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Combinatorial Design of Textured Mechanical Metamaterials
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The structural complexity of metamaterials is
limitless, although in practice, most designs com-
prise periodic architectures which lead to ma-
terials with spatially homogeneous features1l,
More advanced tasks, arising in e.g. soft robotics,
prosthetics and wearable tech, involve spatially
textured mechanical functionality which require
aperiodic architectures. However, a naive imple-
mentation of such structural complexity invari-
ably leads to frustration, which prevents coher-
ent operation and impedes functionality. Here we
introduce a combinatorial strategy for the design
of aperiodic yet frustration-free mechanical meta-
materials, whom we show to exhibit spatially tex-
tured functionalities. We implement this strategy
using cubic building blocks - voxels - which de-
form anisotropically, a local stacking rule which
allows cooperative shape changes by guaranteeing
that deformed building blocks fit as in a 3D jig-
saw puzzle, and 3D printing. We show that, first,
these aperiodic metamaterials exhibit long-range
holographic order, where the 2D pixelated surface
texture dictates the 3D interior voxel arrange-
ment. Second, they act as programmable shape
shifters, morphing into spatially complex but pre-
dictable and designable shapes when uniaxially
compressed. Third, their mechanical response to
compression by a textured surface reveals their
ability to perform sensing and pattern analysis.
Combinatorial design thus opens a new avenue
towards mechanical metamaterials with unusual
order and machine-like functionalities.

The architecture of a material is crucial for its
properties and functionality. This connection be-
tween form and function is leveraged by mechani-
cal metamaterialdl™ whose patterned microstructures
are designed to obtain unusual behaviors such as
negative response parameters’, multistability™® 1 or
programmability® 2, For ordinary materials, aperiodic
architectures and structural complexity are associated
with geometric frustration (local constraints cannot be
satisfied everywherémm) which prevents a coherent and
predictable response. Frustration hinders functionality,
and metamaterial designs have thus focused on periodic
structures. However, the exquisite control provided by
3D printing provokes the question whether one can de-
sign and create structurally complex yet frustration-free
metamaterials™®,

We foray into this unexplored territory using a com-

binatorial design strategy. We assemble 1 cm? flexible,
cubic building blocks or voxels into a cubic lattice which
then forms a metamaterial (Fig. la). These building
blocks are anisotropic and have one soft mode of defor-
mation aligned with its internal axis of orientation, re-
sulting in elongated or flattened shapes that we refer to
as bricks with positive or negative polarization (Fig. 1b).
Generally, mechanical metamaterials with randomly ori-
entated building blocks are frustrated, as it is impossible
for all blocks to cooperatively deform according to their
soft mode: the bricks do not fit. We call voxelated
metamaterials that allow soft deformations, or equiva-
lently, where all bricks fit, compatible. A trivial example
of a compatible configuration is a periodic stacking of al-
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Figure 1. Voxelated Mechanical Metamaterials (a) Flexible
anisotropic building block in its undeformed state. (b) Cor-
responding flattened (-) and elongated (4) deformed bricks.
(c) A 5 x5 x5 metacube consisting of parallel blocks shows a
collective deformation under uniaxial compression. (d) Bricks
and their schematic representation, where colour indicates ori-
entation, and black dents and white protrusions represent de-
formations. (e) Adjacent bricks fit when appropriately polar-
ized. (f) Periodic, complex and frustrated 2 x 2 x 2 stackings
(from left to right) - for the latter no consistent brick configu-
ration exist (grey/dashed). Schematic symbols are separated
from one another for visualization purposes.



ternatively polarized, parallely orientated bricks. Hence,
a periodic metamaterial consisting of parallel blocks is
expected to exhibit a collective and harmonious defor-
mation mode. We realized such a metamaterial by a
combination of 3D printing and moulding (see Methods).
Uniaxial compression indeed triggers a collective pattern
change? in three dimensions, and produces the expected
staggered configuration where each brick is adjacent to
six bricks of opposite polarization (Fig. 1c; see video 1
described in the S.1.).

We now consider how to design aperiodic yet
frustration-free mechanical metamaterials. Crucially, the
internal structure of our blocks is anisotropic, and each
block can be oriented independently to allow structurally
complex architectures. We think of these blocks as vox-
els, represent their orientation at each lattice point with
a colour (Fig. 1d), and explore the discrete design space
of such voxelated metamaterials. Compatibility requires
two conditions to be met. First, pairs of neighbouring
bricks should exhibit closely matching shapes along their
common face. Our building blocks are precisely designed
such that given the polarization of one brick, the polar-
ization of an adjacent brick can be adapted so that the
pair have a tight fit - irrespective of their mutual ori-
entation. Hence, we only need to track the outward or
inward deformations of the surfaces of the building blocks
(Fig. le). The second compatibility condition concerns
the combinatorics of the voxel arrangement: all bricks
should fit, such that protrusions and depressions of all
neighbouring bricks are matched. In general, the first
condition can be met by clever building block design,
while the second condition leads to a thorny combinato-
rial 3D tiling problem.

As we will show, while the compatibility condition is vi-
olated in most random configurations which are thus frus-
trated, our specific building blocks allow for a plethora of
complex configurations where all protrusions and depres-
sions match. These non-parallel, structurally complex
yet compatible architectures compound the rich spatial
texture of aperiodic materials with the predictability of
ordered materials and form the blueprint for aperiodic,
frustration free mechanical metamaterials (Fig. 1f).

The design of complex architectures is simplified
by mapping brick configurations to spin-configurations
which satisfy a so-called ice-rule?? 23 and as such is rem-
iniscent of tiling?# and constraint satisfaction29 prob-
lems. We identify each brick with a vertex, connected to
neighbouring vertices by bonds which represent the com-
mon face between bricks (Fig. 2a). Dents and bumps
map to inward or outward spins o, 0y, 0., and by plac-
ing a single spin per bond, the first compatibility condi-
tion is trivially satisfied. The second condition maps to
the ice-rule, which stipulates that the six bonds of each
vertex should correspond to a brick configuration, where
the six bricks 27, ... 2T correspond to spin configurations
(00,0y,02) = (= ++), (+ = =), (+ = +), (= + —), (+ +
—), (= = +). Evidently, each allowed spin configuration
corresponds to a compatible brick stacking and corre-

sponding voxel configuration. We note that, conversely,
each compatible voxel configuration corresponds to two
spin configurations related by parity (spin flip), a sym-
metry which originates from the opposite polarizations
allowed by each building block.

All compatible metamaterials thus obtained feature an
unusual form of long range order which relates the bound-
ary to the bulk. Due to the bricks’ reflection symmetry,
spins along lines of bonds are alternating. Therefore,
spins at opposing boundaries are equal (opposite) when
their distance is odd (even). As spins at the surface of a
metamaterial represent its texture of bumps and dents,
this implies that textures at opposite faces of a metacube
are directly linked. Moreover, once the surface texture
is fixed, all internal spins and therefore bricks are deter-
mined (Fig. 2a). We call this unusual relation between
surface and bulk “holographic order” (see Methods).

The combination of parity and holographic order im-
plies that any compatible n X p X ¢ motif can be stacked in
a space filling manner, as the surface spins of such motifs
have compatible textures. Moreover, once the z-spins
are fixed along a plane, we can determine a dictionary
containing all motifs A*, B¥, ... with matching z-spins,
and by parity obtain A=, B~,... (Fig. 2b and Meth-
ods). These can be stacked in arbitrary order, as long
as we alternate between '+’ and -’ motifs; this allows
the straightforward design of periodic, quasiperiodic and
aperiodic metamaterials (Fig. 2b). By removing building
blocks at the boundary, complex shapes can be realized,
but for simplicity we focus here on cubic metamaterials.

Holographic order significantly restricts the number
of potential compatible configurations: while for generic
configurations their multitude is set by the volume, for
compatible configurations it is set by the surface area.
Moreover, many surface textures lead to forbidden inter-
nal vertices, e.g. where all spins are equal. For example,
in general it is not possible to arbitrarily choose the sur-
face texture at two faces simultaneously. Nevertheless,
the number of distinct L x L x L spin configurations Q(L)
is astronomical. To quantify the design limits and possi-
bilities, we exactly evaluated Q(L) up to L = 14 where
Q) ~ 3 x 104, and obtained strict and asymptotic lower
and upper bounds (Fig. 2¢, Methods and S.I.).

Despite the limitations imposed by compatibility, the
design space of voxelated metamaterials is huge. To il-
lustrate this, we have constructed a general algorithm to
obtain all L x L x 1 motifs compatible with a given tex-
ture {o.} (see Methods and S.I.); for each texture there
are at least two distinct motifs. We show now that we
can use this to design arbitrarily pixelated patterns of
bumps and depressions, or textures, at a given surface
of a metacube as a step towards arbitrary shape morph-
ing materials. In Fig. 2d we show a rationally designed
metacube created by 3D printing. Under uniaxial com-
pression (see Methods), the initially flat surface of this
cube reveals its spatial texture, with the front and back
related by holography (Fig. 2e and Methods; See videos
2-4, described in the S.I.). This cooperative, complex
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Figure 2. Combinatorial Design (a) Mapping of bricks to internal spins to surface spins (from left to right). (b) Dictionary of
five pairs of motifs compatible with a given a-texture, and examples of (i-ii) periodic, (iii) quasiperiodic (beginning of Fibonacci
sequence) and (iv) aperiodic motif stackings. (c) Exact number of compatible L x L x L spin configurations  (dots) and lower
and upper bounds (blue region) - see Methods and S.I. (d) A 10 x 10 x 10 metacube reveals its precisely designed surface texture
under uniaxial compression. Square surface pedestals added for visualization. Inset: undeformed metacube. See Methods for

experimental details and videos 2-4 described in the S.I..
this metacube.

yet controlled shape morphing illustrates that our com-
binatorial method allows for the rational design of shape
shifting metamaterials.

We finally show that when aperiodic metacubes are
compressed by patterned surfaces their response can be
employed for mechanical pattern analysis. We created
a compatible 5 x 5 x 5 metacube, programmed with a
smiley texture +{cL} which acts as a “lock” (see Meth-
ods), which is compressed between two identical surfaces
that have a pixelated “key” texture o created by plac-
ing eighteen stubs in templated Clamps (Fig. 3a-b). We
characterize the difference between lock and key patterns
by the area or number of misplaced stubs, A, as well as
the circumference of the misplaced area, C' (Fig. 3c), and
use 136 different key patterns which cover all possible
values of A and C that can be reached by 18 stubs. For
each key, we performed experiments (respectively simula-
tions) to determine the stiffness k. (respectively k) via
the slope of the force-compression curves - both values

(e) Schematic representation of the deformations at all surfaces of

agree very closely (see Methods). When the key equals
one of the two lock textures £{oL}, all bricks deform
compatibly and k is low. Incompatibly textured sur-
faces push metacubes into frustrated states, leading to
an energy penalty and increased stiffness (Fig. 3d). The
increase with A evidences simple lock and key function-
ality, but when k is plotted as function of A and C, the
stiffness is seen to increase with C also - for the same
number of misplaced stubs, a range of stiffnesses can be
observed (Fig. 3e). When plotted as function of A + C,
all our data collapses on a straight line, which evidences
intricate collective phenomena at play (Fig. 3f). We sug-
gest that due to parity, different parts of the cube deform
in opposing parity, and that the stiffness is determined
by the size of the domain walls separating these regions,
which is given by A 4+ C (see methods). Together, this
demonstrates the ability of a metacube to perform an
arithmetical calculation on the mismatch between key
and lock patterns, in behaviour more readily associated
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Figure 3. Pattern recognition and pattern analysis. (a) Experimental realization of an elastic 5 X 5 X 5 metacube programmed
for a smiley texture. (b) Schematic of experiments where this metacube is compressed between patterned clamps. (c) Examples
of mismatch between cube lock texture o (squares) and boundary key textures oy, (circles). The boundary between regions
of opposite parity is indicated in red. (d) Experimental force-compression curves. Colour corresponds to key textures in panel
(c). (e) The experimentally obtained stiffness k. varies systematically with both the area (A) and circumference (C) of the
mismatch. Coloured data points correspond to key textures in panel (c), and size of the circle represents k.. (f) The stiffness

ke is essentially linear in A + C.

with machines than with materials.

Combinatorial strategies open up the design of ma-
chine materials which can be programmed with specific
shape sensing and shape shifting tasks. We anticipate
that combinatorial design of textured metamaterials can
be extended in various directions. First, the inclusion of
vacancies could lead to multishape materials®?, whereas
defects can induce controlled frustration to obtain mul-
tistability, memory and programmability® 12 Second,
differently shaped building blocks such as triangles or
hexagons in two dimensions, truncated octahedra and
gyrobifastigii in three dimensions, or mixtures of build-
ing blocks could be used to tile space. Third, building
blocks with degrees of freedom different from the simple
‘inwards or outwards’ deformations considered here could
be considered — a prime example being origami units
that have folding motions 1912, Finally, heating or mag-

netic fields instead of compression could be used to actu-
ate shape changing metamaterials, while non-mechanical
textured functionalities such as wavefront shaping could
also be achieved. We envision a range of applications
where control and processing of spatially complex me-
chanical information is key. Textured metamaterials
can be designed to naturally interface with the complex
shapes and shapeability of the human body, in pros-
thetics, haptic devices, and wearables. Moreover, shape
changing is central to a wide variety of actuators and
sensors, in particular in the context of soft robotd27 29,
Finally, at smaller scales, controllable surface textures
could control friction, wetting, and drag.
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V. METHODS

Combinatorial Design. The presence of holographic
order reduces the number of potential compatible L x L x

L spin configurations from 2 x 3L? (L? blocks with 3 ori-

entations and parity) to 93L* (3 pairs of opposing surfaces
with each L? spins). The vast majority of these are not
compatible and to better understand our design space,
we discuss how to exactly evaluate and obtain upper and
lower bounds for Q(L), the number of L-cubes (short for
the number of potentially compatible L x L x L spin con-
figurations). We construct cubes by stacking motifs, and
@ counts the number of L-motifs (short for L x L x 1
motifs) compatible with a given texture {o}.

To understand the possible motifs, we now classify the
patterns of z-bricks that arise in L-motifs. Crucially, z-
bricks are sources or sinks for the in-plane spins o, and
oy, and therefore each 2 x 2 submotif can only contain
0, 2 or 4 z-bricks. This restricts the patterns of z bricks
to columns, rows, and intersecting columns and rows. In
general, we can enumerate the patterns of z-bricks using
binary vectors ¢; and r;, and placing a z-brick at location
(¢,7) only when ¢; # r; (Fig. ) On the z-bricks, the
z-spins form checkerboard patterns, whereas the spins in
the remainder of the pattern can be chosen at will by
filling each position with either an = or y brick.

In the absence of z-bricks, we can obtain two mo-
tifs by fixing o, and o, to be opposite and alternat-
ing, i.e., at site (i, ) of the motif 0, = —o, = (—1)*7
or 0, = —o, = (—1)"*1. In both cases, each ver-
tex is compatible with either an x or a y-brick, with
corresponding positive or negative o,. This allows the
straightforward design of two L x L x 1 motifs consistent
with any {o,}. In Fig. we show these motifs, as
well as four more that are compatible with a 5 x 5 smiley
texture - hence @ = 6 for this texture. In principle, Q(L)
can be exactly evaluated by determining for each texture
{0} the number @, and then summing over all textures
(see S.I. and Fig. ):

QL) = B,y Q" . (1)

Lower Bound. A lower bound for € follows from
our construction to create two motifs for any spin con-
figuration, which implies that @ > 2. As these can be
stacked in arbitrary order, this yields at least 2 spin-
configurations for a given texture. Since there are oL? 0,
textures, we find that

Q(L) > 2E°+L (2)

Staggered Spins. To simplify the counting of the
number of compatible spin-configurations Q(L) (for de-
tails see S.1.), we define staggered spins &, such that for
site (4, 7, k) in the metacube 557 = (—1)"HFk 5(H30)
for « = z,y,2. Under this invertible transformation, a
checkerboard texture of {o,}, for example, corresponds
to a homogeneous texture of {7,} where all staggered

spins are equal to either +1 or —1. Moreover, all sites in
a given row, column or tube have the same value of the
O, Oy OF G, respectively.

Upper Bound. For a simple upper bound we note
that the maximum value of @ is obtained when ¢, =
+1 or 6, = —1. For each of these textures there are
Q = 2*t1 — 1 spin configurations. Consider for example
o, =+1. If 6, = —1 then all the &, are free, leading to
2L compatible structures, if 0y = —1 then all the 7, are
free, leading to an additional 2% compatible structures.
As 6, = 6y = —1 was counted twice, the total number
is 2 + 2% — 1 = 2841 _ 1. Hence, we obtain as upper
bound:

QL) < 257 x (2FF1 — 1)F < 92L°4L (3)

A stricter upper bound is derived in the S.I.: Q(L) < 4L-

(3/4)L - 22L” | The exact evaluation of (L) is explained
in the S.I. and the results are given in Table EDT1.

Design Limits. We note here that if n is the number
of pairs of opposing surfaces where the spins can be cho-
sen freely, Q(L) = Z”LQ, and that the simple lower and
upper bound given above roughly correspond to n = 1
and n = 2. Approximate calculations detailed in the S.I.
lead to 2L°+L+l092(3) < O < 2L2+2L+2, and our exact
evaluation of Q(L) shows that for large L, Q is quite close
to the lower bound (Fig. 2a). Hence, once the texture of
one surface is fixed, there is limited freedom, apart from
the stacking order of motifs, to design textures at other
surfaces. For most spin textures, only the two simple
motifs are compatible, and z-bricks play a minor role.

Materials and Fabrication. We created the 5x5x5
specimens by 3D printing water-soluble moulds, in which
we cast a well calibrated silicon rubber (PolyvinylSilox-
ane, Elite Double 32, Zhermarck, Young’s Modulus, E =
1.32 MPa, Poisson’s ratio v ~ 0.5). The unit bricks mea-
sure 11.46 mm X 11.46 mm x 11.46 mm, with a spher-
ical pore of diameter D = 10.92 mm in the center and
four cuboid inclusions of dimension 4.20 mm x4.20 mm x
11.46 mm at the = and y corners — See Fig.[ED2h. They
are stacked with a pitch of @ = 11.46 mm, such that the
filaments between the unit cells have a non homogeneous
cross-section with a minimal width d = 0.54 mm and a
depth w = 3.6 mm — See Fig. [ED2p.

The 10 x 10 x 10 sample has the same brick dimensions
and was 3D printed commercially (Materialise, Leuven,
Belgium) out of sintered polyurethane (E ~ 14 MPa).
On the faces of the aperiodic cubes, square pedestals were
added to facilitate both visualization of the surface tex-
ture and compression by textured boundaries.

Mechanical tests. We compressed both metacubes
at a rate of 0.02 mm/s in a uniaxial testing device (In-
stron type 5965) which controls the compressive displace-
ment u better than 10 ym and measures the compressive
force with a 107* N accuracy at an acquisition rate of
0.5 Hz.

While we used flat plates for Fig. 1c, we used textured
boundary conditions for Figs. 2d and 3. We created tex-
tured top and bottom boundaries using aluminium plates



with female 3 mm threads positioned in a square array of
pitch p = 11.46 4+ 0.02 mm, in which we mount stainless
steel M3 screws whose caps were machined to a height of
3.50+0.01 mm (See Fig[ED3p) - this ensures precise lev-
elling of the pins and flexibility in texture. At the start
of each experiment, the cubes were gingerly positioned
and aligned by hand within a 1 mm accuracy on the bot-
tom boundary. The screws were placed to form identical
(respectively complementary) top and bottom patterns
for the 5 x 5 x 5 (respectively 10 x 10 x 10) cube.

For the 10 x 10 x 10 cube, designed as in Fig. [ED4h, we
used checkerboard textures leading to the desired pattern
on one face (Fig. 2), the reverted pattern on the opposite
face (Fig. 2 and [ED4pb) and checkerboard textures on
the other faces (see Fig. 2 and [ED4k).

Numerical Simulations. We probed the response of
a b5 x5 x5 aperiodic smiley metacube to different textures
by performing a fully nonlinear analysis within the com-
mercial package ABAQUS/STANDARD. We modelled the
elastomer using a neo-Hookean strain energy density with
a Young’s modulus £ = 1.32 MPa and a Poisson’s ratio
v = 0.4999. We carried out a mesh optimization and
a mesh density study leading to a typical mesh size of
0.6 mm and a total number of 1.5 x 10° hybrid quadratic
tetrahedral elements (Abaqus type C3D10H). We applied
uniaxial compression by applying 10 steps of magnitude
Ay = 0.25 mm, using the exact same boundary condi-
tions and dimensions as in the experiments (Fig. [ED5b).

Determination of k. The numerical force-
displacement curves are very well fitted by the quadratic
form F(u) = ku + nu?, which captures the effect of the
nonlinear softening and which allows an accurate estima-
tion of the stiffness k. The experimental determination
of the stiffness required special care, as small gravity-
induced sagging of the cube causes a soft knee in the
force displacement curve when the top boundary makes
contact with the sample. Therefore, we determined the
stiffness by fitting the force-displacement curves to the
same quadratic function as for the numerics, focussing
on intermediate displacements 0.8 mm < u < 2.5 mm
away from the knee where dF/du is linear in u — see
Fig. [ED5h.

Lock and Key Mechanics. For the lock and key
experiments, we used a 5 X 5 X 5 cube made by stack-
ing 5 B*configurations (Fig. [ED1p). The key patterns
consisted of 18 screws placed in a 5 x 5 array (see Fig. 3b-
c and [ED3h-b). We focused on 136 configurations that
have distinct values of the area A and circumference C
of the texture mismatch. For both experiment and sim-
ulations, we estimated the stiffness & and observe that
it increases with the mismatch between lock and key.
The variation of k£ in experiments and simulations closely
match (Fig. [ED5g). Neither A nor C are good predictors
for the level of frustration. To interpret the outcome of
the experiments with the 5 x 5 x 5 cube, we posit that
for incompatible key textures, different parts of the cube
approach compatible configurations with opposite par-
ity, thus localizing the frustration along internal domain

walls. Hence, a single misplaced pixel carries an energy
penalty due to the four frustrated = and y-sides of the
brick in front of the defect, and one z side opposing the
defect - when defects touch, their interface is not frus-
trated. Therefore, the size of the domain walls equals
the number of frustrated sides, which equals A + C.



VI. EXTENDED DATA
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Extended Data Figure ED1. Motif Based Design (a) 2D repre-
sentation of the six bricks, and illustration of complex motifs.
All complex motifs can be generated by defining two binary
vectors {c;} (column) and {r;} (row) that first govern the
placement of z-bricks at location (i,7). The remaining sites
are filled with x and y-bricks. Respecting parity, this gener-
ates all motifs for given ¢ and r. (b) The six motifs that are
compatible with a 5 x 5 smiley texture (c) A total of 6> smi-
ley metacubes can be designed by varying the stacking order
- here A~ denotes the same motif as AT but with inversed
spins. The x and y-spins follow from the choice of motifs.
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Extended Data Figure ED2. Implementation (a) Computer
assisted design of the geometry of the unit cell and (b) a
5 x 5 x 5 cube. All our samples were 3D printed with the
dimensions ¢ = 11.46 mm, D = 10.92 mm, w = 3.6 mm. To
make the wall thickness outside the cube equal to the internal
wall thickness, the outer walls are thickened by 0.27 mm.

Extended Data Figure ED3. Lock and Key Experiment. (a)
Picture of the textured clamp. (b) Side view of the experi-
ment.
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Extended Data Figure ED4. 10 x 10 x 10 metacube under
uniaxial compression. (a) Motif A" - the cube is designed
by stacking motifs AT and A~. (b) Opposite face of the one
shown in Fig. le showing the inverted pattern. (c) One of
the transverse faces showing a checkerboard pattern.
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Extended Data Figure ED5.  Complex sensory properties
of a complex 5 X 5 x 5 metacube with internal smiley tex-
ture. (a) Force-compression curve for five experiments (thick
solid lines), where the colour indicates the external texture
shown in Fig. 3. The black thin lines show fits to a quadratic
function Fyi;(u) = ku + au? performed in the shaded region
0.8 mm < v < 2.5 mm. (b) Corresponding numerical results.
(c) Scatter plot showing very good correspondence between
the stiffness obtained by simulations (ks) and experiments

(ke).



1 6
2 450
3 151,206
4 145,456,074
5 325,148,366,166
6 1,562,036,085,226,890
7 17,234,732,991,509,112,246
8 578,304,084,367,752,824,053,674
9 84,438,573,424,284,282,414,882,546,966
10 58,592,971,553,875,504,020,753,814,442,326 410
1 181,442,224,689,012,470,542,563,031,429,841,423,983,926
12 2,404,888,026,041,008,595,056,652,999,310,606,919,098,996,796,074
13 126,725,905,761,644,879,286,362,510,660,061,876,041,719,518,257,045,613,846

14 30,625,852,190,216,495,511,364,347,343,665,021,261,262,812,628,299,779,541,749,100,810

Extended Data Table EDT1. The exact value of € for L x
L x L metacubes up to L = 14.



SUPPLEMENTARY INFORMATION

I. MOVIES

We provide details for the 4 Movies accompanying the
main text.

e The movie dz5c5_Periodic.mp4 shows a 5 X 5 X 5
metacube, which is uniaxially compressed along its
minor axis by flat clamps. As discussed in the main
text, it exhibits a pattern transformation, where
its building blocks suddenly morph into alternated
bricks of elongated and flattened shape.

e The movie smiley. MOV shows a 10 x 10 x 10
metacube decorated with square pedestals, which
is uniaxially compressed along its minor axis by
clamps textured in a checkerboard pattern (see
methods). As discussed in the main text, its surface
texture morphs into an exactingly designed ”smi-
ley” pattern.

e The movie antismiley. MOV shows the opposite
face of the same 10x 10 x 10 metacube during a sim-
ilar experiment. As discussed in the methods, its
surface texture morphs into the inverted ”smiley”
pattern.

e The movie checkerboard. MOV shows a side face of
the same 10 x 10 x 10 metacube during a similar ex-
periment. As discussed in the methods, its surface
texture morphs into a checkerboard pattern.

II. COMBINATORICS

Here we derive a formula for calculating the number
of compatible L x L x L spin configurations, Q(L). In
section we find lower and upper bounds on (L) for
any L. Section[[IB|contains several proofs needed for the
derivation of these bounds. Section [I'(] contains a de-
tailed derivation of a recurrence equation, which enables
us to numerically evaluate Q(L) exactly up to L = 14.
In section we use the exact results of section [I(] to
find an approximate upper bound on Q(L).

We first consider L x L x 1 configurations, and say that
a row of L spins {0} and a column of L spins {oy} is
a solution of a {o,} L x L texture if the combination of
{04,0y,0.} yields a compatible L x L x 1 configuration,
see Fig. We denote by @ the number of solutions
of a given texture {o,}, which is equal to the number
of corresponding compatible L x L x 1 configurations.
These L x L x 1 configurations can be stacked in any
order, yielding Q¥ distinct L x L x L metacubes for this
particular texture, and thus

L) = Zo(L)Q . (SI)
Q
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O x

SI Figure SI1. An illustration of a 6 x 6 x 1 configuration.
The o, spins are specified on the top 6 X 6 squares, the o,
spins are specified on the row at the front, and the o, spins
are specified on the column on the right.

where Zg (L) is the number of {o,} L x L textures that
have exactly @ {o,0,} solutions. The number of com-
patible structures, or distinct metacubes is Q(L)/2 since
each compatible structure has two compatible deforma-
tions that differ by a global spin flip.
For simplicity, we define the staggered spins &, such
that for site (7, J, k) in the metacube
Gk = (—1) IR Gk (SI12)
for @ = x,y, z. One symmetry property that will be used
repeatedly is the fact that any two o, textures which dif-
fer only by permutations of rows or columns have exactly
the same number of {5, gy} solutions, namely they have
the same value of (). Therefore, if a texture contains p
columns which are all +1, we may assume without loss of
generality that these columns are the leftmost columns,
and this particular choice of placing these columns rep-

resents ( g > textures with the same value of Q.

A. Bounds on 2

We now find lower and upper bounds on (L) by
bounding Zg. First note that each 7. texture has at
least two solutions, i.e. @ > 2 for all textures; one in
which all the 7, spins are equal to +1 and the o, spins
are equal to —1, and one in which all the 7, spins are
equal to —1 and the &, spins are equal to +1. A simple
lower bound on €2 is found by saying that all textures
have at least @ = 2. Since there are in total oL? 0,
textures, we find that

Q(L) > 25+ (SI3)



1. Simple bounds

For a simple upper bound we note that there are ex-
actly two textures that have the maximal number of solu-
tions: 6, = +1 and 7, = —1. Each of these textures has
Q = 2t — 1 solutions; Consider for example ¢, = +1.
If 6, = —1 then all the 6, are free, leading to 2L so-
lutions, if 6, = —1 then all the &, are free, leading to
an additional 2~ solutions, however &, = gy = —1 was
counted twice, and thus the total number of solutions is
2L 428 1 = 2+1 _ 1. Below we will show that all other
0, textures have less solutions.

The next highest number of solutions for a given &,
Q =2V 4281 =3.2L-1 5 for &, textures which are all
+1 (or —1) except for one row or column which is all —1
(or +1, respectively). See proof in section below.

A lower bound on the number of compatible configu-
rations for a L X L X L cube is obtained by saying that
except for the two 7, textures with the maximal number
2L+1 _ 1 of solutions, all the other 2L* _ 2 textures have
at least two solutions, and thus

QL) = [2- (2571 —1)" + (22— 2) 25| . (sm)
For L > 1, this may be approximated by

QL) >3- 25 +L, (SI5)

Note that this result may also be obtained by considering
the lower bound given in Eq. above and applying
the arguments leading to it on all three directions. For
L > 1 the multiple counting of the same configuration
from different directions is expected to be negligible.

For the upper bound, we say that except for the two
&, textures that have the maximal number 2541 — 1 of
solutions, all the other 2L* _ 2 textures have at most
2L 4 2L—1 = 3. 251 golutions, and thus

QL) <2 (28— 1)" 4 (22— 2) - (3-2571) 816)

For L > 1, this may be approximated by

Q(L) < 22° <2> g (ST7)

2. Better upper bound

An even better upper bound can be found by finding
a lower bound on Z3(L), the number of &, textures that
have only the two trivial ¢, — &, solutions. Consider a
0, that has a solution in which p, of its &, spins are in
the +1 state and p,, of its 6, spins are in the +1 state. In
that case, the 7, spins in the intersection between the p,
0z = +1 and p, oy = +1 spins must be 5, = —1, and in
the intersection between the L —p, 6, = —1 and L — p,
g, — 1 spins must be 5. = +1, see Fig. [SI2} The other
(L — pz)py + (L — py) po spins are in the intersection of
opposite values of 7, and &,, and thus are free to be
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SI Figure SI2. An example of a 6 x 6 x 1 configuration. p, = 3
of the 6, spins are +1, and p, = 3 of the 6, spins are +1.
The & spins in the intersections between +1 (—1) 6, and Gy
spins must be —1 (+1).

6, = ®1. Therefore, the number of &, textures that
have a solution with these values of p, and p, +1 spins
in 6, and &, respectively is

Map) = () (1) 2ermsaomr (st

A lower bound on Zs(L) can be found by excluding
all the &, textures that have more than two solutions.
A bound on that may be obtained by summing over
M (ps, py) and noting that in this way each &, texture is
counted at least once,

Zs(L) >

L L
2
>25 — (NN M (pa,py) — M(0,L) — M (L,0) | =
Px Dy
L

:3-2L2—Z(§)(2p+2L—P)L.

p=0

(S19)

At large L, the main contribution to the sum comes from
the extreme values of p, p =~ 0 and p ~ L. Therefore, as
an approximation we include in the sum only the terms
p=0,1,L — 1, L and find that

Zy(L) > 2&° (1 - ‘;’;‘) . (SI10)

To obtain an upper bound on (L), we say that the num-
ber of &, textures that have two solutions is at least that
given by Eq. (SI9), two of the textures have 251 — 1



solutions, and the rest have 3 - 2£~1 solutions, such that

L

Q(L) < 3-2L2—Z<§>(2P+2L—P)L 2b4
p=0
+2-(2L+1—1)L+
L L L 2 L
+ Z<p>(2p+2L—P) —ol™Hl 9l (3. 287
p=0

—3.9L"+L _9l’~L+1 3L, (2L2 + 1) 42 (ko )F

L

+ (2L2*L 3 - QL) > ( ]I; ) (20 +257)" . (ST

p=0

The first line in the first expression in Eq. cor-
responds to the &, textures that have two solutions, the
second line corresponds to the two textures that have
2541 _ 1 solutions, and the third line corresponds to the
other textures. In the limit L > 1, we consider in the
sum over p only the terms p = 0,1, L—1, L, and thus Eq.
(SI11)) may be approximated by

Q(L) <4L-2%F (3)L . (SI12)

4

In summary, we find that for large L, Q(L) is bounded
by

L
3.2 < (L) < 4L - 228 (i) . (SI13)

B. Proofs
1. Maximal number of compatible configurations

Here we prove that for a layer of size k x L, the &,
textures that have the maximal number of solutions are
&, = +1 and 6, = —1, and each of them has Q = 2% +
2L — 1. We do this by induction on L.

For L =1, assume that the 7, texture has p +1 spins
and k —p —1 spins. If the only &, spin is +1, the p spins
in &, corresponding to the p &, spins which are equal
to +1 must be —1, and the remaining k — p &, spins are
free. Similarly, if the 6, spin is —1, then p of the &, spins
are free and the rest must be +1. Therefore, a texture of
size k x 1 with p +1 spins has Q = 2P + 2*~P solutions.
This is maximal when either p = 0 or p = k, and then
Q=2F+1=2F4+2—1, as required.

Now we will assume this is true for all sizes until L
and will check for L + 1. Assume that the top row in the
0, texture has p +1 spins and k — p —1 spins, see Fig.
[SI3h. If the top &, spin is +1, then p of the &, spins
must be —1, and from the other restrictions there are at
most 2 4+ 2F~P — 1 solutions (according to the induction
assumption), and similarly if the top &, spin is —1. In
total, there are at most 2L + 2F=P — 1 4 2L 4 97 — 1
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(a) (b) (c)

SI Figure SI3. (a) If the top row has p = 4 +1 & spins and the
top Gy spin is +1, then the p = 4 corresponding &, spins are
—1. The other &, and &, spins are determined by at least the

40> spins marked with a green question mark. (b) If not all of

the columns are homogeneous, then the remaining 6, and &,
spins are not determined solely by the &, spins marked with a
green question mark. (c) If at least one of the p = 4 &, spins
corresponding to the all +1 columns is +1 (in black), then all
the (red) &, spins are —1, and subsequently the L, — p, = 2
G+ (purple) spins are +1.

solutions, which is maximal for either p = 0 or p = k,
and in those cases we get the required result.

2. Second mazimal number of compatible configurations

Here we prove that for a layer of size L x L, the &,
textures with the second maximal number of solutions
are those that are all +1 (—1), except for a single row or
column which is all —1 (4+1). The number of solutions
for this type of texture is Q = 251 + 2L,

Let us consider a &, which is not all +1 or all —1.
Without loss of generality, we may assume that at least
one of the rows is not all +1 or all —1 (if all the rows are
such, we rotate the texture by 90 degrees). Let’s assume
that this row has 0 <p < L +1spinsand 0< L—p < L
—1 spins, and without loss of generality we may assume
that this is the top row, see Fig. [SI3p. If the top &,
spin is +1, then the p &, spins corresponding to the p +1
spins in the top row must be —1. If all the p columns are
all +1 there are no further constraints on the remaining
L — p 7, spins and on the remaining L — 1 ¢, spins, see
Fig. [SI3p. A similar argument can be made if the top
0y spin is —1. Hence, if the top &, row has p +1 spin
and L — p —1 spin, the maximal number of solutions is
obtained when each column is either all +1 or all —1.

If at least one of the &, spins corresponding to the p +1
columns is +1, then all the ¢, spins must be equal to —1,
and thus the remaining L — p G, spins must be equal to
+1, see Fig. [SI3k. Similarly, if at least one of the &, spins
corresponding to the L —p —1 columns is —1, then all the
0y spins must be equal to +1, and thus the remaining p
0 spins must be equal to —1. Otherwise, the &, spins are
free. Hence, in total there are Q = 2P —142L—P — 14 2L
solutions. Since p # 0, L, the maximum is obtained when
p=1orp=L—1,in which case Q = 2~ + 2L,



C. Exact derivation of Zg

Here we derive an exact recursion relation on Zg(L)
which in principle may be solved numerically for any fi-
nite L. Combined with Eq. , this yields an exact
result for the number of compatible spin configurations
Q(L).

We divide all 6, textures to the following types::
Type 0 textures do not have any full rows or columns
(full means that all the spins in it are the same).

Type C+(p) textures have p > 1 columuns of all 41 spins,
no columns of all F1 spins, and no rows of all =1 spins.
Type R4 (p) textures have p > 1 rows of all £1 spins, no
rows of all F1 spins, and no columns of all &1 spins.
Type C(p4,p—) textures have py > 1 columns of all +1
spins, and p_ > 1 columns of all —1 spins.

Type R(py,p—) textures have py > 1 rows of all +1
spins, and p_ > 1 rows of all —1 spins.

Type CR4(ps,py) textures have p, > 1 columns of all
+1 spins and p, > 1 rows of all &1 spins.

We also define Zg (Lg, Ly) as the number of L, x L,
textures of type 8 that have @ solutions. From symmetry
we have

Zy (Lg, Ly) = Z3 (Ly, Ly)
C C_

ZQ+(P) (Lz,Ly) — ZQ (p) (Lz7Ly) —
R R_

=25 (L, L) = 25 (L, L)

Zg(l’-*—#’—) (Lx,Ly) — ZS(P—J’-%—) (L:E)Ly) —

_ Zg(m—m—) (Ly, Ly) = ZIQ?(;D—»ZH-) (Ly, Ly)

ZSRJr(pw’py) (L, Ly) = ZgRi(pwpy) (Lo, Ly) =
CRy (py,pa CR_(py,pa

:ZQ +(p p)(Ly7Lz):ZQ (p p)(L L)

ys L

(SI14)

We now consider a texture of each type which has @ so-
lutions, and see how it can be built from smaller textures
which have ¢ solutions. This yields a set of recurrence
equations which relate Zg (Lg, Ly) to Zf, £y, £,) with
g < Q, 4y < Ly, ¢, < L,. The final set of recurrence
equations is summarized in Section

1. Types CR4(Ly, Ly)

In this case, the &, texture is all +1 or all —1, and
Q =2+ +28v — 1. Hence,

CR4(Lg,Ly)

z5 (Lo Ly) = 0 10 1oty 1 (SI15)

2. Types CR+(Pz,py), 1 <po < La—1,1<py, <Ly—1

We assume without loss of generality that the texture
is of type CR4 (pz,py), that the p, +1 columns are the

13

SI Figure SI4. (a) A texture of type CR+(3,2). Each row
and column in the 3 x 4 block at the bottom-right corner
contains at least one —1 spin. (b) If at least one of the leftmost
Pz = 3 75 spins is +1 (black), the (red) 6, spins are —1 and
subsequently the (purple) rightmost L, — p, = 3 &, spins are
+1. (c) If all the leftmost p, = 3 &, spins are —1 and at
least one of the p, = 2 top &, spins (black) is +1, the (red)
rightmost L, —p; = 3 6, spins are —1. Since each row in the
bottom-right block contains at least one —1 spin, the bottom
L,—py G, spins (purple) are +1. (d) If all the leftmost p, = 3
0 spins and the top py, = 2 6, spins are —1, the constraints
on the remaining 6, and &, spins come from the bottom-right
block.

leftmost columns, and that the p, +1 rows are the top-
most rows. In the bottom right of the texture there is
a block of size (Ly — pg) X (Ly — py), which is a texture
of either type 0,C_(k), R_(k) or CR_(k, ky) with g so-
lutions. In any case, each column and row in the block
contains at least one —1 spin. See Fig. [ST4h.

If at least one of the leftmost p, &, spins is +1, then
0y = —1. Since each column in the block has at least
one —1 spin, the L, — p, rightmost &, spins are +1. The
other leftmost p, — 1 &, spins are free. This gives a total
of 2P= — 1 solutions, see Fig. [SI4b.

If all the leftmost p, &, spins are —1, and at least
one of the topmost p, &, spins is +1, then the rightmost
L, —p, 0, spins are —1. Since each row in the block has
at least one —1 spin, the bottom L, —p, 7, spins are +1.
The other p, — 1 topmost 7, spins are free. This gives
another 2Pv — 1 solutions, see Fig. [SI4k.

If the top p, &y spins and the leftmost p, &, spins are
—1, the only restriction on the remaining ¢, and &, spins
comes from the block, which gives ¢ solutions, see Fig.

[ST44.

Therefore, if the block has ¢ solutions, the L, x L,
texture has Q = 2P= 4+ 2Pv — 2 + ¢ solutions.

Hence, we find that for 1 <p, <L, —1and 1 <p, <
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SI Figure SI5. (a) A texture of type C(4,2). (b) If at least
one of the leftmost py = 4 G, spins is +1 (black), all the (red)
0y spins are —1. Subsequently the (purple) rightmost p_ = 2
Gy spins are +1. (c) If all the leftmost p+ = 4 &, spins are —1
and at least one of the rightmost p_ = 2 &, spins (black) are
—1, then all the (red) 6, spins are +1. (d) If all the leftmost
p+ = 4 6, spins and all the rightmost p— = 2 &, spins are
+1, then there are no restrictions on the (green) &, spins.

L,—1

CR+ (pa,py) L, L,
Z Y'(Lg, Ly) = 00 202 427y —
Q (La y) (pz ) (py Q,2Pz +2PV —2+4q

Ly—ps Ly—py

Z Z ZqCRﬂk“ky)(Lz—PmLy_py)+
kx=1 ky=1

z—Pz—1

L
+ Z chq:(k)(I% _pvay —py)+
k=1

Ly—py—1

+ Z Zfﬂk)(l’a: = Doy Ly — py)+
k=1
+ Z)(Ly = pas Ly — py)] . (SI16)

3. Types C(p, Ly — p) and R(p, Ly — p)

In this case all the columns or rows are full, and we
find that

C ,Lw_ L
ZQ(p p)(Lm;Ly) - < 1';c ) 5Q,2p+2Lw*p+2L1’*2’

R(p,Ly— L
ZQ(P y—P) (anLy) = ( py ) 5Q72p+2Ly—p+2Lz _9s
(SI17)

see Fig. [ST5]

SI Figure SI6. (a) A texture of type C(2,2). Each of the two
middle columns contains at least one +1 and one —1 spin.
(b-d) A breakdown of all the possibilities for the &, spins
(in black), the constraints on the &, spins (in red), and the
subsequent constraints on the remaining 6, spins (in purple).
Spins marked with a green question mark are free.

4. Types C(p+,p-) and R(py,p-)

We may assume without loss of generality that we
consider a texture of type Cp, ,_, that the p, full +1
columns are the leftmost columns, and that the p_ full
—1 columns are the rightmost columns. In the middle
there is a block of size (L, —p4—p—)x L, of type 0, R4 (k)
or R(k4,k_), such that in each of its columns there is at
least one +1 spin and at least one —1 spin. See Fig. [SI6h.

If at least one of the leftmost p; G, spins is +1, then
0y = —1, and subsequently all the rightmost p_ &, spins
are +1. Since each of the middle columns has at least
one —1 spin, the middle L, — p; — p_ &, spins are +1.

See Fig. [SIGp.

If all the leftmost py &, spins are —1, and at least one
of the rightmost p_ &, spins is —1, then 7, = +1. Since
each of the middle columns has at least one +1 spin, the
middle L, — p; — p_ 7, spins are —1. See Fig. [SI6.

If all the leftmost p4 &, spins are —1, and all the right-
most p_ &, spins are +1, the only restriction comes from
the middle columns. See Fig. [SIG{.



Therefore, the recursion relations are

C \D—
ZQ(P+ D )(LmLy) —

— Lz Lz — P+ § by op_
jo P Q2P+ +2P— —2+4¢

Ly—1Ly—ky
Yo D 23 Ly —pr = po Ly
ki=1 k_=1
Ly—1
DD RS Sy B
s==%1 k=1

+ Z)(Ly —py —p—, Ly)

)

Zg(p+7p7)(Lw, Ly) —

Ly Ly —py
= 5 P— _
(5) (17 Yoo

L,—1Ls—Fky
Do ZM ALy Ly —py —po )+
ki=1 k_=1
Lao—1
+ 20 2 20O Ly —py —p)+
s==+1 k=1

+29(Lay Ly —py —p-) |- (SI18)

5. Types Cy(p) and Ri(p)

We assume without loss of generality that the texture
is of type C4(p), and that the p full +1 columns are the
leftmost columns. The block of size (L, —p) x L, is either
of type 0 or R_(q), such that each columns contains at
least one —1 spin, see Fig. [SI7h.

If at least one of the leftmost p 7, spins is +1, then
oy = —1. Since each of the rightmost L, — p columns
contains at least one —1 spin, the rightmost L, — p 7,
spins are +1. See Fig. [SI7p.

If all the leftmost p &, spins are —1, then the only
restriction comes from the block, see Fig. [SI7k. Hence,

c L
25 P (L, L) = ( px > 8020144
[L,-1

Z ZEF O (Ly = p, Ly) + Z)(Le — p, Ly) |
k=1

R L
Qi(p)(anLy) = ( py ) 0Q,27~ 144
[L,—1

L k=1

N
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SI Figure SI7. (a) A texture of type C1(2). Each of rightmost
L, —p = 4 columns contains at least one +1 and one —1 spin.
(b-c) A breakdown of all the possibilities for the &, spins
(in black), the constraints on the & spins (in red), and the
subsequent constraints on the remaining &, spins (in purple).
Spins marked with a green question mark are free.

6. Type O

We assume that the &, texture has at least one non-
trivial solution with 1 < p, < L, — 1 of the &, spins and
1 <p, <L,—1of the 6, spins in the +1 state. Without
loss of generality, we assume that the p, +1 &, spins
are the leftmost spins and the p, +1 &, spins are the
topmost spins. Thus, the ¢, texture is divided into four
quadrants. All the spins in the p, x p, top-left quadrant
are —1, all the spins in the (L, —p;) X (L, —p,) bottom-
right quadrant are +1, while the spins in (Ly—ps) xpy the
top-right (TR) quadrant and the p, x (L, —p,) bottom-
left (BL) quadrant are free. However, since the L, x L,
0, texture is of type 0, we find that the TR quadrant is
of type 0, C_ (k) or Ry (k) and the BL quadrant is of type
0,C4 (k) or R_(k). In any case, in the TR quadrant all
the columns contain at least one —1 spin and all the rows
contain at least one +1 spin, and in the BL quadrant all
the columns contain at least one +1 spin and all the rows
contain at least one —1 spin. See Fig.

Now consider the ¢; solutions of the BL quadrant and
the ¢o solutions of the TR quadrant. Each solution has
at least one ¢, spin equal to +1 and one &, spin equal to
—1, or at least one 7, spin equal to —1 and one &, spin
equal to +1, otherwise ¥ = ¥ = +1, which is possible
only if the blocks are of type CR+, and they are not.
Therefore we should consider the following cases:

a. BL or TR of type 0 In this case, each column
and row in BL and TR contains at least one +1 spin and
one —1 spin. If one of the leftmost p, &, spins is —1,
then the topmost p, &, spins are +1 and at least one of
the bottom L, — p, &, spins is +1. Subsequently, the
rightmost L, — p, 7, spins are —1. See Fig. [SI9}



(a)

SI Figure SI8. A texture of type 0 which is part of a config-
uration with p, = 3 of its 6, spins equal to +1 and p, = 3
of its 6, spins equal to +1. The TL 3 x 3 quadrant in the &,
texture is all —1, and the BR 3 x 3 quadrant is all +1.

(a) (b)

SI Figure SI9. The BL quadrant is of type 0. (a) If at least
one of the leftmost p, &, spins is —1 (black), the p, = 3
topmost G, spins are —1 (red). Since the BL quadrant is of
type 0, each column in it contains at least one —1 spin and
thus at least one of the bottom &y spins is +1 (blue). From
the intersection of the blue &, spin and the BR quadrant, the
rightmost (purple) ¢, spins are —1. (b) If all the leftmost 65
spins are +1, then all the bottom &, spins are —1, since each
row in the BR quadrant contains a +1 spin.

If all the leftmost p, &, spins are +1, then the bottom
Ly,—p, 0, spins are —1 and the only remaining restriction
comes from TR. See Fig. [SI%h.

A similar reasoning can be done starting from the TR
quadrant, and thus if at least one of BL or TR is of type
0, we find that @ = g1 + g2 — 1. See Fig. [SI9.

b. BL of type C (k1) and TR of type Ry (ks), or BL
of type R_(k1) and TR of type C_(ks) We assume with-
out loss of generality that BL is of type C (k1), and that
the k1 +1 columns are the leftmost. See Fig.

If at least one of the leftmost p,, &, spinsis —1, then the
topmost p, &, spins are +1. Subsequently, the rightmost
L, — p, 0, spins are —1. See Fig. [SI10h.

If all the leftmost p, &, spins are +1, then the bottom
L, —p, 0, spins are —1, and the only further restriction
comes from TR. See Fig. [SIIOp. A similar reasoning
can be done starting from the TR quadrant, and thus
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(a) (b)

SI Figure SI10. The BL quadrant is of type C+(1) and the TR
quadrant is of type Ry (1). (a) If at least one of the middle
left p. — k1 = 2 &, spins is —1 (black), the topmost (red) &y
spins are +1. From the intersection of the (red) 6, spins and
the top row in the TR quadrant, the rightmost (purple) 64
spins are —1. (b) If all the leftmost &, spins (black) are +1,
then from their intersection with the leftmost column in the
BL quadrant, the bottom &, spins (red) are —1. The other
6z and G, spins are determined by the TR quadrant.

SI Figure SI11. The BL quadrant is of type C+(1) and the
TR quadrant is of type C_(1). (a) If at least one of the left-
middle p, — k1 = 2 &, spins is —1 (black), the topmost &
spins (red) are +1. Because each row in the BL quadrant,
except the leftmost k1 columns, contains at least one —1 spin,
at least one of the bottom &, spins (blue) is +1. From the in-
tersection of the blue 6, spin with the 6. spins, the rightmost
and leftmost &, spins are —1 (purple). (a) The black spins
are set as shown. The remaining (red) &, spins are therefore
—1, and subsequently the top (purple) &, spins are +1. (c)
The black spins are set as shown. Since each column in the
TR quadrant contains at least one +1 spin, at least one of the
topmost &, spins is —1 (blue). From the intersection of the
blue spin, the leftmost and rightmost (purple) &, spins are
+1. (d) The black spins are set as shown, and they constrain
the red spins as shown. (e) The black spins are set as shown.
The remaining green k1 + k2 = 2 &, spins are free.

Q=q+q¢g-1

c. BL of type Cy(k1) and TR of type C_(k3), or
BL of type R_ (k1) and TR of type Ry (k2). We assume
without loss of generality that BL is of type Cy (k1), that
the k1 +1 columns are the leftmost, and that the ko —1
columns are the rightmost. See Fig.

If at least one of the left-middle p, — k1 &, spins is
—1, then the topmost p, &, spins and at least one of the



bottom L, — Py 0y spins are +1, and thus the rightmost
L, — p, 0 spins are —1. See Fig.

If all the left-middle p, — k1 &, spins are +1, and at
least one of the bottom L, — p, &, spins is +1, then the
leftmost k7 and the rightmost L, — p, &, spins are —1,
and subsequently all the topmost p, 7, spins are 1. See
Fig. |SI11b. The last two cases give a total of ¢ — 2"
solutions.

If all the left-middle p, — k1 &, spins are +1, all the
bottom L, — p, 7, spins are —1, and at least one of the
right-middle L, — p, — ko G, spins is +1, then at least
one of the top p, &, spins is —1. Subsequently, all the
leftmost k1 and the rightmost ko &, spins are +1. See

Fig. [SITT.
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If all the left-middle p, — k1 G, spins are +1, all the
bottom L, — p, 7, spins are —1, all the right-middle
L, —p. — ko G, spins are —1, and at least one of the top
Dy Oy spins is —1, then the leftmost k; and the rightmost
ko G, spins are +1. See Fig. [SITId. These last two cases
give a total of g — 2k2 golutions.

If all the left-middle p, — k1 &, spins are +1, all the
bottom L, — p, o, spins are —1, all the right-middle
L, —pz — kg 0, spins are —1, and all the top p, & spins
are +1, the remaining leftmost k7 and rightmost ks &,
spins are free, which gives another 2¥1+*2 solutions. See
Fig. [SITIE.

Combining all of the above, we obtain the following
recursion relation for the type 0 textures:

Lo—1Ly,—1
1 - L,
0 0 0
oL ly) =05 <px ) ( ) {Z Zy(Ls = Pas Py) ZQs1—q (P Ly — py)+
pPz=1 py=1
pz—1 Ly—py—
—i—Zngq(Lw —pmapy Z ZC+(k)(p:r L _py Z ZR (k) pvay _py) +
k=1
Ly—pz— py—l
+Z(02+17q(va Z ZC Ly —paspy) + Z Z(;%+(k) (Le — paspy) | +
k=1
pzflp’y_l
Ry (k
+ 30N 280D (py Ly — py) 25N (L — paypy)+
k1=1 ko=1
Ly—py—1Ly—p,—1
C_(k
+ Z Z ZR pzaLy *py)ZQ_;,_(l_Q(;(Lz *pz,py)Jr
k1=1 ko=1
Pz—1Ly—ps—1
C_(k
+ Z Z ch*(kl)(pa:, Ly - py)ZQ,((]f;k1+k2+2k1 Jok2 (Lcc - pmypy)‘i‘
ki=1 ko=1

Ly—py—1py—1

Ry (k
+ Z Z ZR (kl) (Pas Ly _py)Z + 22)k1+k2+2k1+2’«2(LI_pmpy)

ki=1 ko=1

The @ —2 in the denominator appears because each solu-
tion was counted (Q—2 times at each possible combination
of p, and p,.

7. Final result

Combining all the above, including the symmetry re-
lations, the recursion relations may be written as

(SI20)




Zo(Ly, Ly) =
+2ZSR+(LI,L ),

Ly—1Ly—
Z¢ (Lo, Ly) Z Z ( ) (
p =1 p,=1 ¢q=2
{Z%+1—q(L:c — Pas Ly — py) [225 (Do, py) + 2Z
+2254 (o, Ly — py) 2G5 q(pu,L — pa)+

ki1=1 ko=1

C
X |:ZQ+q+1 ok1+k2 +2k1 (L pw L — Pz

k1=1 ko=1

c
. {ZQJ:‘I+1*2’“1+’“2+2’€1 (Lz = pay Ly —py —
L,.—1 I
c
25 (Lay L) = Y ( -

p=1

Z8(La, Ly)

py=1 p_=1

+2Z5% (Ly, Ly

CR
RIS 3 5
pz=1 py=1
—i—ZqCJr(L,ch — Py Ly —py) + ch+ (Ly — Py, La
where we used
L.,—1Lz—p4
Clp+,
7§ (L, Ly) ZZZ(””))L L),
pP+= =1 p7—1
L,.—1
C C
25 (Lo Ly) = Y 25" (La, Ly),
p=1
25" (L, Ly) Z Z 2o o) (L, L), (S122)
pm—lpy—l

Note that in order to find Z{,(Ly, L) for @ > 3, we don’t

need to know Z3(L,, L,), only Zy for smaller systems.
Thus, Z9(L,, L,) is determined by

=2t - " 75,

Q=3

Z3(Ly, Ly) (S123)

We numerically solved these recursion equations for
L < 14 and obtained the values of Zg(L) shown in Fig.

—1L;—pz—
() ()

—1Ly—py—
L. —
28 (W) () e

ka) + Z%_q+1_2k1+k2+2k1 (Ly — py

Ly—1Ls—p4—1
Lac Lx_er
-2 () (",

— D+ _p7)+Z¢?(Lr — D+ _pvay)] +

0
- pw) + Zq (Lw
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ZY(La, Ly) + 225" (La, Ly) + 225" (Ly, Ly) + 2§ (L, Ly) + Z§ (Ly, Lo)+

')

(pyvpx) +Z (vapy)] +

(py,pm—k )+Z+1 2k1( klapy)]
- k2) + Zgg_q+1_2k1+kz+2k1 (La: — Pz — k2, LU - py)} +
(paivpy k ) + Z3+1_21‘71 (py - k;17pw):| X

~ ke, Lo = 2] }

) 0Q,2r—14q [ch+ (Lya L, —p)+ ZS(LCE - D, Ly)] )

) 5@,2p++2p*—2+q [ZqC(LyaL:E — P+ _p*)—’—

Lo—1

>

Ly
p 6Q,2P+2LJ;*P+2LH —2
p=1

< ) < ) 5Q 2Pz 4 2Py —24¢ [Z (L — Pz, Ly - py)Jr

(SI21)

— P, Ly — py)} + 5Q,2Lz +2Lly 1>

(

SI12| These were then used in Eq. (SI1) to obtain the
exact values of Q(L) given in the main text and in Fig.
115l

D. Estimates

Note that although 2 < @ < 2L+l 1, for many values
of @ we have Zg(L) = 0 and they are thus irrelevant. We
denote by f(L) the fraction of relevant ) values for which
Zo(L) > 0. For L < 14 we have exact values of f(L),
see Fig.[SI14 and Table Interestingly for L < 8 we
numerically find that for the @ values with Zg(L) > 0
the following relation holds (see Fig. 7

Zo(L) ~ A(L)Q™E.
For 9 < L < 14 we find that there are L values of (),

located at approximately @ = 2" +1 (1 < n < L), for
which Zg(L) ~ A(L)Q~L, while for other values of @

(SI24)



Zg(L) < A(L)Q~E. These L points contribute the most
to . For example, for L = 14 we find that including
only the 14 points for which @ = 2™ 4+ 1 in Eq.
yields a value which is about 0.36 x (14).

Assuming that (SI24)) holds, we can find the prefactor
A(L) analytically since there are two textures that have
Qmam == 2L+1 -1 Solutions,

—L

ZQuan (L) = A(L) (28T —1) 7 =2, (SI125)

and thus

A(L) =2 (2" —1)". (S126)
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SI Figure SI12. The number of G, textures which have @
solutions, Zq, vs. . The continuous line is given by Eqgs.

(SI24) and (SI26). The red dots mark the points at which
Q=2"11.

1070

Exact
Approx from f(L)
= Lower
= Upper
---------- Upper from f(L)

1060 o

1050

1040

10%

1020

1010

SI Figure SI13. Number of compatible configurations for a
L x L x L metacube. Black dots are the exact values. Solid
red and blue lines indicate, respectively, the asymptotic L > 1
results for the lower and upper bounds reen
open squares are obtained by substituting in Eq. (SI27)) the
exact values of f(L), and the magenta dotted line is the ap-

proximate upper bound (SI28|).

10° — T T T T T T T T T

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14

SI Figure SI14. The fraction f(L) of @ values for which there
is at least one configuration with that number of solutions.
The dashed line shows that for L > 4, f ~ 1.8 x e %27

Therefore, we may approximate
(L)~ 3 Zo(D)QE = A(L) Y. @ LQ*
Q’ Q’

= f(L)A(L) (Qmaz — 1)
= f(L) (2K — )" (28— 1) -4,
where the sum over @’ includes only the terms with

Zgo(L) > 0.
First, we verify that by substituting the exact values

(S127)



ST Table SITI.
Zo(L) > 0.

f(L)

© 00 NG W N~

e e
=W NN = O

The

1/2=0.5
4/6=0.67
8/14=0.57
18/30=0.6
27/63=0.44
44/126=0.35
69/254=0.27
113/510=0.22
172/1022=0.17
264,/2046=0.13
399/4094=0.097
587/8190=0.072
852/16382=0.052
1213/32766=0.037

fraction f(L) of @ values for which

20

of f(L) for L < 14 in Eq. (SI27) we indeed get a good ap-
proximation for (L), see Fig.|SI13| Now, we use the fact
that by definition f(L) < 1 in order to obtain from the

approximate result (SI27) the approximate upper bound
QL)< (2571 1) 7. (25— 1) -4m 22042 (S128)

which is much tighter than (SI6)), (SI7) and (SI12)), and

rather close to the asymptotic lower bound (SI5), see

Fig.[SI13l Note that (SI28) is only an approximate upper
bound due to the approximation in (SI24), from which it

was derived. Combining Eqs. (SI5) and (SI28]) we may

write our tight bounds as:

2L2+L+log2(3) <0< 2L2+2L+2_ (SI129)
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