q.E.D.

Since the -coordinates of the intersection points must be

larger then or equal to zero and smaller than , , and also

satisfy the following condition: .

We are now ready to prove Theorem 6.1.

Proof: According to the previous discussion, the criterion

for including a slope in is that, for all and already

in , it holds that

or equivalently

(J2)

for all nonzero and such that , ,

and , . According to the

previous discussion, for the case , and have to be

in , and they either have different absolute values

and opposite signs, or they both are equal to either or .

Assume that for some nonzero integer , the set

forms a three-term arithmetic progression, say

Then the left-hand side of (J2) reduces to

(J3)

If this value were to be zero, then either both and would

have to be zero, or and would have to be equal to and

, respectively. On the other hand, if the left-hand side of (J2)

is equal to zero, then taking and with value or gives

, which implies or, equiv-

alently, that form a three-term arithmetic progression.

To complete the proof we will show next that elements in

cannot be larger than . If not stated otherwise, all numbers

will be described in terms of their ternary expansion.

Case 1: Let the first (i.e., most significant) digit of the expan-

sion of be . Assume that there exists a slope in that

exceeds . Then the number has zero as its

most significant digit. We can now subtract from a number in

smaller than , say , whose ternary expansion consists

only of ’s and ’s. In this way, we obtain a number that has

only ’s and ’s in its expansion. This number can be viewed as

the product of two and a number that has only ’s and ’s as its

digits. This now would imply the existence of a triangle, hence

excluding the possibility for to be in (this construction

corresponds to ).

Case 2: Let the first (i.e., most significant) digit of be .

Assume that there exists a slope in that exceeds .

Then the number has zero as its most significant

digit. Therefore, can be written as the sum of two numbers

smaller than whose ternary expansion consists only of ’s

and ’s. Those two numbers specify and , thus eliminating

from inclusion in (this construction corresponds to

).

This completes the proof of the Theorem. Q.E.D.
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