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Abstract. Key distribution is one of the most challenging security issues
in wireless sensor networks where sensor nodes are randomly scattered
over a hostile territory. In such a sensor deployment scenario, there will be
no prior knowledge of post deployment configuration. For security solu-
tions requiring pairwise keys, it is impossible to decide how to distribute
key pairs to sensor nodes before the deployment. Existing approaches to
this problem are to assign more than one key, namely a key-chain, to
each node. Key-chains are randomly drawn from a key-pool. Either two
neighboring nodes have a key in common in their key-chains, or there
is a path, called key-path, among these two nodes where each pair of
neighboring nodes on this path has a key in common. Problem in such
a solution is to decide on the key-chain size and key-pool size so that
every pair of nodes can establish a session key directly or through a path
with high probability. The size of the key-path is the key factor for the
efficiency of the design. This paper presents novel, deterministic and hy-
brid approaches based on Combinatorial Design for key distribution. In
particular, several block design techniques are considered for generating
the key-chains and the key-pools.
Comparison to probabilistic schemes shows that our combinatorial ap-
proach produces better connectivity with smaller key-chain sizes.

1 Introduction and Problem Definition

In this work, we consider a sensor network in which sensor nodes need to com-
municate with each other for data processing and routing. We assume that the
sensor nodes are distributed to the target area in large numbers and their lo-
cation within this area is determined randomly. These type of sensor networks
are typically deployed in adversarial environments such as military applications
where a large number of sensors may be dropped from airplanes.

In this application, secure communication among sensor nodes requires au-
thentication, privacy and integrity. In order to establish this, there must be a
secret key shared between a pair of communicating sensor nodes. Because the
network topology is unknown prior to deployment, a key pre-distribution scheme
is required where keys are stored into ROMs of sensors before the deployment.
The keys stored must be carefully selected so to increase the probability that

P. Samarati et al. (Eds.): ESORICS 2004, LNCS 3193, pp. 293–308, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. A Wireless Sensor Network

two neighboring sensor nodes have at least one key in common. Nodes that do
not share a key directly may use a path where each pair of nodes on the path
shares a key. The length of this path is called key-path length. Average key-path
length, is an important performance metric and design consideration. Consider
sample sensor network given in Figure-1. Assume that only sensor nodes a and
b does not share a key. Nodes a and c can establish secure communication where
the key-path length is 1. Node c and b also have key-path length of one. How-
ever, nodes a and b can only use the path a-c-b to communicate securely with
key-path length of two.

The common approach is to assign each sensor node multiple keys, randomly
drawn from a key-pool, to construct a key-chain to ensure that either two neigh-
boring nodes have a key in common in their key-chain, or there is a key-path.
Thus the challenge is to decide on the key-chain size and key-pool size so that
every pair of nodes can establish a session key directly or through a path. Key-
chain size is limited by the storage capacity of the sensor nodes. Moreover, very
small key-pool increases the probability of key share between any pair of sensor
nodes by decreasing the security in that, the number of the keys needed to be
discovered by the adversary decreases. Similarly, very large key-pool decreases
the probability of key share by increasing the security.

Eschenauer et al. in [14] propose a random key pre-distribution scheme where
tens to hundreds of keys are uploaded to sensors before the deployment. In their
solution, initially a large key pool of P and the key identities are generated. For
each sensor, k keys are randomly drawn from the key-pool P without replace-
ment. These k keys and their identities form a key-chain which is loaded in to
the memory of the sensor node. Two neighboring nodes compare list of identities
of keys in their key-chain. Since only the identities are exchanged, this process
can take place without any privacy mechanism. Eschenauer et al. also propose
to employ Merkle Puzzle [20] similar approach to secure key identities. After key
identity exchange, common key(s) are used to secure the link in between two
sensor nodes. It may be the case that some of the neighboring nodes may not be
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able to find a key in common. These nodes may communicate securely through
other nodes, through other secured links. Chan et al. in [6] propose a modifi-
cation to the basic scheme of Eschenauer et al. They increase the amount of
key overlap required for key-setup. That is, q common keys are needed instead
of one to be able to increase the security of the communication between two
neighboring nodes. In [33], common keys in the key-chains are used to establish
multiple logical paths over which threshold key sharing scheme is used to agree
on a new secret.

Random-pairwise key scheme in [6] is a modification of the pairwise key
scheme. It is based on Erdos and Renyi’s work; to achieve probability p of any
two nodes are connected, in a network of n nodes, each node needs to store
only a random set of np pairwise keys instead of n − 1. Slijepcevic et al. [24]
propose that each sensor node shares a list of master keys, a random function
and a seed. Every sensor uses shared random function and shared seed to select
a network wise or group wise master key. In [3, 18], polynomial-based key pre-
distribution protocol proposed for group key pre-distribution. In [19], polynomial
pool-based key pre-distribution is used for pairwise key establishment. For each
sensor, random or a grid based pre-distribution scheme is used to select set of
polynomials from a pool.

In [2], Blom proposes a λ-secure key pre-distribution system where a public
matrix P and a private symmetric matrix S over a finite field GF (q) is used.
Rows of the matrix A = (S.P )T is distributed to users. Blom’s scheme is a
deterministic scheme where any pair of nodes can find a common secret key. Du
et al. in [9] use Blom’s scheme with multiple spaces to increase resilience. In [10],
Du et al. first model node deployment knowledge in a wireless sensor network
and then develop a key pre-distribution scheme based on this model.

In [23, 30, 11, 12, 7, 5, 34] a network architecture where there are one or more
base-stations is considered. These base-stations are considered as powerful in
resource and sensor nodes are clustered around them. Each sensor node shares
a key with each base-station to secure sensor node to base-station and base-
station to sensor node unicast communication. Authentication mechanism for
the broadcasts from base-station to sensor nodes is addressed in [23, 11, 12, 17,
7]. They propose modified versions of TESLA where a verifiable key, which is
used to encrypt a message, is disclosed later then the message broadcasted.

1.1 Our Contributions and Organization of This Work

The main contribution of this work is the deterministic and hybrid approaches
to the key distribution problem. In particular, we bring in a novel construction
methodology from Combinatorial Design Theory to address this problem. Al-
though there are some applications of Combinatorial Designs in cryptography
[26–28], and in network design [32, 29], best to our knowledge this work is the
first to apply design theory to key distribution. Our analysis indicate that de-
terministic approach has strong advantages over the randomized ones since it (i)
increases the probability that two nodes will share a key, and (ii) decreases the
key-path length.
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This paper is organized as follows: In Section 2 we provide a brief background
to the combinatorial designs used in this work without exceeding the scope of
this paper. In Section 3 we introduce our key distribution construction and
explain the mapping from design theory to this practical problem. In Section 4 we
address scalability issues. In Section 5, we present our analysis and comparison
with randomized methods. Finally, in Section 6 we conclude.

2 Background on Combinatorial Designs

A Balanced Incomplete Block Design (BIBD) is an arrangement of v distinct
objects into b blocks such that each block contains exactly k distinct objects,
each object occurs in exactly r different blocks, and every pair of distinct objects
occurs together in exactly λ blocks. The design can be expressed as (v, k, λ), or
equivalently (v, b, r, k, λ), where: λ (v − 1) = r (k − 1) and b k = v r .

2.1 Symmetric BIBD

A BIBD is called Symmetric BIBD or Symmetric Design when b = v and
therefore r = k [8, 1, 15, 31]. A Symmetric Design has four properties: every
block contains k = r elements, every element occurs in r = k blocks, every pair
of elements occurs in λ blocks and every pair of blocks intersects in λ elements.

In this paper, we are interested in a subset of Symmetric Designs, called a
Finite Projective Plane. A Finite Projective Plane consists of a finite set P of
points and a set of subsets of P , called lines. For an integer n where n ≥ 2, Finite
Projective Plane of order n has four properties: (i) every line contains exactly
n +1 points, (ii) every point occurs on exactly n+ 1 lines, (iii) there are exactly
n2 +n+1 points, and (iv) there are exactly n2 +n+1 lines. If we consider lines
as blocks and points as objects, then a Finite Projective Plane of order n is a
Symmetric Design with parameters (n2 + n + 1, n + 1, 1) [8, 1].

Given a block design D = (v, k, λ) with a set S of |S| = v objects and B =
{B1, B2, . . . , Bb} of |B| = b blocks where each block includes exactly k objects,
Complementary Design D has the complement blocks Bi = S −Bi as its blocks
for 1 ≤ i ≤ b. D is a block design with parameters (v, b, b − r, v − k, b − 2r + λ)
where (b−2r+λ > 0) [1, Theorem 1.1.6]. If D = (v, k, λ) is a Symmetric Design,
then D = (v, v − k, v − 2r + λ) is also a Symmetric Design [1, Corollary 1.1.7].

2.2 Finite Generalized Quadrangle

A Finite Generalized Quadrangle (GQ) is an incidence structure S = (P, B, I)
where P and B are disjoint and nonempty sets of points and lines respectively,
and for which I is a symmetric point-line incidence relation satisfying the fol-
lowing axiom:

1. Each point is incident with t + 1 lines (t ≥ 1) and two distinct points are incident
at most one line,
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2. Each line is incident with s + 1 points (s ≥ 1) and two distinct lines are incident
with at most one point,

3. If x is a point and L is a line not incident (I) with x, then there is a unique pair
(y, M) ∈ PXB for which x I M I y I L.

In this work, we are interested in three known GQ’s as defined in [21, 13, 16,
22]: two GQs are from the Projective Space PG(4, q) and PG(5, q) of order q,
third one is from PG(4, q2) of order q2. Let function f be an irreducible binary
quadratic, then the three GQs can be defined as follows:

1. GQ(s, t) = GQ(q, q) from PG(4, q) with canonical equation x2
0 +x1x2 +x3x4 = 0 :

GQ(q, q) ⇒ s = t = q, v = b = (q + 1)(q2 + 1).
2. GQ(s, t) = GQ(q, q2) from PG(5, q) with canonical equation f(x0, x1) + x2x3 +

x4x5 = 0 :
GQ(q, q2) ⇒ s = q, t = q2, v = (q + 1)(q3 + 1), b = (q2 + 1)(q3 + 1).

3. GQ(s, t) = GQ(q2, q3) from PG(4, q2) with canonical equation xq+1
0 + xq+1

1 + ... +
xq+1

d = 0 :
GQ(q2,q3) ⇒ s = q2, t = q3, v = (q2 + 1)(q5 + 1), b = (q3 + 1)(q5 + 1).

Consider GQ(s, t) = GQ(q, q) in which lines are mapped to blocks and points
to objects. Thus, there are v = b = (q + 1)(q2 + 1) blocks and objects where
each block contains s + 1 = q + 1 objects and where each object is contained in
t + 1 = q + 1 blocks.

3 Combinatorial Design to Key Distribution

In the following two sections, we describe how Symmetric Designs and Gener-
alized Quadrangles are used to generate key-chains for the sensors in a sensor
network.

3.1 Mapping from Symmetric Design to Key Distribution

In this work, we are interested in Finite Projective Plane of order n which is a
Symmetric Design (Symmetric BIBD) with parameters (n2 + n + 1, n + 1, 1).

Mapping: We assume a distributed sensor network where there are N sensor
nodes. Sensor nodes communicate with each other and require pairwise keys to
secure their communication. Each sensor has a key-chain of K keys which is
stored to its ROM before the deployment. Keys are selected from a set P of key-
pool. To secure the communication between them, a pair of sensor nodes need
to have χ keys in common in their key-chain. Based on this, we define mapping
given in Table-1

For a sensor network of N nodes, with total of N key-chains, a Symmetric
Design with b ≥ N blocks needs to be constructed by using set S with |S| = v = b
objects. That means, b = v = n2 + n + 1 ≥ N for a prime power n [8, 1]. Each
object in S can be associated with a distinct random key, and each block can be
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Table 1. Mapping from Symmetric Design to Key Distribution

Symmetric Design Key Distribution

Object Set (S) → Key-Pool (P )

Object Set Size (|S| = v = n2 + n + 1) → Key-Pool Size (|P |)
Blocks → Key-Chains

# Blocks (b = n2 + n + 1) → # Key-Chains (N)

# Blocks (b = n2 + n + 1) → # Sensor Nodes (N)

# Objects in a Block (k = n + 1) → # Keys in a Key-Chain (K)

# Blocks that an Object is in (r = n + 1) → # Key-Chains that a Key is in

Two Blocks share (λ = 1) Objects → Two Key-Chains share (χ) Keys

used as a key-chain. That provides b ≥ N key-chains each having K = k = n+1
keys. Symmetric Design guarantees that any pair of blocks has λ objects in
common, meaning that any pair of key-chains, or equivalently sensor nodes, has
χ = λ keys in common.

Construction: There are several methods to construct Symmetric Designs of
the form (n2 + n + 1, n + 1, 1). In this project, we use a complete set of (n − 1)
Mutually Orthogonal Latin Squares (MOLS). A Latin Square on n symbols is
an n× n array such that each of the n symbols occurs exactly once in each row
and each column. The number n is called the order of the square. If A = (aij)
and B = (bij) are any two n × n arrays, the join of A and B is a n × n array
whose (i, j)th element is the pair (aij , bij). The Latin Squares A and B of order
n are Orthogonal if all entries of the join of A and B are distinct. Latin Squares
A1, A2, ..., Ar are Mutually Orthogonal (MOLS) if they are orthogonal in pairs.
For prime power n, a set of (n − 1) MOLS of order n is called a Complete Set
[8, 1]. A complete set of (n− 1) MOLS can be used to construct Affine Plane of
order n which is an (n2, n, 1) design. Affine Plane of order n can be converted
to Projective Plane of order n which is a (n2 +n+1, n+1, 1) Symmetric Design.
The construction algorithm can be summarized as follows:

1. Given a network size of N, find a prime power n where n2 + n + 1 ≥ N ,

2. Generate a complete set of (n − 1) MOLS of order n [1, Theorem 5.1.1],
3. Construct the Affine Plane of order n from the MOLS [1, Theorem 1.3.5],

4. Construct the Projective Plane of order n from the Affine Plane [1, Theorem 1.2.5].

Analysis: Symmetric Design has a very nice property that, any pair of blocks
shares exactly one object. Probability of key share between any pair of nodes is
PSY M = 1, so that Average Key Path Length is 1.

Symmetric Design of the form (n2 + n + 1, n + 1, 1) is not a scalable solution
itself. Given a fixed key-chain size k = n + 1, it can support network sizes of N
where N ≤ n2 + n + 1. For networks smaller than n2 + n + 1, simply some of
blocks may not be used still preserving key sharing probability PSY M = 1. For
the networks where N > n2 + n + 1, key-chain size must be increased, that is,
n must be increased to next prime power. Due to the memory limitations in a
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Table 2. The GQ(s, t) parameters

GQ(s,t) s t b v

GQ(q, q) q q q3 + q2 + q + 1 q3 + q2 + q + 1

GQ(q, q2) q q2 q5 + q3 + q2 + 1 q4 + q3 + q + 1

GQ(q2, q3) q2 q3 q8 + q5 + q3 + 1 q7 + q5 + q2 + 1

Table 3. Mapping from GQ to Key Distribution

Generalized Quadrangle GQ(s, t) Key Distribution

Point Set (P ) → Key-Pool (P )

Point Set Size (|S| = v = (s + 1)(st + 1)) → Key-Pool Size (|P |)
Line Set (B) → Key-Chains

# Lines (|B| = b = (t + 1)(st + 1)) → # Key-Chains (N)

# Lines (|B| = b = (t + 1)(st + 1)) → # Sensor Nodes (N)

# Points on a Line (s + 1) → # Keys in a Key-Chain (K)

# Lines that a Point is incident (t + 1) → # Key-Chains that a Key is in

Two Lines share (≤ 1) points → Two Key-Chains share (χ) Keys

sensor node, this may not be a good solution. Moreover, such an increase in n
may produce designs which can support much bigger networks than required.
In probabilistic key distribution schemes, it is always possible to increase size of
key-pool for a fixed key-chain size to increase the number of key-chains. But, such
an approach sacrifices key share probability and requires better connectivity at
underlying physical network. It is possible to merge deterministic and probabilis-
tic designs to inherit advantages of both. Later in Section-4, we propose Hybrid
of Symmetric and Probabilistic Designs to cope with scalability problems. Ba-
sically, we use n2 + n + 1 blocks of the Symmetric Design and select uniformly
at random remaining N − (n2 + n + 1) blocks among the (k = n + 1)-subsets of
the Complementary Symmetric Design.

3.2 Mapping from Generalized Quadrangles to Key Distribution

In this work, we are interested in three known GQ(s, t): GQ(q, q), GQ(q, q2) and
GQ(q2, q3). Table-2 gives details about their parameters.

Mapping: Consider a sensor network of N nodes where each node requires a
key-chain having K keys coming from a key-pool P . Assume also that, not all
pairs of neighboring nodes need to share a key directly, they can communicate
through a secure path on which every pair of neighboring nodes shares a key.
GQ can be used to generate key-chains for such networks. Namely, points in GQ
can be considered as the keys and lines as the key-chains. Mapping between GQ
and Key Distribution is given in Table-3.

In GQ, there are (t + 1) lines passing through a point, and a line has (s + 1)
points. That means, a line shares a point with exactly t(s + 1) other lines.
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Table 4. Projective Space equations

GQ PG Points Canonical Equation for PG

GQ(q, q) PG(4, q) (x0, x1, x2, x3, x4) x2
0 + x1x2 + x3x4 = 0

GQ(q, q2) PG(5, q) (x0, x1, x2, x3, x4, x5) f(x0, x1) + x2x3 + x4x5 = 0

GQ(q2, q3) PG(4, q2) (x0, x1, x2, x3, x4) xq+1
0 + xq+1

1 + xq+1
2 + xq+1

3 + xq+1
4 = 0

Moreover, if two lines, say lines A and B, do not share a point, then for each
point ptA on line A, there is a point ptB on line B such that there exist a line C
passing through both points ptA and ptB. That means, if two lines A and B do
not share a point, there are (s + 1) distinct lines which share a point with both
lines A and B. In terms of Key Distribution, it means that, a block shares a key
with t(s + 1) other blocks. Additionally, if two blocks do not share a key, there
are (s + 1) other blocks sharing a key with both.

Construction: The three GQ(s, t)’s used in this work are incidence relations
between points and lines in a Projective Space PG(d, q) and PG(d, q2) with
dimension d. Points of the space are vectors with (d + 1) elements of the form
(x0, x1, x2, . . . , xd) where xi < q for PG(d, q) and xi < q2 for PG(d, q2). They
hold the projective plane equations given in Table-4.

We use irreducible binary quadratic f(x0, x1) = dx2
0+x0x1+x2

1 for GQ(q, q2)
as given in Table-4. Our construction algorithm can be summarized as follows:

1. Given network size of N, find a prime power q where:
b = q3 + q2 + q + 1 ≥ N for GQ(q, q) .
b = q5 + q3 + q2 + 1 ≥ N for GQ(q, q2) .
b = q8 + q5 + q3 + 1 ≥ N for GQ(q2, q3) .

2. Find all points in Projective Space PG(4, q) for GQ(q, q), PG(5, q) for GQ(q, q2)
and PG(4, q2) for GQ(q2, q3). That is, find all points holding given canonical equa-
tion.

3. Construct bilinear groups of size s+1 from v points, that is, find s+1 points which
are on the same line. Note that each point is incident to t + 1 lines.

Analysis: In a GQ(s, t), there are b = (t + 1)(st + 1) lines and a line intersects
with t(s + 1) other lines. Thus, in a design generated from a GQ, a block shares
an object with t(s + 1) other blocks. Probability PGQ that two blocks shares at
least one object, or equivalently, probability PGQ that a pair of nodes share at
least one key is:

PGQ =
t(s + 1)

b
=

t(s + 1)
(t + 1)(st + 1)

.

Table-5 lists key share probabilities for the three GQ.
Probabilistic key distribution is the simplest and most scalable solution when

compared to GQ and Symmetric Designs. Next, in Section-4, we propose Hybrid
Symmetric and GQ Designs which provide solutions as scalable as probabilistic
key distribution schemes, yet taking advantages of underlying GQ and Symmet-
ric Designs.
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Table 5. Pairwise Key Sharing Probabilities

GQ Pairwise Key Sharing Probability

GQ(q, q) PQQ = q2+q
q3+q2+q+1

GQ(q, q2) PQQ2 = q3+q2

q5+q3+q2+1

GQ(q2, q3) PQ2Q3 = q5+q3

q8+q5+q3+1

Table 6. Parameters k, r, v, b for Symmetric, GQ and their Complementary Designs

Design k r b v

Symmetric n + 1 n + 1 n2 + n + 1 n2 + n + 1

Complementary Symmetric n2 n2 n2 + n + 1 n2 + n + 1

GQ(n, n) n + 1 n + 1 n3 + n2 + n + 1 n3 + n2 + n + 1

Complementary GQ(n, n) n3 + n2 n3 + n2 n3 + n2 + n + 1 n3 + n2 + n + 1

GQ(n, n2) n + 1 n2 + 1 n5 + n3 + n2 + 1 n4 + n3 + n + 1

Complementary GQ(n, n2) n4 + n3 n5 + n3 n5 + n3 + n2 + 1 n4 + n3 + n + 1

GQ(n2, n3) n2 + 1 n3 + 1 n8 + n5 + n3 + 1 n7 + n5 + n2 + 1

Complementary GQ(n2, n3) n7 + n5 n8 + n5 n8 + n5 + n3 + 1 n7 + n5 + n2 + 1

4 Hybrid Designs for Scalable Key Distributions

The main drawback of the combinatorial approach comes from the difficulty of
their construction. Given a desired number of sensor nodes or a desired number
of keys in the pool, we may not be able to construct a combinatorial design for
the target parameters.

In this work, we present a novel approach called Hybrid Design which com-
bines deterministic core and probabilistic extensions. We will consider two Hy-
brid Designs: Hybrid Symmetric Design and Hybrid GQ Design. By using Sym-
metric or GQ Design and its complement, we preserve nice properties of combi-
natorial design yet take advantages of flexibility and scalability of probabilistic
approaches to support any network sizes.

4.1 Mapping

Consider a sensor network where there are N nodes, therefore N key-chains
are required. Due to memory limitations, key-chains can have at most K keys
coming from key-pool P . We can employ Hybrid Design for the cases where there
is no known combinatorial design technique to generate design with N nodes for
the given key-chain size K. Basically, Hybrid Design finds largest prime power
n such that k ≤ K and generates N blocks of size k where objects come from
object set S of size |S| = v. The b of N blocks are generated by base Symmetric
or GQ Design and N − b blocks are randomly selected among k-subsets of the
Complementary Design blocks. We define mappings as in Table-7.
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Table 7. Mapping from Hybrid Design to Key Distribution

Hybrid Symmetric Design Key Distribution

Object Set (S) → Key-Pool (P )

Object Set Size (|S| = v) → Key-Pool Size (|P |)
Blocks of base design and selected → Key-Chains
(k)-subsets from Complementary Design

# blocks from base design (b) + → # Key-Chains (N)
# selected (k)-subsets (N − b)

# blocks from base design (b) + → # Sensor Nodes (N)
# selected (k)-subsets (N − b)

# Objects in a Block (k ≤ K) → # in a Key-Chain (K)

Two Blocks share zero or more Objects → Two Key-Chains share (χ) Keys

4.2 Construction

For a given key-chain size K and network size N , Hybrid Design first generates
the Base Symmetric or GQ Design with largest possible prime power n where
k ≤ K. Base Symmetric or GQ Design has b blocks of size k. Table-6 lists the
relations between block size k and number of blocks b for the prime power n. Next
step is to generate Complementary Design where there are b blocks of size v−k.
Table-6 lists the parameters of the Complementary Designs. Due to the fact that
v − k > k for Symmetric and GQ designs, blocks of the Complementary Design
can’t be used as the key-chains, but their subsets can. To scale the base design up
to given network size, Hybrid Design randomly selects remaining N − b blocks
uniformly at random among k-subsets of the Complementary Design blocks.
Selected k-subsets along with the blocks of the base design form the Hybrid
Design blocks. Algorithm can be summarized as follows:

1. Given N sensor nodes where each can store key-chain of size K, find largest possible
prime power n such that k ≤ K for k values given in Table-6.

2. Generate base design (Symmetric or GQ):

– Generate object pool P = {a1, a2, ..., av} of size v,

– Generate blocks B = {B1, B2, . . . , Bb} where |Bi| = k for 1 ≤ i ≤ b and
Bi ⊂ P .

3. Generate Complementary Design from the base design:

– Generate blocks B = {B1, B2, . . . , Bb} where Bi = P − Bi and |Bi| = v − k
for 1 ≤ i ≤ b.

4. Generate N − b hybrid blocks H={H1, H2, . . ., HN−b} of size |Hi| = k (1 ≤ i ≤
N − b) from the Complementary Design B = {B1, B2, . . . , Bb}. Use variable si to
hold index of the block in B from which block Hi is obtained:

– Consider all k-subsets of all blocks in B,

– Randomly select N − b distinct k-subsets to generate the set H ,

– For each selected k-subset Hi (1 ≤ i ≤ N − b), find the block Bj ∈ B (1 ≤ j ≤
b) from which block Hi is obtained. Set si = j.

5. Blocks of the Hybrid Design are B ∪ H .
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Example 1: Assume that we would like to generate key-chains for a network with
N = 10 nodes. Assume also that nodes have very limited memories, so that they
can store at most K = 3 keys in their key-chains. Hybrid Symmetric Design can
be used to generate design for this network. Symmetric Design (v, k, λ) = (7, 3, 1)
can be used as the base design to generate b = 7 blocks out of v = 7 objects where
block size is k = 3. Blocks of Symmetric Design form the set B={{1,2,3}, {1,4,5},
{1,6,7}, {2,4,6}, {2,5,7}, {3,4,7}, {3,5,6}}. Remaining N − b = 3 blocks are se-
lected uniformly at random among the 3-subsets of the Complementary Sym-
metric Design B = {{4,5,6,7}, {2,3,6,7}, {2,3,4,5}, {1,3,5,7}, {1,3,4,6}, {1,2,5,6},
{1,2,4,7}}. Assume that selected blocks are {4,5,6}, {2,3,6} and {1,5,7} which
are the 3-subsets of the sets {4,5,6,7}, {2,3,6,7} and {1,3,5,7} respectively. These
blocks (3-subsets) form the set H={{4,5,6}, {2,3,6}, {1,5,7}}. The blocks of the
Hybrid Symmetric Design is then B ∪ H= {{1,2,3}, {1,4,5}, {1,6,7}, {2,4,6},
{2,5,7}, {3,4,7}, {3,5,6}, {4,5,6}, {2,3,6}, {1,5,7}}.

4.3 Analysis

In this section, we analyze some important properties of Hybrid Symmetric and
Hybrid GQ Designs. We will look for some useful properties coming from un-
derlying combinatorial design. Based on these properties, we will analyze object
share probabilities between any pair of blocks in Hybrid Design B ∪ H , where
B is the set of blocks of the base (Symmetric or GQ) design and H is the set
of blocks which are uniformly at random selected among k-subsets of the com-
plement design blocks B (variable si holds index of the block in B from which
block Hi ∈ H is obtained).

Hybrid Symmetric Design

Property 1. Given Hybrid Design B ∪H , ∀ β ∈ B and θ ∈ H , ∃b ∈ β|b �∈ θ . �	
Proof. For the proofs of this property and the others please refer to [4].

Property 1 doesn’t hold among the blocks in H . To see that, consider two
such distinct blocks Hi ∈ H and Hj ∈ H where si �= sj. Complementary Design
of a Symmetric Design has the property that, any pair of blocks has n2 − n
objects in common. For n > 2, when (n2 − n) > (n + 1), it can be the case that
randomly selected blocks (k-subsets) Hi and Hj are equivalent.

Property 2. Given key chain size k = n + 1, Hybrid Symmetric Design can
support network sizes up to:

(v
k) =

(
n2+n+1

n+1

)
. �	

This is the maximum network size that simple probabilistic key pre-distribution
scheme can support for key-chain size k = n+1 and key-pool size v = n2 +n+1.
Probabilistic scheme can go beyond this limit by simply increasing the key-pool
size v for a fixed key-chain size k. To provide the same scalability, we employ
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Hybrid GQ Designs which is analyzed in the next section. For fixed key chain
size k = n + 1, GQ(n, n2) will be able to generate designs for networks up to:

(v
k) =

(
n4+n3+n+1

n+1

)
.

This is the upper limit of our deterministic algorithms. Numerically, for key chain
size of 4, our Hybrid GQ(n, n2) Design supports network sizes up to 6, 210, 820. It
supports (2.54×1014) nodes for k = 6, (8.08×1022) nodes for k = 8, (1.18×1032)
nodes for k = 10, (5.78 × 1041) nodes for k = 12 and so on.

Theorem 1. Probability PHSY M that any pair of blocks shares a key in Hybrid
Symmetric Design is:
PHSY M ≤ b(b−1)

N(N−1)
× 1 + 2b(N−b)

N(N−1)
× n2+2

n2+n+1
+ (N−b)(N−2b)

bN(N−1)
× PH + (b−1)(N−b)2

bN(N−1)
× 1 .

PHSY M ≥ b(b−1)
N(N−1)

× 1 + 2b(N−b)
N(N−1)

× 1
2 n2+ 3

2 n+1

n2+n+1
+ (N−b)(N−2b)

bN(N−1)
× PH + (b−1)(N−b)2

bN(N−1)
× 1 .

Where PH =


1 −

(
n2−n−1

n+1

)

( n2
n+1)


 . �	

Hybrid GQ Designs

Property 3. Given key chain size k = n + 1, Hybrid GQ Design can support
network sizes up to:(

v
s+1

)
=

(
(s+1)(st+1)

s+1

)
. �	

Theorem 2. Probability PHGQ that any pair of blocks shares a key in Hybrid
GQ Design is:
PHGQ ≤ b(b−1)

N(N−1)
× PGQ + 2b(N−b)

N(N−1)
× (st−s+t+2)

(t+1)(st+1)
+ (N−b)(N−2b)

bN(N−1)
× PH + (b−1)(N−b)2

bN(N−1)
.

PHGQ ≥ b(b−1)
N(N−1)

×PGQ + 2b(N−b)
N(N−1)

× (s+1)(t−s/2+1)
(t+1)(st+1)

+ (N−b)(N−2b)
bN(N−1)

×PH + (b−1)(N−b)2

bN(N−1)
.

Where PGQ is given in Table-5 and PH =
[
1 −

(
(s+1)(st−1)

s+1

)
(

st(s+1)
s+1

)
]

. �	

5 Computational Results

We have implemented Random Key Pre-distribution Scheme by Eschenauer et
al. [14], Symmetric Design, GQ(q, q), GQ(q, q2), Hybrid Symmetric Design, and
compared them with each other. In random key pre-distribution scheme, we
initially generate a large pool of P keys and their identities. For each sensor,
we uniformly at random draw k keys from the key-pool P without replacement.
These k keys and key identities form the key-chain for a sensor node.

Basically, for a network of size N , we generate N key-chains and assign them
to N sensor nodes. Then, we uniformly randomly distribute N nodes in to a 1×1
unit grid. Every wireless sensor has a coverage of radius r where r = d (ln N)/N ,
every node within this coverage area is assumed to be a neighbor. Note that,
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Table 8. Symmetric Design vs Random Key Pre-distribution

Pool Key Number Random Symmetric Random Symmetric Avg.
Size Chain Sensor Avg. Key Avg. Key Node
(P) Size(k) Nodes Prob. Prob. Path Path Degree

100807 318 100807 0.634 1.0 − 1.0 −
10303 102 10303 0.639 1.0 1.35 1.0 56

5113 72 5113 0.642 1.0 1.35 1.0 51

2863 54 2863 0.645 1.0 1.35 1.0 47

1407 38 1407 0.651 1.0 1.34 1.0 42

553 24 553 0.663 1.0 1.33 1.0 35

parameter d can be used to play with radius r and therefore average degree of
the network.

After the deployment, two neighboring nodes compare the keys in their key-
chains by using the key id’s. If they have a key in common, it is used to secure
the communication. If there is no key in common, they try to find a shortest
possible path where each pair of nodes on the path shares a key. Length of this
path is called Key Path Length where Key Path Length for two nodes directly
sharing a key is 1. Average Key Path Length is one of the metrics that we use
to compare random key pre-distribution scheme with our Combinatorial and
Hybrid Design schemes.

Probability p that two key-chains share at least one key is another metric we
use in comparison. For random key pre-distribution scheme, for a given key-pool
size P and key-chain size k, Eschenauer et al. [14] approximate probability p as:

PRAND =
[
1 − (1− k

P )2(P−k+1/2)

(1− 2k
P )(P−2k+1/2)

]
.

In Symmetric Design, PSY M = 1 since any pair of key-chains shares ex-
actly one key. In GQ(s, t), probability of key share PQQ for GQ(q, q), PQQ2 for
GQ(q, q2) and PQ2Q3 for GQ(q2, q3) is given in Table-5.

Probability of key share PHSY M is given in analysis section of the Hybrid
Symmetric Design. Similarly, probability of key share PHGQ for Hybrid GQ
Design is given in analysis section of the Hybrid GQ Designs.

Tables 8, 9 and 10 summarize the computational results: (i) analytical so-
lution for probability p that two key-chains share at least one key, and (ii)
simulation results for Average Key Path Length.

Symmetric Design is compared with Random Key Pre-distribution scheme
in Table-8. For the same network size, key-chain size and pool-size, Symmetric
Design provides better probability of key share between any two key-chains. Sim-
ulation results for average key path length supports this advantage. In Random
Key Pre-distribution scheme, a pair of nodes requires to go through a path of
1.35 hops on average to share a key and communicate securely. This path length
is 1 for Symmetric Design.

GQ(q, q) is compared with Random Key Pre-distribution scheme in Table-
9. GQ(q, q) decreases key-chain size, causing a small decrease in key sharing
probability. Analytical solution shows that random key pre-distribution scheme
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Table 9. Generalized Quadrangle GQ(q, q) vs Random Key Pre-distribution

Pool Key Number Random GQ(q, q) Random GQ(q, q) Avg.
Size Chain Sensor Avg. Key Avg. Key Node
(P) Size(k) Nodes Prob. Prob. Path Path Degree

7240 20 7240 0.053 0.052 2.68 2.69 205

5220 18 5220 0.060 0.058 2.89 2.88 148

2380 14 2380 0.079 0.076 3.17 3.18 88

1464 12 1464 0.094 0.090 2.73 2.71 81

400 8 400 0.150 0.140 3.61 3.49 32

156 6 156 0.212 0.192 2.82 2.53 25

Table 10. Hybrid Symmetric Design vs Random Key Pre-distribution

Pool Key Number Random Hybrid Sym. Random Hybrid Sym. Avg.
Size Chain Sensor Avg. Key Avg. Key Node
(P) Size(k) Nodes Prob. Prob. Path Path Degree

10303 102 10500 0.632 0.99 1.36 1.01 56

5113 72 5250 0.632 0.99 1.35 1.01 51

2863 54 3000 0.628 0.98 1.35 1.03 47

1407 38 1500 0.627 0.97 1.34 1.04 42

553 24 750 0.547 0.89 1.33 1.15 37

183 14 250 0.563 0.89 1.31 1.14 29

provides slightly better probability of key share between key-chains, but GQ(q, q)
is still competitive to random key pre-distribution scheme. When two key-chains
do not share a key, GQ(q, q) guarantees existence of third one which shares a
key with both.

Hybrid Symmetric Design is compared with Random Key Pre-distribution
Scheme in Table-10. Hybrid Symmetric Design makes use of Symmetric Design,
yet taking advantages of the scalability of probabilistic approach. Given target
network size N and key chain size k for which there is no known design, compu-
tational results shows that Hybrid Symmetric Design shows better performance
than Probabilistic Design.

6 Conclusions

In this work we presented novel approaches to the key distribution problem in
large scale sensor networks. In contrast with prior work, our approach is com-
binatorial based on Combinatorial Block Designs. We showed how to map from
two classes of combinatorial designs to deterministic key distribution mecha-
nisms. We remarked the scalability issues in the deterministic constructions and
proposed hybrid mechanisms. Hybrid constructions combine a deterministic core
design with probabilistic extensions to achieve key distributions to any network
size.
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The analysis and computational comparison to the randomized methods show
that the combinatorial approach has clear advantages: (i) it increases the prob-
ability of a pair of sensor nodes to share a key, and (ii) decreases the key-path
length while provides scalability with hybrid approaches.
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