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Foreword

The evolution of combinatorial design theory has been one of remarkable
successes, unanticipated applications, deep connections with fundamental
mathematics, and the desire to produce order from apparent chaos. While
some of its celebrated successes date from the eighteenth and nineteenth cen-
turies in the research of Euler, Kirkman, Cayley, Hamilton, Sylvester, Moore,
and others, not until the twentieth century did the study of combinatorial
designs emerge as an academic subject in its own right. When Fisher and his
colleagues developed the mathematics of experimental design in the 1920s,
combinatorial design theory was born as a field intimately linked to its ap-
plications. Beginning in the 1930s, Bose and his school laid the foundations,
embedding the nascent field firmly as a mathematical discipline by develop-
ing deep connections with finite geometry, number theory, finite fields, and
group theory; however, Bose accomplished much more. His foundation en-
twined deep mathematics with its applications in experimental design and
in recreational problems and anticipated its fundamental importance in the
theory of error-correcting codes.

The rapid advances in design theory can be attributed in large degree
to its impetus from applications in coding theory and communications and
its continued deep interactions with geometry, algebra, and number theory.
The last fifty years have witnessed not only the emergence of certain com-
binatorial designs (balanced incomplete block designs, Hadamard matrices,
pairwise balanced designs, and orthogonal arrays, for example) as central,
but also powerful combinatorial and computational techniques for their con-
struction. Indeed the field grew so far and so fast that its historical connection
to applications was strained.

Yet, in the last twenty years, combinatorial design theory has emerged
again as a field rich in current and practical applications. The fundamental
connections with algebra, number theory, and finite geometry remain and
flourish. The applications in experimental design and coding theory have
developed a breadth and depth that defy brief explanation. Yet combinato-
rial design theory has matured into more than this through applications in
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cryptography, optical communications, storage system design, communica-
tion protocols, algorithm design and analysis, and wireless communications,
to mention just a few areas.

Combinatorial design theory is mature and widely applied today because
it has respected and advanced its mathematical heritage while finding gen-
uine new applications. I am honored to write this foreword for two reasons.
Doug Stinson has for twenty-five years been the epitome of a researcher and
expositor who has advanced combinatorial design theory as a marriage of
mathematics and applications. But more than that, the book you hold in your
hands presents design theory as a seamless interaction of deep mathemat-
ics and challenging applications. By providing an accessible introduction, it
serves as an invitation to those in applications areas to appreciate and em-
ploy beautiful mathematics and concurrently invites mathematicians to learn
from the applications themselves.

In which directions will combinatorial design theory evolve in the next
century? We cannot yet know. We can know, however, that new mathemat-
ical truths will be found and that unanticipated applications will arise. Our
challenge is to seek both and to know that each profits from the other.

Phoenix, Arizona Charles J. Colbourn
April, 2003
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Overview and Goals

Combinatorial design theory is one of the most beautiful areas of mathemat-
ics. Design theory has its roots in recreational mathematics, but it evolved
in the twentieth century into a full-fledged mathematical discipline with di-
verse applications in statistics and computer science. The fundamental prob-
lems in design theory are simple enough that they can be explained to non-
mathematicians, yet the solutions of those problems have involved the de-
velopment of innovative new combinatorial techniques as well as ingenious
applications of methods from other areas of mathematics such as algebra and
number theory. Many classical problems remain unsolved to this day as well.

This book is intended primarily to be a textbook for study at the senior
undergraduate or beginning graduate level. Courses in mathematics or com-
puter science can be based on this book. Regardless of the audience, how-
ever, it requires a certain amount of “mathematical maturity” to study design
theory. The main technical prerequisites are some familiarity with basic ab-
stract algebra (group theory, in particular), linear algebra (matrices and vec-
tor spaces), and some number-theoretic fundamentals (e.g., modular arith-
metic and congruences).

Topic Coverage and Organization

The first seven chapters of this book provide a thorough treatment of the
classical core of the subject of combinatorial designs. These chapters concern
symmetric BIBDs, difference sets, Hadamard matrices, resolvable BIBDs,
Latin squares, and pairwise balanced designs. A one-semester course can
cover most of this material. For example, when I have taught courses on
designs, I have based my lectures on material selected from the following
chapters and sections:
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• Chapter 1: Sections 1.1–1.3, Section 1.4 (optional), Sections 1.5–1.6
• Chapter 2: Sections 2.1–2.4
• Chapter 3: Sections 3.1–3.4
• Chapter 4: Sections 4.1–4.4, Section 4.5 (optional), Section 4.6
• Chapter 5: Sections 5.1–5.2, Section 5.3 (optional)
• Chapter 6: Sections 6.1, Section 6.2 (optional), Sections 6.3–6.8
• Chapter 7: Sections 7.1–7.3

There are many variations possible, of course. Typically, I would provide a
complete proof of the Bruck-Ryser-Chowla Theorem or the Multiplier Theo-
rem, but not both. It is possible to omit Wilson’s Construction for MOLS in
order to spend more time on pairwise balanced designs. Another option is to
include the optional Section 6.2 and omit some of the material in Chapter 7.
Yet another possibility is to present an introduction to t-designs (incorporat-
ing some material from Chapter 9, Sections 9.1 and 9.2) and delete some of
the optional sections listed above.

More advanced or specialized material is covered in the last four chapters
as well as in some later sections of the first seven chapters. The main topics
in the last four chapters are minimal pairwise balanced designs, t-designs,
orthogonal arrays and codes, and four selected applications of designs (in
the last chapter).

Key Features

There are several features of this book that will make it useful as a textbook.
Complete, carefully written proofs of most major results are given. There are
many examples provided throughout in order to illustrate the definitions,
concepts, and theorems. Numerous and varied exercises are provided at the
end of each chapter. As well, certain mathematical threads flow through this
book:

• The linear algebraic method of proving Fisher’s Inequality reappears sev-
eral times.

• The theme of Boolean functions is introduced in the study of bent func-
tions and revisited in the discussion of Reed-Muller codes and a brief
treatment of resilient functions.

• The use of permutation groups as a construction technique is pervasive.
• Elegant combinatorial arguments are used in many places in preference

to alternative proofs that employ heavier mathematical machinery.
• Finite fields are used throughout the book. For this reason, some back-

ground material on finite fields is summarized in an Appendix. However,
another option for an instructor is to specialize constructions utilizing fi-
nite fields Fq to the more familiar fields Zp, where p is a prime.

As mentioned earlier, there are a variety of advanced or specialized topics
that are discussed in the book. Highlights include the following:
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• regular Hadamard matrices and excess of Hadamard matrices;
• bent functions;
• bounds and constructions for minimal pairwise balanced designs;
• the Ryser-Woodall Theorem;
• constructions and bounds for t-wise balanced designs, including a proof

of the Kramer Conjecture;
• a survey of the combinatorial connections between orthogonal arrays,

codes, and designs;
• constructions and bounds for various classes of optimal codes and or-

thogonal arrays;
• Reed-Muller codes;
• resilient functions;
• four selected applications of designs: authentication codes, threshold

schemes, group testing, and two-point sampling.

It must be recognized that design theory is an enormous subject, and any
choice of optional material in a 300 page book is dependent on the whim
of the author! Thus there are many interesting or important areas of design
theory that are not discussed in the book. I hope, however, that readers of the
book will find a fascinating mix of topics that serve to illustrate the breadth
and beauty of design theory.

Audience

As mentioned above, this book is primarily intended to be a textbook. In ad-
dition, all of the material in this book is suitable for self-study by graduate
students, who will find it provides helpful background information concern-
ing research topics in design theory. Researchers may also find that some of
the sections on advanced topics provide a useful reference for material that
is not easily accessible in textbook form.
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1

Introduction to Balanced Incomplete Block

Designs

1.1 What Is Design Theory?

Combinatorial design theory concerns questions about whether it is possible
to arrange elements of a finite set into subsets so that certain “balance” prop-
erties are satisfied. Types of designs that we will discuss include balanced
incomplete block designs, t-designs, pairwise balanced designs, orthogonal
Latin squares, and many more. Many of the fundamental questions are ex-
istence questions: Does a design of a specified type exist? Modern design
theory includes many existence results as well as nonexistence results. How-
ever, there remain many open problems concerning the existence of certain
types of designs.

Design theory has its roots in recreational mathematics. Many types of
designs that are studied today were first considered in the context of math-
ematical puzzles or brain-teasers in the eighteenth and nineteenth centuries.
The study of design theory as a mathematical discipline really began in the
twentieth century due to applications in the design and analysis of statistical
experiments. Designs have many other applications as well, such as tourna-
ment scheduling, lotteries, mathematical biology, algorithm design and anal-
ysis, networking, group testing, and cryptography.

This work will provide a mathematical treatment of the most important
“classical” results in design theory. This roughly covers the period from 1940
to 1980. In addition, we cover some selected recent topics in design theory
that have applications in other areas, such as bent functions and resilient
functions.

Design theory makes use of tools from linear algebra, groups, rings and
fields, and number theory, as well as combinatorics. The basic concepts of
design theory are quite simple, but the mathematics used to study designs is
varied, rich, and ingenious.



2 1 Introduction to Balanced Incomplete Block Designs

1.2 Basic Definitions and Properties

Definition 1.1. A design is a pair (X,A) such that the following properties are
satisfied:

1. X is a set of elements called points, and
2. A is a collection (i.e., multiset) of nonempty subsets of X called blocks.

If two blocks in a design are identical, they are said to be repeated blocks.
This is why we refer to A as a multiset of blocks rather than a set. A design is
said to be a simple design if it does not contain repeated blocks.

If we want to list the elements in a multiset (with their multiplicities), we
will use the notation [ ]. If all elements of a multiset have multiplicity one,
then the multiset is a set. For example, we have that [1, 2, 5] = {1, 2, 5}, but
[1, 2, 5, 2] �= {1, 2, 5, 2} = {1, 2, 5}. The order of the elements in a multiset is
irrelevant, as with a set.

Balanced incomplete block designs are probably the most-studied type
of design. The study of balanced incomplete block designs was begun in the
1930s by Fisher and Yates. Here is a definition:

Definition 1.2. Let v, k, and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-
balanced incomplete block design (which we abbreviate to (v, k, λ)-BIBD) is a
design (X,A) such that the following properties are satisfied:

1. |X| = v,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly λ blocks.

Property 3 in the definition above is the “balance” property. A BIBD is
called an incomplete block design because k < v, and hence all its blocks are
incomplete blocks.

A BIBD may possibly contain repeated blocks if λ > 1. The use of the
letter “v” to denote the number of points is an artifact of the original motiva-
tion for studying BIBDs, namely to facilitate the design of agricultural exper-
iments. “v” was an abbreviation for “varieties”, as in “varieties of wheat”.

We give a few examples of BIBDs now. To save space, we write blocks in
the form abc rather than {a, b, c}.

Example 1.3. A (7, 3, 1)-BIBD.

X = {1, 2, 3, 4, 5, 6, 7}, and

A = {123, 145, 167, 246, 257, 347, 356}.

This BIBD has a nice diagrammatic representation; see Figure 1.1. The blocks
of the BIBD are the six lines and the circle in this diagram.
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Fig. 1.1. The Fano Plane: A (7, 3, 1)-BIBD

Example 1.4. A (9, 3, 1)-BIBD.

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}.

This BIBD can also be presented diagrammatically; see Figure 1.2. The 12
blocks of the BIBD are depicted as eight lines and four triangles. Observe
that the blocks can be separated into four sets of three, where each of these
four sets covers every point in the BIBD.

Example 1.5. A (10, 4, 2)-BIBD.

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {0123, 0145, 0246, 0378, 0579, 0689, 1278, 1369, 1479, 1568,

2359, 2489, 2567, 3458, 3467}.

Example 1.6. Let A consist of all k-subsets of X. Then (X,A) is a
(

v, k,
(v−2

k−2

))
-

BIBD.

Example 1.7. A (7, 3, 2)-BIBD containing a repeated block.

X = {0, 1, 2, 3, 4, 5, 6}, and

A = [123, 145, 167, 246, 257, 347, 356,

123, 147, 156, 245, 267, 346, 357].
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Fig. 1.2. A (9, 3, 1)-BIBD

We now state and prove two basic properties of BIBDs.

Theorem 1.8. In a (v, k, λ)-BIBD, every point occurs in exactly

r =
λ(v − 1)

k − 1

blocks.

Proof. Let (X,A) be a (v, k, λ)-BIBD. Suppose x ∈ X, and let rx denote the
number of blocks containing x. Define a set

I = {(y, A) : y ∈ X, y �= x, A ∈ A, {x, y} ⊆ A}.

We will compute |I| in two different ways.
First, there are v − 1 ways to choose y ∈ X such that y �= x. For each such

y, there are λ blocks A such that {x, y} ⊆ A. Hence,

|I| = λ(v − 1).

On the other hand, there are rx ways to choose a block A such that x ∈ A.
For each choice of A, there are k − 1 ways to choose y ∈ A, y �= x. Hence,

|I| = rx(k − 1).

Combining these two equations, we see that

λ(v − 1) = rx(k − 1).

Hence rx = λ(v − 1)/(k − 1) is independent of x, and the result follows. ⊓⊔
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The value r is often called the replication number of the BIBD.

Theorem 1.9. A (v, k, λ)-BIBD has exactly

b =
vr

k
=

λ(v2 − v)

k2 − k

blocks.

Proof. Let (X,A) be a (v, k, λ)-BIBD, and let b = |A|. Define a set

I = {(x, A) : x ∈ X, A ∈ A, x ∈ A}.

We will compute |I| in two different ways.
First, there are v ways to choose x ∈ X. For each such x, there are r blocks

A such that x ∈ A. Hence,
|I| = vr.

On the other hand, there are b ways to choose a block A ∈ A. For each choice
of A, there are k ways to choose x ∈ A. Hence,

|I| = bk.

Combining these two equations, we see that

bk = vr,

as desired. ⊓⊔
Sometimes we will use the notation (v, b, r, k, λ)-BIBD if we want to

record the values of all five parameters.
Since b and r must be integers, these two theorems allow us to conclude

that BIBDs with certain parameter sets do not exist. We state the following
obvious corollary of Theorems 1.8 and 1.9.

Corollary 1.10. If a (v, k, λ)-BIBD exists, then λ(v − 1) ≡ 0 (mod k − 1) and
λv(v − 1) ≡ 0 (mod k(k − 1)).

For example, an (8, 3, 1)-BIBD does not exist because λ(v − 1) = 7 �≡
0 (mod 2). As another example, let us consider the parameter set (19, 4, 1).
Here, we see that λv(v − 1) = 342 �≡ 0 (mod 12). Hence a (19, 4, 1)-BIBD

cannot exist.
A more general use of Corollary 1.10 is to determine necessary conditions

for families of BIBDs with fixed values of k and λ. For example, it is not hard
to show that a (v, 3, 1)-BIBD exists only if v ≡ 1, 3 (mod 6).

One of the main goals of combinatorial design theory is to determine nec-
essary and sufficient conditions for the existence of a (v, k, λ)-BIBD. This is a
very difficult problem in general, and there are many parameter sets where
the answer is not yet known. For example, it is currently unknown if there
exists a (22, 8, 4)-BIBD (such a BIBD would have r = 12 and b = 33). On the
other hand, there are many known constructions for infinite classes of BIBDs
as well as some other necessary conditions that we will discuss a bit later.
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1.3 Incidence Matrices

It is often convenient to represent a BIBD by means of an incidence matrix.
This is especially useful for computer programs. We give the definition of an
incidence matrix now.

Definition 1.11. Let (X,A) be a design where X = {x1, . . . , xv} and A =
{A1, . . . , Ab}. The incidence matrix of (X,A) is the v × b 0 − 1 matrix M =
(mi,j) defined by the rule

mi,j =

{
1 if xi ∈ Aj

0 if xi �∈ Aj.

The incidence matrix, M, of a (v, b, r, k, λ)-BIBD satisfies the following
properties:

1. every column of M contains exactly k “1”s;
2. every row of M contains exactly r “1”s;
3. two distinct rows of M both contain “1”s in exactly λ columns.

Example 1.12. Consider the (9, 3, 1)-BIBD presented in Example 1.4. The inci-
dence matrix of this design is the following 9 × 12 matrix:

M =




1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0




.

We need a few more definitions before stating the next theorem. Suppose
In denotes an n × n identity matrix, Jn denotes the n × n matrix in which
every entry is a “1”, and un denotes the vector of length n in which every
coordinate is a “1”. Finally, for a matrix M = (mi,j), define the transpose of M,

denoted MT , to be the matrix whose (j, i) entry is mi,j.

Theorem 1.13. Let M be a v × b 0 − 1 matrix and let 2 ≤ k < v. Then M is the
incidence matrix of a (v, b, r, k, λ)-BIBD if and only if MMT = λJv + (r − λ)Iv

and uv M = kub.

Proof. First, suppose (X,A) is a (v, k, λ)-BIBD, where X = {x1, . . . , xv} and
A = {A1, . . . , Ab}. Let M be its incidence matrix. The (i, j)-entry of MMT is
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b

∑
h=1

mi,hmj,h =

{
r if i = j
λ if i �= j.

Hence, from properties 2 and 3 enumerated above, every entry on the main
diagonal of the matrix MMT is equal to r, and every off-diagonal entry is
equal to λ, so MMT = λJv + (r − λ)Iv.

Furthermore, the ith entry of uv M is equal to the number of “1”s in col-
umn i of M. By property 1, this equals k. Hence, uv M = kub.

Conversely, suppose that M is a v × b 0 − 1 matrix such that MMT =
λJv + (r − λ)Iv and uv M = kub. Let (X,A) be the design whose incidence
matrix is M. Clearly we have |X| = v and |A| = b. From the equation uv M =
kub, it follows that every block in A contains k points. From the equation
MMT = λJv + (r − λ)Iv, it follows that every pair of points occurs in exactly
λ blocks, and every point occurs in r blocks. Hence, (X,A) is a (v, b, r, k, λ)-
BIBD. ⊓⊔

We will show that the converse part of the theorem above does not hold
if the second condition is omitted. Incidence matrices satisfying the first con-
dition are equivalent to a certain type of design, which we define now.

Definition 1.14. A pairwise balanced design (or PBD) is a design (X,A) such
that every pair of distinct points is contained in exactly λ blocks, where λ is a positive
integer. Furthermore, (X,A) is a regular pairwise balanced design if every point
x ∈ X occurs in exactly r blocks A ∈ A, where r is a positive integer.

A PBD (X,A) is allowed to contain blocks of size |X| (i.e., complete blocks). If
(X,A) consists only of complete blocks, it is said to be a trivial pairwise balanced
design. If (X,A) contains no complete blocks, it is said to be a proper pairwise
balanced design .

We state the following variation of Theorem 1.13 without proof.

Theorem 1.15. Let M be a v × b 0− 1 matrix. Then M is the incidence matrix of
a regular pairwise balanced design having v points and b blocks if and only if there
exist positive integers r and λ such that MMT = λJv + (r − λ)Iv.

Here is an example to illustrate Theorem 1.15.

Example 1.16. Consider the following 6 × 11 matrix:

M =




1 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 1 1 1
0 1 1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 0 1




.

This matrix M is the incidence matrix of the following regular pairwise bal-
anced design:
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X = {1, 2, 3, 4, 5, 6}, and

A = {123, 456, 14, 15, 16, 24, 25, 26, 34, 35, 36}.

Here v = 6, b = 11, r = 4, and λ = 1. The design is not a BIBD because the
blocks do not all have the same size—there are two blocks of size three and
nine blocks of size two.

It is easily verified that MMT = Jv + 3Iv = λJv + (r − λ)Iv. However,

u6M = (3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2),

so u6 M �= kub for any integer k.

Suppose that (X,A) is a design with |X| = v and |A| = b. Let M be the
v × b incidence matrix of (X,A). The design having incidence matrix MT

is called the dual design of (X,A). Suppose that (Y,B) is the dual design of
(X,A); then |Y| = |A| = b and |B| = |X| = v. Properties of dual designs of
BIBDs are summarized in the following theorem.

Theorem 1.17. Suppose that (X,A) is a (v, b, r, k, λ)-BIBD, and let (Y,B) be the
dual design of (X,A). Then the following properties hold:

1. every block in B has size r,
2. every point in Y occurs in exactly k blocks in B, and
3. any two distinct blocks Bi, Bj ∈ B intersect in exactly λ points.

Example 1.18. Suppose that (X,A) is the (9, 3, 1)-BIBD presented in Example
1.4. Then (Y,B) is the dual design of (X,A), where

Y = {1, 2, 3, 4, 5, 6, 7, 8, 9, T, E, V}, and

B = {147T, 158E, 169V, 248E, 257V, 268T, 348V, 359T, 367E}.

It is easy to verify that every block in B has size four, every point in Y occurs
in exactly three blocks in B, and every pair of distinct blocks in B intersect in
exactly one point.

1.4 Isomorphisms and Automorphisms

We begin with a definition.

Definition 1.19. Suppose (X,A) and (Y,B) are two designs with |X| = |Y|.
(X,A) and (Y,B) are isomorphic if there exists a bijection α : X → Y such
that

[{α(x) : x ∈ A} : A ∈ A] = B.

In other words, if we rename every point x ∈ X by α(x), then the collection of blocks
A is transformed into B. The bijection α is called an isomorphism.
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Example 1.20. Here are two (7, 3, 1)-BIBDs, (X,A) and (Y,B):

X = {1, 2, 3, 4, 5, 6, 7}, and

A = {123, 145, 167, 246, 257, 347, 356};

Y = {a, b, c, d, e, f , g}, and

B = {abd, bce, cdf , deg, aef , bfg, acg}.

Suppose we define the bijection α as α(1) = a, α(2) = b, α(3) = d, α(4) = c,
α(5) = g, α(6) = e and α(7) = f . Then, when we relabel the points in X using
α, the blocks of A become the following:

123 → abd

145 → acg

167 → aef

246 → bce

257 → bfg

347 → cdf

356 → deg.

Thus α is an isomorphism of the two BIBDs.

We need to clarify how isomorphisms affect BIBDs having repeated
blocks. Suppose that (X,A) and (Y,B) are two (v, k, λ)-BIBDs, and suppose
that α : X → Y is an isomorphism of these two designs. Suppose further that
(X,A) contains c copies of the block A. Then it must also be the case that
(Y,B) contains c copies of the block {α(x) : x ∈ A}.

We can describe isomorphism of designs in terms of incidence matrices
as follows.

Theorem 1.21. Suppose M = (mi,j) and N = (ni,j) are both v × b incidence ma-
trices of designs. Then the two designs are isomorphic if and only if there exists a
permutation γ of {1, . . . , v} and a permutation β of {1, . . . , b} such that

mi,j = nγ(i),β(j)

for all 1 ≤ i ≤ v, 1 ≤ j ≤ b.

Proof. Suppose that (X,A) and (Y,B) are designs having v× b incidence ma-
trices M and N, respectively. Suppose that X = {x1, . . . , xv}, Y = {y1, . . . , yv},
A = {A1, . . . , Ab}, and B = {B1, . . . , Bb}.

Suppose first that (X,A) and (Y,B) are isomorphic. Then, there exists a
bijection α : X → Y such that [{α(x) : x ∈ A} : A ∈ A] = B. For 1 ≤ i ≤ v,
define

γ(i) = j if and only if α(xi) = yj.
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Since α is a bijection of X and Y, it follows that γ is a permutation of
{1, . . . , v}.

Next, there exists a permutation β of {1, . . . , b} that has the property that

{α(x) : x ∈ Aj} = Bβ(j)

for 1 ≤ j ≤ b. Such a permutation exists because α is an isomorphism of
(X,A) and (Y,B).

Now, we have

mi,j = 1 ⇔ xi ∈ Aj

⇒ yγ(i) ∈ Bβ(j)

⇔ nγ(i),β(j) = 1.

Conversely, suppose we have permutations γ and β such that mi,j =
nγ(i),β(j) for all i, j. Define α : X → Y by the rule

α(xi) = yj if and only if γ(i) = j.

Then it is easily seen that

{α(x) : x ∈ Aj} = Bβ(j)

for 1 ≤ j ≤ b. Hence, α defines an isomorphism of (X,A) and (Y,B). ⊓⊔

A permutation matrix is a 0 − 1 matrix in which every row and every col-
umn contain exactly one entry equal to “1”. The following corollary of The-
orem 1.21 provides an alternate characterization of isomorphic designs. The
proof is left to the reader.

Corollary 1.22. Suppose M and N are incidence matrices of two (v, b, r, k, λ)-
BIBDs. Then the two BIBDs are isomorphic if and only if there exists a v × v permu-
tation matrix, say P, and a b × b permutation matrix, say Q, such that M = PNQ.

In general, determining whether or not two designs are isomorphic is a
difficult computational problem. There are v! possible bijections between two
sets of cardinality v. To show that two designs are not isomorphic, it must be
shown that none of the v! possible bijections constitutes an isomorphism.
Since v! grows exponentially quickly as a function of v, it soon becomes im-
practical to actually test every possible bijection. Fortunately, there are more
sophisticated algorithms than testing every possibility exhaustively, and iso-
morphism testing is practical for relatively large designs.

Suppose (X,A) is a design. An automorphism of (X,A) is an isomorphism
of this design with itself. In this case, the bijection α is a permutation of X such
that

[{α(x) : x ∈ A} : A ∈ A] = A.

Of course, the identity mapping on X is always a (trivial) automorphism, but
a design may have other, nontrivial automorphisms.
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Example 1.23. Let (X,A) be the following (7, 3, 1)-BIBD:

X = {1, 2, 3, 4, 5, 6, 7}, and

A = {123, 145, 167, 246, 257, 347, 356}.

Suppose we define the permutation α as follows: α(1) = 1, α(2) = 2, α(3) =
3, α(4) = 5, α(5) = 4, α(6) = 7, and α(7) = 6. Then, when we relabel the
points in X using α, the blocks of A become the following:

123 → 123

145 → 145

167 → 167

246 → 257

257 → 246

347 → 356

356 → 347.

Thus α is an automorphism of the BIBD.

It is often convenient to present a permutation α on a set X using the
disjoint cycle representation. Each cycle in this representation has the form

(x α(x) α(α(x)) · · · )
for some x ∈ X. Eventually, we get back to x, creating a cycle. The cycles thus
obtained are disjoint, and they have lengths that sum to |X|. The order of the
permutation α is the least common multiple of the lengths of the cycles in the
disjoint cycle representation. A fixed point of α is a point x such that α(x) = x;
note that fixed points of α correspond to cycles of length one in the disjoint
cycle representation of α.

The permutation α in the example above has the disjoint cycle represen-
tation (1)(2)(3)(4 5)(6 7). It is a permutation of order 2 that contains three
fixed points.

It is easy to show that the set of all automorphisms of a BIBD (X,A)
forms a group under the operation of composition of permutations. This
group is called the automorphism group of the BIBD and is denoted Aut(X,A).
Aut(X,A) is a subgroup of the symmetric group S|X| (where Sv is the group
consisting of all v! permutations on a set of v elements). Note that a sub-
group of Sv is called a permutation group, so automorphism groups of designs
are examples of permutation groups.

Example 1.24. The (7, 3, 1)-BIBD (X,A) in the previous example has another
automorphism, β = (1 2 4 3 6 7 5). The composition γ = α ◦ β is defined as
γ(x) = β(α(x)) for all x ∈ X. It can be checked that γ = (1 2 4)(3 6 5)(7).
Thus γ is an automorphism of the BIBD because it is the composition of two
automorphisms.

(X,A) has many other automorphisms. In fact, it turns out that Aut(X,A)
is a group of order 168.
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1.4.1 Constructing BIBDs with Specified Automorphisms

In this section, we describe a method that can often be used to determine
the existence or nonexistence of a (v, k, λ)-BIBD having specified automor-
phisms.

Let Sv denote the symmetric group on a v-set, say X. For a positive integer

j ≤ v, let
(X

j

)
denote the set of all

(v
j

)
j-subsets of X. For a subset Y ⊆ X and

for a permutation β ∈ Sv, define

β(Y) = {β(x) : x ∈ Y}.

Suppose that G is a subgroup of Sv. Let j ≤ v be a positive integer, and

for A, B ∈
(X

j

)
, define A ∼j B if β(A) = B for some β ∈ G. It is not hard

to prove that ∼j is an equivalence relation on
(X

j

)
. The equivalence classes

of this relation are called the j-orbits of X with respect to the group G. The

j-orbits comprise a partition of the set
(X

j

)
, and β(A) = B for some β ∈ G if

and only if A and B are in the same orbit of G.
The well-known Cauchy-Frobenius-Burnside Lemma provides a method

of computing the number of j-orbits of X. For each β ∈ G, define

fix(β) =

∣∣∣∣
{

A ∈
(

X

j

)
: β(A) = A

}∣∣∣∣ .

We state the following lemma without proof.

Lemma 1.25 (Cauchy-Frobenius-Burnside Lemma). The number of j-orbits of
X with respect to the group G is exactly

1

|G| ∑
β∈G

fix(β).

Suppose that O1, . . . ,On are the k-orbits, and P1, . . . ,Pm are the 2-orbits
of X with respect to the group G. We define an n × m matrix, denoted Ak,2,
as follows. For 1 ≤ j ≤ m, choose any 2-subset Yj ∈ Pj. Then, for 1 ≤ i ≤ n,
the i, j entry of Ak,2, denoted ai,j, is defined as follows:

ai,j = |{A ∈ Oi : Yj ⊆ A}|.

It can be shown that the definition of ai,j does not depend on the particular
orbit representatives Yj that are chosen; this follows immediately from the next
lemma.

Lemma 1.26. Suppose that O1, . . . ,On are the k-orbits, and P1, . . . ,Pm are the 2-
orbits of X with respect to the group G. Suppose that Y, Y′ ∈ Pj for some j, and
suppose 1 ≤ i ≤ n. Then

|{A ∈ Oi : Y ⊆ A}| = |{A ∈ Oi : Y′ ⊆ A}|.
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Proof. There exists β ∈ G such that β(Y) = Y′. For each A ∈ Oi such that
Y ⊆ A, it holds that Y′ ⊆ β(A). β is a permutation, so β(A) �= β(B) if
A �= B. Therefore, for each A ∈ Oi such that Y ⊆ A, we obtain a block
A′ = β(A) ∈ Oi such that Y′ ⊆ A′, and the blocks β(A), where A ∈ Oi and
Y ⊆ A, are all distinct. Therefore

|{A ∈ Oi : Y ⊆ A}| ≤ |{A ∈ Oi : Y′ ⊆ A}|.

The inequality in the opposite direction follows by interchanging the roles
of Y and Y′, and replacing β by β−1. Combining the two inequalities, the
desired result is proven. ⊓⊔

Here now is the main result of this section.

Theorem 1.27 (Kramer-Mesner Theorem). There exists a (v, k, λ)-BIBD hav-
ing G as a subgroup of its automorphism group if and only if there exists a solution
z ∈ Zn to the matrix equation

zAk,2 = λum, (1.1)

where z has nonnegative entries.

Proof. We give a sketch of the proof. First, suppose that z = (z1, . . . , zn) is a
nonnegative integral solution to equation (1.1). Define

A =

n⋃

i=1

ziOi.

The notation above is a multiset union; it means that A is formed by taking
zi copies of every block in Oi for 1 ≤ i ≤ n. It is easy to see that (X,A) is a
(v, k, λ)-BIBD having G as a subgroup of its automorphism group.

Conversely, suppose that (X,A) is the desired BIBD. Then A necessarily
must consist of a multiset union of the orbits Oi, 1 ≤ i ≤ n. Let zi denote
the number of times each of the blocks of the orbit Oi occurs in A; then z =
(z1, . . . , zn) is a nonnegative integral solution to equation (1.1). ⊓⊔

As an additional remark, we observe that the BIBD in Theorem 1.27 is
simple if and only if the vector z ∈ {0, 1}n.

Example 1.28. We use the technique described above to construct a (6, 3, 2)-
BIBD having an automorphism of order 5. Suppose that α = (0 1 2 3 4)(5)
and G = {αi : 0 ≤ i ≤ 4}. It is easy to see that there are three 2-orbits of
X = {0, 1, 2, 3, 4, 5}, namely

P1 = {01, 12, 23, 34, 40},

P2 = {02, 13, 24, 30, 41}, and

P3 = {05, 15, 25, 35, 45}.
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Also, there are four 3-orbits:

O1 = {012, 123, 234, 340, 401},

O2 = {013, 124, 230, 341, 402},

O3 = {015, 125, 235, 345, 405}, and

O4 = {025, 135, 245, 305, 415}.

The matrix A3,2 is as follows:

A3,2 =




2 1 0
1 2 0
1 0 2
0 1 2


 .

The equation zA3,2 = 2u3 has exactly two nonnegative integral solutions:
z = (1, 0, 0, 1) and z = (0, 1, 1, 0). Each of these solutions yields a (6, 3, 2)-
BIBD having α as an automorphism.

Here is a more interesting example, in which the orbits do not all have
the same size.

Example 1.29. We construct a (9, 3, 1)-BIBD having a certain automorphism of
order six. Suppose that α = (0 1 2 3 4 5)(6 7 8) and G = {αi : 0 ≤ i ≤ 5}. The
permutations in G are as follows:

α = (0 1 2 3 4 5)(6 7 8),

α2 = (0 2 4)(1 3 5)(6 8 7),

α3 = (0 3)(1 4)(2 5)(6)(7)(8),

α4 = (0 4 2)(1 5 3)(6 7 8),

α5 = (0 5 4 3 2 1)(6 8 7), and

α0 = (0)(1)(2)(3)(4)(5)(6)(7)(8).

Lemma 1.25 can be used to compute the number of 2- and 3-orbits. First
we consider 2-orbits. It is not hard to see that fix(α) = fix(α2) = fix(α4) =

fix(α5) = 0, fix(α3) = 6, and fix(α0) =
(9

2

)
= 36. Therefore, the number of

2-orbits is (36 + 6)/6 = 7.
Now we turn to 3-orbits. It is not hard to check that fix(α) = fix(α5) = 1,

fix(α2) = fix(α4) = 3, fix(α3) = 10, and fix(α0) =
(9

3

)
= 84. Therefore, the

number of 3-orbits is (84 + 10 + 2(3) + 2(1))/6 = 17.
We leave it as an exercise for the reader to construct the A3,2 matrix and

solve the matrix equation. It turns out that there is a solution; the following
(9, 3, 1)-BIBD, consisting of four of the 3-orbits, has α as an automorphism:

orbit orbit size
018 126 237 348 456 507 6

036 147 258 3
024 135 2

678 1
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The total number of blocks is 12, as it must be.

It is, in general, a nontrivial task to construct an Ak,2 matrix if the set X
is even of moderate size. It is a considerably more difficult problem to find
the desired integral solution to the matrix equation (and of course there is no
guarantee that the sought-after solution even exists). The known algorithms
to find nonnegative integral solutions of matrix equations have exponential
complexity and may require enormous amounts of computing time to run to
completion. Nevertheless, this approach to finding designs having specified
automorphisms has been very useful in practice in discovering previously
unknown designs.

1.5 New BIBDs from Old

In this section, we give two simple methods of constructing new BIBDs from
old. The first construction can be called the “sum construction”. Given two
BIBDs on the same point set, it involves forming the collection of all the
blocks in both designs.

Theorem 1.30 (Sum Construction). Suppose there exists a (v, k, λ1)-BIBD and
a (v, k, λ2)-BIBD. Then there exists a (v, k, λ1 + λ2)-BIBD.

Corollary 1.31. Suppose there exists a (v, k, λ)-BIBD. Then there exists a (v, k, sλ)-
BIBD for all integers s ≥ 1.

Note that the BIBDs produced by Corollary 1.31 with s ≥ 2 are not simple
designs, even if the initial (v, k, λ)-BIBD is simple. For λ > 1, construction of
simple BIBDs is, in general, more difficult than construction of BIBDs with
repeated blocks.

To illustrate an application of the sum construction, let us consider (16, 6, λ)-
BIBDs. We will see in the next section that there does not exist a (16, 6, 1)-
BIBD. However, both a (16, 6, 2)-BIBD and a (16, 6, 3)-BIBD are known to ex-
ist. By application of the sum construction, it then follows that there exists a
(16, 6, λ)-BIBD if and only if λ > 1.

The second construction is called “block complementation”. Suppose
(X,A) is a BIBD, and we replace every block A ∈ A by X\A. The result
is again a BIBD, as stated in the following theorem.

Theorem 1.32 (Block Complementation). Suppose there exists a (v, b, r, k, λ)-
BIBD, where k ≤ v − 2. Then there also exists a (v, b, b − r, v − k, b − 2r + λ)-
BIBD.

Proof. Suppose (X,A) is a (v, b, r, k, λ)-BIBD. We will show that

(X, {X\A : A ∈ A})
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is a BIBD. Clearly, this design has v points and b blocks, every block contains
v − k ≥ 2 points, and every point occurs in b − r blocks. Hence, we just need
to show that every pair of points occurs in exactly b − 2r + λ blocks.

Let x, y ∈ X, x �= y. Define

a1 = |{A ∈ A : x, y ∈ A}|,
a2 = |{A ∈ A : x ∈ A, y �∈ A}|,
a3 = |{A ∈ A : x �∈ A, y ∈ A}|, and

a4 = |{A ∈ A : x, y �∈ A}|.

Then it is easy to see that

a1 = λ,

a1 + a2 = r,

a1 + a3 = r, and

a1 + a2 + a3 + a4 = b.

These four equations may be solved easily to obtain

a4 = b − 2r + λ,

as desired. ⊓⊔

For example, the complement of a (7, 3, 1)-BIBD is a (7, 4, 2)-BIBD, and the
complement of a (9, 3, 1)-BIBD is a (9, 6, 5)-BIBD. In view of Theorem 1.32, it
suffices to study BIBDs with k ≤ v/2.

1.6 Fisher’s Inequality

We have already discussed two necessary conditions for the existence of a
(v, k, λ)-BIBD, namely Theorems 1.8 and 1.9. Another important necessary
condition is known as “Fisher’s Inequality”.

Theorem 1.33 (Fisher’s Inequality). In any (v, b, r, k, λ)-BIBD, b ≥ v.

Proof. Let (X,A) be a (v, b, r, k, λ)-BIBD, where X = {x1, . . . , xv} and A =
{A1, . . . , Ab}. Let M be the incidence matrix of this BIBD, and define sj to

be the jth row of MT (equivalently, sj
T is the jth column of M). Note that

s1, . . . , sb are all v-dimensional vectors in the real vector space Rv.
Define S = {sj : 1 ≤ j ≤ b} and define S = span(sj : 1 ≤ j ≤ b). S is the

subspace of Rv spanned by the sj’s; it consists of the following vectors:

S =

{
b

∑
j=1

αjsj : α1, . . . , αb ∈ R

}
.
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In other words, S consists of all linear combinations of the vectors s1, . . . , sb.
We will prove that S = Rv; i.e., the b vectors in S span the vector space

Rv. Since Rv has dimension v and is spanned by a set of b vectors, it must be
the case that b ≥ v.

Our task is thus to show that S = Rv. For 1 ≤ i ≤ v, define ei ∈ Rv to
be the vector with a “1” in the ith coordinate and “0”s in all other coordi-
nates. The vectors e1, . . . , ev form a basis for Rv, so every vector in Rv can
be expressed as a linear combination of these v vectors. Therefore, to show
that S = Rv, it suffices to show that ei ∈ S for 1 ≤ i ≤ v (i.e., that each basis
vector ei can be expressed as a linear combination of vectors in S).

First, we observe that
b

∑
j=1

sj = (r, . . . , r), (1.2)

from which it follows that

b

∑
j=1

1

r
sj = (1, . . . , 1). (1.3)

Next, fix a value i, 1 ≤ i ≤ v. Then we have

∑
{j:xi∈A j}

sj = (r − λ)ei + (λ, . . . , λ). (1.4)

Since λ(v− 1) = r(k− 1) and v > k, it follows that r > λ, and hence r−λ �= 0.
Then we can combine equations (1.3) and (1.4) to obtain

ei = ∑
{j:xi∈A j}

1

r − λ
sj −

b

∑
j=1

λ

r(r − λ)
sj. (1.5)

Equation (1.5) gives a formula expressing ei as a linear combination of
s1, . . . , sb, as desired. ⊓⊔

Note that the conclusion of Theorem 1.33, b ≥ v, can be stated in other,
equivalent ways, such as r ≥ k and λ(v − 1) ≥ k2 − k.

As an example, consider the parameter set (16, 6, 1). In a (16, 6, 1)-BIBD,
we would have r = 3, but it would then be the case that r < k, which is
impossible. Hence, a (16, 6, 1)-BIBD does not exist.

Theorem 1.33 can easily be generalized to regular pairwise balanced de-
signs. We have the following.

Theorem 1.34. In any nontrivial regular pairwise balanced design, b ≥ v.

Proof. By examining the proof of Theorem 1.33, it can be seen that the fact
that all blocks have the same size is not used in the proof. Therefore, Fisher’s
Inequality holds for regular pairwise balanced designs in which r > λ. It
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is easy to see that a regular PBD has r > λ if and only if it is not a trivial
PBD. Therefore we conclude that Fisher’s Inequality is valid for all nontrivial
regular PBDs. ⊓⊔

In fact, Fisher’s Inequality holds for all nontrivial pairwise balanced de-
signs (not just the regular ones), but a slightly different proof is required. We
will return to this topic in Chapter 8.

1.7 Notes and References

Fisher’s Inequality was first proven in 1940 by the famous statistician Ronald
Fisher [45]. There are many proofs of this result; we have chosen to employ
a linear-algebraic proof technique that will be used to prove several other
results later in this book.

The Kramer-Mesner Theorem was proven in 1975 in [71]. It has since been
used to find many previously unknown designs. For a nice survey of com-
putational techniques in design theory, see Gibbons [47].

There are several reference books and textbooks on combinatorial design
theory. The book “Combinatorial Designs” by Wallis [115] is a fairly easy-to-
read general introduction. Two other good introductory textbooks are “Com-
binatorial Designs and Tournaments” by Anderson [2] and “Design Theory”
by Lindner and Rodger [77]. A more advanced book that contains a great deal
of useful information is the two-volume work also entitled “Design Theory”
by Beth, Jungnickel, and Lenz [9, 10]. The reader can also profitably consult
“Design Theory” by Hughes and Piper [61] and “Combinatorics of Exper-
imental Design” [107] by Street and Street (however, these two books are
currently out of print).

The “CRC Handbook of Combinatorial Designs”, edited by Colbourn and
Dinitz [27], is an enormous, encyclopedic reference work that is a valuable
resource for researchers. This book also has an on-line Web page located at
the following URL: http://www.emba.uvm.edu/˜dinitz/hcd.html.
“Contemporary Design Theory, A Collection of Surveys”, edited by Dinitz
and Stinson [41], is a collection of twelve surveys on various topics in design
theory.

Two books that explore the links between combinatorial design the-
ory and other branches of combinatorial mathematics are “Designs, Codes,
Graphs and Their Links” by Cameron and van Lint [20] and “Combinatorial
Configurations: Designs, Codes, Graphs” by Tonchev [110].

Several “general” combinatorics textbooks contain one or more sections
on designs. Three books that are worth consulting are “Combinatorics: Top-
ics, Techniques, Algorithms”, by Cameron [19]; “Combinatorial Theory (Sec-
ond Edition)”, by Hall [53]; and “A Course in Combinatorics (Second Edi-
tion)”, by Van Lint and Wilson [79].
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Much recent research on combinatorial designs can be found in the Jour-
nal of Combinatorial Designs, which has been published by John Wiley & Sons
since 1993.

1.8 Exercises

1.1 What is the value of b in a (46, 6, 1)-BIBD (if it exists)?
1.2 What is the value of r in a (65, 5, 1)-BIBD?
1.3 For all integers k and v such that 3 ≤ k ≤ v/2 and v ≤ 10, determine

the smallest integer λ such that the parameter set (v, k, λ) satisfies the
necessary conditions stated in Corollary 1.10.

1.4 For an integer k ≥ 2, let λ∗(k) denote the minimum integer such that
the conditions stated in Corollary 1.10 are satisfied for all integers v >

k.
(a) Compute λ∗(k) for k = 3, 4, 5 and 6.
(b) Prove that

λ∗(k) =

{(k
2

)
if k is even

k(k − 1) if k is odd.

1.5 Let M be the incidence matrix of a (v, b, r, k, 1)-BIBD and define N =
MT M. Denote N = (ni,j). Prove that

ni,j =

{
k if i = j

0 or 1 if i �= j.

1.6 Construct a regular pairwise balanced design on six points that con-
tains exactly four blocks of size three.

1.7 Give a complete proof of Theorem 1.15.
1.8 Give a complete proof of Theorem 1.17.
1.9 (a) Prove that no (6, 3, 2)-BIBD can contain repeated blocks.

(b) Prove that all (6, 3, 2)-BIBDs are isomorphic.
1.10 Give a complete proof of Corollary 1.22.
1.11 Show that all (7, 3, 1)-BIBDs are isomorphic by the following method.

(Fill in the details of the proof.)
(a) Without loss of generality, we can take the points to be {1, . . . , 7},

and let the blocks containing the point 1 be {1, 2, 3}, {1, 4, 5}, and
{1, 6, 7}.

(b) Find all ways to complete this structure to a (7, 3, 1)-BIBD.
(c) Then show that all the designs obtained are isomorphic.

1.12 Find an isomorphism π of the two (9, 3, 1)-BIBDs (X,A) and (Y,B),
and give a complete verification that the two BIBDs are isomorphic.

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {123, 147, 159, 168, 258, 267, 249, 369, 348, 357, 456, 789}
Y = {a, b, c, d, e, f , g, h, i}
B = {abe, acd, afi, agh, bcf , bdg, bhi, ceh, cgi, dfh, dei, efg}.
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Hint: Observe that if π(x) = α, π(y) = β, {x, y, z} ∈ A, and {α, β, γ} ∈
B, then it must be the case that π(z) = γ.

1.13 Suppose we arrange the elements of a set X = {0, . . . , 15} in a 4 × 4
array A as follows:

A =




0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15


 .

For each x, 0 ≤ x ≤ 15, suppose we define a block Bx consisting of
the elements in the same row or column of A as x, excluding x. Then
define a set of blocks B = {Bx : 0 ≤ x ≤ 15}. We are going to study the
design (X,B).

(a) Prove that this design is a (16, 6, 2)-BIBD.
(b) Construct the incidence matrix of this BIBD.
(c) Prove that the mapping α(x) = (x + 4) mod 16 is an automor-

phism of this BIBD.
(d) Prove that this BIBD has automorphisms of orders 2, 3, and 4.

1.14 Suppose that α is an automorphism of order p of a (v, k, 1)-BIBD, where
p is prime. Let α f denote the number of fixed points in α.

(a) Prove that α f ≡ v (mod p).
(b) Suppose that 2 ≤ α f ≤ k − 1. Prove that k ≥ p + 2.
(c) As a corollary, prove that a (7, 3, 1)-BIBD cannot have an auto-

morphism of order 5.
1.15 Let G be the permutation group of order 3 on the set X = {1, . . . , 7}

that is generated by the permutation α = (1 2 3)(4 5 6)(7).
(a) Use Lemma 1.25 to compute the number of 2- and 3-orbits of X

with respect to G.
(b) Use Theorem 1.27 to find all (7, 3, 1)-BIBDs having α as an au-

tormorphism.
1.16 Referring to Example 1.29, carry out the following computations.

(a) Construct all the 2-orbits and 3-orbits.
(b) Construct the A3,2 matrix.
(c) Find all solutions to the matrix equation zA3,2 = u7.

1.17 Construct (9, 3, 1)-BIBDs having the following permutations as auto-
morphisms.

(a) (1)(2 3 4 5 6 7 8 9).
(b) (1)(2)(3)(4 5 6)(7 8 9).
(c) (1)(2)(3)(4 5)(6 7)(8 9).

1.18 (a) Construct a (7, 4, 2)-BIBD.
(b) Determine the incidence matrix of this BIBD.
(c) For the incidence matrix that you have computed, express the

vector e3 as a linear combination of the vectors s1, . . . , s7 using
(1.5). Then verify that the resulting linear combination indeed
yields the vector e3.
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1.19 Let B0 be a block in a (v, k, 1)-BIBD, say (X,B).
(a) Find a formula for the number of blocks B ∈ B such that |B ∩

B0| = 1.
(b) Use your formula to show that b ≥ k(r − 1) + 1 if a (v, k, 1)-BIBD

exists.
(c) Using the facts that vr = bk and v = r(k − 1) + 1, deduce that

(r− k)(r− 1)(k− 1) ≥ 1, and hence r ≥ k, which implies Fisher’s
Inequality.

1.20 Let B0 be a block in a (v, k, 1)-BIBD, say (X,B). Let x ∈ X\B0, and show
that there are at least k blocks that contain x and intersect B0. From this,
deduce that r ≥ k, which implies Fisher’s Inequality.
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Symmetric BIBDs

2.1 An Intersection Property

Definition 2.1. A BIBD in which b = v (or, equivalently, r = k or λ(v − 1) =
k2 − k) is called a symmetric BIBD. (Note that this terminology does not mean that
the incidence matrix is a symmetric matrix.)

A simple but rather trivial family of symmetric BIBDs can be obtained
from Example 1.6 when v = k + 1. These are symmetric (v, v − 1, v − 2)-
BIBDs. We will see many examples of more interesting symmetric BIBDs later
in this and other chapters.

In the next three chapters, we study various properties and constructions
of symmetric BIBDs. We begin by stating and proving an important theorem
about the intersections of blocks in a symmetric BIBD.

Theorem 2.2. Suppose that (X,A) is a symmetric (v, k, λ)-BIBD and denote A =
{A1, . . . , Av}. Suppose that 1 ≤ i, j ≤ v, i �= j. Then |Ai ∩ Aj| = λ.

Proof. We use the same notation as in the proof of Theorem 1.33 (Fisher’s
Inequality). Fix a value h, 1 ≤ h ≤ b. Applying equations (1.2) and (1.4), we
have the following:

∑
{i:xi∈Ah}

∑
{j:xi∈A j}

sj = ∑
{i:xi∈Ah}

((r − λ)ei + (λ, . . . , λ))

= (r − λ)sh + k(λ, . . . , λ)

= (r − λ)sh +
b

∑
j=1

λk

r
sj.

On the other hand, we can compute this double sum in a different way by
interchanging the order of summation:
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∑
{i:xi∈Ah}

∑
{j:xi∈A j}

sj =
b

∑
j=1

∑
{i:xi∈Ah∩A j}

sj

=
b

∑
j=1

|Ah ∩ Aj|sj.

Hence, we have that

(r − λ)sh +
b

∑
j=1

λk

r
sj =

b

∑
j=1

|Ah ∩ Aj|sj. (2.1)

Since b = v and r = k, we can rewrite equation (2.1) as

(r − λ)sh +
v

∑
j=1

λsj =
v

∑
j=1

|Ah ∩ Aj|sj. (2.2)

In the proof of Theorem 1.33, we showed that S = Rv, where

S =

{
b

∑
j=1

αjsj : α1, . . . , αb ∈ R

}
.

Since we are now assuming that b = v, it must be the case that S is a basis
for Rv. Since S is a basis for Rv, the coefficients of any sj on the left and right
sides of equation (2.2) must be equal. Therefore,

|Ah ∩ Aj| = λ

for all j �= h. Since h was chosen arbitrarily, it follows that |A ∩ A′| = λ for
any two blocks A �= A′. ⊓⊔

We observed in Theorem 1.34 that Fisher’s Inequality also holds for non-
trivial regular pairwise balanced designs. The next theorem shows that non-
trivial regular pairwise balanced designs with b = v are, in fact, symmetric
BIBDs.

Theorem 2.3. Suppose that (X,A) is a nontrivial regular pairwise balanced design
with b = v. Then (X,A) is a (symmetric) (v, k, λ)-BIBD.

Proof. We compute the sum

v

∑
i=1

∑
{j:xi∈A j}

sj

in two ways. First, we have that
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v

∑
i=1

∑
{j:xi∈A j}

sj =
v

∑
i=1

((r − λ)ei + (λ, . . . , λ))

= (r − λ + λv)(1, . . . , 1)

=
λ(v − 1) + r

r

b

∑
j=1

sj.

On the other hand, we can compute

v

∑
i=1

∑
{j:xi∈A j}

sj =
b

∑
j=1

∑
{i:xi∈A j}

sj

=
b

∑
j=1

|Aj| sj.

Now, using the facts that b = v and S is a basis for Rv, it follows that

|Aj| =
λ(v − 1) + r

r

for 1 ≤ j ≤ b. Hence, (X,A) is a (v, k, λ)-BIBD, where k = (λ(v − 1) + r)/r.
⊓⊔

The next result is an immediate consequence of Theorems 1.17 and 2.2.

Corollary 2.4. Suppose M is the incidence matrix of a symmetric (v, k, λ)-BIBD.
Then MT is also the incidence matrix of a (symmetric) (v, k, λ)-BIBD.

Corollary 2.4 says that the dual of a symmetric BIBD is again a symmetric
BIBD. We note that these two BIBDs need not be identical or even isomor-
phic.

Here is another corollary of the results of this section. This result is a
converse to Theorem 2.2.

Corollary 2.5. Suppose that µ is a positive integer and (X,A) is a (v, b, r, k, λ)-
BIBD such that |A ∩ A′| = µ for all A, A′ ∈ A. Then (X,A) is a symmetric BIBD
and µ = λ.

Proof. Theorem 1.17 ensures that the dual of (X,A) is a (b, v, k, r, µ)-BIBD.
Fisher’s Inequality (for (X,A)) implies that b ≥ v, and Fisher’s Inequality
(for the dual design) implies that v ≥ b. Hence b = v, and then µ = λ follows
from Theorem 2.2. ⊓⊔

2.2 Residual and Derived BIBDs

Recall that Theorem 2.2 states that any two blocks of a symmetric BIBD con-
tain λ common points. This result provides another method of constructing
new BIBDs from old.
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Definition 2.6. Suppose that (X,A) is a symmetric (v, k, λ)-BIBD, and let A0 ∈
A. Define

Der(X,A, A0) = (A0, {A ∩ A0 : A ∈ A, A �= A0})
and define

Res(X,A, A0) = (X\A0, {A\A0 : A ∈ A, A �= A0}).

Der(X,A, A0) is called a derived BIBD, and Res(X,A, A0) is called a residual
BIBD.

We form a derived design by deleting all the points not in a given block
A0 and then deleting A0. The residual design is constructed by deleting all
points in A0.

It is clear that the derived and residual designs are BIBDs, provided that
the block sizes are at least two, and at most the number of points minus one.

Theorem 2.7. Suppose that (X,A) is a symmetric (v, k, λ)-BIBD, and let A0 ∈ A.
Then Der(X,A, A0) is a (k, v − 1, k − 1, λ, λ − 1)-BIBD provided that λ ≥ 2.
Furthermore, Res(X,A, A0) is a (v − k, v − 1, k, k − λ, λ)-BIBD provided that k ≥
λ + 2.

Proof. Der(X,A, A0) is a BIBD with the stated parameters provided that k >

λ ≥ 2 (k is the number of points in the derived design, and the blocks have
size λ). However, k > λ in any symmetric BIBD because λ(v − 1) = k(k − 1)
and v > k, so this condition is superfluous.

Res(X,A, A0) is a BIBD with the stated parameters provided that v − k >

k − λ ≥ 2 (v− k is the number of points in the residual design, and the blocks
have size k − λ). We now prove that v − k > k − λ in a symmetric BIBD.
Suppose that v ≤ 2k − λ; then we have k(k − 1) = λ(v − 1) ≤ λ(2k − λ − 1).
This is equivalent to (k − λ)(k − λ − 1) ≤ 0. But k and λ are integers, so this
last inequality holds if and only if k = λ or k = λ + 1. We are assuming that
k ≥ λ + 2, so we have a contradiction. Therefore the condition v − k > k − λ
is superfluous. ⊓⊔

Let’s consider an example:

Example 2.8. An (11, 5, 2)-BIBD is symmetric because 2(11 − 1) = 5(5 − 1).
A residual BIBD is a (6, 3, 2)-BIBD, and a derived BIBD is a (5, 2, 1)-BIBD.
In Figure 2.1, we have written out the 11 blocks in an (11, 5, 2)-BIBD. The
block A0 = {1, 3, 4, 5, 9}. The remaining 10 blocks are each partitioned into
two parts, which form a (5, 2, 1)-BIBD on point set {1, 3, 4, 5, 9} and a (6, 3, 2)-
BIBD on point set {0, 2, 6, 7, 8, 10}.

Suppose we write the parameters (v − k, v − 1, k, k − λ, λ) of a residual
BIBD as (v′, b′, r′, k′, λ′). These parameters satisfy the numerical condition
r′ = k′ + λ′. A (v, b, r, k, λ)-BIBD with r = k + λ is called a quasiresidual BIBD.
A quasiresidual (v, b, r, k, λ)-BIBD can be constructed as the residual BIBD
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1 3 4 5 9
4 5 2 6 10
3 5 6 7 0
1 4 6 7 8
5 9 2 7 8
3 9 6 8 10
4 9 0 7 10
1 5 0 8 10
1 9 2 6 0
1 3 2 7 10
3 4 0 2 8

Fig. 2.1. Derived and Residual BIBDS of a Symmetric (11, 5, 2)-BIBD

of a symmetric (v + r, r, λ)-BIBD, provided that this symmetric BIBD exists.
(The numerical condition λ(v + r − 1) = r(r − 1) necessarily holds when
r = k + λ, but this does not guarantee existence of the symmetric BIBD.)

Similarly, we can write the parameters (k, v − 1, k − 1, λ, λ − 1) of a de-
rived BIBD as (v′, b′, r′, k′, λ′). These parameters satisfy the numerical condi-
tion k′ = λ′ + 1. Any (v, b, r, k, λ)-BIBD with k = λ + 1 is called a quasiderived
BIBD. A quasiderived (v, b, r, k, λ)-BIBD can be constructed as the derived
BIBD of a symmetric (b + 1, r + 1, λ + 1)-BIBD, provided that this symmetric
BIBD exists. (Again, the numerical condition (λ + 1)b = r(r + 1) necessarily
holds when k = λ + 1, but this does not guarantee existence of the symmetric
BIBD.)

Here are a couple of examples. The parameter set (10, 15, 6, 4, 2) is quasi-
residual because 6 = 4 + 2. Therefore a (10, 15, 6, 4, 2)-BIBD exists if a (sym-
metric) (16, 6, 2)-BIBD exists. The parameter set (9, 19, 8, 4, 3) is quasiderived
because 4 = 3 + 1. Therefore a (9, 18, 8, 4, 3)-BIBD exists if a (symmetric)
(19, 9, 4)-BIBD exists. Both of these symmetric BIBDs exist, so it follows from
Theorem 2.7 that a (10, 15, 6, 4, 2)-BIBD and a (9, 18, 8, 4, 3)-BIBD both exist.

It is clear from the definitions that a residual BIBD is quasiresidual and a
derived BIBD is quasiderived. The converse is, in general, not true. However,
we will show in Theorem 5.10 that every quasiresidual BIBD with λ = 1 is
residual. (It is also true that any quasiresidual BIBD with λ = 2 is residual,
but this is much harder to prove.)

2.3 Projective Planes and Geometries

Definition 2.9. An (n2 + n + 1, n + 1, 1)-BIBD with n ≥ 2 is called a projective
plane of order n.

Observe that a (3, 2, 1)-BIBD certainly exists. For technical reasons, how-
ever, this BIBD is not regarded as being a projective plane of order 1. Noting
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that 1(n2 + n) = (n + 1)n, we see that projective planes are symmetric BIBDs.
Therefore, from Theorem 2.2, every point occurs in n + 1 blocks and every
pair of blocks intersects in a unique point.

We now prove that a projective plane of order q exists whenever q is a
prime power. Suppose q is a prime power. Let Fq be the finite field of order q,
and let V denote the three-dimensional vector space over Fq. (To save space,
we will write vectors (x1, x2, x3) ∈ V in the form x1x2x3.)

Let V1 consist of all the one-dimensional subspaces of V, and let V2 consist
of all the two-dimensional subspaces of V. For each B ∈ V2, define a block

AB = {C ∈ V1 : C ⊆ B}.

Finally, define
A = {AB : B ∈ V2}.

We claim that (V1,A) is a projective plane of order q.
First, observe that |C| = q and 000 ∈ C for all C ∈ V1. The sets C\{000},

C ∈ V1, form a partition of V\{000}. Hence,

|V1| =
q3 − 1

q − 1
= q2 + q + 1.

Next, let B ∈ V2. Clearly |B| = q2. The sets C\{000} such that C ∈ V1 and
C ⊆ B partition the set B\{000}. Hence, it follows that

|AB| =
q2 − 1

q − 1
= q + 1.

Finally, let C, D ∈ V1, C �= D. Clearly there is a unique two-dimensional sub-
space B containing the one-dimensional subspaces C and D. This subspace
determines the unique block AB containing the points C and D.

The discussion above establishes the following theorem.

Theorem 2.10. For every prime power q ≥ 2, there exists a (symmetric) (q2 + q +
1, q + 1, 1)-BIBD (i.e., a projective plane of order q).

The (7, 3, 1)-BIBD presented in Example 1.3 is a projective plane of order
2. We give another example of a projective plane now.

Example 2.11. We construct a (13, 4, 1)-BIBD, which is a projective plane of or-
der 3. The construction takes place in the finite field Z3. The one-dimensional
and two-dimensional subspaces of (Z3)

3 are listed in Figure 2.2 and the 13
blocks of the projective plane are presented in Figure 2.3.

The question of the existence of a projective plane of nonprime power
order is one of the most celebrated open questions in design theory. We will
see later in this section that projective planes of certain (nonprime power)
orders can be proven not to exist. There is no known example at present of
any projective plane of nonprime power order, and there are infinitely many
orders where the existence question has not yet been answered.
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C1 = {000, 001, 002} B1 = {000, 001, 002, 010, 020, 011, 012, 021, 022}
C2 = {000, 010, 020} B2 = {000, 001, 002, 100, 200, 101, 102, 201, 202}
C3 = {000, 011, 022} B3 = {000, 001, 002, 110, 220, 111, 112, 221, 222}
C4 = {000, 012, 021} B4 = {000, 001, 002, 120, 210, 121, 122, 211, 212}
C5 = {000, 100, 200} B5 = {000, 010, 020, 100, 200, 110, 120, 210, 220}
C6 = {000, 101, 202} B6 = {000, 010, 020, 101, 202, 111, 121, 212, 222}
C7 = {000, 102, 201} B7 = {000, 010, 020, 102, 201, 112, 122, 211, 221}
C8 = {000, 110, 220} B8 = {000, 011, 022, 100, 200, 111, 122, 211, 222}
C9 = {000, 111, 222} B9 = {000, 011, 022, 101, 202, 112, 120, 210, 221}
C10 = {000, 112, 221} B10 = {000, 011, 022, 102, 201, 110, 121, 212, 220}
C11 = {000, 120, 210} B11 = {000, 012, 021, 100, 200, 112, 121, 212, 221}
C12 = {000, 122, 211} B12 = {000, 012, 021, 101, 202, 110, 122, 211, 220}
C13 = {000, 121, 212} B13 = {000, 012, 021, 102, 201, 111, 120, 210, 222}.

Fig. 2.2. The One-dimensional and Two-dimensional Subspaces of (Z3)
3

AB1
= {C1, C2, C3, C4}

AB2
= {C1, C5, C6, C7}

AB3
= {C1, C8, C9, C10}

AB4
= {C1, C11, C12, C13}

AB5
= {C2, C5, C8, C11}

AB6
= {C2, C6, C9, C13}

AB7
= {C2, C7, C10, C12}

AB8
= {C3, C5, C9, C12}

AB9
= {C3, C6, C10, C11}

AB10
= {C3, C7, C8, C13}

AB11
= {C4, C5, C10, C13}

AB12
= {C4, C6, C8, C12}

AB13
= {C4, C7, C9, C11}.

Fig. 2.3. The Blocks of the Projective Plane of Order 3

Definition 2.12. Let n ≥ 2. An (n2, n2 + n, n + 1, n, 1)-BIBD is called an affine
plane of order n.

It is easy to verify that the residual design of a projective plane of order n
is an affine plane of order n. Therefore the following is an immediate conse-
quence of Theorems 2.7 and 2.10.

Theorem 2.13. For every prime power q ≥ 2, there exists a (q2, q, 1)-BIBD (i.e., an
affine plane of order q).

Note that the derived design of a projective plane has block size equal to
one, and so it is not a BIBD.

The projective planes we have constructed are usually denoted PG2(q).
They are regarded as two-dimensional projective geometries. A straightfor-
ward generalization to higher dimensions is given in the next theorem.
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Theorem 2.14. Suppose q ≥ 2 is a prime power and d ≥ 2 is an integer. Then there
exists a symmetric

(
qd+1−1

q−1 ,
qd−1
q−1 ,

qd−1−1
q−1

)
-BIBD.

Proof. Let V = (Fq)
d+1, let V1 consist of all one-dimensional subspaces of V,

and let Vd consist of all d-dimensional subspaces of V. Each d-dimensional
subspace gives rise to a block, as before. ⊓⊔

Note that Theorem 2.10 is the special case d = 2 of Theorem 2.14. The
points and blocks of the BIBD constructed in Theorem 2.14 correspond to the
points and hyperplanes of the d-dimensional projective geometry, PGd(q).

We can obtain residual BIBDs from the symmetric BIBDs constructed in
Theorem 2.14. We get derived BIBDs as well when d > 2. These BIBDs have
parameters as stated in the following Corollary.

Corollary 2.15. Suppose q ≥ 2 is a prime power and d ≥ 2 is an integer. Then there
exists a

(
qd, qd−1,

qd−1−1
q−1

)
-BIBD.

Furthermore, if d > 2, there is a
(

qd−1
q−1 ,

qd−1−1
q−1 ,

q(qd−2−1)
q−1

)
-BIBD.

Observe that the second BIBD in Corollary 2.15 has the same parameters
as q copies of PGd−1(q).

2.4 The Bruck-Ryser-Chowla Theorem

We now look at two necessary existence conditions for symmetric BIBDs,
which are known (together) as the “Bruck-Ryser-Chowla Theorem”.

Theorem 2.16 (Bruck-Ryser-Chowla Theorem, v even). Suppose there exists
a symmetric (v, k, λ)-BIBD with v even. Then k − λ is a perfect square.

Proof. Let M be the incidence matrix of a symmetric (v, k, λ)-BIBD with v
even. Then, from Theorem 1.13, and using the fact that r = k, we have that
MMT = λJv + (k − λ)Iv. Since b = v, the matrices M and MT are v by v
matrices. Let det() denote the determinant of a square matrix. Since

det(MMT) = (det M)(det MT) = (det M)2

for any square matrix M, it follows that

(det M)2 = det(λJv + (k − λ)Iv).
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We proceed to compute det(λJv + (k − λ)Iv) by performing elementary
row and column operations. (Recall that elementary row and column opera-
tions do not affect the value of the determinant.) The matrix λJv + (k − λ)Iv

looks like 


k λ λ · · · λ
λ k λ · · · λ
λ λ k · · · λ
...

...
...

. . .
...

λ λ λ · · · k




.

If we subtract the first row from every other row, then we obtain the matrix




k λ λ · · · λ
λ − k k − λ 0 · · · 0
λ − k 0 k − λ · · · 0

...
...

...
. . .

...
λ − k 0 0 · · · k − λ




.

Now add columns 2 through v to the first column, obtaining the following:




k + (v − 1)λ λ λ · · · λ
0 k − λ 0 · · · 0
0 0 k − λ · · · 0
...

...
...

. . .
...

0 0 0 · · · k − λ




.

This matrix is an upper triangular matrix, so its determinant is the product
of the entries on the main diagonal. Hence, we see that

(det M)2 = (k + (v − 1)λ)(k − λ)v−1 = k2(k − λ)v−1,

where we use the fact that (v − 1)λ = k(k − 1) in a symmetric BIBD. The
matrix M has integer entries, so det M is an integer. Therefore, if v is even,
then it must be the case that k − λ is a perfect square. ⊓⊔

As an example, we use Theorem 2.16 to show that a (22, 7, 2)-BIBD cannot
exist. First, if this BIBD were to exist, it would be symmetric, because 2(22 −
1) = 7(7 − 1). However, 22 is even and 7 − 2 = 5 is not a perfect square, so
we can conclude that the BIBD does not exist.

Before stating and proving the second part of the Bruck-Ryser-Chowla
Theorem, we record a couple of other results that are needed in the proof.
The first is a well-known theorem from number theory, which we do not
prove here.

Lemma 2.17. For any integer n ≥ 0, there exist integers a0, a1, a2, a3 ≥ 0 such that
n = a0

2 + a1
2 + a2

2 + a3
2.
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The next lemma is easily verified.

Lemma 2.18. Suppose that

C =




a0 a1 a2 a3

−a1 a0 −a3 a2

−a2 a3 a0 −a1

−a3 −a2 a1 a0




and let n = a0
2 + a1

2 + a2
2 + a3

2. Then C−1 = 1
n CT .

Now we proceed to the Bruck-Ryser-Chowla Theorem in the case when v
is odd.

Theorem 2.19 (Bruck-Ryser-Chowla Theorem, v odd). Suppose there exists a
symmetric (v, k, λ)-BIBD with v odd. Then there exist integers x, y, and z (not all
0) such that

x2 = (k − λ)y2 + (−1)(v−1)/2λz2. (2.3)

Proof. First, we suppose that v ≡ 1 (mod 4), and we denote v = 4w + 1.
Let M be the incidence matrix of a symmetric (v, k, λ)-BIBD. Let x1, . . . , xv

be indeterminates. For 1 ≤ i ≤ v, define

Li =
v

∑
j=1

mj,ixj.

Each Li is a linear function of the xj’s having integral coefficients.
With a bit of simple algebra, it can be shown that

v

∑
i=1

Li
2 = λ

(
v

∑
j=1

xj

)2

+ (k − λ)
v

∑
j=1

xj
2. (2.4)

We prove that the equation above holds as follows. First, we have that

Li
2 =

v

∑
j=1

v

∑
h=1

mj,imh,ixjxh.

Then, we have

v

∑
i=1

Li
2 =

v

∑
i=1

v

∑
j=1

v

∑
h=1

mj,imh,ixjxh

=
v

∑
j=1

v

∑
h=1

(
v

∑
i=1

mj,imh,i

)
xjxh.

Now, from Theorem 1.13, noting that r = k, it follows that
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v

∑
i=1

mj,imh,i =

{
λ if j �= h

k if j = h.

Substituting into the equation above, we have that

v

∑
i=1

Li
2 = ∑

{j,h:j �=h}
λxjxh +

v

∑
j=1

kxj
2

=
v

∑
j=1

v

∑
h=1

λxjxh +
v

∑
j=1

(k − λ)xj
2

= λ

(
v

∑
j=1

xj

)2

+ (k − λ)
v

∑
j=1

xj
2,

as desired.
Equation (2.4) is an identity in the variables x1, . . . , xv in which all the

coefficients are integers. Next, we transform the variables x1, . . . , xv into new
variables y1, . . . , yv, where each yi is a certain integral linear combination of
the xj’s. Let a0, a1, a2, a3 be integers such that a0

2 + a1
2 + a2

2 + a3
2 = k − λ;

these exist by Lemma 2.17. Let the matrix C be defined as in Lemma 2.18.
Then, for 1 ≤ h ≤ w, let

(y4h−3, y4h−2, y4h−1, y4h) = (x4h−3, x4h−2, x4h−1, x4h)C.

Finally, let yv = xv and let

y0 =
v

∑
i=1

xi.

It is easy to see, using Lemma 2.18, that

v−1

∑
j=1

yj
2 = (k − λ)

v−1

∑
j=1

xj
2.

This follows from the following equations, which hold for 1 ≤ h ≤ w:

y4h−3
2 + y4h−2

2 + y4h−1
2 + y4h

2

= (y4h−3, y4h−2, y4h−1, y4h)(y4h−3, y4h−2, y4h−1, y4h)
T

= (x4h−3, x4h−2, x4h−1, x4h)C((x4h−3, x4h−2, x4h−1, x4h)C)T

= (x4h−3, x4h−2, x4h−1, x4h)CCT(x4h−3, x4h−2, x4h−1, x4h)
T

= (x4h−3, x4h−2, x4h−1, x4h)(k − λ)I4(x4h−3, x4h−2, x4h−1, x4h)
T

= (k − λ)(x4h−3
2 + x4h−2

2 + x4h−1
2 + x4h

2).

Hence, it follows that
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v

∑
i=1

Li
2 = λy0

2 +
v−1

∑
j=1

yj
2 + (k − λ)yv

2. (2.5)

The Li’s were defined as integral linear combinations of the xj’s. However, by
virtue of Lemma 2.18, we can express each xj as a rational linear combination
of y1, . . . , yv. Similarly, y0 is a linear combination of y1, . . . , yv having rational
coefficients.

In view of the observations above, equation (2.5) can be regarded as an
identity in the indeterminates y1, . . . , yv in which all the coefficients are ratio-
nal numbers. It is possible to specialize this identity by expressing any of the
indeterminates as a rational combination of the remaining indeterminates,
and the result will be an identity in the remaining indeterminates in which
the coefficients are (still) all rational.

First, suppose that

L1 =
v

∑
i=1

eiyi.

If e1 �= 1, then let y1 = L1, and if e1 = 1, then let y1 = −L1. We have expressed
y1 as a rational linear combination of y2, . . . , yv in such a way that L1

2 = y1
2.

Then equation (2.5) is transformed into the following identity in y2, . . . , yv:

v

∑
i=2

Li
2 = λy0

2 +
v−1

∑
j=2

yj
2 + (k − λ)yv

2. (2.6)

We continue in this fashion, eliminating the variables y2, . . . , yv−1 one at a
time, making sure that each yj is a rational linear combination of yj+1, . . . , yv

such that yj
2 = Lj

2 for all such j. We end up with the following equation:

Lv
2 = λy0

2 + (k − λ)yv
2. (2.7)

In this equation, Lv and y0 are rational multiples of yv. Suppose that Lv = syv

and y0 = tyv, where s, t ∈ Q. Let yv = 1; then

s2 = λt2 + k − λ.

Now, we can write s = s1/s2 and t = t1/t2, where s1, s2, t1, t2 ∈ Z and
s2, t2 �= 0. Our equation becomes

(s1t2)
2 = λ(s2t1)

2 + (k − λ)(s2t2)
2.

If we let x = s1t2, y = s2t2, and z = s2t1, then we have an integral solution

to the equation x2 = (k − λ)y2 + (−1)(v−1)/2λz2 in which at least one of x, y,

and z is nonzero (note also that (−1)(v−1)/2 = 1 because v ≡ 1 (mod 4)).
There remains the case v ≡ 3 (mod 4) to consider. It is similar to the

previous case, with a few modifications. Denote v = 4w − 1. Introduce a new
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indeterminate, xv+1, and add (k − λ)xv+1
2 to both sides of equation (2.4),

producing the following:

v

∑
i=1

Li
2 + (k − λ)xv+1

2 = λ

(
v

∑
j=1

xj

)2

+ (k − λ)
v+1

∑
j=1

xj
2. (2.8)

Then, for 1 ≤ h ≤ w, let

(y4h−3, y4h−2, y4h−1, y4h) = (x4h−3, x4h−2, x4h−1, x4h)C.

Finally, let

y0 =
v

∑
i=1

xi.

Then we have that

v

∑
i=1

Li
2 + (k − λ)xv+1

2 = λy0
2 +

v+1

∑
j=1

yj
2. (2.9)

Proceed as in the case v ≡ 1 (mod 4), eliminating all the Li’s. The following
equation results:

(k − λ)xv+1
2 = λy0

2 + yv+1
2.

We end up with a solution to the equation x2 = (k − λ)y2 + (−1)(v−1)/2λz2

in which at least one of x, y, and z is nonzero (note that (−1)(v−1)/2 = −1
when v ≡ 3 (mod 4)). ⊓⊔

Theorem 2.19 is more difficult to apply than Theorem 2.16 because it in-
volves determining if a certain diophantine equation has a nontrivial solu-
tion. Here is an example to illustrate this:

Example 2.20. We will show that a (symmetric) (43, 7, 1)-BIBD does not exist.
Theorem 2.16 tells us that if this BIBD exists, then the equation

x2 + z2 = 6y2 (2.10)

has a solution in integers, not all of which are zero. Let us assume that (x, y, z)
is an integral solution to equation (2.10). Reducing this equation modulo 3,
it follows that x2 + z2 ≡ 0 (mod 3). Since x2 ≡ 0, 1 (mod 3) for any integer
x, the only way that we can have x2 + z2 ≡ 0 (mod 3) is if x ≡ 0 (mod 3)
and z ≡ 0 (mod 3). Let us write x = 3x1 and z = 3z1, where x1 and z1 are
integers. Then equation (2.10) becomes

(3x1)
2 + (3z1)

2 = 6y2,

or
3x1

2 + 3z1
2 = 2y2.
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The left side of this equation is divisible by 3, so it must be the case that y ≡ 0
(mod 3). Writing y = 3y1, we have

3x1
2 + 3z1

2 = 2(3y1)
2,

or
x1

2 + z1
2 = 6y1

2.

We have shown that if (x, y, z) is any integral solution to equation (2.10),
then

(
x
3 ,

y
3 , z

3

)
is also an integral solution to equation (2.10). This process

can be repeated infinitely often, which is a contradiction unless (x, y, z) =
(0, 0, 0). We conclude that the only solution to equation (2.10) is (0, 0, 0), and
therefore a (43, 7, 1)-BIBD does not exist.

The example above was a bit tedious. It is worthwhile to use some results
from number theory to establish a more general result. Let us first consider
the situation of a projective plane of arbitrary order n. We will give a com-
plete analysis of the Bruck-Ryser-Chowla conditions in this situation.

First, suppose that n ≡ 0, 3 (mod 4). In this case, equation (2.3) reduces
to x2 = ny2 + z2. This always has the nontrivial solution x = z = 1,
y = 0. Therefore the Bruck-Ryser-Chowla Theorem does not yield any non-
existence results for (n2 + n + 1, n + 1, 1)-BIBDs when n ≡ 0, 3 (mod 4).

Now we turn to the case where n ≡ 1, 2 (mod 4). For such integers n, we
have that (n2 + n)/2 is odd, so the equation to be solved is x2 = ny2 − z2, or

x2 + z2 = ny2. (2.11)

We are interested in determining the conditions under which equation
(2.11) has an integral solution (x, y, z) not all of which are zero. Although we
do not give the proof here, it is possible to show that equation (2.11) has a
solution of the desired type if and only if

x2 + z2 = n (2.12)

has an integral solution (x, z). Furthermore, it is known precisely when equa-
tion (2.12) has an integral solution. The following is a famous result from
number theory.

Theorem 2.21. A positive integer n can be expressed as the sum of two integral
squares if and only if there does not exist a prime p ≡ 3 (mod 4) such that the
largest power of p that divides n is odd.

Summarizing the previous discussion, we obtain the following result.

Theorem 2.22. Suppose that n ≡ 1, 2 (mod 4), and there exists a prime p ≡ 3
(mod 4) such that the largest power of p that divides n is odd. Then a projective
plane of order n does not exist.
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The first few values of n for which Theorem 2.22 can be applied are n =
6, 14, 21, 22, and 30. Hence, projective planes of these orders do not exist.

We now turn to the situation of arbitrary λ, where we derive an easy-to-
use corollary of the Bruck-Ryser-Chowla Theorem. Before proceeding to our
main result, we define the concept of a quadratic residue. Suppose that m ≥ 2
is an integer and a is any integer. Then we say that a is a quadratic residue
modulo m if the congruence x2 ≡ a (mod m) has a solution x ∈ Zm\{0}. For
future reference, we record the following well-known result, which is known
as Euler’s Criterion.

Theorem 2.23 (Euler’s Criterion). An integer a is a quadratic residue modulo the

odd prime p if and only if a(p−1)/2 ≡ 1 (mod p).

A positive integer is said to be square-free provided that it is not divisible
by j2 for any integer j > 1. Any positive integer n can be written uniquely in
the form n = A2n1 where A is a positive integer and n1 is square-free (note
that we allow A = 1 and/or n1 = 1). The integer n1 is called the square-free
part of n.

Theorem 2.24. Suppose that v, k and λ are positive integers such that λ(v − 1) =
k(k − 1) and v > k ≥ 2. Let λ1 be the square-free part of λ and let n1 be the square-
free part of k−λ. Suppose that p is an odd prime such that n1 ≡ 0 (mod p), λ1 �≡ 0

(mod p), and (−1)(v−1)/2λ1 is not a quadratic residue modulo p. Then there does
not exist a (v, k, λ)-BIBD.

Proof. We will prove that equation (2.3) does not have an integral solution
(x, y, z) �= (0, 0, 0). Assuming that it does, we will derive a contradiction.

First, we have that λ = B2λ1 and k − λ = A2n1, where A and B are
positive integers. Then

x2 = n1(Ay)2 + (−1)(v−1)/2λ1(Bz)2.

Letting y1 = Ay and z1 = Bz, the equation

x2 = n1y1
2 + (−1)(v−1)/2λ1z1

2 (2.13)

has a solution (x, y1, z1) �= (0, 0, 0). We can assume that gcd(x, y1, z1) = 1
(for if gcd(x, y1, z1) = d > 1, then we can divide each of x, y1, and z1 by d,
obtaining a solution in which the gcd is equal to 1).

Suppose that z1 ≡ 0 (mod p). Then x ≡ 0 (mod p) because n1 ≡ 0
(mod p). But if z1 and x are both divisible by p, then z1

2 and x2 are both
divisible by p2, and hence n1y1

2 is divisible by p2. n1 is square-free, so it is
not divisible by p2. Therefore y1 is divisible by p. But then gcd(x, y1, z1) ≥ p,
which is a contradiction. We conclude that z1 �≡ 0 (mod p).

Now we reduce equation (2.13) modulo p. We obtain the following con-
gruence:
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x2 ≡ (−1)(v−1)/2λ1z1
2 (mod p).

We proved above that z1 �≡ 0 (mod p). Since p is prime, there exists a multi-
plicative inverse z1

−1 mod p. Then

(xz1
−1)2 ≡ (−1)(v−1)/2λ1 (mod p).

This means that (−1)(v−1)/2λ1 is a quadratic residue modulo p, which con-
tradicts the hypotheses of the theorem.

We conclude that equation (2.3) does not have a solution (x, y, z) �=
(0, 0, 0). Hence, from Theorem 2.19, there does not exist a (v, k, λ)-BIBD. ⊓⊔

We illustrate the application of the theorem above in the following exam-
ple.

Example 2.25. Consider the parameter set (v, k, λ) = (67, 12, 2). We compute
2× 66 = 12× 11, so it is conceivable that a (symmetric) (67, 12, 2)-BIBD exists.
We show that this is not the case using Theorem 2.24.

We have λ1 = 2 and n1 = 10, so we will take p = 5. We com-

pute (−1)(v−1)/2λ1 ≡ 3 (mod 5), and it is easily verified that 3 is not a
quadratic residue modulo 5. Therefore we conclude from Theorem 2.24 that
a (67, 12, 2)-BIBD does not exist.

As another example, we show that Theorem 2.22 can be derived as a
corollary of Theorem 2.24.

Example 2.26. Suppose that n ≡ 1, 2 (mod 4) and there exists a prime p ≡ 3
(mod 4) such that the largest power of p that divides n is odd. We want to
show, using Theorem 2.24, that an (n2 + n + 1, n + 1, 1)-BIBD does not exist.
Clearly we have λ1 = λ = 1, k − λ = n, and λ1 �≡ 0 (mod p). Using the
fact that the largest power of p that divides n is odd, it follows that n1 ≡ 0
(mod p).

We need to verify that (−1)(v−1)/2λ1 is not a quadratic residue modulo

p. As observed previously, (−1)(v−1)/2 = (−1)(n2+n)/2 = −1 when n ≡ 1, 2

(mod 4). Therefore (−1)(v−1)/2λ1 = −1. However, using Euler’s Criterion, it
is immediate that −1 is not a quadratic residue modulo p if p ≡ 3 (mod 4).

It therefore follows from Theorem 2.24 that a projective plane of order n
does not exist if the given hypotheses hold.

The Bruck-Ryser-Chowla Theorem was proven over fifty years ago. It is
remarkable that no general necessary conditions for existence of symmetric
BIBDs have been proven since then. In fact, the only nonexistence result for
any symmetric BIBD, other than those ruled out by the Bruck-Ryser-Chowla
theorem, is that a projective plane of order 10 does not exist. This was proven
in 1989 using a computer.
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2.5 Notes and References

Lander [75] is a 1983 monograph devoted to symmetric designs. Tran [113]
is a more recent survey.

Dembowski [39] is a standard reference on projective geometries. Hughes
and Piper [60] is a specialized study of projective planes.

Most of the results in Section 2.1 (including Theorem 2.2) were proven in
Ryser [89] and Chowla and Ryser [23].

The result that a quasiresidual BIBD with λ = 2 is residual is known
as the “Hall-Connor Theorem” and was proven in [54]. There are quite a
number of constructions for quasiresidual BIBDs that are not residual. Tran
[112] gave an extensive treatment of this subject in 1990; see also Ionin and
Mackenzie-Fleming [62] (and the references found therein) for more recent
results.

The theorem known as the Bruck-Ryser-Chowla Theorem was proven
(for odd v) by Bruck and Ryser [18] and by Chowla and Ryser [23]. The part
of the theorem pertaining to even v was first obtained by Schützenberger
[91].

The proof of the nonexistence of a projective plane of order 10 is due to
Lam, Thiel, and Swiercz [74].

2.6 Exercises

2.1 Give a proof of Theorem 2.2 in the special case λ = 1 using the tech-
nique of Exercise 1.19.

2.2 Suppose that there is a symmetric (v, k, λ)-BIBD, say (X,A), and de-
note n = k − λ. n is called the order of the symmetric BIBD (X,A).

(a) Prove that the block complement of (X,A) has order n.
(b) Prove that λ2 + (2n − v)λ + n2 − n = 0.
(c) Solve this quadratic equation for λ.
(d) Using the fact that λ ≥ 1, deduce that v ≤ n2 + n + 1.
(e) Prove that v ≥ 4n − 1.

2.3 Let (X,A) be a symmetric (v, k, λ)-BIBD having order n = k − λ.
(a) If v = n2 + n + 1, prove that (X,A) is a projective plane of order

n (or its block-complement).
(b) If v = 4n − 1, prove that (v, k, λ) = (4n − 1, 2n − 1, n − 1) or

(4n − 1, 2n, n).
(c) If v = 4n, prove that (v, k, λ) = (4u2, 2u2 ± u, u2 ± u) for some

positive integer u.
Hint: Use the Bruck-Ryser Theorem and Exercise 2.2.

2.4 Suppose that (v, b, r, k, λ) are parameters of a BIBD.
(a) Prove that λ(v + r − 1) = r(r − 1) whenever r = k + λ.
(b) Prove that (λ + 1)b = r(r + 1) whenever k = λ + 1.
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2.5 (a) State the parameters (v1, k1, λ1) of the residual BIBD of a sym-
metric (v, k, λ)-BIBD.

(b) State the parameters (v2, k2, λ2) of the derived BIBD of the block-
complement of a symmetric (v, k, λ)-BIBD.

(c) Prove that the parameter triples (v1, k1, λ1) and (v2, k2, λ2) are
identical if and only if k = 2λ + 1 and v = 4λ + 3.

2.6 Suppose that a (v, k, λ)-BIBD is both a derived and a residual BIBD.
Prove that v = 2λ + 2.

2.7 Construct a projective plane of order 4 using the technique of Example
2.11.
Note: The finite field F4 = Z2[x]/(x2 + x + 1).

2.8 Construct a (15, 7, 3)-BIBD using the method described in Theorem
2.14.

2.9 The following triples (v, k, λ) all satisfy the condition λ(v − 1) =
k(k − 1), so they could be parameters of a symmetric BIBD. For each
triple, investigate the Bruck-Ryser-Chowla conditions. You should ei-
ther prove that the Diophantine equation

x2 = (k − λ)y2 + (−1)(v−1)/2λz2

has no integral solution (x, y, z) �= (0, 0, 0) (which implies that the
BIBD does not exist) or find a solution (x, y, z) �= (0, 0, 0) by trial and
error (you are not required to try to construct the BIBD in this situa-
tion). The parameter triples are as follows.

(a) (29, 8, 2).
(b) (53, 13, 3).
(c) (43, 15, 5).
(d) (81, 16, 3).
(e) (77, 20, 5).
(f) (85, 28, 9).

2.10 A W(n, w) is an n × n matrix whose entries are elements of the set
{0, 1,−1} such that WWT = wIn. Prove the following Bruck-Ryser-
Chowla type theorems for the existence of these matrices.

(a) Suppose that a W(n, w) exists, where n is odd. Then prove that
w is a perfect square.

(b) Suppose that a W(n, w) exists, where n ≡ 2 (mod 4). Then prove
that w is the sum of two integral squares.
Hint: Eventually, you should obtain an equation of the form
L1

2 + L2
2 = w(yv−1

2 + yv
2). Set yv−1 = 1 and yv = 0, and make

use of the fact (which you are not required to prove) that an inte-
ger is the sum of two integral squares if and only if it is the sum
of two rational squares.
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Difference Sets and Automorphisms of Designs

3.1 Difference Sets and Automorphisms

We now study an important construction method for symmetric BIBDs.

Definition 3.1. Suppose (G, +) is a finite group of order v in which the identity
element is denoted “0”. Unless explicitly stated, we will not require that G be an
Abelian group. (In many examples, however, we will take G = (Zv, +), the integers
modulo v.) Let k and λ be positive integers such that 2 ≤ k < v. A (v, k, λ)-
difference set in (G, +) is a subset D ⊆ G that satisfies the following properties:

1. |D| = k,
2. the multiset [x − y : x, y ∈ D, x �= y] contains every element in G\{0} exactly

λ times.

Note that λ(v − 1) = k(k − 1) if a (v, k, λ)-difference set exists.

Example 3.2. A (21, 5, 1)-difference set in (Z21, +):

D = {0, 1, 6, 8, 18}.

If we compute the differences (modulo 21) we get from pairs of distinct ele-
ments in D, we obtain the following:

1 − 0 = 1 0 − 1 = 20
6 − 0 = 6 0 − 6 = 15
8 − 0 = 8 0 − 8 = 13
18 − 0 = 18 0 − 18 = 3
6 − 1 = 5 1 − 6 = 16
8 − 1 = 7 1 − 8 = 14
18 − 1 = 17 1 − 18 = 4
8 − 6 = 2 6 − 8 = 19
18 − 6 = 12 6 − 18 = 9
18 − 8 = 10 8 − 18 = 11.
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So we get every element of Z21\{0} exactly once as a difference of two ele-
ments in D.

Example 3.3. A (15, 7, 3)-difference set in (Z15, +):

D = {0, 1, 2, 4, 5, 8, 10}.

Example 3.4. A (16, 6, 2)-difference set in (Z4 × Z4, +):

D = {(0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0)}.

(Note: This example is particularly interesting in view of the fact that there
does not exist a (16, 6, 2)-difference set in (Z16, +).)

Example 3.5. A (45, 12, 3)-difference set in (Z5 × Z3 × Z3, +):

D =

{
(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 0, 0), (1, 1, 0), (1, 2, 0),
(2, 0, 0), (2, 1, 1), (2, 2, 2), (3, 0, 0), (3, 1, 2), (3, 2, 1)

}
.

Example 3.6. A (36, 15, 6)-difference set in (Z6 × Z6, +):

D = {(0, i) : 1 ≤ i ≤ 5} ∪ {(i, 0) : 1 ≤ i ≤ 5} ∪ {(i, i) : 1 ≤ i ≤ 5}.

Example 3.7. We give an example of a difference set in a non-Abelian group.
Consider the following group (written multiplicatively):

G = {aibj : a3 = b7 = 1, ba = ab4}.

It can be shown that G is a non-Abelian group of order 21. The set D =
{a, a2, b, b2, b4} is a (21, 5, 1)-difference set in (G, ·). Because the group is writ-
ten multiplicatively, what we mean by this is that

{xy−1 : x, y ∈ D, x �= y} = G\{1}.

Difference sets can be used to construct symmetric BIBDs as follows. Let
D be a (v, k, λ)-difference set in a group (G, +). For any g ∈ G, define

D + g = {x + g : x ∈ D}.

Any set D + g is called a translate of D. Then, define Dev(D) to be the collec-
tion of all v translates of D. Dev(D) is called the development of D.
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Theorem 3.8. Let D be a (v, k, λ)-difference set in an Abelian group (G, +). Then
(G, Dev(D)) is a symmetric (v, k, λ)-BIBD.

Proof. Suppose x, y ∈ G, x �= y. We first prove that there are exactly λ ele-
ments g ∈ G such that {x, y} ⊆ D + g.

Denote x − y = d. There are exactly λ ordered pairs (x′, y′) such that
x′, y′ ∈ D and x′ − y′ = d. Let these ordered pairs be denoted (xi, yi), 1 ≤
i ≤ λ. For 1 ≤ i ≤ λ, define gi = −xi + x. Then gi = −yi + y and {x, y} =
{xi + gi, yi + gi} ⊆ D + gi. The gi’s are distinct because the xi’s are distinct,
so this shows that there are at least λ values of g such that {x, y} ⊆ D + g.

Conversely, suppose that there are exactly ℓ values of g such that {x, y} ⊆
D + g, namely g = h1, . . . , hℓ. (We have shown above that ℓ ≥ λ.) Then (x −
hi) + (hi − y) = x − y = d for 1 ≤ i ≤ ℓ. Also, {x − hi, y − hi} ⊆ D for
1 ≤ i ≤ ℓ. The hi’s are distinct, so we have found ℓ ordered pairs (x′, y′) ∈ D
such that x′ − y′ = d. There are exactly λ such ordered pairs, however, so
ℓ ≤ λ.

We have therefore proven that ℓ = λ. Every block D + g contains k points,
so the collection of v blocks D + g (g ∈ G) is a symmetric (v, k, λ)-BIBD. ⊓⊔

Corollary 3.9. Suppose D is a (v, k, λ)-difference set in an Abelian group (G, +).
Then Dev(D) consists of v distinct blocks.

Proof. Suppose that D + g1 = D + g2, where g1 �= g2. Then the symmetric
BIBD (G, Dev(D)) contains two blocks that intersect in k points. However,
Theorem 2.2 states that any two blocks in a symmetric (v, k, λ)-BIBD intersect
in λ points. The result follows. ⊓⊔

Thus, for example, the (21, 5, 1)-BIBD developed from the difference set
of Example 3.2 has 21 distinct blocks:

{0, 1, 6, 8, 18}, {1, 2, 7, 9, 19}, . . . , {0, 5, 7, 17, 20}.

The next result establishes the existence of nontrivial automorphisms of
the symmetric BIBDs constructed from difference sets.

Theorem 3.10. Suppose (G, Dev(D)) is the symmetric BIBD constructed from a
(v, k, λ)-difference set D in a group (G, +). Then Aut(G, Dev(D)) contains a sub-

group Ĝ that is isomorphic to G.

Proof. For every g ∈ G, define the mapping ĝ : G → G as follows:

ĝ(x) = x + g

for all x ∈ G. It is clear that each ĝ is one-to-one and onto and therefore a

permutation of G. Define Ĝ = {ĝ : g ∈ G}. Ĝ is a permutation group, and it
is known as the permutation representation of G.

We will prove the following:
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1. (G, +) is isomorphic to (Ĝ, ◦), where the group operation “◦” denotes
composition of permutations; and

2. (Ĝ, ◦) is a subgroup of Aut(G, Dev(D)).

To prove the first assertion, we exhibit an isomorphism between (G, +) and

(Ĝ, ◦). Define α : G → Ĝ in the obvious way: α(g) = ĝ for all g ∈ G. First, α
is a group homomorphism because

(α(g) ◦ α(h))(x) = (ĝ ◦ ĥ)(x)

= ĥ(ĝ(x))

= ĥ(x + g)

= x + g + h

= ĝ + h(x)

= α(g + h)(x)

holds for all g, h, x ∈ G, and hence α(g) ◦ α(h) = α(g + h) holds for all g, h ∈
G. Next, it is clear that α is surjective. We also have that α is injective since

ĝ = ĥ if and only if g = h. Hence α is a group isomorphism.
To prove the second statement, we observe that

ĝ(D + h) = {ĝ(x) : x ∈ D + h}
= {x + g : x ∈ D + h}
= {x + g + h : x ∈ D}
= D + h + g.

Hence, for any permutation ĝ ∈ Ĝ and for any block D + h ∈ Dev(D), it

holds that ĝ(D + h) ∈ Dev(D). That is, every ĝ ∈ Ĝ is an automorphism of

(G, Dev(D)). Since Ĝ is a group, it is a subgroup of Aut(G, Dev(D)). ⊓⊔

Example 3.11. Consider the symmetric (7, 3, 1)-BIBD developed from the dif-
ference set {1, 2, 4} in (Z7, +). The blocks of the BIBD are 124, 235, 346, 450,
561, 602, and 013.

The elements g of the group G = (Z7, +), and the elements ĝ in its per-

mutation representation, Ĝ, are as follows:

g ĝ
0 (0)(1)(2)(3)(4)(5)(6)
1 (0 1 2 3 4 5 6)
2 (0 2 4 6 1 3 5)
3 (0 3 6 2 5 1 4)
4 (0 4 1 5 2 6 3)
5 (0 5 3 1 6 4 2)
6 (0 6 5 4 3 2 1)
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It is easy to verify that every permutation in Ĝ is an automorphism of the
BIBD.

Under suitable conditions, a converse to Theorem 3.10 holds. We will
prove a result of this type for the special case of a difference set in a cyclic
group. However, before doing so, we state and prove some preliminary re-
sults that will be required.

Suppose that (X,A) is a symmetric (v, k, λ)-BIBD, and suppose that α ∈
Aut(X,A). α is a permutation of X, and therefore it follows from Section 1.4
that α consists of a union of disjoint cycles whose lengths sum to v. The cycle
type of α is the collection (i.e., multiset) of the sizes of the cycles in the disjoint
cycle representation of α. Recall that a fixed point of α is a point x such that
α(x) = x.

As an example, consider the permutation α of {0, . . . , 8} defined as fol-
lows: α(0) = 3, α(1) = 4, α(2) = 2, α(3) = 0, α(4) = 5, α(5) = 1, α(6) = 8,
α(7) = 7, and α(8) = 6. If we write α as a union of disjoint cycles, then we
have

α = (0 3)(1 4 5)(2)(6 8)(7).

The cycle type of α, written as a list of nondecreasing integers, is [1, 1, 2, 2, 3].
Note that α has two fixed points, namely 2 and 7.

Any automorphism α of a symmetric BIBD, say (X,A), will permute the
blocks in the set A. Hence, we can consider the permutation of A induced
by α and define the cycle type of this permutation in the obvious way. A
fixed “point” of this permutation is a block A ∈ A that is fixed setwise by
α; i.e., {α(x) : x ∈ A} = A. We refer to such a block as a fixed block to avoid
confusion.

We now state and prove a useful combinatorial lemma.

Lemma 3.12. Suppose that (X,A) is a symmetric (v, k, λ)-BIBD, and suppose that
α ∈ Aut(X,A) has exactly f fixed points. Then α fixes exactly f blocks in A.

Proof. Suppose that α fixes exactly F blocks. Define

I = {(x, A) : x ∈ X, A ∈ A, {x, α(x)} ⊆ A}.

We will compute |I| in two different ways. First, we have

|I| = ∑
x∈X

|{A ∈ A : {x, α(x)} ⊆ A}|

= ∑
{x∈X:α(x)=x}

|{A ∈ A : {x, α(x)} ⊆ A}|

+ ∑
{x∈X:α(x) �=x}

|{A ∈ A : {x, α(x)} ⊆ A}|

= f k + (v − f )λ.

On the other hand, we have
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|I| = ∑
A∈A

|{x ∈ X : {x, α(x)} ⊆ A}|

= ∑
{A∈A:α(A)=A}

|{x ∈ X : {x, α(x)} ⊆ A}|

+ ∑
{A∈A:α(A) �=A}

|{x ∈ X : {x, α(x)} ⊆ A}|.

Now, if α(A) = A, then α(x) ∈ A for all x ∈ A, and it is easily seen that

{x ∈ X : {x, α(x)} ⊆ A} = A.

Therefore,
|{x ∈ X : {x, α(x)} ⊆ A}| = k.

Now assume that α(A) �= A. Clearly, {x, α(x)} ⊆ A if and only if x ∈
A ∩ α−1(A). A �= α−1(A), and hence, applying Theorem 2.2, we have that
|A ∩ α−1(A)| = λ. Therefore

|{x ∈ X : {x, α(x)} ⊆ A}| = λ,

and hence
|I| = Fk + (v − F)λ.

Equating the two expressions we have derived for |I|, we have that

f k + (v − f )λ = Fk + (v − F)λ.

This implies that
( f − F)(k − λ) = 0.

In a symmetric BIBD, it holds that k �= λ, and hence we conclude that f = F.
⊓⊔

The proof of our next theorem will make use of a combinatorial tech-
nique known as the “Möbius Inversion Formula”. This interesting formula
involves the Möbius function, denoted µ, which is defined on the positive in-
tegers as follows:

µ(n) =





1 if n = 1

(−1)k if n = p1 × · · · × pk, where the pi’s are distinct primes

0 if n is divisible by p2 for some prime p.

We now state the Möbius Inversion Formula.

Theorem 3.13 (Möbius Inversion Formula). Suppose that f , g : Z+ → R are
functions, and suppose that the following equation holds for all positive integers j:

f (j) = ∑
i|j

g(i).
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Then the following equation holds for all positive integers i:

g(i) = ∑
j|i

µ

(
i

j

)
f (j).

Theorem 3.14. Suppose that (X,A) is a symmetric (v, k, λ)-BIBD, and suppose
that α ∈ Aut(X,A). Then the cycle type of the permutation of X induced by α is the
same as the cycle type of the permutation of A induced by α.

Proof. Suppose a permutation α of a finite set S has exactly ci cycles of length
i, for 1 ≤ i ≤ |S|. Let f j denote the number of fixed points of the permutation

αj. It is not hard to see that a point x ∈ S is fixed by the permutation αj if
and only if x occurs in a cycle of length i|j in the permutation α. Hence the
following equation holds:

f j = ∑
i|j

ici. (3.1)

The Möbius Inversion Formula can be used to solve for the ci’s in terms of
the f j’s. This is easily done by defining g(i) = ici and applying Theorem 3.13.
The following formula is the result:

ci =
1

i ∑
j|i

µ

(
i

j

)
f j. (3.2)

Now suppose α is an automorphism of the symmetric (v, k, λ)-BIBD

(X,A). Then, for all j ≥ 1, αj is an automorphism of (X,A), and Lemma
3.12 shows that the permutations of X and A induced by αj have the same
number of fixed points. Hence, by equation (3.2), the two permutations in-
duced by α have the same cycle type. ⊓⊔

We give an example to illustrate the previous results.

Example 3.15. We refer to the (7, 3, 1)-BIBD, (X,A), that was presented in Ex-
ample 1.23. Let the blocks be named A1, A2, . . . , A7, where

A1 = 123, A2 = 145, A3 = 167, A4 = 246, A5 = 257, A6 = 347, A7 = 356.

We showed in Example 1.23 that

α = (1)(2)(3)(4 5)(6 7)

is an automorphism of (X,A). The permutation of A induced by α is the
following:

(A1)(A2)(A3)(A4 A5)(A6 A7).

Hence the two permutations induced by α have the same cycle type; namely
[1, 1, 1, 2, 2].



48 3 Difference Sets and Automorphisms

In this example, we have c1 = 3, c2 = 2, f1 = 3, and f2 = 7. Also,
µ(1) = 1 and µ(2) = −1. It is easy to verify that equations (3.1) and (3.2)
hold for j = 1, 2:

f1 = c1 = 3,

f2 = c1 + 2c2 = 7,

c1 = µ(1) f1 = 3, and

c2 =
µ(2) f1 + µ(1) f2

2
= 2.

We are now ready to prove a converse to Theorem 3.8 in the special case
where the symmetric BIBD has an automorphism that is a single cycle of
length v.

Theorem 3.16. Suppose (X,A) is a symmetric (v, k, λ)-BIBD having an automor-
phism α that permutes the points in X in a single cycle of length v. Then there is a
(v, k, λ)-difference set in (Zv, +).

Proof. By relabeling the points if necessary, we can assume without loss of
generality that X = {x0, . . . , xv−1} and α(xi) = xi+1 mod v for 0 ≤ i ≤ v − 1,
i.e.,

α = (x0 x1 · · · xv−1).

Choose any block A ∈ A. Define A0 = A, and for every positive integer j,
define

Aj = {αj(x) : x ∈ A0} = {xi+j mod v : xi ∈ A0}.

Every Aj is a block in A because αj ∈ Aut(X,A). Also, we have that α(Aj) =
Aj+1 mod v by the way in which the Aj’s are defined. Theorem 3.14 establishes
that α permutes the blocks in A in a single cycle of length v. From this, it is
seen that A0, . . . , Av−1 are distinct,

A = {Aj : 0 ≤ j ≤ v − 1},

and α permutes the blocks in A as follows:

α = (A0 A1 · · · Av−1).

Now we define
D = {i : xi ∈ A0}.

We will show that D is the desired difference set. Let g ∈ Zv, g �= 0. The
pair {x0, xg} occurs in exactly λ blocks in A—say in Ai1 , . . . , Aiλ

. For each
occurrence of a pair {x0, xg} ⊆ Ai j

, we have a pair with difference g in the

set D, namely, (g − ij) − (−ij) ≡ g (mod v), where
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{−ij mod v, g − ij mod v} ⊆ D.

These λ pairs in D are distinct. Thus the difference g occurs λ times in the set
D for all nonzero g ∈ Zv. All occurrences of g in D are accounted for by this
analysis, and hence D is a difference set. ⊓⊔

Theorem 3.16 can be generalized to arbitrary finite groups. Suppose
G ⊆ Sv is a permutation group acting on the v-set X. G is sharply transi-
tive provided that the following condition holds: for all x, x′ ∈ X, there exists
a unique permutation g ∈ G such that g(x) = x′. Note that |G| = v if it is
sharply transitive.

The following theorem can be proven in a fashion similar to Theorem
3.16.

Theorem 3.17. Suppose (X,A) is a symmetric (v, k, λ)-BIBD such that G is a
sharply transitive subgroup of Aut(X,A). Then there is a (v, k, λ)-difference set
in the group (G, ◦).

We present an example to illustrate the application of Theorem 3.17 in the
case of a noncyclic group.

Example 3.18. We recall a construction for a symmetric (16, 6, 2)-BIBD that
was mentioned in Exercise 1.13. Write out the integers in the set X =
{0, . . . , 15} in a 4 × 4 array, as follows:

M =

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

For every j, 0 ≤ j ≤ 15, define a block Aj consisting of all the elements in the
row and column of M that contains j, excluding j. Then define A = {Aj : 0 ≤
j ≤ 15}. It is a simple exercise to show that (X,A) is a symmetric (16, 6, 2)-
BIBD.

By the way in which this design is constructed, it is not hard to show
that it has many automorphisms. In particular, there is a sharply transitive
subgroup, say G, of the automorphism group, such that G is isomorphic to
Z4 × Z4. This is easily seen because a cyclic permutation of the four rows, or
the four columns, of the array M leaves the set of blocks unchanged. To be
specific, we define two permutations of X:

α = (0 1 2 3)(4 5 6 7)(8 9 10 11)(12 13 14 15)

β = (0 4 8 12)(1 5 9 13)(2 6 10 14)(3 7 11 15).

It can be shown that αβ = βα and α4 = β4 = id, where id is the identity
permutation. Therefore, α and β generate a subgroup G isomorphic to Z4 ×
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Z4. It is also easy to see that G is sharply transitive. Therefore Theorem 3.17
asserts that there exists a (16, 6, 2)-difference set in Z4 × Z4.

Although we did not provide a proof of Theorem 3.17, we can still
demonstrate how to construct the difference set using techniques similar to
those used in the proof of Theorem 3.16. Suppose we relabel the points in X
so that the array M is changed into the following:

(0, 0) (0, 1) (0, 2) (0, 3)
(1, 0) (1, 1) (1, 2) (1, 3)
(2, 0) (2, 1) (2, 2) (2, 3)
(3, 0) (3, 1) (3, 2) (3, 3)

The reader can verify that the group G (with its points relabeled as described
above) is the permutation representation of Z4 × Z4. Then any block of the
design forms the desired difference set. The difference set presented in Ex-
ample 3.4 is one that can be obtained in this way.

3.2 Quadratic Residue Difference Sets

We introduced the concept of quadratic residues in Section 2.4. We now dis-
cuss quadratic residues in a finite field Fq, where q is an odd prime power.
The quadratic residues of Fq are the elements in the set

QR(q) = {z2 : z ∈ Fq, z �= 0}.

We will also define
QNR(q) = Fq\(QR(q) ∪ {0}).

The elements of QNR(q) are called the quadratic nonresidues of Fq.

Using the fact that z2 = (−z)2, it is not hard to prove that the mapping
z �→ z2 is a two-to-one mapping if z ∈ Fq\{0} and q is odd. From this, it can
be proven that QR(q) is a multiplicative subgroup of Fq\{0} having index
two, and QNR(q) is a coset of QR(q). The following facts can therefore be
shown as a consequence:

xy ∈ QR(q) if x, y ∈ QR(q)
xy ∈ QR(q) if x, y ∈ QNR(q)
xy ∈ QNR(q) if x ∈ QR(q), y ∈ QNR(q).

We will now characterize the quadratic residues and nonresidues in a
different way. We make use of the important fact (which we do not prove)
that the multiplicative group (Fq\{0}, ·) is a cyclic group. A generator of this
group, say ω, is called a primitive element of the field Fq. Clearly, an element
ω ∈ Fq is a primitive element if and only if

{ωi : 0 ≤ i ≤ q − 2} = Fq\{0}.
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It is obvious that the set
{

ω2i : 0 ≤ i ≤ q − 3

2

}

is a subset of QR(q). Since

∣∣∣∣
{

ω2i : 0 ≤ i ≤ q − 3

2

}∣∣∣∣ =
q − 1

2
= |QR(q)|,

we have proven the following result.

Lemma 3.19. Suppose q is an odd prime power and ω is a primitive element in Fq.
Then

QR(q) =

{
ω2i : 0 ≤ i ≤ q − 3

2

}
.

We now state and prove a useful corollary of Lemma 3.19. In the case
where q is prime, this result follows from Euler’s Criterion. (In fact, Euler’s
Criterion can be shown to hold in any finite field of odd order.) However, we
give a proof using the facts about finite fields that we have discussed above.

Corollary 3.20. Suppose q is an odd prime power. Then −1 ∈ QR(q) if and only if
q ≡ 1 (mod 4).

Proof. Let ω ∈ Fq be a primitive element, and let γ = ω(q−1)/2. Now, γ2 =

ω(q−1) = 1 and γ �= 1, so γ = −1. The result now follows from Lemma 3.19.
⊓⊔

It follows that x ∈ QR(q) if and only if −x ∈ QNR(q) whenever q ≡ 3
(mod 4) is a prime power.

Our next result provides an infinite class of difference sets that are called
quadratic residue difference sets.

Theorem 3.21 (Quadratic Residue Difference Sets). Suppose q ≡ 3 (mod 4)
is a prime power. Then QR(q) is a (q, (q − 1)/2, (q − 3)/4)-difference set in
(Fq, +).

Proof. Denote D = QR(q). We have already shown that |D| = (q − 1)/2.
Hence, we need only to prove that every nonzero element of Fq occurs (q −
3)/4 times as a difference of two elements in D.

For any d ∈ Fq\{0}, define

ad = |{(x, y) : x, y ∈ D, x − y = d}|.

Clearly gx − gy = g(x − y) for all g, x, and y, so the number of times any
given difference d occurs in D is the same as the number of times the differ-
ence gd occurs in gD, where gD = {gx : x ∈ D}. Suppose that g ∈ QR(q).
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Then it is easy to see that gD = D, and therefore ad = agd for all g ∈ QR(q).
Hence, there exists a constant λ such that ad = λ for all d ∈ QR(q).

Now, suppose that d ∈ QNR(q), and let e = −d. We have that −1 ∈
QNR(q) from Corollary 3.20, and hence e ∈ QR(q). Observe that ad = ae

because x − y = d if and only if y − x = e. Therefore it follows that ad = λ
for all d ∈ Fq\{0}, and hence D is a (q, (q − 1)/2, λ)-difference set. We can
compute λ from the equation λ(v− 1) = k(k − 1), which gives λ = (q− 3)/4,
as desired. ⊓⊔

Here is an example to illustrate this.

Example 3.22. An (11, 5, 2)-difference set in (Z11, +). We compute 12 = 1,
22 = 4, 32 = 9, 42 = 5, and 52 = 3 (where all arithmetic is performed in
Z11). Hence, from Theorem 3.21,

QR(11) = {1, 3, 4, 5, 9}

is an (11, 5, 2)-difference set in (Z11, +).

We mention two related constructions for difference sets that involve
quartic residues. For a prime power q ≡ 1 (mod 4), the quartic residues in
Fq are the elements of the set {z4 : z ∈ Fq, z �= 0}. Equivalently, the quartic

residues are ω4i, 0 ≤ i ≤ (q − 5)/4, where ω is a primitive element in Fq.
We state the following two theorems without proof. (The proofs, which

are difficult, involve the determination of the so-called “cyclotomic num-
bers” in the finite fields Fq.)

Theorem 3.23. Suppose that p = 4t2 + 1 is prime and t is an odd integer. Then the
quartic residues in Zp form a (4t2 + 1, t2, (t2 − 1)/4)-difference set in (Zp, +).

Example 3.24. {1, 7, 9, 10, 12, 16, 26, 33, 34} is a (37, 9, 2)-difference set in the
group (Z37, +) that can be constructed using the theorem above.

Theorem 3.25. Suppose that p = 4t2 + 9 is prime and t is an odd integer. Then
the quartic residues in Zp, together with 0, form a (4t2 + 9, t2 + 3, (t2 + 3)/4)-
difference set in (Zp, +).

3.3 Singer Difference Sets

In this section we present an infinite class of difference sets, called Singer
difference sets. These difference sets provide another method of constructing
the projective planes of prime power order that we considered in Section 2.3.

Theorem 3.26 (Singer Difference Sets). Let q be a prime power. Then there exists
a (q2 + q + 1, q + 1, 1)-difference set in (Zq2+q+1, +).
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Proof. Recall the construction of a symmetric (q2 + q + 1, q + 1, 1)-BIBD that
was given in Section 2.3. V is a three-dimensional vector space over Fq; V1

consists of all the one-dimensional subspaces of V; and the blocks A corre-
spond to the two-dimensional subspaces of V, which were denoted by V2.

The finite field Fq3 is a three-dimensional vector space over Fq, so we can

take V = Fq3 . Let ω be a primitive element of Fq3 , and define a mapping

f : V → V by f (z) = ωz. It is easy to see that f (z + z′) = f (z) + f (z′) for all
z, z′ ∈ V, and f (cz) = c f (z) for all z ∈ V and all c ∈ Fq. It follows that f is
an Fq-linear mapping on V, and hence it preserves subspaces of V; i.e., any
subspace in Vi is mapped by f to a subspace in Vi, i = 1, 2. This implies that
f induces an automorphism of the resulting (q2 + q + 1, q + 1, 1)-BIBD.

Fq is a subfield of Fq3 , and it is not hard to see that

Fq = {ω(q2+q+1)i : 0 ≤ i ≤ q − 2} ∪ {(0, 0, 0)}.

For any subspace W of V, it follows that f q2+q+1(W) = W. As a consequence,
it can be seen that f permutes the one-dimensional subspaces of Fq3 (i.e.,

the elements in the set V1) in a single cycle of length q2 + q + 1. Applying
Theorem 3.16, we conclude that there exists a (q2 + q + 1, q + 1, 1)-difference
set in (Zq2+q+1, +). ⊓⊔

We now describe how to carry out the construction of a Singer difference
set for a projective plane. We use the same notation as in the proof above. The
points of the projective plane can be denoted as Ci (0 ≤ i ≤ q2 + q), where

Ci = span(ωi),

0 ≤ i ≤ q2 + q. Then f (Ci) = Ci+1 mod q2+q, 0 ≤ i ≤ q2 + q.

Suppose that the field Fq3 is constructed as Fq[x]/(g(x)), where g(x) ∈
Fq[x] is an irreducible cubic polynomial. Then elements of Fq3 can be repre-

sented as polynomials in Fq[x] having degree at most two.
For j ∈ Fq, define yj ∈ Zq3−1 by the rule ωy j = j + x (note that j + x ∈

Fq3\{0}, and hence it can be expressed in this form in a unique way). Then it

is easy to see that span(1) = C0 and

span(j + x) = Cy j mod q2+q+1

for all j ∈ Fq.
Now, let

B = span(1, x) = {i + jx : i, j ∈ Fq},

and consider the block AB. Then we have that

AB = {span(1)} ∪ {span(j + x) : j ∈ Fq}
= {C0} ∪ {Cy j mod q2+q+1 : j ∈ Fq}.
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Then the set
D = {0} ∪ {yj mod q2 + q + 1 : j ∈ Fq}

is a (q2 + q + 1, q + 1, 1)-difference set in (Zq2+q+1, +).

We do an example to illustrate this.

Example 3.27. Suppose q = 3. The field F27 can be constructed as the quotient
ring Z3[x]/(x3 + 2x2 + 1) since x3 + 2x2 + 1 is irreducible in Z3[x]. It turns
out that ω = x is a primitive element in the resulting field F27. It is possible
to compute the powers of ω as follows:

i ωi i ωi

0 1 13 2
1 x 14 2x
2 x2 15 2x2

3 x2 + 2 16 2x2 + 1
4 x2 + 2x + 2 17 2x2 + x + 1
5 2x + 2 18 x + 1
6 2x2 + 2x 19 x2 + x
7 x2 + 1 20 2x2 + 2
8 x2 + x + 2 21 2x2 + 2x + 1
9 2x2 + 2x + 2 22 x2 + x + 1

10 x2 + 2x + 1 23 2x2 + x + 2
11 x + 2 24 2x + 1
12 x2 + 2x 25 2x2 + x

According to the discussion above, we need only compute the values yj

such that ωy j = j + x for j = 0, 1, 2. Referring to the table of values of
ωi constructed above, we see that y0 = 1, y1 = 18, and y2 = 11. Then
D = {0, 1, 5, 11} is a (13, 4, 1)-difference set in Z13.

Using essentially identical arguments, the following difference sets, cor-
responding to the projective spaces constructed in Theorem 2.14, can be
shown to exist. These are also known as Singer difference sets.

Theorem 3.28 (Singer Difference Sets). Suppose q ≥ 2 is a prime power and

d ≥ 2 is an integer. Then there exists a
(

qd+1−1
q−1 ,

qd−1
q−1 ,

qd−1−1
q−1

)
-difference set in

(Z(qd+1−1)/(q−1), +).

3.4 The Multiplier Theorem

3.4.1 Multipliers of Difference Sets

In this section, we restrict our attention to Abelian groups. A very useful
concept in the study of difference sets in Abelian groups is the idea of a mul-
tiplier, which we define now.
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Definition 3.29. Let D be a (v, k, λ)-difference set in an Abelian group (G, +) of
order v. For an integer m, define

mD = {mx : x ∈ D},

where mx is the sum (computed in G) of m copies of x. Then m is called a multiplier
of D if mD = D + g for some g ∈ G. Also, we say that D is fixed by the multiplier
m if mD = D.

Example 3.30. The set D = {0, 1, 5, 11} is a (13, 4, 1)-difference set in (Z13, +).
It is easy to see that 3D = {0, 2, 3, 7} = D + 2, and hence 3 is a multiplier of
D.

2D = {0, 2, 9, 10} is a (13, 4, 1)-difference set. Suppose that 2D = D + g for
some g ∈ Z13. There is a unique occurrence of the difference 1 in D (namely
1 = 1− 0) and a unique occurrence in 2D (namely 1 = 10− 9). Hence (0, 1) +
g = (9, 10), which implies g = 9. However, D + 9 = {3, 7, 9, 10} �= 2D, so 2 is
not a multiplier of D.

As another example, any quadratic residue is a multiplier of the differ-
ence sets of Theorem 3.21.

We now establish some preliminary results concerning multipliers.

Lemma 3.31. Suppose that m is a multiplier of a (v, k, λ)-difference set D in an
Abelian group (G, +) of order v. Then gcd(m, v) = 1.

Proof. Suppose that gcd(m, v) > 1, and let p be a prime divisor of m and
v. Let d ∈ G have order p. There must exist x, y ∈ D such that x − y = d.
Then mx − my = md = 0. Hence, the set mD contains repeated elements,
and therefore mD �= D + g for any g. Therefore m is not a multiplier of D, a
contradiction. ⊓⊔

Lemma 3.32. Suppose that m is a multiplier of a (v, k, λ)-difference set D in an
Abelian group (G, +) of order v. Define α : G → G by the rule α(x) = mx. Then
α ∈ Aut(G, Dev(D)).

Proof. We have that mD = D + g for some g ∈ G. Now, consider what hap-
pens when we apply α to an arbitrary block of the design (G, Dev(D)):

α(D + h) = m(D + h) = mD + mh = D + g + mh ∈ Dev(D).

Therefore α maps any block to a block, as required. ⊓⊔

An important result known as the “Multiplier Theorem” establishes the
existence of multipliers in difference sets whose parameters satisfy certain
arithmetic conditions. (A proof of this result will be given in Section 3.4.3.)

Theorem 3.33 (Multiplier Theorem). Suppose there exists a (v, k, λ)-difference
set D in an Abelian group (G, +) of order v. Suppose also that the following four
conditions are satisfied:
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1. p is prime,
2. gcd(p, v) = 1,
3. k − λ ≡ 0 (mod p), and
4. p > λ.

Then p is a multiplier of D.

Applying the Multiplier Theorem is made easier by the following result.

Theorem 3.34. Suppose that m is a multiplier of a (v, k, λ)-difference set D in an
Abelian group (G, +) of order v. Then there exists a translate of D that is fixed by
the multiplier m.

Proof. Define α(x) = mx for all x ∈ G. We proved in Lemma 3.32 that α ∈
Aut(G, Dev(D)). Now, α(0) = 0, so α fixes at least one point. By Lemma 3.12,
α fixes at least one block of Dev(D). In other words, there exists a translate of
D that is fixed by the multiplier m. ⊓⊔

A more general result can be proven in the case where gcd(v, k) = 1.

Theorem 3.35. Suppose that gcd(k, v) = 1 and there exists a (v, k, λ)-difference
set D in an Abelian group (G, +) of order v. Then there exists a translate of D that
is fixed by every multiplier m.

Proof. Let
s = ∑

x∈D

x.

It is easy to see that the following equation holds:

∑
x∈D+g

x = s + kg. (3.3)

Now suppose that s + kg = s + kh, where g, h ∈ G and g �= h. Then
k(g − h) = 0, so the order of g − h divides k. However, in any finite group,
the order of any element divides the order of the group. Hence, the order of
g − h divides v. Since gcd(k, v) = 1, it follows that g − h = 0, a contradiction.

We have shown that the mapping g �→ s + kg is one-to-one. Since this
is a mapping from G to G, it must be surjective, and therefore there exists a
unique g ∈ G such that s + kg = 0. (In the case where G = (Zv, +), it is easy
to see that g = −sk−1 mod v.) Hence, from equation (3.3), there is a unique
g ∈ G such that

∑
x∈D+g

x = 0.

Now let m be any multiplier of D. Then m is also a multiplier of the translate
D + g, and we have

∑
x∈m(D+g)

x = m · ∑
x∈D+g

x = 0.

Recall that D + g is the unique translate of D whose elements sum to 0. Hence
m(D + g) = D + g, and the translate D + g is fixed by all multipliers m. ⊓⊔
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A difference set (or a translate of a difference set) is said to be normalized
if the sum of the elements in it is 0. In the proof of Theorem 3.35, we showed
that there is a unique normalized translate of any (v, k, λ)-difference set D in
an Abelian group of order v when gcd(k, v) = 1, and this unique normalized
translate is fixed by all multipliers of D.

Before proceeding to the proof of Theorem 3.33, we give some examples
to illustrate the application of the Multiplier Theorem in particular parameter
situations.

Example 3.36. We use the Multiplier Theorem to find a (21, 5, 1)-difference set
in (Z21, +). Observe that p = 2 satisfies the conditions of Theorem 3.33.
Hence, 2 is a multiplier of any such difference set. By Theorem 3.34, we can
assume that there exists a (21, 5, 1)-difference set in (Z21, +) that is fixed by
the multiplier 2. We therefore compute the orbits of Z21 formed by multipli-
cation by 2. (These are in fact the cycles in the disjoint cycle representation
of the permutation of Z21 defined by the mapping x �→ 2x mod 21). These
cycles (or orbits) are as follows:

(0)
(1 2 4 8 16 11)
(3 6 12)
(5 10 20 19 17 3)
(7 14)
(9 18 15).

The difference set we are looking for must consist of a union of orbits in the
list above. Since the difference set has size five, it must be the union of one
orbit of length two and one of length three. There are two possible ways to
do this, both of which happen to produce difference sets:

{3, 6, 7, 12, 14}

and
{7, 9, 14, 15, 18}.

Example 3.37. We use the Multiplier Theorem to investigate the existence of
(31, 10, 3)-difference sets in (Z31, +). It is easily seen that p = 7 satisfies the
conditions of Theorem 3.33, so 7 will be a multiplier of any such difference
set. By Theorem 3.34, we can assume that there exists a (31, 10, 3)-difference
set in (Z31, +) that is fixed by the multiplier 7. As in the previous example,
we need to consider the orbits of Z31 under multiplication by 7. Of course
(0) is one orbit. Let us consider the orbit containing “1”. It is as follows:

(1 7 18 2 14 5 4 28 10 8 25 20 16 19 9).
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This orbit has length 15, and it is straightforward to verify that there is exactly
one other orbit, also having length 15. Clearly there is no way to find a union
of orbits having cardinality k = 10. We conclude that there is no (31, 10, 3)-
difference set in (Z31, +).

Example 3.38. We establish a result about (n2 + n + 1, n + 1, 1)-difference sets.
Suppose that n ≡ 0 (mod 6). Then p = 2 and p = 3 both satisfy the con-
ditions of Theorem 3.33, so they are both multipliers. Using the fact that
n2 + n + 1 = n(n + 1) + 1, it follows that gcd(n2 + n + 1, n + 1) = 1. Hence,
by Theorem 3.35, we can assume that there exists an (n2 + n + 1, n + 1, 1)-
difference set, say D, that is fixed by both of the multipliers 2 and 3. Let
x ∈ D, x �= 0. Then 2x, 3x ∈ D. Clearly x �= 2x �= 3x �= x. Now, if we com-
pute 2x − x = 3x − 2x = x, we see that the difference x occurs twice in D.
This is not allowed because λ = 1, and we have a contradiction. We conclude
that there is no (n2 + n + 1, n + 1, 1)-difference set when n ≡ 0 (mod 6).

3.4.2 The Group Ring

The proof of the Multiplier Theorem uses an algebraic structure called a
group ring. Let (G, +) be an Abelian group. The group ring Z[G] consists
of all formal sums of the form

∑
g∈G

agxg,

where ag ∈ Z for all g ∈ G, and x is an indeterminate. Informally, an element
of the Z[G] looks like a polynomial in the indeterminate x having integer
coefficients, except that the exponents are elements in the group G rather
than nonnegative integers.

If
a(x) = ∑

g∈G

agxg

and
b(x) = ∑

g∈G

bgxg,

then we can define the sum of a(x) and b(x) to be

(a + b)(x) = ∑
g∈G

(ag + bg)xg.

The product of a(x) and b(x) is defined to be

(a · b)(x) = ∑
g∈G

∑
h∈G

(agbh)xg+h.

Thus we compute sums and products of elements of the group ring using the
same formulas that are used to compute sums and products of polynomials.
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With these operations, it is not hard to see that the group ring Z[G] is indeed
a ring.

Sometimes we will also make use of the group ring Zp[G]. This is defined
in the same way as Z[G], except that the coefficients are elements of Zp.
Suppose that a(x), b(x) ∈ Z[G], a(x) = ∑ agxg, and b(x) = bgxg. Then we
write a(x) ≡ b(x) (mod p) if ag ≡ bg (mod p) for all g ∈ G.

We need to define some more notation. Recall that, for a positive integer
m and any g ∈ G, mg is the m-fold sum of g. For any a(x) = ∑ agxg, define

a(xm) = ∑
g∈G

agxmg,

a(x−1) = ∑
g∈G

agx−g, and

a(1) = ∑
g∈G

ag.

Finally, define
G(x) = ∑

g∈G

xg,

and for a difference set D in G, define

D(x) = ∑
g∈D

xg.

We now present some easy preliminary lemmas concerning difference
sets and the group ring.

Lemma 3.39. Suppose D is a (v, k, λ)-difference set in an Abelian group G. Then

D(x)D(x−1) = λG(x) + (k − λ)x0.

Proof. We have that

D(x)D(x−1) = ∑
g,h∈D

xg−h

= ∑
d∈G

αdxd,

where
αd = |{(g, h) ∈ D × D : g − h = d}|.

Clearly

αd =

{
k if d = 0

λ if d �= 0

because D is a difference set. Therefore D(x)D(x−1) = λG(x) + (k − λ)x0, as
required. ⊓⊔



60 3 Difference Sets and Automorphisms

Lemma 3.40. Suppose a(x) ∈ Z[G]. Then

a(x)G(x) = a(1)G(x).

Proof. We have that

a(x)G(x) = ∑
g,h∈G

agxg+h

= ∑
i∈G

(
∑

g∈G

ag

)
xi, where g + h = i

= ∑
i∈G

a(1)xi

= a(1)G(x),

as desired. ⊓⊔
Lemma 3.41. Suppose p is prime and a(x) ∈ Z[G]. Then

(a(x))p ≡ a(xp) (mod p). (3.4)

Proof. We prove that (3.4) holds by induction on the number of nonzero coef-
ficients in a(x). Suppose that a(x) has no nonzero coefficients; then a(x) = 0
and (3.4) is trivially true. If a(x) has one nonzero coefficient, then a(x) = agxg

for some ag �= 0. Then, in Zp[x], we have that

(a(x))p = (agxg)p

= ag
pxpg

= agxpg

= a(xp),

where we use the fact that ag
p ≡ ag (mod p) if ag ∈ Zp.

Now, as an induction assumption, assume that (3.4) holds when a(x) has
at most i nonzero coefficients for some integer i ≥ 1. Suppose that a(x) has
exactly i + 1 nonzero coefficients. We can express a(x) in the form a(x) =
ai(x) + agxg, where ai(x) has exactly i nonzero coefficients and ag �= 0. Then
we compute in Zp[x] as follows:

(a(x))p = (ai(x) + agxg)p

= (ai(x))p +
p−1

∑
j=1

(
p

j

)
(ai(x))j(agxg)p−j + (agxg)p

= (ai(x))p + (agxg)p because

(
p

j

)
≡ 0 (mod p) for 1 ≤ j ≤ p − 1

= ai(xp) + agxpg by induction

= a(xp).

By induction, (3.4) holds for all a(x) ∈ Z[G]. ⊓⊔



3.4 The Multiplier Theorem 61

If D is a (v, k, λ)-difference set and m is a positive integer such that
gcd(m, v) = 1, then it is not hard to prove that mD is also a (v, k, λ)-difference
set. The next lemma uses this fact and is proven in a fashion similar to Lemma
3.39. We leave the details for the reader.

Lemma 3.42. Suppose D is a (v, k, λ)-difference set in an Abelian group G. Suppose
that m is a positive integer such that gcd(m, v) = 1. Then

D(xm)D(x−m) = λG(x) + (k − λ)x0.

3.4.3 Proof of the Multiplier Theorem

In this section, we present the proof of the Multiplier Theorem. For conve-
nience, we restate the theorem now.

Theorem 3.43 (Multiplier Theorem). Suppose there exists a (v, k, λ)-difference
set D in an Abelian group (G, +) of order v. Suppose also that the following four
conditions are satisfied:

1. p is prime,
2. gcd(p, v) = 1,
3. k − λ ≡ 0 (mod p), and
4. p > λ.

Then p is a multiplier of D.

Proof. We begin by computing the product D(xp)D(x−1) in Zp[G]:

D(xp)D(x−1) = (D(x))pD(x−1) by Lemma 3.41
= (D(x))p−1D(x)D(x−1)

= (D(x))p−1(λG(x) + (k − λ)x0) by Lemma 3.39
= λkp−1G(x) + (k − λ)(D(x))p−1 by Lemma 3.40
= λkp−1G(x)
= λG(x),

where we use the facts that D(1) = k, k ≡ λ (mod p), and λkp−1 ≡ λp ≡ λ
(mod p). Define

S(x) = D(xp)D(x−1) − λG(x). (3.5)

We have proven that S(x) ≡ 0 (mod p); therefore all coefficients of S are
divisible by p. Clearly, all coefficients of D(xp)D(x−1) are nonnegative, so
it follows that all coefficients of S(x) are greater than or equal to −λ. We
assumed that p > λ, so it must be the case that all coefficients of S(x) are
nonnegative.

We now compute S(x)S(x−1):
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S(x)S(x−1) = (D(xp)D(x−1) − λG(x))(D(x−p)D(x) − λG(x−1))

= (D(xp)D(x−1) − λG(x))(D(x−p)D(x) − λG(x))

= D(xp)D(x−p)D(x)D(x−1) + λ2(G(x))2

−λG(x)(D(xp)D(x−1) + D(x−p)D(x)).

Applying Lemmas 3.39, 3.40, and 3.42 and using the fact that G(1) = v, we
see that

D(xp)D(x−p)D(x)D(x−1) = (λG(x) + (k − λ)x0)2

= λ2(G(x))2 + 2(k − λ)λG(x) + (k − λ)2x0

= λ2vG(x) + 2(k − λ)λG(x) + (k − λ)2x0.

Similarly, we have that

−λG(x)(D(xp)D(x−1)+ D(x−p)D(x))+ λ2(G(x))2 = −2λk2G(x)+ λ2vG(x).

Combining everything, we have

S(x)S(x−1) = (λ2v + 2(k − λ)λ − 2λk2 + λ2v)G(x) + (k − λ)2x0.

The coefficient of G(x) can be simplified, as follows:

λ2v + 2(k − λ)λ − 2λk2 + λ2v = 2λ(λv + k − λ − k2) = 0.

Hence, we have that
S(x)S(x−1) = (k − λ)2x0.

Let
S(x) = ∑

g∈G

sgxg.

We have shown above that sg ≥ 0 for all g ∈ G. Suppose that there exist

g, h ∈ G, g �= h, such that sg > 0 and sh > 0. Then the coefficient of xg−h

in S(x)S(x−1) is at least sgsh, which is greater than 0. This is a contradiction.
Hence S(x) = sgxg for some g ∈ G. Then

S(x)S(x−1) = (sgxg)(sgx−g) = (sg)
2x0.

Therefore (sg)
2 = (k − λ)2, and since sg ≥ 0, it must be the case that sg = k −

λ. Hence we have proven that S(x) = (k − λ)xg for some g ∈ G. Substituting
into (3.5), we see that

D(xp)D(x−1) = (k − λ)xg + λG(x).

Now multiply both sides of this equation by D(x):

D(xp)D(x)D(x−1) = D(x)((k − λ)xg + λG(x)),
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which can be simplified, using Lemmas 3.39 and 3.40, as follows:

D(xp)(λG(x) + (k − λ)x0) = D(x)(k − λ)xg + λkG(x)

λkG(x) + (k − λ)D(xp) = D(x)(k − λ)xg + λkG(x)

(k − λ)D(xp) = D(x)(k − λ)xg

D(xp) = xgD(x).

Therefore pD = D + g, and we have shown that p is a multiplier of D, as
desired. ⊓⊔

One important conjecture about the Multiplier Theorem concerns the re-
quirement that p > λ. This assumption certainly is used in the proof of The-
orem 3.33. However, there is no known example of a difference set D and a
prime p that satisfies the first three conditions of Theorem 3.33, where p is
not a multiplier of D. Therefore many people have conjectured that the Mul-
tiplier Theorem is true for all primes p satisfying the first three conditions of
Theorem 3.33. This conjecture has not been proven, however.

3.5 Difference Families

We begin by generalizing the definition of a difference set to an object called
a difference family.

Definition 3.44. Suppose (G, +) is a finite group of order v in which the iden-
tity element is denoted “0”. Let k and λ be positive integers such that 2 ≤ k <

v. A (v, k, λ)-difference family in (G, +) is a collection of subsets of G, say
[D1, . . . , Dℓ], such that the following properties are satisfied:

1. |Di| = k for all i, 1 ≤ i ≤ ℓ;
2. the multiset union

ℓ⋃

i=1

[x − y : x, y ∈ Di, x �= y]

contains every element in G\{0} exactly λ times.

Example 3.45. A (13, 3, 1)-difference family in (Z13, +):

{{0, 1, 4}, {0, 2, 8}}.

The differences obtained from the first block are 1, 3, 4, 9, 10, and 12, and the
differences obtained from the second block are 2, 5, 6, 7, 8, and 11. Therefore
we obtain every nonzero difference exactly once.

It is not hard to show that ℓ = λ(v − 1)/(k2 − k) if a (v, k, λ)-difference
family [D1, . . . , Dℓ] exists. Because ℓ is required to be an integer, it must be
the case that λ(v − 1) ≡ 0 (mod k2 − k) if a (v, k, λ)-difference family exists.
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Given a (v, k, λ)-difference family in (G, +), we define Dev(D1, . . . , Dℓ) to
be the collection formed by taking all the blocks in Dev(Di), 1 ≤ i ≤ ℓ. The
following result generalizes Theorems 3.8 and 3.10.

Theorem 3.46. Suppose D1, . . . , Dℓ is a (v, k, λ)-difference family in the Abelian
group (G, +). Then (G, Dev(D1, . . . , Dℓ)) is a (v, k, λ)-BIBD, and Aut(G, Dev(D))

contains a subgroup Ĝ that is isomorphic to G.

Now we consider the converse of Theorem 3.46. In the case of difference
sets, we proved Theorem 3.17, which says that a symmetric BIBD in which
the automorphism group has a sharply transitive subgroup implies the exis-
tence of a difference set in that subgroup. This theorem does not generalize
completely to difference families due to the existence of so-called short or-
bits. We define and examine these objects now, using some of the concepts
and terminology introduced in Section 1.4.1.

Let H be a subgroup of the symmetric group Sv acting on the elements of
the v-set X. Let A be a subset of X having cardinality k, and let orbit(A) be
the orbit of A under H. Define

stab(A) = {α ∈ H : α(A) = A};

stab(A) is called the stabilizer of A. It is easy to see that stab(A) is a subgroup
of H.

We have the following result.

Lemma 3.47. Let H be a subgroup of the symmetric group Sv acting on the elements
of the v-set X, and suppose A ⊆ X. Then |orbit(A)| = |H|/|stab(A)|. Further-
more, if H is sharply transitive and if gcd(|A|, v) = 1, then |orbit(A)| = v.

Proof. For every A′ ∈ orbit(A), define HA′ = {α ∈ H : α(A) = A′}.
Then HA = stab(A), and every HA′ is a coset of HA. Since the cosets of
the subgroup HA all have the same size and partition H, it follows that
|orbit(A)| = |H|/|stab(A)|.

Now assume that H is sharply transitive; then |H| = v. We will prove
that |A| ≡ 0 (mod |stab(A)|). Then, because v ≡ 0 (mod |stab(A)|) and
gcd(|A|, v) = 1, it must be the case that |stab(A)| = 1 and hence |orbit(A)| =
v.

So, we need to prove that |A| ≡ 0 (mod |stab(A)|). For every α ∈ stab(A),
define αA to be the permutation α restricted to the points in A. The set of
permutations stab(A)A = {αA : α ∈ stab(A)} is a permutation group acting
on A. Note that αA �= α′

A if α �= α′ because H is sharply transitive, and
therefore |stab(A)A| = |stab(A)|.

We now apply the Cauchy-Frobenius-Burnside Lemma to the group
stab(A)A. We have that fix(id) = |A|, where id is the identity permutation
in stab(A)A. For any αA ∈ stab(A)A, αA �= id, it must be the case that
fix(αA) = 0; this follows from the fact that H is sharply transitive. Us-
ing Lemma 1.25, we compute the number of orbits of A under the group
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stab(A)A to be |A|/|stab(A)|. This number, being the number of orbits of A,
must be an integer, so the proof is now complete. ⊓⊔

Suppose that (G, +) is a finite group and A ⊆ G, where |G| = v and |A| =
k. Let orbit(A) denote the orbit of A under the permutation representation
of G. Then it is easy to see that orbit(A) consists of all the distinct blocks
in Dev(A). Equivalently, Dev(A) is formed by taking v/|stab(A)| copies of
every block in orbit(A).

We illustrate the results above in the following example.

Example 3.48. Consider the group G = (Z9, +). The permutation representa-
tion of G is as follows:

g ĝ
0 (0)(1)(2)(3)(4)(5)(6)(7)(8)
1 (0 1 2 3 4 5 6 7 8)
2 (0 2 4 6 8 1 3 5 7)
3 (0 3 6)(1 4 7)(2 5 8)
4 (0 4 8 3 7 2 6 1 5)
5 (0 5 1 6 2 7 3 8 4)
6 (0 6 3)(1 7 4)(2 8 5)
7 (0 7 5 3 1 8 6 4 2)
8 (0 8 7 6 5 4 3 2 1)

It is straightforward to verify that stab({0, 3, 6}) = {0̂, 3̂, 6̂}, or equivalently,

{0, 3, 6} = {0, 3, 6}+ 3 = {0, 3, 6}+ 6.

The orbit of the subset {0, 3, 6} has cardinality three:

orbit({0, 3, 6}) = {{0, 3, 6}, {1, 4, 7}, {2, 5, 8}}.

Dev({0, 3, 6}) consists of three copies of each block in orbit({0, 3, 6}).

The following is an immediate corollary of Lemma 3.47.

Theorem 3.49. Suppose that (G, +) is a finite group and A ⊆ G. Suppose that
|G| = v and |A| = k, where gcd(k, v) = 1. Then Dev(A) = orbit(A).

We now state a partial converse to Theorem 3.46. This result can be
proven in much the same way as Theorem 3.16 (and the more general Theo-
rem 3.17). Note that Theorem 3.49 ensures that there are no short orbits when
gcd(k, v) = 1; in the case of difference sets, we proved a similar result as a
consequence of Theorem 3.14 without requiring that k and v be relatively
prime.

Theorem 3.50. Suppose that gcd(k, v) = 1 and (X,A) is a (v, k, λ)-BIBD in
which G is a sharply transitive subgroup of Aut(X,A). Then there is a (v, k, λ)-
difference family in the group (G, ◦).
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Theorem 3.50 is not true when gcd(k, v) > 1, as the next example demon-
strates.

Example 3.51. It is trivial to see that there is no (15, 3, 1)-difference family
(such a difference family would consist of 8/3 blocks, which is not an inte-
ger). However, it is not difficult to construct a (15, 3, 1)-BIBD in which the au-
tomorphism group contains (Z15, +) as a sharply transitive subgroup. Such
a BIBD can be described succinctly by taking the orbits of the three blocks
{0, 5, 10}, {0, 1, 4}, and {0, 2, 8} under the group generated by the permuta-
tion (0 1 · · · 14) (this is just the permutation representation of Z15). The 35
blocks in this BIBD consist of two orbits of size 15 and one short orbit of size
5.

3.6 A Construction for Difference Families

In this section, we present a simple yet powerful construction for difference
families in finite fields that is due to Wilson. We first define some notation
and record a couple of simple preliminary results.

For any two multisets A, B whose elements are from a finite field Fq, de-
fine

A ◦ B = [ab : a ∈ A, b ∈ B].

For a positive integer r and a multiset A, define

rA =

r⋃

i=1

A.

Also, for any set A ⊆ Fq, define the multiset

∆(A) = [a − a′ : a, a′ ∈ A, a �= a′].

Suppose that q is a prime power and let ω be a primitive element of Fq.
For any integer f dividing q − 1, denote e = (q − 1)/ f and define

H = {ωei : 0 ≤ i ≤ f − 1}.

H is a subgroup of the multiplicative group (Fq\{0}, ·) having order f . De-

note the cosets of H by H0, . . . , He−1, where Hj = ω jH, 0 ≤ j ≤ e − 1.
The following lemma, which we state without proof, will be useful.

Lemma 3.52. For all H as defined above, it holds that

∆(H) = [ωei − 1 : 1 ≤ i ≤ f − 1] ◦ H.

Furthermore, if f is odd, it holds that

∆(H) = [1,−1] ◦ [ωei − 1 : 1 ≤ i ≤ ( f − 1)/2] ◦ H.
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Here is a quite general construction for difference families in finite fields.

Theorem 3.53. Let k ≥ 2 and λ ≥ 1 be integers such that k divides 2λ or k − 1
divides 2λ. Suppose that q is a prime power such that λ(q − 1) ≡ 0 (mod k2 − k).
Then there exists a (q, k, λ)-difference family in (Fq, +).

Proof. Let ω, e, f , and H be as defined above. Denote the cosets of H by
H0, . . . , He−1, where Hj = ω jH, 0 ≤ j ≤ e − 1.

We now consider four cases separately.

Case 1: λ = k − 1
Let f = k. We show that

[H0, . . . , He−1]

is the desired difference family. Using Lemma 3.52, it is easy to see that

∆(Hi) = [x − 1 : x ∈ H, x �= 1] ◦ Hi

for 0 ≤ i ≤ e − 1. Then the multiset union of the ∆(Hi)’s is seen to be

e−1⋃

i=0

∆(Hi) =

e−1⋃

i=0

[ωei − 1 : 1 ≤ i ≤ f − 1] ◦ Hi

= [ωei − 1 : 1 ≤ i ≤ f − 1] ◦
(

e−1⋃

i=0

Hi

)

= [ωei − 1 : 1 ≤ i ≤ f − 1] ◦ (Fq\{0})
= ( f − 1)(Fq\{0}).

Case 2: λ = k
Let f = k − 1. We show that

[H0 ∪ {0}, . . . , He−1 ∪ {0}]

is the desired difference family. First, we have that

∆(Hi ∪ {0}) = ([1,−1, ] ∪ [ωei − 1 : 1 ≤ i ≤ f − 1]) ◦ Hi,

0 ≤ i ≤ e − 1. The rest of the proof proceeds as in Case 1; here we have
that the multiset union of the sets ∆(Hi ∪ {0}) is ( f + 1)(Fq\{0}).

Case 3: k is odd and λ = (k − 1)/2
Let f = k. Note that q ≡ 1 (mod 2k), so q is odd. q − 1 = e f and f is odd,
so e must be even. We show that

[H0, . . . , H e
2 −1]

is the desired difference family. Applying Lemma 3.52, we have that



68 3 Difference Sets and Automorphisms

∆(Hi) = [1,−1] ◦ [ωei − 1 : 1 ≤ i ≤ ( f − 1)/2] ◦ Hi

for 0 ≤ i ≤ e/2 − 1. Now, using the facts that −1 = ωe f /2, e is even, and
f is odd, it follows that −1 ∈ H e

2
. Therefore it holds that

[−1] ◦ Hi = H e
2 +i,

which implies that

∆(Hi) = [ωei − 1 : 1 ≤ i ≤ ( f − 1)/2] ◦ (Hi ∪ H e
2 +i),

0 ≤ i ≤ e/2 − 1. Now, it is easy to see that the multiset union of the
relevant ∆(Hi)’s is

e
2 −1⋃

i=0

∆(Hi) =

e
2 −1⋃

i=0

[ωei − 1 : 1 ≤ i ≤ ( f − 1)/2] ◦ (Hi ∪ H e
2 +i)

= [ωei − 1 : 1 ≤ i ≤ ( f − 1)/2] ◦




e
2 −1⋃

i=0

(Hi ∪ H e
2 +i)




=
f − 1

2
(Fq\{0}).

Case 4: k is even and λ = k/2
Let f = k − 1; then q is odd and e is even, and

[H0 ∪ {0}, . . . , H e
2 −1 ∪ {0}]

is the desired difference family. (The proof, which uses ideas from Case 2
and Case 3, is omitted.)

The four cases discussed above are sufficient to cover all possibilities. This
is seen as follows. First, suppose that k divides 2λ. Then λ = sk/2, where s
is an integer. If k is even, then we can take s copies of the difference family
constructed in Case 4. If k is odd, then s must be even, and we can take s/2
copies of the difference family constructed in Case 2.

If k − 1 divides 2λ, the analysis is similar. Write λ = s(k − 1)/2, where s is
an integer. If k − 1 is even, then we can take s copies of the difference family
constructed in Case 3. If k − 1 is odd, then s must be even, and we can take
s/2 copies of the difference family constructed in Case 1. ⊓⊔

Example 3.54. We construct a (19, 4, 2)-difference family using Theorem 3.53.
Note that the necessary conditions are satisfied, and we use the construction
given in Case 4. We have k = 4, f = 3, and e = 6. ω = 2 is a primitive element
in Z19, and the Hi’s are as follows:
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H0 = {1, 7, 11}
H1 = {2, 14, 3}
H2 = {4, 6, 9}
H3 = {8, 18, 12}
H4 = {16, 17, 5}
H5 = {13, 15, 10}.

The (19, 4, 2)-difference family is

[{0, 1, 7, 11}, {0, 2, 3, 14}, {0, 4, 6, 9}].

Example 3.55. We construct a (16, 3, 2)-difference family using Theorem 3.53.
The necessary conditions are satisfied, and we use the construction given in
Case 1. We have k = 3, f = 3, and e = 5. ω = x is a primitive element in
F16 = Z2[x]/(x4 + x + 1), and the Hi’s are as follows:

H0 = {1, x2 + x, x2 + x + 1}
H1 = {x, x3 + x2, x3 + x2 + x}
H2 = {x2, x3 + x + 1, x3 + x2 + x + 1}
H3 = {x3, x2 + 1, x3 + x2 + 1}
H4 = {x + 1, x3 + x, x3 + 1}.

The (16, 3, 2)-difference family (written in the additive group (Z2)
4) is

[{0001, 0110, 0111}, {0010, 1100, 1110}, {0100, 1011, 1111},
{1000, 0101, 1101}, {0011, 1010, 1001}].

3.7 Notes and References

There is a huge amount of literature on difference sets. The first comprehen-
sive treatise on this topic was the 1971 monograph by Baumert [5]. Good
starting points to learn more recent results include the 1992 survey by Jung-
nickel [65] and Chapter 6 of Beth, Jungnickel, and Lenz [9]. Difference fami-
lies are discussed thoroughly in Chapter 7 of [9].

Quadratic residue difference sets are also known as Paley difference sets
and were first constructed in Paley [83]. Singer difference sets were described
in [96].

The concept of a multiplier was introduced by Hall [52]. The Multiplier
Theorem is due to Hall and Ryser [55]. Bruck [17] is another important early
paper on this toopic.

Theorem 3.53 is due to Wilson [117].
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3.8 Exercises

3.1 Give a direct combinatorial proof that the complement of a (v, k, λ)-
difference set is a difference set, and determine its parameters.

3.2 Construct the following difference sets.
(a) A (27, 13, 6)-difference set in (F27, +).

Note: F27 can be constructed as Z3[x]/(x3 + 2x2 + 1).
(b) A (101, 25, 6)-difference set in (Z101, +).
(c) A (109, 28, 7)-difference set in (Z109, +).

3.3 Use Singer’s Theorem to construct a (31, 6, 1)-difference set in (Z31, +).
In order to do this, you need to construct the field F125. F125 =
Z5[x]/(x3 + x2 + 2), and x is a primitive element of F125 in this rep-
resentation.

3.4 Suppose that m1 and m2 are both multipliers of a difference set D.
Prove that m1m2 is also a multiplier of D.

3.5 Give a complete proof of Lemma 3.42.
3.6 (a) Show that a (21, 5, 1)-difference set in (Z21, +) must have the

integer m = 2 as a multiplier.
(b) Determine all (21, 5, 1)-difference sets in (Z21, +) that are fixed

by the multiplier m = 2.
(c) How many translates of any (21, 5, 1)-difference set in (Z21, +)

are fixed by the multiplier m = 2? Explain briefly.
3.7 Use the Multiplier Theorem to find all (31, 6, 1) difference sets in

(Z31, +) that contain the point “1”.
3.8 Prove that there is no (56, 11, 2) difference set in (Z56, +).

Hint: At some point in the proof, it may be helpful to consider differ-
ences in Z56 that are divisible by 7.

3.9 Prove that there do not exist (n2 + n + 1, n + 1, 1) difference sets for
n = 10, 14.

3.10 {01, 02, 03, 10, 20, 30} is a (16, 6, 2)-difference set in (Z4 × Z4, +). How
many normalized translates does this difference set have?
Note: This question has a short solution that does not involve checking
all the translates.

3.11 (a) Prove there does not exist a (25, 9, 3)-difference set in (Z25, +)
having a multiplier m = 2.

(b) Prove that there does not exist a (25, 9, 3)-difference set in (Z5 ×
Z5, +) having a multiplier m = 2.

3.12 Find all (15, 7, 3)-difference sets in (Z15, +) that are fixed by the multi-
plier m = 2.

3.13 Give a complete proof of Lemma 3.52.
3.14 Construct difference families with the following parameters:

(a) (29, 5, 5).
(b) (31, 5, 2).
(c) (41, 6, 3).
(d) (43, 6, 5).
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3.15 Let v be odd. A difference triple modulo v is a subset of three integers

{x, y, z} ⊆
{

1, 2, . . . ,
v − 1

2

}
,

where x < y < z, such that x + y = z or x + y + z ≡ 0 (mod v).
Suppose v ≡ 1 (mod 6). A set of t = ⌊ v

6 ⌋ difference triples, say T =
{T1, . . . , Tt}, is denoted as an HDP(v) provided that

t⋃

i=1

Ti =

{
1, . . . ,

v − 1

2

}
.

Remark: HDP is an abbreviation for Heffter’s Difference Problem.
(a) Suppose that T = {T1, . . . , Tt} is an HDP(v). For every Ti =

{xi, yi, zi}, define Di = {0, xi, xi + yi}, where xi < yi < zi. Prove
that {D1, . . . , Dt} is a (v, 3, 1)-difference family in (Zv, +).

(b) By trial and error, construct HDP(v) for v = 7, 13, 19, and 25.
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Hadamard Matrices and Designs

4.1 Hadamard Matrices

Definition 4.1. A Hadamard matrix of order n is an n × n matrix H in which
every entry is ±1 such that HHT = nIn.

It is trivial to see that (1) and (−1) are both Hadamard matrices of order
1. In the next examples, we present Hadamard matrices of orders 2 and 4.

Example 4.2. The following matrix is a Hadamard matrix of order 2:

(
1 1
1 −1

)
.

Example 4.3. The following matrix is a Hadamard matrix of order 4:




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 .

Observe that we can multiply all the entries in any row (or column) of
a Hadamard matrix by −1 and the result is again a Hadamard matrix. By
a sequence of multiplications of this type, we can transform any Hadamard
matrix into a Hadamard matrix in which every entry in the first row or col-
umn is a “1”. Such a Hadamard matrix is called standardized.

Let the rows of a Hadamard matrix of order n be denoted ri, 1 ≤ i ≤ n.
The (i, j)-entry of HHT is in fact ri · rj, where “·” denotes the usual inner
product of real vectors. Hence, it follows from the definition of a Hadamard
matrix that ri · rj = 0 if i �= j.
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We have seen Hadamard matrices of orders 1, 2, and 4. The following
result provides a necessary condition for the existence of a Hadamard matrix
of order n.

Theorem 4.4. If there exists a Hadamard matrix of order n > 2, then n ≡ 0
(mod 4).

Proof. Suppose without loss of generality that H = (hi,j) is a standardized
Hadamard matrix of order n > 2. For 1 ≤ i ≤ n, let ri denote the ith row of
H. Since r1 consists of n “1”s and r1 · ri = 0 if i ≥ 2, it follows that any row ri

(where 2 ≤ i ≤ n) contains n/2 “1”s and n/2 “−1”s. Hence, n is even.
Define

a = |{j : h2,j = h3,j = 1}|,
b = |{j : h2,j = 1, h3,j = −1}|,
c = |{j : h2,j = −1, h3,j = 1}|, and

d = |{j : h2,j = h3,j = −1}|.

Then we have the following equations:

a + b + c + d = n

a + b − c − d = 0 since r1 · r2 = 0

a − b + c − d = 0 since r1 · r3 = 0

a − b − c + d = 0 since r2 · r3 = 0.

This system has the unique solution

a = b = c = d =
n

4
.

Since a, b, c, and d are integers, it must be the case that n ≡ 0 (mod 4). ⊓⊔

It is a famous open conjecture, first stated by Jacques Hadamard in 1893,
that there exists a Hadamard matrix of every order n ≡ 0 (mod 4). In fact, the
smallest order n ≡ 0 (mod 4) for which a Hadamard matrix is not currently
known to exist is n = 428.

4.2 An Equivalence Between Hadamard Matrices and BIBDs

In this section, we show a connection between Hadamard matrices and cer-
tain symmetric BIBDs.

Theorem 4.5. Suppose m > 1. Then there exists a Hadamard matrix of order 4m if
and only if there exists a (symmetric) (4m − 1, 2m − 1, m − 1)-BIBD.
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Proof. Suppose H is a standardized Hadamard matrix of order n = 4m. Let
M be formed by deleting the first row and column of H and then replacing
every “−1” entry by “0”.

Since every row ri (2 ≤ i ≤ n) of H contains 2m “1”s (as in the proof
of Theorem 4.4), it follows that every row of M contains 2m − 1 “1”s. Fur-
ther, the inner product of two rows of M is m − 1 (using the fact, proven in
Theorem 4.4, that a = n/4 = m). Hence,

MMT = (m − 1)J4m−1 + mI4m−1.

Now, since HHT = (4m)I4m, we have that H−1 = 1
4m HT, and hence HT =

4mH−1. Then we have that

HT H = (4m)H−1H = (4m)I4m,

so HT is a Hadamard matrix. Note that HT is standardized since H is stan-
dardized. Hence, every row of HT (except the first) contains 2m “1”s. This
implies that every column of H (except the first) contains 2m “1”s, and thus
every column of M contains 2m − 1 “1”s. Therefore,

u4m−1M = (2m − 1)u4m−1.

Applying Theorem 1.13, we see that M is the incidence matrix of a (symmet-
ric) (4m − 1, 2m − 1, m − 1)-BIBD.

Conversely, suppose that M is the incidence matrix of a symmetric (4m −
1, 2m− 1, m− 1)-BIBD. Construct H by changing every “0” entry to “−1” and
then adjoining a new row and column of “1”s.

Let 1 ≤ i ≤ 4m. Then the (i, i)-entry of HHT is 4m since every entry of H
is ±1. Suppose that 1 ≤ i < j ≤ 4m. The (i, j)-entry of HHT is computed to
be

1 + λ − (r − λ) − (r − λ) + (v − 2r + λ) = 1 + (m − 1) − m − m + m = 0.

Hence, it follows that HHT = (4m)I4m, and therefore H is a Hadamard ma-
trix of order 4m. ⊓⊔

Example 4.6. We presented a (7, 3, 1)-BIBD in Example 1.3. This BIBD has the
following incidence matrix:




1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0




.
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If we substitute 0 → −1 and add a row and column of “1”s, then we get the
following Hadamard matrix of order 8:




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1




.

The following result is an immediate consequence of Theorems 3.8, 3.21,
and 4.5.

Corollary 4.7. There exists a Hadamard matrix of order 4m if 4m − 1 is a prime
power.

Given a symmetric BIBD, we can construct residual and derived BIBDs.
We therefore have the following immediate consequence of Theorems 4.5
and 2.7.

Theorem 4.8. Suppose there is a Hadamard matrix of order 4m. If m ≥ 3, then there
exists a (2m− 1, m− 1, m− 2)-BIBD; if m ≥ 2, then there exists a (2m, m, m− 1)-
BIBD.

4.3 Conference Matrices and Hadamard Matrices

In this section, we describe another construction for Hadamard matrices,
which will provide a Hadamard matrix of order 2q + 2 whenever q ≡ 1
(mod 4) is a prime power. We need to define some new concepts before giv-
ing the construction.

For an odd prime power q, define the function χq : Fq → {−1, 0, 1} as
follows:

χq(x) =





0 if x = 0
1 if x ∈ QR(q)

−1 if x ∈ QNR(q).

The function χq is called the quadratic character in the finite field Fq. Observe
that Corollary 3.20 states that χq(−1) = −1 if q ≡ 3 (mod 4), and χq(−1) = 1
if q ≡ 1 (mod 4). We will make use of this fact a bit later. Another impor-
tant fact about the quadratic character is that it is a multiplicative homomor-
phism: χq(x)χq(y) = χq(xy) for all x, y ∈ Fq. This follows easily from results
proven in Section 3.2. Additionally, we require the following fundamental
properties of the quadratic character.
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Lemma 4.9. Suppose q is an odd prime power. Then the following hold:

1. ∑
x∈Fq

χq(x) = 0, and

2. ∑
x∈Fq

χq(x)χq(x + y) = −1 for all y ∈ Zq\{0}.

Proof. Part 1 follows because |QR(q)| = |QNR(q)| = (q − 1)/2.
To prove Part 2, we first observe that

χq(x)χq(x + y) = χq(x)χq(x)χq(1 + yx−1) = χq(1 + yx−1)

provided that x �= 0. Now, using the fact that y �= 0, it is easily seen that, as
x takes on all nonzero values in Fq, the quantity 1 + yx−1 takes on all values
in Fq except for the value 1. Hence, we have that

∑
x∈Fq

χq(x)χq(x + y) = ∑
x∈Fq,x �=0

χq(1 + yx−1)

= ∑
x∈Fq,x �=1

χq(x)

= ∑
x∈Fq

χq(x) − χq(1)

= 0 − 1

= −1.

⊓⊔

The Hadamard matrix construction also makes use of an auxiliary struc-
ture that we define now.

Definition 4.10. A conference matrix of order n is an n × n matrix C = (ci,j) in

which every entry is 0, 1, or −1 such that ci,i = 0 for all i and CCT = (n − 1)In. A
conference matrix C = (ci,j) is a symmetric conference matrix if ci,j = cj,i for all
i, j.

It is easy to see that the only “0” entries in a conference matrix are the
entries on the main diagonal. Also, using a counting argument similar to
that used in the proof of Theorem 4.4, it can be shown that n ≡ 2 (mod 4) is
a necessary condition for a symmetric conference matrix of order n to exist.
A further necessary condition can be obtained (via a Bruck-Ryser-Chowla
approach), which is stated in the following theorem.

Theorem 4.11. If a symmetric conference matrix of order n exists, then n ≡ 2
(mod 4) and n − 1 is the sum of two integral squares.
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We now give a construction for an infinite class of symmetric conference
matrices. Suppose q ≡ 1 (mod 4) is a prime power. Define a matrix W =
(wi,j), in which the rows and columns are indexed by Fq ∪ {∞}, as follows:

wi,j =





0 if i = j = ∞

1 if i = ∞, j �= ∞

1 if i �= ∞, j = ∞

χq(i − j) if i, j ∈ Fq.

Theorem 4.12. Suppose q ≡ 1 (mod 4) is a prime power. Then the matrix W de-
fined above is a symmetric conference matrix of order q + 1.

Proof. Clearly, the diagonal entries of W are all 0, and every off-diagonal en-
try is ±1. This implies that the (i, i) entry of WWT is q for all i ∈ Fq ∪ {∞}.
Furthermore, χq(−1) = 1 because q ≡ 1 (mod 4), and therefore it follows
that W is symmetric.

It remains to show that, if i �= j, then the (i, j) entry of WWT is 0. First,
suppose that i, j ∈ Fq, i �= j. Then, using Lemma 4.9, Part 2, the (i, j) entry of

WWT is

1 + ∑
h∈Fq

χq(i − h)χq(j − h) = 1 + ∑
x∈Fq

χq(x)χq(x + y)

= 1 + (−1)

= 0.

(Note the change of variables x = i − h, y = j − i used in the computation
above.) Next, suppose that i ∈ Fq. The (i, ∞) entry (or the (∞, i) entry) of

WWT is

∑
x∈Fq

χq(x) = 0

from Lemma 4.9, Part 1. This completes the proof. ⊓⊔

Example 4.13. Suppose we take q = 5. We have QR(5) = {1, 4}, so χq(1) =
χq(4) = 1, χq(2) = χq(3) = −1, and χq(0) = 0. Then we construct a symmet-
ric conference matrix W as follows:

W =




0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0




.
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A symmetric conference matrix of order 2 is trivial:

(
0 1
1 0

)
.

Theorem 4.12 yields symmetric conference matrices of orders 6, 10, 14, 18,
26, 30, 38, 42, etc. Orders 22 and 34 are not possible, by Theorem 4.11. Thus
we already are able to determine the existence or nonexistence of symmetric
conference matrices of all possible orders less than 46.

We now present a construction of Hadamard matrices from symmetric
conference matrices.

Theorem 4.14. Suppose C is a symmetric conference matrix of order m. Then the
matrix

H =

(
C + Im C − Im

C − Im −C − Im

)

is a Hadamard matrix of order 2m.

Proof. Since C is symmetric, we see that HT = H. Also, every entry of H is
±1. Then we can compute HHT as follows:

HHT =

(
C + Im C − Im

C − Im −C − Im

)(
C + Im C − Im

C − Im −C − Im

)

=

(
A1 A2

A3 A4

)
,

where

A1 = (C + Im)2 + (C − Im)2,

A2 = (C + Im)(C − Im) + (C − Im)(−C − Im),

A3 = (C − Im)(C + Im) + (−C − Im)(C − Im), and

A4 = (C − Im)2 + (−C − Im)2.

It is not hard to verify that A2 and A3 are both m × m matrices of “0”s.
Furthermore, we have

A1 = 2C2 + 2(Im)2

= 2(m − 1)Im + 2(Im)

= (2m)Im.

Similarly, A4 = (2m)Im. Thus, we have

HHT =

(
(2m)Im 0

0 (2m)Im

)
= (2m)I2m,

as desired. ⊓⊔
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Example 4.15. From the conference matrix of order 6 constructed in Example
4.13, we obtain the following Hadamard matrix of order 12:




1 1 1 1 1 1 −1 1 1 1 1 1
1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 1 1 −1 −1 1 1 −1 1 −1 −1
1 −1 1 1 1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 1 1 −1 −1 1 −1 1
1 1 −1 −1 1 1 1 1 −1 −1 1 −1

−1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 −1 −1 1 1 −1
1 1 −1 1 −1 −1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 −1 1 −1 −1 −1 1
1 −1 −1 1 −1 1 −1 1 1 −1 −1 −1
1 1 −1 −1 1 −1 −1 −1 1 1 −1 −1




.

The following result is an immediate consequence of Theorems 4.12 and
4.14.

Corollary 4.16. There exists a Hadamard matrix of order 4m if 2m − 1 is a prime
power and m is odd.

4.4 A Product Construction

The construction we study in this section is a recursive construction called
the Kronecker Product. Suppose H1 = (hi,j) is a Hadamard matrix of order n1

and H2 is a Hadamard matrix of order n2. We define the Kronecker Product
H1 ⊗ H2 to be the matrix of order n1n2 obtained by replacing every entry hi,j

of H1 by the n2 × n2 matrix hi,jH2 (where xH2 denotes the matrix obtained
from H2 by multiplying every entry by x).

Example 4.17. Let H1 be the Hadamard matrix of order 2 presented in Exam-
ple 4.2, and let H2 be the Hadamard matrix of order 4 presented in Example
4.3. Then H1 ⊗ H2 is the following matrix of order 8:




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




.



4.5 Williamson’s Method 81

Theorem 4.18 (Kronecker Product). If H1 is a Hadamard matrix of order n1 and
H2 is a Hadamard matrix of order n2, then H1 ⊗ H2 is a Hadamard matrix of order
n1n2.

Proof. Suppose the rows of H1 ⊗ H2 are indexed by {1, . . . , n1} × {1, . . . , n2},
so that row (i, j) of H1 ⊗ H2 is in fact row j within the n2 × (n1n2) submatrix

(hi,1H2 . . . hi,n1
H2).

We need to compute the inner product of two rows of H1 ⊗ H2, say rows (i, j)
and (k, ℓ). We have the following:

row (i, j) · row (k, ℓ) =
n1

∑
a=1

hia(row j of H2) · hka(row ℓ of H2)

= ((row i of H1) · (row k of H1))

×((row j of H2) · (row ℓ of H2))

=

{
n1n2 if (i, j) = (k, ℓ)
0 otherwise.

Hence, H1 ⊗ H2 is a Hadamard matrix. ⊓⊔

Ths following corollary of Theorem 4.18 is obtained by letting n1 = 2,
n2 = n.

Corollary 4.19. If there exists a Hadamard matrix of order n, then there exists a
Hadamard matrix of order 2n.

4.5 Williamson’s Method

The constructions described to this point allow us to construct Hadamard
matrices of all possible orders n ≤ 88. A Hadamard matrix of order 92 was
first constructed using a method suggested by Williamson, which we de-
scribe in this section.

The basis for the construction is the following matrix identity, which is es-
sentially the same as the one stated as Lemma 2.18: If a, b, c, and d are integers
(or, indeed, elements of any commutative ring), and

H =




−a b c d
b a d −c
c −d a b
d c −b a


 ,

then HHT = (a2 + b2 + c2 + d2)I4. The Hadamard matrix construction is
obtained by replacing a, b, c, and d by matrices that satisfy certain properties.
The proof of the following result is straightforward.
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Theorem 4.20. Suppose that A, B, C, and D are n × n matrices that satisfy the
following properties:

1. A, B, C, and D are symmetric matrices having entries ±1;
2. the matrices A, B, C, and D commute.

Define the matrix

H =




−A B C D
B A D −C
C −D A B
D C −B A


 ,

and denote A2 + B2 + C2 + D2 = M. Then

HHT =




M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 M


 ,

where the “0” entries denote n × n blocks of “0”s.

Corollary 4.21. Suppose there exist n × n matrices, A, B, C, and D, that satisfy the
following properties:

1. A, B, C, and D are symmetric matrices having entries ±1;
2. the matrices A, B, C, and D commute;
3. A2 + B2 + C2 + D2 = 4nIn.

Then there is a Hadamard matrix of order 4n.

Example 4.22. Let

A =




1 1 1
1 1 1
1 1 1




and let

B = C = D =




1 −1 −1
−1 1 −1
−1 −1 1


 .

The conditions of Corollary 4.21 are easily verified. In particular, A2 = 3J3

and B2 = C2 = D2 = 4I3 − J3, so A2 + B2 + C2 + D2 = 12I3. Hence there
exists a Hadamard matrix of order 12.

An n × n matrix, say A = (ai,j), is said to be a circulant matrix provided
that ai+1 mod n,j+1 mod n = ai,j for all i, j. In other words, the entries on any
(circulant) diagonal are constant. In practice, it is convenient to take A, B, C,
and D to be circulant matrices, as was done in Example 4.22.

Fix a positive integer n, and let U = (ui,j) be the matrix where
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ui,j =

{
1 if j − i ≡ 1 (mod n)
0 otherwise.

Now, it is easy to see that any matrix of the form ∑
n−1
i=0 aiU

i is a circulant
matrix. In fact, any circulant matrix can be expressed in this way in a unique
fashion; this is clear because

n−1

∑
i=0

aiU
i =




a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2
...

...
. . .

...
...

a1 a2 · · · an−1 a0


 .

The sequence (a0, a1, . . . , an−2, an−1) is just the first row of the matrix A.
Now suppose we stipulate that A, B, C, and D are circulant matrices as

follows:

A =
n−1

∑
i=0

aiU
i,

B =
n−1

∑
i=0

biU
i,

C =
n−1

∑
i=0

ciU
i, and

D =
n−1

∑
i=0

diU
i.

Let us consider the conditions of Theorem 4.20. Since the four matrices A,
B, C, and D are all expressed as polynomials in the matrix U, it is clear that
they commute. If ai, bi, ci, di = ±1 for all i, then A, B, C, and D will all have
entries ±1. The condition that the matrix A is symmetric is that ai = an−i for
0 ≤ i ≤ n − 1. Similar conditions will ensure that B, C, and D are symmetric.
There still remains the condition that A2 + B2 + C2 + D2 = 4nIn, which is, in
general, quite difficult to satisfy. In fact, most applications of Corollary 4.21
have required computer searches to find suitable input matrices.

Example 4.23. A Hadamard matrix of order 92 was discovered in 1962 by
Baumert, Golomb, and Hall using the method described above. The first
rows of the matrices A, B, C, and D are as follows, where we encode “1” as
“+” and “−1” as “−”:

A : + +−−−+−−−+−++−+−−−+−−−+
B : +−+ +−+ +−−++ ++ ++−−+ +−+ +−
C : + ++−−−++−+−++−+−++−−−++
D : + ++−++ +−+−−−−−−+−+ ++−++
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4.6 Existence Results for Hadamard Matrices of Small Orders

The constructions we have presented thus far allow us to obtain Hadamard
matrices of all possible orders n ≤ 100. We summarize the details in Table
4.1.

order equation authority

2 Example 4.2
4 2 × 2 Theorem 4.19
8 2 × 4 Theorem 4.19

12 11 + 1 Corollary 4.7
16 2 × 8 Theorem 4.19
20 19 + 1 Corollary 4.7
24 2 × 12 Theorem 4.19
28 27 + 1 Corollary 4.7
32 2 × 16 Theorem 4.19
36 2 × 17 + 2 Corollary 4.16
40 2 × 20 Theorem 4.19
44 43 + 1 Corollary 4.7
48 2 × 24 Theorem 4.19
52 2 × 25 + 2 Corollary 4.16
56 2 × 28 Theorem 4.19
60 59 + 1 Corollary 4.7
64 2 × 32 Theorem 4.19
68 67 + 1 Corollary 4.7
72 2 × 36 Theorem 4.19
76 2 × 37 + 2 Corollary 4.16
80 2 × 40 Theorem 4.19
84 83 + 1 Corollary 4.7
88 2 × 44 Theorem 4.19
92 Example 4.23
96 2 × 48 Theorem 4.19

100 2 × 49 + 2 Corollary 4.16

Table 4.1. Constructions of Hadamard Matrices of all Orders n ≤ 100

4.7 Regular Hadamard Matrices

A regular Hadamard matrix is one in which every row and every column con-
tains the same number of “1”s. Regular Hadamard matrices are interesting
for several reasons. First, they turn out to be equivalent to certain symmetric
BIBDs. In addition, they have the maximum number of “1” entries (among
all possible Hadamard matrices of a given order). We pursue these topics in
the rest of this section.
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We begin with a small example.

Example 4.24. The following matrix is a regular Hadamard matrix of order 4:




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 .

A Hadamard matrix in which every row has the same number of “1”s
is called a row-regular Hadamard matrix; one in which every column has the
same number of “1”s is called a column-regular Hadamard matrix. We be-
gin by investigating necessary conditions for the existence of row-regular
Hadamard matrices. Suppose that H = (hi,j) is a Hadamard matrix of order
n > 1 in which every row contains exactly ℓ entries equal to 1. For 1 ≤ i ≤ n,
let ri denote the ith row of H. Define

a = |{j : h1,j = h2,j = 1}|,
b = |{j : h1,j = 1, h2,j = −1}|,
c = |{j : h1,j = −1, h2,j = 1}|, and

d = |{j : h1,j = h2,j = −1}|.

Then we have the following equations:

a + b + c + d = n

a + b = ℓ since r1 contains ℓ “1”s

a + c = ℓ since r2 contains ℓ “1”s

a − b − c + d = 0 since r1 · r2 = 0.

This system has the following unique solution:

a = ℓ − n

4

b =
n

4

c =
n

4

d =
3n

4
− ℓ.

Now suppose we change every “−1” entry of H to “0”. The resulting 0− 1
matrix M satisfies the equation MMT = λJn + (ℓ − λ)In, where λ = a =
ℓ − n/4. Therefore, by Theorem 1.15, M is the incidence matrix of a pairwise
balanced design having n points and n blocks in which every point occurs
in ℓ blocks and every pair of points occurs in λ blocks. Theorem 2.3 tells us
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that this PBD is in fact a BIBD, and therefore M is the incidence matrix of a
symmetric

(
n, ℓ, ℓ− n

4

)
-BIBD. This in turn implies that

ℓ(ℓ − 1) =
(
ℓ − n

4

)
(n − 1).

For any fixed value of n, the equation above is a quadratic equation in ℓ.
Therefore we can solve for ℓ as a function of n using the quadratic formula.
We obtain the following:

ℓ =
n ±√

n

2
.

This implies that n must be a perfect square. It is also the case that n ≡ 0
(mod 4). (All Hadamard matrices have orders n ≡ 0 (mod 4) except for ma-
trices of orders n = 1 and 2. We are assuming that n > 1. Furthermore, n �= 2
because 2 is not a perfect square.) Therefore we can write n = (2u)2, where u
is a positive integer, and it follows that our symmetric BIBD has parameters
(4u2, 2u2 ± u, u2 ± u).

Conversely, if we begin with the incidence matrix of a (4u2, 2u2 ± u, u2 ±
u)-BIBD and replace every “0” by “−1”, then it is not difficult to show that
the result is a regular Hadamard matrix of order 4u2.

Summarizing the discussion above, we have the following theorem.

Theorem 4.25. A row-regular Hadamard matrix, say H, of order n > 4 exists only
if n = 4u2 for some integer u ≥ 2 and every row of H contains ℓ “1”s, where
ℓ = 2u2 ± u. Furthermore, such a Hadamard matrix is equivalent to a (symmetric)
(4u2, 2u2 ± u, u2 ± u)-BIBD.

We have also proven the following result.

Theorem 4.26. The following are equivalent:

• H is a row-regular Hadamard matrix of order n;
• H is a column-regular Hadamard matrix of order n;
• H is a regular Hadamard matrix of order n.

Example 4.27. We constructed a (16, 6, 2)-difference set in (Z4 × Z4, +) in Ex-
ample 3.4 and a (36, 16, 5)-difference set in (Z6 × Z6, +) in Example 3.6.
Therefore there exists a (16, 6, 2)-BIBD and a (36, 16, 5)-BIBD. Applying The-
orem 4.25, there exist regular Hadamard matrices of orders 16 and 36.

It is not difficult to show that the Kronecker Product of two regular
Hadamard matrices is a regular Hadamard matrix. Therefore we can also
construct a regular Hadamard matrix of order 16 as the Kronecker Product
of regular Hadamard matrices of order 4. More generally, we can easily ob-
tain infinite classes of regular Hadamard matrices as follows.

Theorem 4.28. Suppose that n = 4a9b, where a and b are nonnegative integers
such that a ≥ b. Then there is a regular Hadamard matrix of order n.
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Proof. If a = b = 0, then n = 1, and there exists a regular Hadamard matrix
of order 1, namely (1). Therefore, we can assume that a + b ≥ 1. Write n =

4a−b36b. Then a regular Hadamard matrix of order n can be constructed by
taking the Kronecker Product of a − b regular Hadamard matrices of order 4
and b regular Hadamard matrices of order 36. ⊓⊔

4.7.1 Excess of Hadamard Matrices

Let H = (hi,j) be a Hadamard matrix of order n. Define the excess of H to be

excess(H) =
n

∑
i=1

n

∑
j=1

hi,j.

Clearly excess(H) is the amount by which the number of “1”s in H exceeds
the number of “−1”s. For an integer n such that a Hadamard matrix of order
n exists, define

σ(n) = max{excess(H) : H is a Hadamard matrix of order n}.

Lemma 4.29. σ(n) ≤ n3/2.

Proof. Let H be a Hadamard matrix of order n. For 1 ≤ k ≤ n, define

sk =
n

∑
i=1

hi,k.

The quantity sk is the sum of the entries in column k of H, so it is obvious
that

excess(H) =
n

∑
k=1

sk.

Let r1, . . . , rn denote the rows of H. We compute the quantity

n

∑
i=1

n

∑
j=1

ri · rj

in two ways. It is clear that ri · rj = n if i = j and ri · rj = 0 if i �= j. It therefore
follows that

n

∑
i=1

n

∑
j=1

ri · rj = n2.

On the other hand, we have that
n

∑
i=1

n

∑
j=1

ri · rj =
n

∑
i=1

n

∑
j=1

n

∑
k=1

hi,khj,k

=
n

∑
k=1

(
n

∑
i=1

hi,k

)(
n

∑
j=1

hj,k

)

=
n

∑
k=1

sk
2.
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Hence,
n

∑
k=1

sk
2 = n2. (4.1)

Now, the classical Cauchy-Schwartz Inequality asserts that

(
n

∑
k=1

xkyk

)2

≤
(

n

∑
k=1

xk
2

)
×
(

n

∑
k=1

yk
2

)
(4.2)

for arbitrary real numbers x1, . . . , xn, y1, . . . , yn. Setting xk = 1 and yk = sk

for 1 ≤ k ≤ n, it follows immediately that

(
n

∑
k=1

sk

)2

≤ n
n

∑
k=1

sk
2. (4.3)

Combining (4.1) and (4.3), we have that

n2 =
n

∑
k=1

sk
2 ≥

(
∑

n
k=1 sk

)2

n
, (4.4)

and hence

excess(H) =
n

∑
j=1

sj ≤ n3/2.

⊓⊔

We now show that Hadamard matrices having the maximum possible
excess are equivalent to regular Hadamard matrices.

Theorem 4.30. σ(n) = n3/2 if and only if there exists a regular Hadamard matrix
of order n.

Proof. Suppose that H is a regular Hadamard matrix of order n. We proved
earlier that H has exactly ℓ “1”s in every row and column, where

ℓ =
n ±√

n

2
.

If ℓ = (n − √
n)/2, then multiply every entry of H by −1. The result is a

regular Hadamard matrix in which every row and column contains exactly
(n +

√
n)/2 “1”s. This Hadamard matrix has excess equal to

n

(
n +

√
n

2
− n −√

n

2

)
= n3/2.

Conversely, suppose that H is a Hadamard matrix of order n such that
excess(H) = n3/2. Then, in the proof of Lemma 4.29, it must be the case that
(4.4) is in fact an equality:
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(
n

∑
k=1

sk

)2

= n
n

∑
k=1

sk
2.

It is well-known that equality occurs in the Cauchy-Schwartz Inequality (4.2)
if and only if

y1

x1
=

y2

x2
= · · · =

yn

xn
.

Hence, equality occurs in (4.4) if and only if s1 = s2 = · · · = sn, which im-
plies that H is column-regular. However, Theorem 4.26 asserts that a column-
regular Hadamard matrix is regular. This completes the proof. ⊓⊔

4.8 Bent Functions

Suppose n ≥ 1 is an integer. A function f : (Z2)
n → Z2 is called a Boolean

function of n variables. Define Bn to be the set of all Boolean functions of n
variables.

Suppose f ∈ Bn. We can list the values f (x), for all x ∈ (Z2)
n, in a vector

of length 2n. Denote this vector by φ( f ), where φ( f )x = f (x) for all x ∈
(Z2)

n. For the sake of consistency, we will index the coordinates of φ( f ) in
lexicographic order.

Note that φ( f ) ∈ (Z2)
2n

and therefore |Bn| = 22n
(i.e., there are 22n

Boolean functions of n variables). For any f ∈ Bn, define (−1) f to be the

function (−1) f : (Z2)
n → {−1, 1} such that ((−1) f )(x) = (−1) f (x) for all

x ∈ (Z2)
n. In other words, (−1) f is formed from f by replacing every out-

put equal to “0” by “1” and every output equal to “1” by “−1”. (We already
performed a similar operation when we constructed a Hadamard matrix of
order 4n from a symmetric (4n − 1, 2n − 1, n − 1)-BIBD.)

Define the inner product of two vectors x, y ∈ (Z2)
n as follows:

x · y =
n

∑
i=1

xiyi mod 2,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). Let F be any real-valued func-

tion defined on (Z2)
n. The Fourier transform of F is the function F̂ : (Z2)

n →
R defined by the following formula:

F̂(x) = ∑
y∈(Z2)n

(−1)x·yF(y)

for all x ∈ (Z2)
n.

For any two vectors x, y ∈ (Z2)
n, define

δx,y =

{
1 if x = y

0 if x �= y.
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Lemma 4.31. For any y ∈ (Z2)
n, it holds that

∑
x∈(Z2)n

(−1)x·y = 2n δy,(0,...,0).

Proof. If y = (0, . . . , 0), then every term in the sum equals 1, and the result
follows. If y �= (0, . . . , 0), then there are the same number of terms equal to 1
as there are terms equal to −1, so the sum is 0. ⊓⊔

Let Sn = (sx,y) be the 2n × 2n matrix in which the rows and columns are
indexed by (Z2)

n (in lexicographic order) and sx,y = (−1)x·y for all x, y ∈
(Z2)

n. Sn is called the Sylvester matrix of order 2n.

Lemma 4.32. Sn is a Hadamard matrix.

Proof. Let x, y ∈ (Z2)
n. Then, applying Lemma 4.31, we have that

∑
z∈(Z2)n

sx,zsy,z = ∑
z∈(Z2)n

(−1)x·z+y·z

= ∑
z∈(Z2)n

(−1)(x+y)·z

= 2n δx+y,(0,...,0)

= 2n δx,y.

⊓⊔

For any function F : {0, 1}n → R, define φ(F) in the same way that φ( f )
was defined from f , i.e., φ(F) is the vector of values F(x). Then we have the

following result, which follows immediately from the definition of F̂.

Lemma 4.33. Suppose that F : {0, 1}n → R. Then φ(F̂) = φ(F)Sn.

The following corollary will be useful.

Corollary 4.34. Suppose that F : {0, 1}n → R. Then ̂̂F = 2nF.

Proof. We have that φ(F̂) = φ(F)Sn. Multiplying on the right by Sn and using
the fact that (Sn)2 = 2n I2n (which holds because Sn is a Hadamard matrix and

Sn = (Sn)T), we have that φ(̂̂F) = 2nφ(F). Hence, ̂̂F = 2nF. ⊓⊔

Example 4.35. Suppose that n = 2, f (x1, x2) = x1x2, and F = (−1) f , where
x1, x2 ∈ Z2. Then φ( f ) = (0, 0, 0, 1), where the coordinates of φ( f ) are in
lexicographic order; i.e., φ( f ) = ( f (0, 0), f (0, 1), f (1, 0), f (1, 1)).

Then φ(F) = (1, 1, 1,−1), and

S2 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 ,
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so

φ(F̂) = (1, 1, 1,−1)




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 = (2, 2, 2,−2).

Theorem 4.36. Suppose that f ∈ Bn and F = (−1) f . Let y ∈ (Z2)
n. Then it holds

that

∑
x∈(Z2)n

F̂(x)F̂(x + y) =

{
22n if y = (0, . . . , 0)

0 if y �= (0, . . . , 0).

Proof.

∑
x∈(Z2)n

F̂(x)F̂(x + y)

= ∑
x∈(Z2)n

∑
u∈(Z2)n

(−1)x·uF(u) ∑
v∈(Z2)n

(−1)(x+y)·vF(v)

= ∑
x∈(Z2)n

∑
u∈(Z2)n

∑
v∈(Z2)n

(−1)x·u+(x+y)·vF(u)F(v)

= ∑
x∈(Z2)n

∑
u∈(Z2)n

∑
v∈(Z2)n

(−1)x·(u+v)+y·vF(u)F(v)

= ∑
u∈(Z2)n

∑
v∈(Z2)n

(−1)y·vF(u)F(v) ∑
x∈(Z2)n

(−1)x·(u+v)

= ∑
u∈(Z2)n

∑
v∈(Z2)n

(−1)y·vF(u)F(v)2n δu,v from Lemma 4.31

= 2n ∑
u∈(Z2)n

(−1)y·u(F(u))2

= 2n ∑
u∈(Z2)n

(−1)y·u because F(u) = ±1

= 22n δy,(0,...,0) from Lemma 4.31,

as required. ⊓⊔
We state two corollaries. The first corollary is just the case y = (0, . . . , 0)

in the previous theorem.

Corollary 4.37 (Parseval’s Equation). Suppose that f ∈ Bn and F = (−1) f .
Then it holds that

∑
x∈(Z2)n

(F̂(x))2 = 22n.

The second corollary follows from the proof of Theorem 4.36 by noting
that the first part of the proof (all but the last two lines of the displayed equa-
tions, in fact) applies to any real-valued function.
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Theorem 4.38. Suppose that F : (Z2)
n → R and let y ∈ (Z2)

n. Then it holds that

∑
x∈(Z2)n

F̂(x)F̂(x + y) = 2n ∑
u∈(Z2)n

(−1)y·u(F(u))2.

It turns out that the Fourier coefficients F̂(x) provide a measure of the
nonlinearity of Boolean functions. Suppose that f , g ∈ Bn. We define the
distance between f and g to be the quantity

d( f , g) = |{x ∈ (Z2)
n : f (x) �= g(x)}|.

Equivalently, d( f , g) is the Hamming distance between the vectors φ( f ) and
φ(g).

A function f ∈ Bn is a linear function if f has the form

f (x) = a · x,

where a ∈ (Z2)
n. Clearly there are 2n linear functions in Bn. For brevity, we

will denote the function a · x by La. By La + 1 we mean the function taking
on the value La(x) + 1 mod 2 for all x. A function f ∈ Bn is an affine function
if f = La or f = La + 1 for some a ∈ (Z2)

n. Note that there are 2n+1 affine
functions in Bn.

The following formula relates the distance between a function f and a
linear or affine function to the Fourier transform of f .

Theorem 4.39. Suppose that f ∈ Bn and F = (−1) f . Let a ∈ (Z2)
n. Then

d( f , La) = 2n−1 − 1

2
F̂(a)

and

d( f , La + 1) = 2n−1 +
1

2
F̂(a).

Proof.

F̂(a) = |{y ∈ (Z2)
n : a · y = f (y)}| − |{y ∈ (Z2)

n : a · y �= f (y)}|
= 2n − 2|{y ∈ (Z2)

n : a · y �= f (y)}|
= 2n − 2d( f , La).

From this it follows immediately that

d( f , La) = 2n−1 − 1

2
F̂(a).

The second formula is obtained by observing that

d( f , La + 1) = 2n − d( f , La).

⊓⊔
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We illustrate the concepts described above by continuing Example 4.35.

Example 4.40. Suppose that n = 2 and f (x1, x2) = x1x2, where x1, x2 ∈ Z2.

We observed in Example 4.35 that φ( f ) = (0, 0, 0, 1) and φ(F̂) = (2, 2, 2,−2).
The affine functions of two Boolean variables (denoted by g in the following
table) and their distances to f are as follows:

a g φ(g) F̂(a) d( f , g)
(0, 0) L(0,0) (0, 0, 0, 0) 2 1

(0, 0) L(0,0) + 1 (1, 1, 1, 1) 2 3
(0, 1) L(0,1) (0, 1, 0, 1) 2 1
(0, 1) L(0,1) + 1 (1, 0, 1, 0) 2 3

(1, 0) L(1,0) (0, 0, 1, 1) 2 1
(1, 0) L(1,0) + 1 (1, 1, 0, 0) 2 3
(1, 1) L(1,1) (0, 1, 1, 0) −2 3
(1, 1) L(1,1) + 1 (1, 0, 0, 1) −2 1

It can be verified that d( f , g) = 1 or 3 for all affine functions g and, moreover,
d( f , g) is given by the formula proven in Theorem 4.39.

The nonlinearity of f , denoted N f , is defined as follows:

N f = min{d( f , La), d( f , La + 1) : a ∈ (Z2)
n}.

In view of Theorem 4.39, we have that

N f = 2n−1 − 1

2
max{|F̂(a)| : a ∈ (Z2)

n}. (4.5)

A function f ∈ Bn is a bent function if |F̂(x)| = 2n/2 for all x ∈ (Z2)
n,

where F = (−1) f . Note that the function f in Example 4.35 is bent. A bent

function can exist in Bn only when n is even because F̂(x) is an integer for all
x ∈ (Z2)

n when f ∈ Bn, and 2n/2 is not an integer if n is odd.
We prove in the next theorem that bent functions have maximum possible

nonlinearity (this is the reason for the terminology “bent”).

Theorem 4.41. For any f ∈ Bn, it holds that N f ≤ 2n−1 − 2n/2−1. Furthermore,
equality holds if and only if f is a bent function.

Proof. Denote

M = max{|F̂(a)| : a ∈ (Z2)
n};

then N f = 2n−1 − M/2. Applying Parseval’s Equation (Corollary 4.37), we
have that

2nM2 ≥ ∑
x∈(Z2)n

(F̂(x))2 = 22n,

so M ≥ 2n/2. Furthermore, M = 2n/2 if and only if |F̂(x)| = 2n/2 for all
x ∈ (Z2)

n. In other words, N f ≤ 2n−1 − 2n/2−1, and equality occurs if and
only if f is bent. ⊓⊔
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Here is an interesting way to characterize bent functions in terms of
Hadamard matrices.

Theorem 4.42. Suppose that f ∈ Bn and F = (−1) f . Define the matrix H f =
(hx,y), where hx,y = F(x + y) for all x, y ∈ (Z2)

n. Then f is a bent function if and
only if H f is a Hadamard matrix.

Proof. Suppose that f is a bent function. Define the function

G =
1

2n/2
F̂.

Then G = (−1)g for some Boolean function g ∈ Bn. Applying Corollary 4.34,

it follows that Ĝ = 2n/2F. Now, to verify that H f is a Hadamard matrix, we
must show that the equation

∑
z∈(Z2)n

hx,zhy,z = 2n δx,y (4.6)

holds for all x, y ∈ (Z2)
n. This is done as follows:

∑
z∈(Z2)n

hx,zhy,z = ∑
z∈(Z2)n

F(x + z)F(y + z)

= ∑
w∈(Z2)n

F(w)F(x + y + w)

=
1

2n ∑
w∈(Z2)n

Ĝ(w)Ĝ(x + y + w)

=
1

2n
× 22n δx+y,(0,...,0)

= 2n δx,y,

where we apply Theorem 4.36 to the Boolean function g.
Conversely, suppose that (4.6) holds for all x, y ∈ (Z2)

n. Define the real-
valued function

G =
1

2n/2
F̂.

Setting y = (0, . . . , 0) in (4.6), we obtain the following:

2n δx,(0,...,0) = ∑
z∈(Z2)n

hx,zh(0,...,0),z

= ∑
z∈(Z2)n

F(x + z)F(z)

=
1

2n ∑
z∈(Z2)n

Ĝ(z)Ĝ(x + z)

= ∑
z∈(Z2)n

(−1)x·z(G(z))2

=
1

2n ∑
z∈(Z2)n

(−1)x·z(F̂(z))2.
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Therefore we have that

22n(1, 0, . . . , 0) = φ((F̂(z))2)Sn.

Multiplying on the right by Sn, we obtain

22n(1, 0, . . . , 0)Sn = 2nφ((F̂(z))2),

which simplifies to give

2n(1, 1, . . . , 1) = φ((F̂(z))2).

Therefore |F̂(x)| = 2n/2 for all x ∈ (Z2)
n, and f is bent. ⊓⊔

Example 4.43. Again, suppose that n = 2 and f (x1, x2) = x1x2, where x1, x2 ∈
Z2. We have that φ( f ) = (0, 0, 0, 1) and φ(F) = (1, 1, 1,−1). The matrix H f is

H f =




1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1


 ,

which is easily seen to be a Hadamard matrix of order 4.

Our next theorem ties together all the results we have presented so far in
this section. This theorem proves an equivalence between bent functions and
certain difference sets.

Theorem 4.44 (Dillon). There exists a bent function f : (Z2)
n → Z2 if and only

if there exists a (2n, 2n−1 ± 2(n−2)/2, 2n−2 ± 2(n−2)/2)-difference set in (Z2)
n.

Proof. Suppose that f ∈ Bn is a bent function. Then, the matrix H f = (hx,y)
constructed in Theorem 4.42 is a Hadamard matrix. It is also easy to see that
H f is regular; this is because every row and column of H f is a permutation
of the list of values F(x), x ∈ (Z2)

n.
We next show that (Z2)

n is a sharply transitive automorphism group of
this Hadamard matrix. For any u ∈ (Z2)

n, define tu : (Z2)
n → (Z2)

n as
follows: tu(x) = x + u for all x ∈ (Z2)

n. It is clear that tu is a permutation
(i.e., a bijection) of (Z2)

n, and {tu : u ∈ (Z2)
n} is a sharply transitive set of

permutations. Furthermore, every tu is an automorphism of H f because

htu(x),tu(y) = hu+x,u+y = F(u + x + u + y) = F(x + y) = hx,y

for all x, y ∈ (Z2)
n.

This implies that the symmetric (2n, 2n−1 ± 2(n−2)/2, 2n−2 ± 2(n−2)/2)-
BIBD, whose incidence matrix is constructed from H f by replacing every
entry −1 by 0, has (Z2)

n as a sharply transitive automorphism group (ap-
ply Theorem 4.25 with u = 2n−2). Therefore, by Theorem 3.17, the desired
difference set in (Z2)

n exists.
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Conversely, suppose that the stated difference set exists. From this differ-

ence set, we can construct a symmetric (2n, 2n−1 ± 2(n−2)/2, 2n−2 ± 2(n−2)/2)-
BIBD having (Z2)

n as a sharply transitive automorphism group. Then, re-
placing every entry 0 in the incidence matrix of this BIBD by −1, we obtain
a regular Hadamard matrix of order 2n having (Z2)

n as a sharply transitive
automorphism group. The fact that the Hadamard matrix has this automor-
phism group means that

hu+x,u+y = hx,y

for all u, x, y ∈ (Z2)
n. Suppose we define a function f ∈ Bn as follows:

f (x) =

{
0 if hx,(0,...,0) = 1

1 if hx,(0,...,0) = −1.

Then, we have that

hx,y = hx+y,(0,...,0) = (−1) f (x+y)

for all x, y ∈ (Z2)
n. Therefore Theorem 4.42 establishes that f is a bent func-

tion. ⊓⊔

The proof of Theorem 4.44 involved several steps to show that a bent
function can be transformed into the relevant difference set and vice versa.
However, if we examine the sequence of operations performed, we can easily
describe a direct transformation between these objects. We state the follow-
ing result, which is primarily a consequence of the proof of Theorem 4.44.

Corollary 4.45. Suppose that f ∈ Bn is a bent function. Let i = 0 or 1 and define

Di = {x ∈ (Z2)
n : f (x) = i}.

Then Di is a (2n, 2n−1 ± 2(n−2)/2, 2n−2 ± 2(n−2)/2)-difference set in (Z2)
n. Con-

versely, suppose that D ⊆ (Z2)
n is a (2n, 2n−1 ± 2(n−2)/2, 2n−2 ± 2(n−2)/2)-

difference set. Define f ∈ Bn by f (x) = 0 if and only if x ∈ D. Then f is a
bent function.

So far, we have seen one example of a bent function, namely the function
x1x2 ∈ B2 that was introduced in Example 4.35. We will prove for all even
integers n ≥ 2 that there exists a bent function in Bn. First, we will state and
prove an easy result concerning the Fourier coefficients of the sum of two
Boolean functions on disjoint sets of input variables. Suppose that f1 ∈ Bn1

and f2 ∈ Bn2 . Define the function f = f1 ⊕ f2 ∈ Bn1+n2 as follows:

f (x1, . . . , xn1+n2) = f1(x1, . . . , xn1) + f2(xn1+1, . . . , xn1+n2) mod 2.

We have the following.
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Lemma 4.46. Suppose that f1 ∈ Bn1 , f2 ∈ Bn2 , and f = f1 ⊕ f2. Let F = (−1) f ,

F1 = (−1) f1 , and F2 = (−1) f2 . Then

F̂(x) = F̂1(x1)F̂2(x2),

where x = (x1, . . . , xn1+n2), x1 = (x1, . . . , xn1), and x2 = (xn1+1, . . . , xn1+n2).

Proof.

F̂(x) = ∑
y∈(Z2)

n1+n2

(−1)x·yF(y)

= ∑
y1∈(Z2)

n1

∑
y2∈(Z2)

n2

(−1)x1·y1+x2·y2 F1(y1)F2(y2)

=


 ∑

y1∈(Z2)
n1

(−1)x1·y1 F1(y1)


×


 ∑

y2∈(Z2)
n2

(−1)x2·y2 F2(y2)




= F̂1(x1)F̂2(x2).

⊓⊔

We now apply the lemma above to bent functions. The following corol-
lary is immediate.

Corollary 4.47. Suppose that f1 and f2 are both bent functions. Then f = f1 ⊕ f2

is a bent function.

We now state an existence result for bent functions, which follows from
the previous results by induction.

Theorem 4.48. Suppose that n = 2m. Then the function

x1x2 + x3x4 + · · · + x2m−1x2m mod 2

is a bent function.

Proof. The proof is by induction on m. For m = 1, the function x1x2 was
shown to be bent by the computations performed in Example 4.35.

As an induction hypothesis, assume that the function

x1x2 + x3x4 + · · · + x2m−3x2m−2 mod 2

is bent. Using the fact that x2m−1x2m is bent, we can apply Corollary 4.47 to
establish that the function

x1x2 + x3x4 + · · · + x2m−1x2m mod 2

is a bent function.
Therefore, by induction, the proof is complete. ⊓⊔
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We close this section by examining the bent function x1x2 + x3x4 mod 2
and the difference set equivalent to it.

Example 4.49. Suppose that n = 4 and f (x1, x2, x3, x4) = x1x2 + x3x4 mod 2.
Then

φ( f ) = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0),

where the coordinates of φ( f ) are in lexicographic order.
We construct a difference set from the function f by recording the values

x where f (x) = 1. We obtain the set

D = {(0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)}.

D is a (16, 6, 2)-difference set in the group ((Z2)
4, +).

4.9 Notes and References

Seberry and Yamada [92] is a thorough survey on Hadamard matrices and re-
lated concepts. Craigen and Wallis [36] is more tightly focussed on Hadamard
matrices and contains some interesting historical information; both surveys
are useful references. Up-to-date general asymptotic existence results for
Hadamard matrices are found in Craigen [34].

Theorem 4.5 is due to Todd [109], and Corollary 4.16 is due to Paley [83].
Conference matrices were introduced in 1950 by Belevitch. Conference

matrices and related objects such as weighing matrices have been studied
extensively since then. Recent results on these topics can be found in Kouk-
ouvinos and Seberry [68].

Williamson’s method is presented in [116]. The discovery, in 1962, of a
Hadamard matrix of order 92 using this techinque is reported in [6].

Theorem 4.25 is well-known, but its origin seems not to be known. For
some relatively recent results on regular Hadamard matrices, see Craigen
and Kharaghani [35]. The concept of excess of a Hadamard matrix is due to
Best [8]; Theorem 4.30 is also proven in [8].

Bent functions were introduced by Rothaus in [88]. They have been an
active area of research in recent years, in part due to their applications in
coding theory and cryptography. Theorem 4.44 was first proven by Dillon in
his Ph.D. thesis [40].

4.10 Exercises

4.1 Construct Hadamard matrices of orders 12, 16, and 20.
4.2 Construct symmetric conference matrices of orders 10, 14, and 18.
4.3 (a) Prove that a W(n, n− 1) (as defined in Exercise 2.10) exists if and

only if a conference matrix of order n exists.
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(b) Deduce from Exercise 2.10 that a conference matrix of order n ≡
2 (mod 4) exists only if n − 1 is the sum of two squares.

4.4 (a) A conference matrix is standardized if every entry in the first row
or column is equal to “1”. Let C = (ci,j) be a symmetric con-
ference matrix of order n. For 2 ≤ i ≤ n, suppose we multiply
every entry in row i of C by ci,1. Then, for 2 ≤ j ≤ n, suppose
we multiply every entry in column j of C by c1,j. Prove that the
resulting matrix is a standardized symmetric conference matrix
of order n.

(b) Let C = (ci,j) be a standardized symmetric conference matrix of
order n. Define

a = |{j : 4 ≤ j ≤ n, c2,j = c3,j = 1}|,
b = |{j : 4 ≤ j ≤ n, c2,j = 1, c3,j = −1}|,
c = |{j : 4 ≤ j ≤ n, c2,j = −1, c3,j = 1}|, and

d = |{j : 4 ≤ j ≤ n, c2,j = c3,j = −1}|.
Determine the values of a, b, c, and d (note that there are two
cases to consider, depending on whether c2,3 = c3,2 = 1 or c2,3 =
c3,2 = −1).

(c) Prove that a symmetric conference matrix of order n exists only
if n ≡ 2 (mod 4).

4.5 Suppose that C = (ci,j) is a standardized conference matrix of order
n ≡ 2 (mod 4). Prove that C is symmetric by using a counting argu-
ment similar to that used in Exercise 4.4.

4.6 Extend Table 4.1 considering orders n ≤ 200. To be specific, show that
Hadamard matrices of all possible orders in the range 100 < n ≤ 200
can be constructed using the methods described in this chapter, except
for n = 116, 156, 172, and 188.

4.7 Note: This exercise requires some knowledge of linear algebra pertain-
ing to eigenvalues and eigenvectors.
Suppose we want to apply Williamson’s construction. Thus we are
looking for n × n matrices, A, B, C, and D, that satisfy the following
properties:
• A, B, C, and D are symmetric matrices having entries ±1,
• A2 + B2 + C2 + D2 = 4nIn, and
• A, B, C, and D are circulant matrices.
Let sA, sB, sC, and sD denote the sum of the entries of any row of A, B,
C, and D, respectively, and let u = (1, · · · , 1).

(a) Prove that u is an eigenvector of A, B, C, and D, and prove that
the corresponding eigenvalues are sA, sB, sC, and sD, respec-
tively.

(b) Prove that u is an eigenvector of A2, B2, C2, and D2, and prove
that the corresponding eigenvalues are (sA)2, (sB)2, (sC)2, and
(sD)2, respectively.

(c) Prove that (sA)2 + (sB)2 + (sC)2 + (sD)2 = 4n.
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(d) Suppose that n is odd. When applying Williamson’s construc-
tion, prove that we can assume without loss of generality that
sA, sB, sC, and sD are all odd, nonnegative integers.
Hint: Replace A by −A if necessary, etc.

(e) For n = 5, find the unique solution (up to permutation) in
odd nonnegative integers to the equation (sA)2 + (sB)2 + (sC)2 +
(sD)2 = 4n.

(f) For n = 5, find circulant matrices A, B, C, and D that satisfy the
conditions for Williamson’s construction. Verify that all the con-
ditions are satisfied.
Hint: Make use of the fact that sA, sB, sC, and sD are determined,
as well as the fact that the matrices A, B, C, and D must be sym-
metric, in order to reduce the number of cases that need to be
considered.

4.8 (a) Prove that the Kronecker Product of two regular Hadamard ma-
trices is a regular Hadamard matrix.

(b) Construct a regular Hadamard matrix of order 16 using the Kro-
necker Product.

(c) Use this regular Hadamard matrix to construct a (16, 6, 2)-BIBD.
4.9 (a) Let H1 and H2 be Hadamard matrices, and define H = H1 ⊗ H2.

Prove that excess(H) = excess(H1) × excess(H2).
(b) Prove that σ(8) ≥ 16.

4.10 Define the function f ∈ B4 to be

f (x1, x2, x3, x4) = x1x2 + x2x3 + x3x4 mod 2.

(a) Compute φ( f ), φ(F), and φ(F̂).
(b) Compute N f using equation (4.5) and observe that f is a bent

function.
(c) Construct a (16, 6, 2)-difference set in the group ((Z2)

4, +) from
the function f by using the technique described in Corollary
4.45.
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Resolvable BIBDs

5.1 Introduction

Definition 5.1. Suppose (X,A) is a (v, k, λ)-BIBD. A parallel class in (X,A) is
a subset of disjoint blocks from A whose union is X. A partition of A into r parallel
classes is called a resolution, and (X,A) is said to be a resolvable BIBD if A has
at least one resolution.

Observe that a parallel class contains v/k blocks, and therefore a BIBD
can have a parallel class only if v ≡ 0 mod k.

We begin by constructing resolvable (v, 2, 1)-BIBDs for all even v. (Note
that a (v, 2, 1)-BIBD consists of all 2-subsets of a v-set, so it exists trivially. The
interesting thing is to show that it is resolvable.)

Theorem 5.2. A resolvable (v, 2, 1)-BIBD exists if and only if v is an even integer
and v ≥ 4.

Proof. Clearly it is necessary that v is even and v ≥ 4. We construct a re-
solvable (v, 2, 1)-BIBD for all such v as follows: Take the set of points to be
Zv−1 ∪ {∞}. For j ∈ Zv−1, define

Πj = {{∞, j}} ∪ {{i + j mod (v − 1), j − i mod (v − 1)} : 1 ≤ i ≤ (v − 2)/2}.

It is not difficult to see that each Πj is a parallel class, and each pair of points
occurs in exactly one Πj. Hence, we have a resolvable BIBD, as required. ⊓⊔
Example 5.3. A resolvable (6, 2, 1)-BIBD. The parallel classes are as follows:

Π0 = {{∞, 0}, {1, 4}, {2, 3}}
Π1 = {{∞, 1}, {2, 0}, {3, 4}}
Π2 = {{∞, 2}, {3, 1}, {4, 0}}
Π3 = {{∞, 3}, {4, 2}, {0, 1}}
Π4 = {{∞, 4}, {0, 3}, {1, 2}}.
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5.2 Affine Planes and Geometries

Recall from Section 2.3 that an affine plane of order n ≥ 2 is an (n2, n, 1)-
BIBD. An affine plane of order n has r = n + 1 and b = n2 + n. Theorem 2.13
asserts that affine planes exist for all prime power orders because they are
residual BIBDs of projective planes. Affine planes of prime power order are
also easy to construct directly; we prove the following theorem.

Theorem 5.4. For any prime power q, there exists an affine plane of order q (i.e., a
(q2, q, 1)-BIBD).

Proof. Define P = Fq × Fq. For any a, b ∈ Fq, define a block

La,b = {(x, y) ∈ P : y = ax + b}.

For any c ∈ Fq, define

L∞,c = {(c, y) : y ∈ Fq}.

Finally, define
L = {La,b : a, b ∈ Fq} ∪ {L∞,c : c ∈ Fq}.

We will show that (P,L) is a (q2, q, 1)-BIBD.
Clearly, there are q2 points in P, and every block contains exactly q points.

Hence, we need only show that every pair of points is contained in a unique
block. Let (x1, y1), (x2, y2) ∈ P. We consider two cases:

1. If x1 = x2, then the unique block containing the pair {(x1, y1), (x2, y2)} is
L∞,x1 .

2. If x1 �= x2, consider the system of equations in Fq:

y1 = ax1 + b

y2 = ax2 + b.

We will show that this system of equations has a unique solution for a
and b. Subtracting the second equation from the first, we obtain

y1 − y2 = a(x1 − x2).

Since x1 �= x2, there is a unique multiplicative inverse (x1 − x2)
−1 ∈ Fq.

Multiply both sides of the previous equation by (x1 − x2)
−1, obtaining

a = (x1 − x2)
−1(y1 − y2).

Having determined a, it is a simple matter to determine b by back-
substitution:

b = y1 − ax1 = y1 − (x1 − x2)
−1(y1 − y2)x1.

Therefore, the unique block containing the pair {(x1, y1), (x2, y2)} is La,b,
where a and b are computed from the formulas above.
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Summarizing, we have shown that (P,L) is a (q2, q, 1)-BIBD. ⊓⊔
Example 5.5. We use Theorem 5.4 to construct an affine plane of order 3. The
set of points is Z3 × Z3, and the blocks are as follows:

L0,0 = {(0, 0), (1, 0), (2, 0)}
L0,1 = {(0, 1), (1, 1), (2, 1)}
L0,2 = {(0, 2), (1, 2), (2, 2)}
L1,0 = {(0, 0), (1, 1), (2, 2)}
L1,1 = {(0, 1), (1, 2), (2, 0)}
L1,2 = {(0, 2), (1, 0), (2, 1)}
L2,0 = {(0, 0), (1, 2), (2, 1)}
L2,1 = {(0, 1), (1, 0), (2, 2)}
L2,2 = {(0, 2), (1, 1), (2, 0)}

L∞,0 = {(0, 0), (0, 1), (0, 2)}
L∞,1 = {(1, 0), (1, 1), (1, 2)}
L∞,2 = {(2, 0), (2, 1), (2, 2)}.

At this point, we have two constructions for affine planes of prime power
order: the direct construction given in Theorem 5.4 and forming the residual
BIBD of the projective plane PG2(q) constructed in Theorem 2.10. With a bit
of work, we can show that these two constructions of affine planes of order
q (q a prime power) yield isomorphic BIBDs.

First, it is not difficult to show that all affine planes constructed as resid-
ual designs of the projective plane PG2(q) are isomorphic. In other words, it
does not matter which block in PG2(q) we use to construct the residual de-
sign. Therefore, we can suppose without loss of generality that we choose
the block AB0

corresponding to the two-dimensional subspace

B0 = {(x1, x2, x3) ∈ (Fq)
3 : (0, 0, 1) · (x1, x2, x3) = 0}

of (Fq)
3 (i.e., the subspace B0 = span((1, 0, 0), (0, 1, 0))). The points in the

block AB0
are the following one-dimensional subspaces of (Fq)

3:

span((1, i, 0)), i ∈ Fq, and
span((0, 1, 0)).

The q2 points not in AB0
are

span((x, y, 1)), x, y ∈ Fq.

Let (P,L) = (Fq × Fq, {La,b : a, b ∈ Fq} ∪ {L∞,c : c ∈ Fq}) be the affine
plane of order q constructed in Theorem 5.4. We will show that the bijection
α, defined by
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(x, y) �→ span((x, y, 1))

for all (x, y) ∈ P, yields an isomorphism of the affine plane (P,L) and the
residual BIBD of PG2(q) through the block AB0

.
We must demonstrate that blocks are mapped to blocks under the bijec-

tion α. The q2 + q blocks (other than A0) in PG2(q) are obtained from the
following two-dimensional subspaces:

Ba,b = {(x1, x2, x3) ∈ (Fq)
3 : (a,−1, b) · (x1, x2, x3) = 0}, a, b ∈ Fq, and

Bc = {(x1, x2, x3) ∈ (Fq)
3 : (1, 0,−c) · (x1, x2, x3) = 0}, c ∈ Fq.

(To see this, observe that these q2 + q subspaces are distinct, and different
from B0.)

Let a, b ∈ Fq. The q + 1 points in the block ABa,b
of PG2(q) are

span((x, ax + b, 1)), x ∈ Fq, and
span((1, a, 0)).

The point span((1, a, 0)) is deleted from ABa,b
when the residual design is

constructed, and α(x, ax + b) = span((x, ax + b, 1)) for all x ∈ Fq. Thus the
block La,b is mapped by α to the block

ABa,b
\{span((1, a, 0))}.

Finally, let’s consider a block ABc , where c ∈ Fq. The q + 1 points in this
block are

span((c, y, 1)), y ∈ Fq, and
span((0, 1, 0)).

The point span((0, 1, 0)) is deleted from ABc when the residual design is con-
structed, and α(c, y) = span((c, y, 1)) for all y ∈ Fq. Thus the block L∞,c is
mapped by α to the block

ABc\{span((0, 1, 0))}.

We have therefore shown that the two designs are isomorphic.

5.2.1 Resolvability of Affine Planes

Affine planes provide interesting examples of resolvable BIBDs because any
affine plane can be shown to be resolvable. The main steps in proving this
are as follows. First, the following lemma is proved by a simple counting
argument.

Lemma 5.6. Suppose (P,L) is an affine plane of order n. Suppose L ∈ L, x ∈ P,
and x �∈ L. Then there is exactly one block M ∈ L such that x ∈ M and L∩ M = ∅.
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Proof. (P,L) is a BIBD with k = n and λ = 1. Hence, for every point y ∈ L,
there is a unique block Ly such that x ∈ Ly and L ∩ Ly = {y}. This accounts
for n blocks containing the point x. Since r = n + 1, there is one further block
containing x, say M, and L ∩ M = ∅. ⊓⊔

Now, suppose that (P,L) is an affine plane of order n, and define a binary
relation ∼ on the set of blocks, L, as follows:

L ∼ M if L = M or L ∩ M = ∅.

The following can now be proved.

Lemma 5.7. Suppose (X,L) is an affine plane of order n. Then the relation ∼, as
defined above, is an equivalence relation.

Proof. We need to show that ∼ is reflexive, symmetric, and transitive. First,
L ∼ L for every L ∈ L by definition. Second, it follows easily from the def-
inition that L ∼ M if and only if M ∼ L. Third, suppose that L ∼ M and
M ∼ N. There are four cases that arise:

1. If L = M and M = N, then L = N and hence L ∼ N.
2. If L = M and M ∩ N = ∅, then L ∩ N = ∅ and hence L ∼ N.
3. If L ∩ M = ∅ and M = N, then L ∩ N = ∅ and hence L ∼ N.
4. Suppose L ∩ M = ∅ and M ∩ N = ∅. If L = N, then L ∼ N, so suppose

L �= N. In this case, we want to prove that L ∩ N = ∅. If it does not,
then there is a unique point x ∈ L ∩ N. Now, L and N are two blocks
that contain the point x and are both disjoint from M. This contradicts
Lemma 5.6, so we conclude that L ∩ N = ∅ and hence L ∼ N.

We have proved that ∼ is reflexive, symmetric, and transitive, and hence it is
an equivalence relation. ⊓⊔

The next step is to prove the following.

Lemma 5.8. Suppose (X,L) is an affine plane of order n. Then each equivalence
class of ∼ is a parallel class in (X,L).

Proof. Let Π be an equivalence class of ∼ and let L ∈ Π. Then,

Π = {M ∈ L : L ∼ M}.

Clearly, all the blocks in Π are disjoint. Furthermore, for any point x, Lemma
5.6 tells us that there exists a block M ∈ Π such that x ∈ M. It follows that
each equivalence class of ∼ is a partition of X. ⊓⊔

Using this lemma, it is easy to see that (X,L) is resolvable, as follows.

Theorem 5.9. Any affine plane is resolvable.
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Proof. By Lemma 5.8, each equivalence class of ∼ is a parallel class of the
BIBD. Also, every block of the BIBD is in exactly one equivalence class of ∼.
Therefore, the equivalence classes of ∼ form a resolution of the affine plane.

⊓⊔

In the case of the affine planes of prime order that we constructed in The-
orem 5.4, it is easy to determine the parallel classes. For any a ∈ Fq,

{La,b : b ∈ Fq}

is a parallel class. Furthermore,

{L∞,c : c ∈ Fq}

is a parallel class. These q + 1 parallel classes form a resolution of the BIBD.
Observe that each of these parallel classes consists of all “lines” having a
given “slope”. In this fashion, the finite affine planes can be thought of as
finite analogs of the classical real Euclidean plane.

5.2.2 Projective and Affine Planes

Recall that a projective plane of order n is an (n2 + n + 1, n + 1, 1)-BIBD. The
next theorem establishes a close connection between affine and projective
planes.

Theorem 5.10. There exists an affine plane of order n if and only if there exists a
projective plane of order n.

Proof. First, the residual BIBD of a projective plane of order n is an affine
plane of order n by Theorem 2.7. Conversely, given any affine plane of or-
der n, we will show how to embed it into a projective plane of order n.
Let (X,L) be an affine plane of order n. By Theorem 5.9, (X,L) is resolv-
able; let Π1, . . . , Πn+1 be the n + 1 parallel classes. Let ∞1, . . . , ∞n+1 �∈ X,
define Ω = {∞1, . . . , ∞n+1}, and define X′ = X ∪ Ω. For every L ∈ L,
define L′ = L ∪ {∞i}, where L ∈ Πi (in other words, adjoin the point
∞i to every block in the ith parallel class, 1 ≤ i ≤ n + 1). Finally, define
L′ = {L′ : L ∈ L} ∪ {Ω}.

We show that (X′,L′) is a projective plane of order n. There are n2 + n + 1
points, and every block contains exactly n + 1 points. Thus we need only to
show that every pair of points x, y ∈ X′ (x �= y) occurs in a unique block.
If x, y ∈ X, then x and y occur in a unique block L ∈ L, and hence x and y
occur in a unique block in L′, namely L′. If x ∈ X and y ∈ Ω, say y = ∞i,
then {x, y} ⊆ L′, where L is the unique block in Πi that contains x. Finally, if
x = ∞i and y = ∞j, then {x, y} ⊆ Ω. ⊓⊔
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Example 5.11. The affine plane of order 3 constructed in Example 5.5 can
be embedded into a projective plane of order 3 consisting of the following
blocks:

L′
0,0 = {(0, 0), (1, 0), (2, 0), ∞1}

L′
0,1 = {(0, 1), (1, 1), (2, 1), ∞1}

L′
0,2 = {(0, 2), (1, 2), (2, 2), ∞1}

L′
1,0 = {(0, 0), (1, 1), (2, 2), ∞2}

L′
1,1 = {(0, 1), (1, 2), (2, 0), ∞2}

L′
1,2 = {(0, 2), (1, 0), (2, 1), ∞2}

L′
2,0 = {(0, 0), (1, 2), (2, 1), ∞3}

L′
2,1 = {(0, 1), (1, 0), (2, 2), ∞3}

L′
2,2 = {(0, 2), (1, 1), (2, 0), ∞3}

L′
∞,0 = {(0, 0), (0, 1), (0, 2), ∞4}

L′
∞,1 = {(1, 0), (1, 1), (1, 2), ∞4}

L′
∞,2 = {(2, 0), (2, 1), (2, 2), ∞4}
Ω = {∞1, ∞2, ∞3, ∞4}.

5.2.3 Affine Geometries

In this section, we generalize the construction of affine planes to higher di-
mensional affine geometries. We use a slightly different presentation. Let q
be a prime power, let m ≥ 2, and let X = (Fq)

m. Let 1 ≤ d ≤ m − 1. A d-flat
in X is a subspace of X having dimension d or an additive coset of such a
subspace. Note that X itself is a vector space of dimension m over Fq.

A d-dimensional subspace is the same thing as the solution set to a system
of m − d linearly independent homogeneous linear equations in m variables
x1, . . . , xm ∈ Fq. A d-flat is the solution set to a system of m − d independent
linear equations, which can be homogeneous or nonhomogeneous.

The set of points X and the set of all d-flats of X (for 1 ≤ d ≤ m − 1)
comprise the m-dimensional affine geometry over Fq, which will be denoted
AGm(q).

For 0 ≤ d ≤ m, define the Gaussian coefficient

[
m
d

]

q

as follows:

[
m
d

]

q

=





(qm−1)(qm−1−1)···(qm−d+1−1)

(qd−1)(qd−1−1)···(q−1)
if d �= 0

1 if d = 0.

The geometry AGm(q) gives rise to various resolvable BIBDs, as shown in the
following theorem.
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Theorem 5.12. Let q be a prime power, let m ≥ 2, and let 1 ≤ d ≤ m − 1. Let X
denote the set of points in AGm(q) and let A denote the set of all d-flats in AGm(q).

Then (X,A) is a resolvable (qm, b, r, qd, λ)-BIBD, where b = qm−d

[
m
d

]

q

, r =

[
m
d

]

q

, and λ =

[
m − 1
d − 1

]

q

.

Proof. The fact that this set system is resolvable is easy to see because any
subspace together with all of its cosets forms a parallel class. Therefore, we
just need to prove that the design is a BIBD.

First, we show that every pair of points occurs in λ blocks, where λ =[
m − 1
d − 1

]

q

. Suppose that x = (x1, . . . , xm) and y = (y1, . . . , ym) are any two

distinct points. The number of d-flats that contain x and y is the same as the
number of d-dimensional subspaces that contain the two points (0, . . . , 0)
and z = x − y. A subspace of dimension d that contains z is determined by

choosing d − 1 vectors, say z2, . . . , zd, such that z, z2, . . . , zd are d linearly in-

dependent vectors. Denote z1 = z; then the d-tuple (z1, . . . , zd) is an ordered
basis for a subspace containing z. The number of ordered bases of this type
is easily seen to be

(qm − q)(qm − q2) · · · (qm − qd−1).

The terms in the product above are determined as follows: there are qm − q
vectors in (Zq)

m that are not scalar multiples of z1; there are qm − q2 vectors

that are not in span(z1, z2); etc.
Now, a similar argument shows that every subspace containing z is gen-

erated by a constant number of ordered bases of this form, namely

(qd − q)(qd − q2) · · · (qd − qd−1).

The total number of subspaces containing z is therefore equal to

(qm − q)(qm − q2) · · · (qm − qd−1)

(qd − q)(qd − q2) · · · (qd − qd−1)
=

(qm−1 − 1)(qm−2 − 1) · · · (qm−d+1 − 1)

(qd−1 − 1)(qd−2 − 1) · · · (q − 1)

=

[
m − 1
d − 1

]

q

= λ.

Now, it is easy to see that every block has size qd. Given that k and λ are
constants, it follows that we have a BIBD, and the parameters b and r can be
determined by straightforward algebra. ⊓⊔

The construction above includes affine planes in the special case m = 2,
d = 1. A line in the affine plane is the same thing as a 1-flat in AG2(q). Here
is an example of this construction with d > 1.
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Example 5.13. Suppose we take q = 3, m = 3, and d = 2 in Theorem 5.12. The
resulting BIBD is a resolvable (27, 39, 13, 9, 4)-BIBD. There are r = 13 parallel
classes, each of which contains one two-dimensional subspace of (Z3)

3 and
its two cosets.

The thirteen two-dimensional subspaces of (Z3)
3 are the solutions to ho-

mogeneous linear equations over Z3 in three variables. These are tabulated
as follows:

equation subspace
x1 = 0 {000, 001, 002, 010, 011, 012, 020, 021, 022}
x2 = 0 {000, 001, 002, 100, 101, 102, 200, 201, 202}
x3 = 0 {000, 010, 020, 100, 110, 120, 200, 210, 220}

x1 + x2 = 0 {000, 001, 002, 120, 121, 122, 210, 211, 212}
x1 + 2x2 = 0 {000, 001, 002, 110, 111, 112, 220, 221, 222}
x1 + x3 = 0 {000, 010, 020, 102, 112, 122, 201, 211, 221}

x1 + 2x3 = 0 {000, 010, 020, 101, 111, 121, 202, 212, 222}
x2 + x3 = 0 {000, 100, 200, 012, 112, 212, 021, 121, 221}

x2 + 2x3 = 0 {000, 100, 200, 011, 111, 211, 022, 122, 222}
x1 + x2 + x3 = 0 {000, 111, 222, 012, 120, 201, 021, 102, 210}

x1 + x2 + 2x3 = 0 {000, 112, 221, 011, 120, 202, 022, 101, 210}
x1 + 2x2 + x3 = 0 {000, 121, 212, 011, 102, 220, 022, 110, 201}

x1 + 2x2 + 2x3 = 0 {000, 211, 122, 101, 012, 220, 202, 110, 021}

Recall that we showed in Theorem 5.9 that any affine plane is resolvable.
However, this result does not carry over to all designs having parameters as
given in Theorem 5.12. It turns out that, if d > 1, there are BIBDs having
parameters of the given form that are not resolvable. For example, there exist
(8, 4, 3)-BIBDs that are not resolvable.

5.3 Bose’s Inequality and Affine Resolvable BIBDs

The following inequality of Bose provides a necessary condition for the exis-
tence of a resolvable BIBD.

Theorem 5.14 (Bose’s Inequality). If there exists a resolvable (v, b, r, k, λ)-
BIBD, then b ≥ v + r − 1.

Proof. We again use the technique of Theorem 1.33 and Theorem 2.2. In the
proof of Theorem 1.33, Equation (1.5) showed that each basis vector ei ∈ Rv

can be expressed as a linear combination of the vectors in S = {s1, . . . , sb}.
We are now given a resolvable BIBD, (X,A). For 1 ≤ i ≤ r, define

mi =
(i − 1)v

k
+ 1 and ni =

iv

k
.
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Suppose that the blocks are labeled so that the r parallel classes are

Πi = {Aj : mi ≤ j ≤ ni},

1 ≤ i ≤ r. Since each Πi is a parallel class, we have that

ni

∑
j=mi

sj = (1, . . . , 1)

for 1 ≤ i ≤ r. From this, it follows that

smi
=

n1

∑
j=m1

sj −
ni

∑
j=mi+1

sj (5.1)

for 2 ≤ i ≤ r. In other words, the r − 1 vectors in the set

S′ = {sm2 , . . . , smr}

can be expressed as linear combinations of the b − r + 1 vectors in S\S′.
Now, since the b vectors in S span Rv, it follows that the b − r + 1 vectors

in S\S′ span Rv. Since Rv has dimension v and is spanned by a set of b− r + 1
vectors, it must be the case that b ≥ v − r + 1. ⊓⊔

Recall that Fisher’s Inequality (Theorem 1.33) says that b ≥ v in any BIBD.
Bose’s Inequality strengthens Fisher’s Inequality whenever the BIBD is re-
solvable.

The following lemma provides an alternate way of stating Bose’s Inequal-
ity.

Lemma 5.15. Suppose (v, b, r, k, λ) are the parameters of a BIBD. Then b ≥ v +
r − 1 if and only if r ≥ k + λ.

Proof. Suppose that b ≥ v + r − 1. This implies that b > v and hence r > k.
Then we have the following:

vr

k
≥ v + r − 1

⇐⇒ v(r − k)

k
≥ r − 1

⇐⇒ v ≥ k(r − 1)

r − k

⇐⇒ r(k − 1) + λ

λ
≥ k(r − 1)

r − k

⇐⇒ r(k − 1)(r − k) + λ(r − k) ≥ λk(r − 1)

⇐⇒ r(k − 1)(r − k) ≥ λr(k − 1)

⇐⇒ r − k ≥ λ.

⊓⊔
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Corollary 5.16. If there exists a resolvable (v, b, r, k, λ)-BIBD, then r ≥ k + λ.

The results above motivate the following definition.

Definition 5.17. A resolvable BIBD with b = v + r − 1 (or, equivalently, if r =
k + λ) is said to be an affine resolvable BIBD.

Affine planes are affine resolvable because r = n + 1 = k + λ. More
generally, we obtain an affine resolvable BIBD from Theorem 5.12 whenever
d = m − 1. This follows by verifying that

qm − 1

q − 1
=

[
m

m − 1

]

q

= qm−1 +

[
m − 1
m − 2

]

q

= qm−1 +
qm−1 − 1

q − 1
,

which can be done by simple algebra. Thus we have the following result.

Corollary 5.18. Let q be a prime power and let m ≥ 2. Then there is an affine
resolvable (qm, qm−1, λ)-BIBD, where λ = (qm−1 − 1)/(q − 1).

Observe that affine resolvable BIBDs are quasiresidual. In Corollary 2.15,
we already constructed residual BIBDs having the same parameters as those
from Corollary 5.18. It can be shown that the BIBDs obtained from these two
corollaries are, in fact, isomorphic.

There are not many other known constructions for affine resolvable BIBDs.
One such infinite class of affine resolvable BIBDs is derived from Hadamard
matrices. We show how to construct this class of designs now.

We know from Theorem 4.5 that a Hadamard matrix of order 4m is equiv-
alent to a (symmetric) (4m − 1, 2m − 1, m − 1)-BIBD, say (X,A). Applying
Theorem 1.32, the block complement of (X,A) is a (4m − 1, 2m, m)-BIBD, say
(X,B). Let ∞ �∈ X, and define X′ = X ∪ {∞}. For every A ∈ A, define
A′ = A ∪ {∞}, and define A′ = {A′ : A ∈ A}. Then it is not hard to prove
that (X′,A′ ∪B) is an affine resolvable (4m, 8m− 2, 4m− 1, 2m, 2m− 1)-BIBD,
where each parallel class consists of two blocks. Thus we have the following.

Theorem 5.19. If there exists a Hadamard matrix of order 4m, then there exists an
affine resolvable (4m, 2m, 2m− 1)-BIBD.

Example 5.20. {1, 2, 4} is a (7, 3, 1)-difference set in Z7 which generates a
(7, 3, 1)-BIBD. The affine resolvable (8, 4, 3)-BIBD produced by the construc-
tion preceding Theorem 5.19 has the following blocks:

{∞, 1, 2, 4} {0, 3, 5, 6}
{∞, 2, 3, 5} {1, 4, 6, 0}
{∞, 3, 4, 6} {2, 5, 0, 1}
{∞, 4, 5, 0} {3, 6, 1, 2}
{∞, 5, 6, 1} {4, 0, 2, 3}
{∞, 6, 0, 2} {5, 1, 3, 4}
{∞, 0, 1, 3} {6, 2, 4, 5}.
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Recall that Theorem 2.2 states that any two distinct blocks in a symmetric
BIBD intersect in exactly λ points. There is a similar result for affine resolv-
able BIBDs.

Theorem 5.21. Any two blocks from different parallel classes of an affine resolvable
(v, k, λ)-BIBD intersect in exactly k2/v points.

Proof. We will show that |A1 ∩ Aj| = k2/v for m2 ≤ j ≤ b. We start by setting
h = 1 in Equation (2.1):

(r − λ)s1 +
b

∑
j=1

λk

r
sj =

b

∑
j=1

|A1 ∩ Aj|sj. (5.2)

Using Equation (1.2), which states that ∑ sj = (r, . . . , r), and the fact that Π1

is a parallel class, we can rewrite Equation (5.2) as follows:

(r − λ)s1 +
n1

∑
j=m1

λksj =
b

∑
j=1

|A1 ∩ Aj|sj. (5.3)

In the proof of Theorem 5.14, we showed that the b − r + 1 vectors in S\S′

span Rv. Since we are now assuming that b = v − r + 1, it must be the case
that S\S′ is a basis for Rv.

Equation (5.3) can be rewritten in terms of the basis S\S′. This can be
done by using Equation (5.1) to eliminate the vectors in S′ from the right side
of Equation (5.3). (Note that none of the vectors in S′ appear on the left side
of Equation (5.3).) Denote I1 = {m1, . . . , n1}, I2 = {mi : 2 ≤ i ≤ r}, and
I3 = {1, . . . , b}\(I1 ∪ I2).

We obtain the following:

(r − λ)s1 + ∑
j∈I1

λksj

= ∑
j∈I1

|A1 ∩ Aj|sj + ∑
j∈I2

|A1 ∩ Aj|sj + ∑
j∈I3

|A1 ∩ Aj|sj

= ∑
j∈I1

|A1 ∩ Aj|sj +
r

∑
i=2

|A1 ∩ Ami
|smi

+ ∑
j∈I3

|A1 ∩ Aj|sj

= ∑
j∈I1

|A1 ∩ Aj|sj +
r

∑
i=2

|A1 ∩ Ami
|
(

∑
j∈I1

sj −
ni

∑
j=mi+1

sj

)

+ ∑
j∈I3

|A1 ∩ Aj|sj.

Now, consider the coefficient of a vector sj, j ∈ I3. For any such j, we have
mi + 1 ≤ j ≤ ni for some i, 2 ≤ i ≤ r. The coefficient of sj on the left side of
the equation above is 0, and the coefficient on the right side is
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|A1 ∩ Aj| − |A1 ∩ Ami
|.

Since S\S′ is a basis, it must be the case that |A1 ∩ Aj| − |A1 ∩ Ami
| = 0, so

|A1 ∩ Aj| = |A1 ∩ Ami
|.

It follows that there exists a constant µ such that |A1 ∩ Aj| = µ for all j,
mi ≤ j ≤ ni. Since Π is a parallel class consisting of v/k blocks, we have

k = |A1| =
ni

∑
j=mi

|A1 ∩ Aj| =
µv

k
,

so µ = k2/v. This completes the proof. ⊓⊔

We present an example to illustrate how Theorem 5.21 can be used to
show that certain resolvable BIBDs do not exist.

Example 5.22. A resolvable (28, 7, 2)-BIBD would have r = 9 and b = 63.
Since 9 = 7 + 2 (i.e., r = k + λ), a resolvable (28, 7, 2)-BIBD would be affine
resolvable. By Theorem 5.21, any two blocks from different parallel classes
would intersect in k2/v = 7/4 points. Since 7/4 is not an integer, there does
not exist a resolvable (28, 7, 2)-BIBD. (We note, however, that there do exist
(28, 7, 2)-BIBDs that are not resolvable.)

Finally, we describe a convenient way to parameterize affine resolvable
BIBDs. In an affine resolvable BIBD, we write µ = k2/v. As above, µ must be
an integer. Now, the number of blocks in a parallel class is

v

k
=

k

µ
,

so it must be the case that k ≡ 0 mod µ. If we write n = k/µ, then we have

v =
k2

µ
= n2µ.

Now, let us proceed to express λ in terms of n and µ. Since λ(v− 1) = r(k− 1)
and r = k + λ, we have

λ(v − 1) = (k + λ)(k − 1)

and hence
λ(v − k) = k(k − 1).

Thus

λ =
k(k − 1)

v − k
=

nµ(nµ − 1)

n2µ − nµ
=

nµ − 1

n − 1
.

Any affine resolvable BIBD must have parameters of the form
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(
n2µ, nµ,

nµ − 1

n − 1

)
,

and, conversely, any resolvable BIBD having parameters of this form is
affine resolvable. We will denote such a BIBD as an (n, µ)-ARBIBD. The de-
signs constructed in Theorem 5.19 are (2, m)-ARBIBDs, and those obtained
from Corollary 5.18 are (q, qm−1)-ARBIBDs. For example, we constructed an
affine resolvable (27, 9, 4)-BIBD in Example 5.13. This is denoted as a (3, 3)-
ARBIBD.

5.3.1 Symmetric BIBDs from Affine Resolvable BIBDs

In this section, we present a construction of certain symmetric BIBDs from
affine resolvable BIBDs. Suppose that there is an affine resolvable (v, b, r, k, λ)-
BIBD, say (X,A), having parallel classes Π1, . . . , Πr. Let X = {xi : 1 ≤ i ≤ v}.
We define several v× v matrices, denoted M1, . . . , Mr, as follows. Let 1 ≤ h ≤
r. Then Mh = (mh

i,j), where

mh
i,j =

{
1 if there exists A ∈ Πh such that xi, xj ∈ A

0 otherwise.

Let M0 be a v × v matrix of zeroes, and define M to be the following (r +
1)v × (r + 1)v matrix:

M =




M0 M1 M2 · · · Mr

M1 M2 M3 · · · M0

M2 M3 M4 · · · M1
...

...
...

...
Mr M0 M1 · · · Mr−1




.

The matrix M, as described above, can be shown to be the incidence matrix
of a symmetric BIBD. Therefore, we have the following result.

Theorem 5.23. Suppose there exists an affine resolvable (v, b, r, k, λ)-BIBD. Then
there exists a (symmetric) ((r + 1)v, kr, kλ)-BIBD.

The following corollary is obtained by using affine planes of prime power
order in Theorem 5.23.

Corollary 5.24. Suppose that q is a prime power. Then there exists a (symmetric)
(q2(q + 2), q(q + 1), q)-BIBD.

Example 5.25. From an affine plane of order 3, we can construct a (symmetric)
(45, 12, 3)-BIBD. Suppose we start with the (9, 3, 1)-BIBD presented in Exam-
ple 1.4. The four parallel classes are easily seen to be the following:
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Π1 = {123, 456, 789},

Π2 = {147, 258, 369},

Π3 = {159, 267, 348}, and

Π4 = {168, 249, 357}.

The matrices M1 and M2 are as follows:

M1 =




1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1




and

M2 =




1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1




.

The matrices M3 and M4 are constructed in a similar fashion, and then the
matrix

M =




M0 M1 M2 M3 M4

M1 M2 M3 M4 M0

M2 M3 M4 M0 M1

M3 M4 M0 M1 M2

M4 M0 M1 M2 M3




is the incidence matrix of a (45, 12, 3)-BIBD.

5.4 Orthogonal Resolutions

Suppose (X,A) is a (v, k, λ)-BIBD. Suppose that Π1, . . . , Πr are the parallel
classes in a resolution of (X,A), and suppose that Π′

1, . . . , Π′
r are the parallel

classes in a second resolution of (X,A). These two resolutions of (X,A) are
orthogonal resolutions if |Πj ∩ Π′

h| ≤ 1 for all 1 ≤ j, h ≤ r. (In other words, no
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two parallel classes, one from each resolution, contain more than one block
in common.)

Closely related to the notion of orthogonal resolutions is an object called
a “generalized Room square”, which we define now.

Definition 5.26. Suppose that v, k, and λ are integers with 2 ≤ k < v and λ ≥ 1.
A generalized Room square GRS(v, k, λ) is an r by r array (where r = λ(v −
1)/(k − 1)), say R, that satisfies the following properties:

1. each cell of R either is empty or contains a k-subset of a set X of v points;
2. every point appears in exactly one cell in each row (or column) of R;
3. (X,A) is a (v, k, λ)-BIBD, where the set of blocks A is obtained from the

nonempty cells of R.

Theorem 5.27. There exists a GRS(v, k, λ) if and only if there exists a (v, k, λ)-
BIBD having orthogonal resolutions.

Proof. It is clear that the nonempty cells in each row (column, respectively) of
a GRS(v, k, λ) yield a parallel class of the (v, k, λ)-BIBD. The set of all parallel
classes formed from the rows (columns, resp.) of the GRS comprise a resolu-
tion of the (v, k, λ)-BIBD. Furthermore, these two resolutions are orthogonal:
two parallel classes (one from each resolution) contain one common block if
the cell that is the intersection of the corresponding row and column in the
GRS is nonempty; and they have no blocks in common otherwise.

Conversely, suppose we have two orthogonal resolutions of a (v, k, λ)-
BIBD, say Πi (1 ≤ i ≤ r) and Π′

j (1 ≤ j ≤ r), where, as usual, r is

the replication number of the BIBD. Construct an r by r array, R, in which
R(i, j) = Πi ∩ Π′

j for 1 ≤ i, j ≤ r. It is easy to see that the array R is a

GRS(v, k, λ). ⊓⊔

Example 5.28. We exhibit a GRS(8, 2, 1):

∞0 64 32 51
62 ∞1 05 43
54 03 ∞2 16

65 14 ∞3 20
31 06 25 ∞4

42 10 36 ∞5
53 21 40 ∞6

This generalized Room square is equivalent to two orthogonal resolutions of
an (8, 2, 1)-BIBD, denoted by Πi (0 ≤ i ≤ 6) and Π′

i (0 ≤ i ≤ 6), respectively,

which are depicted in Figure 5.1.

It is trivial to show that a GRS(4, 2, 1) does not exist. It is also true, but not
so easy to prove, that a GRS(6, 2, 1) does not exist. Therefore, the GRS(8, 2, 1)
presented in Example 5.28 is the smallest GRS(v, 2, 1) that exists.
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Π0 = {∞0, 64, 32, 51} Π′
0 = {∞0, 62, 31, 54}

Π1 = {∞1, 05, 43, 62} Π′
1 = {∞1, 03, 42, 65}

Π2 = {∞2, 16, 54, 03} Π′
2 = {∞2, 14, 53, 06}

Π3 = {∞3, 20, 65, 14} Π′
3 = {∞3, 25, 64, 10}

Π4 = {∞4, 31, 06, 25} Π′
4 = {∞4, 36, 05, 21}

Π5 = {∞5, 42, 10, 36} Π′
5 = {∞5, 40, 16, 32}

Π6 = {∞6, 53, 21, 40} Π′
6 = {∞6, 51, 20, 43}.

Fig. 5.1. Orthogonal Resolutions of an (8, 2, 1)-BIBD

We next describe a technique whereby infinite classes of GRS(v, 2, 1) can
be constructed. First, we require a definition. Suppose that G is an additive
Abelian group of order n, where n is odd. A strong starter in G is a set of (n −
1)/2 unordered pairs {{si, ti} : 1 ≤ i ≤ (n − 1)/2} such that the following
properties are satisfied:

1. {si, ti : 1 ≤ i ≤ (n − 1)/2} = G\{0};
2. {±(si − ti) : 1 ≤ i ≤ (n − 1)/2} = G\{0};
3. si + ti �= 0 for all i; and si + ti �= sj + tj if i �= j.

As an example, it is easy to verify that {{3, 2}, {6, 4}, {5, 1}} is a strong starter
in the group (Z7, +).

We have the following construction method for GRS(v, 2, 1) using strong
starters.

Theorem 5.29. Suppose that G is an additive Abelian group of order n, where n is
odd, and suppose that there exists a strong starter in G. Then there is a GRS(n +
1, 2, 1).

Proof. Let S be a strong starter in G. We construct an n by n array, denoted
R, the rows and columns of which are indexed by the elements of G. The
points in R will be the elements in G ∪ {∞}, where ∞ �∈ G. Here is how R is
constructed: For all g ∈ G, place the pair {∞, g} in R(g, g); and for all g ∈ G
and all {s, t} ∈ S, place the pair {s + g, t + g} in R(g, s + t + g).

It is not hard to see that every cell of R contains an unordered pair of
points or is empty (this follows from property 3 of a strong starter). It is also
easy to see that every unordered pair of points occurs in exactly one cell of
R (this follows from property 2 of a strong starter). The fact that row 0 of R
contains each point follows from property 1 of a strong starter. From this, it
is easy to see that every row of R contains each point.

Thus it remains only to show that each column of R contains each point.
Consider column 0. It is not hard to see that the pairs occurring in column 0
are {∞, 0} and {−s,−t} for all {s, t} ∈ S. Property 1 of a strong starter then
can be used to show that every point occurs in column 0 of R. From this, it is
easy to see that every column of R contains each point. ⊓⊔

Strong starters in many finite fields can be constructed by the following
method due to Mullin and Nemeth.
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Theorem 5.30 (Mullin-Nemeth Strong Starters). Suppose that q = 2ab + 1 is
an odd prime power, where a is a positive integer and b > 1 is odd. Then there exists
a strong starter in (Fq, +).

Proof. We use notation introduced in Section 3.6. Let ω be a primitive element
of Fq, and define

H = {ω2ai : 0 ≤ i ≤ b − 1}.

H is a subgroup of the multiplicative group (Fq\{0}, ·) having order b. De-

note the cosets of H by H0, . . . , H2a−1, where Hj = ω jH, 0 ≤ j ≤ 2a − 1.
Now define

H∗ =

2a−1−1⋃

j=0

Hj

and
S = {{x, ω2a−1

x} : x ∈ H∗}.

We will show that S is the desired strong starter.

First, we observe that ω2a−1 ∈ H2a−1, which implies that

[1, ω2a−1
] ◦ H∗ = G\{0}.

This implies that {si, ti} = G\{0}.

Next, we observe that −1 = ω2a−1b. Using the fact that b is odd, it is easy
to show that 2a−1b mod 2a = 2a−1, and hence −1 ∈ H2a−1. This implies that

[1,−1] ◦ H∗ = G\{0}.

Also, ω2a−1 �= 1. It follows from these observations that

{±(si − ti)} = [1,−1] ◦ [ω2a−1 − 1] ◦ H∗

= [ω2a−1 − 1] ◦ G\{0}
= G\{0}.

It is also true that ω2a−1 �= −1 because b > 1. Then, in a similar fashion,
we see that

{±(si + ti)} = [1,−1] ◦ [ω2a−1
+ 1] ◦ H∗

= [ω2a−1
+ 1] ◦ G\{0}

= G\{0}.

This implies that si + ti �= 0 for all i, and si + ti �= sj + tj if i �= j. This
completes the proof that S is a strong starter. ⊓⊔
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Example 5.31. We construct a strong starter in (Z13, +) using Theorem 5.30.
13 = 22 3 + 1, so a = 2 and b = 3. ω = 2 is a primitive element of Z13 and
H = {3, 9, 1}. The cosets of H are

H0 = {3, 9, 1}
H1 = {6, 5, 2}
H2 = {12, 10, 4}
H3 = {11, 7, 8},

and therefore
H∗ = {3, 9, 1, 6, 5, 2}.

ω2a−1
= 4, and the strong starter is

{{x, 4x} : x ∈ H∗} = {{3, 12}, {9, 10}, {1, 4}, {6, 11}, {5, 7}, {2, 8}}.

Let us examine the hypotheses of Theorem 5.30. It is clear that any odd
prime power q can be written in the form q = 2ab + 1, where a and b are
positive integers and b is odd. Theorem 5.30 can be applied unless b = 1; i.e.,
the only bad cases are when q = 2a + 1. It is possible to show that the only
prime powers q of the form 2a + 1 are the following:

• q is a Fermat prime. (For an integer n ≥ 0, the mth Fermat number is

defined to be Fm = 22m
+ 1. If Fm is prime, it is called a Fermat prime. The

only known Fermat primes are F0, F1, F2, F3, and F4.)
• q = 9.

There is a bit more that can be said. By a different construction, it can be
shown that there exists a strong starter in (Zn, +) whenever n is a Fermat
number Fm with m ≥ 2. It is known that there is no strong starter in the
groups (Z3, +), (Z5, +), (Z9, +), or (Z3 ×Z3, +), and it has been conjectured
that these are the only finite Abelian groups of odd order exceeding 1 that do
not contain a strong starter.

5.5 Notes and References

Furino, Miao, and Yin [46] is a monograph that is devoted to resolvable
BIBDs and related designs.

Bose’s Inequality was proven in [14]. Shrikhande [94] is a survey on affine
resolvable designs. Theorem 5.23 is due to Wallis [114].

Theorem 5.30 is proven in [82]. A GRS(v, 2, 1) is often called a Room square;
for a survey of these objects, see Dinitz and Stinson [42].
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5.6 Exercises

5.1 Construct an affine plane of order 4 using the finite field F4, where
F4 = Z2[x]/(x2 + x + 1).

5.2 Use a (21, 5, 1)-difference set to construct a projective plane of order 4.
Then, construct an affine plane of order 4 from this projective plane,
and write out the parallel classes in this affine plane.

5.3 Prove that there does not exist a resolvable
(
n, n

2 , n
2 − 1

)
-BIBD if n ≡ 2

(mod 4).
5.4 Prove that there exists a resolvable

(
n, n

2 , n
2 − 1

)
-BIBD if n ≡ 0 (mod 4)

and a Hadamard matrix of order n exists.
5.5 Let G be the permutation group of order 7 on the set X = {0, . . . , 7}

that is generated by the permutation α = (0 1 2 3 4 5 6)(7).
(a) Show that the two orbits containing the blocks {1, 2, 4, 7} and

{0, 1, 2, 4} yield a (7, 4, 3)-BIBD.
(b) Prove that this BIBD is not resolvable.

5.6 (a) Suppose there exists a (symmetric)
(

n3µ−1
n−1 ,

n2µ−1
n−1 ,

nµ−1
n−1

)
-BIBD,

say (X,A), where n > 1 and µ > 1 are integers. Suppose also
that the residual BIBD of (X,A) is affine resolvable. Prove that

there exists a (symmetric)
(

n2µ−1
n−1 ,

nµ−1
n−1 ,

µ−1
n−1

)
-BIBD.

Hint: The derived BIBD of (X,A) is a
(

n2µ−1
n−1 ,

nµ−1
n−1 ,

n(µ−1)
n−1

)
-

BIBD in which every block is repeated n times.

(b) Suppose that there is an (n, µ)-ARBIBD and a
(

n2µ−1
n−1 ,

nµ−1
n−1 ,

µ−1
n−1

)
-

BIBD, where n > 1 and µ > 1 are integers. Prove that there is a(
n3µ−1

n−1 ,
n2µ−1

n−1 ,
nµ−1
n−1

)
-BIBD.

5.7 This exercise provides a proof of Theorem 5.23.
(a) Prove that (r − 1)µ = kλ in an affine resolvable BIBD.
(b) Prove the following regarding the matrices M1, . . . , Mr.

i. Mi Mi
T = kMi for 1 ≤ i ≤ r.

ii. Mi Mj
T = µJv for 1 ≤ i, j ≤ r, i �= j.

iii. M1 + · · · + Mr = λJv + (r − λ)Iv.
(c) Prove that MMT = kλJv(r+1) + k(r − λ)Iv(r+1), and hence M is

the incidence matrix of a symmetric BIBD.
5.8 A strong starter S = {{si, ti} : 1 ≤ i ≤ (n − 1)/2} in an additive group

G of odd order n is skew provided that

{±(si + ti) : 1 ≤ i ≤ (n − 1)/2} = G\{0}.

Prove that the Mullin-Nemeth strong starters are skew.
5.9 A starter in an additive group G of odd order n is a set of (n − 1)/2

unordered pairs {{si, ti} : 1 ≤ i ≤ (n − 1)/2} such that the following
properties are satisfied:

(a) {si, ti : 1 ≤ i ≤ (n − 1)/2} = G\{0}; and
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(b) {±(si − ti) : 1 ≤ i ≤ (n − 1)/2} = G\{0}.
Suppose that S = {{si, ti} : 1 ≤ i ≤ (n − 1)/2} and U = {{ui, vi} :
1 ≤ i ≤ (n − 1)/2} are both starters in G. Without loss of generality,
suppose that si − ti = ui − vi, 1 ≤ i ≤ (n − 1)/2, and denote ai =
si − ui, 1 ≤ i ≤ (n − 1)/2. We say that S and U are orthogonal starters
provided that ai �= 0 for all i; and ai �= aj if i �= j.

(a) Prove that the existence of a strong starter in G implies the exis-
tence of orthogonal starters in G.

(b) Prove that orthogonal starters in G can be used to construct a
GRS(n + 1, 2, 1).

(c) Find orthogonal starters in (Z9, +) and use them to construct a
GRS(10, 2, 1).

5.10 Suppose (X,A) is a (v, k, λ)-BIBD. A near parallel class in (X,A) is a
subset of disjoint blocks from A whose union is X\{x} for some point
x ∈ X, which is called the deficient point of the near parallel class. A
partition of A into near parallel classes is called a near resolution, and
(X,A) is said to be a near resolvable BIBD if A has at least one near
resolution.

(a) Suppose that (X,A) has a near resolution. Prove that every point
x ∈ X is the deficient point of exactly r/(v − 1) near parallel
classes.

(b) Then prove that λ = α(k − 1), where α is a positive integer.



This page intentionally left blank 



6

Latin Squares

6.1 Latin Squares and Quasigroups

We begin with a definition.

Definition 6.1. A Latin square of order n with entries from an n-set X is an n× n
array L in which every cell contains an element of X such that every row of L is a
permutation of X and every column of L is a permutation of X.

It is easy to construct a Latin square of any order n ≥ 1. For example, we
could take the first row to be

1 2 · · · n

and then shift this row cyclically to the right by 1, 2, . . . , n − 1 positions to
construct the remaining n − 1 rows.

Example 6.2. A Latin square of order 4.

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

.

Closely related to Latin squares are algebraic objects called quasigroups,
which we define now.

Definition 6.3. Let X be a finite set of cardinality n, and let ◦ be a binary operation
defined on X (i.e., ◦ : X × X → X). We say that the pair (X, ◦) is a quasigroup of
order n provided that the following two properties are satisfied:

1. For every x, y ∈ X, the equation x ◦ z = y has a unique solution for z ∈ X.
2. For every x, y ∈ X, the equation z ◦ x = y has a unique solution for z ∈ X.
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The operation table of a binary operation ◦ defined on X is the |X| × |X|
array A = (ax,y), where ax,y = x ◦ y. The following simple observation relates
quasigroups to Latin squares.

Theorem 6.4. Suppose ◦ is a binary operation defined on a finite set X of cardinality
n. Then (X, ◦) is a quasigroup if and only if its operation table is a Latin square of
order n.

It should be clear that the notions of quasigroups and Latin squares pro-
vide two different ways of looking at the same thing. We will use both points
of view at various times.

We begin by investigating quasigroups (or Latin squares) that satisfy two
special properties that we define now.

Definition 6.5. Suppose (X, ◦) is a quasigroup. We say that (X, ◦) is an idempo-
tent quasigroup if x ◦ x = x for all x ∈ X, and we say that (X, ◦) is a symmetric
quasigroup if x ◦ y = y ◦ x for all x, y ∈ X.

These concepts can also be defined for Latin squares in the obvious way:
A symmetric Latin square L = (ℓx,y) is one in which ℓx,y = ℓy,x for all x, y, and
an idempotent Latin square is one in which ℓx,x = x for all x.

Example 6.6. Let X = {1, 2}. There are exactly two Latin squares defined on
X, as follows:

1 2
2 1

2 1
1 2

Both of these Latin squares are symmetric, but neither of them is idempotent.

Example 6.7. Let X = {1, 2, 3}. There are exactly twelve Latin squares defined
on X, as follows:

L1 =

1 2 3
2 3 1
3 1 2

L2 =

1 2 3
3 1 2
2 3 1

L3 =

1 3 2
2 1 3
3 2 1

L4 =

1 3 2
3 2 1
2 1 3

L5 =

2 1 3
1 3 2
3 2 1

L6 =

2 1 3
3 2 1
1 2 3

L7 =

2 3 1
1 2 3
3 1 2

L8 =

2 3 1
3 1 2
1 2 3

L9 =

3 1 2
1 2 3
2 3 1

L10 =

3 1 2
2 3 1
1 2 3

L11 =

3 2 1
1 3 2
2 1 3

L12 =

3 2 1
2 1 3
1 3 2

The only idempotent square in the list above is L4; the squares L1, L4, L5, L8,
L9, and L12 are symmetric.
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It is not difficult to construct idempotent Latin squares (or quasigroups)
of all orders n > 2 and symmetric Latin squares (or quasigroups) of all or-
ders n ≥ 1. In the rest of this section, we discuss the problem of constructing
quasigroups that are both symmetric and idempotent. These will have appli-
cations to the construction of (v, 3, 1)-BIBDs; see Section 6.2.

We begin by establishing a simple necessary condition for the existence
of a symmetric idempotent quasigroup of order n.

Lemma 6.8. If there exists a symmetric idempotent quasigroup of order n, then n is
odd.

Proof. Suppose that ◦ : X × X → X is a symmetric quasigroup. Let z ∈ X,
and define S = {(x, y) : x ◦ y = z}. Since ◦ is idempotent, it follows that
(x, x) ∈ S if and only if x = z. Since ◦ is symmetric, it follows that (x, y) ∈ S
if and only if (y, x) ∈ S. Hence, {{x, y} : x �= y, x ◦ y = z} is a partition of
X\{z} into sets of size two. Therefore |X| − 1 is even, and hence |X| is odd.

⊓⊔

We now construct the desired quasigroups for every odd order. Suppose
n is odd, and consider the group (Zn, +). Because (Zn, +) is a group, it is
automatically a quasigroup. It is also symmetric because addition modulo n
is commutative.

This quasigroup is not idempotent; however, we will be able to modify it
so it is. When n is odd, the list of values on the main diagonal of the operation
table of (Zn, +) is (in order)

(x + x mod n : x ∈ Zn) = (0, 2, 4, . . . , n − 1, 1, 3, . . . , n − 3).

This is a permutation of Zn. Therefore the operation table of (Zn, +) has all
the elements of Zn on its main diagonal but not in the correct order. How-
ever, we can rectify this by permuting (i.e., relabeling) the symbols so that
the diagonal elements are 0, 1, . . . , n − 1 (in this order). We therefore define
a permutation π to be π(0) = 0, π(2) = 1, . . . , π(n − 1) = (n − 1)/2,
π(1) = (n + 1)/2, π(3) = (n + 3)/2, . . . , π(n − 3) = n − 1. In fact, the
permutation π can be described by the formula

π(x) = 2−1x mod n =

(
n + 1

2

)
x mod n

since the multiplicative inverse 2−1 mod n = (n + 1)/2 whenever n is odd.
Hence, one binary operation ◦, defined on {0, . . . , n − 1}, that yields a sym-
metric idempotent quasigroup, is as follows:

x ◦ y =

(
n + 1

2

)
(x + y) mod n.
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Example 6.9. Suppose n = 5. The binary operation

x ◦ y = 3(x + y) mod 5

defines a symmetric idempotent quasigroup on the set {0, 1, 2, 3, 4}. The cor-
responding Latin square is as follows:

0 3 1 4 2
3 1 4 2 0
1 4 2 0 3
4 2 0 3 1
2 0 3 1 4

The discussion above, together with Lemma 6.8, establishes the follow-
ing.

Theorem 6.10. There exists a symmetric idempotent quasigroup of order n if and
only if n is odd.

6.2 Steiner Triple Systems

A Steiner triple system of order v, or STS(v), is a (v, 3, 1)-BIBD. Since BIBDs
with k = 2 are trivial, Steiner triple systems are the simplest type of “in-
teresting” BIBDs. We have already seen examples of Steiner triple systems:
an STS(7) was constructed in Example 1.3 and an STS(9) was constructed
in Example 1.4. Steiner triple systems are, by far, the most-studied type of
BIBD. In this section, we will determine necessary and sufficient conditions
for existence of an STS(v).

We begin by deriving necessary conditions for existence of an STS(v).

Lemma 6.11. There exists an STS(v) only if v ≡ 1, 3 (mod 6), v ≥ 7.

Proof. Since k = 3 and λ = 1, we have r = λ(v − 1)/(k − 1) = (v − 1)/2.
Hence v = 2r + 1; i.e., v is odd. Now we can compute b = vr/k = v(v− 1)/6.
Since b is an integer, it must be the case that v(v − 1) ≡ 0 (mod 6). This
congruence is satisfied if and only if v ≡ 0, 1, 3, 4 (mod 6). However, since v
is odd, we see that v ≡ 1, 3 (mod 6). Finally, since v > k in a BIBD, an STS(v)
can exist only if v ≥ 7. ⊓⊔

In the next two subsections, we will show that these necessary conditions
are sufficient by constructing an STS(v) for every v allowed by Lemma 6.11.
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6.2.1 The Bose Construction

We now present a construction, due to Bose, that uses symmetric idempotent
quasigroups to construct Steiner triple systems of all orders v ≡ 3 (mod 6).
(A modified construction due to Skolem, which we present a bit later, will
handle the cases v ≡ 1 (mod 6).)

Let v = 6t + 3, t ≥ 1. Suppose (X, ◦) is a symmetric idempotent quasi-
group of (odd) order 2t + 1, which exists by Theorem 6.1. Let “<” be any
total ordering defined on X. Define Y = X × Z3. (Y will be the set of points
in the STS(v) that we construct.) For every x ∈ X, define a block

Ax = {(x, 0), (x, 1), (x, 2)}.

Then for every x, y ∈ X, x < y, and for every i ∈ Z3, define a block

Bx,y,i = {(x, i), (y, i), (x ◦ y, (i + 1) mod 3)}.

Then define

B = {Ax : x ∈ X} ∪ {Bx,y,i : x, y ∈ X, x < y, i ∈ Z3}.

In Figure 6.1, we show pictorially how three blocks are constructed from
one entry of (X, ◦), say x ◦ y = z.

z

y

x

x y z
X x {0}

X x {1}

X x {2}

Fig. 6.1. The Bose Construction

We will show that (Y,B) is an STS(v). Clearly there are v points in Y, and
every block in B contains three points. Hence, it suffices to show that every
pair of points occurs in exactly one block.
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Consider the pair of points (α, j), (β, k). If α = β, then j �= k, and this
pair occurs in the block Aα and in no other block. Hence we can assume that
α �= β. Without loss of generality, suppose that α < β.

We consider three cases:

1. If k = j, then this pair occurs in the block Bα,β,j and in no other block.
2. If k = (j + 1) mod 3, then the equation x ◦ α = β has a unique solution

x = γ. Note that γ �= α since α �= β and ◦ is idempotent. If γ < α, then the
pair (α, j), (β, k) occurs in the block Bγ,α,j and in no other block. If γ > α,
then, since ◦ is symmetric, the pair (α, j), (β, k) occurs in the block Bα,γ,j

and in no other block.
3. If j = (k + 1) mod 3, then the equation x ◦ β = α has a unique solution

x = γ. Note that γ �= β since α �= β and ◦ is idempotent. If γ < β, then
the pair (α, j), (β, k) occurs in the block Bγ,β,k and in no other block. If
γ > β, then, since ◦ is symmetric, the pair (α, j), (β, k) occurs in the block
Bβ,γ,k and in no other block.

The discussion above, together with Theorem 6.1, establishes the follow-
ing existence result.

Theorem 6.12. There exists an STS(v) for all v ≡ 3 (mod 6), v ≥ 9.

We illustrate the construction with an example.

Example 6.13. We construct an STS(15). Suppose we use the symmetric idem-
potent quasigroup of order 5 constructed in Example 6.9. This quasigroup is
defined on the set {0, 1, 2, 3, 4}. The point set of the design we are going to
construct is Y = {0, 1, 2, 3, 4}× {0, 1, 2}. For convenience, we will write the
elements of Y as 00, 01, 02, 10, 11, 12, . . . , 40, 41, 42.

There are 35 blocks in the STS(15). We present the five blocks Ax (0 ≤
x ≤ 4) followed by the 30 blocks Bx,y,i (0 ≤ x < y ≤ 4, 0 ≤ i ≤ 2) in Figure

6.2.

6.2.2 The Skolem Construction

The Skolem construction is a modification of the Bose construction. Re-
call that a symmetric idempotent quasigroup of even order does not exist.
The Skolem construction instead uses symmetric quasigroups that are half-
idempotent. Suppose that X = {0, . . . , n − 1}, where n is even. A quasigroup
(X, ◦) is called a half-idempotent quasigroup provided that

x ◦ x =

{
x if 0 ≤ x <

n
2

x − n
2 if n

2 ≤ x < n.

In other words, when we look down the diagonal of the operation table, we
see the entries
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{00, 01, 02} {10, 11, 12} {20, 21, 22}
{30, 31, 32} {40, 41, 42}
{00, 10, 31} {01, 11, 32} {02, 12, 30}
{00, 20, 11} {01, 21, 12} {02, 22, 10}
{00, 30, 41} {01, 31, 42} {02, 32, 40}
{00, 40, 21} {01, 41, 22} {02, 42, 20}
{10, 20, 41} {11, 21, 42} {12, 22, 40}
{10, 30, 21} {11, 31, 22} {12, 32, 20}
{10, 40, 01} {11, 41, 02} {12, 42, 00}
{20, 30, 01} {21, 31, 02} {22, 32, 00}
{20, 40, 31} {21, 41, 32} {22, 42, 30}
{30, 40, 11} {31, 41, 12} {32, 42, 10}

Fig. 6.2. The 35 Blocks of an STS(15)

0, 1, . . . ,
n

2
− 1, 0, 1, . . . ,

n

2
− 1

in that order.
We will construct a symmetric half-idempotent quasigroup for every

even order n. Consider the group (Zn, +). As was the case for n odd, (Zn, +)
is a symmetric quasigroup. We will be able to construct a symmetric half-
idempotent quasigroup by a simple modification of (Zn, +).

It is not hard to see that the list of values

(x + x mod n : x ∈ Zn)

contains every even residue in Zn exactly twice when n is even. In fact, the
main diagonal of the operation table of (Zn, +) is (in order)

0, 2, . . . , n − 2, 0, 2, . . . , n − 2.

Hence, it is sufficient to relabel the elements of Zn in such a way that the
main diagonal of the operation table becomes (in order)

0, 1, . . . ,
n

2
− 1, 0, 1, . . . ,

n

2
− 1.

A permutation π that accomplishes this is as follows:

π(x) =

{
x
2 if x is even

x+n−1
2 if x is odd.

Therefore, the quasigroup operation can be defined to be

x ◦ y = π((x + y) mod n).

Example 6.14. Suppose n = 6. The permutation π is defined as π(0) = 0,
π(1) = 3, π(2) = 1, π(3) = 4, π(4) = 2, and π(5) = 5. The resulting
symmetric half-idempotent quasigroup has the following operation table:
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0 3 1 4 2 5
3 1 4 2 5 0
1 4 2 5 0 3
4 2 5 0 3 1
2 5 0 3 1 4
5 0 3 1 4 2

The discussion above establishes the following theorem.

Theorem 6.15. There exists a symmetric half-idempotent quasigroup of order n if
and only if n is even.

Now we proceed to the Skolem construction. Let v = 6t + 1, t ≥ 1. Sup-
pose ({0, . . . , 2t− 1}, ◦) is a symmetric half-idempotent quasigroup of (even)
order 2t. Define Y = ({0, . . . , 2t − 1} × Z3) ∪ {∞}. (Y will be the set of points
in the STS(v) that we construct.) For 0 ≤ x ≤ t − 1, define a block

Ax = {(x, 0), (x, 1), (x, 2)}.

Then for every x, y ∈ {0, . . . , 2t − 1}, x < y, and for every i ∈ Z3, define a
block

Bx,y,i = {(x, i), (y, i), (x ◦ y, (i + 1) mod 3)}.

Finally, for 0 ≤ x ≤ t − 1 and for every i ∈ Z3, define a block

Cx,i = {∞, (x + t, i), (x, (i + 1) mod 3)}.

Then define the set of blocks to be

B = {Ax : 0 ≤ x ≤ t − 1}⋃ {Bx,y,i : x, y ∈ Z2t, x < y, i ∈ Z3}⋃
{Cx,i : 0 ≤ x ≤ t − 1, i ∈ Z3}.

We will show that (Y,B) is an STS(v). Clearly there are v points in Y, and
every block in B contains three points. Hence, it suffices to show that every
pair of points occurs in exactly one block.

First, consider a pair of points (α, j), ∞. If α ≤ t − 1, then this pair occurs
in the block Cα,(j−1) mod 3 and in no other block. If α ≥ t, then this pair occurs
in the block Cα−t,j and in no other block.

Next, consider the pair of points (α, j), (β, k). If α = β ≤ t − 1, this pair
occurs in the block Aα and in no other block. Suppose α = β ≥ t. Then
j �= k, so without loss of generality we have k = (j + 1) mod 3. The equation
α ◦ x = α has a unique solution x = γ. If γ > α, then this pair occurs in the
block Bα,γ,j and in no other block. If γ < α, then, since ◦ is symmetric, the
pair (α, j), (β, k) occurs in the block Bγ,α,j and in no other block.

Hence we can proceed to the case where α �= β. Without loss of generality,
suppose that α < β.

We consider three cases:
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1. If k = j, then this pair occurs in the block Bα,β,j and in no other block.
2. If k = (j + 1) mod 3, then the equation x ◦ α = β has a unique solution

x = γ. Note that γ �= α since α < β and α ◦ α ≤ α for any α. If γ < α,
then the pair (α, j), (β, k) occurs in the block Bγ,α,j and in no other block.
If γ > α, then, since ◦ is symmetric, the pair (α, j), (β, k) occurs in the
block Bα,γ,j and in no other block.

3. If j = (k + 1) mod 3, then the equation x ◦ β = α has a unique solution
x = γ. We have γ = β if and only if β = α + t. If this happens, then the
pair (α, j), (β, k) occurs in the block Cα,k and in no other block. If γ < β,
then the pair (α, j), (β, k) occurs in the block Bγ,β,k and in no other block.
If γ > β, then, since ◦ is symmetric, the pair (α, j), (β, k) occurs in the
block Bβ,γ,k and in no other block.

Thus we have proved the following theorem.

Theorem 6.16. There exists an STS(v) for all v ≡ 1 mod 6, v ≥ 7.

Finally, combining Lemma 6.11 with Theorems 6.12 and 6.16, we obtain
our main result.

Theorem 6.17. There exists an STS(v) if and only if v ≡ 1, 3 mod 6, v ≥ 7.

We illustrate the Skolem construction with an example.

Example 6.18. We construct an STS(19). Suppose we use the symmetric half-
idempotent quasigroup of order 6 constructed in Example 6.14. This quasi-
group is defined on the set {0, 1, 2, 3, 4, 5}. The point set of the design is
Y = ({0, 1, 2, 3, 4, 5} × {0, 1, 2}) ∪ {∞}. We will write the elements of Y as
00, 01, 02, 10, 11, 12, . . . , 50, 51, 52, ∞.

There are 57 blocks in the STS(19). We present the three blocks Ax (0 ≤
x ≤ 2) followed by the 45 blocks Bx,y,i (0 ≤ x < y ≤ 5, 0 ≤ i ≤ 2) and the

nine blocks Cx,i (0 ≤ x ≤ 2, 0 ≤ i ≤ 2) in Figure 6.3.

6.3 Orthogonal Latin Squares

Definition 6.19. Suppose that L1 is a Latin square of order n with entries from X
and L2 is a Latin square of order n with entries from Y. We say that L1 and L2 are
orthogonal Latin squares provided that, for every x ∈ X and for every y ∈ Y,
there is a unique cell (i, j) such that L1(i, j) = x and L2(i, j) = y.

An equivalent way to define orthogonality of Latin squares is to consider
the superposition of L1 and L2 in which every cell (i, j) is filled in with the
ordered pair (L1(i, j), L2(i, j)). Then L1 and L2 are orthogonal if and only if
their superposition contains every ordered pair in X ×Y.

In general, it is not easy to construct orthogonal Latin squares. To begin,
we exhibit a few examples for small orders.
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{00, 01, 02} {10, 11, 12} {20, 21, 22}
{00, 10, 31} {01, 11, 32} {02, 12, 30}
{00, 20, 11} {01, 21, 12} {02, 22, 10}
{00, 30, 41} {01, 31, 42} {02, 32, 40}
{00, 40, 21} {01, 41, 22} {02, 42, 20}
{00, 50, 51} {01, 51, 52} {02, 52, 50}
{10, 20, 41} {11, 21, 42} {12, 22, 40}
{10, 30, 21} {11, 31, 22} {12, 32, 20}
{10, 40, 51} {11, 41, 52} {12, 42, 50}
{10, 50, 01} {11, 51, 02} {12, 52, 00}
{20, 30, 51} {21, 31, 52} {22, 32, 50}
{20, 40, 01} {21, 41, 02} {22, 42, 00}
{20, 50, 31} {21, 51, 32} {22, 52, 30}
{30, 40, 31} {31, 41, 32} {32, 42, 30}
{30, 50, 11} {31, 51, 12} {32, 52, 10}
{40, 50, 41} {41, 51, 42} {42, 52, 40}
{∞, 30, 01} {∞, 31, 02} {∞, 32, 00}
{∞, 40, 11} {∞, 41, 12} {∞, 42, 10}
{∞, 50, 21} {∞, 51, 22} {∞, 52, 20}

Fig. 6.3. The 57 Blocks of an STS(19)

Example 6.20. Orthogonal Latin squares of order 3.

L1 =

1 2 3
2 3 1
3 1 2

, L2 =

1 2 3
3 1 2
2 3 1

.

The superposition of L1 and L2 is as follows:

(1, 1) (2, 2) (3, 3)
(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

.

It is easy to verify that all nine ordered pairs (i, j) ∈ {1, 2, 3}× {1, 2, 3} occur
in the superposition of L1 and L2.

It is not hard to verify that there is no Latin square that is orthogonal to
the square given in Example 6.2. However, orthogonal Latin squares of order
4 do exist, as shown in the next example.

Example 6.21. Orthogonal Latin squares of order 4.

L1 =

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

, L2 =

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

.



6.3 Orthogonal Latin Squares 133

Here is one more example of orthogonal Latin squares.

Example 6.22. Orthogonal Latin squares of order 8.

L1 =

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3
7 8 5 6 3 4 1 2
8 7 6 5 4 3 2 1

, L2 =

1 2 3 4 5 6 7 8
3 4 1 2 7 8 5 6
5 6 7 8 1 2 3 4
7 8 5 6 3 4 1 2
6 5 8 7 2 1 4 3
8 7 6 5 4 3 2 1
2 1 4 3 6 5 8 7
4 3 2 1 8 7 6 5

.

Orthogonal Latin squares of order 1 exist, but they are not very interest-
ing. It is not difficult to see that there do not exist orthogonal Latin squares of
order 2. Over 200 years ago, the mathematician Euler conjectured that there
do not exist orthogonal Latin squares of order n if n ≡ 2 (mod 4). Euler’s
conjecture was proved true for order 6 by Tarry in 1900, essentially by means
of an exhaustive search. (It was not until the mid-1980s, however, that a short
theoretical proof of this result was found.) On the other hand, for all n > 2,
n �= 6, there exist orthogonal Latin squares of order n. This disproof of Eu-
ler’s conjecture was published in the late 1950s by Bose, Shrikhande, and
Parker, and it was reported on the front page of the New York Times. We will
give a simplified proof of this result in Section 6.8.

We will look at several construction methods for orthogonal Latin squares.
First, we give a construction that works for all odd n > 1.

Theorem 6.23. If n > 1 is odd, then there exist orthogonal Latin squares of order n.

Proof. We define two Latin squares of order n with entries from Zn:

L1(i, j) = (i + j) mod n

L2(i, j) = (i − j) mod n.

L1 and L2 are easily seen to be Latin squares for any positive integer n. Let’s
prove that they are orthogonal when n is odd. Suppose that (x, y) ∈ Zn ×Zn.
We want to find a unique cell (i, j) such that L1(i, j) = x and L2(i, j) = y. In
other words, we want to solve the system

i + j ≡ x (mod n)

i − j ≡ y (mod n)

for i and j. Since n is odd, 2 has a multiplicative inverse modulo n, and the
system has the unique solution
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i = (x + y)2−1 mod n

j = (x − y)2−1 mod n.

Hence, L1 and L2 are orthogonal. ⊓⊔
Example 6.24. We construct orthogonal Latin squares of order 5 using Theo-
rem 6.23:

L1 =

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

, L2 =

0 4 3 2 1
1 0 4 3 2
2 1 0 4 3
3 2 1 0 4
4 3 2 1 0

.

Suppose that L and M are Latin squares of order m and n (respectively)
defined on symbol sets X and Y (respectively). We define the direct product of
L and M, denoted L × M, to be the mn × mn array defined as follows:

(L × M)((i1, i2), (j1, j2)) = (L(i1, j1), M(i2, j2)).

Note that L × M is one Latin square; it is not the superposition of two Latin
squares.

Lemma 6.25. If L and M are Latin squares of order m and n (respectively) defined
on symbol sets X and Y (respectively), then L × M is a Latin square of order mn
defined on symbol set X × Y.

Proof. Consider a row of L × M, say row (i1, i2). Let x ∈ X and let y ∈ Y. We
will show how to find the symbol (x, y) in row (i1, i2) of L × M. Since L is
a Latin square, there is a unique column j1 such that L(i1 , j1) = x. Since M
is a Latin square, there is a unique column j2 such that M(i2, j2) = y. Then
(L × M)((i1, i2), (j1, j2)) = (x, y).

Similarly, every column of L × M contains every symbol in X ×Y, so L ×
M is a Latin square. ⊓⊔
Example 6.26. An example to illustrate the direct product. Suppose L and M
are as follows:

L =

3 1 2
2 3 1
1 2 3

, M =
1 2
2 1

.

Then L × M is as follows:

(3, 1) (1, 1) (2, 1) (3, 2) (1, 2) (2, 2)
(2, 1) (3, 1) (1, 1) (2, 2) (3, 2) (1, 2)
(1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2)
(3, 2) (1, 2) (2, 2) (3, 1) (1, 1) (2, 1)
(2, 2) (3, 2) (1, 2) (2, 1) (3, 1) (1, 1)
(1, 2) (2, 2) (3, 2) (1, 1) (2, 1) (3, 1)

.
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The direct product L × M contains many copies of L and M within it. The
Latin square L × M can be partitioned into m2 disjoint n × n subarrays, each
of which is a copy of M on the symbol set {x} × Y, where x ∈ X. L × M can
also be partitioned into n2 disjoint m × m subarrays, each of which is a copy
of L on the symbol set X × {y}, where y ∈ Y.

We next prove that the direct product construction preserves orthogonal-
ity.

Theorem 6.27 (Direct Product). If there exist orthogonal Latin squares of orders
n1 and n2, then there exist orthogonal Latin squares of order n1n2.

Proof. Suppose that L1 and L2 are orthogonal Latin squares of order n1 on
symbol set X, and M1 and M2 are orthogonal Latin squares of order n2 on
symbol set Y. We will show that L1 × M1 and L2 × M2 are orthogonal Latin
squares of order n1n2. L1 × M1 and L2 × M2 are both Latin squares by Lemma
6.25, so we just have to prove that they are orthogonal.

Consider an ordered pair of symbols, ((x1, y1), (x2, y2)). We want to find
a unique cell ((i1, i2), (j1, j2)) such that

(L1 × M1)((i1, i2), (j1, j2)) = (x1, y1), and

(L2 × M2)((i1, i2), (j1, j2)) = (x2, y2).

This is equivalent to

L1(i1, j1) = x1,

M1(i2, j2) = y1,

L2(i1, j1) = x2, and

M2(i2, j2) = y2.

The first and third equations determine (i1, j1) uniquely because L1 and
L2 are orthogonal; and the second and fourth equations determine (i2, j2)
uniquely because M1 and M2 are orthogonal. The desired cell, ((i1, i2), (j1, j2)),
is therefore determined uniquely. ⊓⊔

Examples 6.21 and 6.22, together with Theorems 6.23 and 6.27, are suffi-
cient to prove the following result.

Theorem 6.28. There exist orthogonal Latin squares of order n if n �≡ 2 (mod 4).

Proof. If n is odd, then apply Theorem 6.23. Next suppose n ≥ 4 is a power of
two, say n = 2i, where i ≥ 2. The cases i = 2 and i = 3 were done in Examples
6.21 and 6.22. For i ≥ 4, we can construct orthogonal Latin squares of order
2i, by induction on i, applying Theorem 6.27 with n1 = 4 and n2 = 2i−2.

Finally, suppose that n is even, n �≡ 2 (mod 4), and n is not a power of
two. Then we can write n = 2in′, where i ≥ 2 and n′ > 1 is odd. Apply
Theorem 6.27 with n1 = 2i and n2 = n′. Since we have already constructed
orthogonal Latin squares of orders 2i and n′, the result follows. ⊓⊔
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6.4 Mutually Orthogonal Latin Squares

A set of s Latin squares of order n, say L1, . . . , Ls, are said to be mutually
orthogonal Latin squares if Li and Lj are orthogonal for all 1 ≤ i < j ≤ s. We
will abbreviate the term “mutually orthogonal Latin squares” to “MOLS”. A
set of s MOLS of order n will be denoted s MOLS(n).

One fundamental problem is to determine the maximum number of
MOLS of order n. This quantity is denoted N(n). Since any two Latin squares
of order 1 are orthogonal, we say that N(1) = ∞. For all n > 1, however, it is
possible to prove a finite upper bound on N(n).

Theorem 6.29. There do not exist n MOLS(n) if n > 1 (i.e., N(n) ≤ n − 1 for
n > 1).

Proof. Suppose that L1, . . . , Ls are mutually orthogonal Latin squares of or-
der n > 1. Without loss of generality, we can assume that L1, . . . , Ls are all
defined on symbol set {1, . . . , n}. Furthermore, we can assume that the first
row of each of these squares is

1 2 · · · n .

(This is justified by observing that within any Li we can relabel the symbols
so the first row is as specified. The relabeling does not affect the orthogonality
of the squares.)

Now consider the s values L1(2, 1), . . . , Ls(2, 1) (this is where we require
the assumption n ≥ 2). We first note that these s values are all distinct, as
follows: Suppose that Li(2, 1) = Lj(2, 1) = x, say. Then we have the ordered
pair (x, x) occurring in the superposition of Li and Lj in cell (1, x) and again
in cell (2, 1). This contradicts the orthogonality of Li and Lj.

Next we observe that Li(2, 1) �= 1 for 1 ≤ i ≤ s. This follows from the
fact that Li(1, 1) = 1 and no symbol can occur in two cells in any column of
a Latin square.

Combining our two observations, we see that L1(2, 1), . . . , Ls(2, 1) are in
fact s distinct elements from the set {2, . . . , n}. Hence, s ≤ n − 1. ⊓⊔

6.4.1 MOLS and Affine Planes

The cases where N(n) = n − 1 are particularly interesting because they cor-
respond to affine planes. First, we show how to construct n − 1 MOLS(n)
from an affine plane of order n. Suppose that (X,A) is an affine plane of or-
der n (i.e., an (n2, n, 1)-BIBD). Recall from Theorem 5.9 that an affine plane
is resolvable. Each of the n + 1 parallel classes contains n disjoint blocks,
and Theorem 5.21 says that any two blocks from different parallel classes
intersect in exactly one common point. Suppose for 1 ≤ i ≤ n + 1 that the
blocks in Πi (the ith parallel class) are named Ai,j, 1 ≤ j ≤ n. We are going
to construct n − 1 mutually orthogonal Latin squares of order n, which we
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name L1, . . . , Ln−1. These Latin squares are constructed using the following
formula:

Lx(i, j) = k if and only if An,i ∩ An+1,j ∈ Ax,k

for 1 ≤ x ≤ n − 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n.
Let us begin by showing that each Lx is a Latin square. First, given a

symbol k and a row i, we want to find a unique column j such that Lx(i, j) =
k. There is a unique point y ∈ An,i ∩ Ax,k because any two blocks in Πn and
Πx intersect in a unique point. Then, there is a unique j such that y ∈ An+1,j

because Πn+1 is a parallel class. Hence Lx(i, j) = k.
Next, given a symbol k and a column j, we want to find a unique row

i such that Lx(i, j) = k. There is a unique point y ∈ An+1,j ∩ Ax,k because
any two blocks in Πn+1 and Πx intersect in a unique point. Then, there is a
unique i such that y ∈ An,i because Πn is a parallel class. Hence Lx(i, j) = k.

Now we show that Lx and Ly are orthogonal if x �= y. Let k and ℓ be two
symbols. We want to find a unique cell (i, j) such that

Lx(i, j) = k and

Ly(i, j) = ℓ.

This is equivalent to saying that

An,i ∩ An+1,j ∈ Ax,k and

An,i ∩ An+1,j ∈ Ay,ℓ.

There is a unique point z ∈ Ax,k ∩ Ay,ℓ because any two blocks in Πx and
Πy intersect in a unique point. Now, there is a unique i such that z ∈ An,i

because Πn is a parallel class. Similarly, there is a unique j such that z ∈
An+1,j because Πn+1 is a parallel class. Thus we have found the desired cell
(i, j), and we have proved that Lx and Ly are orthogonal if x �= y.

Example 6.30. We begin with the affine plane of order 3 constructed in Exam-
ple 1.4:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}.

Suppose we name the blocks as follows:

A1,1 = {1, 2, 3} A2,1 = {1, 4, 7} A3,1 = {1, 5, 9} A4,1 = {1, 6, 8}
A1,2 = {4, 5, 6} A2,2 = {2, 5, 8} A3,2 = {2, 6, 7} A4,2 = {2, 4, 9}
A1,3 = {7, 8, 9} A2,3 = {3, 6, 9} A3,3 = {3, 4, 8} A4,3 = {3, 5, 7}.

Then the Latin squares L1 and L2 are

L1 =

1 3 2
2 1 3
3 2 1

, L2 =

1 3 2
3 2 1
2 1 3

.
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The construction can in fact be reversed. Suppose we begin with n − 1
MOLS(n), defined on symbol set {1, . . . , n}, say L1, . . . , Ln−1. We will con-
struct an affine plane having point set X = {1, . . . , n}× {1, . . . , n}. The blocks
are constructed as follows. For 1 ≤ x ≤ n − 1, 1 ≤ k ≤ n, define

Ax,k = {(i, j) : Lx(i, j) = k}.

For 1 ≤ k ≤ n, define

An,k = {(k, j) : 1 ≤ j ≤ n},

and for 1 ≤ k ≤ n, define

An+1,k = {(i, k) : 1 ≤ i ≤ n}.

Finally, let
A = {Ax,k : 1 ≤ x ≤ n + 1, 1 ≤ k ≤ n}.

We will show that (X,A) is an affine plane of order n. Clearly |X| = n2,
and it is also not hard to see that every block contains n points. It remains
to show that every pair of points occurs in a unique block. Consider a pair
(i1, j1), (i2, j2). If i1 = i2, then this pair occurs in the block An,i1 and in no other
block. If j1 = j2, then this pair occurs in the block An+1,j1 and in no other
block. Hence, we can assume that i1 �= i2 and j1 �= j2. We will show that
any such pair occurs in at most one block in the design. Since the number
of blocks is n2 + n, it then follows that each such pair occurs in exactly one
block.

Suppose that {(i1, j1), (i2, j2)} ⊆ Ax1,k1
and {(i1, j1), (i2, j2)} ⊆ Ax2,k2

,
where (x1, k1) �= (x2, k2). Then we have

Lx1(i1, j1) = k1,

Lx1(i2, j2) = k1,

Lx2(i1, j1) = k2, and

Lx2(i2, j2) = k2.

If x1 = x2, then k1 = k2, so we conclude that x1 �= x2. But then the two
squares Lx1 and Lx2 are not orthogonal because the superposition contains
the ordered pair (k1, k2) in cell (i1, j1) and again in cell (i2, j2). This contradic-
tion completes the proof that (X,A) is an affine plane of order n.

Example 6.31. Suppose we begin with the orthogonal Latin squares of order
3 from Example 6.30:

L1 =

1 3 2
2 1 3
3 2 1

, L2 =

1 3 2
3 2 1
2 1 3

.

The blocks of the affine plane constructed from these orthogonal Latin squares
are as follows:
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A1,1 = {(1, 1), (2, 2), (3, 3)} A2,1 = {(1, 1), (2, 3), (3, 2)}
A1,2 = {(1, 3), (2, 1), (3, 2)} A2,2 = {(1, 3), (2, 2), (3, 1)}
A1,3 = {(1, 2), (2, 3), (3, 1)} A2,3 = {(1, 2), (2, 1), (3, 3)}

A3,1 = {(1, 1), (1, 2), (1, 3)} A4,1 = {(1, 1), (2, 1), (3, 1)}
A3,2 = {(2, 1), (2, 2), (2, 3)} A4,2 = {(1, 2), (2, 2), (3, 2)}
A3,3 = {(3, 1), (3, 2), (3, 3)} A4,3 = {(1, 3), (2, 3), (3, 3)}.

The preceding discussion establishes that an affine plane of order n ≥ 2
is equivalent to n − 1 MOLS(n). We know from Theorem 5.10 that an affine
plane of order n exists if and only if a projective plane of order n exists. There-
fore we have the following result.

Theorem 6.32. Let n ≥ 2. Then the existence of any one of the following designs
implies the existence of the other two designs:

1. n − 1 MOLS(n);
2. an affine plane of order n;
3. a projective plane of order n.

6.4.2 MacNeish’s Theorem

The direct product construction (Theorem 6.27) can be generalized to sets of
s MOLS in an obvious way. Further, it is possible to form the direct product
of more than two Latin squares, again in an obvious manner. Orthogonality
is preserved, and the following theorem results.

Theorem 6.33. If there exist s MOLS(ni), 1 ≤ i ≤ ℓ, then there exist s MOLS(n),
where n = n1 × n2 × · · · × nℓ.

It is possible to construct many interesting examples of sets of MOLS by
using Theorem 6.32 in conjunction with the direct product. The following
theorem, known as MacNeish’s Theorem, makes use of the fact that an affine
plane of order q exists for every prime power q.

Theorem 6.34 (MacNeish’s Theorem). Suppose that n has prime power factor-
ization n = p1

e1 · · · pℓ
eℓ , where the pi’s are distinct primes and ei ≥ 1 for 1 ≤ i ≤ ℓ.

Let
s = min{pi

ei − 1 : 1 ≤ i ≤ ℓ}.

Then there exist s MOLS(n).

Proof. For 1 ≤ i ≤ ℓ, there exists an affine plane of order pi
ei . Hence, there

exist pi
ei − 1 MOLS(pi

ei), for 1 ≤ i ≤ ℓ, by Theorem 6.32. Therefore there
exist s MOLS(pi

ei) for 1 ≤ i ≤ ℓ. Apply Theorem 6.33 to obtain the desired
result. ⊓⊔
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There are many corollaries of Theorem 6.34 that can be proven. Here is a
specific result that we will use later.

Corollary 6.35. If n ≡ 1, 5, 7, or 11 (mod 12), then there exist four MOLS(n). If
n ≡ 4 or 8 (mod 12), then there exist three MOLS(n).

Proof. Suppose that n has prime power factorization n = p1
e1 · · · pℓ

eℓ . By
Theorem 6.34, three MOLS(n) will exist if pi

ei ≥ 4 for 1 ≤ i ≤ ℓ. The only
situations in which pi

ei < 4 are when (pi, ei) = (2, 1) or (3, 1). In other words,
if the prime power factorization of n does not contain the specific terms 21

or 31, then three MOLS(n) exist. By a similar argument, if the prime power
factorization of n does not contain the specific terms 21, 22, or 31, then four
MOLS(n) exist.

Now, if n ≡ 1, 5, 7, or 11 (mod 12), then gcd(n, 6) = 1, so there are no
terms involving 2 or 3 in the factorization of n. It follows that four MOLS of
these orders exist.

If n ≡ 4 or 8 (mod 12), then n ≡ 0 (mod 4) and n �≡ 0 (mod 3). Therefore
there is no term involving 3 in the factorization of n, and the term involving
2 has an exponent that is at least 2. Therefore three MOLS of these orders
exist. ⊓⊔

6.5 Orthogonal Arrays

In this section, we discuss an equivalent formulation of MOLS called an or-
thogonal array.

Definition 6.36. Let k ≥ 2 and n ≥ 1 be integers. An orthogonal array OA(k, n)
is an n2 × k array, A, with entries from a set X of cardinality n such that, within
any two columns of A, every ordered pair of symbols from X occurs in exactly one
row of A.

Note that an OA(2, n) exists trivially for all integers n ≥ 1.

6.5.1 Orthogonal Arrays and MOLS

It is not difficult to construct an OA(s + 2, n) from s MOLS(n). This is done
as follows. Suppose without loss of generality that these s Latin squares are
named L1, . . . , Ls, are defined on symbol set {1, . . . , n}, and have rows and
columns labeled {1, . . . , n}. For every i, j ∈ {1, . . . , n}, construct an (s + 2)-
tuple

(i, j, L1(i, j), . . . , Ls(i, j)).

Then form an array A whose rows consist of these n2 (s + 2)-tuples. We will
show that A is an OA(s + 2, n).

We need to show that every ordered pair of symbols occurs in any two
columns a and b, where 1 ≤ a < b ≤ s + 2. We consider several cases:
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1. If a = 1 and b = 2, then clearly we get every ordered pair.
2. If a = 1 and b ≥ 3, then we get every ordered pair because every row of

Lb is a permutation of {1, . . . , n}.
3. If a = 2 and b ≥ 3, then we get every ordered pair because every column

of Lb is a permutation of {1, . . . , n}.
4. If a ≥ 3, then we get every ordered pair because La and Lb are orthogonal.

Example 6.37. An OA(4, 3) constructed from the orthogonal Latin squares of
order 3 presented in Example 6.20.

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

The construction can easily be reversed; if A is an OA(k, n) with k ≥ 3,
then we can construct k − 2 MOLS(n) from it. Suppose without loss of gen-
erality that A is defined on symbol set {1, . . . , n}. Label the columns of A
by the integers 1, . . . , k, and label the rows of A by the integers 1, . . . , n2.
We construct k − 2 MOLS(n), which we name L1, . . . , Lk−2, as follows: For
1 ≤ h ≤ k − 2 and 1 ≤ r ≤ n2, define

Lh(A(r, 1), A(r, 2)) = A(r, h + 2).

We will show that L1, . . . , Lk−2 are orthogonal Latin squares of order n.
We begin by showing that each Lh is a Latin square. First, every cell of Lh

contains one and only one entry because every ordered pair occurs exactly
once in columns 1 and 2 of A. Next, let us show that each row i of each Lh is
a permutation of {1, . . . , n}. The entries in row i of Lh are in fact the symbols
in the set

{A(r, h + 2) : A(r, 1) = i}.

These symbols are all distinct because every ordered pair occurs exactly in
columns 1 and h + 2 of A. A similar argument proves that each column i of
each Lh is a permutation of {1, . . . , n}. Hence the Lh’s are all Latin squares.

It remains to prove orthogonality. But Lh and Lg are orthogonal because
every ordered pair occurs exactly once in columns h + 2 and g + 2 of A.

As an example, if we begin with the OA(4, 3) from Example 6.37, and ap-
ply this construction, then we recover the orthogonal Latin squares of order
3 from Example 6.20.

The discussion above proves the following theorem.
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Theorem 6.38. Suppose that n ≥ 1 and k ≥ 3 are integers. Then k − 2 MOLS(n)
exist if and only if an OA(k, n) exists.

6.5.2 Some Constructions for Orthogonal Arrays

Because orthogonal arrays are equivalent to MOLS, any construction for
MOLS can be expressed as a construction of orthogonal arrays, and vice
versa. Presenting constructions for orthogonal arrays is sometimes more con-
venient, however. We consider some constructions in this section.

Suppose that n is a prime power. Then there is an affine plane of order
n (Theorem 5.4), and hence there are n − 1 MOLS(n) (Theorem 6.32). Finally,
Theorem 6.38 tells us that there is an OA(n + 1, n). This is a bit of a circuitous
route, so we now give a direct construction for orthogonal arrays having a
prime power number of symbols.

Theorem 6.39. Suppose q is a prime power and 2 ≤ k ≤ q. Then there exists an
OA(k, q).

Proof. Let a1, . . . , ak be k distinct elements in Fq. Define two vectors in (Fq)
k

as follows:

v1 = (1, . . . , 1) and

v2 = (a1, . . . , ak).

Now, define an array A, having rows indexed by Fq × Fq, where row (i, j) is
the k-tuple iv1 + jv2.

We prove that A is an OA(k, q) (the proof is very similar to the proof of
Theorem 5.4). Let 1 ≤ c < d ≤ k, and let x, y ∈ Fq. We want to find the
unique row (i, j) of A such that A((i, j), c) = x and A((i, j), d) = y. This gives
us the following system of two equations in Fq in the two unknowns i and j:

i + jac = x,

i + jad = y.

Subtracting the second equation from the first, we obtain

j(ac − ad) = x − y.

Since ac − ad �= 0, there exists a multiplicative inverse (ac − ad)
−1 ∈ Fq. Then

we have the following:

j = (ac − ad)
−1(x − y).

Back-substituting, we can solve for i:

i = x − jac = x − ac(ac − ad)
−1(x − y).

Hence, A is an OA(k, q). ⊓⊔
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We can “extend” an OA(q, q) constructed using the theorem above by ad-
joining an additional column in such a way that an OA(q + 1, q) is obtained.

Theorem 6.40. Suppose q is a prime power. Then there exists an OA(q + 1, q).

Proof. Construct an OA(q, q) as described in Theorem 6.39. Then adjoin one
more column, column q + 1, in which A((i, j), q + 1) = j for all i, j. The result-
ing array is an OA(q + 1, q). ⊓⊔

We next give a construction for an OA(4, n) for all n ≡ 10 (mod 12). Such
an integer n can be written in the form n = 3m + 1, where m ≡ 3 (mod 4).
Define X = Z2m+1 ∪ Ω, where Ω = {∞i : 1 ≤ i ≤ m}. Begin with the
following 4m + 1 four-tuples:

(0, 0, 0, 0),
(0, 2i, i, ∞i), 1 ≤ i ≤ m,
(0, 2i − 1, ∞i, m + i), 1 ≤ i ≤ m,
(0, ∞i, 2m + 1 − i, i), 1 ≤ i ≤ m, and
(∞i, 0, i, 2m + 1 − i), 1 ≤ i ≤ m.

Next, develop each of these 4m + 1 four-tuples through the group Z2m+1

using the convention that ∞i + j = ∞i for all j ∈ Z2m+1 and all i, 1 ≤ i ≤ m.
Call the resulting set of (4m + 1)(2m + 1) four-tuples A1.

Now let A2 be an OA(4, m) on the symbol set Ω. (Note that m is odd, so
there exist orthogonal Latin squares of order m from Theorem 6.23. Therefore
an OA(4, m) exists from Theorem 6.38.) A2 contains m2 four-tuples.

The (4m + 1)(2m + 1) + m2 = (3m + 1)2 four-tuples in A1 ∪ A2 form an
OA(4, 3m + 1). This orthogonal array has the following permutation α as an
automorphism:

α = (0 1 2 · · · 2m)(∞1) · · · (∞m).

The (3m + 1)2 four-tuples in this OA(4, 3m + 1) are comprised of 4m + 1 orbits
each consisting of 2m + 1 rows and m2 orbits each consisting of one row. In
order to verify that we have constructed an OA(4, 3m + 1), we need to show
for each choice of two columns that every orbit of ordered pairs is contained
in exactly one of the orbits of four-tuples, within the specified columns. It is
not hard to show that there are exactly m2 + 4m + 1 orbits of ordered pairs
with respect to the group G = {αi : 0 ≤ i ≤ 2m}. The orbits of ordered
pairs consist of 4m + 1 orbits of size 2m + 1 and m2 orbits of size 1. Orbit
representatives are as follows:

(0, i), 0 ≤ i ≤ 2m,
(0, ∞i), 1 ≤ i ≤ m,
(∞i, 0), 1 ≤ i ≤ m, and
(∞i, ∞j), 1 ≤ i, j ≤ m.

With this information, it is straightforward to verify that we have an
OA(4, 3m + 1). Therefore we have the following result.
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L1 =

0 ∞1 1 ∞2 2 ∞3 3 6 5 4
4 1 ∞1 2 ∞2 3 ∞3 0 6 5

∞3 5 2 ∞1 3 ∞2 4 1 0 6

5 ∞3 6 3 ∞1 4 ∞2 2 1 0
∞2 6 ∞3 0 4 ∞1 5 3 2 1

6 ∞2 0 ∞3 1 5 ∞1 4 3 2

∞1 0 ∞2 1 ∞3 2 6 5 4 3
1 2 3 4 5 6 0 ∞1 ∞2 ∞3

2 3 4 5 6 0 1 ∞2 ∞3 ∞1

3 4 5 6 0 1 2 ∞3 ∞1 ∞2

L2 =

0 4 ∞1 5 ∞2 6 ∞3 1 2 3
∞3 1 5 ∞1 6 ∞2 0 2 3 4

1 ∞3 2 6 ∞1 0 ∞2 3 4 5

∞2 2 ∞3 3 0 ∞1 1 4 5 6
2 ∞2 3 ∞3 4 1 ∞1 5 6 0

∞1 3 ∞2 4 ∞3 5 2 6 0 1
3 ∞1 4 ∞2 5 ∞3 6 0 1 2

6 0 1 2 3 4 5 ∞1 ∞2 ∞3

5 6 0 1 2 3 4 ∞3 ∞1 ∞2

4 5 6 0 1 2 3 ∞2 ∞3 ∞1

Fig. 6.4. Orthogonal Latin Squares of Order 10

Theorem 6.41. For all positive integers n ≡ 10 (mod 12), there exists an OA(4, n),
and hence there exist orthogonal Latin squares of order n for all such n.

We illustrate this construction by exhibiting orthogonal Latin squares of
order 10 in Figure 6.4. These are obtained from an OA(4, 10) constructed us-
ing the technique described above.

6.6 Transversal Designs

Another type of new design equivalent to sets of MOLS is called a transversal
design. We define these objects now.

Definition 6.42. Let k ≥ 2 and n ≥ 1. A transversal design TD(k, n) is a triple
(X, G,B) such that the following properties are satisfied:

1. X is a set of kn elements called points,
2. G is a partition of X into k subsets of size n called groups,
3. B is a set of k-subsets of X called blocks,
4. any group and any block contain exactly one common point, and
5. every pair of points from distinct groups is contained in exactly one block.
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Note that the “groups” in a transversal design are just subsets of points; they
are not algebraic groups. Also, a TD(2, n) exists trivially for all integers n ≥ 1.

We first show how to construct a TD(k, n) from an OA(k, n). Let A be an
OA(k, n) on symbol set {1, . . . , n}. Label the columns of A as 1, . . . , k, and
label the rows of A as 1, . . . , n2. Define

X = {1, . . . , n} × {1, . . . , k}.

For 1 ≤ i ≤ k, define
Gi = {1, . . . , n} × {i},

and then define
G = {Gi : 1 ≤ i ≤ k}.

For 1 ≤ r ≤ n2, define

Br = {(A(r, i), i) : 1 ≤ i ≤ k},

and define
B = {Br : 1 ≤ r ≤ n2}.

Then it is essentially trivial to prove that (X, G,B) is a TD(k, n).

Example 6.43. Given the OA(4, 3) constructed in Example 6.37, we obtain a
TD(4, 3). The blocks of this transversal design are shown in Figure 6.5.

B1 = {(1, 1), (1, 2), (1, 3), (1, 4)}
B2 = {(1, 1), (2, 2), (2, 3), (2, 4)}
B3 = {(1, 1), (3, 2), (3, 3), (3, 4)}
B4 = {(2, 1), (1, 2), (2, 3), (3, 4)}
B5 = {(2, 1), (2, 2), (3, 3), (1, 4)}
B6 = {(2, 1), (3, 2), (1, 3), (2, 4)}
B7 = {(3, 1), (1, 2), (3, 3), (2, 4)}
B8 = {(3, 1), (2, 2), (1, 3), (3, 4)}
B9 = {(3, 1), (3, 2), (2, 3), (1, 4)}.

Fig. 6.5. The Blocks of a TD(4, 3)

The construction can be reversed: given a TD(k, n), we can use it to con-
struct an OA(k, n). Suppose (X, G,B) is a TD(k, n). By relabeling the points if
necessary, we can assume that X = {1, . . . , n} × {1, . . . , k} and G = {Gi : 1 ≤
i ≤ k}, where Gi = {1, . . . , n} × {i} for 1 ≤ i ≤ k. For each block B ∈ B and
for 1 ≤ i ≤ k, let (bi, i) ∈ B ∩ Gi (recall that each block intersects each group
in a unique point). Then, for each B ∈ B, form the k-tuple
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(b1, . . . , bk).

Construct an array A whose rows consist of all these k-tuples; it is easy to
show that A is an OA(k, n).

As an example, if we begin with the TD(4, 3) from Example 6.43 and ap-
ply this construction, then we recover the OA(4, 3) that we started with.

Gathering together the results of this section and Theorem 6.38, we have
the following.

Theorem 6.44. Suppose that n ≥ 2 and k ≥ 3. Then the existence of any one of the
following designs implies the existence of the other two designs:

1. k − 2 MOLS(n),
2. an OA(k, n),
3. a TD(k, n).

6.7 Wilson’s Construction

In this section, we describe a powerful recursive construction for MOLS due
to Wilson. It is in fact a generalization of the direct product construction for
MOLS that we presented in Section 6.1. Wilson’s construction is most easily
presented in terms of transversal designs. We will get to it shortly, but first we
recast the direct product construction in the language of transversal designs.

Let (X, G,A) be a TD(k, t), where G1, . . . , Gk are the groups. Define

Y = X × {1, . . . , m},

and, for 1 ≤ i ≤ k, define

Hi = Gi × {1, . . . , m}.

Let H = {Hi : 1 ≤ i ≤ k}. Y and H will be the points and groups (respec-
tively) of the TD(k, mt) that we are constructing.

We now define the blocks of this transversal design. For every block A ∈
A, construct a set of m2 blocks as follows. For 1 ≤ i ≤ k, let {ai} = A ∩ Gi.
Then let BA be the set of m2 blocks of a TD(k, m) in which the groups are

{ai} × {1, . . . , m},

1 ≤ i ≤ k. Then define
B =

⋃

A∈A
BA.

We claim that (Y,H,B) is a transversal design. The main task is to show
that any two points x and y from different groups occur in a unique block.
Suppose that x = (g, a) and y = (h, b), where g ∈ Gi, h ∈ Gj, i �= j, and
a, b ∈ {1, . . . , m}. There is a unique block A ∈ A such that g, h ∈ A because g
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Fig. 6.6. A Truncated Transversal Design

and h occur in different groups in G. Then it is easily seen that x and y occur
in a unique block in BA and in no other block in B.

As we mentioned, the construction above is exactly the same as the direct
product construction for MOLS. We will proceed next to a description of Wil-
son’s construction. Wilson’s construction uses a type of design called a trun-
cated transversal design, which is formed from a transversal design by delet-
ing some points from one of the groups. More specifically, let (X, G,B) be a
TD(k + 1, t), where k ≥ 2. Pick a group G ∈ G, and suppose that 1 ≤ u ≤ t.
Let G′ ⊆ G, |G′| = u. Then define

Y = (X\G) ∪ G′

H = (G\{G}) ∪ {G′}
C = {B ∈ B : B ∩ G′ �= ∅} ∪ {B\{x} : B ∈ B, B ∩ G = {x}, x ∈ G\G′}.

The set system (Y,H, C) is a truncated transversal design. If u < t, then this
design has kt + u points, k groups of size t and one group of size u, t(t − u)
blocks of size k, and tu blocks of size k + 1. (If t = u, then the design is just a
TD(k + 1, t) because we have deleted no points.)

We now present the statement and proof of Wilson’s construction for
MOLS.

Theorem 6.45 (Wilson’s Construction for MOLS). Let k ≥ 2 and suppose that
the following transversal designs exist: a TD(k, m), a TD(k, m + 1), a TD(k + 1, t),
and a TD(k, u), where 1 ≤ u ≤ t. Then there exists a TD(k, mt + u).

Proof. First construct a truncated transversal design from a TD(k + 1, t) by
deleting t − u points from some group, as described above. Let (X, G,A) be
the resulting truncated transversal design, where G1, . . . , Gk are k groups of
size t and Gk+1 is a group of size u.

In Figure 6.6, the groups of this truncated transversal design are drawn
vertically, and two representative blocks are indicated.

Define

Y = ((X\Gk+1) × {1, . . . , m}) ∪ ({1, . . . , k} × Gk+1).
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Then, for 1 ≤ i ≤ k, define

Hi = (Gi × {1, . . . , m}) ∪ ({i} × Gk+1),

and let H = {Hi : 1 ≤ i ≤ k}. Y and H will be the points and groups
(respectively) of the TD(k, mt + u) that we are constructing.

It will be convenient to define a “type I” point to be a point in (X\Gk+1)×
{1, . . . , m}, and a “type II” point to be a point in {1, . . . , k} × Gk+1. Observe
that each group Hi contains mt type I points (which consist of m copies of
each point in Gi) and u type II points (which consist of one copy of each
point in Gk+1).

We now define the blocks of this transversal design. For every block A ∈
A, construct a set of blocks BA according to the following recipe:

1. Suppose |A| = k. For 1 ≤ i ≤ k, let {ai} = A ∩ Gi. Then let BA be the set
of m2 blocks of a TD(k, m) in which the groups are

{ai} × {1, . . . , m}

for 1 ≤ i ≤ k.
Observe that the blocks in BA contain only type I points.

2. Suppose |A| = k + 1. For 1 ≤ i ≤ k + 1, let {ai} = A ∩ Gi. There exists a
TD(k, m + 1) in which the groups are

({ai} × {1, . . . , m}) ∪ {(i, ak+1)},

for 1 ≤ i ≤ k, and in which

{(1, ak+1), . . . , (k, ak+1)}

is a block. Delete this block, and let BA be the set of (m + 1)2 − 1 blocks
that remain.
In Figure 6.7, we show how two representative blocks in the truncated
transversal design are “expanded into” transversal designs.
Observe that each group of the TD(k, m + 1) consists of m type I points
and one type II point. However, no block in BA contains more than one
type II point; this is because we deleted the block {(1, ak+1), . . . , (k, ak+1)},
which was the only block in the transversal design that contained more
than one type II point.

Finally, there exists a TD(k, u) in which the groups are

{i} × Gk+1

for 1 ≤ i ≤ k. Let B∗ denote the blocks of this transversal design. (Observe
that the blocks in B∗ contain only type II points.)

The block set of the TD(k, mt + u) is defined to be
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Fig. 6.7. Wilson’s Construction (Detail)

B =

( ⋃

A∈A
BA

)
∪ B∗.

Let us sketch a proof that (Y,H,B) is a transversal design. The main task
is to show that any two points x and y from different groups of H occur in
a unique block. There are three different cases to consider according to the
types of the two points x and y.

1. Suppose x and y are both of type I. Let x = (g, a) and y = (h, b), where
g ∈ Gi, h ∈ Gj, i �= j, and a, b ∈ {1, . . . , m}. There is a unique block A ∈ A
such that g, h ∈ A. Then x and y occur in a unique block in BA and in no
other block in B.

2. Suppose x is of type I and y is of type II. Let x = (g, a) and y = (j, h),
where g ∈ Gi, h ∈ Gk+1, a ∈ {1, . . . , m}, and j ∈ {1, . . . , k}\{i}. There is
a unique block A ∈ A such that g, h ∈ A, and it must be the case that
|A| = k + 1. x and y occur in a unique block in BA and in no other block
in B.

3. Suppose x and y are both of type II. Let x = (i, g) and y = (j, h), where
g, h ∈ Gk+1, i, j ∈ {1, . . . , k}, and i �= j. Then x and y occur in a unique
block in B∗ and in no other block in B (note that we observed earlier
that the blocks in B∗ are the only ones that contain more than one type II
point).
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This completes the proof. ⊓⊔

We present a small example to illustrate Theorem 6.45.

Example 6.46. An application of Wilson’s construction. Let k = 3, m = 2, t =
3, and u = 2. A TD(3, 2), TD(3, 3), TD(4, 3), and TD(3, 2) all exist. Theorem
6.45 yields a TD(3, 8).

We begin with a TD(4, 3) and truncate one group to two points, obtaining
a truncated transversal design

(X, G = {G1, G2, G3, G4},A = {Ai : 1 ≤ i ≤ 9}),

where

X = {a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2},
G1 = {a1, a2, a3}, G2 = {b1, b2, b3}, G3 = {c1, c2, c3},
G4 = {d1, d2},
A1 = {a1, b1, c1, d1}, A2 = {a2, b2, c2, d1}, A3 = {a3, b3, c3, d1},
A4 = {a1, b2, c3, d2}, A5 = {a2, b3, c1, d2}, A6 = {a3, b1, c2, d2},
A7 = {a1, b3, c2}, A8 = {a2, b1, c3}, A9 = {a3, b2, c1}.

The groups of the TD(3, 8) are

H1 = {(a1, 1), (a1, 2), (a2, 1), (a2, 2), (a3, 1), (a3, 2), (1, d1), (1, d2)}
H2 = {(b1, 1), (b1, 2), (b2, 1), (b2, 2), (b3, 1), (b3, 2), (2, d1), (2, d2)}
H3 = {(c1, 1), (c1, 2), (c2, 1), (c2, 2), (c3, 1), (c3, 2), (3, d1), (3, d2)}.

Each block in A gives rise to a certain set of blocks in the TD(3, 8). For
example, consider A1 = {a1, b1, c1, d1}. Since |A1| = 4 = k + 1, the blocks
BA1

are obtained from the blocks of a TD(3, 3) having groups

{(a1, 1), (a1, 2), (1, d1)}, {(b1, 1), (b1, 2), (2, d1)}, and {(c1, 1), (c1, 2), (3, d1)}.

We construct such a transversal design, making sure that

{(1, d1), (2, d1), (3, d1)}

is one of the blocks. Then this block is deleted and the remaining eight blocks
comprise BA1

. For example, we could take the following eight blocks:

{(a1, 1), (b1, 1), (c1, 1)} {(a1, 2), (b1, 2), (c1, 2)}
{(a1, 1), (b1, 2), (3, d1)} {(a1, 2), (2, d1), (c1, 1)} {(1, d1), (b1, 1), (c1, 2)}
{(a1, 1), (2, d1), (c1, 2)} {(a1, 2), (b1, 1), (3, d1)} {(1, d1), (b1, 2), (c1, 1)}.

Another block in A is A7 = {a1, b3, c2}. Since |A7| = 3 = k, the
blocks in BA7

are the blocks of a TD(3, 2) having groups {(a1, 1), (a1, 2)},
{(b3, 1), (b3, 2)}, and {(c2, 1), (c2, 2)}. For example, we could take the follow-
ing four blocks:
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{(a1, 1), (b3, 1), (c2, 1)} {(a1, 2), (b3, 2), (c2, 1)}
{(a1, 2), (b3, 1), (c2, 2)} {(a1, 1), (b3, 2), (c2, 2)}.

We apply this process to each of the nine blocks A1, . . . , A9.
Finally, we adjoin the four blocks of a TD(3, 2) on groups {(1, d1), (1, d2)},

{(2, d1), (2, d2)}, and {(3, d1), (3, d2)}. For example, we could take the follow-
ing four blocks:

{(1, d1), (2, d1), (3, d1)} {(1, d1), (2, d2), (3, d2)}
{(1, d2), (2, d1), (3, d2)} {(1, d2), (2, d2), (3, d1)}.

The resulting set of 64 blocks yields the desired TD(3, 8).

In view of Theorem 6.44, the following corollary is obtained by rephras-
ing Theorem 6.45 in the language of MOLS.

Theorem 6.47. Suppose s ≥ 1 and there exist s MOLS(m), s MOLS(m + 1), s
MOLS(u), and s + 1 MOLS(t), where 1 ≤ u ≤ t. Then there exist s MOLS(mt +
u).

6.8 Disproof of the Euler Conjecture

As an application of Wilson’s construction, we will complete the proof that
there exist orthogonal Latin squares of order n for all positive integers n �= 2
or 6. (This is not the “original” disproof of the Euler conjecture from 1958;
Wilson’s construction permits the proof to be simplified considerably.)

The following corollary will be useful.

Corollary 6.48. Suppose t ≡ 1, 5 (mod 6), u is odd, and 0 ≤ u ≤ t. Then there
exist orthogonal Latin squares of order 3t + u.

Proof. We apply Theorem 6.47 with s = 2 and m = 3, noting that orthogonal
Latin squares of orders 3, 4, and u exist (Theorem 6.28), as do three MOLS(t)
(Corollary 6.35). ⊓⊔

We need one more example as a special case before proceeding to the
general result.

Example 6.49. Orthogonal Latin squares of order 14.
We present a set of 17 four-tuples of elements in Z11 ∪ {∞1, ∞2, ∞3}.

These rows are to be developed modulo 11 using the convention that ∞i +
j = ∞i for i = 1, 2, 3 and j ∈ Z11. (In other words, the permutation

α = (0 1 2 · · · 10)(∞1)(∞2)(∞3)

is an automorphism of this orthogonal array.) Then adjoin nine more rows
that form an OA(4, 3) on the symbols ∞1, ∞2, ∞3. The result is an OA(4, 14),
which is equivalent to the desired orthogonal Latin squares.
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Here are the 17 starting rows:

0 0 0 0
0 4 1 6
4 0 6 1
6 1 0 4
1 6 4 0

∞1 4 0 1
∞2 6 0 2
∞3 9 0 8

4 ∞1 1 0
6 ∞2 2 0
9 ∞3 8 0
1 0 ∞1 4
2 0 ∞2 6
8 0 ∞3 9
0 1 4 ∞1

0 2 6 ∞2

0 8 9 ∞3

Theorem 6.50. Suppose n ≡ 2 (mod 4), n �= 2, 6. Then there exist orthogonal
Latin squares of order n.

Proof. We already did the cases where n ≡ 10 (mod 12) in Theorem 6.41, so
we can assume that n ≡ 2, 6, 14, 18, 26, or 30 (mod 36). For each of these six
residue classes modulo 36, we present a construction that is an application of
Corollary 6.48 by writing n in the form n = 3t + u in an appropriate manner:

36s + 2 = 3(12s − 1) + 5, s ≥ 1
36s + 6 = 3(12s + 1) + 3, s ≥ 1
36s + 14 = 3(12s + 1) + 11, s ≥ 1
36s + 18 = 3(12s + 5) + 3, s ≥ 0
36s + 26 = 3(12s + 7) + 5, s ≥ 0
36s + 30 = 3(12s + 7) + 9, s ≥ 1.

The only values of n not covered by the constructions above are n = 2, 6, 14,
and 30. The first two values of n are exceptions, the case n = 14 is done in
Example 6.49, and n = 30 can be handled by the direct product construction
because 30 = 3 × 10 and orthogonal Latin squares of orders 3 and 10 exist.

⊓⊔
Our main existence result is an immediate consequence of Theorems 6.28

and 6.50.

Theorem 6.51. Suppose n is a positive integer and n �= 2 or 6. Then there exist
orthogonal Latin squares of order n.
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6.9 Notes and References

Bose’s construction for Steiner triple systems was given in [13], and Skolem’s
modification is from [98]. Our description of these constructions is based on
[77]. The book “Triple Systems” by Colbourn and Rosa [32] is an enormous
work devoted to BIBDs with block size 3. It is essential reading for anyone
interested in that topic.

The construction of a pair of orthogonal Latin squares of all orders n �=
2, 6 was accomplished by Bose and Shrikhande [15] and Bose, Shrikhande,
and Parker [16]. Theorem 6.41 is from [16]. A short proof of the nonexistence
of a pair of orthogonal Latin squares of order 6 can be found in Stinson [101].

Wilson’s construction for MOLS (a generalization of Theorem 6.45) is pre-
sented in [121]. An extensive table of MOLS of orders up to 10,000 can be
found in [1]. Colbourn [24] provides a good summary of construction meth-
ods for MOLS, and Colbourn and Dinitz [28] describe how the tables in [1]
were constructed. Some updated results can be found in Colbourn and Dinitz
[29] .

6.10 Exercises

6.1 (a) Suppose that (X,A) is a (v, 3, 1)-BIBD and (X, ◦) is any quasi-
group of order v. Define Y = X × {1, 2, 3}. For 1 ≤ i ≤ 3 and for
any A ∈ A, define Ai = {(x, i) : x ∈ A}. Define

B1 = {Ai : 1 ≤ i ≤ 3}
and define

B2 = {(x, 1), (y, 2), (x ◦ y, 3) : x, y ∈ X}.

Prove that (Y,B1 ∪ B2) is a (3v, 3, 1)-BIBD.
(b) Describe how to construct a (3v− 2, 3, 1)-BIBD from any (v, 3, 1)-

BIBD and any quasigroup of order v − 1.
(c) Describe how to construct a (3v− 6, 3, 1)-BIBD from any (v, 3, 1)-

BIBD and any quasigroup of order v − 3.
6.2 (a) Describe how to construct an idempotent quasigroup of every

even order t > 2.
(b) Explicitly construct idempotent quasigroups of orders 4 and 6.
(c) Describe a construction for a (3t, 3, 2)-BIBD from any idempo-

tent quasigroup of order t. Illustrate your construction in the
case t = 4.

6.3 Suppose (X, ◦) is a quasigroup. We say that (X, ◦) is a Steiner quasi-
group if (X, ◦) is symmetric and idempotent and (x ◦ y) ◦ y = x for all
x, y ∈ X.

(a) Suppose that (X,A) is a Steiner triple system of order n. Define
a binary operation ◦ on X as follows:
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x ◦ y =

{
x if x = y

z if x �= y and {x, y, z} ∈ A.

Prove that (X, ◦) is a Steiner quasigroup of order n.
(b) Suppose that (X, ◦) is a Steiner quasigroup of order n. Define

A = {{x, y, x ◦ y} : x, y ∈ X, x �= y}.

Prove that (X,A) is a Steiner triple system of order n.
6.4 Suppose that there are s MOLS(n). Prove that there are s − 1 MOLS(n),

all of which are idempotent.
Hint: This can be done by permuting rows, columns, and symbols in
s− 1 of the s MOLS in a certain way. You should begin by choosing one
of the s orthogonal Latin squares, picking a symbol x, and considering
the set of n cells in this Latin square that contain x, say C. Then, in
each of the remaining s − 1 MOLS, the cells in C must contain one
occurrence of each symbol.

6.5 (a) Suppose that there is a (v, k, 1)-BIBD, and suppose there are s− 1
MOLS(k), all of which are idempotent. Prove that there are s − 1
MOLS(v), all of which are idempotent.

(b) Using a suitable BIBD, prove that there exist three MOLS(21), all
of which are idempotent.

6.6 (a) Let 1 < m < n be integers. A Latin square L of order n has a
subsquare of order m if there is an m × m subarray of L, say M,
which is itself a Latin square on a subset of m symbols. Prove
that m ≤ 2n if a Latin square of order n has a subsquare of order
m.

(b) Let 1 < m < n be integers. Suppose that L1, . . . , Ls are MOLS of
order n. Suppose that L1, . . . , Ls each have a subsquare of order
m situated in the same positions (say, without loss of general-
ity, in the upper left corners). Prove that these subsquares are
necessarily s MOLS(m) and m ≤ (s + 1)n.

6.7 Prove that the following sets of MOLS exist by citing appropriate the-
orems or constructions.

(a) 8 MOLS(99).
(b) 7 MOLS(96).
(c) 5 MOLS(57).

6.8 Prove that there exist three MOLS(n) if n ≡ 0 mod 36.
Hint: Consider the factorization of n into prime powers.

6.9 A magic square of order n is an n by n array formed from the integers
1, . . . , n2 such that the sum of the entries in any row or column is a
fixed integer, say S.

(a) Prove that S = (n3 + n)/2.
(b) Suppose that L and M are orthogonal Latin squares on symbol

set {0, . . . , n − 1}. Define an n by n array A = (ai,j) by the for-
mula

ai,j = n L(i, j) + M(i, j) + 1.
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Prove that A is a magic square of order n.
(c) Construct orthogonal Latin squares of order 4 and then use them

to construct a magic square of order 4.
6.10 A Latin square is self-orthogonal if it is orthogonal to its transpose. Let

a, b ∈ Zn. Suppose that we define an n by n array M = (mi,j), with
symbols in Zn, by the rule

mi,j = ai + bj mod n.

(a) Give a complete proof that M is a self-orthogonal Latin square of
order n provided that gcd(a, n) = 1, gcd(b, n) = 1, and gcd(a2 −
b2, n) = 1.

(b) Construct a self-orthogonal Latin square of order 7.
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7

Pairwise Balanced Designs I: Designs with

Specified Block Sizes

7.1 Definitions and Basic Results

Pairwise balanced designs were defined in Section 1.3. These are among the
most important and most studied types of designs. We will spend quite a
bit of time in this chapter looking at pairwise balanced designs with speci-
fied block sizes. Interestingly, these have applications to the construction of
infinite families of BIBDs with fixed block sizes.

We begin with a definition of pairwise balanced designs with specified
block sizes.

Definition 7.1. Suppose v ≥ 2, λ ≥ 1, and K ⊆ {n ∈ Z : n ≥ 2}. A (v, K, λ)-
pairwise balanced design (which we abbreviate to (v, K, λ)-PBD) is a set system
(X,A) such that the following properties are satisfied:

1. |X| = v,
2. |A| ∈ K for all A ∈ A, and
3. every pair of distinct points is contained in exactly λ blocks.

A (v, K, 1)-PBD is often denoted simply as a (v, K)-PBD.

Recall that a pairwise balanced design on v points is allowed to have
blocks of size v. It is clear that a (v, k, λ)-BIBD is a (v, {k}, λ)-PBD. Con-
versely, if k < v, then a (v, {k}, λ)-PBD is a (v, k, λ)-BIBD.

We begin by presenting some simple constructions for pairwise bal-
anced designs from other types of designs. Transversal designs and trun-
cated transversal designs provide a convenient way of constructing certain
pairwise balanced designs with λ = 1.

Lemma 7.2. Suppose that k ≥ 2 and there is a TD(k + 1, t). Then the following
pairwise balanced designs exist:

1. a (kt + u, {k, k + 1, t, u})-PBD for all u such that 2 ≤ u ≤ t − 1,
2. a (kt + 1, {k, k + 1, t})-PBD, and
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3. a ((k + 1)t, {k + 1, t})-PBD.

Proof. To prove 1, delete t − u points from one group of a TD(k + 1, t). Then
take all the groups and blocks of the truncated transversal design to be blocks
of a PBD.

To prove 2, delete t − 1 points from one group of a TD(k + 1, t). Then take
all the groups and blocks of the truncated transversal design (except for the
group of size one) to be blocks of a PBD.

To prove 3, take all the groups and blocks of the transversal design to be
blocks of a PBD. ⊓⊔

Resolvable (v, k, 1)-BIBDs also can be used to produce pairwise balanced
designs with λ = 1.

Lemma 7.3. Suppose there is a resolvable (v, k, 1)-BIBD. Then there exists a (v +
r, {k + 1, r})-PBD, where r = (v − 1)/(k − 1).

Proof. We use the same technique as in the proof of Theorem 5.10. Let
Π1, . . . , Πr denote the parallel classes in the BIBD. Let ∞1, . . . , ∞r be r new
points, and adjoin ∞i to each block in the parallel class Πi. Finally, let
{∞1, . . . , ∞r} be a new block. ⊓⊔

Note that, if we start with an affine plane, then the resulting pairwise
balanced design has only one block size (because k + 1 = r) and therefore it
is in fact a BIBD (namely, a projective plane; see Theorem 5.10).

As a corollary of Lemma 7.3, we can obtain the following result.

Corollary 7.4. For all even integers v ≥ 4, there exists a (2v − 1, {3, v− 1})-PBD.

Proof. Apply Lemma 7.3 with k = 2, noting that a resolvable (v, 2, 1)-BIBD

exists for all even v ≥ 4 by Theorem 5.2. ⊓⊔
Example 7.5. An (11, {3, 5})-PBD. We begin with the resolvable (6, 2, 1)-BIBD

presented in Example 5.3 having parallel classes as follows:

Π0 = {{∞, 0}, {1, 4}, {2, 3}},

Π1 = {{∞, 1}, {2, 0}, {3, 4}},

Π2 = {{∞, 2}, {3, 1}, {4, 0}},

Π3 = {{∞, 3}, {4, 2}, {0, 1}},

Π4 = {{∞, 4}, {0, 3}, {1, 2}}.

The blocks of the resulting (11, {3, 5})-PBD are

{∞, 0, ∞1}, {1, 4, ∞1}, {2, 3, ∞1},
{∞, 1, ∞2}, {2, 0, ∞2}, {3, 4, ∞2},
{∞, 2, ∞3}, {3, 1, ∞3}, {4, 0, ∞3},
{∞, 3, ∞4}, {4, 2, ∞4}, {0, 1, ∞4},
{∞, 4, ∞5}, {0, 3, ∞5}, {1, 2, ∞5},
{∞1, ∞2, ∞3, ∞4, ∞5}.
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7.2 Necessary Conditions and PBD-Closure

In this section, we first discuss necessary numerical conditions for existence
of (v, K)-PBDs. Then we present some definitions and results pertaining to
the important idea of PBD-closure.

Definition 7.6. Suppose K ⊆ {n ∈ Z : n ≥ 2}, and define

B(K) = {v : there exists a (v, K)-PBD}.

Furthermore, define

α(K) = gcd{k − 1 : k ∈ K}

and
β(K) = gcd{k(k − 1) : k ∈ K}.

Note that K ⊆ B(K) because a (trivial) (k, {k})-PBD exists for any integer
k ≥ 2.

Our next lemma provides some necessary numerical conditions for v to
be an element of B(K). This lemma can be thought of as a generalization of
Theorems 1.8 and 1.9.

Lemma 7.7. Suppose K ⊆ {n ∈ Z : n ≥ 2} and suppose that v ≥ 3 is an integer.
Then v ∈ B(K) only if

v − 1 ≡ 0 (mod α(K))

and
v(v − 1) ≡ 0 (mod β(K)).

Proof. Suppose v ∈ B(K). Then there exists a (v, K)-PBD. Let X be the set of
points in this design, suppose x ∈ X, and let rx denote the number of blocks
containing x. Let A1, . . . , Arx denote the blocks that contain x. Then

rx

∑
i=1

(|Ai| − 1) = v − 1.

Clearly |Ai| − 1 ≡ 0 (mod α(K)) for all i, 1 ≤ i ≤ rx , and hence v − 1 ≡ 0
(mod α(K)). This proves the first condition.

To prove the second condition, let A1, . . . , Ab be all the blocks in the pair-
wise balanced design. Then

b

∑
i=1

|Ai|(|Ai| − 1) = v(v − 1).

Clearly |Ai|(|Ai| − 1) ≡ 0 (mod β(K)) for all i, 1 ≤ i ≤ b. Hence, v(v − 1) ≡ 0
(mod β(K)). This completes the proof. ⊓⊔
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If |K| = 1 (say K = {k}) and v > k, then a (v, K)-PBD is a (v, k, 1)-BIBD,
and the conditions in Lemma 7.7 become

v − 1 ≡ 0 (mod k − 1)

and
v(v − 1) ≡ 0 (mod k(k − 1)).

These are precisely the conditions that the BIBD parameters r and b (respec-
tively) be integers.

Here is a small example to illustrate the application of Lemma 7.7 when
|K| > 1.

Example 7.8. Suppose K = {3, 4, 6}. Then it is easy to compute

α(K) = gcd{2, 3, 5} = 1

and
β(K) = gcd{6, 12, 30} = 6.

The necessary conditions in Lemma 7.7 simplify to v ≡ 0 or 1 (mod 3). It
follows that

B({3, 4, 6}) ⊆ {n ∈ Z : n ≡ 0 or 1 (mod 3), n ≥ 3}.

We now introduce the very useful notion of a PBD-closed set.

Definition 7.9. Suppose that K ⊆ {n ∈ Z : n ≥ 2}. We say that K is a PBD-
closed set if B(K) = K, i.e., if v ∈ K whenever there exists a (v, K)-PBD.

The following lemma is simple but important. It is commonly called
“breaking up blocks”.

Lemma 7.10 (Breaking up Blocks). Suppose K ⊆ {n ∈ Z : n ≥ 2}. Then B(K)
is PBD-closed.

Proof. Suppose K ⊆ {n ∈ Z : n ≥ 2}, and let (X,A) be any (v, B(K))-PBD.
We want to prove that there is a (v, K)-PBD. For all |A| ∈ A there is a (|A|, K)-
PBD, say (A,BA). Define

B =
⋃

A∈A
BA.

Then it is easy to see that (X,B) is a (v, K)-PBD. ⊓⊔

Lemma 7.10 implies some easy corollaries. The fact that B(K) is PBD-
closed implies the following result.

Corollary 7.11. Suppose K ⊆ {n ∈ Z : n ≥ 2}. Then B(B(K)) = B(K).
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For an integer k ≥ 2, define

Vk = {k} ∪ {v : there exists a (v, k, 1)-BIBD}.

The next result is obtained by taking K = {k} in Corollary 7.11 and noting
that Vk = B({k}).

Corollary 7.12. For any integer k ≥ 2, Vk is PBD-closed.

We do a small example to illustrate Corollary 7.12.

Example 7.13. We construct a (21, 3, 1)-BIBD by applying Corollary 7.12 with
k = 3. Observe that a TD(3, 7) yields a (21, {3, 7})-PBD containing 49 blocks
of size three and three blocks of size seven. Replace each block A of size
seven by the seven blocks of a (7, 3, 1)-BIBD on point set A. The result is a
(21, 3, 1)-BIBD.

Corollary 7.12 says that the set of all v-values of (v, k, 1)-BIBDs is PBD-
closed, for any fixed integer k ≥ 2. We now prove the interesting and impor-
tant result that the set of r-values of (v, k, 1)-BIBDs is also PBD-closed. First,
however, we must introduce the concept of a group-divisible design.

Definition 7.14. Let v > 2 be a positive integer. A group-divisible design (which
we abbreviate to GDD) is a triple (X, G,A) such that the following properties are
satisfied:

1. X is a finite set of elements called points,
2. G is a partition of X into at least two nonempty subsets called groups (note that

groups of size one are allowed),
3. A is a set of subsets of X called blocks such that |A| ≥ 2 for all A ∈ A,
4. a group and a block contain at most one common point, and
5. every pair of points from distinct groups is contained in exactly one block.

Transversal designs and truncated transversal designs are examples of
group-divisible designs. The following lemmas record some simple ways of
obtaining pairwise balanced designs from group-divisible designs and vice
versa.

Lemma 7.15. If (X, G,A) is a group-divisible design, then (X,B) is a pairwise bal-
anced design with λ = 1, where

B = A ∪ {G ∈ G : |G| ≥ 2}.

Lemma 7.16. Suppose that (X, G,A) is a group-divisible design. Suppose that ∞ �∈
X, define Y = X ∪ {∞}, and define

B = A∪ {G ∪ {∞} : G ∈ G}.

Then (Y,B) is a pairwise balanced design with λ = 1.
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Lemma 7.17. If (X,A) is a pairwise balanced design with λ = 1, then (X, G,A) is
a group-divisible design, where

G = {{x} : x ∈ X}.

Next, we state and prove a useful equivalence between (v, k, 1)-BIBDs
and certain group-divisible designs.

Lemma 7.18. Suppose that v > k > 1. Then there exists a (v, k, 1)-BIBD if and
only if there exists a group-divisible design having v − 1 points, r groups of size
k − 1, and blocks of size k (where, as usual, r = (v − 1)/(k − 1)).

Proof. Given a (v, k, 1)-BIBD, choose any point x. Form the groups of the de-
sired group-divisible design by taking the blocks that contain x and deleting
x from them. The blocks of the group-divisible design are all the remaining
blocks in the BIBD.

The converse follows from Lemma 7.16. Note that the resulting pairwise
balanced design has only blocks of size k and therefore it is a BIBD. ⊓⊔

Example 7.19. A (9, 3, 1)-BIBD was presented in Example 1.4:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}.

If we delete the point 1, say, then we obtain the following GDD (Y, G,B):

Y = {2, 3, 4, 5, 6, 7, 8, 9},

G = {23, 47, 59, 68}, and

B = {456, 789, 258, 369, 267, 348, 249, 357}.

This GDD contains four groups of size two and eight blocks of size three.

Corollary 7.12 asserts that the set Vk is PBD-closed. For any integer k ≥ 2,
define

Rk = {r : there exists an (r(k − 1) + 1, k, 1)-BIBD}.

We show that Rk is PBD-closed in the next theorem.

Theorem 7.20. Rk is PBD-closed for any integer k ≥ 2.

Proof. Let (X,A) be any (v, Rk)-PBD. We want to prove that v ∈ Rk. In other
words, we want to show that there exists a (v(k − 1) + 1, k, 1)-BIBD.

For every block A ∈ A, there exists an (|A|(k − 1) + 1, k, 1)-BIBD. By
Lemma 7.18, this BIBD is equivalent to a group-divisible design having
|A|(k − 1) points, |A| groups of size k − 1, and blocks of size k. Let I be some
set of size k − 1. We can construct this group-divisible design on point set
A × I such that the groups are {x} × I, x ∈ A. Let BA denote the blocks of
this group-divisible design.
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Define

Y = X × I,

H = {{x} × I : x ∈ X}, and

B =
⋃

A∈A
BA.

We will prove that (Y,H,B) is a group-divisible design having v(k − 1)
points, v groups of size k − 1, and blocks of size k. Then, by Lemma 7.18,
there exists a (v(k − 1) + 1, k, 1)-BIBD, as required.

It is clear that (Y,H,B) has v(k − 1) points, v groups of size k − 1, and
blocks of size k. Thus we need only to verify that any two points from dif-
ferent groups occur in a unique block in B. Consider two points, say (x, i)
and (y, j), where x, y ∈ X, x �= y, and i, j ∈ I. There is a unique block
A ∈ A such that x, y ∈ A. Then, there is a unique block B0 ∈ BA such that
(x, i), (y, j) ∈ B0. B0 is the unique block in B that contains (x, i) and (y, j), and
the proof is complete. ⊓⊔

We present a small example to illustrate.

Example 7.21. Let k = 3. Since there exists a (7, 3, 1)-BIBD, it follows that 3 ∈
R3. The fact that R3 is PBD-closed, together with the existence of the same
(7, 3, 1)-BIBD, establishes that 7 ∈ R3. In other words, we can construct a
(15, 3, 1)-BIBD by means of the construction given in the proof of Theorem
7.20.

Suppose we begin with the following (7, 3, 1)-BIBD:

X = {1, 2, 3, 4, 5, 6, 7}, and

A = {123, 145, 167, 246, 257, 347, 356}.

For every block A = {x, y, z} ∈ A, we replace A by the four blocks of
a group-divisible design having points A × {0, 1} and groups {x} × {0, 1},
{y} × {0, 1}, and {z} × {0, 1}. We can use the following set of four blocks:

B{xyz} = {{x0, y0, z0}, {x0, y1, z1}, {x1, y0, z1}, {x1, y1, z0}},

where we write points (x, i) in the form xi in order to save space. We carry
out this process for each of the seven blocks in A, obtaining a set of 28 blocks,
which are the blocks of a group-divisible design having seven groups of size
two. We then add a new point to each group, to obtain the seven blocks in
B∞. The resulting set of 35 blocks, shown in Figure 7.1, form a (15, 3, 1)-BIBD.
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B{123} = {{10, 20, 30}, {10, 21, 31}, {11, 20, 31}, {11, 21, 30}}
B{145} = {{10, 40, 50}, {10, 41, 51}, {11, 40, 51}, {11, 41, 50}}
B{167} = {{10, 60, 70}, {10, 61, 71}, {11, 60, 71}, {11, 61, 70}}
B{246} = {{20, 40, 60}, {20, 41, 61}, {21, 40, 61}, {21, 41, 60}}
B{257} = {{20, 50, 70}, {20, 51, 71}, {21, 50, 71}, {21, 51, 70}}
B{347} = {{30, 40, 70}, {30, 41, 71}, {31, 40, 71}, {31, 41, 70}}
B{356} = {{30, 50, 60}, {30, 51, 61}, {31, 50, 61}, {31, 51, 60}}

B∞ = {{∞, 00, 01}, {∞, 10, 11}, {∞, 20, 21}, {∞, 30, 31}
{∞, 40, 41}, {∞, 50, 51}, {∞, 60, 61}}.

Fig. 7.1. A (15, 3, 1)-BIBD

7.3 Steiner Triple Systems

Recall that we constructed Steiner triple systems (i.e., (v, 3, 1)-BIBDs) of all
permissible orders in Section 6.2. In this section, we give a different proof of
the same result using PBD-closure techniques.

We know that the set of v-values of (v, 3, 1)-BIBDs is PBD-closed, as is the
set of r-values of (v, 3, 1)-BIBDs. If we construct some small (v, 3, 1)-BIBDs
(e.g., (7, 3, 1)- and (9, 3, 1)-BIBDs), then we can construct larger (v, 3, 1)-
BIBDs by first constructing pairwise balanced designs with block sizes 3, 7, 9,
etc. (This approach was illustrated in Example 7.13.) However, it turns out to
be easier to use the PBD-closure of R3 to construct Steiner triple systems. This
is because the set R3 contains several small numbers (e.g., 3, 4, 6, and 7, as we
will show) and it is easier to construct pairwise balanced designs when there
are more allowable block sizes. In particular, the fact that R3 contains the
consecutive integers 3 and 4 makes it an easy task to construct (v, R3)-PBDs
using truncated transversal designs.

Recall from Lemma 6.11 that an STS(v) exists only if v ≡ 1 or 3 (mod 6),
v ≥ 7. Defining r = (v − 1)/2, these conditions can be restated as r ≡ 0 or 1
(mod 3), r ≥ 3. Therefore we have that

R3 ⊆ {n ≥ 3 : n ≡ 0, 1 (mod 3)}.

We will in fact prove that R3 = {n ≥ 3 : n ≡ 0, 1 (mod 3)}. The strategy is as
follows:

1. Find some small elements of the set R3. We will show by direct construc-
tions that {3, 4, 6} ⊆ R3.

2. Try to construct (v, {3, 4, 6})-PBDs for as many values of v as possible.
We will (mainly) use truncated transversal designs to show that

B({3, 4, 6}) = {n ≥ 3 : n ≡ 0, 1 (mod 3)}.
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3. Since R3 is PBD-closed, we conclude that

R3 = {n ≥ 3 : n ≡ 0, 1 (mod 3)}.

We proceed to carry out these three steps now.

Step 1

• A projective plane of order 2 exists, which is a (7, 3, 1)-BIBD. Hence, 3 ∈
R3.

• An affine plane of order 3 exists, which is a (9, 3, 1)-BIBD. Hence, 4 ∈ R3.
• Example 3.45 displayed a (13, 3, 1)-difference family; this implies that 6 ∈

R3.

Hence we have shown that {3, 4, 6} ⊆ R3.

Step 2

We first show that three particular integers are in B({3, 4, 6}) by means of
direct constructions.

Lemma 7.22. {7, 18, 19} ⊆ B({3, 4, 6}).

Proof.

• 7 ∈ B({3}) because a (7, 3, 1)-BIBD exists.
• 18 ∈ B({3, 6}) by Lemma 7.2 because a TD(3, 6) exists.
• Adjoining a point to the groups of a TD(3, 6), we obtain a (19, {3, 7})-PBD

(see Lemma 7.16). Then, because we have shown above that 7 ∈ B({3}),
it follows that 19 ∈ B({3}).

⊓⊔

The following simple lemma will now allow us to complete the determi-
nation of B({3, 4, 6}).

Lemma 7.23. Suppose that t ≡ 0 or 1 (mod 3), t ≥ 3, and t �= 6. Then the
following PBDs exist in which all block sizes are congruent to 0 or 1 modulo 3.

1. If u ≡ 0 or 1 (mod 3) and 3 ≤ u ≤ t, then there is a (3t + u, {3, 4, t, u})-PBD.
2. If u ∈ {0, 1}, then there is a (3t + u, {3, 4, t})-PBD.

Proof. Apply Lemma 7.2 using the fact that a TD(4, t) exists if and only if
t �= 2, 6. ⊓⊔

Now we prove the main result of Step 2.

Theorem 7.24. B({3, 4, 6}) = {n ≥ 3 : n ≡ 0, 1 (mod 3)}.
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Proof. First, we compute α({3, 4, 6}) = 1 and β({3, 4, 6}) = 6. Therefore, by
Lemma 7.7, it follows that

B({3, 4, 6}) ⊆ {n ≥ 3 : n ≡ 0, 1 (mod 3)}.

By constructing appropriate (v, {3, 4, 6})-PBDs, we will show that

B({3, 4, 6}) = {n ≥ 3 : n ≡ 0, 1 (mod 3)}.

Our proof is by induction. Suppose that v0 ≡ 0 or 1 (mod 3), v0 ≥ 3,
and, as an induction hypothesis, suppose that v ∈ B({3, 4, 6}) for v ≡ 0 or
1 (mod 3), 3 ≤ v ≤ v0. Clearly this is true for v0 = 3, 4, and 6, which we
can take as base cases for the induction. Now, assuming that v0 ≥ 7, we will
prove that a (v0, {3, 4, 6})-PBD exists.

If v0 ∈ {7, 18, 19}, then apply Lemma 7.22. Otherwise, write v0 in the form
v0 = 9s + j, where j ∈ {0, 1, 3, 4, 6, 7}, and apply Lemma 7.23 with values t
and u as indicated in the following table:

v0 = 3t + u
9s = 3(3s), s ≥ 1, s �= 2
9s + 1 = 3(3s) + 1, s ≥ 1, s �= 2
9s + 3 = 3(3s + 1), s ≥ 1
9s + 4 = 3(3s + 1) + 1, s ≥ 1
9s + 6 = 3(3s + 1) + 3, s ≥ 1
9s + 7 = 3(3s + 1) + 4, s ≥ 1.

We therefore construct a (v0, {3, 4, t})-PBD. By induction, we have that t ∈
B({3, 4, 6}), and hence Lemma 7.10 shows that v0 ∈ B({3, 4, 6}). This com-
pletes the proof. ⊓⊔

Step 3

At this point, we have shown the following:

{3, 4, 6} ⊆ R3, in Step 1

B({3, 4, 6}) = {n ≥ 3 : n ≡ 0, 1 (mod 3)}, in Step 2, and

R3 ⊆ {n ≥ 3 : n ≡ 0, 1 (mod 3)}.

Clearly, {3, 4, 6} ⊆ R3 implies that B({3, 4, 6}) ⊆ B(R3). Also, B(R3) = R3

because R3 is PBD-closed. It therefore follows that

{n ≥ 3 : n ≡ 0, 1 (mod 3)} = B({3, 4, 6})
⊆ B(R3)

= R3

⊆ {n ≥ 3 : n ≡ 0, 1 (mod 3)}.

Hence,
R3 = {n ≥ 3 : n ≡ 0, 1 (mod 3)},

and we have proven the following theorem.
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Theorem 7.25. There exists an STS(v) (i.e., a (v, 3, 1)-BIBD) if and only if v ≡ 1
or 3 (mod 6), v ≥ 7.

7.4 (v, 4, 1)-BIBDs

In this section, we use similar techniques to study (v, 4, 1)-BIBDs. The neces-
sary numerical conditions for the existence of a (v, 4, 1)-BIBD are that v ≡ 1
or 4 (mod 12), v ≥ 13. Defining r = (v − 1)/3, these conditions can be re-
stated as r ≡ 0 or 1 (mod 4), r ≥ 4. Therefore we have that

R4 ⊆ {n ≥ 4 : n ≡ 0, 1 (mod 4)}.

We will prove that R4 = {n ≥ 4 : n ≡ 0, 1 (mod 4)}.
We will carry out the proof in three steps in a fashion similar to the proof

in Section 7.3.

Step 1

The first step is to find some small elements of the set R4. We have the fol-
lowing:

• A projective plane of order 3 exists. This design is a (13, 4, 1)-BIBD, so
4 ∈ R4.

• An affine plane of order 4 exists. This design is a (16, 4, 1)-BIBD, so 5 ∈ R4.
• Example 7.26 displays a (25, 4, 1)-difference family. This yields a (25, 4, 1)-

BIBD, and therefore 8 ∈ R4.
• In Example 7.27, we present a group-divisible design with nine groups of

size three and blocks of size four. Then, Lemma 7.16 establishes that there
is a (28, 4, 1)-BIBD, and hence 9 ∈ R4.

• Example 7.28 presents a (37, 4, 1)-difference family, which gives rise to a
(37, 4, 1)-BIBD. This ensures that 12 ∈ R4.

Example 7.26. A (25, 4, 1)-difference family in (Z5 × Z5, +). There are two
base blocks, namely

{(0, 0), (0, 1), (1, 0), (2, 2)} and {(0, 0), (0, 2), (2, 0), (4, 4)}.

Example 7.27. A group-divisible design with nine groups of size three and
blocks of size four. The set of points is Z3 × Z3 × Z3, and the nine groups
of the GDD are {(x, y, z) : z ∈ Z3}, x, y ∈ Z3. The blocks are obtained by
developing the following two base blocks through the additive group Z3 ×
Z3 × Z3:

{(0, 0, 0), (0, 2, 0), (1, 1, 1), (2, 1, 1)} and {(0, 0, 0), (1, 0, 2), (0, 1, 2), (1, 1, 0)}.
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Example 7.28. A (37, 4, 1)-difference family in (Z37, +). There are three base
blocks, namely

{0, 1, 3, 24}, {0, 10, 18, 30}, and {0, 4, 26, 32}.

The preceding examples and discussion establish the following lemma.

Lemma 7.29. {4, 5, 8, 9, 12} ⊆ R4.

Step 2

The second step is to construct (v, {4, 5, 8, 9, 12})-PBDs. We will mainly use
truncated transversal designs to prove the following result.

Theorem 7.30.

B({4, 5, 8, 9, 12}) = {n ≥ 4, n ≡ 0, 1 (mod 4)}.

Proof. First, we compute α({4, 5, 8, 9, 12}) = 1 and β({4, 5, 8, 9, 12}) = 4.
Therefore, by Lemma 7.7, it follows that

B({4, 5, 8, 9, 12}) ⊆ {n ≥ 4 : n ≡ 0, 1 (mod 4)}.

By constructing appropriate (v, {4, 5, 8, 9, 12})-PBDs, we will show that

B({4, 5, 8, 9, 12}) = {n ≥ 4, n ≡ 0, 1 (mod 4)}.

Our proof is by induction. Suppose that v0 ≡ 0 or 1 (mod 4), v0 ≥ 4, and,
as an induction hypothesis, suppose that v ∈ B({4, 5, 8, 9, 12}) for v ≡ 0 or 1
(mod 4), 4 ≤ v ≤ v0. Clearly this is true for v0 = 4, 5, 8, 9, and 12, which we
can take as base cases for the induction. Now, assuming that v0 ≥ 13, we will
prove that a (v0, {4, 5, 8, 9, 12})-PBD exists.

We will handle several small values of v0 as special cases, namely

v0 ∈ S = {13, 28, 29, 41, 44, 45, 48, 49},

as follows:

• A (13, 4, 1)-BIBD (i.e., a projective plane of order 3) is a (13, {4})-PBD.
• A (28, 4, 1)-BIBD (see Example 7.27) is a (28, {4})-PBD.
• A TD(4, 7) with a new point added to each group yields a (29, {4, 8})-PBD

(see Lemma 7.16).
• A (41, {4, 5, 9})-PBD exists by truncating four points from a group of a

TD(5, 9) (i.e., apply Lemma 7.2, noting that a TD(5, 9) exists from Theo-
rem 6.34).

• A (44, {4, 5, 8, 9})-PBD exists by truncating one point from a group of a
TD(5, 9) and applying Lemma 7.2.
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v0 = 4t + u

48s = 4(12s − 4) + 16, s ≥ 2
48s + 1 = 4(12s − 4) + 17, s ≥ 2
48s + 4 = 4(12s + 1), s ≥ 1
48s + 5 = 4(12s + 1) + 1, s ≥ 1
48s + 8 = 4(12s + 1) + 4, s ≥ 1
48s + 9 = 4(12s + 1) + 5, s ≥ 1
48s + 12 = 4(12s + 1) + 8, s ≥ 1
48s + 13 = 4(12s + 1) + 9, s ≥ 1
48s + 16 = 4(12s + 4)
48s + 17 = 4(12s + 4) + 1
48s + 20 = 4(12s + 5)
48s + 21 = 4(12s + 5) + 1
48s + 24 = 4(12s + 5) + 4
48s + 25 = 4(12s + 5) + 5
48s + 28 = 4(12s + 5) + 8, s ≥ 1
48s + 29 = 4(12s + 5) + 9, s ≥ 1
48s + 32 = 4(12s + 8)
48s + 33 = 4(12s + 8) + 1
48s + 36 = 4(12s + 8) + 4
48s + 37 = 4(12s + 8) + 5
48s + 40 = 4(12s + 8) + 8
48s + 41 = 4(12s + 8) + 9, s ≥ 1
48s + 44 = 4(12s + 8) + 12, s ≥ 1
48s + 45 = 4(12s + 8) + 13, s ≥ 1

Table 7.1. Constructions for Truncated Transversal Designs

• A TD(5, 9) yields a (45, {5, 9})-PBD (apply Lemma 7.15).
• A TD(4, 12) yields a (48, {4, 12})-PBD (apply Lemma 7.15).
• A TD(4, 12) with a new point added to each group yields a (49, {4, 13})-

PBD (see Lemma 7.16). Since there is a (13, {4})-PBD (i.e., a (13, 4, 1)-
BIBD), a (49, {4})-PBD exists by Lemma 7.10.

If v0 �∈ S, then write v0 in the form v0 = 48s + j, where j ≡ 0 or 1 (mod 4)
and 0 ≤ j ≤ 45. Then we construct a truncated transversal design by delet-
ing t − u points from a group of a TD(5, t), where the values t and u are as
indicated in Table 7.1. In each case, we have v0 = 4t + u, where t ≡ 1, 4, 5, or
8 (mod 12), 0 ≤ u ≤ t, and u ≡ 0 or 1 (mod 4).

For these values of t and u, we can apply Lemma 7.2, noting that a
TD(5, t) exists from Corollary 6.35.

The pairwise balanced design that results is a (v0, {4, 5, 8, 9, 12, t, u})-PBD

where t ≡ 0 or 1 (mod 4) and 4 ≤ u ≤ 17 or a (v0, {4, 5, 8, 9, 12, t})-PBD if
u = 0 or 1. By induction, we have that t ∈ B({4, 5, 8, 9, 12}). If u = 13, 16,
or 17, then u ∈ B({4, 5}). In every case, it follows from Lemma 7.10 that
v0 ∈ B({4, 5, 8, 9, 12}), and the proof is complete.

⊓⊔



170 7 Pairwise Balanced Designs I

Step 3

Summarizing in a fashion similar to Step 3 in Section 7.3, the following exis-
tence result concerning (v, 4, 1)-BIBDs can be proven. (The reader can fill in
the details.)

Theorem 7.31. There exists a (v, 4, 1)-BIBD if and only if v ≡ 1 or 4 (mod 12)
and v ≥ 13.

7.5 Kirkman Triple Systems

We now turn our attention to resolvable (v, 3, 1)-BIBDs. A resolvable (v, 3, 1)-
BIBD is known as a Kirkman triple system (of order v) in honor of the Rev.
Thomas Kirkman, who posed the problem of constructing resolvable (v, 3, 1)-
BIBDs in the mid-nineteenth century. The case v = 15 came to be known as
the “15 schoolgirls problem”, and several solutions were found. However,
for general v, the problem remained unsolved for over 100 years.

A resolvable (v, 3, 1)-BIBD will be denoted a KTS(v). Using PBD tech-
niques, we will give a complete proof that a KTS(v) exists for all integers
v ≡ 3 (mod 6), v ≥ 9. First, we need to prove a variation of Theorem 7.20 that
pertains to resolvable BIBDs. This theorem will make use of group-divisible
designs that satisfy certain resolvability properties that we define now.

Definition 7.32. Suppose that (X, G,B) is a group-divisible design. Let G ∈ G. A
holey parallel class with hole G is a subset of blocks B0 ⊆ B that partitions X\G.

Now suppose that (X, G,B) is a group-divisible design with r groups of size
k − 1 and blocks of size k. Denote the groups as G1, . . . , Gr. Suppose there exist r
holey parallel classes, say Π1, . . . , Πr, that satisfy the following properties.

1. For 1 ≤ i ≤ r, Πi is a holey parallel class with hole Gi.
2. Every block B ∈ B is in exactly one of the Πi’s.

Then (X, G,B) is said to be a k-frame on r holes.

Lemma 7.33. There exists a resolvable (v, k, 1)-BIBD if and only if there exists a
k-frame on r holes, where r = (v − 1)/(k − 1).

Proof. Let Π1, . . . , Πr be the parallel classes of a resolvable (v, k, 1)-BIBD,
where r = (v − 1)/(k − 1). Choose any point x, and form groups and blocks
of a group-divisible design as in the proof of Lemma 7.18. We need to show
that the set of blocks of this group-divisible design can be partitioned into
holey parallel classes. For 1 ≤ i ≤ r, there is a unique block Bi ∈ Πi such
that x ∈ Bi. Define the ith group to be Gi = Bi\{x}, and define the ith holey
parallel class to be Π′

i = Πi\{Bi}. The result is easily seen to be a k-frame on
r holes.

The converse is proven by adding a new point to each group, as in The-
orem 7.18. A parallel class of the resulting BIBD is just a parallel class of the



7.5 Kirkman Triple Systems 171

frame, together with its corresponding hole, augmented with the new point.
⊓⊔

Example 7.34. The following KTS(9) was presented in Example 1.4:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}.

The parallel classes are

Π1 = {123, 456, 789},

Π2 = {147, 258, 369},

Π3 = {159, 267, 348}, and

Π4 = {168, 249, 357}.

Take x = 1 in Lemma 7.33, and construct a 3-frame with four holes. The
holes are 23, 47, 59, and 68, and the corresponding holey parallel classes are
(respectively)

Π′
1 = {456, 789},

Π′
2 = {258, 369},

Π′
3 = {267, 348}, and

Π′
4 = {249, 357}.

We now prove an analogue of Theorem 7.20 for resolvable BIBDs.

Theorem 7.35. Suppose k ≥ 2, and define

R∗
k = {r : there exists a resolvable (r(k − 1) + 1, k, 1)-BIBD}.

Then R∗
k is PBD-closed.

Proof. Let (X,A) be any (v, R∗
k)-PBD. We will show that there exists a re-

solvable (v(k − 1) + 1, k, 1)-BIBD. The BIBD can be constructed exactly in the
proof of Theorem 7.20, so our main task is to show that this BIBD is resolv-
able.

For every block A ∈ A, there exists a resolvable (|A|(k − 1) + 1, k, 1)-
BIBD. By Lemma 7.33, this BIBD is equivalent to a k-frame on |A| holes. We
can construct this group-divisible design on point set A × I such that the
groups are {x} × I, x ∈ A, where |I| = k − 1. For all x ∈ A, let ΠA,x denote
the holey parallel class with hole {x} × I.

By Theorem 7.20, we obtain a group-divisible design on point set Y =
X × I in which the groups are {{x} × I : x ∈ X} and where the blocks all
have size k. For all x ∈ X, define



172 7 Pairwise Balanced Designs I

Πx =
⋃

{A∈A:x∈A}
ΠA,x.

It is not hard to see that Πx is a holey parallel class with hole {x} × I. It
is also straightforward to see that each block of the group-divisible design
occurs in exactly one of the Πx’s. Therefore we have constructed a k-frame
on v holes. Applying Lemma 7.33, we have a resolvable (v(k − 1) + 1, k, 1)-
BIBD, as desired. ⊓⊔

As mentioned earlier, the necessary numerical conditions for the exis-
tence of a KTS(v) are that v ≡ 3 (mod 6). Defining r = (v − 1)/2, this can be
restated as r ≡ 1 (mod 3). Therefore we have that

R∗
3 ⊆ {n ≥ 4 : n ≡ 1 (mod 3)}.

We will give a proof in this section that R∗
3 = {n ≥ 4 : n ≡ 1 (mod 3)}. We

employ a three-step strategy similar to the one used in previous sections.

Step 1

We begin with a direct construction for an infinite class of Kirkman triple
systems.

Lemma 7.36. If q ≡ 1 (mod 6) is a prime power, then there exists a KTS(2q + 1).

Proof. Let q = 6t + 1 and let α ∈ Fq be a primitive element. Let θ = (αt +

1)2−1. Now define X = (Fq × {1, 2}) ∪ {∞}. Start with the following set of
blocks, which is in fact a parallel class:

Π0 = {{∞, (0, 1), (0, 2)}}
∪ {{(αi, 1), (αi+t, 1), (θαi, 2)} : 0 ≤ i ≤ t − 1}
∪ {{(αi, 1), (αi+t, 1), (θαi, 2)} : 2t ≤ i ≤ 3t − 1}
∪ {{(αi, 1), (αi+t, 1), (θαi, 2)} : 4t ≤ i ≤ 5t − 1}
∪ {{(θαi+t, 2), (θαi+3t, 2), (θαi+5t, 2)} : 0 ≤ i ≤ t − 1}.

The other parallel classes are obtained by developing this base class through
Fq. It can be shown that the resulting design is a KTS(2q + 1). ⊓⊔

Example 7.37. A KTS(15). α = 3 is a primitive element in Z7, and then we
compute θ = (3 + 1)2−1 = 2. Then

Π0 =

{
{∞, (0, 1), (0, 2)}, {(1, 1), (3, 1), (2, 2)}, {(2, 1), (6, 1), (4, 2)},
{(4, 1), (5, 1), (1, 2)}, {(6, 2), (5, 2), (3, 2)}

}
.
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Lemma 7.38. There exist KTS(v) for v ∈ {9, 15, 21, 39}; hence {4, 7, 10, 19} ⊆
R∗

3.

Proof. An affine plane of order 3 is a KTS(9). KTS(15) and KTS(39) are spe-
cial cases of Lemma 7.36. We construct a KTS(21) now. Let X = Z7 × Z3.
First, define

Π0 =





{(0, 0), (0, 1), (0, 2)}, {(3, 0), (6, 0), (5, 0)}, {(3, 1), (6, 1), (5, 1)},
{(3, 2), (6, 2), (5, 2)}, {(2, 0), (4, 1), (1, 2)}, {(2, 1), (4, 2), (1, 0)},
{(2, 2), (4, 0), (1, 1)}



 ,

and define Πi = (i, 0) + Π0 for i ∈ Z7. Next, define

Ψ0 =





{(3, 0), (6, 1), (5, 2)}, {(4, 0), (0, 1), (6, 2)}, {(5, 1), (1, 2), (0, 0)},
{(6, 2), (2, 0), (1, 1)}, {(0, 0), (3, 1), (2, 2)}, {(1, 0), (4, 1), (3, 2)},
{(2, 1), (5, 2), (4, 0)}



 ,

and define Ψj = (0, j) + Ψ0 for j ∈ Z3. The ten sets Πi (i ∈ Z7) and Ψj

(j ∈ Z3) are the parallel classes of a resolvable (21, 3, 1)-BIBD. ⊓⊔

Step 2

The second step is to construct (v, {4, 7, 10, 19})-PBDs for all v ≡ 1 (mod 3).
In order to do this, we will make use of a powerful recursive construction for
group-divisible designs known as “Wilson’s construction for GDDs”.

Theorem 7.39 (Wilson’s Construction for GDDs). Suppose that (X, G,A) is
a group-divisible design. Let w be a positive integer and let I be a set of size w.
Suppose that K ⊆ {n ∈ Z : n ≥ 2} and, for every A ∈ A, suppose that there is a
group-divisible design having |A| groups of size w and all block sizes in K, say

(A × I, {{x} × I : x ∈ A},BA).

Define

Y = X × I,

H = {G × I : G ∈ G}, and

B =
⋃

A∈A
BA.

Then (Y,H,B) is a group-divisible design such that |B| ∈ K for all B ∈ B.

Proof. Clearly |B| ∈ K for all B ∈ B, so we just need to verify that (Y,H,B)
is a group-divisible design. Take two points from different groups, say (x, i)
and (y, j), where x �= y. There is a unique block A ∈ A such that x, y ∈ A.
Then there is a unique block B ∈ BA such that (x, i), (y, j) ∈ B. ⊓⊔
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We have already used a form of Theorem 7.39 in the proof of Theorem
7.20, where the main step in the construction can be viewed as an application
of Wilson’s construction in which w = k − 1.

We will make essential use of the following corollary of Theorem 7.39,
which provides constructions for group-divisible designs having blocks of
size 4.

Corollary 7.40. Suppose there is a TD(5, t) and 0 ≤ u ≤ t. Then there exists a
group-divisible design on 3(4t + u) points, having four groups of size 3t and one
group of size 3u and blocks of size four.

Proof. First, construct a truncated transversal design having four groups of
size t and one group of size u and blocks of sizes four and five. Then, apply
Theorem 7.39 with w = 3 and K = {4}. We require group-divisible designs
with four and five groups of size three and blocks of size four. These are
obtained from (13, 4, 1)- and (16, 4, 1)-BIBDs by applying Lemma 7.18. The
result follows. ⊓⊔

We now construct the necessary (v, {4, 7, 10, 19})-PBDs. We do this in sev-
eral steps.

Lemma 7.41. Suppose n ≥ 0 is an integer such that

n �∈ T = {0, 1, 2, 3, 6, 7, . . . , 19, 26, 27, 36, 37, . . . , 43, 66, 67}.

Then there exists a (3n + 1, {3t + 1, 3u + 1, 4})-PBD for some integers t, u ≥ 0.

Proof. Write n = 24m + j, where 4 ≤ j ≤ 27 (this can be done uniquely). If
4 ≤ j ≤ 19, then take t = 6m + 1 and u = j − 4; if 20 ≤ j ≤ 27, then take t =
6m + 5 and u = j − 20. In each case, we have that n = 4t + u, and a TD(5, t)
exists by Theorem 6.34 since gcd(t, 2) = gcd(t, 3) = 1. It is straightforward
to verify that t ≥ u if and only if n �∈ T. Therefore, it follows from Corollary
7.40 that, if n �∈ T, then there is a group-divisible design on 3n points, which
has four groups of size 3t and one group of size 3u and blocks of size four.
Applying Lemma 7.16, we see that there is a (3n + 1, {3t + 1, 3u + 1, 4})-PBD

for these values of n. ⊓⊔

Lemma 7.42. Suppose that

n ∈ {16, 17, 18, 19, 36, 37, . . . , 43, 66, 67}.

Then there exists a (3n + 1, {3t + 1, 3u + 1, 4})-PBD for some integers t, u ≥ 0.

Proof. For 16 ≤ n ≤ 19, take t = 4; for 36 ≤ n ≤ 43, take t = 9; and for
n = 66, 67, take t = 16. Let u = n − 4t. In each case, we have that n = 4t + u,
where 0 ≤ u ≤ t, and a TD(5, t) exists by Theorem 6.34. Then, proceed as in
the proof of Lemma 7.41. ⊓⊔
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Lemma 7.43. Suppose that

n ∈ {6, . . . , 15, 26, 27}.

Then there exists a (3n + 1, {4, 7, 10})-PBD.

Proof. For n = 8, 9, 12, 13, there is a (3n + 1, 4, 1)-BIBD by Theorem 7.30.
For n = 7, 10, start with resolvable (2n + 1, 3, 1)-BIBDs, which exist by

Lemma 7.38. Then apply Lemma 7.3.
For n = 15, 27, start with (n + 1, 4, 1)-BIBDs, which exist by Theorem 7.30.

Apply Lemma 7.18 to obtain a group-divisible design with n/3 groups of size
three and blocks of size four. Then apply Theorem 7.39 with w = 3, using as
ingredients group-divisible designs with four groups of size three and blocks
of size four (these arise from (13, 4, 1)-BIBDs using Theorem 7.30). The result
is a group-divisible design with n/3 groups of size nine and blocks of size
four. Then apply Lemma 7.16 to obtain (3n + 1, {4, 10})-PBDs.

The cases n = 14, 26 are done in a similar fashion. We begin with group-
divisible designs having n/2 groups of size two and blocks of size four,
which are presented in Examples 7.44 and 7.45, respectively. Then proceed
exactly as in the cases n = 15, 27, obtaining group-divisible designs with n/2
groups of size six and blocks of size four. Then apply Lemma 7.16 to obtain
(3n + 1, {4, 7})-PBDs.

The final case is n = 11. A (34, {4, 7})-PBD is constructed in Example
7.46. ⊓⊔

Example 7.44. A group-divisible design (X, G,A) having seven groups of size
two and blocks of size four. X = Z14,

G = {{0, 7}, {1, 8}, . . . , {6, 13}},

and
A = {{0, 2, 5, 6}+ i : i ∈ Z14}.

Example 7.45. A group-divisible design (X, G,A) having 13 groups of size
two and blocks of size four. X = Z26,

G = {{0, 13}, {1, 14}, . . . , {12, 25}},

and
A = {{0, 6, 8, 9}+ i, {0, 4, 11, 16}+ i, : i ∈ Z26}.

Example 7.46. A (34, {4, 7})-PBD. Define X = Z9 ×Z3, and define the follow-
ing four sets of blocks of sizes three and four:
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A1 = {{(0, 0), (2, 1), (2, 2), (3, 2)}+ (i, j) : (i, j) ∈ Z9 × Z3}
A2 = {{(0, 0), (3, 1), (5, 1)}+ (i, j) : (i, j) ∈ Z9 × Z3}
A3 = {{(0, 0), (4, 1), (8, 1)}+ (i, j) : (i, j) ∈ Z9 × Z3}
A4 = {{(0, 0), (3, 0), (6, 0)}+ (i, j) : i = 0, 1, 2, j ∈ Z3}.

It is not hard to check that (X,A1 ∪A2 ∪A3 ∪A4) is a (27, {3, 4})-PBD. Now,
A4 is a parallel class, and it is not difficult to show that each of A2 and A3 can
be partitioned into three parallel classes. We obtain a total of seven parallel
classes, which we name Πi, i = 1, . . . , 7. Adjoin a new point ∞i to each block
in Πi, for 1 ≤ i ≤ 7, and denote the modified parallel classes as Π′

i, i =
1, . . . , 7. Then create a new block of size seven, namely Ω = {∞1 . . . , ∞7}. It
is clear that (Y,B) is a (34, {4, 7})-PBD, where Y = X ∪ Ω and

B = A1

⋃( 7⋃

i=1

Π′
i

)⋃
{Ω}.

Theorem 7.47. There exists a (v, {4, 7, 10, 19})-PBD for all v ≡ 1 (mod 3), v ≥
4.

Proof. The proof is by induction on v. Clearly there exists a (v, {4, 7, 10, 19})-
PBD if v ∈ {4, 7, 10, 19}. Denote n = (v − 1)/3. If n ∈ T\{4, 7, 10, 19}, then
apply Lemma 7.42 or 7.43 to obtain the desired pairwise balanced design. If
n �∈ T, then apply Lemma 7.41 to obtain a (3n + 1, {3t + 1, 3u + 1, 4})-PBD

for some integers t ≥ 1, u ≥ 0. By induction, 3t + 1, 3u + 1 ∈ B({4, 7, 10, 19})
(or 3u + 1 = 1), so it follows from Lemma 7.10 that v ∈ B({4, 7, 10, 19})
by ignoring blocks of size one if they are present. By induction, the proof is
complete.

⊓⊔

Step 3

Summarizing, here is the main existence result concerning Kirkman triple
systems.

Theorem 7.48. There exists a KTS(v) if and only if v ≡ 3 (mod 6) and v ≥ 9.

Proof. We have already discussed the necessary conditions. Sufficiency fol-
lows from Theorem 7.35, Lemma 7.38, and Theorem 7.47. ⊓⊔

7.6 Notes and References

Much recent information on pairwise balanced designs can be found in Sec-
tion III of “The CRC Handbook of Combinatorial Designs” [27].
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Haim Hanani was a pioneer in the use of pairwise balanced designs and
their application to the construction of PBDs. Theorem 7.31 was proven by
Hanani in [57].

Frames were first defined formally in Stinson [102], although the use of
these objects is implicit in earlier work of Hanani. Furino, Miao, and Yin
[46] is a monograph on frames and their application to the construction of
resolvable designs.

Wilson wrote a series of three important papers [118, 119, 123] in which
he proved that the necessary numerical conditions for existence of a (v, K)-
PBD (Lemma 7.7) are asymptotically sufficient (i.e., the necessary conditions
are sufficient for v > cK, where cK is a constant depending on K). Theorem
7.39 is from Wilson [122], and Theorem 7.48 is due to Ray-Chaudhuri and
Wilson [84].

7.7 Exercises

7.1 Describe how to construct the following PBDs.
(a) a (31, {4, 10})-PBD.
(b) a (31, {3, 15})-PBD.
(c) a (31, {3, 5})-PBD.
(d) a (31, {3, 11})-PBD.
(e) a (36, {5, 8})-PBD.
(f) a (36, {4, 9})-PBD.
(g) a (36, {3, 4})-PBD.
(h) a (33, {4, 5, 7})-PBD.
(i) a (49, {4, 5, 9})-PBD.
(j) a (49, {6, 9})-PBD.
(k) a (49, {3, 6})-PBD.

7.2 Suppose that a TD(k, t) exists, and let 2 ≤ u ≤ k. Prove that a (k(t −
1) + u, {k, k − 1, t, t − 1, u})-PBD exists.
Hint: Delete points from a block of the given transversal design.

7.3 Using the facts that R3 is PBD-closed, 3 ∈ R3, and a (9, 3, 1)-BIBD exists,
construct a (19, 3, 1)-BIBD.

7.4 Given any (v, 3, 1)-BIBD, say (X,A), describe how to construct a (2v +
1, 3, 1)-BIBD, say (Y,B), where X ⊆ Y and A ⊆ B.

7.5 Suppose there is a GDD, say (X, G,A), such that all blocks have size k
and all groups have size m. Denote |X| = v. Prove that the following
hold:

(a) v ≡ 0 (mod m),
(b) v ≥ mk,
(c) v − m ≡ 0 (mod k − 1), and
(d) v(v − m) ≡ 0 (mod k2 − k).
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7.6 A GDD is resolvable if the set of blocks of the GDD can be partitioned
into parallel classes. Prove that every group in a resolvable GDD has
the same size.

7.7 Use any method you wish to construct a (15, 3, 1)-BIBD, and then con-
struct a 3-frame on seven holes from this BIBD.

7.8 (a) Prove that 6 �∈ B({3, 4}).
(b) Prove that B({3, 4}) ⊆ {n ≥ 3 : n ≡ 0, 1 (mod 3)}.
(c) Give a complete proof that

B({3, 4}) = {n ≥ 3 : n ≡ 0, 1 (mod 3), n �= 6}.

7.9 Let K = {3, 4, 5, 6, 8}. Assume that there exists a (v, K)-PBD for all 3 ≤
v ≤ 25. Then use (truncated) transversal designs and induction to give
a complete proof that there exists a (v, K)-PBD for all v ≥ 3.
Hint: Use the fact that a TD(4, n) exists for all positive integers n �= 2, 6.

7.10 (a) A GRS(v, 2, 1), say R, is standardized if there exists a special sym-
bol, say ∞, such that ∞ occurs in the cells on the main diagonal
of R. Prove that any GRS(v, 2, 1) can be transformed into a stan-
dardized GRS(v, 2, 1) by means of an appropriate permutation
of the columns of R.

(b) Define S = {v − 1 : a standardized GRS(v, 2, 1) exists}. Prove
that S is PBD-closed.
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Pairwise Balanced Designs II: Minimal Designs

In the previous chapter, we studied constructions of pairwise balanced de-
signs whose block sizes are required to be elements of a specified set of inte-
gers. In this chapter, we consider the problem of determining the minimum
number of blocks in pairwise balanced designs in which the maximum size
of a block is specified or in which the size of a particular block is specified.

For a pairwise balanced design, (X,A), we will generally denote b = |A|
(i.e., b is the number of blocks in the PBD).

8.1 The Stanton-Kalbfleisch Bound

Theorem 8.1 (Stanton-Kalbfleisch Bound). Let k and v be integers such that
2 ≤ k < v. Suppose there is a (v, {2, . . . , v − 1})-PBD in which there exists a block
containing exactly k points. Then

b ≥ SK(k, v) = 1 +
k2(v − k)

v − 1
.

Proof. Suppose that (X,A) is a (v, {2, . . . , v − 1})-PBD such that A ∈ A is
a block containing exactly k points. Denote the blocks of A by A1, . . . , Ab,
where Ab = A.

Now construct a set system (Y,B) by deleting all the points in the block
Ab as follows:

Y = X\Ab,

Bi = Ai\Ab, 1 ≤ i ≤ b − 1, and

B = {Bi : 1 ≤ i ≤ b − 1}.

(Y,B) is a set system with v − k points and b − 1 blocks in which every pair
of points occurs in a unique block. (This set system may contain blocks of
size one, so it need not be a PBD.)
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For 1 ≤ i ≤ b − 1, denote ki = |Bi|. Note that ki = |Ai| or ki = |Ai| − 1 for
1 ≤ i ≤ b − 1. Furthermore, ki = |Ai| − 1 if and only if Ai intersects Ab in a
point.

Denote the points in Y by yj, 1 ≤ j ≤ v − k. For 1 ≤ j ≤ v − k, define
rj = |{Bi ∈ B : yj ∈ Bi}|. Then a straightforward generalization of Theorem
1.8 shows that

b−1

∑
i=1

ki =
v−k

∑
j=1

rj. (8.1)

Now, in the pairwise balanced design (X,A), every point yj must occur
in a unique block with each of the points in Ab. Hence rj ≥ k for all j, 1 ≤ j ≤
v − k. Substituting into (8.1), it follows that

b−1

∑
i=1

ki ≥ k(v − k). (8.2)

Every pair of points in Y occurs in exactly one of the Bi’s, so it follows that

b−1

∑
i=1

ki(ki − 1) = (v − k)(v − k − 1). (8.3)

Denote the mean of the integers k1, . . . , kb−1 to be

k =
∑

b−1
i=1 ki

b − 1
. (8.4)

Now we study the quantity

S =
b−1

∑
i=1

(ki − k)2.

We can use equations (8.3) and (8.4) to derive a formula for S:

S =
b−1

∑
i=1

ki
2 − 2k

b−1

∑
i=1

ki + (b − 1)(k)2

=
b−1

∑
i=1

ki(ki − 1) − (2k − 1)
b−1

∑
i=1

ki + (b − 1)(k)2

= (v − k)(v − k − 1) − (2k − 1)(b − 1)(k) + (b − 1)(k)2

= (v − k)(v − k − 1) − (b − 1)k(k − 1).

Also, we observe that S is a sum of nonnegative terms, so clearly S ≥ 0.
Therefore we have that

0 ≤ (v − k)(v − k − 1) − (b − 1)k(k − 1). (8.5)
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We have that k ≥ 1 because ki ≥ 1 for all i, and hence, from (8.2), we have
that

k(k − 1) ≥
(

k(v − k)

b − 1

)(
k(v − k)

b − 1
− 1

)
.

Substituting into (8.5), we obtain

0 ≤ (v − k)(v − k − 1) − (b − 1)

(
k(v − k)

b − 1

)(
k(v − k)

b − 1
− 1

)
.

Dividing by a factor of v − k and simplifying, we obtain

0 ≤ v − k − 1 −
(

k

b − 1

)
(k(v − k) − (b − 1))

= v − 1 − k2(v − k)

b − 1
.

Hence,

b ≥ 1 +
k2(v − k)

v − 1
.

⊓⊔

When 2 ≤ k ≤ v − 2, the case of equality in the bound above can be
characterized in a very nice way. We prove the following theorem.

Theorem 8.2. Suppose that k and v are integers such that 2 ≤ k ≤ v − 2. Then
there is a (v, {2, . . . , v − 1})-PBD with SK(k, v) blocks and having a block contain-
ing exactly k points if and only if there is a resolvable (v − k, (v − 1)/k, 1)-BIBD.

Proof. Suppose there is a (v, {2, . . . , v − 1})-PBD with SK(k, v) blocks and
having a block containing exactly k points. We use the same notation as in
the proof of Theorem 8.1. Since all inequalities in the proof of Theorem 8.1
must be equalities, the following conditions hold:

• b − 1 = k2(v − k)/(v − 1),
• ki = k = k(v − k)/(b − 1) for 1 ≤ i ≤ b − 1, and
• rj = k for 1 ≤ j ≤ v − k.

These conditions imply that k(v − k)/(b − 1) = (v − 1)/k. Because v > k + 1,
it follows that v − k > (v − 1)/k > 1, and therefore the set system (Y,B) is a
(v − k, (v − 1)/k, 1)-BIBD.

We now show that (Y,B) is resolvable. For each point x ∈ Ab, let A(x)
denote the blocks in A that contain the point x, and let B(x) denote the cor-
responding blocks in B (obtained by deleting x from each block in A(x)). It
is obvious that each set of blocks B(x) is a parallel class. Furthermore, every
block in B is in exactly one of these k = r parallel classes (if there were a block
Bi in B that is not in one of these parallel classes, then each point in Bi would
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occur in more than r blocks, a contradiction). Therefore we have a resolution
of (Y,B).

Conversely, suppose (Y,B) is a resolvable (v − k, (v − 1)/k, 1)-BIBD for
some integers v and k such that 2 ≤ k ≤ v − 2. This BIBD is a (v′, b′, r′, k′, 1)-
BIBD, where

v′ = v − k,

k′ =
v − 1

k
,

r′ = k, and

b′ =
k2(v − k)

v − 1
.

If we apply Lemma 7.3, then we obtain a (v′ + r′, {k′ + 1, r′})-PBD having
b′ + 1 blocks, where r′ = (v′ − 1)/(k′ − 1). This pairwise balanced design has
v points, SK(k, v) blocks, and a block of size k, as desired. ⊓⊔

For v ≥ 4, a near-pencil is a (v, {2, v − 1})-PBD, say (X,A), in which A
contains one block of size v − 1 and v − 1 blocks of size two. A near-pencil
on three points contains three blocks of size two. For all integers v ≥ 4, a
near-pencil on v points exists, and it has v = SK(v − 1, v) blocks.

Given a near-pencil, the set system (Y,B) (constructed in the proof of
Theorem 8.2) would have one point and blocks of size one. It is not a BIBD,
which is why we required that v ≥ k + 2 in Theorem 8.2.

Definition 8.3. Let gk(v) denote the minimum number of blocks in any (v, K, 1)-
PBD in which the largest block has size equal to k.

Define the function

C(k, v) =
v2 − v

k2 − k
.

Then we have the following upper bound on gk(v).

Theorem 8.4.
gk(v) ≥ max {C(k, v), SK(k, v)} .

Proof. Suppose that (X,A) is a pairwise balanced design on v points, having
b blocks and such that the largest block has size k. First, Theorem 8.1 shows
that b ≥ SK(k, v). Second, it is a simple matter to see that b ≥ C(k, v) because

every block in A contains at most
(k

2

)
pairs and all the blocks together contain(v

2

)
pairs. Finally, because b ≥ SK(k, v) and b ≥ C(k, v), it follows that b must

be at least as big as the maximum of these two numbers. ⊓⊔
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8.1.1 The Erdös-de Bruijn Theorem

We next state and prove a famous theorem, due to Erdös and de Bruijn, that
characterizes the nontrivial pairwise balanced designs with λ = 1 having the
minimum possible number of blocks.

Theorem 8.5 (Erdös-de Bruijn Theorem). Let (X,A) be a (v, {2, . . . , v − 1})-
PBD, and suppose that the number of blocks in the PBD is denoted by b. Then b ≥ v.
Furthermore, b = v if and only if (X,A) is a projective plane or a near-pencil.

Proof. Let k be the size of the largest block in (X,A). If k2 − k + 1 < v, then
k(k − 1) < v − 1, and hence

C(k, v) =
v(v − 1)

k(k − 1)
>

v(v − 1)

v − 1
= v.

In this case, Theorem 8.4 implies that b > v. Therefore we can assume that
k2 − k + 1 ≥ v ≥ k + 1.

Now, let us consider the conditions under which SK(k, v) ≤ v:

SK(k, v) ≤ v

⇐⇒ k2(v − k) ≤ (v − 1)2

⇐⇒ v2 − (k2 + 2)v + k3 + 1 ≥ 0

⇐⇒ (v − (k + 1))(v − (k2 − k + 1)) ≥ 0. (8.6)

Given that k2 − k + 1 ≥ v ≥ k + 1, the inequality (8.6) holds if and only if
v = k + 1 or v = k2 − k + 1. In other words, for k2 − k + 1 ≥ v ≥ k + 1,
SK(k, v) ≥ v, and SK(k, v) = v only if v = k + 1 or v = k2 − k + 1. We further
consider these two possible cases as follows:

1. If v = k + 1 and b = v, then (X,A) is a near-pencil. Conversely, if (X,A)
is a near-pencil, then b = v.

2. Suppose v = k2 − k + 1 and b = v. If k = 2, then v = 3 and we have a near-
pencil. Therefore we can assume that k ≥ 3, and we will show that (X,A)
is a projective plane of order k − 1 as follows. Theorem 8.2 implies that
the design obtained by deleting a block of size k is a (v − k, (v − 1)/k, 1)-
BIBD. This design is a ((k − 1)2, k − 1, 1)-BIBD; i.e., an affine plane of
order k − 1. Therefore (X,A) is a projective plane of order k − 1. Con-
versely, if (X,A) is a projective plane of order k − 1, then it has a longest
block of size k, and b = v.

This completes the proof. ⊓⊔
The proof of Theorem 8.5 was algebraic. It is possible to give a proof

of this result that is more analytic in nature. We illustrate this approach by
graphing the function max {C(k, v), SK(k, v)} when v = 21 in Figure 8.1. This
function is graphed for real values of k ranging from 2 to 20.

Several observations may be made from this graph that can then be gen-
eralized to arbitrary v. We list these observations now.
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Fig. 8.1. Lower Bounds on gk(21) for 2 ≤ k ≤ 20

Lemma 8.6. Suppose that k and v are real numbers such that 2 ≤ k ≤ v − 1. Then
the following hold.

1. If k2 − k + 1 < v, then C(k, v) > SK(k, v); and if k2 − k + 1 > v, then
C(k, v) < SK(k, v).

2. When k2 − k + 1 = v (i.e., when k = (−1 +
√

4v − 3)/2, it holds that

v(v − 1)

k(k − 1)
= SK(k, v) = v.

3. For k ≥ 2, v(v − 1)/(k(k − 1)) is a decreasing function of k.
4. For 2 ≤ k ≤ v − 1, SK(k, v) attains its maximum when k = 2v/3; SK(k, v) is

an increasing function of k when 2 ≤ k < 2v/3; and SK(k, v) is a decreasing
function of k when 2v/3 < k ≤ v − 1.

5. SK(v − 1, v) = v.

These properties are sufficient to give an alternate proof of Theorem 8.5;
we leave the details of this proof (and the proofs of the above-mentioned
properties) to the reader.
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8.2 Improved Bounds

A strengthening of the Stanton-Kalbfleisch bound was given by Stinson. We
prove this result now.

Theorem 8.7 (Stinson Bound). Let k and v be integers such that 2 ≤ k < v.
Suppose there is a (v, {2, . . . , v − 1})-PBD in which there exists a block containing
exactly k points. For any integer t, define

f (t, k, v) = 1 + (v − k)

(
k(2t + 1) − (v − 1)

t2 + t

)
.

Then b ≥ f (t, k, v).

Proof. We use the same notation as in the proof of Theorem 8.1. The proof is
again based on (8.2) and (8.3). Let t be an integer and consider the quantity

S =
b−1

∑
i=1

(ki − t)(ki − (t + 1)).

We use equations (8.2) and (8.3) to derive an upper bound on S:

S =
b−1

∑
i=1

ki
2 − (2t + 1)

b−1

∑
i=1

ki + (b − 1)(t2 + t)

=
b−1

∑
i=1

ki(ki − 1) − 2t
b−1

∑
i=1

ki + (b − 1)(t2 + t)

≤ (v − k)(v − k − 1) − 2tk(v − k) + (b − 1)(t2 + t).

S is a sum of nonnegative terms, so clearly S ≥ 0. Therefore we have that

0 ≤ (v − k)(v − k − 1) − 2tk(v − k) + (b − 1)(t2 + t). (8.7)

Rearranging (8.7), the desired bound is obtained. ⊓⊔

Theorem 8.8. Let t, k, and v be integers such that 2 ≤ k < v. Then the function

f (t, k, v) is maximized when t = ⌊ v−1
k ⌋.

Proof. We compute

f (t, k, v) − f (t − 1, k, v)

= (v − k)

(
k(2t + 1) − (v − 1)

t(t + 1)
− k(2t − 1) − (v − 1)

t(t − 1)

)

=

(
v − k

t

)(
k(2t + 1) − (v − 1)

t + 1
− k(2t − 1) − (v − 1)

t − 1

)
.

It therefore follows that
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f (t, k, v) ≥ f (t − 1, k, v)

⇐⇒ k(2t + 1) − (v − 1)

t + 1
≥ k(2t − 1) − (v − 1)

t − 1

⇐⇒ (k(2t + 1) − (v − 1))(t − 1) ≥ (k(2t − 1) − (v − 1))(t + 1)

⇐⇒ (v − 1)(2t + 1 − (2t − 1)) ≥ k((2t − 1)(t + 1) − (2t + 1)(t − 1))

⇐⇒ 2(v − 1) ≥ 2tk

⇐⇒ t ≤ v − 1

k
.

Because t is an integer, it follows that f (t, k, v) is maximized when t = ⌊ v−1
k ⌋.

⊓⊔

For future reference, define St(k, v) = f (⌊ v−1
k ⌋, k, v).

Theorem 8.9. St(k, v) ≥ SK(k, v) for all integers k and v such that 2 ≤ k < v.
Furthermore, St(k, v) = SK(k, v) if and only if v − 1 ≡ 0 (mod k).

Proof. We consider the conditions under which f (t, k, v) ≥ SK(k, v). We have
that

f (t, k, v) ≥ SK(k, v)

⇐⇒ (v − k)

(
k(2t + 1) − (v − 1)

t2 + t

)
≥ k2(v − k)

v − 1

⇐⇒ k(2t + 1) − (v − 1)

t2 + t
≥ k2

v − 1

⇐⇒ k2(t2 + t) ≤ (v − 1)(k(2t + 1) − (v − 1))

⇐⇒ (k(t + 1) − (v − 1))(kt − (v − 1)) ≤ 0

⇐⇒ v − 1

k
− 1 ≤ t ≤ v − 1

k
.

This last inequality is satisfied when t = ⌊ v−1
k ⌋, and therefore it follows that

St(k, v) ≥ SK(k, v). It is also easy to see that St(k, v) = SK(k, v) if and only if
(v − 1)/k is an integer. ⊓⊔

We can prove yet another bound based on the same inequalities. This
bound is a strengthening of the inequality b ≥ C(k, v), which applies when
the longest block has size k (this inequality was derived in the proof of The-
orem 8.4).

Theorem 8.10. Let k and v be integers such that 2 ≤ k < v. Suppose there is a
(v, {2, . . . , v − 1})-PBD in which the largest block contains exactly k points. Then

b ≥ C∗(k, v) =
v
(

2(k − 1)
⌈

v−1
k−1

⌉
− (v − 1)

)

k2 − k
.
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Proof. Let (X,A) be the hypothesized PBD. Denote the blocks A1, . . . , Ab,
and define ki = |Ai|, for 1 ≤ i ≤ b. Let the points be denoted x1, . . . , xv, and
define rj = |{i : xj ∈ Ai}| for 1 ≤ j ≤ v.

Using the fact that all blocks have size at most k, it is easily seen that
rj ≥ (v − 1)/(k − 1), 1 ≤ j ≤ v. Every rj is an integer, so

rj ≥
⌈

v − 1

k − 1

⌉
.

Therefore we have the inequality

b

∑
i=1

ki ≥ v

⌈
v − 1

k − 1

⌉
. (8.8)

Every pair of points occurs in exactly one block, so it follows that

b

∑
i=1

ki(ki − 1) = v(v − 1). (8.9)

Now, consider the quantity

S =
b

∑
i=1

(ki − (k − 1))(ki − k).

Proceeding as in the proof of Theorem 8.7, we use equations (8.8) and (8.9),
and the fact that S ≥ 0, to derive an upper bound on S:

S =
b

∑
i=1

ki
2 − (2k − 1)

b

∑
i=1

ki + b(k2 − k)

=
b

∑
i=1

ki(ki − 1) − (2k − 2)
b

∑
i=1

ki + b(k2 − k)

≤ v(v − 1) − 2(k − 1)v

⌈
v − 1

k − 1

⌉
+ b(k2 − k).

This yields the desired bound on b. ⊓⊔
Theorem 8.11. C∗(k, v) ≥ C(k, v) for all integers k and v such that 2 ≤ k < v.
Furthermore, C∗(k, v) = C(k, v) if and only if v − 1 ≡ 0 (mod k − 1).

Proof.

C∗(k, v) ≥ C(k, v)

⇐⇒
v
(

2(k − 1)
⌈

v−1
k−1

⌉
− (v − 1)

)

k2 − k
≥ v2 − v

k2 − k

⇐⇒ 2(k − 1)

⌈
v − 1

k − 1

⌉
− (v − 1) ≥ v − 1

⇐⇒
⌈

v − 1

k − 1

⌉
≥ v − 1

k − 1
.
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This last inequality is true for all v and k, and equality holds if and only if
(v − 1)/(k − 1) is an integer. ⊓⊔

8.2.1 Some Examples

We illustrate the application of the bounds above in determining values gk(v)

for small k and v. To be specific, Table 8.1 is a table of values of gk(v) for 3 ≤
v ≤ 9. For each v, we look at all integers k such that 2 ≤ k ≤ v− 1. We tabulate
the values of the four lower bounds SK(k, v), St(k, v), C(k, v), and C∗(k, v). (It
is of course unnecessary to include the values of SK(k, v) and C(k, v) because
we have proven that St(k, v) ≥ SK(k, v) and C∗(k, v) ≥ C(k, v). We include
all four values mainly for the purposes of illustration so that the bounds can

easily be compared.) We also include the exact value of gk(v).

k v SK St C C∗ gk(v)

2 3 3 3 3 3 3
2 4 11/3 4 6 6 6
3 4 4 4 2 10/3 4
2 5 4 4 10 10 10
3 5 11/2 6 10/3 10/3 6
4 5 5 5 5/3 10/3 5

2 6 21/5 13/3 15 15 15
3 6 32/5 7 5 7 7
4 6 37/5 8 5/2 7/2 8
5 6 6 6 3/2 33/10 6
2 7 13/3 13/3 21 21 21
3 7 7 7 7 7 7
4 7 9 10 7/2 7/2 10
5 7 28/3 10 21/10 7/2 10
6 7 7 7 7/5 49/15 7
2 8 31/7 9/2 28 28 28
3 8 52/7 23/3 28/3 12 12
4 8 71/7 11 14/3 22/3 11
5 8 82/7 13 14/5 18/5 13
6 8 79/7 12 28/15 52/15 12
7 8 8 8 4/3 68/21 8

2 9 9/2 9/2 36 36 36
3 9 31/4 8 12 12 12
4 9 11 11 6 15/2 12
5 9 27/2 15 18/5 18/5 15
6 9 29/2 16 12/5 18/5 16
7 9 53/4 14 12/7 24/7 14
8 9 9 9 9/7 45/14 9

Table 8.1. Values of gk(v) for Small k and v
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With one exception, it can be verified that every value of gk(v) in Table
8.1 is the ceiling of the maximum of the four lower bounds. In these cases,
it suffices to give a construction of a PBD with the appropriate number of
blocks.

The one exceptional parameter situation is when k = 4 and v = 9, where
we claim that

g4(9) = 12 = ⌈max{SK(4, 9), St(4, 9), C(4, 9), C∗(4, 9)}⌉+ 1.

In order to prove that g4(9) = 12, we need to construct a PBD with 12
blocks as well as prove that no PBD with 11 blocks exists. We can prove
that g4(9) �= 11 by referring to Theorem 8.2. Note that SK(4, 9) = 11, so there
exists a (9, {2, . . . , 8})-PBD having a block of size four if and only if there is
a resolvable (5, 2, 1)-BIBD. This is clearly impossible because 5 �≡ 0 (mod 2).
Hence, we conclude that g4(9) > 11.

For the values of k and v considered in Table 8.1, the construction of PBDs
with gk(v) blocks is not too difficult. Several parameter situations can be han-
dled by similar constructions. For example, the block sets of the PBDs with
k = 2 consist of all 2-subsets of points; and the PBDs with k = v − 1 are
near-pencils.

When k = v − 2, it is always possible to take a block B of size v − 2,
a block of size three intersecting B, and take all remaining blocks to have
size two. This yields a PBD with 2v − 4 blocks. It is also easy to verify that
St(v − 2, v) = 2v − 4 for all v ≥ 4. Therefore gv−2(v) = 2v − 4 for all v ≥ 4.

The remaining cases have 3 ≤ k ≤ v − 3. These PBDs can be constructed
fairly easily by trial and error, and we list appropriate block sets in Table 8.2.

k v b blocks

3 6 7 {123, 145, 246, 356, 16, 25, 34}
3 7 7 (7, 3, 1)-BIBD

4 7 10 {1234, 156, 257, 367, 17, 26, 35, 45, 46, 47}
3 8 12 {013 mod 8} ∪ {04, 15, 26, 37}
4 8 11 {1234, 1567, 258, 368, 478, 26, 27, 35, 37, 45, 46}
5 8 13 {12345, 167, 268, 378, 18, 27, 36, 46, 47, 48, 56, 57, 58}
3 9 12 (9, 3, 1)-BIBD

4 9 12 {1234, 1567, 189, 258, 368, 478, 269, 379, 459, 27, 35, 46}
5 9 15 {12345, 167, 189, 268, 279, 369, 378} ∪ {ij : i = 4, 5; 6 ≤ j ≤ 9}
6 9 16 {123456, 178, 279, 389, 19, 28, 37} ∪ {ij : 4 ≤ i ≤ 6; 7 ≤ j ≤ 9}

Table 8.2. Block Sets of some PBDs with b = gk(v) Blocks
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8.3 Minimal PBDs and Projective Planes

In this section, we consider the problem of determining the minimum num-
ber of blocks in a (v, {2, . . . , v − 1})-PBD that is not a near-pencil. Equiva-
lently, what is the minimum number of blocks in a (v, {2, . . . , v − 2})-PBD?
Let us denote this quantity by b∗(v). Note that

b∗(v) = min{gk(v) : 2 ≤ k ≤ v − 2}.

Clearly v ≥ 4 is necessary in order for b∗(v) to be defined. The following
values of b∗(v) for 4 ≤ v ≤ 9 are easily determined from Table 8.1. We record
these values in the next lemma.

Lemma 8.12. b∗(4) = b∗(5) = 6, b∗(6) = b∗(7) = 7, b∗(8) = 11, and b∗(9) =
12.

Lemma 8.13. For all integers v ≥ 4, it holds that b∗(v + 1) ≥ b∗(v).

Proof. The stated result is true for v = 4 by Lemma 8.12, so we will assume
that v ≥ 5. Let (X,A) be a (v + 1, {2, . . . , v − 1})-PBD containing b∗(v + 1)
blocks. Let A denote a block in A having maximum cardinality. Let x ∈ A,
and delete x from all blocks in A. If any blocks of size one are created by this
process, then delete them. This creates a PBD, say (X\{x},B), on v points,
having at most b∗(v + 1) blocks.

If we can show that there are no blocks of size v − 1 in B, then we will
be done. Suppose that B ∈ B has cardinality v − 1. Then there are at least
two blocks of cardinality v − 1 in (X,A), namely A and B. |A ∩ B| ≤ 1, so
|A ∪ B| ≥ 2v − 3. However, |A ∪ B| ≤ v + 1, so v ≤ 4. This contradicts the
assumption that v ≥ 5, and the proof is complete. ⊓⊔

Lemma 8.14. Suppose that v ≥ 6 and suppose that k0 = (1 +
√

4v − 3)/2. Denote
k1 = ⌊k0⌋ and k2 = ⌈k0⌉. Then

b∗(v) ≥ min{C(k1, v), SK(k2, v), SK(v − 2, v)}.

Proof. For v ≥ 6, it holds that k0 < 2v/3 ≤ v − 2. Therefore the result follows
from Lemma 8.6. ⊓⊔

Theorem 8.15. Suppose that n ≥ 2 and v are integers such that n2 + 2 ≤ v ≤
n2 + n + 1. Then b∗(v) ≥ n2 + n + 1. Furthermore, b∗(v) = n2 + n + 1 if there
exists a projective plane of order n.

Proof. First, we apply Lemma 8.14 with v = n2 + 2. We have k1 = n and
k2 = n + 1. Then

C(k1, v) = C(n, n2 + 2)

= n2 + n + 4 +
4n + 2

n2 − n

> n2 + n;
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SK(k2, v) = SK(n + 1, n2 + 2)

= n2 + n +
2

n2 + 1

> n2 + n; and

SK(v − 2, v) = SK(n2, n2 + 2)

= 2n2 − 1 +
2

n2 + 1

> n2 + n.

Hence, b∗(n2 + 2) > n2 + n. Because b∗ is an integer-valued function, it
follows that b∗(n2 + 2) ≥ n2 + n + 1. Then Lemma 8.13 implies that b∗(v) ≥
n2 + n + 1 for all v ≥ n2 + 2.

Now suppose there is a projective plane of order n and n2 + 2 ≤ v ≤
n2 + n + 1. We can delete any n2 + n + 1 − v points from the projective plane
and obtain a PBD on v points having n2 + n + 1 blocks that is not a near-
pencil. ⊓⊔
Lemma 8.16. Suppose that v ≥ 6, and let k0 = (1 +

√
4v − 3)/2. Denote k1 =

⌊k0⌋ and k2 = ⌈k0⌉. Then

b∗(v) ≥ min{C(k1 − 1, v), C∗(k1, v), St(k2, v), SK(k2 + 1, v), SK(v − 2, v)}.

Theorem 8.17. Suppose that n ≥ 2 and v are integers such that n2 − n + 3 ≤
v ≤ n2 + 1. Then b∗(v) ≥ n2 + n. Furthermore, b∗(v) = n2 + n if there exists a
projective plane of order n.

Proof. From Lemma 8.12, we have that b∗(5) = 6 and b∗(9) = 12. Projective
planes of orders 2 and 3 exist, so the theorem is true when n = 2, 3. Therefore
we can assume that n ≥ 4.

We apply Lemma 8.16 with v = n2 − n + 3. We have k1 = n and k2 = n + 1.
Then

C(k1 − 1, v) = C(n − 1, n2 − n + 3)

= n2 + n + 7 +
14n − 8

(n − 1)(n − 2)

> n2 + n − 1;

C∗(k1, v) = C∗(n, n2 − n + 3)

= n2 + n − 1 +
6n − 12

n2 − n

> n2 + n − 1;

St(k2, v) = St(n + 1, n2 − n + 3)

= n2 + n − 1 +
2n − 6

(n − 1)(n − 2)

> n2 + n − 1;
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SK(k2 + 1, v) = SK(n + 2, n2 − n + 2)

= n2 + 3n − 1 − 12n − 8

n2 − n + 3

> n2 + n − 1; and

SK(v − 2, v) = SK(n2 − n + 1, n2 − n + 3)

= 2n2 − 2n + 1 +
2

n2 − n + 2

> n2 + n − 1.

Hence, b∗(n2 − n + 3) > n2 + n− 1. Because b∗ is an integer-valued function,
it follows that b∗(n2 − n + 3) ≥ n2 + n. Then Lemma 8.13 implies that b∗(v) ≥
n2 + n for all v ≥ n2 − n + 3.

Now suppose there is a projective plane of order n, and n2 − n + 3 ≤ v ≤
n2 + 1. We can delete n points from any block A of the projective plane, delete
A, and delete any n2 + 1 − v additional points. We obtain a PBD on v points
having n2 + n blocks that is not a near-pencil. ⊓⊔

Theorem 8.18. Suppose that n ≥ 3. Then b∗(n2 − n + 2) ≥ n2 + n − 1. Fur-
thermore, b∗(n2 − n + 2) = n2 + n − 1 if there exists a projective plane of order
n.

Proof. First, we apply Lemma 8.16 with v = n2 − n + 2. We have k1 = n and
k2 = n + 1. Then

C(k1 − 1, v) = C(n − 1, n2 − n + 2)

= n2 + n + 5 +
10n − 8

(n − 1)(n − 2)

> n2 + n − 2;

C∗(k1, v) = C∗(n, n2 − n + 2)

= n2 + n − 1 +
4n − 6

n2 − n

> n2 + n − 2;

St(k2, v) = St(n + 1, n2 − n + 2)

= n2 + n − 1;

SK(k2 + 1, v) = SK(n + 2, n2 − n + 2)

= n2 + 3n − 1 − 13n − 2

n2 − n + 1

> n2 + n − 2; and
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SK(v − 2, v) = SK(n2 − n, n2 − n + 2)

= 2n2 − 2n − 5 +
2

n2 − n + 1

> n2 + n − 2.

Hence, b∗(n2 − n + 2) ≥ n2 + n − 1.
Now suppose there is a projective plane of order n, and let A1 and A2

be any two blocks in this design. A1 and A2 intersect in a point, say x. Pick
a point x1 ∈ A1\{x} and a point x2 ∈ A2\{x}. Delete all the points in A1

and A2 except for x1 and x2, and then delete A1 and A2. We obtain a PBD on
n2 − n + 2 points having n2 + n − 1 blocks that is not a near-pencil. ⊓⊔

Summarizing the results in this section, we have the following theorem.

Theorem 8.19 (Erdös, Mullin, Sós, and Stinson). Suppose that v ≥ 5 is an
integer. Then b∗(v) ≥ B(v), where

B(v) =





n2 + n + 1 if n2 + 2 ≤ v ≤ n2 + n + 1

n2 + n if n2 − n + 3 ≤ v ≤ n2 + 1

n2 + n − 1 if v = n2 − n + 2.

Furthermore, b∗(v) = B(v) if there exists a projective plane of order n, where

n2 − n + 2 ≤ v ≤ n2 + n + 1.

8.4 Minimal PBDs with λ > 1

We state and prove a theorem that generalizes Fisher’s Inequality to non-
trivial pairwise balanced designs. We already mentioned this result, in the
special case of regular PBDs, in Theorem 1.34. Also, when λ = 1, the next
theorem follows from Theorem 8.5.

Theorem 8.20. In any nontrivial (v, K, λ)-PBD, b ≥ v.

Proof. We first prove the theorem for proper PBDs. We again use the proof
technique introduced in Theorem 1.33. Let (X,A) be a (v, {2, . . . , v − 1}, λ)-
PBD, where X = {x1, . . . , xv} and A = {A1, . . . , Ab}. For 1 ≤ j ≤ b, define
kj = |Aj|, and for 1 ≤ i ≤ v, define

ri = |{j : xi ∈ Aj}|.

Let M be the incidence matrix of this PBD, and define sj to be the jth row

of MT. Recall that s1, . . . , sb are all v-dimensional vectors in the real vector
space Rv.
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Define S = {sj : 1 ≤ j ≤ b} and define S = span(sj : 1 ≤ j ≤ b). As in
Theorem 1.33, we will prove that S = Rv, which implies that b ≥ v.

For 1 ≤ i ≤ v, define ei ∈ Rv to be the vector with a “1” in the ith
coordinate and “0”s in all other coordinates. We show that ei ∈ S for 1 ≤ i ≤
v.

First, we observe that

b

∑
j=1

sj = (r1, . . . , rv). (8.10)

If we fix a value i, 1 ≤ i ≤ v, then we have

∑
{j:xi∈A j}

sj = (ri − λ)ei + (λ, . . . , λ). (8.11)

Next, sum equation (8.11) over all i, 1 ≤ i ≤ v, to obtain

v

∑
i=1

∑
{j:xi∈A j}

sj = (r1, . . . , rv) + (λ(v − 1), . . . , λ(v − 1)). (8.12)

Equations (8.10) and (8.12) imply that (1, . . . , 1) ∈ S:

(1, . . . , 1) =
1

λ(v − 1)




v

∑
i=1

∑
{j:xi∈A j}

sj −
b

∑
j=1

sj


 . (8.13)

We can now substitute this back into equation (8.11). Fix a value of i, 1 ≤ i ≤
v. Using the fact that ri > λ (which follows because a proper PBD does not
contain a block of size v), we obtain the following:

ei =
1

ri − λ


 ∑

{j:xi∈A j}
sj −

1

v − 1




v

∑
i=1

∑
{j:xi∈A j}

sj −
b

∑
j=1

sj




 . (8.14)

This implies that every basis vector ei ∈ S, which completes the proof for
proper PBDs.

Now assume that (X,A) is a nontrivial PBD that contains exactly ℓ >

0 blocks of size v. Deleting these ℓ blocks, we obtain a proper PBD, which
therefore must contain at least v blocks. This means that (X,A) has at least
v + ℓ blocks, and the proof is complete. ⊓⊔

A pairwise balanced design with one block size is a BIBD. Of course, sym-
metric BIBDs are examples of (v, K, λ)-PBDs with b = v. Examples of pair-
wise balanced designs with b = v and having more than one block size can
be constructed from symmetric BIBDs as follows.

Theorem 8.21. Suppose there is a symmetric (v, k, λ)-BIBD. Then there exists a
(v, {k, v + 1 − k}, k − λ)-PBD with b = v.
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Proof. Suppose (X,A) is a symmetric (v, k, λ)-BIBD. Let x ∈ X be any point.
Define B = B1 ∪ B2, where

B1 = {A ∈ A : x �∈ A}

and
B2 = {(X\A) ∪ {x} : A ∈ A, x ∈ A}.

Clearly B contains exactly v blocks, every block in B1 has size k, and every
block in B2 has size v + 1− k. Therefore we need only to show that every pair
of points occurs in exactly k − λ blocks in B.

For any y ∈ X, y �= x, there are k − λ blocks in A that contain x but do not
contain y. These blocks give rise to the k − λ blocks (all in B2) that contain
x and y. Now consider two points y, y′ ∈ X\{x}. Suppose that there are µ
blocks in A that contain y, y′, and x. Then there are λ − µ blocks in A that
contain y and y′ but not x. These blocks yield λ − µ blocks in B1 that contain
y and y′. Also, there are k − 2λ + µ blocks in A that contain x but neither y
nor y′. These blocks yield k − 2λ + µ blocks in B2 that contain y and y′. In
total, we have k − λ blocks in B that contain y and y′. ⊓⊔

Example 8.22. {1, 3, 4, 5, 9} is an (11, 5, 2)-difference set in Z11. This difference
set generates a symmetric (11, 5, 2)-BIBD in which the points are the elements
of Z11. Take x = 0; then the blocks of the symmetric (11, 5, 2)-BIBD are trans-
formed as follows:

{1, 3, 4, 5, 9} → {1, 3, 4, 5, 9}
{2, 4, 5, 6, 10} → {2, 4, 5, 6, 10}
{3, 5, 6, 7, 0} → {0, 1, 2, 4, 8, 9, 10}
{4, 6, 7, 8, 1} → {4, 6, 7, 8, 1}
{5, 7, 8, 9, 2} → {5, 7, 8, 9, 2}
{68, 9, 10, 3} → {6, 8, 9, 10, 3}
{7, 9, 10, 0, 4} → {0, 1, 2, 3, 5, 6, 8}
{8, 10, 0, 1, 5} → {0, 2, 3, 4, 6, 7, 9}
{9, 0, 1, 2, 6} → {0, 3, 4, 5, 7, 8, 10}
{10, 1, 2, 3, 7} → {10, 1, 2, 3, 7}
{0, 2, 3, 4, 8} → {0, 1, 5, 6, 7, 9, 10}.

Example 8.23. For any v ≥ 4, there exists a symmetric (v, v − 1, v − 2)-BIBD

whose blocks are all the (v − 1)-subsets of a v-set. If we apply the construc-
tion of Theorem 8.21 to this BIBD, the reader can check that we obtain a
near-pencil, which has blocks of size two and v − 1.

The “λ-design Conjecture” is that every pairwise balanced design with
b = v either is a symmetric BIBD or can be constructed from a symmetric
BIBD using Theorem 8.21. This conjecture is due to Ryser and Woodall and
it remains open to this day, although many partial results are known.
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Provided that k �= (v + 1)/2, the construction of Theorem 8.21 yields a
pairwise balanced design with exactly two block sizes, and these block sizes
sum to v + 1. This property holds for any nontrivial pairwise balanced design
with b = v that has two block sizes, as we show in the following theorem.

Theorem 8.24 (Ryser-Woodall Theorem). Suppose (X,A) is a (v, K, λ)-PBD

with b = v that contains at least two block sizes. Then there are exactly two block
sizes, say k1 and k2, and k1 + k2 = v + 1.

Proof. We use notation as in the proof of Theorem 8.20. First, we note that
(X,A) cannot contain any blocks of size v (this follows from the proof of
Theorem 8.20). Hence, ri > λ for all i, 1 ≤ i ≤ v.

In this proof, we will use b in the context of blocks and v in the context of
points. Of course b = v, as stated in the hypotheses.

Fix i, 1 ≤ i ≤ v; then we can rewrite (8.11) as follows:

1

ri − λ ∑
{j:xi∈A j}

sj = ei +
λ

ri − λ
(1, . . . , 1). (8.15)

For any j, 1 ≤ j ≤ b, define

cj = ∑
{i:xi∈A j}

1

ri − λ
. (8.16)

Now we apply (8.15) and (8.16) as follows:

b

∑
j=1

cjsj =
b

∑
j=1

∑
{i:xi∈A j}

1

ri − λ
sj

=
v

∑
i=1


 1

ri − λ ∑
{j:xi∈A j}

sj




=
v

∑
i=1

(
ei +

λ

ri − λ
(1, . . . , 1)

)

=

(
1 + λ

v

∑
i=1

1

ri − λ

)
(1, . . . , 1).

Denoting

C = 1 + λ
v

∑
i=1

1

ri − λ
,

we have the following:

(1, . . . , 1) =
b

∑
j=1

cj

C
sj. (8.17)
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Now we derive another expression for the vector (1, . . . , 1). Observe that

v

∑
i=1

∑
{j:xi∈A j}

sj =
b

∑
j=1

∑
{i:xi∈A j}

sj =
b

∑
j=1

|Aj|sj.

Therefore (8.13) implies the following:

(1, . . . , 1) =
1

λ(v − 1)

b

∑
j=1

(|Aj| − 1)sj. (8.18)

Equations (8.18) and (8.17) give two expressions for the same vector as a
linear combination of basis vectors (the vectors s1, . . . , sb form a basis because
b = v). Therefore, corresponding coefficients in the two linear combinations
must be identical, and it follows that

cj

C
=

|Aj| − 1

λ(v − 1)

for 1 ≤ j ≤ b. Denoting

γ =
C

λ(v − 1)
,

we have that
cj = γ (|Aj| − 1) (8.19)

for all j, 1 ≤ j ≤ b, where γ is a constant.
We now fix an integer h, 1 ≤ h ≤ b, and sum (8.15) over all i such that

xi ∈ Ah:

∑
{i:xi∈Ah}


 1

ri − λ ∑
{j:xi∈A j}

sj


 = ∑

{i:xi∈Ah}

(
ei +

λ

ri − λ
(1, . . . , 1)

)

= sh + λch(1, . . . , 1)

= sh + ch

b

∑
j=1

|Aj| − 1

v − 1
sj,

where we apply (8.18) in the last line.
On the other hand, we can evaluate the same double sum in a different

way:

∑
{i:xi∈Ah}


 1

ri − λ ∑
{j:xi∈A j}

sj


 =

b

∑
j=1

∑
{i:xi∈Ah∩A j}

1

ri − λ
sj.

Thus we have the following equation:

sh + ch

b

∑
j=1

|Aj| − 1

v − 1
sj =

b

∑
j=1

∑
{i:xi∈Ah∩A j}

1

ri − λ
sj. (8.20)
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The coefficients of sh must be the same on both sides of this equation, so we
have that

ch = 1 +
ch(|Ah| − 1)

v − 1
.

Substituting (8.19), we obtain the following:

γ(|Ah| − 1) = 1 +
γ(|Ah| − 1)2

v − 1
.

Denote x = |Ah| − 1. Simplifying, we get the following quadratic equation
in x:

x2 − (v − 1)x + γ−1(v − 1) = 0. (8.21)

Since any block in the PBD has size x + 1, where x is a root of the quadratic
equation (8.21), it follows that there are at most two block sizes. Since we
hypothesized that there are at least two block sizes, we conclude that there
are exactly two block sizes.

In general, the sum of the roots of a quadratic equation x2 + a1x + a2 = 0
is equal to −a1. Therefore the sum of the roots of (8.21) is equal to v − 1. This
implies that the sum of the two block sizes in the PBD is equal to v + 1, as
desired. ⊓⊔

8.5 Notes and References

Theorem 8.5 was proven in 1948 by de Bruijn and Erdös [38]. Theorem 8.1 is
due to Stanton and Kalbfleisch [99], and Theorem 8.7 is from Stinson [100].
Another important bound along these lines is the Rees Bound; see [85]. These
various bounds are discussed and compared in Rees and Stinson [86].

Most of the results in Section 8.3 are adapted from Erdös, Mullin, Sós,
and Stinson [44]. There is much literature on pairwise balanced designs with
λ = 1 having “few lines”. The monograph by Batten and Beutelspacher [4]
is a good source of additional information on this topic.

Theorem 8.24 was proven independently by Ryser [90] and Woodall [125].
The λ-design Conjecture has been widely studied; see Singhi and Shrikhande
[97] and Ionin and Shrikhande [63, 64] for more information.

8.6 Exercises

8.1 Suppose that K ⊆ {n ≥ 2 : n ∈ Z} is a finite set. Denote the largest
and smallest elements of K by k1 and k2, respectively.

(a) Prove that there exists a (v, K)-PBD only if v ≥ k1(k2 − 1) + 1.
(b) Prove that there exists a (k1(k2 − 1) + 1, K)-PBD if and only if

there exists a resolvable (k1(k2 − 2) + 1, k2 − 1, 1)-BIBD.
8.2 Suppose that v is fixed and 2 ≤ k ≤ v − 1 is a real number.
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(a) Prove that SK(k, v) attains its maximum when k = 2v/3.
(b) Prove that SK(k, v) = C(k, v) if and only if k2 − k + 1 = v.
(c) Assume that k2 − k + 1 ≥ v ≥ k + 1. Prove that SK(k, v) ≥ v.

8.3 Suppose there is a (v, {2, . . . , v − 1})-PBD with St(k, v) blocks that has
a block containing exactly k points. Prove that there are at most three
different block sizes in this PBD.

8.4 (a) Suppose that k is odd and v = 2k + 1. Prove that there exists a
(v, {3, k})-PBD with SK(k, v) blocks that contains a block of size
k.

(b) Suppose that k is even and v = 2k + 1. Prove that there does not
exist any (v, K)-PBD with SK(k, v) blocks that contains a block
of size k.

8.5 (a) Suppose that k + 1 ≤ v ≤ 2k. Prove that

St(k, v) = 1 +
(v − k)(3k − v + 1)

2
.

(b) Suppose that k + 1 ≤ v ≤ 2k and v − k is even. Use the exis-
tence of a resolvable (v − k, 2, 1)-BIBD to prove that there exists
a (v, {2, 3, k})-PBD with St(k, v) blocks.
Hint: An essential step of the proof is to form 2k − v + 1 parallel
classes of singletons on v − k points.

(c) Suppose that k + 1 ≤ v ≤ 2k and v − k is odd. Use the existence
of a resolvable (v − k + 1, 2, 1)-BIBD to prove that there exists a
(v, {2, 3, k})-PBD with St(k, v) blocks.
Hint: Delete a point from the BIBD, and then proceed in a man-
ner similar to (b).

8.6 (a) Suppose that (X,A) is a (v, {2, . . . , v − 1})-PBD in which the
largest block contains exactly k points and in which there are
exactly C∗(k, v) blocks. Prove that every block has size k or k − 1.

(b) Denote t = (v − 1) mod (k − 1) and suppose further that t �= 0.
Prove that every point x occurs in k − t − 1 blocks of size k − 1

and r − k + t + 1 blocks of size k, where r = ⌈ v−1
k−1 ⌉.

(c) Suppose there is a (v + 1, k, 1)-BIBD. Prove that there exists a
(v, {2, . . . , v − 1})-PBD in which the largest block contains ex-
actly k points and in which there are exactly C∗(k, v) blocks.

8.7 Extend Table 8.1 to include all the cases when v = 10. For 2 ≤ k ≤ 9,
determine the values of the four relevant bounds and the exact values
of gk(10).

8.8 Construct (v, {2, . . . , v − 2})-PBDs with B(v) blocks for 10 ≤ v ≤ 15.
8.9 Use Theorem 8.5 to prove that the λ-design Conjecture is valid when

λ = 1.
8.10 (a) Prove that the only (v, K, 2)-PBD that can be constructed using

Theorem 8.21 is a (7, {3, 5}, 2)-PBD with b = 7.
(b) Construct the PBD described in part (a).
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9

t-Designs and t-wise Balanced Designs

9.1 Basic Definitions and Properties of t-Designs

Definition 9.1. Let v, k, λ, and t be positive integers such that v > k ≥ t. A t-
(v, k, λ)-design is a design (X,A) such that the following properties are satisfied:

1. |X| = v,
2. each block contains exactly k points, and
3. every set of t distinct points is contained in exactly λ blocks.

The general term t-design is used to indicate any t-(v, k, λ)-design.

Note that we allow a t-(v, k, λ)-design to contain repeated blocks. (Of
course, if λ = 1, then there cannot be any repeated blocks in a t-(v, k, λ)-
design.) A t-(v, k, λ)-design without repeated blocks is called a simple t-
design. When λ > 1, it is usually the case that constructing simple t-(v, k, λ)-
designs is more difficult than constructing nonsimple ones.

If we take λ copies of every k-subset of a v-set, where k < v, we obtain

a t-
(

v, k, λ
(v−t

k−t

))
-design. This t-design is not very exciting; we refer to it as

a trivial t-design. In general, we are interested in constructing nontrivial de-
signs.

Observe that a 2-(v, k, λ)-design is just a (v, k, λ)-BIBD. There are not
nearly as many existence results known for t-designs with t > 2 as there
are for BIBDs. We will be presenting some of the nicer construction methods
for certain types of t-designs, but first we survey some basic properties of
t-designs.

The proof of the following theorem follows immediately from the defini-
tion of a t-design.

Theorem 9.2. Suppose that (X,A) is a t-(v, k, λ)-design. Let Z ⊆ X, |Z| = i < t.
Then (X\Z, {A\Z : Z ⊆ A ∈ A}) is a (t − i)-(v − i, k − i, λ)-design.
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Example 9.3. It is known that there exists a 5-(12, 6, 1)-design (we will give a
construction for this design in Example 9.29). Hence, from Theorem 9.2, there
also exist 4-(11, 5, 1)-, 3-(10, 4, 1)-, and 2-(9, 3, 1)-designs.

The following result is proven in the same manner as Theorems 1.8 and
1.9.

Theorem 9.4. Suppose that (X,A) is a t-(v, k, λ)-design. Suppose that Y ⊆ X,
where |Y| = s ≤ t. Then there are exactly

λs =
λ
(v−s

t−s

)
(k−s

t−s

)

blocks in A that contain all the points in Y.

Proof. Let λs(Y) denote the number of blocks containing all the points in Y.
Define a set

I = {(Z, A) : Z ⊆ X, |Z| = t − s, Y ∩ Z = ∅, A ∈ A, Y ∪ Z ⊆ A}.

We will compute |I| in two different ways.
First, there are

(v−s
t−s

)
ways to choose Z. For each such Z, there are λ blocks

A such that Y ∪ Z ⊆ A. Hence,

|I| = λ

(
v − s

t − s

)
.

On the other hand, there are λs(Y) ways to choose a block A such that Y ⊆ A.

For each choice of A, there are
(k−s

t−s

)
ways to choose Z. Hence,

|I| = λs(Y)

(
k − s

t − s

)
.

Combining these two equations, we see that λs(Y) = λs, as desired. ⊓⊔

Observe that the number of blocks in a t-design is λ0 = λ
(v

t

)
/
(k

t

)
and

each point occurs in λ1 = λ
(v−1

t−1

)
/
(k−1

t−1

)
blocks. In the case t = 2 (i.e., for a

BIBD), λ0 and λ1 correspond to the parameters b and r, respectively. We will
sometimes use the notations b and r for t-designs with other values of t as
well.

Example 9.5. In a 5-(12, 6, 1)-design, we have that λ0 = 132, λ1 = 66, λ2 = 30,
λ3 = 12, λ4 = 4, and λ5 = 1.

The following is an immediate corollary of Theorem 9.4.
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Corollary 9.6. Suppose that (X,A) is a t-(v, k, λ)-design, and 1 ≤ s ≤ t. Then
(X,A) is an s-(v, k, λs)-design, where

λs =
λ
(v−s

t−s

)
(k−s

t−s

) .

Theorem 9.4 can be generalized as follows.

Theorem 9.7. Suppose that (X,A) is a t-(v, k, λ)-design. Suppose that Y, Z ⊆ X,
where Y ∩ Z = ∅, |Y| = i, |Z| = j, and i + j ≤ t. Then there are exactly

λ
j
i =

λ
(v−i−j

k−i

)
(v−t

k−t

)

blocks in A that contain all the points in Y and none of the points in Z.

Proof. First we consider the case where i = 0. Let λ
j
0(Z) denote the number of

blocks that contain none of the points in Z. Using the Principle of Inclusion-

Exclusion, we will obtain a formula for λ
j
0(Z). For any z ∈ Z, define

Az = {A ∈ A : z ∈ A}.

Then, for any Z0 ⊆ Z, |Z0| = h, it is clear that

∣∣∣∣∣∣
⋂

z∈Z0

Az

∣∣∣∣∣∣
= λh.

The Principle of Inclusion-Exclusion asserts that

∣∣∣∣∣A\
(⋃

z∈Z

Az

)∣∣∣∣∣ = |{A ∈ A : A ∩ Z = ∅}| = ∑
Z0⊆Z

(−1)|Z0|

∣∣∣∣∣∣
⋂

z∈Z0

Az

∣∣∣∣∣∣
.

From this, it follows immediately that

λ
j
0(Z) =

j

∑
h=0

(−1)h

(
j

h

)
λh.

Hence, λ
j
0(Z) is a constant, say C (i.e., it is independent of the choice of

Z). We have expressed C as a complicated-looking sum. C can be simplified
using appropriate identities involving binomial coefficients; however, it is
easier to proceed as follows.

Define a set

I = {(Z0, A) : Z0 ⊆ X, |Z0| = j, A ∈ A, Z0 ∩ A = ∅}.



204 9 t-Designs and t-wise Balanced Designs

We will compute |I| in two different ways.
First, there are

(v
j

)
ways to choose Z0. For each such Z0, there are C blocks

A such that Z0 ∩ A = ∅. Hence,

|I| = C

(
v

j

)
.

On the other hand, there are λ0 ways to choose a block A, and for each choice

of A, there are
(v−k

j

)
ways to choose Z0. Hence,

|I| = λ0

(
v − k

j

)
.

Combining these two equations, we see that

C =
λ0

(v−k
j

)
(v

j

)

=
λ
(v

t

)(v−k
j

)
(k

t

)(v
j

)

=
λ v! (v − k)! (k − t)! t! j! (v − j)!

t! (v − t)! j! (v − k − j)! k! v!

=
λ (v − k)! (k − t)! (v − j)!

(v − t)! (v − k − j)! k!

=
λ
(v−j

k

)
(v−t

k−t

) ,

as desired.
Now we consider the case i > 0. This follows by applying the result

proven above for i = 0 to the design (X\Y, {A\Y : Y ⊆ A ∈ A}), which
is a (t − i)-(v − i, k − i, λ)-design by Theorem 9.2. ⊓⊔

We have already mentioned that simple t-designs are, in general, more
difficult to construct than nonsimple ones. We next present an easy noncon-
structive proof that nontrivial t-designs exist for all permissible choices of
t < k and all v > k + t. (This proof does not yield simple designs, however.)

Theorem 9.8. For all positive integers t, k, and v such that t < k < v − t, there
exists a nontrivial t-(v, k, λ)-design for some positive integer λ.

Proof. Let X be a v-set, and let N =
(v

t

)
. Consider the N-dimensional vector

space QN in which the coordinates are indexed by the t-subsets of X. For
each k-subset A ⊆ X, define a vector sA ∈ QN in which the entry in the
coordinate corresponding to a t-subset Y ⊆ X is equal to 1 if Y ⊆ A and 0
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otherwise. We obtain a set of
(v

k

)
vectors in a

(v
t

)
-dimensional vector space.

Since t < k < v − t, it follows that
(

v

t

)
<

(
v

k

)
,

and hence there exists a linear dependence relation among this set of vectors.
In other words, there exist rational numbers αA (A ⊆ X, |A| = k) such that

∑
A⊆X,|A|=k

αAsA = (0, . . . , 0).

Let D denote the least common multiple of the denominators of the numbers
αA, and define βA = DαA for all A. Then

∑
A⊆X,|A|=k

βAsA = (0, . . . , 0), (9.1)

and the βA’s are all integers.
Clearly at least one of the βA’s is negative. Hence, if we define M =

min{βA}, then M < 0. Now define A to be the collection of blocks where,
for every A ⊆ X, |A| = k, A occurs exactly βA − M times in A (note that
βA − M ≥ 0 for all A).

It is not difficult to see that (X,A) is a t-(v, k, λ)-design. First, we observe
that

∑
A⊆X,|A|=k

sA =

((
v − t

k − t

)
, . . . ,

(
v − t

k − t

))
; (9.2)

this follows because, as we already observed, the set of all k-subsets of a v-set

is a t-
(

v, k,
(v−t

k−t

))
-design. Now, combining equations (9.1) and (9.2), we see

that

∑
A⊆X,|A|=k

(βA − M)sA =

(
−M

(
v − t

k − t

)
, . . . ,−M

(
v − t

k − t

))
. (9.3)

Hence (X,A) is a t-(v, k, λ)-design with λ = −M
(v−t

k−t

)
. Finally, (X,A) is non-

trivial because βA − M = 0 for at least one A. ⊓⊔

Example 9.9. We provide an illustration of Theorem 9.8 in the case t = 2, k =
3. Suppose that v ≥ 6. Then it is easy to check that

s{1,2,3} + s{1,4,5} + s{2,4,6} + s{3,5,6} = s{1,2,4} + s{1,3,5} + s{2,3,6} + s{4,5,6}.

Therefore we have found a dependence relation with M = −1, and we can
construct a nontrivial 2-(v, 3, v − 2)-design for all v ≥ 6.

In the next section, we look at some specific families of t-designs with t ≥
3. We have already observed that 2-designs are BIBDs. Thus, there remains
the case of 1-designs to be considered. However, it is not hard to show that
these designs exist whenever the necessary conditions are satisfied.
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Theorem 9.10. There exists a 1-(v, k, λ)-design if and only if vλ ≡ 0 mod k.

Proof. From Theorem 9.4, the number of blocks in a 1-(v, k, λ)-design is b =
vλ/k, which must be an integer. Conversely, suppose b = vλ/k is an integer.
We will describe an easy construction for a 1-(v, k, λ)-design.

Let u = gcd(k, λ). Then λ = uλ′ and k = uk′, where gcd(λ′, k′) = 1. Now
we have b = vλ/k = vλ′/k′ and gcd(λ′, k′) = 1, so it must be the case that
v ≡ 0 mod k′. Let v = sk′, where s is a positive integer. Then b = vλ′/k′ =
sλ′.

Let X be a set of cardinality k′, and define Y = X × Zs. Then |Y| = v. Let
A1, . . . , Aλ′ be λ′ arbitrary u-subsets of Zs. For 1 ≤ i ≤ λ′, define Bi = X × Ai.
Then each Bi is a k-subset of Y. Now develop each Bi through Zs, obtaining
a set of b blocks that contain every point in Y exactly λ times. The result is a
1-(v, k, λ)-design. ⊓⊔

Example 9.11. Suppose that v = 15, k = 9, and λ = 6. Then b = 10, s = 5,
k′ = 3, and λ′ = 2. Suppose we take X = {x, y, z}, A1 = {0, 1, 2}, and
A2 = {0, 1, 3}. Then

B1 = {(x, 0), (y, 0), (z, 0), (x, 1), (y, 1), (z, 1), (x, 2), (y, 2), (z, 2)}

and

B2 = {(x, 0), (y, 0), (z, 0), (x, 1), (y, 1), (z, 1), (x, 3), (y, 3), (z, 3)}.

We obtain a total of b = 10 blocks from B1 and B2 by developing the second
coordinates modulo 5 (keeping the first coordinates fixed). In the resulting
set of blocks, every element occurs λ = 6 times.

9.2 Some Constructions for t-Designs with t ≥ 3

We present some constructions for t-designs with t ≥ 3 in this section. Our
first result shows that certain resolvable BIBDs are automatically 3-designs.

Theorem 9.12. A resolvable BIBD with v = 2k is a 3-design.

Proof. Suppose that (X,A) is a resolvable (2k, k, λ)-BIBD. Let Πi be the par-
allel classes for 1 ≤ i ≤ r. Each Πi consists of two blocks, say A1

i and A2
i .

Let x, y, z ∈ X, and define a1, a2, a3, a4 as follows:

a1 = |{i : {x, y, z} ⊆ A
j
i , where j = 1 or 2}|,

a2 = |{i : {x, y} ⊆ A
j
i and z �∈ A

j
i , where j = 1 or 2}|,

a3 = |{i : {x, z} ⊆ A
j
i and y �∈ A

j
i , where j = 1 or 2}|, and

a4 = |{i : {y, z} ⊆ A
j
i and x �∈ A

j
i , where j = 1 or 2}|.
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Clearly
a1 + a2 + a3 + a4 = r

since each parallel class is one of the four types enumerated above. Also,
looking at pairs of elements, we have that

a1 + a2 = a1 + a3 = a1 + a4 = λ.

From these equations, it follows that a1 = (3λ − r)/2. Therefore (X,A) is a
3-(2k, k, (3λ − r)/2)-design. ⊓⊔

Corollary 9.13. If there exists a Hadamard matrix of order 4m, then there exists a
3-(4m, 2m, m− 1)-design.

Proof. If there exists a Hadamard matrix of order 4m, then there exists a re-
solvable (4m, 2m, 2m − 1)-BIBD from Theorem 5.19. Apply Theorem 9.12. ⊓⊔

The next theorem constructs 3-designs with k = 4 and λ = 3.

Theorem 9.14. For all even integers v ≥ 6, there exists a 3-(v, 4, 3)-design.

Proof. We proved in Theorem 5.2 that there exists a resolvable (v, 2, 1)-BIBD,
say (X,A), for all even v ≥ 4. Suppose v ≥ 6, and suppose Π1, . . . , Πv−1 are
the parallel classes in this BIBD. Define

B = {A1 ∪ A2 : A1, A2 ∈ Πi, A1 �= A2, 1 ≤ i ≤ v − 1}.

We will show that (X,B) is a 3-(v, 4, 3)-design.
Consider any three points, say x1, x2, x3. Let 1 ≤ i ≤ 3. There is a unique

block Ai ∈ A that contains the pair {x1, x2, x3}\{xi}. The block Ai is in a
unique parallel class, say Πji . Note that j1, j2, j3 are distinct integers. Now,
there is a unique block in Πji that contains xi, say A′

i. Then {x1, x2, x3} ⊆
Ai ∪ A′

i for 1 ≤ i ≤ 3. Thus we have found three blocks that contain the
triple {x1, x2, x3}. Clearly no other block contains this triple, so we have a
3-(v, 4, 3)-design, as required. ⊓⊔

Example 9.15. A 3-(6, 4, 3)-design. We begin with the resolvable (6, 2, 1)-BIBD

presented in Example 5.3. The parallel classes of this BIBD are as follows:

Π0 = {{∞, 0}, {1, 4}, {2, 3}}
Π1 = {{∞, 1}, {2, 0}, {3, 4}}
Π2 = {{∞, 2}, {3, 1}, {4, 0}}
Π3 = {{∞, 3}, {4, 2}, {0, 1}}
Π4 = {{∞, 4}, {0, 3}, {1, 2}}.

We obtain the following fifteen blocks of a 3-(6, 4, 3)-design, (Z4 ∪ {∞},A):
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A =





∞014, ∞023, 1423,
∞120, ∞134, 2034,
∞231, ∞240, 3140,
∞342, ∞301, 4201,
∞403, ∞412, 0312





.

A 3-(v, 4, 1)-design is known as a Steiner quadruple system of order v and
is denoted SQS(v). The necessary condition for the existence of an SQS(v) is
that v ≡ 2, 4 mod 6. Here is a nice doubling construction for Steiner quadru-
ple systems.

Theorem 9.16. If there exists an SQS(v), then there exists an SQS(2v).

Proof. As in the proof of Theorem 9.14, we use the fact that when v is even,
there exists a resolvable (v, 2, 1)-BIBD. Let |X| = |Y| = v, X ∩ Y = ∅.
Let (X,A) and (Y,B) be resolvable (v, 2, 1)-BIBDs having parallel classes
Π1, . . . , Πv−1 and Ψ1, . . . , Ψv−1, respectively. Also, let (X, C) and (Y,D) be
SQS(v). Define

E = {A ∪ B : A ∈ Πi, B ∈ Ψi, 1 ≤ i ≤ v − 1}.

We show that (X ∪Y, C ∪D ∪E) is an SQS(2v). Suppose that {z1, z2, z3} ⊆
X ∪ Y. We consider the following cases that may arise.

1. If |{z1, z2, z3} ∩ X| = 3, then {z1, z2, z3} is a subset of a unique block in C ,
and it is not a subset of any block in D ∪ E .

2. If |{z1, z2, z3} ∩Y| = 3, then {z1, z2, z3} is a subset of a unique block in D,
and it is not a subset of any block in C ∪ E .

3. Suppose |{z1, z2, z3} ∩ X| = 2, say z1, z2 ∈ X and z3 ∈ Y. There is a
unique parallel class, say Πj, such that {z1, z2} ∈ Πj. There is a unique
block of the form {z3, z4} ∈ Ψj. Then {z1, z2, z3} ⊆ {z1, z2, z3, z4} ∈ E ,
and {z1, z2, z3} is not a subset of any block in C ∪ D.

4. Suppose |{z1, z2, z3} ∩ Y| = 2. This is similar to the previous case.

We have considered all possible cases, and the proof is complete. ⊓⊔
There does not exist an SQS(4) because of the restriction that v > k in the

definition of a t-(v, k, λ)-design. However, the construction presented in the
proof of Theorem 9.16 can be carried out when v = 4, yielding an SQS(8), as
presented in the following example.

Example 9.17. An SQS(8). The points are X = {1, 2, 3, 4, a, b, c, d} and the four-
teen blocks are as follows:

A =





12ab, 12cd, 34ab, 34cd,
13ac, 13bd, 24ac, 24bd,
14ad, 14bc, 23ad, 23bc,
1234, abcd





.
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As a result of Example 9.17 and Theorem 9.16, we have the following
result.

Theorem 9.18. There exists an SQS(2n) for all integers n ≥ 3.

9.2.1 Inversive Planes

In this section, we describe how certain permutation groups can be used to
construct t-designs. We begin with some relevant definitions.

Definition 9.19. Suppose that G is a subgroup of the symmetric group Sv acting on
the v-set X, and suppose that t ≥ 1 is an integer. G is sharply t-transitive provided
that, for all choices of 2t elements x1, . . . , xt, y1, . . . , yt ∈ X such that x1, . . . , xt are
distinct and y1, . . . , yt are distinct, there is exactly one permutation π ∈ G such
that π(xi) = yi for all i, 1 ≤ i ≤ t.

Example 9.20. Let X = Zn, suppose that α = (0 1 · · · n − 1), and let

G = {αi : 0 ≤ i ≤ n − 1}.

(Note that G is isomorphic to (Zn, +).) It is easy to see that G is sharply 1-
transitive.

Example 9.21. Let q be prime and define X = Fq. For a ∈ Fq\{0} and for
b ∈ Fq, define π(a,b) : Fq → Fq by the rule

π(a,b)(x) = ax + b

for all x ∈ Fq. It is not difficult to see that every π(a,b) is a permutation of Fq.
Define

G = {π(a,b) : a ∈ Fq\{0}, b ∈ Fq}.

Then it can be shown that G is a sharply 2-transitive group. This group is
often denoted AGL(1, q).

Suppose that G is a sharply t-transitive subgroup of the symmetric group
Sv acting on the v-set X. Suppose that Y ⊆ X. Recall that the stabilizer of Y,
denoted stab(Y), consists of all the permutations π ∈ G such that {π(y) :
y ∈ Y} = Y. It is not difficult to prove that stab(Y) is a subgroup of G. Now
consider the orbit of subsets obtained by letting G act on Y, which we denote
by orbit(Y).

We have the following result.

Theorem 9.22. For any Y ⊆ X such that t ≤ |Y| < |X|, (X, orbit(Y)) is a t-
(v, k, λ)-design, where v = |X|, k = |Y|, and

λ =
k(k − 1) · · · (k − t + 1)

|stab(Y)| .
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Proof. For each π ∈ G, let π(Y) = {π(y) : y ∈ Y}. Let A denote the multi-
set {π(Y) : π ∈ G}. Because G is sharply t-transitive, it follows that every
t-subset of points occurs in exactly k(k − 1) · · · (k − t + 1) blocks in the collec-
tion A. However, every block in A occurs exactly |stab(Y)| times. Therefore,
if we keep only one copy of every distinct block, then we get a t-design with
the stated parameters. ⊓⊔

As a first illustration of the application of Theorem 9.22, we show how to
construct affine planes using permutation groups.

Example 9.23. Suppose that q is a prime power, and let G be the group
AGL(1, q2) acting on Fq2 . Let Y = Fq (which is a subset of X = Fq2). It is not

hard to see that stab(Y) = {π(a,b) : a, b ∈ Fq}. (Note that stab(Y) is isomor-
phic to AGL(1, q), but it acts on the points in Fq2 .) Clearly, |stab(Y)| = q(q −
1). Then, applying Theorem 9.22, we have that (X, orbit(Y)) is a 2-(q2, q, 1)-
design. (This design is, in fact, isomorphic to the affine plane AG2(q).)

We now present a family of 3-transitive groups that can be used to con-
struct 3-designs with λ = 1.

Let q be a prime power and suppose that a, b, c, d ∈ Fq, ad − bc �= 0. Let
∞ �∈ Fq, and define a function π( a b

c d

) : (Fq ∪ {∞}) → (Fq ∪ {∞}) as follows:

π( a b
c d

)(x) =





ax+b
cx+d if x ∈ Fq and cx + d �= 0

∞ if x ∈ Fq, cx + d = 0, and ax + b �= 0
a
c if x = ∞ and c �= 0

∞ if x = ∞, c = 0, and a �= 0.

We observe that the four cases enumerated above cover all the possibilities
because a = c = 0 is not allowed, and it is impossible that ax + b = cx + d =
0.

The following lemma is straightforward to prove.

Lemma 9.24. Suppose that q is a prime power, a, b, c, d ∈ Fq, and ad − bc �= 0.
Then π( a b

c d

) is a permutation of Fq ∪ {∞}.

It is easy to see that the permutations π( a b
c d

) and π( ra rb
rc rd

) are identical

if r �= 0. Define PGL(2, q) to consist of all the distinct permutations π( a b
c d

),

where a, b, c, d ∈ Fq and ad − bc �= 0. Notice that there are q − 1 identical
permutations π( a b

c d

) corresponding to each permutation in PGL(2, q).

Lemma 9.25. |PGL(2, q)| = q3 − q.
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Proof. There are q4 four-tuples (a, b, c, d) ∈ (Fq)
4. To compute |PGL(2, q)|, we

must subtract the number of four-tuples such that ad = bc and then divide
by q − 1.

It is clear that ad = bc if and only if det
(

a b
c d

)
= 0. If (a, b) = (0, 0),

then any one of the q2 choices for (c, d) yields a zero determinant. If (a, b) �=
(0, 0), then there are q scalar multiples of (a, b), each of which yields a zero
determinant when it is defined to be (c, d).

Therefore we have that

|PGL(2, q)| =
q4 − (q2 + q(q2 − 1))

q − 1
= q3 − q.

⊓⊔

Theorem 9.26. PGL(2, q) is a sharply 3-transitive permutation group.

Proof. First, to show that PGL(2, q) is a group, it is sufficient to prove that
the composition of any two permutations in PGL(2, q) is again a permuta-
tion in PGL(2, q). Consider the composition of two permutations π( a b

c d

) and

π( a′ b′
c′ d′

) in PGL(2, q). Using elementary algebra, it is easy to see that

π( a b
c d

)
(

π( a′ b′
c′ d′

)(x)

)
= π( a′′ b′′

c′′ d′′
)(x)

for all x, where (
a′′ b′′

c′′ d′′

)
=

(
a b
c d

)(
a′ b′

c′ d′

)
.

Furthermore,

det

(
a′′ b′′

c′′ d′′

)
= det

(
a b
c d

)
det

(
a′ b′

c′ d′

)
�= 0

because det
(

a b
c d

)
�= 0 and det

(
a′ b′
c′ d′

)
�= 0.

We now show that PGL(2, q) is sharply 3-transitive. First, we prove that,
for all choices of three distinct elements r, s, t ∈ Fq ∪ {∞}, there is a per-
mutation π( a b

c d

) ∈ PGL(2, q) such that π( a b
c d

)(0) = r, π( a b
c d

)(1) = s, and

π( a b
c d

)(∞) = t. Proving this assertion requires some consideration of cases.

First, suppose that r, s, t ∈ Fq. Then what we want is

b

d
= r,

a + b

c + d
= s, and

b

d
= t.
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If we set d = 1 (which we can do without loss of generality), then we obtain

a =
t(s − r)

t − s
,

b = r,

c =
s − r

t − s
, and

d = 1.

The cases when one of r, s, t = ∞ can be handled by similar considerations,
and in each case we find the desired permutation.

Now, suppose we choose three distinct elements r, s, t ∈ Fq ∪ {∞}, and
r′, s′, t′ ∈ Fq ∪ {∞} are also distinct. We proved above that there is a permu-
tation π( a b

c d

) that maps 0 to r, 1 to s, and ∞ to t and a permutation π( a′ b′
c′ d′

)

that maps 0 to r′, 1 to s′, and ∞ to t′. Define

(
a′′ b′′

c′′ d′′

)
=

(
a′ b′

c′ d′

)(
a b
c d

)−1

;

then the permutation π( a′′ b′′
c′′ d′′

) maps r to r′, s to s′, and t to t′.

We have shown that there is at least one permutation mapping any three
distinct elements r, s, t to r′, s′, t′, respectively. However, the total number
of permutations in PGL(2, q) is q3 − q, so we conclude that there is exactly
one permutation mapping any three distinct elements r, s, t to r′, s′, t′, respec-
tively. Therefore, we have shown that PGL(2, q) is sharply 3-transitive. ⊓⊔

Consider PGL(2, q2); this is a sharply 3-transitive group acting on the set
X = Fq2 ∪ {∞}. Let Y = Fq ∪ {∞}. It is not hard to prove that stab(Y) is

isomorphic to PGL(2, q) (acting on X). Therefore, |stab(Y)| = q3 − q, and it
follows from Theorem 9.22 that (X, orbit(Y)) is a 3-(q2 + 1, q + 1, 1)-design.
This 3-design is called an inversive plane. Summarizing, we have the follow-
ing result.

Theorem 9.27. For all prime powers q, there exists a 3-(q2 + 1, q + 1, 1)-design.

Example 9.28. We construct a 3-(10, 4, 1)-design using Theorem 9.27. The de-
sign consists of 30 blocks on the points F9 ∪{∞} obtained by letting PGL(2, 9)
act on the block Z3 ∪ {∞}. Using the irreducible polynomial x2 + 1 ∈ Z3[x],
we can construct the field F9 = Z3[x]/(x2 + 1). The blocks of the resulting
3-(10, 4, 1)-design are listed in Figure 9.1.

9.2.2 Some 5-Designs

We first present a construction (without proof) for a 5-(12, 6, 1)-design that
uses permutation groups. For an odd prime power q, the group PSL(2, q) is
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{∞, 0, 1, 2}, {∞, 0, x, 2x}, {∞, 0, x + 2, 2x + 1},
{∞, 0, x + 1, 2x + 2}, {∞, 1, x, 2x + 2}, {∞, 1, x + 2, 2x},
{∞, 1, x + 1, 2x + 1}, {∞, 2, x, 2x + 1}, {∞, 2, x + 2, 2x + 2},
{∞, 2, x + 1, 2x}, {∞, x, x + 1, x + 2}, {∞, 2x, 2x + 1, 2x + 2},
{0, 1, x + 2, 2x + 2}, {0, 1, x, x + 1}, {0, 1, 2x, 2x + 1},
{0, 2, x + 1, 2x + 1}, {0, 2, x, x + 2}, {0, 2, 2x, 2x + 2},
{0, x, 2x + 1, 2x + 2}, {0, x + 1, x + 2, 2x}, {1, 2, x, 2x},
{1, 2, x + 1, x + 2}, {1, 2, 2x + 1, 2x + 2}, {1, x, x + 2, 2x + 1},
{1, x + 1, 2x, 2x + 2}, {2, x, x + 1, 2x + 2}, {2, x + 2, 2x, 2x + 1},
{x, x + 1, 2x, 2x + 1}, {x, x + 2, 2x, 2x + 2}, {x + 1, x + 2, 2x + 1, 2x + 2}.

Fig. 9.1. The Blocks in a 3-(10, 4, 1)-Design

the subgroup of PGL(2, q) consisting of all the distinct permutations π( a b
c d

)

such that ad − bc �= 0 is a quadratic residue in Fq. It can be shown that

|PSL(2, q)| = (q3 − 1)/2.

Example 9.29. Let X = F11 ∪ {∞} and let Y = {1, 3, 4, 5, 9} ∪ {∞} (note that
Y consists of the quadratic residues modulo 11 together with ∞). Applying
the group PSL(2, 11) to Y, it can be proven that (X, orbit(Y)) is a 5-(12, 6, 1)-
design.

In the rest of this section, we will present a construction for an infinite
class of 5-designs. First, we need some preliminary results on a seemingly
different topic.

Let n ≥ 2 be an integer, and let (X,A) be a projective plane of order 2n. A
hyperoval in (X,A) is a set of 2n + 2 points O ⊆ X such that |O ∩ A| ∈ {0, 2}
for all A ∈ A.

Theorem 9.30. For all integers n ≥ 2, there exists a projective plane of order 2n

containing a hyperoval.

Proof. We construct a projective plane of order 2n as in Section 2.3. Let V
denote the three-dimensional vector space over the field F2n . Let X consist
of all the one-dimensional subspaces of V, and let B consist of all the two-
dimensional subspaces of V. For each B ∈ B, define a block

AB = {x ∈ X : x ⊆ B}.

Finally, define
A = {AB : B ∈ B}.

Then (X,A) is a projective plane of order 2n.
For each x ∈ X, choose a 3-tuple (x1, x2, x3) ∈ x such that (x1, x2, x3) �=

(0, 0, 0). Also, for each (x1, x2, x3) ∈ (F2n)3 such that (x1, x2, x3) �= (0, 0, 0),
span((x1, x2, x3)) ∈ X is the unique point x ∈ X such that (x1, x2, x3) ∈ x (i.e.,
it is the one-dimensional subspace generated by (x1, x2, x3)).
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Now, define

O = {x ∈ X : x1x2 + x2x3 + x3x1 = 0} ∪ {span((1, 1, 1))}.

We will show that O is a hyperoval. First, we find all the points in O. Con-
sider the equation ab + bc + ca = 0, a, b, c ∈ Fq. If a = 0, then bc = 0, so b = 0
or c = 0. Similarly, if b = 0, then a = 0 or c = 0; and if c = 0, then a = 0
or b = 0. This gives us three points in O: span((0, 0, 1)), span((0, 1, 0)), and
span((1, 0, 0)).

We have considered all cases where at least one of a, b, c = 0. Therefore
we can now assume a, b, c �= 0. Since points are one-dimensional subspaces,
we can assume without loss of generality that a = 1. Then c = b(b + 1)−1.
In order for (b + 1)−1 to exist, b �= 1. Therefore we obtain q − 1 more points
in O: span((1, b, b(b + 1)−1)), where b �= 0, 1. Finally, span((1, 1, 1)) ∈ O by
definition, and so we have shown that there are q + 2 points in O.

To show that O is a hyperoval, we must show that any block in the pro-
jective plane intersects O in either zero or two points. A block can be defined
as the solution set of a linear equation

Bd,e, f = {span((a, b, c)) : (a, b, c) ∈ (Fq)
3, (d, e, f ) · (a, b, c) = 0},

where d, e, f ∈ Fq. If (d, e, f ) and (d′, e′, f ′) are scalar multiples of each other,
then they define the same block. Therefore, without loss of generality, we can
take the first nonzero coefficient of (d, e, f ) to be 1.

There are several cases to consider.

1. Suppose (d, e, f ) = (1, 0, 0). Then

Bd,e, f ∩ O = {span((0, 1, 0)), span((0, 0, 1))}.

2. Suppose (d, e, f ) = (0, 1, 0). Then

Bd,e, f ∩ O = {span((1, 0, 0)), span((0, 0, 1))}.

3. Suppose (d, e, f ) = (0, 0, 1). Then

Bd,e, f ∩ O = {span((1, 0, 0)), span((0, 1, 0))}.

4. Suppose (d, e, f ) = (1, 0, 1). Then

Bd,e, f ∩ O = {span((0, 1, 0)), span((1, 1, 1))}.

5. Suppose (d, e, f ) = (1, 0, f ), f �= 0, 1. Then

Bd,e, f ∩O = {span((0, 1, 0)), span((1, ( f + 1)−1, f−1))}.

6. Suppose (d, e, f ) = (1, 1, 0). Then

Bd,e, f ∩ O = {span((0, 0, 1)), span((1, 1, 1))}.
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7. Suppose (d, e, f ) = (1, e, 0), e �= 0, 1. Then

Bd,e, f ∩ O = {span((0, 0, 1)), span((1, e−1, (1 + e)−1))}.

8. Suppose (d, e, f ) = (0, 1, 1). Then

Bd,e, f ∩ O = {span((1, 0, 0)), span((1, 1, 1))}.

9. Suppose (d, e, f ) = (0, 1, f ), f �= 0, 1. Then

Bd,e, f ∩ O = {span((1, 0, 0)), span((1, f−1, f (1 + f )−1))}.

10. Suppose (d, e, f ) = (1, e, f ), where e, f �= 0.
a) If e + f = 1, then

Bd,e, f ∩ O = {span((1, 1, 1)), span((1, r−1, (1 + r)−1))},

where r is the unique square root (in Fq) of e (this is why we require
that q be even: in a finite field of even order, every nonzero field ele-
ment has a unique square root).

b) If e + f �= 1, then we form the quadratic equation

eb2 + (e + f + 1)b + 1 = 0.

The linear coefficient in this equation, namely e + f + 1, is nonzero,
so this equation has either zero or two roots over Fq. The roots (if

any) determine the values of b such that span((1, b, b(b + 1)−1)) ∈
Bd,e, f ∩O.

The cases above exhaust all the possibilities, and the desired result is proven.
⊓⊔

Example 9.31. A hyperoval O in a projective plane of order 4. We begin by
constructing the field F4 = Z2[x]/(x2 + x + 1). Then the six points in O are
as follows:

O =

{
span((0, 0, 1)), span((0, 1, 0)), span((1, 0, 0)),
span((1, x, x + 1)), span((1, x + 1, x)), span((1, 1, 1))

}
.

Theorem 9.32. For all integers n ≥ 3, there exists a 5-(2n + 2, 6, 15)-design.

Proof. Let O be a hyperoval in a projective plane of order 2n, say (X,A). For
each point x ∈ X\O, define

P(x) = {A ∈ A : x ∈ A and |A ∩O| = 2}.

Note that each P(x) consists of 2n−1 + 1 blocks. Now, for x ∈ X\O, define
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Πx = {A ∩ O : A ∈ P(x)}.

Using the fact that O is a hyperoval, it is not hard to see that each Πx is
a partition of O into 2n−1 + 1 2-subsets. Further, given any two disjoint 2-
subsets in O, there is a unique Πx that contains both of them (this follows
because any two blocks in a projective plane intersect in a unique point).

Now, define

B = {A1 ∪ A2 ∪ A3 : A1, A2, A3 ∈ Πx, A1 �= A2 �= A3 �= A1, x ∈ X\O}.

We claim that the pair (O,B) is a 5-(2n + 2, 6, 15)-design. To prove this, let

x1, x2, x3, x4, x5 be five distinct points in O. There are
(5

2

)(3
2

)
/2 = 15 ways to

choose two disjoint 2-subsets from {x1, x2, x3, x4, x5}. Consider, for example,
{x1, x2} and {x3, x4}. As stated above, there is a unique x such that {x1, x2} ∈
Πx and {x3, x4} ∈ Πx. Then, there is a unique x6 such that {x5, x6} ∈ Πx. This
yields a block {x1, x2, x3, x4, x5, x6} containing the five given points.

From this argument, it is easily seen that we have a 5-(2n + 2, 6, 15)-
design. ⊓⊔

9.3 t-wise Balanced Designs

We begin by defining t-wise balanced designs, which generalize the notion
of pairwise balanced designs.

Definition 9.33. Let t ≥ 1 be an integer. A t-wise balanced design is a design
(X,B) such that the following properties are satisfied.

1. |B| ≥ t for all B ∈ B.
2. Every subset of t distinct points is contained in exactly one block.

Let K ⊆ {n ∈ Z : n ≥ t}. A t-wise balanced design (X,B) is denoted as a t-(v, K)-
tBD provided that |X| = v and |B| ∈ K for all B ∈ B.

As a first class of examples, we observe that it is easy to construct certain
3-wise balanced designs using the method of Theorem 9.16.

Theorem 9.34. Suppose that v ≥ 2 is an even integer. Then there exists a 3-
(2v, {4, v})-tBD.

Proof. Use the same construction as in the proof of Theorem 9.16, but retain
X and Y as two blocks of size v. ⊓⊔

Next, we give an elegant construction for certain 5-wise balanced designs.

Theorem 9.35. For all integers n ≥ 4, there exists a 5-(2n, {6, 8})-tBD.
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Proof. Let X = (Z2)
n. Define

A =

{
Y ⊆ X : |Y| = 6 and ∑

x∈Y

x = (0, . . . , 0)

}
.

Let B consist of all three-dimensional subspaces of (Z2)
n and all their ad-

ditive cosets (recall that the blocks in B are called flats). Observe that a flat
has the form a + span(u, v, w), where a, u, v, w ∈ (Z2)

n; u, v, w are linearly
independent; and span(u, v, w) denotes the subspace spanned by u, v, and
w.

We will show that (X,A ∪ B) is a 5-(2n, {6, 8})-tBD. Let x1, x2, x3, x4, x5

be five distinct vectors in (Z2)
n. Define x6 = x1 + x2 + x3 + x4 + x5. If x6 is

distinct from x1, x2, x3, x4, x5, then {x1, x2, x3, x4, x5, x6} is a block in A that
contains x1, x2, x3, x4, x5. Suppose that x6 ∈ {x1, x2, x3, x4, x5}. Without loss
of generality, suppose that x5 = x6. Then x1 + x2 + x3 + x4 = 0 and hence
x4 = x1 + x2 + x3. It is not difficult to check that

x5 + span(x1 + x5, x2 + x5, x3 + x5)

is a flat of dimension three (i.e., a block in B) that contains x1, x2, x3, x4, x5.
This is easy to verify since

span(x1 + x5, x2 + x5, x3 + x5)\{(0, . . . , 0)}
= {x1 + x5, x2 + x5, x3 + x5, x1 + x2, x2 + x3, x1 + x3, x4 + x5}.

At this point, we know that every set of five points occurs in at least one
block. We need to check that no set of five points occurs in more than one
block. Equivalently, we need to show that no two blocks intersect in more
than four points.

Clearly no two blocks in A intersect in more than four points since two
blocks in A that intersect in five points would be identical. The intersection of
two blocks in B is a flat and therefore cannot contain more than four points,
so we need only to consider the intersection of a block in A ∈ A with a block
in B ∈ B. Since B is a flat, the sum of an odd number of vectors in B is a
vector in B. This means that |A ∩ B| �= 5 since any vector in A is the sum of
the other five vectors in A. The only remaining possibility is that A ⊆ B. Now
the sum of all the vectors in B is (0, . . . , 0), as is the sum of all the vectors in
A. This means that the sum of the two vectors in B\A is also (0, . . . , 0), which
implies that they are equal. This is a contradiction, and we conclude that we
have constructed a 5-wise balanced design. ⊓⊔

9.3.1 Holes and Subdesigns

Definition 9.36. Let t ≥ 1 be an integer. An incomplete t-wise balanced design
is a triple (X, Y,B) such that the following properties are satisfied.
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1. X is a set of elements called points.
2. Y ⊆ X is called the hole.
3. B is a set of subsets of X called blocks such that |B| ≥ t for all B ∈ B.
4. No block contains t points from Y.
5. Every subset of t points Z ⊆ X such that Z �⊆ Y is contained in exactly one

block.

Let K ⊆ {n ∈ Z : n ≥ t}. An incomplete t-wise balanced design (X, Y,B) is
denoted as a t-(v, h, K)-ItBD provided that |X| = v, |Y| = h, and |B| ∈ K for all
B ∈ B.

Example 9.37. Corollary 7.4 shows how to construct a (2v− 1, {3, v− 1})-PBD

having exactly one block of size v− 1 whenever v ≥ 4 is an even integer. If the
block of size v− 1 is taken to be the hole, then we have a 2-(2v− 1, v− 1, {3})-
ItBD.

Observe that a t-(v, h, K)-ItBD is the same thing as a t-(v, K)-tBD when
0 ≤ h ≤ t − 1. When h ≥ t, we have the following result.

Lemma 9.38. Suppose there is a t-(v, h, K)-ItBD, where h ≥ t. Then there is a t-
(v, K ∪ {h})-tBD.

Proof. Let (X, Y,B) be a t-(v, h, K)-ItBD. Define C = B ∪ {Y}. Then (X, C) is a
t-(v, K ∪ {h})-tBD. ⊓⊔

Holes can sometimes be filled in with t-wise balanced designs, as is
shown in the following lemma.

Lemma 9.39 (Filling in Holes). Suppose there exists a t-(v, h, K)-ItBD and a t-
(h, K)-tBD. Then there exists a t-(v, K)-tBD.

Proof. Let (X, Y,B) be a t-(v, h, K)-ItBD and let (Y, C) be a t-(h, K)-tBD. Then
it is easy to see that (X,B ∪ C) is a t-(h, K)-tBD. ⊓⊔

Suppose that (X,B) is a t-(v, K)-tBD, and suppose further that Y ⊆ X
and C ⊆ B. Then (Y, C) is a subdesign of (X,B) provided that (Y, C) is itself a
t-(h, K)-tBD, where h = |Y|. Any block of a t-wise balanced design yields a
subdesign. Subdesigns consisting of more than one block are more interest-
ing, however.

Observe that Lemma 9.39 creates an incomplete t-wise balanced design
that contains a subdesign, (Y, C). The following lemma is a type of converse
result.

Lemma 9.40. Suppose that (X,B) is a t-(v, K)-tBD and (Y, C) is a subdesign. De-
fine D = B\C. Then (X, Y,D) is a t-(v, h, K)-ItBD, where h = |Y|.

In the rest of this section, we find some necessary conditions for the exis-
tence of certain incomplete t-wise balanced designs.
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Theorem 9.41. Suppose that t, k, h, and v are positive integers such that 2 ≤ t <

k < h < v. In a t-(v, h, {k})-ItBD, say (X, Y,B), the number of blocks disjoint from
the hole is exactly

a(t, v, h, k) =
t−1

∑
i=0

(−1)i
(h

i

) ((v−i
t−i

)
−
(h−i

t−i

))

(k−i
t−i

) .

Proof. The proof is similar to the first part of the proof of Theorem 9.7. For
any y ∈ Y, define

By = {B ∈ B : y ∈ B}.

Then, for any Y0 ⊆ Y such that |Y0| = i ≤ t, it is easy to see that

∣∣∣∣∣∣
⋂

y∈Y0

By

∣∣∣∣∣∣
=

(v−i
t−i

)
−
(h−i

t−i

)
(k−i

t−i

) .

Applying the principle of inclusion-exclusion, as in the proof of Theorem 9.7,
the desired result is obtained. ⊓⊔

Corollary 9.42. Suppose that t, k, h, and v are positive integers such that 2 ≤ t <

k < h < v. If a t-(v, h, {k})-ItBD exists, then a(t, v, h, k) ≥ 0.

Corollary 9.42 can be used to prove some useful necessary conditions.
The first interesting case is t = 2, which can easily be analyzed. We have the
following:

a(2, v, h, k) =
1

∑
i=0

(−1)i
(h

i

) ((v−i
2−i

)
−
(h−i

2−i

))

(k−i
2−i

)

=

(v
2

)
−
(h

2

)
(k

2

) − h(v − h)

k − 1

=
v − h

k − 1

(
v + h − 1

k
− h

)
.

Therefore it follows that a(2, v, h, k) ≥ 0 if and only if v ≥ h(k − 1) + 1, and
we obtain the following well-known result by applying Corollary 9.42.

Theorem 9.43. Suppose that k, h, and v are positive integers such that 2 < k <

h < v. If a 2-(v, h, {k})-ItBD exists, then v ≥ h(k − 1) + 1.

We observe that the 2-(2v − 1, v − 1, {3})-ItBDs, which were constructed
in Example 9.37, meet the bound of Theorem 9.43 with equality.

Another case that can be solved is when t is even and k = t + 1. First, we
rewrite the function a(t, v, h, k) and apply a certain binomial identity. For a
positive integer x > k, define
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b(t, k, h, x) =
t−1

∑
i=0

(−1)i
(h

i

)(x−i
t−i

)
(k−i

t−i

) .

Then it is clear that a(t, v, h, k) = b(t, k, h, v) − b(t, k, h, h). We study the func-
tion b a bit further.

Using the fact that (x−i
t−i

)
(k−i

t−i

) =

(x−i
x−k

)
(x−t

k−t

) ,

we have that

b(t, k, h, x) =
t−1

∑
i=0

(−1)i
(h

i

)(x−i
x−k

)
(x−t

k−t

) =
1(x−t

k−t

)
t−1

∑
i=0

(−1)i

(
h

i

)(
x − i

x − k

)
. (9.4)

Now we can apply a binomial identity, which we state without proof.

k

∑
i=0

(−1)i

(
h

i

)(
x − i

x − k

)
=

(
x − h

k

)
. (9.5)

From (9.4) and (9.5), it follows immediately that

b(t, k, h, x) =
1(x−t

k−t

)
((

x − h

k

)
−

k

∑
i=t

(−1)i

(
h

i

)(
x − i

x − k

))
.

We apply the results above when k = t + 1 and t is even:

b(t, t + 1, h, x) =
1

x − t

((
x − h

t + 1

)
−

t+1

∑
i=t

(−1)i

(
h

i

)(
x − i

x − t − 1

))

=
1

x − t

((
x − h

t + 1

)
−
(

h

t

)
(x − t) +

(
h

t + 1

))
.

Now we can compute the function a(t, v, h, t + 1) (when t is even) as follows:

a(t, v, h, t + 1) = b(t, t + 1, h, v)− b(t, t + 1, h, h)

=
1

v − t

((
v − h

t + 1

)
−
(

h

t

)
(v − t) +

(
h

t + 1

))

− 1

h − t

(
−
(

h

t

)
(h − t) +

(
h

t + 1

))

=
1

v − t

(
v − h

t + 1

)
−
(

h

t + 1

)(
1

v − t
− 1

h − t

)

=
1

v − t

((
v − h

t + 1

)
−
(

h

t + 1

)
v − h

h − t

)
.

Then it is easily seen that a(t, v, h, t + 1) ≥ 0 if and only if



9.4 Notes and References 221

(v − h − 1) × · · · × (v − h − t) ≥ h × · · · × (h − t + 1).

This is true if and only if v ≥ 2h + 1.
Applying Corollary 9.42, we have the following result.

Theorem 9.44. Suppose that t, h, and v are positive integers such that t + 1 < h <

v, and suppose that t is even. If a t-(v, h, {t + 1})-ItBD exists, then v ≥ 2h + 1.

We can obtain a slightly stronger result when t ≥ 3 is odd.

Theorem 9.45. Suppose that t, h, and v are positive integers such that t + 1 < h <

v, and suppose that t ≥ 3 is odd. If a t-(v, h, {t + 1})-ItBD exists, then v ≥ 2h.

Proof. Suppose that (X, Y,B) is a t-(v, h, {t + 1})-ItBD with t ≥ 3, t odd. Let
y ∈ Y. Then

(X\{y}, Y\{y}, {B\{y} : y ∈ B ∈ B})
is a (t − 1)-(v − 1, h − 1, {t})-ItBD. Applying Theorem 9.44, we have that v −
1 ≥ 2(h − 1) + 1, or v ≥ 2h. ⊓⊔

9.4 Notes and References

For more information on the topics described in this chapter, see Kramer [70],
Kreher [72], and Colbourn and Mathon [31], all of which are sections in “The
CRC Handbook of Combinatorial Designs”.

Steiner quadruple systems of all possible orders were shown to exist by
Hanani [56]. A very readable proof of this difficult result can be found in
Chapter 7 of “Design Theory” by Lindner and Rodger [77]. Hartman and
Phelps [58] is a useful survey on Steiner quadruple systems.

Theorem 9.8 is due to Wilson [120]. The proof we give is from Cameron
[19]. Theorem 9.27 is due to Witt [124].

The proofs of Theorems 9.14 and 9.32 are due to Lonz and Vanstone; their
techniques are discussed further by Jungnickel and Vanstone in [66] and [67].

The construction of simple t-designs with t ≥ 3 has been a problem of
ongoing interest. There are quite a number of results for t = 3, but relatively
little is known for t ≥ 4. It is known that such designs exist for all t; this is
a famous result of Teirlinck [108]. The existence of a t-design with t ≥ 6 and
λ = 1 is currently unknown, however.

Theorem 9.35 is unpublished work due to Wilson; the construction is pre-
sented in Kramer [69]. In 1983, Kramer [69] conjectured the results that we
stated as Theorems 9.44 and 9.45. These theorems were proven by Kreher
and Rees in 2001 [73].
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9.5 Exercises

9.1 A t-(v, k, λ)-design, say (X,A), is said to be a graphical t-design if X
consists of the edges of a complete graph Kn (i.e., all the 2-subsets of a
v-set, where v =

(n
2

)
) and A is formed by taking all subgraphs of Kn

that are isomorphic to one of the graphs in a set G of specified sub-
graphs of Kn.

(a) Suppose that v = 15, n = 6, and

G = {{12, 34, 56}, {12, 13, 23}}.

Prove that the result is a graphical 2-(15, 3, 1)-design (i.e., a
(15, 3, 1)-BIBD).

(b) Suppose that v = 10, n = 5, and

G = {{12, 13, 14, 15}, {12, 13, 23, 45}, {12, 23, 34, 14}}.

Prove that the result is a graphical 3-(10, 4, 1)-design.

9.2 Assuming that a 5-(12, 6, 1)-design exists, compute the values λ
j
i for all

i, j such that i + j ≤ 5.
9.3 Construct a 1-(14, 6, 3)-design.
9.4 Theorem 9.14 describes how to construct a 3-(v, 4, 3)-design from a re-

solvable (v, 2, 1)-BIBD, say (X,A). Let Π1, . . . , Πv−1 denote the paral-
lel classes in this BIBD, and denote by (X,B) the resulting 3-(v, 4, 3)-
design. Prove the following assertions:

(a) For any i �= j, Πi ∪ Πj consists of disjoint cycles that partition X.
(b) The length of any cycle in any union Πi ∪ Πj is an even integer

that is ≥ 4.
(c) (X,B) is a simple 3-(v, 4, 3)-design if and only if there is no cycle

of length four in any union Πi ∪ Πj.
9.5 Suppose there is an SQS(v). Prove that there is a 3-(2v, {v, 4})-tBD.
9.6 Suppose there is a 3-(v, {4, 6})-tBD. Prove that there is a 3-(2v, {4, 6})-

tBD.
9.7 Use the existence of hyperovals to establish the following.

(a) Prove that there is a 2-(22n − 1, {2n + 1, 2n − 1})-tBD for all inte-
gers n ≥ 2.

(b) For all integers n ≥ 2 and all integers i such that 1 ≤ i ≤ 2n + 1,
prove that there is a 2-(22n + 2n + 1− i, {2n + 1, 2n, 2n − 1})-tBD.

9.8 Let m ≥ 2 be an integer, and let (X,A) be a projective plane of order
m. Suppose that O ⊆ X is a set of points such that |O ∩ A| ≤ 2 for all
A ∈ A. Prove the following.

(a) |O| ≤ m + 2.
(b) If |O| = m + 2, then |O ∩ A| ∈ {0, 2} for all A ∈ A.
(c) If |O| = m + 2, then m is even.

9.9 We outline a proof that the identity (9.5) holds. The proof uses the fol-
lowing two simpler identities:(

n

i

)
= (−1)i

(
i − n − 1

i

)
(9.6)



9.5 Exercises 223

and
j

∑
i=0

(
n

i

)(
m

j − i

)
=

(
n + m

j

)
. (9.7)

Remark: You are not asked to prove these two identities. However, we
note that (9.6) follows easily from the definition of a binomial coeffi-
cient, and (9.7) is a classical result known as the Vandermonde convolu-
tion formula.

Assuming that (9.6) and (9.7) hold, prove that (9.5) holds as follows:

• replace
(x−i

x−k

)
by
(x−i

k−i

)
,

• apply (9.6),
• apply (9.7), and finally
• apply (9.6).

9.10 Prove that a 2-(v, h, {k})-ItBD with v = h(k − 1) + 1 exists if and only
if a resolvable (v − h, k − 1, 1)-BIBD exists.
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10

Orthogonal Arrays and Codes

10.1 Orthogonal Arrays

We defined orthogonal arrays in Section 6.5. We give a more general defini-
tion now.

Definition 10.1. Let t, v, k, and λ be positive integers such that k ≥ t ≥ 2. A t-
(v, k, λ) orthogonal array (denoted t-(v, k, λ)-OA) is a pair (X, D) such that the
following properties are satisfied.

1. X is a set of v elements called points.
2. D is a λvt by k array whose entries are chosen from the set X.
3. Within any t columns of D, every t-tuple of points is contained in exactly λ

rows.

An orthogonal array (X, D) is a simple orthogonal array if all the rows in D
are different (i.e., D does not contain “repeated rows”). An orthogonal array (X, D)
is a linear orthogonal array if X = Fq for some prime power q and the rows of

D form a subspace (of the vector space (Fq)
k) having dimension logq |D|. It is clear

from the definitions that a linear orthogonal array is necessarily simple.

We already defined a special type of orthogonal array in Section 6.5; an
OA(k, n) (as defined in Section 6.5) is the same thing as a 2-(v, k, 1)-OA. That
is, the previous definition is just the special case t = 2 and λ = 1.

We have defined orthogonal arrays using array notation. Each row of an
orthogonal array D is a k-tuple. It is possible to define an orthogonal array to
be the collection (or multiset) of k-tuples formed from the rows of D. We will
sometimes use this alternative viewpoint, particularly when we consider the
connections with codes in later sections of this chapter.

We illustrate the definition above with a simple construction for certain
orthogonal arrays from Hadamard matrices.

Theorem 10.2. Suppose there exists a Hadamard matrix of order 4m. Then there
exists a 2-(2, 4m− 1, m)-OA.
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Proof. Let H be a standardized Hadamard matrix of order 4m (see Section
4.1). Delete the first row of H, and then transpose this array to form a 4m by
4m − 1 array, D. It is easy to see that D is the desired orthogonal array using
the counting arguments from the proof of Theorem 4.4. ⊓⊔

Example 10.3. A 2-(2, 7, 2)-OA constructed from the Hadamard matrix of or-
der 8 presented in Example 4.6.




1 1 1 1 1 1 1
1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 −1
1 −1 −1 −1 −1 1 1

−1 1 −1 1 −1 1 −1
−1 1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 1 −1 1 1 −1




.

The following important construction enables orthogonal arrays to be
constructed for a wide variety of parameter situations.

Theorem 10.4. Let ℓ and n be positive integers, and let q be a prime power. Let M
be an ℓ by n matrix of elements from Fq such that every set of t columns of M is

linearly independent. Define D to be the qℓ by n matrix whose rows consist of all the
linear combinations of the rows of M. Then (Fq, D) is a linear t-(q, n, λ)-OA, where

λ = qℓ−t.

Proof. Choose t columns of D, say the ones labeled c1, . . . , ct. Let (y1, . . . , yt)
be an arbitrary t-tuple of elements of Fq. We want to determine the rows i of
D such that D(i, cj) = yj for 1 ≤ j ≤ t.

A row of D is constructed as rM, where r = (r1, . . . , rℓ) ∈ (Fq)
ℓ. Let cj

denote the jth column of M for 1 ≤ j ≤ n. We want to determine all vectors
r such that

rci j
= yi j

, 1 ≤ j ≤ t. (10.1)

The column vectors ci1 , . . . , cit
are linearly independent by assumption. There-

fore, (10.1) is a system of t independent linear equations in ℓ unknowns, and
it has a solution space of dimension ℓ − t. The number of solutions r is qℓ−t,
as desired. ⊓⊔

We present a couple of important corollaries of Theorem 10.4.

Corollary 10.5. Let ℓ ≥ 2 be a positive integer, and let q be a prime power. Then
there exists a 2-(q, (qℓ − 1)/(q − 1), qℓ−2)-OA.
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Proof. Excluding the zero vector, there are qℓ − 1 distinct ℓ-tuples of elements
of Fq. Each ℓ-tuple has q − 1 nonzero scalar multiples, so the qℓ − 1 nonzero

vectors are partitioned into (qℓ − 1)/(q − 1) subspaces each of dimension
equal to one. Arbitrarily pick one vector from each subspace, and let these
vectors be the columns of M. Then apply Theorem 10.4. ⊓⊔

When we take ℓ = 2 in Corollary 10.5, we get a 2-(q, q + 1, 1)-OA. This is
equivalent to the projective plane PG2(q).

Example 10.6. Suppose we take q = 5 and ℓ = 2 in Corollary 10.5. Each pair
of columns of the following 2 × 6 matrix is linearly independent over Z5:

(
0 1 1 1 1 1
1 0 1 2 3 4

)
.

Applying Theorem 10.4, the following 2-(5, 6, 1)-OA is obtained:




0 0 0 0 0 0
0 1 1 1 1 1
0 2 2 2 2 2
0 3 3 3 3 3
0 4 4 4 4 4
1 0 1 2 3 4
2 1 2 3 4 0
3 2 3 4 0 1
4 3 4 0 1 2
0 4 0 1 2 3
2 0 2 4 1 3
3 1 3 0 2 4
4 2 4 1 3 0
0 3 0 2 4 1
1 4 1 3 0 2

...
4 0 4 3 2 1
0 1 0 4 3 2
1 2 1 0 4 3
2 3 2 1 0 4
3 4 3 2 1 0




.

Corollary 10.7. Let t ≥ 2 be an integer, and let q be a prime power. Then there
exists a t-(q, q, 1)-OA.

Proof. For every x ∈ Fq, construct the vector x = (1, x, x2, . . . , xt−1) ∈ (Fq)
t.

Transpose these q vectors to form the columns of M. Therefore M has the
following form:
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M =




1 1 1 · · · 1
x1 x2 x3 · · · xq

x1
2 x2

2 x3
2 · · · xq

2

...
...

...
. . .

...
x1

t−1 x2
t−1 x3

t−1 · · · xq
t−1




,

where x1, . . . , xq are the q distinct elements of Fq.
In order to apply Theorem 10.4, we need to show that any t of the vectors

x are linearly independent. Suppose that this is not the case. Then there exists
a t × t submatrix of M, say M0, whose columns are linearly dependent. M0

has the form

M0 =




1 1 1 · · · 1
y1 y2 y3 · · · yt

y1
2 y2

2 y3
2 · · · yt

2

...
...

...
. . .

...
y1

t−1 y2
t−1 y3

t−1 · · · yt
t−1




,

where y1, . . . , yt are t distinct elements of Fq.
If the columns of M0 are linearly dependent, then the rows of M0 are also

linearly dependent. Therefore, there exist a1, . . . , at ∈ Fq, not all equal to 0,
such that (a1, . . . , at)M0 = (0, . . . , 0). Define the polynomial

a(x) = a1 + a2x + · · · + atx
t−1;

then a(yj) = 0 for 1 ≤ j ≤ t. This means that the degree t − 1 polynomial a(x)
has t roots in the field Fq, which is impossible. This contradiction establishes
the desired result. ⊓⊔

Example 10.8. A 3-(5, 5, 1)-OA. The matrix M described in Corollary 10.7 is as
follows:

M =




1 1 1 1 1
0 1 2 3 4
0 1 4 4 1


 .

The 125 rows that are the linear combinations (over Z5) of the three rows of
M comprise the desired orthogonal array.

The constructions above all yield linear orthogonal arrays. Here is a con-
struction for orthogonal arrays that makes use of quadratic, instead of linear,
functions.

Theorem 10.9. Let q be an odd prime power. For a, b ∈ Fq, define fa,b : Fq → Fq

by the rule

fa,b(x) = (x + a)2 + b.

Then the q2 by q array D = (di,j), where di,j = fa,b(j) (i = (a, b) ∈ (Fq)
2 , j ∈ Fq),

is a 2-(q, q, 1)-OA.
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Proof. Let x1, x2 ∈ Fq (where x1 �= x2) and let y1, y2 ∈ Fq. We want to show

that there is exactly one ordered pair (a, b) ∈ (Fq)
2 such that

(x1 + a)2 + b = y1

and
(x2 + a)2 + b = y2.

Subtracting the two equations, we can solve uniquely for a:

a =
y1 − y2

2(x1 − x2)
− x1 + x2

2
.

Then, given a, we obtain a unique solution for b. ⊓⊔

Example 10.10. The following 2-(3, 3, 1)-OA is constructed using Theorem 10.9.

0 1 2
f0,0 : 0 1 1
f0,1 : 1 2 2
f0,2 : 2 0 0
f1,0 : 1 1 0
f1,1 : 2 2 1
f1,2 : 0 0 2
f2,0 : 1 0 1
f2,1 : 2 1 2
f2,2 : 0 2 0

→




0 1 1
1 2 2
2 0 0
1 1 0
2 2 1
0 0 2
1 0 1
2 1 2
0 2 0




This orthogonal array is not linear. This can be seen, for example, by observ-
ing that the sum of the first two rows (modulo 3) is (1, 0, 0), which is not a
row of the array.

Finally, we give a powerful nonconstructive existence result for orthogo-
nal arrays.

Theorem 10.11 (Gilbert-Varshamov Bound). Let ℓ, t and n be positive integers
such that 2 ≤ t ≤ ℓ, and let q be a prime power. Suppose that

t−1

∑
i=0

(
n − 1

i

)
(q − 1)i

< qℓ. (10.2)

Then there exists a linear t-(q, n, λ)-OA, where λ = qℓ−t.

Proof. We will prove that there exists an ℓ by n matrix, say M, satisfying
the hypotheses of Theorem 10.4 whenever (10.2) holds. Suppose that Mℓ is
the ℓ by ℓ identity matrix. It is clear that any t columns of Mℓ are linearly
independent.
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Now suppose that Mj is an ℓ by j matrix having entries from Fq such that
any subset of t columns of Mj is linearly independent. The number of linear
combinations of at most t − 1 columns of Mj is

t−1

∑
i=0

(
j

i

)
(q − 1)i.

(Note that not all of these linear combinations necessarily yield distinct vec-
tors.) There are qℓ possible column vectors of length ℓ. Therefore there is a
column vector, say c, such that c is not one of these linear combinations, pro-
vided that

t−1

∑
i=0

(
j

i

)
(q − 1)i

< qℓ. (10.3)

Then we can construct the matrix Mj+1 by adjoining the column vector c
to Mj, and Mj+1 again satisfies the property that any subset of t columns is
linearly independent.

We assumed that (10.2) holds, which implies that (10.3) is true for j =
ℓ, ℓ + 1, . . . , n − 1. This means that we can construct matrices Mj, . . . , Mn sat-
isfying the required properties, and the matrix Mn is the desired matrix M.

⊓⊔

10.2 Codes

Definition 10.12. A code is a pair (Q, C) such that the following properties are
satisfied.

1. Q is a set of elements called symbols.
2. C is a set of n-tuples of symbols called codewords (i.e., C ⊆ Qn), where n ≥ 1

is an integer.

If Q = F2, then a code (Q, C) is called a binary code.

The concept of “distance” is fundamental to the study of codes. We give
several relevant definitions now.

Definition 10.13. Let (Q, C) be a code, where C ⊆ Qn. For x, y ∈ Qn, define the
Hamming distance between x and y to be

d(x, y) = |{i : xi �= yi}|,

where x = (x1, . . . , xn) and y = (y1, . . . , yn).
The distance of the code (Q, C), denoted d(C), is the smallest positive integer d

such that d(x, y) ≥ d for all x, y ∈ C, x �= y.
(Q, C) is an (n, M, d, q)-code if the following properties are satisfied:

1. |Q| = q,
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2. C ⊆ Qn,
3. |C| = M, and
4. d(C) ≥ d.

For future reference, we record some basic facts about the Hamming dis-
tance.

Lemma 10.14. For all x, y, z ∈ Xn, the following properties hold:

1. d(x, y) = d(y, x),
2. d(x, y) = 0 if and only if x = y, and
3. d(x, y) ≤ d(x, z) + d(y, z) (this is known as the triangle inequality).

Now we define linear codes.

Definition 10.15. A code (Q, C) is a linear code of dimension m if Q = Fq for
some prime power q and C is an m-dimensional subspace of the vector space (Fq)

n.

The dual code of a linear code (Q, C) is the code (Q, C⊥), where

C⊥ = {y ∈ (Fq)
n : x · y = 0 for all x ∈ C}.

(As usual, “x · y” denotes the inner product over Fq of the two vectors x and y.

The subspaces C and C⊥ are called orthogonal complements of each other.) Then
(Q, C⊥) is a linear code of dimension n − dim(C).

Suppose that x ∈ (Fq)
n. Define the weight of x to be

wt(x) = |{i : xi �= 0}|,

where x = (x1, . . . , xn).

Lemma 10.16. Suppose (Fq, C) is a linear code, where C ⊆ (Fq)
n. Then

d(C) = min{wt(x) : x ∈ C, x �= (0, . . . , 0)}.

Proof. Denote wt(C) = min{wt(x) : x ∈ C, x �= (0, . . . , 0)}. Let x, y ∈ C be two
codewords such that d(x, y) = d(C). The vector x − y ∈ C because C is linear,
and wt(x − y) = d(x, y) = d(C). Therefore wt(C) ≤ d(C).

Conversely, let x ∈ C be a codeword such that wt(x) = wt(C). The vector
(0, . . . , 0) ∈ C because C is linear. Then d(x, (0, . . . , 0)) = wt(x) = wt(C), so
d(C) ≤ wt(C). ⊓⊔

Theorem 10.17. Suppose that C ⊆ (Fq)
n is a linear code of dimension m. Then

(Fq, C) is an (n, qm, d, q)-code if and only if C⊥ is a (linear) (d − 1)-(q, n, λ)-OA,

where λ = qn−m−d+1.
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Proof. Suppose that (Fq, C) is a linear (n, qm, d, q)-code. Clearly C⊥ is a sub-
space having dimension n − m; we will show that it is an orthogonal array.
Let D be a basis for C⊥, and write the vectors in D as an n − m by n matrix.
We will prove that D satisfies the conditions of Theorem 10.4, and hence it
will follow that C⊥ is an orthogonal array with the stated parameters.

Suppose that there exist e ≤ d − 1 columns of D that are linearly depen-
dent, and therefore there exists a dependence relation of the form

e

∑
i=1

αici j
= (0, . . . , 0)T,

where c1, . . . , cn are the columns of D. Define a vector x = (x1, . . . , xn) as
follows:

xh =

{
αh if h = ij for some j

0 otherwise.

Then x · r = 0 for every row r of D and hence x ∈ C. However, wt(x) = e <

d(C), which contradicts Lemma 10.16.
Conversely, suppose that C⊥ is a linear (d − 1)-(q, n, λ)-OA, where λ =

qn−m−d+1. This implies that C⊥ has dimension n − m, and hence C has di-
mension m. Let D be a basis for C⊥; then D has n − m rows when it is written
as an array.

We will prove that the minimum distance of C is at least d. If not, then
there exists a vector x ∈ C such that 0 ≤ wt(x) ≤ d − 1. Suppose that the
nonzero entries of x occur in coordinates i1, . . . , ie, where e = wt(x). Clearly
x · y = 0 for every row y ∈ D. When C⊥ is viewed as an orthogonal array, it
follows that

e

∑
j=1

xi j
yi j

= 0

for every row y. In other words, in every row of C⊥, the entries in columns
i1, . . . , ie satisfy a linear dependence relation. This means that it is impossible
that every e-tuple of symbols occurs in a row of C⊥ within the e columns
under consideration. Therefore C⊥ is not a (d − 1)-(q, n, λ)-OA, which is a
contradiction. This contradiction proves that the minimum distance of C is at
least d. ⊓⊔

Example 10.18. Consider the linear 3-(5, 5, 1)-OA presented in Example 10.8.
The following three vectors in (Z5)

3 form a basis of this orthogonal array:
(1, 1, 1, 1, 1), (0, 1, 2, 3, 4), and (0, 1, 4, 4, 1). Using standard techniques from
linear algebra, it is not hard to determine a basis for the orthogonal comple-
ment; the vectors (4, 3, 2, 1, 0) and (2, 3, 4, 0, 1) form one such basis. The code
generated by these two vectors is a (5, 25, 4, 5)-code.
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10.3 Bounds on Codes and Orthogonal Arrays

In this section, we present a few bounds on codes and orthogonal arrays and
give some constructions that meet these bounds.

Theorem 10.19 (Singleton Bound). Suppose that C is an (n, M, d, q)-code. Then
M ≤ qn−d+1.

Proof. Suppose that M > qn−d+1. Then, by the pigeonhole principle, there
exist two codewords x, y ∈ C such that xi = yi for all i such that 1 ≤ i ≤
n − d + 1. Then d(x, y) ≤ n − (n − d + 1) = d − 1. ⊓⊔

Theorem 10.19 can be restated as an upper bound on the distance of a
code, as follows.

Corollary 10.20. Suppose that C is an (n, M, d, q)-code. Then d ≤ n + 1− logq M.

Orthogonal arrays with λ = 1 turn out to be equivalent to codes that meet
the Singleton Bound with equality.

Theorem 10.21. An (n, M, d, q)-code in which M = qn−d+1 is equivalent to a t-
(q, n, 1)-OA in which t = n − d + 1.

Proof. Suppose that (X, D) is any t-(q, n, 1)-OA. Construct a code (X, C) by
taking the qt rows of D to be the codewords in C . We will prove that (X, C) is
an (n, qt, n − t + 1, q)-code, as follows. Suppose that d(C) ≤ n − t. Then there
exist two codewords x, y ∈ C such that the entries of x and y are the same
in at least t columns. Within these t columns, the corresponding rows of D
are identical, which contradicts the assumption that λ = 1 in the orthogonal
array (X, D).

Conversely, suppose that (X, C) is an (n, M, d, q)-code in which M =

qn−d+1. Construct an M × n array, D, by taking the codewords in C to be the
rows of D. Consider the restriction of D to any subset of n − d + 1 columns.

The qn−d+1 (n − d + 1)-tuples obtained from the rows of D in this restric-
tion must all be different (as in the proof of Theorem 10.19). Since there are

qn−d+1 different (n − d + 1)-tuples, it follows that every possible (n − d + 1)-
tuple occurs in exactly one row of D in this restriction. Because this property
holds for all possible subsets of n − d + 1 columns of D, it follows that D is
an (n − d + 1)-(q, n, 1)-OA. ⊓⊔

A code in which the Singleton Bound is met with equality is called a max-
imum distance separable code (or MDS code). Theorem 10.21 establishes that
MDS codes are equivalent to orthogonal arrays with λ = 1. Since we have
already constructed various families of orthogonal arrays with λ = 1, we can
translate these results into the language of codes. For example, from Corol-
lary 10.7, we can state the following result.
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Corollary 10.22. Let t ≥ 2 be an integer, and let q be a prime power. Then there
exists an (MDS) (q, qt, q − t + 1, q)-code.

The codes obtained in Corollary 10.22 are commonly known as Reed-
Solomon codes.

Theorem 10.23 (Sphere-packing Bound). Suppose that (X, C) is an (n, M, d, q)-
code. Then

M ≤ qn

∑
e
i=0

(n
i

)
(q − 1)i

,

where e = ⌊ d−1
2 ⌋.

Proof. Suppose x ∈ Xn. Define the sphere with center x and radius e to be the
following set of vectors, denoted S(x, e):

S(x, e) = {y ∈ Xn : d(x, y) ≤ e}.

It is not hard to see that

|S(x, e)| =
e

∑
i=0

(
n

i

)
(q − 1)i. (10.4)

We next prove that S(x, e) ∩ S(y, e) = ∅ if x, y ∈ C, x �= y. Suppose
z ∈ S(x, e) ∩ S(y, e). Then d(x, z) ≤ e and d(y, z) ≤ e. Applying the Trian-
gle Inequality (Lemma 10.14), we see that

d(x, y) ≤ d(x, z) + d(y, z) ≤ 2e < d.

This contradicts the fact that d(C) ≥ d.
Now consider all the spheres S(x, e), x ∈ C. These spheres are mutually

disjoint, and all of them are contained in the set Xn, which consists of qn

vectors. Applying (10.4), the following is immediate:

qn ≥ M
e

∑
i=0

(
n

i

)
(q − 1)i.

Thus the desired result is proven. ⊓⊔

A code in which the Sphere-packing Bound is met with equality is known
as a perfect code. We are easily able to construct infinite families of perfect
codes with distance 3 using results we have already established.

Theorem 10.24. Let ℓ ≥ 2 be a positive integer, and let q be a prime power. Then
there is a perfect (n, qm, 3, q)-code in which n = (qℓ − 1)/(q − 1) and m = n − ℓ.
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Proof. Corollary 10.5 shows there is a linear 2-(q, (qℓ − 1)/(q − 1), qℓ−2)-OA

for the stated values of ℓ and q. Consider the code that is the orthogonal
complement of this orthogonal array, as described in Theorem 10.17. This
code has distance 3, and m can be computed from the equation

qm =
qn

λq2
= qn−ℓ.

The fact that the code is perfect is a simple computation:

1

∑
i=0

(
n

i

)
(q − 1)i = 1 + n(q − 1) = qℓ,

and hence

qm
1

∑
i=0

(
n

i

)
(q − 1)i = qm+ℓ = qn.

⊓⊔

The codes constructed in Theorem 10.24 are known as Hamming codes.

When q = 2, a Hamming code is a (2ℓ − 1, 22ℓ−ℓ−1, 3, 2)-code. This is the
binary Hamming code. It turns out that the vectors of weight three in a binary
Hamming code yield a Steiner triple system, which we prove now.

Theorem 10.25. Suppose that C are the vectors in a (2ℓ − 1, 22ℓ−ℓ−1, 3, 2)-code.
Form a matrix M whose columns consist of all the codewords of weight three. Then
M is the incidence matrix of a (2ℓ − 1, 3, 1)-BIBD.

Proof. Let C3 denote the set of codewords in C that have weight three. Each
codeword in C3 yields a column vector that corresponds to a block in the set
system having incidence matrix M. This set system therefore consists of |C3|
blocks, each having cardinality equal to three.

It suffices to show that every pair of points in the set system is contained
in a unique block. A pair of points corresponds to a column vector, say uT, of
weight two. The code C is perfect, so the spheres of radius 1 whose centers are
the codewords in C partition the space {0, 1}n (where n = 2ℓ − 1). Therefore
there is a unique x ∈ C such that u ∈ S(x, 1). We have that wt(u) = 2, wt(x) ≥
3 or wt(x) = 0, and d(u, x) ≤ 1. It follows that wt(x) = 3. Therefore the pair
having incidence vector u occurs in the unique block having incidence vector
x, and the proof is complete. ⊓⊔

Example 10.26. Suppose we take ℓ = 3. The corresponding Hamming code
is a (7, 16, 3, 2)-code. This code is the dual of the linear orthogonal array ob-
tained from the matrix

M =




1 0 0 0 1 1 1
0 1 0 1 1 0 1
0 0 1 1 0 1 1


 .
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The code therefore consists of the following 16 vectors:

(0, 0, 0, 0, 0, 0, 0) (0, 1, 1, 1, 0, 0, 0)
(1, 1, 0, 0, 1, 0, 0) (1, 0, 1, 1, 1, 0, 0)
(1, 0, 1, 0, 0, 1, 0) (1, 1, 0, 1, 0, 1, 0)
(0, 1, 1, 0, 1, 1, 0) (0, 0, 0, 1, 1, 1, 0)
(1, 1, 1, 0, 0, 0, 1) (1, 0, 0, 1, 0, 0, 1)
(0, 0, 1, 0, 1, 0, 1) (0, 1, 0, 1, 1, 0, 1)
(0, 1, 0, 0, 0, 1, 1) (0, 0, 1, 1, 0, 1, 1)
(1, 0, 0, 0, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1).

There are seven codewords having weight three. Treating these as incidence
vectors of points 1, . . . , 7, we obtain the following seven blocks:

{2, 3, 4} {1, 2, 5}
{1, 3, 6} {4, 5, 6}
{1, 4, 7} {3, 5, 7}
{2, 6, 7}.

These seven blocks form a (7, 3, 1)-BIBD.

10.4 New Codes from Old

There are many methods of producing new codes from old ones. We describe
a few useful techniques in this section.

Shortening a Code

Suppose that (X, C) is an (n, M, d, q)-code. Let x ∈ X, and define

Cx = {y = (y1, . . . , yn) ∈ C : y1 = x}.

Then define

short(C , x) = {(y2, . . . , yn) : (y1, . . . , yn) ∈ Cx}.

It is clear that (X, short(C , x)) is an (n − 1, |Cx|, d, q)-code.
The following result can now be proven.

Theorem 10.27 (Shortening a Code). Suppose there is an (n, M, d, q)-code. Then
there is an (n − 1, M′, d, q)-code, where M′ ≥ M/q.

Proof. Suppose that (X, C) is an (n, M, d, q)-code. It is clear that the q sets
of vectors Cx (x ∈ X) are disjoint and partition C . Hence, there exists some
x0 ∈ X such that |Cx0 | ≥ M/q, and consequently (X, short(C , x0)) is an (n −
1, M′, d, q)-code with M′ ≥ M/q. ⊓⊔
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Pasting Codes Together

Suppose that (X, C) is an (n1, M1, d1, q)-code and (X,D) is an (n2, M2, d2, q)-
code. Without loss of generality, suppose that M1 ≤ M2. Let C = {x1, . . . , xM1

}
and let D = {y1, . . . , yM2

}. Let u and v be positive integers, and define the
code (X, uC ⊕ vD) to consist of the following M1 vectors:

xi ‖ · · · ‖ xi︸ ︷︷ ︸
u

‖ yi ‖ · · · ‖ yi︸ ︷︷ ︸
v

,

for 1 ≤ i ≤ M1. In other words, the ith codeword in uC ⊕ vD is formed
by concatenating u copies of the ith codeword in C and v copies of the ith
codeword in D. The code (X, uC ⊕ vD) is easily seen to have parameters as
stated in the following theorem.

Theorem 10.28 (Pasting Codes Together). Suppose there is an (n1, M1, d1, q)-
code and an (n2, M2, d2, q)-code, where M1 ≤ M2. Let u and v be positive integers.
Then there exists a (u n1 + v n2, M1, u d1 + v d2, q)-code.

The u, u + v Construction

Suppose that (X, C) is an (n, M1, d1, 2)-code and (X,D) is an (n, M2, d2, 2)-
code, where X = {0, 1}. We construct a code (X, E) by taking all vectors
formed as follows:

E = {u ‖ u + v : u ∈ C, v ∈ D}.

Here, addition denotes addition of vectors modulo 2, as usual. Clearly every
vector in E has length 2n, and there are M1 M2 vectors in E . We compute a
lower bound on the distance of (X, E) as follows.

First, suppose that u �= u′. Then

d(u ‖ u + v, u′ ‖ u′ + v) = 2 d(u, u′) ≥ 2d1.

Next, suppose that v �= v′. To handle this case, we use the following
lemma.

Lemma 10.29. Suppose that u, u′, v, v′ ∈ (Z2)
n. Then

d(v, v′) ≤ d(u, u′) + d(u + v, u′ + v′).

Proof. Let u = (u1, . . . , un), u′ = (u′
1, . . . , u′

n), v = (v1, . . . , vn), and v′ =
(v′1, . . . , v′n). Define the following subsets of {1, . . . , n}:

A = {i : ui = u′
i and vi = v′i},

B = {i : ui = u′
i and vi �= v′i},

C = {i : ui �= u′
i and vi = v′i}, and

D = {i : ui �= u′
i and vi �= v′i}.
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It is not hard to see that

d(u, u′) = |C| + |D|,
d(v, v′) = |B|+ |D|, and

d(u + v, u′ + v′) = |B|+ |C|.

Hence,

d(u, u′) + d(u + v, u′ + v′) = |B| + 2|C| + |D| ≥ |B| + |D| = d(v, v′)

because |C| ≥ 0. ⊓⊔

Now, assuming that v �= v′ and applying Lemma 10.29, we have that

d(u ‖ u + v, u′ ‖ u′ + v′) = d(u, u′) + d(u + v, u′ + v′)

≥ d(u, u′) + d(v, v′) − d(u, u′)

= d(v, v′)

≥ d2.

Summarizing the above, we obtain the following result.

Theorem 10.30 (u, u + v Construction). Suppose there exists an (n, M1, d1, 2)-
code and an (n, M2, d2, 2)-code. Then there exists a (2n, M1M2, d, 2)-code, where
d = min{2d1, d2}.

Example 10.31. Suppose that C consists of the following vectors:

(0, 0, 0, 0) (0, 0, 1, 1)
(0, 1, 0, 1) (0, 1, 1, 0)
(1, 0, 0, 1) (1, 0, 1, 0)
(1, 1, 0, 0) (1, 1, 1, 1),

and suppose that D is as follows:

(0, 0, 0, 0) (1, 1, 1, 1).

(Z2, C) is a (4, 8, 2, 2)-code and (Z2,D) is a (4, 2, 4, 2)-code. Applying Theo-
rem 10.30, we get the following (4, 16, 4, 2)-code:

(0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 1, 1, 0, 0, 1, 1)
(0, 1, 0, 1, 0, 1, 0, 1) (0, 1, 1, 0, 0, 1, 1, 0)
(1, 0, 0, 1, 1, 0, 0, 1) (1, 0, 1, 0, 1, 0, 1, 0)
(1, 1, 0, 0, 1, 1, 0, 0) (1, 1, 1, 1, 1, 1, 1, 1)
(0, 0, 0, 0, 1, 1, 1, 1) (0, 0, 1, 1, 1, 1, 0, 0)
(0, 1, 0, 1, 1, 0, 1, 0) (0, 1, 1, 0, 1, 0, 0, 1)
(1, 0, 0, 1, 0, 1, 1, 0) (1, 0, 1, 0, 0, 1, 0, 1)
(1, 1, 0, 0, 0, 0, 1, 1) (1, 1, 1, 1, 0, 0, 0, 0).
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10.5 Binary Codes

10.5.1 The Plotkin Bound and Hadamard Codes

Recall that a binary code is one in which the alphabet is F2 = {0, 1}. In this
section, we prove some results on binary codes. We begin by stating and
proving a bound for binary codes having a “large” Hamming distance.

Theorem 10.32 (Plotkin Bound). Suppose that ({0, 1}, C) is an (n, M, d, 2)-code,
and suppose that d > n/2. Then

M ≤ 2

⌊
d

2d − n

⌋
.

Proof. Let the codewords in C be named xi, 1 ≤ i ≤ M, and construct an
M × n matrix, say N, whose rows are the codewords. Define

S =
M

∑
i=1

M

∑
j=1

d(xi, xj).

This sum contains M(M− 1) terms that are each at least d, and M terms equal
to 0. Hence, we have that

S ≥ M(M − 1)d. (10.5)

We now determine an upper bound on S. Suppose that column c contains
tc “1”s and M − tc “0”s (1 ≤ c ≤ n). Then

S =
n

∑
c=1

2tc(M − tc).

Suppose that M is even. Then the maximum value of t(M − t) (for 0 ≤
t ≤ M) occurs when t = M/2, and hence t(M − t) ≤ M2/4. Therefore, it
holds that

S ≤ nM2

2
. (10.6)

Now, combining (10.5) and (10.6), we see that

M(M − 1)d ≤ nM2

2

or
M(2d − n) ≤ 2d.

Because 2d > n, it follows that

M ≤ 2d

2d − n
.

Because M is an even integer, it follows that
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M ≤ 2

⌊
d

2d − n

⌋
.

Now suppose that M is odd. In this case, the maximum value of t(M − t)
(for 0 ≤ t ≤ M, t an integer) occurs when t = (M + 1)/2 or t = (M − 1)/2,
and hence t(M − t) ≤ (M2 − 1)/4. Therefore, it holds that

S ≤ n(M2 − 1)

2
. (10.7)

Now, combining (10.5) and (10.6), we see that

M(M − 1)d ≤ n(M2 − 1)

2

or
M(2d − n) ≤ n.

Because 2d > n and M is an integer, it follows that

M ≤
⌊

n

2d − n

⌋
=

⌊
2d

2d − n

⌋
− 1.

For any real number ǫ > 0, it holds that ⌊2ǫ⌋ ≤ 2 ⌊ǫ⌋ + 1. Hence, taking
ǫ = 2/(2d − n), it follows that

M ≤ 2

⌊
d

2d − n

⌋
.

This completes the proof. ⊓⊔

Codes meeting the Plotkin Bound with equality can be constructed pro-
vided that certain Hadamard matrices exist. Naturally enough, they are
known as Hadamard codes. We first establish a preliminary result.

Lemma 10.33. Suppose there is a Hadamard matrix of order n. Then there exists an(
n − 1, n, n

2 , 2
)
-code and an

(
n − 2, n

2 , n
2 , 2
)
-code.

Proof. Let H be a standardized Hadamard matrix of order n. Delete the first
column of H, and take the rows of the resulting matrix to be codewords of
a code. This yields the

(
n − 1, n, n

2 , 2
)
-code (see the proof of Theorem 4.4).

Then apply Theorem 10.27 to obtain the second code. ⊓⊔

Now, suppose that d and n are both even and d > n/2. Define k =
⌊

d
2d−n

⌋
.

Then, define

u =
d(2k + 1) − n(k + 1)

2
(10.8)

and
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v =
nk − d(2k − 1)

2
. (10.9)

Using a bit of arithmetic, we can show that u and v are integers such that
u > 0 and v ≥ 0. First, it is clear that u and v are integers because n and d are
even. We have upper and lower bounds on k:

d

2d − n
− 1 < k ≤ d

2d − n
.

We will use these bounds on k to prove lower bounds on u and v.
First, we have that u > 0 if and only if d(2k + 1) − n(k + 1) > 0. But

d(2k + 1) − n(k + 1) = k(2d − n) + d − n

>

(
d

2d − n
− 1

)
(2d − n) + d − n

= d − (2d − n) + d − n

= 0;

hence u > 0.
Similarly, v ≥ 0 if and only if nk − d(2k − 1) ≥ 0. But

nk − d(2k − 1) = d − k(2d − n)

≥ d −
(

d

2d − n

)
(2d − n)

= d − d

= 0;

hence v ≥ 0.
Suppose that Hadamard matrices of orders 4k and 4k + 4 both exist. Let

C be the codewords of a (4k − 2, 2k, 2k, 2)-code and let D be the codewords of
a (4k + 2, 2k + 2, 2k + 2, 2)-code (these are constructed using Theorem 10.33
with n = 4k and n = 4k + 4, respectively). Now construct the code having
codewords uC ⊕ vD. Using the formulas in Theorem 10.28, the resulting code
is seen to meet the Plotkin Bound, and we obtain the following result.

Theorem 10.34 (Levenshtein’s Theorem). Suppose that n and d are even posi-

tive integers such that 2d > n. Define k =
⌊

d
2d−n

⌋
, and suppose that Hadamard

matrices of order 4k and 4k + 4 exist. Then there exists an (n, 2k, d, 2)-code, which
meets the Plotkin Bound with equality.

Proof. We need only to check that the constructed code has n and d as stated.
The code is formed by pasting together u copies of a (4k − 2, 2k, 2k, 2)-code
and v copies of a (4k + 2, 2k + 2, 2k + 2, 2)-code, where u and v are defined in
(10.8) and (10.9), respectively. The resulting code is a

(u(4k − 2) + v(4k + 2), 2k, u(2k) + v(2k + 2), 2)-code.
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However,

u(4k − 2) + v(4k + 2)

=

(
d(2k + 1) − n(k + 1)

2

)
(4k − 2) +

(
nk − d(2k − 1)

2

)
(4k + 2)

= n,

and

u(2k) + v(2k + 2)

=

(
d(2k + 1) − n(k + 1)

2

)
(2k) +

(
nk − d(2k − 1)

2

)
(2k + 2)

= d.

Finally, notice that the number of codewords in this code is 2k = 2
⌊

d
2d−n

⌋
.

⊓⊔

Example 10.35. Suppose we take n = 24 and d = 14. Then k = 3, and
u = v = 1. We can use Hadamard matrices of orders 12 and 16 to con-
struct a (10, 6, 6, 2)-code and a (14, 8, 8, 2)-code, respectively. Pasting these
two codes together, we would obtain a (24, 6, 14, 2)-code, which meets the
Plotkin Bound with equality.

10.5.2 Reed-Muller Codes

Reed-Muller codes are closely connected to Boolean functions. We first re-
view some notions and notation from Section 4.8. Recall that a Boolean func-
tion of n variables is any function f : (Z2)

n → Z2; and Bn denotes the set of

all 22n
Boolean functions of n variables. For a function f ∈ Bn, φ( f ) ∈ (Z2)

2n

is the vector formed by evaluating f at all x ∈ (Z2)
n.

Recall also that the affine functions in Bn are the 2n+1 functions f ∈ Bn

having the form

f (x) = a0 + a1x1 + · · · + anxn mod 2,

where x = (x1, . . . , xn) and a0, a1, . . . , an ∈ Z2.
The first-order Reed-Muller code, denoted R(1, n), is the code whose code-

words are all the vectors φ( f ), where f ∈ Bn is an affine function. First, we
show that R(1, n) is a linear code, as follows. The sum of any two affine func-
tions, say f1 and f2, is again an affine function. Furthermore, the modulo 2
sum of the corresponding codewords, φ( f1) and φ( f2), is another codeword
because φ( f1) + φ( f2) = φ( f1 + f2).

Recall that the distance of a linear code equals the minimum weight of a
nonzero codeword (Lemma 10.16). Therefore we can determine the distance
of R(1, n) if we know the weights of the codewords in R(1, n). We prove the
following simple lemma concerning these weights.
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Lemma 10.36. Suppose that f ∈ Bn is an affine function. Then

wt(φ( f )) =





0 if f = 0

2n if f = 1

2n−1 otherwise.

Proof. Clearly wt(φ(0)) = 0 and wt(φ(1)) = 2n. Now, suppose that f �= 0, 1 is
an affine function, say f (x) = a0 + a1x1 + · · ·+ anxn mod 2. Because f �= 0, 1,
there exists an integer i ≥ 1 such that ai = 1. Suppose that arbitrary values
for x1, . . . , xi−1, xi+1, . . . , xn ∈ Z2 have been chosen, and denote

A = a0 + ∑
1≤j≤n,j �=i

ajxj mod 2.

Then f (x) = 0 if xi = A, and f (x) = 1 if xi �= A.
Summing over all 2n−1 choices for x1, . . . , xi−1, xi+1, . . . , xn, we find that

there are exactly 2n−1 vectors x such that f (x) = 0 (and there are also 2n−1

vectors such that f (x) = 1). ⊓⊔

Corollary 10.37. For any integer n ≥ 2, R(1, n) is a linear (2n, 2n+1, 2n−1, 2)-
code.

Example 10.38. We construct the code R(1, 2). The eight affine functions f ∈
B2 yield codewords φ( f ), where φ( f ) = ( f (0, 0), f (0, 1), f (1, 0), f (1, 1)), as
follows:

f φ( f ) wt( f )
0 (0, 0, 0, 0) 0
1 (1, 1, 1, 1) 4
x2 (0, 1, 0, 1) 2

1 + x2 (1, 0, 1, 0) 2
x1 (0, 0, 1, 1) 2

1 + x1 (1, 1, 0, 0) 2
x1 + x2 (0, 1, 1, 0) 2

1 + x1 + x2 (1, 0, 0, 1) 2

(Compare this to Example 4.40.)

Reed-Muller codes of order r > 1 are constructed by generalizing the
approach above. Instead of using affine functions, which can be thought of
as polynomials of degree at most one, we use polynomials of degree at most
r. We begin this discussion by establishing some basic results about Boolean
polynomials.

Let x1, . . . , xn be indeterminates taking on values in Z2. Then, for 1 ≤ i ≤
n, xi and xi

2 are equivalent polynomials because 02 = 0 and 12 = 1 in Z2.
Therefore, in our consideration of Boolean polynomials, we can assume that
there are no occurrences of any terms of the form xi

j, where j > 1.
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A Boolean monomial of degree r is a polynomial of the form xi1 xi2 . . . xir
,

where 1 ≤ i1 < i2 < · · · < ir ≤ n. (The Boolean monomials of degree zero
are 0 and 1.) A Boolean polynomial is a modulo 2 sum of one or more different
Boolean monomials. Let Pn denote the set of all Boolean polynomials in n
indeterminates. The degree of a Boolean polynomial p ∈ Pn is the maximum
degree of any monomial that occurs in the representation of p as a sum of
monomials.

The number of different monomials is 2n because there is a monomial
associated with every possible subset of {1, . . . , n} and there are 2n subsets
of {1, . . . , n}. The number of Boolean polynomials, |Pn|, is therefore equal to

22n
because a Boolean polynomial is expressed as a sum of a subset of the 2n

possible monomials.

Recall that there are 22n
different Boolean functions on n variables. It is not

hard to see that the 22n
Boolean polynomials are distinct (when considered

as functions) and there is a natural bijection between the set Pn and the set
Bn. This is proven in the following lemma.

Lemma 10.39. For every Boolean function f ∈ Bn, there is a unique polynomial
p f ∈ Pn such that f (x) = p f (x) for all x ∈ (Z2)

n.

Proof. For any z ∈ (Z2)
n, define Tz ∈ Pn as follows:

Tz = ∏
{i:zi=0}

(1 + xi) ∏
{i:zi=1}

xi,

where z = (z1, . . . , zn). Then it is clear that Tz(x) = 1 if and only if x = z.
Now, for any f ∈ Bn, define p f ∈ Pn by the following formula:

p f = ∑
{z∈(Z2)n: f (z)=1}

Tz. (10.10)

It is easy to verify that f (x) = p f (x) for all x ∈ (Z2)
n. This proves that there is

at least one polynomial with the stated property for every f ∈ Bn. However,
there are the same number of functions as polynomials (i.e., |Bn| = |Pn|),
so there must be exactly one polynomial with the stated property for every
f ∈ Bn. ⊓⊔
Example 10.40. Let’s first do a specific example computation of a polynomial
p f . Suppose that f (0, 0) = f (1, 0) = f (1, 1) = 1 and f (0, 1) = 0. Then, apply-
ing (10.10), we have that

p f = x1x2 + x1(1 + x2) + (1 + x1)(1 + x2) mod 2

= x1x2 + x1 + x1x2 + 1 + x1 + x2 + x1x2 mod 2

= 1 + x2 + x1x2.

By doing similar computations, it is possible to tabulate all 222
= 16

Boolean functions of two variables x1 and x2 and their (simplified) repre-
sentations as polynomials. These are presented in Table 10.1.
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f f (0, 0) f (0, 1) f (1, 0) f (1, 1) p f deg(p f )

f0 0 0 0 0 0 0
f1 0 0 0 1 x1x2 2
f2 0 0 1 0 x1 + x1x2 2
f3 0 0 1 1 x1 1
f4 0 1 0 0 x2 + x1x2 2
f5 0 1 0 1 x2 1
f6 0 1 1 0 x1 + x2 1
f7 0 1 1 1 x1 + x2 + x1x2 2
f8 1 0 0 0 1 + x1 + x2 + x1x2 2
f9 1 0 0 1 1 + x1 + x2 1
f10 1 0 1 0 1 + x2 1
f11 1 0 1 1 1 + x2 + x1x2 2
f12 1 1 0 0 1 + x1 1
f13 1 1 0 1 1 + x1 + x1x2 2
f14 1 1 1 0 1 + x1x2 2
f15 1 1 1 1 1 0

Table 10.1. Boolean Functions of Two Variables

Note that the function f11 (in the Table 10.1) is the function f considered
initially.

Let 0 ≤ r ≤ n. The rth-order Reed-Muller code, denoted R(r, n), is the
code whose codewords are all the vectors φ( f ), where f ∈ Pn is a Boolean
polynomial of degree less than or equal to r. It is not hard to see that R(r, n)
is a linear code.

The number of monomials of degree i is
(n

i

)
. Therefore, the number of

monomials of degree at most r is

m =
r

∑
i=0

(
n

i

)
.

These monomials form a basis for R(r, n), and hence the number of code-
words in R(r, n) is 2m.

We now consider the distance of the code R(r, n).This can be determined
fairly easily by showing how to construct Reed-Muller codes using the u, u +
v construction. The argument we use will be inductive, and we will use the
codes R(0, n) and R(n, n) as base cases. These base cases are easily analyzed
as follows.

Lemma 10.41. For all integers n ≥ 1, R(0, n) is a (2n, 2, 2n, 2)-code, and R(n, n)

is a (2n, 22n
, 1, 2)-code.

Proof. It is easy to see that R(0, n) consists of the two vectors (0, . . . , 0) and

(1, . . . , 1), and R(n, n) consists of all 22n
vectors in (Z2)

2n
. ⊓⊔
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Lemma 10.42. Suppose that 0 < r < n. Then the code R(r, n) can be constructed
by applying the u, u + v construction to the codes R(r, n − 1) and R(r − 1, n − 1).

Proof. Let C be the codewords of the code that is constructed by applying the
u, u + v construction to R(r, n − 1) and R(r − 1, n − 1). We first prove that
R(r, n) ⊆ C. A codeword in R(r, n) has the form φ( f ), where f ∈ Pn has
degree at most r. We can write the polynomial f in the form

f = x1 f1 + f2,

where f1 and f2 are polynomials in the n − 1 indeterminates x2, . . . , xn. Also,
the degree of f1 is at most r − 1 and the degree of f2 is at most r, so φ( f1) ∈
R(r − 1, n − 1) and φ( f2) ∈ R(r, n − 1). Now, it is not difficult to see that

φ( f ) = φ( f2) ‖ φ( f1) + φ( f2).

This is because the first 2n−1 binary n-tuples in lexicographic order have x1 =
0, and the last 2n−1 binary n-tuples have x1 = 1.

By Theorem 10.30, we have that

|C| = |R(r, n − 1)| × |R(r − 1, n − 1)|.

If we can show that

|R(r, n − 1)| × R(r − 1, n − 1)| = |R(r, n)|, (10.11)

then we will be finished because R(r, n) ⊆ C. Proving (10.11) is a straight-
forward computation involving binomial coefficients, which we leave for the
reader to do. ⊓⊔

Example 10.43. Consider the Boolean polynomial f = x1 + x2 + x1x3 + x2x3.
We can write f = x1(1 + x3) + x2 + x2x3, so f1 and f2 (as defined in the proof
of Lemma 10.42) are computed to be f1(x2, x3) = 1 + x3 and f2(x2, x3) =
x2 + x2x3. It is easy to verify that

φ( f1) = ( f1(0, 0), f1(0, 1), f1(1, 0), f1(1, 1))

= (1, 0, 1, 0),

φ( f2) = ( f2(0, 0), f2(0, 1), f2(1, 0), f2(1, 1))

= (0, 0, 1, 0), and

φ( f ) = ( f (0, 0, 0), f (0, 0, 1), . . . , f (1, 1, 0), f (1, 1, 1))

= (0, 0, 1, 0, 1, 0, 0, 0)

= (0, 0, 1, 0) ‖ (0, 0, 1, 0) + (1, 0, 1, 0),

as shown in Lemma 10.42.

Now it is a simple matter to determine the minimum distance of R(r, n)
using Theorem 10.30.
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Lemma 10.44. The minimum distance of R(r, n) is 2n−r for all 0 ≤ r ≤ n.

Proof. The assertion is true for the “base cases” r = 0 and r = n by Lemma
10.41. We proceed by induction on n, assuming that n ≥ 2. We proved that
R(r, n) is constructed from R(r, n − 1) and R(r − 1, n − 1) using the u, u + v
construction. By induction or by a base case, it holds that

d(R(r, n − 1)) = 2n−r−1

and
d(R(r − 1, n − 1)) = 2n−r.

From Theorem 10.30, we have that

d(R(r, n − 1)) ≥ min{2 × 2n−r−1, 2n−r} = 2n−r.

The minimum distance is seen to be equal to 2n−r by exhibiting a code-
word in R(r, n) having weight 2n−r. Let u ∈ R(r, n − 1) have weight 2n−r−1

and let v = (0, . . . , 0). Then the codeword u ‖ u + v = u ‖ u has weight
2 × 2n−r−1 = 2n−r. Since the distance of a linear code is the same as the min-
imum weight of a nonzero codeword, the desired result follows. ⊓⊔

Summarizing the results above, we have the following.

Theorem 10.45 (Reed-Muller Codes). Suppose that r and n are integers such
that 0 ≤ r ≤ n. Then the Reed-Muller code R(r, n) is a linear (2n, 2m, 2n−r, 2)-
code, where

m =
r

∑
i=0

(
n

i

)
.

Example 10.46. We present a basis for the code R(2, 4) that consists of the
codewords generated by the 11 monomials f ∈ P4 of degree at most two:

f φ( f )
1 1111 1111 1111 1111
x1 0000 0000 1111 1111
x2 0000 1111 0000 1111
x3 0011 0011 0011 0011
x4 0101 0101 0101 0101

x1x2 0000 0000 0000 1111
x1x3 0000 0000 0011 0011
x1x4 0000 0000 0101 0101
x2x3 0000 0011 0000 0011
x2x4 0000 0101 0000 0101
x3x4 0001 0001 0001 0001
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Reed-Muller codes turn out to be closely related to affine geometries over
Z2. We discuss some of these connections now. Suppose that F is an (n − k)-
flat in AGn(2). Then F is the solution set of a system of k linear equations in
n indeterminates over Z2, which can be written in the following form:

a11x1 + · · · + a1nxn = c1

a21x1 + · · · + a2nxn = c2

...
...

...

ak1x1 + · · · + aknxn = ck.

This can be expressed in an equivalent way, in the form of a single equation,
as follows:

k

∏
i=1

(ai1x1 + · · · + ainxn + ci + 1) = 1.

The polynomial

pF(x) = ∏
i

(ai1x1 + · · · + ainxn + ci + 1)

is a Boolean polynomial of degree k. Hence, φ(pF) is a codeword in R(r, n)
provided that r ≥ k.

Given the flat F, we can form an incidence vector sF ∈ {0, 1}2n
in the

usual way, where the coordinates of the vector sF ∈ {0, 1}2n
are all the points

in (Z2)
n in lexicographic order. The incidence vector sF records which points

(x1, . . . , xn) are in the flat F. Then it is easy to see that sF = φ(pF), and we
have the following.

Lemma 10.47. Let F be an (n − k)-flat in AGn(2). Then the incidence vector of F is
a codeword in R(r, n) whenever r ≥ k.

The lemma above shows that every flat in AGn(2) yields a codeword in a
Reed-Muller code. Not every codeword can be formed in this manner, how-
ever. For example, R(2, 4) contains codewords of weight six, and there are
no flats in AG2(4) containing exactly six points. However, we will show that
the codewords φ( f ), where f is a monomial, all correspond to flats. This is
not hard to see: a monomial of degree k, say xi1xi2 · · · xik

, takes on the value
1 if and only if

xi1 = xi2 = · · · = xik
= 1.

This is equivalent to the following system of k linear equations:

xi1 = 1, xi2 = 1, . . . , xik
= 1,

which is a flat of dimension n − k.
Because the monomials of degree at most r form a basis for the code

R(r, n), this means that the codewords corresponding to flats of dimension
at least n − r generate this code. Expressed mathematically, we have the fol-
lowing theorem.
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Theorem 10.48.

span(sF : F is a d-flat in AGn(2) and d ≥ n − r) = R(r, n).

Example 10.49. Consider the code R(2, 4). The results proven above establish
that every 2-flat, 3-flat, and 4-flat in AG4(2) yields a codeword in R(2, 4); and
conversely, every codeword in R(2, 4) is a sum of codewords corresponding
to flats of dimension 2, 3, or 4.

Consider the 2-flat F = {1010, 1100, 1111, 1001}. It is not hard to see that
F is the solution set of the following system of two linear equations:

x1 + x2 + x3 + x4 = 0

x1 = 1.

Therefore the corresponding polynomial pF(x) is the following:

pF(x) = x1(x1 + x2 + x3 + x4 + 1)

= x1
2 + x1x2 + x1x3 + x1x4 + x1

= x1x2 + x1x3 + x1x4.

(Notice that we simplified pF using the fact that x1
2 + x1 = x1 + x1 = 0.) The

codeword in R(2, 4) associated with the flat F is

sF = φ(pF) = 0000 0000 0110 1001.

Conversely, suppose we start with a codeword in R(2, 4), say

1110 0001 1110 0001.

This codeword is derived from the following sum of three monomials: 1 +
x2 + x3x4. The three monomials 1, x2, and x3x4 correspond to flats of dimen-
sions 4, 3, and 2, respectively.

10.6 Resilient Functions

In this section, we consider Boolean functions of the form f : (Z2)
n → (Z2)

m

(the Boolean functions we studied previously were the special case m = 1).
We write (y1, . . . , ym) = f (x1, . . . , xn), where x1, . . . , xn are the n input vari-
ables and y1, . . . , ym are the m output variables. The set of all such functions is
denoted Bn,m.

Definition 10.50. Let t, m, and n be positive integers such that t < n, and suppose
that f ∈ Bn,m. Suppose that the values of t of the n input variables are fixed, and the
remaining n − t input variables are chosen independently and uniformly at random.
Then f is said to be a t-resilient function provided that every possible vector of
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output variables is equally likely to occur. More formally, the property can be stated
as follows: For every t-subset {i1, . . . , it} ⊆ {1, . . . , n}, for every choice of zj ∈ Z2

(1 ≤ j ≤ t), and for every (y1, . . . , ym) ∈ (Z2)
m, we have that

Pr[ f (x1, . . . , xn) = (y1, . . . , ym)|xi j
= zj, 1 ≤ j ≤ t] = 2−m.

We will refer to such a function f as an (n, m, t)-resilient function.

Example 10.51. Let m = 1 and t = n − 1. Define

f (x1, . . . , xn) = x1 + · · · + xn mod 2.

Then f is an (n, 1, n − 1)-resilient function.

Example 10.52. Let m = n − 1 and t = 1. Define

f (x1, . . . , xn) = (x1 + x2 mod 2, x2 + x3 mod 2, . . . , xn−1 + xn mod 2).

Then f is an (n, n − 1, 1)-resilient function.

Example 10.53. Let m = 2, n = 3h, and t = 2h − 1. Define

f (x1, . . . , xn) = (x1 + · · · + x2h mod 2, xh+1 + · · · + x3h mod 2).

Then f is an (n, 2, 2n/3 − 1)-resilient function.

Resilient functions are closely related to certain collections of orthogonal
arrays, which we define now. A large set of t-(v, k, λ)-orthogonal arrays, de-

noted t-(v, k, λ)-LOA, is defined to be a set of vk−t/λ simple t-(v, k, λ)-OAs
such that every possible k-tuple of symbols occurs in exactly one of the or-
thogonal arrays in the set. (Equivalently, the union of the orthogonal arrays
forms a k-(v, k, 1)-OA.)

Theorem 10.54. An (n, m, t)-resilient function is equivalent to a t-(2, n, 2n−m−t)-
LOA.

Proof. First, suppose f : (Z2)
n → (Z2)

m is an (n, m, t)-resilient function. For
any y ∈ (Z2)

m, form an array Ay whose rows are the vectors in the inverse

image f−1(y). Ay is an | f−1(y)| × n binary array. It is clear that the 2m arrays
Ay together contain every possible n-tuple as a row, so if each Ay is a t-

(2, n, 2n−m−t)-OA, then we automatically get a t-(2, n, 2n−m−t)-LOA.
Let {i1, . . . , it} ⊆ {1, . . . , n} be a t-subset, and let zj ∈ Z2 (1 ≤ j ≤ t).

For every y ∈ (Z2)
m, let λ(y) denote the number of rows in Ay in which zj

occurs in column ij for all j, 1 ≤ j ≤ t. It is easy to see that

∑
y∈(Z2)m

λ(y) = 2n−t.
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This is because the total number of possible n-tuples satisfying the conditions
that zj occurs in position ij for all j, 1 ≤ j ≤ t, is 2n−t.

Now, it is clear that

Pr[ f (x1, . . . , xn) = (y1, . . . , ym)|xi j
= zj, 1 ≤ j ≤ t] =

λ(y)

2n−t
. (10.12)

Since f is t-resilient, we get

λ(y)

2n−t
= 2−m,

or λ(y) = 2n−m−t. Since {i1, . . . , it} and zj (1 ≤ j ≤ t) are arbitrary, we have

shown that each Ay is a t-(2, n, 2n−m−t)-OA, as desired.

Conversely, suppose we start with a t-(2, n, 2n−m−t)-LOA. There are 2m

arrays in the large set; arbitrarily name them Ay, y ∈ (Z2)
m. Then define a

function f : (Z2)
n → (Z2)

m by the rule

f (x1, . . . , xn) = (y1, . . . , ym) ⇔ (x1, . . . , xn) ∈ A(y1,...,ym).

Using (10.12), it is easy to see that the function f is t-resilient. ⊓⊔

Example 10.55. Consider Example 10.53 with h = 2:

f (x1, x2, x3, x4, x5, x6) = (x1 + x2 + x3 + x4 mod 2, x3 + x4 + x5 + x6 mod 2).

This is a (6, 2, 3)-resilient function, and by Theorem 10.54, it is equivalent to a
3-(2, 6, 2)-LOA. There are four orthogonal arrays in the large set, one of which
is obtained from f−1(0, 0):




0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 1 1
0 1 0 1 1 0
1 1 0 0 0 0
1 0 0 1 0 1
1 1 0 0 1 1
1 0 0 1 1 0
0 0 1 1 0 0
0 1 1 0 0 1
0 0 1 1 1 1
0 1 1 0 1 0
1 1 1 1 0 0
1 0 1 0 0 1
1 1 1 1 1 1
1 0 1 0 1 0




.

The other three orthogonal arrays in the large set are constructed easily as
well.
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A resilient function is a linear resilient function if every output variable is a
linear function of the input variables. All of the examples of resilient function
considered above are linear. The following theorem gives a characterization
of linear resilient functions in terms of linear codes.

Theorem 10.56. There is a linear (n, 2m, d, 2)-code if and only if there is a linear
(n, m, d − 1)-resilient function.

Proof. Let G be an m × n matrix whose rows form a basis for a linear
(n, 2m, d, 2)-code, say C . Define the function f : (Z2)

n → (Z2)
m by the rule

f (x1, . . . , xn) = (x1, . . . , xn)GT ,

where all arithmetic is modulo 2. Clearly f is linear; we will establish that f
is an (n, m, d − 1)-resilient function with the aid of Theorem 10.54.

It is easy to see that the inverse image f−1(0, . . . , 0) is in fact the dual code

C⊥. Theorem 10.17 asserts that C⊥ is a (d − 1)-(2, n, 2n−m−d+1)-OA. Now, any
other inverse image f−1(y) (y ∈ (Z2)

m) is an additive coset of C⊥, and thus it

is also a (d − 1)-(2, n, 2n−m−d+1)-OA. Hence we obtain 2m orthogonal arrays
that form a large set. By Theorem 10.54, f is an (n, m, d− 1)-resilient function.

Conversely, suppose that f is a linear (n, m, d − 1)-resilient function. Be-
cause f is linear, it can be written in the form f (x) = xGT, where G is an m× n
matrix. The proof of Theorem 10.54 shows that f−1(0, . . . , 0) is a (d − 1)-

(2, n, 2n−m−d+1)-OA. Clearly this orthogonal array is linear, so Theorem 10.17
can be applied. This theorem shows that the dual of the orthogonal array is a
linear (n, 2m, d, 2)-code (the rows of G are actually a basis for this code). ⊓⊔

We illustrate the application of Theorem 10.56 in an example.

Example 10.57. From Corollary 10.37, a first-order Reed-Muller code, R(1, n),
is a linear (2n, 2n+1, 2n−1, 2)-code. Therefore there exists a (2n, n + 1, 2n−1 −
1)-resilient function for all positive integers n. When n = 2, the code R(1, n)
has basis (1, 1, 1, 1), (0, 1, 0, 1), and (0, 0, 1, 1). The matrix G, described in the
proof of Theorem 10.56, is as follows:

G =




1 1 1 1
0 1 0 1
0 0 1 1


 ,

and the resulting (4, 3, 1)-resilient function is defined to be

f (x1, x2, x3, x4) = (x1 + x2 + x3 + x4 mod 2, x2 + x4 mod 2, x3 + x4 mod 2).

Theorem 10.56 can also be used to verify the resiliency of linear functions.
Basically, all that is required is to write down the matrix G and determine the
distance of the resulting linear code. We illustrate this process now.
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Example 10.58. Consider the resilient function described in Example 10.53.
The matrix G is as follows:

G =

(
1 · · · 1 1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1 1 · · · 1

)
,

and the code C consists of the following four codewords:

(0, . . . , 0︸ ︷︷ ︸
h

, 0, . . . , 0︸ ︷︷ ︸
h

, 0, . . . , 0︸ ︷︷ ︸
h

)

(1, . . . , 1︸ ︷︷ ︸
h

, 1, . . . , 1︸ ︷︷ ︸
h

, 0, . . . , 0︸ ︷︷ ︸
h

)

(0, . . . , 0︸ ︷︷ ︸
h

, 1, . . . , 1︸ ︷︷ ︸
h

, 1, . . . , 1︸ ︷︷ ︸
h

)

(1, . . . , 1︸ ︷︷ ︸
h

, 0, . . . , 0︸ ︷︷ ︸
h

, 1, . . . , 1︸ ︷︷ ︸
h

).

The distance of the code C is equal to 2h, and hence f is a (3h, 2, 2h − 1)-
resilient function.

10.7 Notes and References

Coding theory is an enormous topic in its own right. We have just mentioned
a few results that are closely connected to combinatorial designs in general
and orthogonal arrays in particular. Most of the results on codes are “classi-
cal” and can be found in standard reference works and textbooks.

Useful books on coding theory include “Introduction to Coding Theory”
by van Lint [78], “The Theory of Error-correcting Codes” by MacWilliams
and Sloane [80], and “Coding and Information Theory” by Roman [87]. Two
books that describe connections between designs and codes are “Designs
and Their Codes” by Assmus and Key [3] and “Designs, Codes, Graphs and
Their Links” by Cameron and van Lint [20]. See also the survey on codes by
Tonchev [111].

“Orthogonal Arrays, Theory and Applications”, by Hedayat, Sloane, and
Stufken [59], is a recent book devoted specifically to orthogonal arrays.

Resilient functions were invented by Bennett, Brassard, and Robert [7]
and independently by Chor et al. [22]. These functions have interesting ap-
plications in cryptography. Section 10.6 is based on Stinson [104]. For ad-
ditional information on resilient functions, see Bierbrauer, Gopalakrishnan,
and Stinson [11].

10.8 Exercises

10.1 Assuming there is a t-(v1, k, λ1)-OA and a t-(v2, k, λ2)-OA, prove that
there is a t-(v1v2, k, λ1λ2)-OA.
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10.2 Use the Gilbert-Varshamov Bound to prove that the following orthog-
onal arrays exist:

(a) a 4-(2, 9, 8)-OA;
(b) a 4-(2, 12, 16)-OA;
(c) a 3-(3, 10, 9)-OA.

10.3 Prove that a (23, 212, 7, 2)-code and an (11, 729, 5, 3)-code are both per-
fect codes.
Remark: These codes exist, and they are known as the binary and
ternary Golay codes, respectively.

10.4 Suppose that (F2, C) is an (n, M, d, 2)-code in which d is odd. For all
codewords (x1, . . . , xn) ∈ C, define

xn+1 =

{
0 if wt(x1, . . . , xn) is even

1 if wt(x1, . . . , xn) is odd.

Then define

D = {(x1, . . . , xn+1) : (x1, . . . , xn) ∈ C}.

Prove that (F2,D) is an (n + 1, M, d + 1, 2)-code.
Remark: This process is called extending a code.

10.5 Construct the (24, 6, 14, 2)-code that is described in Example 10.35.
10.6 Suppose n, d, k, u, and v are defined as in the proof of Theorem 10.34.

Suppose also that 2d > n, d is even, n is odd, and k is even.
(a) Prove that 2u and v are both nonnegative integers.
(b) Prove that the code that is formed by pasting together 2u copies

of a (2k − 2, k, k, 2)-code and v copies of a (4k + 2, 2k + 2, 2k +
2, 2)-code meets the Plotkin Bound with equality.

10.7 An (n, M, d, q)-code, say (Q, C), is an equidistant code if d(x, y) = d for
all x, y ∈ C, x �= y.

(a) Suppose there is a resolvable (v, b, r, k, 1)-BIBD. Prove that there
is an equidistant (n, M, d, q)-code, where n = r, M = v, d =
r − λ, and q = v/k.

(b) If an equidistant (n, M, d, q)-code exists and d > (q− 1)n/q, then
it is known that

M ≥ qd

qd − (q − 1)n
.

Prove that the code constructed in part (a) meets this bound with
equality.
Remark: This bound is a q-ary analogue of the Plotkin Bound.

10.8 Suppose we first choose 2n codewords from the code R(1, n), then we
form a square matrix whose rows are the 2n chosen codewords, and
then we replace every entry “0” by “1” and every entry “1” by “−1”.

(a) Determine the conditions under which the resulting matrix is a
Hadamard matrix of order n.

(b) Determine the conditions under which the resulting matrix is
the Sylvester matrix Sn.



10.8 Exercises 255

10.9 A binary code (F2, C) is a constant-weight code if there exists a positive
integer w such that wt(x) = w for all x ∈ C. A (v, k, t)-packing is a
design (X,A) in which |X| = v, every block A ∈ A has size k, and no
t-subset of points is contained in more than one block.

(a) Suppose M is the incidence matrix of a (v, b, r, k, λ)-BIBD. Define
a binary code C whose codewords are the rows of M. Prove that
(F2, C) is a (b, v, 2(r − λ), 2)-code having constant weight r.

(b) Suppose M is the incidence matrix of a (v, b, r, k, 1)-BIBD. Define
a binary code D whose codewords are the columns of M. Prove
that (F2,D) is a (v, b, 2(k − 1), 2)-code having constant weight k.

(c) Prove that a (v, k, t)-packing having b blocks exists if and only if
there exists a (v, b, 2(k − t + 1), 2)-code having constant weight
k.

(d) Let D(v, k, t) denote the maximum number of blocks in any
(v, k, t)-packing. Prove the following assertions.

i. D(v, k, 1) ≤ ⌊ v
k ⌋.

ii. D(v, k, t) ≤ ⌊ v
k D(v − 1, k − 1, t − 1)⌋.

iii. D(v, k, t) ≤ ⌊ v
k ⌊

v−1
k−1 · · · ⌊ v−t+1

k−t+1⌋ · · · ⌋⌋.
Remark: This bound is known as the Johnson Bound.

10.10 Let G be the following matrix:



0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 .

(a) Prove that the linear code whose basis consists of the rows of G
is a (7, 8, 4, 2)-code.

(b) Describe how to construct a (7h, 3, 4h − 1)-resilient function for
all integers h ≥ 1.
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11

Selected Applications of Combinatorial Designs

There are many interesting and important applications of combinatorial de-
signs to areas including computer networks, design and analysis of algo-
rithms, cryptography, design and analysis of experiments, and tournament
scheduling. In this chapter, we present four applications of combinatorial
designs. The four applications are authentication codes, threshold schemes,
group testing algorithms, and the two-point sampling technique. These ap-
plications consist of two from the field of cryptography, one from experimen-
tal design, and one from algorithm design. They should just be considered
as a sample or an appetizer; we do not even begin to cover the range of the
many ingenious and diverse applications of designs that have been discov-
ered.

11.1 Authentication Codes

The eminent cryptologist Gustavus Simmons has referred to cryptology as
“the science of information integrity”. Most people are familiar with the idea
of encryption, which is used to keep the contents of a message secret from
an eavesdropper. However, as suggested by the term “integrity”, there are,
in addition, other objectives in providing secure communications over an in-
secure network. One of the most important is the question of authenticity.
When Alice sends a message to Bob (encrypted or not), how can Bob be sure
that it was Alice who sent the message, and how does he know that the mes-
sage was not altered by someone else during its transmission?

One elegant way to solve this problem is to use an authentication code.
We will discuss authentication codes, and a construction for them that uses
combinatorial designs, in this section.

Here is the mathematical setting in which we study the problem. There
are three participants: Alice, Bob, and Oscar. Alice and Bob want to com-
municate over an insecure channel (e.g., by e-mail, fax, or cell-phone). Oscar
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(the “bad guy”) has the ability to introduce his own messages into the chan-
nel and/or to modify existing messages. We consider two types of attacks by
Oscar. When Oscar places a (new) message m′ into the channel, it is called
impersonation. When Oscar sees a message m and changes it to a (different)
message m′ �= m, it is called substitution.

As an example, suppose that Bob is Alice’s stockbroker. When Alice sends
a message to Bob, such as “buy 100 shares of Acme stock”, she would not be
very happy if Oscar changed “buy” to “sell”!

The goal of an authentication code is to allow Bob to detect with high
probability when such an attack has taken place. Here is a formal mathemat-
ical definition of an authentication code.

Definition 11.1. An authentication code is a four-tuple (S ,A,K, E), where the
following conditions are satisfied.

1. S is a finite set of source states.
2. A is a finite set of authenticators.
3. K is a finite set of keys.
4. For each K ∈ K, there is an authentication rule eK ∈ E , where eK : S → A.

Here is how an authentication code works. Alice and Bob jointly choose a
secret key K ∈ K at random. They do this “ahead of time”, either when they
are together in the same place or when they have access to a secure chan-
nel. A source state is just the information that Alice wants to communicate
to Bob (e.g., “buy 100 shares . . . ”). When Alice wants to communicate the
source state s ∈ S to Bob, she uses the authentication rule eK to construct
the authenticator a = eK(s). The message m is formed by concatenating s and
a, i.e., m = (s, a). The message m is then sent over the channel. When Bob
receives m, he verifies that a = eK(s) to authenticate the source state s. If
a �= eK(s), then Bob is able to detect that an attack has taken place.

An authentication code can be represented by the |K| × |S| authentication
matrix in which the rows are indexed by the keys, the columns are indexed
by source states, and the entry in row K and column s of the matrix is eK(s).

When Oscar performs impersonation or substitution, his goal is to have
his bogus message m′ = (s′, a′) accepted as authentic by Bob, thus mislead-
ing Bob as to the state of the source. That is, if K is the secret key (the value
of which is not known to Oscar), then Oscar is hoping that a′ = eK(s′).

The strength of an authentication code is measured by the deception proba-
bilities P0 and P1, which represent the probability that Oscar can deceive Bob
by impersonation and substitution, respectively. In computing the deception
probabilities, it is assumed that Oscar is using an optimal strategy. When Al-
ice and Bob use an authentication code, they want P0 and P1 to be small (so
Oscar has only a small possibility of carrying out a successful attack). They
also want |K| (the number of possible keys) to be small because the key must
be stored securely by both Alice and Bob until the time that Alice sends a
message to Bob and he authenticates it.
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11.1.1 A Construction from Orthogonal Arrays

Orthogonal arrays provide a nice way of constructing authentication codes.
Suppose that B is an OA(m, n) on symbol set {1, . . . , n}. We define S =
{1, . . . , m}, A = {1, . . . , n}, and K = {1, . . . , n2}. The rows of B are indexed
by K and the columns are indexed by S . For 1 ≤ K ≤ n2, the authentication
rule eK is defined as

eK(s) = B(K, s)

for 1 ≤ s ≤ m. In other words, the orthogonal array B is used as the authen-
tication matrix of our code.

Let’s analyze the deception probabilities of this authentication code. In
computing the deception probabilities, we assume that the authentication
matrix is known to Oscar. The only information that Oscar does not know is
the particular key (i.e., the row of the orthogonal array) that is being used by
Alice and Bob.

P0 is quite simple to compute. Suppose that Oscar places any message
m = (s, a) into the channel. Then m is accepted as authentic if and only if
eK(s) = a, which happens if and only if B(K, s) = a. Here K is a random row
of the orthogonal array B, and the value of K is known by Alice and Bob but
not by Oscar.

Let L(s, a) = {L : B(L, s) = a}. Then it is not difficult to see that |L(s, a)| =
n, and Oscar’s deception will succeed if and only if K ∈ L(s, a). Since |K| =
n2, it follows that the attack succeeds with probability

|L(s, a)|
|K| =

1

n
.

Since this probability is independent of the message (s, a) that Oscar inserts
into the channel, we see that P0 = 1/n for this code.

We now turn to the analysis of P1. Here, we suppose that Oscar sees a
valid message m = (s, a), and he replaces it with a bogus message m′ =
(s′, a′), where s �= s′. If we again define L(s, a) = {L : B(L, s) = a}, then
observation of the message m allows Oscar to conclude that K ∈ L(s, a). In
other words, the number of “possible keys” is reduced from n2 to n (however,
we will see that this does not increase Oscar’s probability of a successful
deception).

Now, Oscar’s deception will succeed if and only if K ∈ L(s′, a′). However,
since it is known that K ∈ L(s, a), it must be the case that K ∈ L(s, a) ∩
L(s′, a′). Now, we use the fact that B is an OA(m, n) to observe that |L(s, a) ∩
L(s′, a′)| = 1. Since it is known that K ∈ L(s, a), and the deception succeeds if
and only if K ∈ L(s, a) ∩ L(s′, a′), the success probability of this substitution
attack is

|L(s, a) ∩ L(s′, a′)|
|L(s, a)| =

1

n
.
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Since this probability is independent of the original message (s, a) and the
bogus message (s′, a′) that Oscar inserts into the channel, we see that P1 =
1/n.

Summarizing, we have the following theorem.

Theorem 11.2. Suppose there is an OA(m, n). Then there is an authentication code
for m source states, having n authenticators and n2 keys, in which P0 = P1 = 1/n.

Example 11.3. As above, suppose that Alice owns 100 shares of Acme stock.
For 0 ≤ i ≤ 99, we will let source state i correspond to the order “sell i + 1
shares”; and for 100 ≤ i ≤ 199, we will let source state i correspond to the
order “buy i − 99 shares”. Thus we desire a code with (at least) 200 source
states, so we need an OA(m, n) with m ≥ 200.

Now suppose that Alice and Bob want a security level of 1/1000; i.e., they
want a code with P0 ≤ 1/1000 and P1 ≤ 1/1000. This means that they will
use an OA(m, n) with n ≥ 1000.

The simplest way to accommodate these requirements is to take n to be
the smallest prime exceeding 1000, i.e., n = 1009. Then they construct an
OA(200, 1009). This can easily be done using Theorem 6.39. To be specific, let
S = {0, . . . , 199}, A = Z1009, and K = Z1009 × Z1009. For K = (i, j), where
i, j ∈ Z1009, the authentication rule e(i,j) is defined as

e(i,j)(s) = i + sj mod 1009

for 0 ≤ s ≤ 199.
Suppose that the key is K = (427, 886). If Alice wants to buy 50 shares of

Acme stock, then the source state is s = 149. She computes the authenticator
to be

a = e(427, 886)(149) = 427 + 886 × 149 mod 1009 = 262.

Then the message she transmits to Bob is m = (149, 262). When Bob receives
this message, he recomputes the authenticator using the authentication rule
e(427, 886) to verify the authenticity of the message.

When constructing an authentication code using an OA(m, n), the param-
eter n relates to the security of the code, while the parameter m determines
the number of source states. Furthermore, in order for an OA(m, n) to exist,
we have that m ≤ n + 1 by Theorem 6.29 and Theorem 6.38. These facts must
be taken into account when constructing an authentication code.

Another observation about this orthogonal array code is that it is a one-
time code: a key should be used to authenticate only one source state. This is
seen as follows. Suppose that Alice uses the same key K to authenticate two
different source states, s and s′. Thus she transmits two messages, (s, a) and
(s′, a′), where a = eK(s) and a′ = eK(s′). Because the authentication matrix
B is an orthogonal array, there is a unique row of B in which a appears in
column s and a′ appears in column s′. This row, K, is the key, and it can easily
be computed by Oscar after observation of the two messages. Once Oscar
knows the key, he can determine the correct authenticator for any source
state and perform successful deceptions (as long as the key is not changed).
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11.2 Threshold Schemes

Suppose that a bank has a vault that must be opened every day. The bank
employs three senior tellers, but they do not want to trust any individual
with the combination. Hence, they would like to devise a system that enables
any two of the three senior tellers to gain access to the vault. This problem
can be solved by means of threshold schemes. Here is an informal definition.

Definition 11.4. Suppose that t and w are integers such that 2 ≤ t ≤ w. A perfect
(t, w)-threshold scheme is a method of sharing a secret value K among a finite
set P = {P1, . . . , Pw} of w participants in such a way that any t participants can
compute the value of K but no group of t − 1 (or fewer) participants can compute
any information about the value of K from the information they hold collectively.

The value of K is chosen from a specified set of secrets, denoted K, by
a special player, the dealer. The dealer is denoted by D, and it is assumed
that D �∈ P . When D wants to share the secret K among the participants
in P , he gives each participant some partial information called a share. Each
share is chosen from a specified share set, denoted by S . The shares should be
distributed in a secure manner, so no participant knows the share given to
another participant.

At a later time, a subset of participants B ⊆ P pool their shares in an
attempt to compute the secret K. If |B| ≥ t, then they should be able to com-
pute the value of K as a function of the shares they jointly hold; if |B| < t,
then they should not be able to compute K. In the “bank” example described
above, we are asking for a (2, 3)-threshold scheme.

11.2.1 A Construction from Orthogonal Arrays

It is easy to obtain a (t, w)-threshold scheme from any t-(v, w + 1, 1)-OA. Sup-
pose that this orthogonal array, A, is defined on symbol set X, the columns
are labeled 1, . . . , w + 1, and the rows are labeled 1, . . . , vt. The scheme will
have K = S = X, so it accommodates v possible secrets. Associate the first
w columns of the array with the w participants and the last column with the
secret. For every K ∈ X, define RK = {r : A(r, w + 1) = K}. In other words,
RK is the set of rows of A having the element K in the last column. Now,
when D wants to share the secret K ∈ X, he chooses a random row r ∈ RK.
Then D gives the share A(r, i) to participant Pi for 1 ≤ i ≤ w.

Suppose that t participants, say Pi1, . . . , Pit
, wish to determine the secret.

Note that the orthogonal array A is known to all the participants in P . Let sj

be Pi j
’s share, 1 ≤ j ≤ t. Because A is a t-(v, w + 1, 1)-OA, there is a unique

row r such that A(r, ij) = sj, 1 ≤ j ≤ t. It is a simple matter for the t given
participants to determine r and then to compute K = A(r, w + 1).

To prove that the scheme is secure, we show that knowledge of any t − 1
shares leaves the secret completely undetermined. This implies that no sub-
set of t − 1 participants can determine anything about the value of K (except
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that K ∈ X, of course). Suppose that Pi j
has share sj, 1 ≤ j ≤ t − 1. For any

L ∈ X, there is a unique row rL of A such that A(rL, ij) = sj for 1 ≤ j ≤ t − 1,
and A(rL, w + 1) = L (again, this follows because A is a t-(v, w + 1, 1)-OA). In
other words, for any possible value L of the secret, there is exactly one row
rL ∈ RL such that the share sj is given to Pi j

, 1 ≤ j ≤ t − 1. The given subset

of t − 1 participants has no way of knowing which of these v possible rows
was actually used by D to compute the shares, and hence any possible value
for the secret is consistent with the given subset of t − 1 participants holding
the specified t − 1 shares.

We summarize the above as follows.

Theorem 11.5. Suppose that there exists a t-(v, w + 1, 1)-OA. Then there exists a
perfect (t, w)-threshold scheme with |S| = |K| = v.

Example 11.6. Suppose we want a perfect (2, 10)-threshold scheme with |S| =
|K| = 101. We can use an OA(11, 101) to do this. Because 101 is prime, The-
orem 6.39 can be applied. The rows of the orthogonal array are indexed by
Z101 × Z101 and the columns are named 0, . . . , 10. The entries in the orthog-
onal array A are defined by the formula

A((i, j), c) = i + jc mod 101,

i, j ∈ Z101, 0 ≤ c ≤ 10. Suppose we relabel column 0 as column 11 (this is the
column of the orthogonal array that corresponds to the secret). Then, observe
that RK = {K} × Z101 for 0 ≤ K ≤ 100.

Suppose that D wishes to share the secret K = 55. He chooses a random
row in R55, say (55, 17). This row determines the shares s1, . . . , s10 to be dis-
tributed to P1, . . . , P10, respectively. These shares are computed as follows:

s1 = 55 + 17 × 1 mod 101 = 72
s2 = 55 + 17 × 2 mod 101 = 89
s3 = 55 + 17 × 3 mod 101 = 5
s4 = 55 + 17 × 4 mod 101 = 22
s5 = 55 + 17 × 5 mod 101 = 39
s6 = 55 + 17 × 6 mod 101 = 56
s7 = 55 + 17 × 7 mod 101 = 73
s8 = 55 + 17 × 8 mod 101 = 90
s9 = 55 + 17 × 9 mod 101 = 6

s10 = 55 + 17 × 10 mod 101 = 23.

Now, suppose that P2 and P9 want to compute K. Their shares provide two
equations in two unknowns, i and j (where (i, j) is the row of the orthogonal
array that D used to generate the shares):

i + 2j ≡ 89 mod 101

i + 9j ≡ 6 mod 101.
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Subtracting the first congruence from the second, we get

7j ≡ 18 mod 101.

To solve this congruence, we compute 7−1 mod 101 = 29. Then,

j ≡ 29 × 18 mod 101 = 17.

Having determined that j = 17, it is a simple matter to substitute back into
the first congruence to obtain

i = 89 − 2 × 17 mod 101 = 55.

Then the secret is seen to be K = i = 55.

11.2.2 Anonymous Threshold Schemes

A perfect (t, w)-threshold scheme is an anonymous threshold scheme if the fol-
lowing two properties are satisfied:

1. the w participants receive w distinct shares,
2. the secret can be computed solely as a function of t shares, without the

knowledge of which participant holds which share.

Observe that the threshold schemes, constructed in Theorem 11.5 from or-
thogonal arrays, are not anonymous.

In an anonymous scheme, the computation of the secret can be performed
by a black box that is given t shares and does not know the identities of
the participants holding those shares. This could allow a secret to be reused
many times without constructing new shares.

Resolvable (v, w, 1)-BIBDs provide a nice way to construct anonymous
(2, w)-threshold schemes. Suppose that (X,A) is a resolvable (v, w, 1)-BIBD.
There are r = (v − 1)/(w − 1) parallel classes in this BIBD, which we name
Πi, . . . , Πr. The scheme we construct will have K = {1, . . . , r} and S = X
(i.e., we have r possible secrets, and the share set has cardinality v).

Suppose that D wants to share the secret K, where 1 ≤ K ≤ r. Then D
chooses a random block A ∈ ΠK, and he gives the w points in A to the w
participants (i.e., one point is given to each of the w participants).

Suppose that two participants wish to determine the secret. The design
(X,A) and its resolution are known to all the participants in P . Let s and t be
the shares held by any two participants. Since (X,A) is a BIBD with λ = 1,
there is a unique block A such that {s, t} ⊆ A. Then the two participants
can find the parallel class ΠK that contains the block A, and the secret is
revealed as K. Note that this computation depends only on the values of the
two shares and not on the identities of the participants holding them. Thus
the scheme is anonymous.

Now we show that the scheme is secure (i.e., that knowledge of any one
share leaves the secret completely undetermined). Suppose a participant has
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share s. For any L such that 1 ≤ L ≤ r, there is a unique block AL ∈ ΠL such
that s ∈ AL (this follows from the fact that each ΠL is a parallel class). Hence,
for any possible value L of the secret, there is exactly one block AL ∈ ΠL such
that the share s ∈ AL. Any of these r possible blocks could have been used by
D to distribute shares to the participants in P , and hence any possible value
for the secret is consistent with any given share s ∈ X.

We summarize the above as follows.

Theorem 11.7. Suppose there is a resolvable (v, w, 1)-BIBD. Then there exists an
anonymous perfect (2, w)-threshold scheme with |S| = v and |K| = (v − 1)/(w −
1).

Example 11.8. We will use a resolvable (15, 3, 1)-BIBD to construct an anony-
mous perfect (2, 3)-threshold scheme with |S| = 15 and |K| = 7. We present
an example of a resolvable (15, 3, 1)-BIBD. The BIBD has point set

X = {a, b, c, d, e, f , g, h, i, j, k, l, m, n, o}.

The 35 blocks are arranged into seven parallel classes, named Π1, . . . Π7, as
follows:

Π1 Π2 Π3 Π4 Π5 Π6 Π7

abc ahi ajk ade afg alm ano
djn beg bmo bln bhj bik bdf
ehm cmn cef cij clo cdg chk
fio dko dhl fkm dim ejo eil
gkl fjl gin gho ekn fhn gjm

Suppose that D wants to share the secret 4. He picks a random block in Π4,
say cij. The shares c, i, and j are given to the three participants.

At a later time, any two of these shares can be used to reveal the secret. For
example, given the shares c and i, we find that the unique block containing c
and i is cij. Then we determine that the parallel class that contains this block
is Π4, so the secret is K = 4.

11.3 Group Testing Algorithms

Suppose that a large number of blood samples need to be tested for the pres-
ence of a rare disease. If each test is expensive, it might be more efficient
to combine several samples before testing them. Such a scheme is called a
group testing algorithm. Then a negative result to a test ensures that none of
the samples are positive (assuming, for simplicity, that the tests always give
the correct answer). On the other hand, a positive result would reveal only
the fact that at least one of the samples in the test is positive. Further tests
would be required to reveal which particular samples are in fact positive.

In general, we might set up a procedure where we perform a sequence
of group tests in which the samples used in later tests depend on the out-
comes of earlier tests. For example, as mentioned above, if a particular test



11.3 Group Testing Algorithms 265

T is negative, then there is no need to retest any of the samples in T. How-
ever, in many applications of group testing, there are some practical benefits
to a special type of group testing called nonadaptive testing. In nonadap-
tive group testing, a predetermined set of group tests is performed. This has
several potential advantages, three of which are as follows.

• There is less probability of error in the testing procedure (i.e., testing the
wrong samples) since exactly the same tests are done each time the group
testing algorithm is carried out.

• There is potentially less overhead, due to the fact that the tests are known
ahead of time and can be organized in a convenient manner.

• The tests can be performed in parallel to any desired degree. This is ex-
tremely important if it takes a long time to set up and/or carry out an
individual test.

A nonadaptive group testing algorithm can be modeled or defined as a de-
sign in a straightforward way. Let X be a set of m elements called samples, and
let A be a set of n subsets of X called tests. We will refer to the pair (X,A) as
an (m, n)-NAGTA. In general, the tests can be of different sizes if desired, and
we are not assuming any kind of balance property. At this point, all we have
is a set X and a set A of subsets of X.

Suppose that we define A = {{x} : x ∈ X}. Then (X,A) is a (trivial)
(m, m)-NAGTA. Since we want to minimize n (the number of tests), we are
interested primarily in (m, n)-NAGTAs with n < m.

The objective of a group testing algorithm will be to identify the subset
U ⊆ X of positive samples, which we call the positive subset. This will be done
by using a test function f : 2X → {0, 1}, which works as follows:

f (Y) =

{
1 if Y ∩ U �= ∅

0 if Y ∩ U = ∅

for any Y ⊆ X (where 2X denotes the set of all subsets of X). Of course the
test function f depends on U.

The result vector of the (m, n)-NAGTA (X,A), given the positive subset
U, will be the binary n-tuple R(U) = ( f (A) : A ∈ A). In other words, we
apply the test function to every test A ∈ A. We will say that (X,A) identifies
the positive subset U if U is determined uniquely as a function of R(U).
Equivalently, this can be stated as the requirement that R(U) �= R(V) if U �=
V.

Often we may begin with an a priori guarantee or assumption that |U| ≤
s, where s ≤ m is a specified integer. We will say that (X,A) is (m, n)-NAGTA

with threshold s if R(U) �= R(V) whenever U, V ⊆ X, |U| ≤ s, |V| ≤ s, and
U �= V.

Example 11.9. Suppose that X = {1, 2, 3, 4, 5, 6} and

A = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}}.
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We tabulate the results of the (6, 4)-NAGTA (X,A) for all possible positive
subsets U with |U| ≤ 2, as follows:

U R(U) U R(U)
∅ 0000 {1, 6} 1111
{1} 1100 {2, 3} 1011
{2} 1010 {2, 4} 1110
{3} 1001 {2, 5} 1111
{4} 0110 {2, 6} 1011
{5} 0101 {3, 4} 1111
{6} 0011 {3, 5} 1101
{1, 2} 1110 {3, 6} 1011
{1, 3} 1101 {4, 5} 0111
{1, 4} 1110 {4, 6} 0111
{1, 5} 1101 {5, 6} 0111

From the tabulation above, we see that (X,A) has (maximum) threshold s =
1. The fact that s ≥ 1 follows because the seven vectors R(U), where |U| ≤ 1,
are distinct. However, for sets of cardinality two, the result vectors are not
always different (for example, R({1, 2}) = R({1, 4})). Thus s = 1.

11.3.1 A Construction from BIBDs

Suppose that (Y,B) is a (v, b, r, k, 1)-BIBD, and let (X,A) be the dual in-
cidence structure, as defined in Section 1.3. (In other words, (X,A) is the
design whose incidence matrix is the transpose of the incidence matrix of
(Y,B).)

We will use (X,A) as a (b, v)-NAGTA. Recall from Theorem 1.17 that
(X,A) satisfies the following properties:

1. each sample occurs in exactly k tests,
2. each test contains exactly r samples,
3. every pair of distinct samples is contained in at most one test.

We will show that (X,A) has threshold k − 1. To accomplish this, we will
describe a simple algorithm to identify the positive subset U, given the result
vector R(U) and assuming that |U| ≤ k − 1. The algorithm depends on the
fundamental observation we made earlier that U ∩ Y = ∅ if f (Y) = 0. From
this observation, it follows immediately that

U ⊆ X\
⋃

{A∈A: f (A)=0}
A

for any nonadaptive group testing algorithm and for any subset U ⊆ X.
For a NAGTA that is the dual of a BIBD with λ = 1, we will show that

U = X\
⋃

{A∈A: f (A)=0}
A
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if |U| ≤ k − 1. Otherwise, there exists an x �∈ U such that

x �∈
⋃

{A∈A: f (A)=0}
A.

This is equivalent to saying that x �∈ U and f (A) = 1 for every A ∈ A such
that x ∈ A.

Now, the sample x occurs in k tests, each of which must contain a sample
in U. Property 3 ensures that no sample in U occurs in more than one test
with x, so it must be the case that |U| ≥ k. This contradicts the assumption
|U| ≤ k − 1, and thus we have proved the following.

Theorem 11.10. If there exists a (v, b, r, k, 1)-BIBD, then there exists a (b, v)-
NAGTA with threshold k − 1.

Theorem 11.10 says that the positive set U can be identified if it has car-
dinality at most k − 1. What happens if |U| ≥ k? Since

U ⊆ X\
⋃

{A∈A: f (A)=0}
A,

it follows that

k ≤ |U| ≤

∣∣∣∣∣∣
X\

⋃

{A∈A: f (A)=0}
A

∣∣∣∣∣∣

in this case. Hence, even though we may not be able to identify U when
|U| ≥ k, we can always recognize when |U| ≥ k.

Suppose that (X,A) is the (b, v)-NAGTA of Theorem 11.10, where X =
{1, . . . , b} and A = {Aj : 1 ≤ j ≤ v}. Given the result vector R(U) =
( f (A1), . . . , f (Av)), the algorithm IDENTIFY will identify U if |U| ≤ k − 1
and report that |U| ≥ k otherwise.

Algorithm: IDENTIFY(R(U))
U ← ∅

for i ← 1 to b
do M[i] ← 1

for j ← 1 to v

do





if f (Aj) = 0
then for each x ∈ Aj

do M[x] ← 0
for i ← 1 to b

do

{
if M[i] = 1

then U ← U ∪ {i}
if |U| ≤ k − 1

then return (U)
else return (“the positive subset has size at least k”)
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We present an example to illustrate this.

Example 11.11. A (9, 3, 1)-BIBD is presented in Example 1.4. The blocks of the
dual incidence structure are as follows:

A1 = {1, 4, 7, 10}, A2 = {1, 5, 8, 11}, A3 = {1, 6, 9, 12},
A4 = {2, 4, 9, 11}, A5 = {2, 5, 7, 12}, A6 = {2, 6, 8, 10},
A7 = {3, 4, 8, 12}, A8 = {3, 5, 9, 10}, A9 = {3, 6, 7, 11}.

Suppose we obtain the following result vector:

R(U) = (0, 1, 0, 0, 1, 0, 1, 1, 1).

When we execute the algorithm IDENTIFY with input R(U), we compute the
following:

j M
1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 0 1 1 0 1 1 0 1 1

3 0 1 1 0 1 0 0 1 0 0 1 0

4 0 0 1 0 1 0 0 1 0 0 0 0

6 0 0 1 0 1 0 0 0 0 0 0 0

(Note that boxed entries are used to indicate when a “1” is changed to a “0”.)
The positive set U is thus U = {3, 5}.

When we use a (v, k, 1)-BIBD to construct an (m, n)-NAGTA, we get m =
(n2 − n)/(k2 − k). For fixed k, we have that n is O(k

√
m).

11.4 Two-Point Sampling

11.4.1 Monte Carlo Algorithms

There are many problems for which no fast deterministic algorithm is known
but that can be solved efficiently using randomized algorithms. One such
problem is primality testing, where we are given an integer n ≥ 2 and are
required to answer the question “is n composite?”. Primality testing is often
done by means of a Monte Carlo algorithm. In general, Monte Carlo algo-
rithms are used for decision problems, in which the objective is to correctly
answer a yes-no question.

Definition 11.12. A yes-biased Monte Carlo algorithm, A, is an algorithm for
a decision problem that satisfies the following properties:

1. A is a randomized algorithm (i.e., it makes random choices during its execu-
tion);

2. for any problem instance I, A always gives an answer “yes” or “no”;
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3. if the instance I is a no-instance, then A answers “no”;
4. if the instance I is a yes-instance, then the probability that A answers “yes” is

at least 1 − ǫ, where ǫ ≥ 0 is some fixed constant (independent of I).

The value ǫ is called the error probability of the algorithm A.

Observe that, if A answers “yes”, then we know that the answer is correct.
However, if A answers “no”, then there is the possibility that the answer may
be incorrect.

A yes-biased Monte Carlo algorithm, A, can be viewed as a two-stage
procedure. In the first stage, a sample point x is chosen at random from a
specified finite universe U = U(I), where, in general, U depends on the
instance I. In the second stage, a deterministic algorithm is applied to the
given sample point x and instance I. The deterministic algorithm computes a
yes-no valued function f (I, x), which is taken to be the output of A. In order
that A has error probability ǫ, the function f should satisfy the following
properties for all problem instances I:

1. if I is a no-instance, then f (I, x) = 0 for all x ∈ U(I);
2. if I is a yes-instance, then

|{x ∈ U(I) : f (I, x) = 1}| ≥ (1 − ǫ)|U(I)|.

Example 11.13. Primality testing is a decision problem for which Monte Carlo
algorithms are often used in practice. The question to be answered is “is n
composite?”. This means that the instance I is just the integer n.

The well-known Miller-Rabin algorithm is a yes-biased Monte Carlo al-
gorithm for primality testing in which U(I) = {0, . . . , n − 1}. It has been
proven that the resulting error probability of this algorithm, ǫ, is at most 1/4.

The main reason that Monte Carlo algorithms are so useful is that the er-
ror probability can be made as small as desired by repeated application of
the algorithm. Assume that A is a yes-biased Monte Carlo algorithm with
error probability ǫ. Suppose we are given an instance I, and we run A on I k
times using k independent random sample points x ∈ U(I) in the k trials of
the algorithm. If we get at least one “yes” answer, then the instance I must
be a yes-instance. On the other hand, if I is a yes-instance, then the proba-

bility of getting k “no” answers in k trials is at most ǫk, which approaches 0
exponentially quickly as a function of k.

This analysis is based on the assumption that the sample points used in
the successive trials are chosen independently at random from U(I). When
a Monte Carlo algorithm is implemented in actual practice, however, one
always uses a pseudo-random number generator, which is a deterministic
algorithm that produces a sequence of sample points from U(I) given a truly
random starting point called a “seed”. This means that the analysis given
above does not apply. In general, analysis of the error probability will depend
on the particular pseudo-random number generator that is used.
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11.4.2 Orthogonal Arrays and Two-Point Sampling

Orthogonal arrays provide a convenient method of obtaining a sequence of
pseudo-random sample points. Suppose that I is an instance, and let U =
U(I) be the universe of sample points for the instance I as before. Suppose
that A is an orthogonal array OA(k, n) on symbol set U, where |U| = n. Recall
that there are n2 rows in A.

The method of two-point sampling proceeds as follows.

1. Let r be a random row in A.
2. Use the k values A(r, 1), . . . , A(r, k) as the k sample points (note that these

k sample points are not necessarily all distinct).

If the rows of A are indexed by U × U, then a random row of A is specified
by choosing two points independently at random from U. (The two points
are not required to be distinct.) This is the reason for the term “two-point
sampling”.

We now present an elementary combinatorial analysis of the two-point
sampling technique that allows us to calculate a bound on the resulting error
probability. Suppose that I is a yes-instance, and define

S = {x ∈ U : f (I, x) = 1}.

We call S the set of witnesses (note that we do not know the set S explicitly).
We have |S| = m, where m = (1 − ǫ)n.

Let ai denote the number of rows of A in which there are exactly i oc-
currences of elements from S. Call a row of the matrix a bad row if none of
the elements in the row is a witness. Then the error probability is simply the
probability that a randomly selected row of the orthogonal array is a bad row.
Hence, the error probability, when we run the algorithm A using k sample
points chosen from a random row of A, is seen to be

err(S) =
a0

n2
. (11.1)

As mentioned above, we do not know the set S explicitly, but we have an
upper bound on |S|. An upper bound on the error probability of two-point
sampling can be obtained by computing

err = max{err(S) : S ⊆ U, |S| = m}.

We first derive three simple equations using elementary properties of or-
thogonal arrays. Since an OA(k, n) has n2 rows, we have

n

∑
i=0

ai = n2. (11.2)

Next, we count the number of occurrences of witnesses in A in two ways.
There are exactly ai rows in which there are i occurrences of witnesses. In any
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column of A, each point occurs exactly n times so the number of occurrences
of witnesses in a given column is nm. Since there are k columns in A, the total
number of occurrences of witnesses in A is knm. This yields the following
equation:

n

∑
i=0

iai = knm. (11.3)

Similarly, we can count the number of occurrences of pairs of witnesses
occurring in the same row in two ways. In any row in which there are i occur-
rences of witnesses, there will be i(i − 1) occurrences of pairs of witnesses.
On the other hand, if we look at any two columns of A, the number of occur-
rences of pairs of witnesses in the same row is m2. (This is because any par-
ticular pair of witnesses occurs exactly once in any given pair of columns.)
Two columns can be selected in k(k − 1) ways, and so the total number of
occurrences is k(k − 1)m2. This yields the following equation:

n

∑
i=0

i(i − 1)ai = k(k − 1)m2. (11.4)

Let z be any real number. Then we have

0 ≤
n

∑
i=1

(i − z)2ai

=
n

∑
i=1

(i2 − 2zi + z2)ai

=
n

∑
i=1

i2ai − 2z
n

∑
i=1

iai + z2
n

∑
i=1

ai

= k(k − 1)m2 + knm − 2zknm + z2
n

∑
i=1

ai

from equations (11.2), (11.3), and (11.4). It follows that

n

∑
i=1

ai ≥
2knmz − knm − k(k − 1)m2

z2
. (11.5)

Elementary calculus shows that the right-hand side of (11.5) is maximized
when we choose

z =
n + (k − 1)m

n
.

Hence, we get
n

∑
i=1

ai ≥
kmn2

n + (k − 1)m
. (11.6)

Now, from (11.2) and (11.6), we have
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a0 ≤ n2 − kmn2

n + (k − 1)m
.

Finally, we get the following bound on the error probability from (11.1):

err(S) ≤ 1 − km

n + (k − 1)m
.

Since m = n(1 − ǫ), we have that

err(S) ≤ ǫ

1 + (k − 1)(1 − ǫ)
. (11.7)

Because (11.7) is true for any set S ⊆ U of cardinality m, we have the follow-
ing theorem.

Theorem 11.14. If err denotes the error probability of the two-point sampling tech-
nique for a universe U of size n, using as sample points the k elements in a random
row of an orthogonal array OA(k, n), then

err ≤ ǫ

1 + (k − 1)(1 − ǫ)
. (11.8)

Note that this bound on the error probability approaches 0 only linearly
quickly as a function of k.

We give a small, toy example, which actually meets the bound proved in
Theorem 11.14.

Example 11.15. The following is an OA(3, 4) .

0 0 2
0 1 3
0 2 0
0 3 1
1 0 3
1 1 2
1 2 1
1 3 0
2 0 0
2 1 1
2 2 2
2 3 3
3 0 1
3 1 0
3 2 3
3 3 2



11.6 Exercises 273

If the set of witnesses for the universe U = {0, 1, 2, 3} is S = {0, 1}, then
n = 4 and ǫ = 1/2. It is easy to check that a0 = 4 and a2 = 12 for the OA(3, 4)
presented above, and hence

err(S) =
4

16
=

1

4
.

On the other hand, since k = 3, we have

ǫ

1 + (k − 1)(1 − ǫ)
=

1

4
,

so the bound (11.8) is met with equality.

11.5 Notes and References

Some interesting surveys on the applications of combinatorial designs to
computer science include Colbourn and van Oorschot [33], Stinson [105],
Gopalakrishnan and Stinson [49], and Colbourn, Dinitz, and Stinson [30].

Authentication codes were invented by Gilbert, MacWilliams, and Sloane
[48]. They have been extensively studied in cryptography; Simmons [95] is
a good survey. Combinatorial aspects of authentication codes are considered
in various papers, such as Stinson [103].

The idea of threshold schemes is due to Blakley [12] and Shamir [93]. Con-
nections between orthogonal arrays and threshold schemes are discussed in
Dawson, Mahmoodian, and Rahilly [37]. Theorem 11.7 is from Stinson and
Vanstone [106], where the idea of anonymous schemes is introduced.

Much information about group testing can be found in the book “Combi-
natorial Group Testing and Its Applications” by Du and Hwang [43]. Theo-
rem 11.10 can be derived as a consequence of [43, Corollary 7.4.4].

Two-point sampling was invented by Chor and Goldreich [21]. Section
11.4 is based on Gopalakrishnan and Stinson [51]. For a brief discussion of
the applications of combinatorial designs to derandomization, see Gopala-
krishnan and Stinson [50].

11.6 Exercises

11.1 Suppose that (S ,A,K, E) is an authentication code in which S =
{0, . . . , 8}, A = Z11, and K = Z11 × Z11. For K = (i, j), where
i, j ∈ Z11, the authentication rule e(i,j) is defined as

e(i,j)(s) = i + sj mod 11

for 0 ≤ s ≤ 8.
(a) Suppose that Oscar observes the message (5, 4) in the channel.

Determine the set of possible keys being used by Alice and Bob.
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(b) Suppose Oscar substitutes the message (4, 1). If this message is
accepted by Bob, what must the key be?

11.2 We investigate a slightly modified model for authentication in this
question. Suppose we have a four-tuple (S ,M,K, E), where the fol-
lowing conditions are satisfied.
1. S is a finite set of source states.
2. M is a finite set of messages.
3. K is a finite set of keys.
4. For each K ∈ K, there is an encoding rule eK ∈ E , where eK : S → A

is an injective function.
Bob will accept a message m ∈ M as authentic if there exists s ∈ S
such that eK(s) = m (note that there exists at most one such s (given m)
because the encoding rules are injective).

Let (X,A) be a (v, b, r, k, λ)-BIBD. Define S = {1, . . . , k}, M = X,
and K = A. For every block A ∈ A, define an encoding rule eA so that

{eA(s) : s ∈ S} = A.

(There are k! possible ways to define each encoding rule eA so that this
condition is satisfied.)

Prove that this authentication code has P0 = k/v and P1 = (k −
1)/(v − 1).

11.3 A 3-(17, 6, 1)-OA can be used to construct a perfect (3, 5)-threshold
scheme. The entries in the orthogonal array are defined by the formula

A((i0, i1, i2), c) = i0 + i1c + i2c2 mod 17,

where (i0, i1, i2) ∈ (Z17)
3 and 1 ≤ c ≤ 5. The secret is

K = A((i0, i1, i2), 0) = i0,

and the shares for P1, . . . , P5 are A((i0, i1, i2), 1), . . . , A((i0, i1, i2), 5), re-
spectively.

Suppose that the shares given to P1, P3, and P5 are 8, 10, and 11,
respectively. Determine the secret.

11.4 Generalizing Exercise 11.3, we can use orthogonal arrays based on
Corollary 10.7 to construct threshold schemes. The resulting threshold
schemes are known as Shamir threshold schemes. Here is how a Shamir
(t, w)-threshold scheme is constructed over Zp, where p is a prime.

1. D chooses w distinct, nonzero elements of Zp, denoted xi, 1 ≤ i ≤ w
(this is where we require p ≥ w + 1). For 1 ≤ i ≤ w, D gives the
value xi to Pi. The values xi are public.

2. Suppose D wants to share a key K ∈ Zp. D secretly chooses (inde-
pendently at random) t − 1 elements of Zp, which are denoted
a1, . . . , at−1.

3. For 1 ≤ i ≤ w, D computes yi = a(xi), where

a(x) = K +
t−1

∑
j=1

ajx
j mod p.
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4. For 1 ≤ i ≤ w, D gives the share yi to Pi.

In summary, the dealer constructs a random polynomial a(x) of de-
gree at most t − 1 in which the constant term is the key, K. Every par-
ticipant Pi obtains a point (xi, yi) on this polynomial.

Suppose that participants Pi1, . . . , Pit
want to determine K. They

know that yi j
= a(xi j

), 1 ≤ j ≤ t, where a(x) ∈ Zp[x] is the (secret)

polynomial chosen by D. K can be determined by first computing

f (x) =
t

∑
j=1

yi j ∏
1≤k≤t,k �=j

x − xik

xi j
− xik

(11.9)

and then setting K = f (0).
Remark: Equation (11.9) is known as the Lagrange Interpolation For-
mula.

(a) Prove that f (xi j
) = yi j

for 1 ≤ j ≤ t.

(b) Prove that the polynomial f (x) = a(x).
Hint: The polynomial f (x) − a(x) has at least t roots.

(c) Prove that K = f (0).
11.5 (a) Suppose that the following are the nine shares in a Shamir (6, 9)-

threshold scheme (as described in Exercise 11.3) implemented in
Z1993:

i xi yi

1 1 187
2 2 1547
3 3 498
4 4 1407
5 5 1564
6 6 1176
7 7 795
8 8 185
9 9 603

Exactly one of these shares is defective (i.e., incorrect). Your task
is to determine which share is defective and then figure out
its correct value as well as the value of the secret. The “prim-
itive operations” in your algorithm are polynomial interpola-
tions (using (11.9)) and polynomial evaluations. Try to minimize
the number of polynomial interpolations you perform.
Hint: The question can be solved using at most three polynomial
interpolations.

(b) Suppose that a Shamir (t, w)-threshold scheme has exactly one
defective share, and suppose that w ≥ 2t. Describe how it is
possible to determine which share is defective using only two
polynomial interpolations.

(c) More generally, suppose that a Shamir (t, w)-threshold scheme
has exactly τ defective shares, and suppose that t ≥ (τ + 1)w.
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Describe how it is possible to determine which shares are defec-
tive using only τ + 1 polynomial interpolations.

11.6 Suppose an affine plane of order 7 is used to set up an anonymous
(2, 7) threshold scheme with |K| = 8 and |S| = 49. The affine plane
(X,A) can be constructed in the usual way as follows. X = Z7 × Z7.
For any a, b ∈ Z7, define a block

Aa,b = {(x, y) ∈ X : y ≡ ax + b mod 7}.

For any c ∈ Z7, define

A∞,c = {(c, y) : c ∈ Z7}.

Then, define

A = {Aa,b : a, b ∈ Z7} ∪ {A∞,c : c ∈ Z7}.

(a) Suppose that the secret is K = 5. Compute the shares to be dis-
tributed to the seven participants if the block A5,3 is chosen by
the dealer.

(b) Compute the secret if two of the shares are (3, 5) and (6, 2).
11.7 Suppose that (X,A) is a design with m points and n blocks, and let

M = (mi,j) be its incidence matrix. Let the rows of M be labeled by
the elements in the set R, and let the columns of M be labeled by the
elements in the set C. M is said to be s-disjunct provided that for every
row r ∈ R and for all sets of rows {r1, . . . , rs} ⊆ R\{r}, there exists a
column c ∈ C such that mr,c = 1 and mr1,c = · · · = mrs,c = 0.

(a) Prove that (X,A) is an (m, n)-NAGTA with threshold s if the in-
cidence matrix M is s-disjunct.

(b) Suppose that a (binary) (n, m, d, 2)-code has constant weight w.
Prove that the m × n matrix whose rows are the m codewords is
s-disjunct provided that s(w − d/2) < w.

11.8 The blocks of the dual incidence structure of a (9, 3, 1)-BIBD are as fol-
lows:

A1 = {1, 4, 7, 10}, A2 = {1, 5, 8, 11}, A3 = {1, 6, 9, 12},
A4 = {2, 4, 9, 11}, A5 = {2, 5, 7, 12}, A6 = {2, 6, 8, 10},
A7 = {3, 4, 8, 12}, A8 = {3, 5, 9, 10}, A9 = {3, 6, 7, 11}.

Suppose that these blocks are used as tests in a nonadaptive group
testing algorithm and the result vector is

R(U) = (1, 0, 1, 1, 0, 0, 1, 1, 0).

Identify the positive set U, if possible. Show all your work.
11.9 Prove that equality occurs in Theorem 11.14 if and only if there exists

an OA(k, n) and a subset S of m = (1 − ǫ)n symbols such that every
row of this orthogonal array either contains 0 or z symbols from S,
where z = 1 + (k − 1)(1 − ǫ).

11.10 Let p ≥ 3 be a prime, and suppose we construct an OA(3, p), say A,
by the method described in Theorem 6.39. To be specific, let a1, a2, a3

be three distinct elements of Zp. Then define the entry in row (i, j) and
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column c to be A((i, j), c) = i + jac mod p for all i, j ∈ Zp, c = 1, 2, 3.
For such an orthogonal array, and for m = 1, 2, 3, determine the exact
value of

max{err(S) : S ⊆ Zp, |S| = m}.
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A

Small Symmetric BIBDs and Abelian Difference

Sets

We provide a summary of known existence and nonexistence results for
“small” symmetric BIBDs and Abelian difference sets. In Table A.1, we list
all parameter triples (v, k, λ) in which λ(v − 1) = k(k − 1), v/2 ≥ k ≥ 3,
and 3 ≤ k ≤ 15 (if k > v/2, then apply block complementation, which was
presented as Theorem 1.32, and/or Exercise 3.1).

We use the following abbreviations in Table A.1.

• “Singer” denotes a Singer difference set (Theorem 3.28).
• “QR” denotes a quadratic residue difference set (Theorem 3.21).
• “H” denotes a (4m− 1, 2m− 1, m−1)-BIBDconstructed from a Hadamard

matrix of order 4m via Theorem 4.5.
• “PGd(q)” denotes a projective geometry (Theorem 2.14).
• “BRC” denotes the Bruck-Ryser-Chowla Theorems (Theorems 2.16 and

2.19).
• “MT” denotes the Multiplier Theorem (Theorem 3.33).

For existence of certain symmetric BIBDs and for the nonexistence of cer-
tain difference sets, we refer to external sources. Note also that existence of
a difference set implies the existence of the corresponding symmetric BIBD,
and nonexistence of a symmetric BIBD implies nonexistence of a difference
set with the same parameters in any (Abelian or non-Abelian) group.



k v λ SBIBD notes difference set notes

3 7 1 yes PG2(2) yes Singer
4 13 1 yes PG2(3) yes Singer
5 21 1 yes PG2(4) yes Singer
5 11 2 yes H yes QR

6 31 1 yes PG2(5) yes Singer
6 16 2 yes yes Example 3.4
7 43 1 no BRC no
7 22 2 no BRC no
7 15 3 yes PG3(2), H yes Singer
8 57 1 yes PG2(7) yes Singer
8 29 2 no BRC no
9 73 1 yes PG2(8) yes Singer
9 37 2 yes yes Example 3.24
9 25 3 yes [113, Table 5.25] no [10, Table A.3.1]
9 19 4 yes H yes QR

10 91 1 yes PG2(9) yes Singer
10 46 2 no BRC no
10 31 3 yes no MT, p = 7
11 111 1 no [74] no MT, p = 2, 5
11 56 2 yes [113, Table 5.25] no [10, Table A.3.1]
11 23 5 yes H yes QR

12 133 1 yes PG2(11) yes Singer
12 67 2 no BRC no
12 45 3 yes yes Example 3.5
12 34 4 no BRC no
13 157 1 unknown no Example 3.38
13 79 2 yes [113, Table 5.25] no MT, p = 11
13 53 3 no BRC no
13 40 4 yes PG3(3) yes Singer
13 27 6 yes H yes QR

14 183 1 yes PG2(13) yes Singer
14 92 2 no BRC no
15 211 1 no BRC no
15 106 2 no BRC no
15 71 3 yes [113, Table 5.25] no [10, Table A.3.1]
15 43 5 no BRC no
15 36 6 yes yes Example 3.6
15 31 7 yes PG5(2), H yes Singer, QR

Table A.1. Small Symmetric BIBDs and Abelian Difference Sets
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Finite Fields

In this appendix, we give a brief summary of basic facts concerning finite
fields. We provide definitions of the main concepts, several illustrative ex-
amples, and statements of some important theorems, but no proofs. A reader
wanting to study finite fields in more detail can consult a suitable algebra
textbook.

Definition B.1. A finite field is a triple (X,×, +) such that X is a finite set with
|X| ≥ 2 and “×” and “+” are binary operations on X such that the following
conditions are satisfied:

1. addition is closed; i.e., for any a, b ∈ X, a + b ∈ X;
2. addition is commutative; i.e., for any a, b ∈ X, a + b = b + a;
3. addition is associative; i.e., for any a, b, c ∈ X, (a + b) + c = a + (b + c);
4. 0 is an additive identity; i.e., for any a ∈ X, a + 0 = 0 + a = a;
5. for any a ∈ X, there exists an additive inverse of a, denoted −a, such that

a + (−a) = (−a) + a = 0;
6. multiplication is closed; i.e., for any a, b ∈ X, a × b ∈ X;
7. multiplication is commutative; i.e., for any a, b ∈ X, a × b = b × a;
8. multiplication is associative; i.e., for any a, b, c ∈ X, (a× b)× c = a× (b× c);
9. 1 is a multiplicative identity; i.e., for any a ∈ X, a × 1 = 1 × a = a;

10. for any a ∈ X\{0}, there exists a multiplicative inverse of a, denoted a−1,
such that a × a−1 = a−1 × a = 1;

11. the distributive property is satisfied; i.e., for any a, b, c ∈ X, (a + b) × c =
(a × c) + (b × c), and a × (b + c) = (a × b) + (a × c).

The order of the finite field (X,×, +) is the integer |X|.

Suppose that (X,×, +) is a finite field. Properties 1–5 establish that (X, +)
is an Abelian group, and properties 6–10 show that (X\{0},×) is an Abelian
group.

Here are some familiar examples of fields.

Example B.2. (R,×, +) and (Q,×, +) are both (infinite) fields.
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Example B.3. If p is prime, then every nonzero element of Zp has a multiplica-

tive inverse, and (Zp,×, +) is a finite field of order p.

A finite ring is a triple (X,×, +) that satisfies every property of a finite
field except for property 10.

Example B.4. If m ≥ 2 is an integer, then (Zm,×, +) is a finite ring. If m is
composite, then it is easy to see that (Zm,×, +) is not a field as follows. Sup-
pose that d is a divisor of m, where 1 < d < n. Then d does not have a
multiplicative inverse modulo m, so property 10 is violated.

There exist finite fields that are not of prime order. In fact, there is a finite
field with q elements whenever q = pn, p is prime, and n ≥ 1 is an integer.
We will now describe very briefly how to construct such a field when n > 1.
First, we need several definitions.

Definition B.5. Suppose p is prime. Define Zp[x] to be the set of all polynomials in
the indeterminate x in which the coefficients are elements of Zp. ((Zp[x],×, +) is a
ring, where multiplication and addition of polynomials are defined in the usual way
except that all coefficients are reduced modulo p.)

1. For f (x), g(x) ∈ Zp[x], we say that f (x) divides g(x) (notation: f (x) | g(x))
if there exists q(x) ∈ Zp[x] such that

g(x) = q(x) f (x).

2. For f (x) ∈ Zp[x], define deg( f ), the degree of f , to be the highest exponent in
a term of f .

3. Suppose f (x), g(x), h(x) ∈ Zp[x], and deg( f ) = n ≥ 1. We define

g(x) ≡ h(x) (mod f (x))

if
f (x) | (g(x) − h(x)).

Notice the resemblance of the definition of congruence of polynomials to
that of congruence of integers.

We are now going to define a finite ring of polynomials “modulo f (x)”,
which we denote by Zp[x]/( f (x)). The construction of Zp[x]/( f (x)) from
Zp[x] is based on the idea of congruences modulo f (x) and is analogous to
the construction of Zm from Z.

Suppose deg( f ) = n. If we divide g(x) by f (x), we obtain a (unique)
quotient q(x) and remainder r(x), where

g(x) = q(x) f (x) + r(x)

and
deg(r) < n.
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This can be done by the usual long division of polynomials. It follows that
any polynomial in Zp[x] is congruent modulo f (x) to a unique polynomial
of degree at most n − 1.

Now we define the elements of Zp[x]/( f (x)) to be the pn polynomials in
Zp[x] of degree at most n − 1. Addition and multiplication in Zp[x]/( f (x))
are defined as in Zp[x], followed by a reduction modulo f (x). Equipped with
these operations, Zp[x]/( f (x)) is a finite ring.

Recall that Zm is a field if and only if m is prime. A similar situation holds
for Zp[x]/( f (x)). The analog of primality for polynomials is irreducibility,
which we define as follows.

Definition B.6. A polynomial f (x) ∈ Zp[x] is said to be an irreducible polyno-
mial if there do not exist polynomials f1(x), f2(x) ∈ Zp[x] such that

f (x) = f1(x) f2(x),

where deg( f1) > 0 and deg( f2) > 0.

Irreducible polynomials of all possible orders exist. More precisely, we
have the following theorem.

Theorem B.7. For any prime p and for any integer n ≥ 1, there exists an irre-
ducible polynomial f (x) ∈ Zp[x] having degree n.

The relevance of irreducible polynomials to the construction of finite
fields is as follows.

Theorem B.8. Suppose p is prime and f (x) ∈ Zp[x]. Then Zp[x]/( f (x)) is a
(finite) field if and only if f (x) is irreducible.

Here is an example to illustrate the concepts described above.

Example B.9. Let’s construct a finite field having eight elements. This can be
done by finding an irreducible polynomial of degree three in Z2[x]. It is suf-
ficient to consider the polynomials having constant term equal to 1 since any
polynomial with constant term 0 is divisible by x and hence is reducible.
There are four such polynomials:

f1(x) = x3 + 1

f2(x) = x3 + x + 1

f3(x) = x3 + x2 + 1

f4(x) = x3 + x2 + x + 1.

Now, f1(x) is reducible because

x3 + 1 = (x + 1)(x2 + x + 1)
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(remember that all coefficients are to be reduced modulo 2). Also, f4 is re-
ducible because

x3 + x2 + x + 1 = (x + 1)(x2 + 1).

However, f2(x) and f3(x) are both irreducible, and either one can be used to
construct a field having eight elements.

Let us use f2(x), and thus construct the field Z2[x]/(x3 + x + 1). The eight
field elements are the eight polynomials 0, 1, x, x + 1, x2, x2 + 1, x2 + x, and
x2 + x + 1.

To compute a product of two field elements, we multiply the two poly-
nomials together and reduce modulo x3 + x + 1 (i.e., divide by x3 + x + 1
and find the remainder polynomial). Since we are dividing by a polynomial
of degree three, the remainder will have degree at most two and hence is an
element of the field.

For example, to compute (x2 + 1)(x2 + x + 1) in Z2[x]/(x3 + x + 1), we
first compute the product in Z2[x], which is x4 + x3 + x + 1. Then we divide
by x3 + x + 1, obtaining the expression

x4 + x3 + x + 1 = (x + 1)(x3 + x + 1) + x2 + x.

Hence, in the field Z2[x]/(x3 + x + 1), we have that

(x2 + 1)(x2 + x + 1) = x2 + x.

Below, we present a complete multiplication table for the nonzero field ele-
ments. To save space, we write a polynomial a2x2 + a1x + a0 as the ordered
triple a2a1a0.

× 001 010 011 100 101 110 111
001 001 010 011 100 101 110 111
010 010 100 110 011 001 111 101
011 011 110 101 111 100 001 010
100 100 011 111 110 010 101 001
101 101 001 100 010 111 011 110
110 110 111 001 101 011 010 100
111 111 101 010 001 110 100 011

We have described how to construct finite fields whose orders are primes
or the power of a prime. There are no other orders for which finite fields
exist.

Theorem B.10. There exists a finite field of order q if and only if q = pn, where p is
prime and n ≥ 1.

It is natural to ask if finite fields of the same order that are constructed
from different irreducible polynomials are “different”. In fact, the resulting
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fields turn out to be isomorphic. (Two fields (X,×, +) and (Y,×, +) are iso-
morphic finite fields if there exists a bijection φ : X → Y such that

φ(x + x′) = φ(x) + φ(x′) and φ(x × x′) = φ(x) × φ(x′)

for all x, x′ ∈ X.)

Theorem B.11. Suppose that (X,×, +) and (Y,×, +) are finite fields of order q.
Then these two fields are isomorphic.

We denote the (unique) finite field of order q (where q = pn, p is prime,
and n ≥ 1) using the notation Fq.

Theorem B.12. Suppose that Fq is a finite field. Then (Fq\{0},×) is a cyclic
group.

Theorem B.12 states that the nonzero elements of a finite field can be gen-
erated as powers of a single element. Such a generator is called a primitive
element of the finite field.

Example B.13. The finite field F8 was constructed as Z2[x]/(x3 + x + 1) in
Example B.9. The multiplicative group (F8\{0},×) has order 7. Since 7 is
prime, it follows that any nonzero field element is a primitive element.

For example, if we compute the powers of x, we obtain

x1 = x

x2 = x2

x3 = x + 1

x4 = x2 + x

x5 = x2 + x + 1

x6 = x2 + 1

x7 = 1,

which comprise all the nonzero field elements.

Theorem B.14. Suppose that q = pn, where p is prime and n ≥ 1. Suppose also
that q − 1 ≡ 0 (mod r). Then there is a unique subgroup (H,×) of (Fq\{0},×)

having order r. Furthermore, H = {α(q−1)i/r : 0 ≤ i ≤ r − 1}, where α is a
primitive element of Fq.

Example B.15. Suppose that q = 81 = 34. We can construct F81 by first finding
an irreducible polynomial f (x) ∈ Z3[x] having degree four. f (x) = x4 + x3 +
2 is one such polynomial, so we can take F81 = Z3[x]/(x4 + x3 + 2). In this
field, it turns out that x is a primitive element. The multiplicative subgroup
of order 8 is

H = {1, x10, x20, . . . , x70}.
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Writing the elements in H as polynomials of degree at most three, it can be
shown that

H = {±1,±(x3 + 2x2 + 1),±(x3 + 2x2 + 2),±(x3 + 2x2)}.

Suppose that (X,×, +) is a finite field, and let Y ⊆ X. We say that
(Y,×, +) is a subfield of (X,×, +) provided that (Y,×, +) is itself a finite field.

Theorem B.16. Suppose that q = pn, where p is prime and n ≥ 1. Then every
subfield of Fq has order pm, where m is a divisor of n. Conversely, for every positive
integer m dividing n, there is a unique subfield of Fpn isomorphic to Fpm .

The subfields of Fq are easily constructed. Fpm\{0} is the unique sub-
group H of Fpn\{0} having order pm − 1 (note that pm − 1 is a divisor of
pn − 1 whenever m is a divisor of n). Then Fpm = H ∪ {0}.

Example B.17. F9 is a subfield of F81 because 81 = 34, 9 = 32, and 2 divides
4. F9 consists of {0, 1, α10, α20, . . . , α70}, where α is a primitive element of F81.

We now discuss the existence of square roots in finite fields. Let q be an
odd prime power. Define

QR(q) = {z2 : z ∈ Fq, z �= 0}

and
QNR(q) = Fq\(QR(q) ∪ {0}).

We have the following.

Theorem B.18. Let q be an odd prime power. Then |QR(q)| = (q − 1)/2 and
|QNR(q)| = (q − 1)/2. Furthermore, the following results hold.

1. If x ∈ QR(q), then there are exactly two elements y ∈ Fq such that y2 = x, and
these two elements sum to 0.

2. If x ∈ QNR(q), then there are no elements y ∈ Fq such that y2 = x.

3. If x = 0, then there is exactly one element y ∈ Fq such that y2 = x, namely
y = 0.

For even prime powers, the situation is completely different.

Theorem B.19. Let q = 2n. For every x ∈ Fq, there is a unique y ∈ F2n such that

y2 = x.

Notes and References

McEliece [81] is an excellent textbook on finite fields; Lidl and Niederreiter
[76] is an important reference book that contains a huge amount of useful
information on this subject.
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91. M. P. SCHÜTZENBERGER. A non-existence theorem for an infinite family of

symmetrical block designs. Annals of Eugenics 14 (1949), 286–287.
92. J. SEBERRY AND M. YAMADA. Hadamard matrices, sequences, and block de-

signs. In Contemporary Design Theory, A Collection of Surveys (J. H. Dinitz and D.
R. Stinson, eds.), John Wiley & Sons, New York, 1992, pp. 431–560.

93. A. SHAMIR. How to share a secret. Communications of the ACM 22 (1979), 612–
613.

94. S. S. SHRIKHANDE. Affine resolvable balanced incomplete block designs: a sur-
vey. Aequationes Mathematicae 14 (1976), 251–269.

95. G. J. SIMMONS. A survey of information authentication. In Contemporary Cryp-
tology, The Science of Information Integrity (G. J. Simmons, ed.), IEEE Press, New
York, 1992, 379–419.

96. J. A. SINGER. A theorem in finite projective geometry and some applications
to number theory. Transactions of the American Mathematical Society 43 (1938),
377–385.

97. N. M. SINGHI AND S. S. SHRIKHANDE. On the λ-design conjecture. Utilitas
Mathematica 9 (1976), 301–318.

98. T. SKOLEM. Some remarks on the triple systems of Steiner. Mathematica Scandi-
navica 6 (1958), 273–280.

99. R. G. STANTON AND J. G. KALBFLEISCH. The λ-µ problem: λ = 1 and µ = 3.
In Proceedings of the Second Chapel Hill Conference on Combinatorial Mathematics
and its Applications (R. C. Bose et al., eds.), University of North Carolina Press,
Chapel Hill, 1970, pp. 451–462.

100. D. R. STINSON. Applications and generalizations of the variance method in
combinatorial designs. Utilitas Mathematica 22 (1982), 323–333.

101. D. R. STINSON. A short proof of the nonexistence of a pair of orthogonal Latin
squares of order six. Journal of Combinatorial Theory, Series A 36 (1984), 373–376.

102. D. R. STINSON. Frames for Kirkman triple systems. Discrete Mathematics 65
(1987), 289–300.



292 References

103. D. R. STINSON. Combinatorial characterizations of authentication codes. De-
signs, Codes and Cryptography 2 (1992), 175–187.

104. D. R. STINSON. Resilient functions and large sets of orthogonal arrays. Congres-
sus Numerantium 92 (1993), 105–110.

105. D. R. STINSON. Combinatorial designs and cryptography. In Surveys in Combi-
natorics, 1993 (K. Walker, ed.), Cambridge University Press, Cambridge, 1993,
pp. 257–287.

106. D. R. STINSON AND S. A. VANSTONE. A combinatorial approach to threshold
schemes, SIAM Journal on Discrete Mathematics 1 (1988), 230–236.

107. A. P. STREET AND D. J. STREET. Combinatorics of Experimental Design, Oxford
Science Publications, Oxford, 1987.

108. L. TEIRLINCK. Nontrivial t-designs without repeated blocks exist for all t. Dis-
crete Mathematics 65 (1987), 301–311.

109. J. A. TODD. A combinatorial problem. Journal of Mathematical Physics 12 (1933),
321–333.

110. V. D. TONCHEV. Combinatorial Configurations: Designs, Codes, Graphs. Longman
Scientific & Technical, London, 1988.

111. V. D. TONCHEV. Codes. In The CRC Handbook of Combinatorial Designs (C. J.
Colbourn and J. H. Dinitz, eds.), CRC Press, Boca Raton, 1996, pp. 517–543.

112. V. T. TRAN. Nonembeddable quasi-residual designs. In Finite Geometries and
Combinatorial Designs (Contemporary Mathematics, Volume 111, E. S. Kramer
and S. S. Magliveras, eds.), American Mathematical Society, Providence, 1990,
pp. 237–278.

113. V. T. TRAN. Symmetric designs. In The CRC Handbook of Combinatorial Designs
(C. J. Colbourn and J. H. Dinitz, eds.), CRC Press, Boca Raton, 1996, pp. 75–87.

114. W. D. WALLIS. Construction of strongly regular graphs using affine designs.
Bulletin of the Australian Mathematical Society 4 (1971), 41–49.

115. W. D. WALLIS. Combinatorial Designs, Marcel Dekker, New York, 1988.
116. J. WILLIAMSON. Hadamard’s determinant theorem and the sum of four

squares. Duke Mathematical Journal 11 (1944), 65–81.
117. R. M. WILSON. Cyclotomy and difference families in elementary abelian

groups. Journal of Number Theory 4 (1972), 17–47.
118. R. M. WILSON. An existence theory for pairwise balanced designs I. Composi-

tion theorems and morphisms. Journal of Combinatorial Theory, Series A 13 (1972),
220–245.

119. R. M. WILSON. An existence theory for pairwise balanced designs II. The struc-
ture of PBD-closed sets and the existence conjectures. Journal of Combinatorial
Theory, Series A 13 (1972), 246–273.

120. R. M. WILSON. The necessary conditions for t-designs are sufficient for some-
thing. Utilitas Mathematica 4 (1973), 207–215.

121. R. M. WILSON. Concerning the number of mutually orthogonal Latin squares.
Discrete Mathematics 9 (1974), 181–198.

122. R. M. WILSON. Constructions and uses of pairwise balanced designs. Mathema-
tisch Centrum Tracts 55 (1974), 18–41 (Combinatorics Part 1: Theory of Designs,
Finite Geometry and Coding Theory).

123. R. M. WILSON. An existence theory for pairwise balanced designs III. Proof
of the existence conjectures. Journal of Combinatorial Theory, Series A 18 (1975),
71–79.
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first-order Reed-Muller code, 242
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order of, 123
orthogonal, 131
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MacNeish’s Theorem, 139
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order of, 154
matrix
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Sylvester, 90
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maximum distance separable (MDS)
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Multiplier Theorem, 55

proof of, 61
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near parallel class, 121

deficient point, 121
near resolution, 121
near resolvable BIBD, 121
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New York Times, 133
(n, M, d, q)-code, 230
(n, m, t)-resilient function, 250
nonadaptive group testing algorithm,

265
threshold, 265

nonlinearity, 93
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operation table, 124
orbit, 12
orbit, 64
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of affine plane, 29
of conference matrix, 77
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of quasigroup, 123
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orthogonal arrays, 140, 225
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orthogonal complement, 231
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pairwise balanced design, 7, 157

proper, 7
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trivial, 7
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Parseval’s Equation, 91
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pasting codes together, 237
PBD, 7, 157
PBD-closed set, 160
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permutation, 10
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disjoint cycle representation, 11
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order of, 11

permutation group, 11
sharply t-transitive, 209
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permutation matrix, 10
permutation representation, 43
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Plotkin Bound, 239
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order of, 27
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order of, 123
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symmetric, 124
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randomized algorithm, 268
Reed-Muller code, 242

first-order, 242
rth-order, 245

Reed-Solomon code, 234
regular Hadamard matrix, 84
regular pairwise balanced design, 7
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replication number, 5
Res, 26
residual BIBD, 26
resilient function, 249

linear, 252
resolutions, 101

near, 121
orthogonal, 115

resolvable
BIBD, 101
GDD, 178

result vector, 265
Room square, 119
row-regular Hadamard matrix, 85
rth-order Reed-Muller code, 245
Ryser-Woodall Theorem, 196

sample, 265
sample point, 269
secret, 261
self-orthogonal Latin square, 155
Shamir threshold scheme, 274
share, 261
share set, 261
sharply

t-transitive, 209
transitive, 49

shortening a code, 236
simple design, 2
simple orthogonal array, 225
simple t-design, 201
Singer difference set, 52
Singleton Bound, 233
skew strong starter, 120
source state, 258
span, 16
Sphere-packing Bound, 234
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square-free, 37
square-free part, 37
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stabilizer, 64
standardized

conference matrix, 99
GRS, 178
Hadamard matrix, 73

Stanton-Kalbfleisch Bound, 179
starter, 120

orthogonal, 121
strong, 117

Steiner quadruple system, 208
order of, 208

Steiner quasigroup, 153
Steiner triple system, 126

order of, 126
Stinson Bound, 185
strong starter, 117

skew, 120
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subdesign, 218
subfield, 286
substitution, 258
sum construction, 15
Sylvester matrix, 90
symbol, 230
symmetric BIBD, 23

order of, 39
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symmetric group, 11
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tBD, 216
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t-design, 201
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threshold
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algorithm, 265

threshold scheme, 261
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perfect, 261
Shamir, 274

translate, 42
of difference set, 42

transpose, 6
transversal design, 144

truncated, 147
t-resilient function, 249
triangle inequality, 231
trivial pairwise balanced design, 7
trivial t-design, 201
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t-(v, h, K)-ItBD, 218
t-(v, k, λ)-design, 201
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t-(v, k, λ)-OA, 225
t-(v, K)-tBD, 216
t-wise balanced design, 216
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two-point sampling, 270

u, u + v construction, 238

Vandermonde convolution formula, 223
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(v, k, λ)-BIBD, 2
(v, k, λ)-difference family, 63
(v, k, λ)-difference set, 41
(v, K, λ)-PBD, 157
(v, K)-PBD, 157
(v, k, t)-packing, 255

weight
of a codeword, 231

Wilson’s construction
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for MOLS, 147

yes-biased Monte Carlo algorithm, 268


