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Abstract. Combinatorial geometry problems motivated by point pattern matching algo-
rithms are considered, and the classical exact matching situation and several variants are
discussed.

1. Introduction

A connection of pattern recognition problems in the exact point pattern matching model
to classical problems of combinatorial geometry was observed and used in a number of
papers, e.g., [Bo], [AkTT], [Br], [BrK], [AgS] and [Br2]. Given a geometric pattern, and
a background set in which to look for that pattern, an algorithm typically chooses some
simple fragment of that pattern (just big enough to determine uniquely its extension to
the full pattern) and first determines all occurrences of that fragment in the background.
Then each of these possible occurrences is checked for the full pattern. So the maximum
number of occurrences of that pattern fragment becomes an essential part of the time
bound for any such algorithm.

A prototype for this situation is the congruent subset detection problem: given two sets
A, B of m and n points in the plane, find all subsets of B that are congruent to A. Here the
best known algorithm uses just two points as a fragment to identify the pattern. It chooses
a1, a2 ∈ A arbitrarily, determines their distance and checks all those pairs b1, b2 ∈ B
which have the same distance d(b1, b2) = d(a1, a2) as possible image pairs. Each image
pair b1, b2 determines a unique orientation-preserving congruence ϕ mapping ai �→ bi ,
for which it remains to check on the full pattern set whether ϕ(A) ⊆ B. The unique
orientation-reversing congruence determined by b1, b2 is handled similarly.

The complexity of this algorithm consists of two parts: the time needed to find all
occurrences of that distance in B, and the number of occurrences found times O(m log n)
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(the time needed to check whether ϕ(A) is a subset of B). It is a famous open problem
of Erdős [Er] to bound the maximum number of occurrences of a (unit-)distance among
n points in the plane. The best known upper bound on the number of unit distance
pairs is O(n4/3) [SpST], [ClEG+], [Sz], and they can be computed in O(n4/3 log n) time
(similar to point-line incidences [Ma]). Thus the current bound for the complexity of
this algorithm is O(mn4/3 log n), and any improvement in the combinatorial geometric
bound for the number of unit distances problem will also improve the complexity bound
of this pattern matching algorithm.

On the other hand, the combinatorial geometry lower bound gives, by its output
complexity, a lower bound on the complexity of any algorithm solving the problem of
listing all occurrences of the pattern. Thus the lattice section construction for sets with
many unit distances also gives sets which contain �(nec(log n/ log log n)) congruent copies
[Er] of some m-point pattern, at least for m � n. This illustrates the strong connection
of the algorithmic problem and the combinatorial geometry problem.

The congruent subset detection problem described above is a special case of the
following general situation: Given two sets A (the pattern) and B (the background)
in d-dimensional space, and a group Gd (like translations, congruences, homotheties,
similarities, affinities) that defines an equivalence relation on subsets of d-dimensional
space, find all subsets of B that are Gd -equivalent to A.

In the following we discuss this problem, together with some variations. The group
Gd will always be one of

- translations, Transl(Ed),
- homotheties, Homoth(Ed),
- orientation-preserving congruences, Congr+(Ed),
- orientation-preserving similarities, Simil+(Ed),
- affine maps, Aff(Ed).

The orientation-reversing part of each group can be added by running the algorithms a
second time for the mirror-image of the pattern.

2. Exact Matching: Basic Problems and the Number of Matches

In the following A will always denote the pattern set of m points, and B will always
denote the background set of n points (m ≤ n).

For each of the groups Gd above there is a number c = c(Gd) such that a c-
tuple of image points determines a unique mapping from Gd (c(Transl(Ed)) = 1,
c(Homoth(Ed)) = 2, c(Congr+(Ed)) = c(Simil+(Ed)) = d, c(Aff(Ed)) = d + 1).
Thus there is always the algorithm that chooses arbitrarily c points of A and tests all
c-tuples of points from B as potential images; this needs O(mnc log n) time. In the fol-
lowing we call this the trivial algorithm, and we compare all other algorithms against
this.

The simplest case is that of translations in d-dimensional space Gd = Transl(Ed).
A translation is specified by the image of a single point, so the trivial algorithm needs
O(mn log n) time.
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Proposition. It is possible to find all translates of an m-point set A in an n-point set
B in d-dimensional space in O(mn log n) time.

There are many sets B that have �(n) subsets that are translates of each other, e.g.,
{1, . . . , n} contains n − m + 1 translates of {1, . . . , m}. So if we want to list all subsets
that are translates of the given pattern, this gives an output complexity of m(n − m + 1)

(see also [ReL]), and we really may need �(mn) time. However, these occurrences are
completely specified if we just list the corresponding translation vectors. If we accept
this as output, the output complexity is at most n, so there is hope for a faster algorithm.

If T is the set of all translation vectors mapping A into B (t + A ⊂ B for each t ∈ T ),
then T + A ⊂ B; so if there are sufficiently many matches (|T | � n/m), then T and A
are a set pair with a small Minkowski sum. This looks similar to Freiman’s theorem (see
p. 231ff of [Na]), so this should be possible only if T, A and B all have a “lattice-like”
structure. Then, as in the case of the classical string-matching problem, a big number of
matches is only possible if the sets have a very special structure, which could be used in
an algorithm. This motivates

Conjecture 1. It is possible to find all t with t + A ⊂ B for sets A, B of m and n real
numbers in O((m + n) log n) time.

It should be mentioned that this problem has been discussed by a number of people,
some of which believe the opposite, a lower bound near �(mn).

We can bound the maximum number of translates of a given pattern with much higher
precision than is needed for the algorithmic application:

Theorem 1. The maximum number of translates of a fixed set A ⊂ Ed among n points
in Ed is n −�(n1−1/k), where k is the dimension of the rational affine subspace spanned
by A. The constant in the � depends on A.

The rational affine subspace spanned by A is a translate of the rational linear subspace
spanned by the difference set A − A = {a1 − a2 | a1, a2 ∈ A}; the dimension of this
space we call the rational dimension of the pattern. The rational dimension of a set is at
least as large as the normal (real) dimension, but it can be larger. Figure 1 shows three
examples of five-point patterns in the plane, of rational dimensions 2, 3, 4, and sets of n

Fig. 1. Five-point patterns and sets with many translates.



498 P. Braß

points containing n −�(n1/2), n −�(n2/3) and n −�(n3/4) translates of these patterns,
respectively.

These sets are projections of lattice sections in a space whose dimension is that ratio-
nal dimension of the pattern; so the second example is a projection of a three-dimensional
lattice section. It also demonstrates an interesting phenomenon which happens for pro-
jections of (d + 1)-dimensional lattice sections in d-dimensional space: there are only
O(1) different “types of neighbourhood” among the points. Depending on the interpre-
tation of “types of neighbourhood”, this leads to interesting higher-dimensional versions
of the one-dimensional “three distances theorem” [Li], [Ch3] (for any α and k there
occur at most three distinct distances between successive elements of

⋃k
κ=0(Z + κα)),

as in [Ch1], [Ch2], where it is proved that for some affine image of the set there are only
O(1) incongruent Voronoi cells.

The next simplest case is that of homotheties Gd = Homoth(Ed). A homothety is
specified by a translation and a scale factor, so it is certainly determined by the images
of two points. Thus there are less than n2 matches, and the trivial algorithm needs
O(mn2 log n) time. This is not optimal. The maximum number of homothetic copies of
a pattern was determined by Elekes and Erdős [ElE], the special case of axis-aligned
hypercubes occurs already in [KrB].

Theorem [ElE]. The maximum number of homothetical copies of a pattern set A ⊂ Ed

among n points in Ed is O(n1+1/d ′
), where d ′ is the dimension of the affine hull of A

(d ′ ≤ d). If A can be written as set with algebraic coordinates with respect to some
basis, then there is a matching lower bound, a construction with �(n1+1/d ′

) homothetic
copies among n points, otherwise there is a lower bound of �(n1+1/d ′−b(log n)−a

) for some
a, b > 0 depending on A.

Thus for full-dimensional pattern sets A (d = d ′) the maximum number of homothetic
copies among n points is either �(n1+1/d) or slightly less (but still more than cn1+1/d−ε

for each ε > 0 and sufficiently large n). It is also possible to find the points in that
time:

Theorem 2. All homothetical copies of a fixed full-dimensional set A ⊂ Ed of m points
among an n-point set B in Ed can be found in O(mn1+1/d log n) time.

Again the special case of finding axis-aligned hypercubes was already solved in [KrB].
The complexity of finding homothetic copies becomes smaller with increasing dimen-
sion, a rare occurrence.

The geometrically most interesting case is that of congruences Gd = Congr+(Ed).
Congruences in d-dimensional space are (up to orientation) determined by the image
of one (d−1)-dimensional simplex. So the trivial algorithm takes O(mnd log n), which
can be improved on with better bounds on the number of congruent (d−1)-dimensional
simplices among n points in Ed (an old question of Erdős and Purdy [ErP]), and the time
required to list these congruent simplices.

The two-dimensional case was treated in the Introduction:

Theorem. The maximum number of congruent copies of a set A ⊂ E2 among n points
in E2 is O(n4/3). All congruent copies of A in B can be found in O(mn4/3 log(n)) time.



Combinatorial Geometry Problems in Pattern Recognition 499

No progress seems possible here unless the upper bound for the maximum number of
unit distances problem is improved.

For the three-dimensional problem there were several algorithms proposed [Bo],
[BoH], [Br1], the currently best is implicit in [AgS].

Theorem [AgS]. It is possible to find all subsets of a set B of n points in three-
dimensional space that are congruent to a given set A of m points in O(mn5/3 log(n)

2O((α(n))2)) time, where α(n) is the inverse Ackermann function.

This three-dimensional result is complemented by an�(n4/3) lower bound for the number
of possible matches, a set of n points in E3 containing cn4/3 triangles congruent to a
given triangle ([AbF2], generalizing [ErHP]).

For higher dimensions there is only the O(mnd) algorithm of [ReL], a (log n)-im-
provement of the trivial algorithm, and the bounds in [AgS] on the number of possible
matches. The probably correct value for the number of matches was already conjectured
by Erdős and Purdy [ErP]; it is achieved by a Lenz-type construction.

Conjecture 2. The maximum number of congruent (d−1)-dimensional simplices
among n points in d-dimensional space is �(nd/2) for d ≥ 4 even, �(n(d−1)/2+1/3) for
d ≥ 3 odd. The extremal sets can be covered by d/2 pairwise orthogonal planes (d ≥ 4
even) or (d − 3)/2 pairwise orthogonal planes and one three-dimensional subspace
(d ≥ 3 odd). The simplices congruent to a given one among n points in d-dimensional
space can be listed in O(nd/2 log n) time for d ≥ 4 even, O(n(d−1)/2+1/3 log n) time for
d ≥ 3 odd.

Also quite interesting is the case of similarities Gd = Simil+(Ed). A similarity in
d-dimensional space is again determined (up to orientation) by the image of a (d−1)-
simplex.

Proposition. The maximum number of similar copies of a set A ⊂ Ed among n points
in Ed is O(nd). All similar copies of A in B can be found in O(mnd log n) time.

Unlike the case of congruent copies, the trivial algorithm is good at least in the planar case,
for a set of n points in the plane can contain �(n2) similar triangles (e.g., a section of the
triangular lattice contains by (π/3)-rotation symmetry that many equilateral triangles).
In fact the number of similar subsets of an n-point set in the plane was investigated in
some detail [ElE], [LaR], [AbF]:

Theorem [ElE], [LaR]. The maximum number of similar copies of a set X ⊂ E2,
|X | ≥ 4, among n points in the plane is �(n2) iff for every four points x1, x2, x3, x4 ∈
X (the points interpreted as complex numbers) the cross-ratio ((x3 − x1)(x4 − x2))/

((x4 − x1)(x3 − x2)) is algebraic; else it is o(n2), but �(n2−b(log n)−a
), with a, b > 0

depending on X . The maximum number of similar copies of a triangle (|X | = 3) is
always �(n2).

Unfortunately this result is very much dependent on the interpretation of the plane as com-
plex numbers, and does not generalize to higher dimensions. For the three-dimensional
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situation Akutsu et al. [AkTT] give an O(n2+1/5) upper bound for the number of similar
subsets, which considerably improves the o(n3) bound observed in [ElE]; but the lower
bound is only the �(n2) planar construction, and we do not have any full-dimensional
construction giving a quadratic number of similar subsets. The best lower bound for sim-
ilar copies of a full-dimensional pattern (not restricted to a plane) in three-dimensional
space is �(n4/3), which can be reached in two ways: by congruent copies alone [AbF],
and by homothetic copies alone. No construction is known that takes advantage of the
full group of similarities.

Conjecture 3. The maximum number of similar copies of a full-dimensional set A ⊂
E3 among n points in E3 is o(n2).

For higher dimensions, there is only the trivial O(nd) upper bound, and the �(nd/2)

lower bound from the number of congruent subsets.
The case of affinities Gd = Aff(Ed), finally, is simple: the output complexity almost

reaches the bound of the trivial algorithm. Any affinity is determined by the image of
a d-dimensional simplex, so the trivial algorithm needs O(mnd+1 log n); and there are
pattern sets for which there are �(nd+1) affine copies among n points possible. For
example, the d-dimensional lattice cube {1, . . . , n1/d}d contains �(nd+1) affine images
of a small lattice cube (side length O(1)). Thus:

Proposition. The maximum number of affine copies of a set A ⊂ Ed among n points
in Ed is O(nd+1). This upper bound is reached for some sets A. All affine copies of A in
B can be found in O(mnd+1 log n) time.

It would be interesting whether this order of �(nd+1) affine images among n points can
be reached for each set A, or on what properties of A this depends.

3. Exact Point Pattern Matching with Preprocessing

In all the algorithms above, the situation is that we are simultaneously given the pattern
and the background, and have to identify the matches. There are two reasonable variants
of this that include preprocessing:

- Given a fixed background, preprocess it some way such that one can decide quickly
for each given pattern if and where it occurs.

- Given a fixed pattern, preprocess it some way such that one can decide quickly for
each given background if and where it contains that pattern.

An example for the first setting would be the well-known “star matching” application:
given a fixed star map, preprocess it some way so that we can identify the direction
we are facing by looking at a picture of a part of the sky (pattern) (e.g., [WeKA]). An
example for the second situation would be that we know how some traffic sign looks,
and have to check a sequence of images taken from a car for occurrences of that sign.

In both situations, after preprocessing, a useful algorithm should be about linear in
the size of the point set that forms each query, and only very small (logarithmic) in the
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B A1 A2 A3 A4 A5 A6 A7

Fig. 2. A pattern B and its maximally repeated subpatterns.

size of the point set that is preprocessed. In the second situation this is impossible: in
the case of two-dimensional pattern matching under congruence, if we could solve that
problem, we could specialize the pattern to two points and get an algorithm that finds unit
distances in linear time. However, we have a superlinear lower bound for the problem
of listing all unit distances by its output complexity. In the first situation, however, there
is a data structure which solves this problem:

Theorem 3. For each choice of d and Gd it is possible to preprocess a set B ⊂ R
d

of n points in such a way that for each query set A of m points it can be decided
in O(m log n) time whether there is a subset of B that is Gd -equivalent to A, and all
Gd -equivalent subsets can be found in O(m log n + k) time if there are k such subsets.

The preprocessing time of this algorithm depends on the number r of maximally
repeated patterns in B defined below; for translations it is O(rn2 log n), and we conjecture
r = O(n).

Let AGd denote the class of all sets that are images of A under Gd (Gd -equivalent to A);
a representative of the pattern is one element of that class. The pattern AGd is repeated
in B if there are several subsets of B that are representatives of AGd . For a repeated
pattern there are g1, . . . , gk ∈ Gd , k ≥ 2, such that gi (A) ⊂ B. It is maximally repeated
if A = ⋂k

i=1 g−1
i (B), i.e., A is the largest pattern occurring at these places. Figure 2

shows a set B of eight points, and representatives of all maximally repeated patterns
A1, . . . , A7 occurring under translation in B.

The number of repeated patterns in an n-point set can of course be exponential, but
we believe the number of maximally repeated patterns to be quite small. For example,
in {1, . . . , n} under translations, any subset not containing both endpoints belongs to
a repeated pattern, but the only maximally repeated patterns are the intervals {i, i +
1, . . . , j}, because for any t with t +{i, j} ⊂ {1, . . . , n} we already have t +{i, . . . , j} ⊂
{1, . . . , n}. So there are only n − 1 maximally repeated patterns.

Conjecture 4. The total number of maximally repeated patterns in an n-point set under
translations is O(n). The total number of maximally repeated patterns in an n-point set
under congruences is O(nd).

4. Window Matching and Approximate Matching

All algorithms mentioned above were for the model of exact pattern matching, which
is of course of purely theoretical interest: real-world data and real-world computation
always involve errors. So it would be reasonable to allow some error for the matches,
looking for subsets B ′ ⊆ B that are perhaps not equal to g(A) for some g ∈ Gd , but
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Fig. 3. A pattern and a set with many optimal matches.

have at least a small distance: d(B ′, g(A)) ≤ ε. The most natural distance measure is
the Hausdorff-distance

dHausdoff(X, Y ) = max

(
max
x∈X

min
y∈Y

d(x, y), max
y∈Y

min
x∈X

d(x, y)

)
.

So one should look for subsets B ′ ⊆ B and transformations g ∈ Gd that minimize
dHausdorff(B ′, g(A)). This Hausdorff-approximate pattern matching has also been much
studied [AlG], but is, for practical applications, similarly useless, since the algorithms
there involve such high complexities as to make them quite impracticable. Thus the best
known algorithm for finding the optimum Hausdorff-approximately congruent copy of
an m-point set in an n-point set in the plane has a complexity of O((n + m)6 log(nm))

[HuKK], [AlG]. Also there is a big difference with the exact matching setting in that
we cannot expect to get all matches, not even all optimal matches, since there can be
exponentially many of them. To see this, we choose the pattern set A fixed, and around
each point of A a circle of radius ε, which must be smaller than one-third of the minimum
distance between points of A. Then we construct B by choosing the n points in m groups
of n/m on each of these circles, taking care that for three points a1, a2, a3 ∈ A the
points are concentrated on a short arc of the circle such that any movement of A will
move at least one of these points away from its group (Fig. 3). One possibility for such
a choice is to take for a1 the angle interval ]0, 1

3π [, for a2 the angle interval ] 2
3π, π [ and

for a3 the angle interval ] 4
3π, 5

3π [; then for each direction w there is an i with the angle
between w and any vector in the interval is larger than π/2, so a translation in direction
w increases the distance to any point on the arc around ai . Similar constructions work
also for congruences. Thus each choice of one point from each group gives an error ε,
and there is no subset with a smaller error.

So a direct translation of the questions of the exact matching model is useless, since it
would force exponential output complexity. One version to avoid this is to work instead
in the transformation space, and describe the set of all elements of Gd that maps A within
Hausdorff-distance ε of a subset of B. This is a very complete description of all possible
matches, but it still involves a very high (although still polynomial) complexity. Lower
bounds for the case of translations were constructed in [Ru].

A different way to avoid this problem uses the fact that such constructions giving
many optimal matches need many points in B that can be interchangeably matched to
the same points of A; so these points in the background set have to be very close together,
with a distance smaller than the Hausdorff error bound ε. So one can avoid this problem
by introducing a lower bound on the smallest distance in B, e.g., by considering only
integer-coordinate patterns, or by introducing the smallest distance in B as an additional
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parameter, or by discretizing the set to some suitably scaled lattice. In the last case one
can obtain only approximate solutions, since one does not distinguish points with the
same discretization, but one avoids the exponential number of matches, since in the
discretized subset there are only a few correct matches possible. So in this setting the
problems can indeed be solved quickly [CaS], [InV], but they become incomparable with
the original Hausdorff-approximate pattern matching, losing much of the geometrically
interesting problems, and introducing many further parameters on which the complexity
depends (the diameter of the sets, the Hausdorff error bound ε, the approximation error
for the approximate solutions). In any such setting based on discretization, we cannot
have the exact matching problem ε = 0 as special case of the approximate matching;
for the complexity bound becomes infinite for ε → 0.

In this section a variant is proposed which avoids the difficulty of potentially expo-
nential many matches while essentially retaining the Hausdorff-approximate matching
model. This variant leads, even in the exact model, to interesting open problems.

Let again A (pattern) and B (background) be sets of m and n points in the plane. The
idea of “window-matching” is not to look for arbitrary subsets of B that are congruent
to A, but to look for sections cut out of B by a convex set W (the window). A subset
B ′ ⊆ B is a window-match of A if

- B ′ is congruent (or approximately congruent) to A, and
- B ′ = B ∩ W .

This is a very reasonable assumption, e.g., in the “star-matching” problem [WeKA], and,
depending on the nature of the window, it gives interesting restrictions for the number of
matches. The smallest possible window is the convex hull of the points in the matching
subset: we can ask for the number of subsets B ′ ⊂ B such that B ′ is congruent to A and
conv(B ′) ∩ B = B ′. This already leads in the smallest nontrivial case (A a triangle) to
an open problem:

Conjecture 5. Any set of n points in the plane contains only O(n) empty congruent
triangles.

A slightly weaker statement would be that for each triangle � there are at most c(�)n
empty congruent copies of � among n points in the plane. Both conditions are re-
ally necessary here: there are sets of n points with

(n
3

)
empty triangles, and sets with

�(ne(c log n)/ log log n) congruent triangles.
The same statement trivially holds for translations, since there are less than n translates

of any set A, even without the emptiness condition. It also holds for homothetic copies:
in a set B of n points in the plane, there are less than n or less than 2n empty homothetic
copies of a given triangle xyz, depending on whether we allow additional points on the
boundary of the convex hull of the set while still accepting it as “empty”. A homothetic
copy is specified by the image points of xy, so if we partition B by lines parallel to xy,
then the homothetic copies are specified by intervals on such lines with endpoints in B.
However, if two such intervals share a left endpoint, then the larger triangle has another
point on its boundary; and if one interval is contained in the interior of another interval,
then the larger triangle has an additional interior point. Thus k points of B on such a line
specify at most k −1 or 2k −3 homothetic triangles without violating the weak or strong
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emptyness condition, respectively. The conjecture may even hold for similar copies, but
it obviously fails for affine copies, since any two triangles are affine equivalent.

Another natural choice for the window is a circular disc; in that case the bound on
the number of occurrences becomes simple:

Theorem 4. In a set B of n points in the plane there are O(n) subsets B ′ such that
B ′ is a translate, homothetic, congruent or similar copy of a given set A of m points,
1 ≤ m ≤ n, and B ′ = B ∩ D for some circular disc D.

However, although a list of possible matches can be computed fast (the list of mappings
in O((m + n) log n)), it is, different from the subset-matching situation discussed in the
beginning of this paper, not obvious how to verify that they are really window matches,
cut out by a circular disc.

For the approximate matching situation, we have to make sure that the window is
slightly larger than the convex hull of the matching subset, so that each pattern point
is well inside the window; otherwise it is simple to construct sets with an exponential
number of matches.

Conjecture 6. There is a c such that, for each ε ≥ 0 and all sets A, B, |B| = n, there
are less than cn subsets B ′ ⊂ B with the properties

- dHausdorff(B ′, A′) ≤ ε for some congruent copy A′ of A, and
- B ′ = B ∩ (conv(B ′) + Dε(0)).

Here (conv(B ′) + Dε(0)) is the ε-neighbourhood of the convex hull of B ′: the window.

5. Proof of the Theorems

Proof of Theorem 1. Let A be the fixed pattern set, translated such that 0 ∈ A. To prove
the upper bound, we can restrict ourselves to a subset of A′ ⊆ A consisting of rational
independent vectors, since any occurrence of the full pattern set contains an occurrence of
that subset. Let A′ = {0, a1, . . . , ak} where a1, . . . , ak are rationally independent. Let B
be a set of n points that contains a maximum number of translates of A′. Consider a graph
on B, joining two vertices b1, b2 ∈ B by an edge marked j iff b2−b1 = aj for some j . This
graph can be assumed to be connected; if B consists of several connected components,
we can translate them independently, without changing the number of translates of A′

contained in that set, until the number of connected components decreases. So any two
points b1, b2 ∈ B are joined by such a path; thus their difference b2 − b1 is some
integer combination of a1, . . . , ak , and, by the assumption of rational independence, the
coefficients of that combination do not depend on the path, but are determined by b2 −b1.
Keeping one point of B fixed, we can thus assign k-dimensional integer coordinates to
the points of B, where translates of A′ = {0, a1, . . . , ak} correspond to translates of the
standard basis {0, e1, . . . , ek}. Let B̂ be this set of n points in the k-dimensional integer
lattice, and consider the cube packing B̂ + [− 1

2 , 1
2 ]d ; this is a set of volume n and has by

the isoperimetric inequality [Ta] a surface of order �(n1−1/k). This surface consists of
unit (d −1)-cubes with outer normals ±ei , which occur in equal number with both signs.
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Each face with outer normal +ei corresponds to a point b̂ in B̂, for which the translate
b + A′ is not contained in B: for the point b + ai is missing from B, otherwise that face
would be in the interior of the cube packing. By the same argument, each point b ∈ B
for which the translate b + A′ is not a subset of B contributes at least one and at most k
such faces (with outer normal ei if the point b + ai is missing from B) to the surface of
the packing. Thus there are at least �(n1−1/k) points b ∈ B for which b + A′ �⊂ B, so
the number of occurrences of translates of A in B is at most n −�(n1−1/k). To prove the
lower bound, we argue as follows: if A = {0, a1, . . . , am−1} spans a rational subspace
of dimension k, then there are k vectors v1, . . . , vk such that each element of A is an
integer linear combination of these vi . Let c = c(A) be the maximum absolute value of
a coefficient needed by these integer combinations; then the set{

k∑
i=1

αivi | αi ∈ {1, . . . , n1/k} for i ∈ {1, . . . , k}
}

is a set of n points that contains at least (n1/k − 2c)k = n − O(n1−1/k) points p with all
αi ∈ {1 + c(A), . . . , n1/k − c(A)}, and for any such point p the whole translate p + A
still belongs to that set of n points. So there are n − O(n1−1/k) translates of A in that set.

The dependence of the multiplicative constant in the O(n1−1/k) on A is unavoidable:
for the pattern {0, 1, n} any set of n points will contain less than 1

2 n translates of that
pattern.

Proof of Theorem 2. The algorithm is very simple: Let A be the given pattern and let
B be the set of points in which we are looking for homothetic copies of A.

0. Renumber the elements of A such that a1, a2, . . . , ad+1 are affinely independent.
1. For i = 2, . . . , d + 1

1.1. Construct for each point bj ∈ B the line {bj + t (ai −a1) | t ∈ R} (in direction
ai − a1), and collect for each constructed line all points of B giving the same
line. Label each constructed line by the number of points of B it contains.

2. For each point b ∈ B
2.1. Find the line {b + t (ai − a1) | t ∈ R} through b in one of the directions

ai − a1 which contains the fewest points of B.
2.1.1. For each point b′ ∈ B, b′ �= b on that line, construct the homothety h

which maps a1 to b and ai to b′, and test whether h(A) ⊂ B.

The correctness of the algorithm above is obvious: if there is a homothetical copy of
A in B with b as an image of a1, then for each i the image of ai must be on the line
{b+ t (ai −a1) | t ∈ R}; and the image of two points completely specifies the homothety.

It remains to bound the complexity. For a fixed dimension, all steps but 2.1.1 can be
executed in O(n log n) time, so we have only to bound the number of point pairs b, b′, for
which in step 2.1.1 the homothety h is constructed and tested, which takes O(m log n)

time per pair b, b′. For this we have to show that for most points b there is one direction
in which the line through that point contains few other points b′ of the set.

We can take the d linear independent directions a2 − a1, . . . , ad+1 − a1 as coordinate
axes of our space; then point b′ is in the direction of the i th line of b iff all coordinates of
b and b′ (relative to that coordinate system) with the only exception of the i th coordinate
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agree. So B can be interpreted as a set of d-tuples of some cartesian product B ⊂ Xd

(where X in this application is R, but this is not needed), and the number of point pairs
b, b′ that are tried in step 2.1.1 of the algorithm is∑

b∈B

min
i=1,...,d

|{b′ ∈ B | b′ differs from b only in the i th coordinate}|.

That is, for each point b = (x1, . . . , xd) we count the number of (x ′
1, . . . , x ′

d) ∈ B with
x ′

j = xj for all j �= i , taking the minimum over all i . Let fd(n) be the maximum over
all n-element sets of d-tuples of that sum:

fd(n) = max
B⊂Xd

|B|=n

∑
(x1,...,xd )∈B

min
i=1,...,d

#{(x ′
1, . . . , x ′

d) ∈ B with x ′
j = xj for all j �= i},

then the claim of Theorem 2 follows from the bound

Lemma. fd(n) ≤ n1+1/d with equality if n = md for m ∈ N.

This lemma can also be read from the proof of the corresponding theorem in [ElE]; since
it is a purely combinatorial statement of possibly independent interest, it is given here
with a full proof.

Proof of the Lemma. Equality can be reached if B is a full cartesian product, B = Y d

for some set Y ⊂ X , |Y | = m, because, for each (y1, . . . , yd) ∈ Y d and each i , the
number of (y′

1, . . . , y′
d) ∈ Y d with y′

j = yj for all j �= i is m.
The proof of the upper bound is by induction on d, the claim being trivial for d = 1.

Let d ≥ 2 and let B be an extremal set with n elements. Let z1, . . . , zk be the distinct
elements of X that occur as the last coordinate of some b ∈ B; then Bκ = {(x1, . . . , xd) ∈
B | xd = zκ} is a partition of B, and

fd(n) =
k∑

κ=1

∑
(x1,...,xd )∈Bκ

min
i=1,...,d

#{(x ′
1, . . . , x ′

d) ∈ B with x ′
j = xj for all j �= i}.

However, for the contribution of each class Bκ there are two simple upper bounds:

- If we restrict the minimum over the coordinates to the first d−1 coordinates (i �= d),
then for each (x1, . . . , xd) ∈ Bκ all (x ′

1, . . . , x ′
d) ∈ B with x ′

j = xj for all j �= i
will have x ′

d = xd , so belong to the same set Bκ . So∑
(x1,...,xd )∈Bκ

min
i=1,...,d

#{(x ′
1, . . . , x ′

d) ∈ B with x ′
j = xj for all j �= i } ≤ fd−1(|Bκ |).

- If we restrict the minimum over the coordinates only to the last coordinate (i = d),
then the sets {(x ′

1, . . . , x ′
d) ∈ B with x ′

j = xj for all j �= i} for each (x1, . . . , xd) ∈
Bκ will be disjoint, so the sum of their cardinalities is at most n:∑

(x1,...,xd )∈Bκ

min
i=1,...,d

#{(x ′
1, . . . , x ′

d) ∈ B with x ′
j = xj for all j �= i} ≤ n.
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Thus

fd(n) ≤
k∑

κ=1

min(n, fd−1(|Bκ |))

≤ max
β1 ,...,βk ≥1

β1+···+βk =n

k∑
κ=1

min(n, fd−1(βκ)) ≤ max
β1 ,...,βk ≥1

β1+···+βk =n

k∑
κ=1

min(n, βd/(d−1)
κ )

≤ max
1≤β1 ,...,βk ≤n(d−1)/d

β1+···+βk =n

k∑
κ=1

βd/(d−1)
κ ≤ n

n(d−1)/d
(n(d−1)/d)d/(d−1) = n(d+1)/d .

This is the claimed upper bound on fd(n), which completes the proof of the lemma and
Theorem 2.

Proof of Theorem 3. Let B be the given set of n points, and let Gd the group generating
the equivalence relation. We wish to preprocess B in such a way that we can answer
queries “is A equivalent under Gd to a subset of B?” quickly. We do this by listing
important subpatterns of B (the maximally repeated patterns in B), and for each such
subpattern the possible extensions, with pointers to the larger subpatterns determined
by it. Then the query is processed by identifying increasing parts of A in these possi-
ble subpatterns, keeping track of the possible occurrences in B and the Gd -mappings
involved. An occurrence of A in B is completely described by the transformation with
g(A) ⊂ B.We first describe the procedure for the case of translations.

Let Amax
1 , . . . , Amax

r be a list of representatives of each maximally repeated pattern
in B. An important property is that each repeated pattern is a subpattern of a uniquely
determined smallest maximally repeated pattern, and this can be determined easily: if
a pattern A∗ occurs in B at the places g∗

1(A∗), . . . , g∗
J (A∗), then

⋂J
j=1 g∗

j
−1(B) is a

representative of the smallest maximally repeated pattern containing A∗.
Let g1,i , . . . , gai ,i ∈ Gd be the transformations giving the occurrences of the maxi-

mally repeated subpattern Amax
i in B, i.e., gj,i (Amax

i ) ⊂ B, and also Amax
i = ⋂ai

j=1 g−1
j,i

(B). Construct Zi = ⋃ai
j=1 g−1

j,i (B), and label each point z ∈ Zi by the list of all gj,i with

z ∈ g−1
j,i (B) as references to the occurrences of that point.

Now Zi is the set of all possible extensions of Amax
i that can occur in a subpattern of

B. We now attach several further labels to these points. For each point z ∈ Zi we have
either

- z occurs for only one j in g−1
j,i (B). Then the occurrence of Amax

i ∪ {z} is uniquely
determined; set z.status as “unique”.

- z occurs for several j in g−1
j,i (B). Then Amax

i ∪ {z} is a repeated pattern, so it is part

of a smallest maximally repeated pattern Amax
k for some k (Amax

k = ⋂ {g−1
j,i (B) |

z ∈ g−1
j,i (B)}, possibly Amax

k = Amax
i ). Then there is a function h ∈ Gd with

h(Amax
i ∪{z}) ⊂ Amax

k . Set z.status as “ambiguous”, z.next = k and z.map = h.

To answer a query now, given a set A = Aquery = {a1, . . . , am}, we determine the
smallest maximally repeated patterns Amax

iµ
containing Apartial query

µ = {a1, . . . , aµ} for
µ = 1, . . . , m. A single point is certainly a repeated pattern in B, even a maximally
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repeated pattern, since B is finite, so one of the Amax
i , we can assume Amax

1 , consists of
a single point. The query algorithm for translations is as follows:

- Let γ1 denote the translation that maps Apartial query
1 to Amax

1 , and set µ = 1, and
i1 = 1.

- For µ < m do
- Compute γµ(aµ+1), and check whether it is an element of Ziµ .
- If γµ(aµ+1) does not occur in Ziµ , stop: the pattern Aquery does not occur in B.
- If γµ(aµ+1) occurs in Ziµ , and is labelled there as “unique”, set γµ+1 = gj,iµ ◦γµ,
where gj,iµ is the unique reference to the occurrence of that point in B. Check
whether γµ+1(Aquery) is a subset of B, and give the answer of this as the result.
- If γµ(aµ+1) occurs in Ziµ , and is labelled there as “ambiguous”, set iµ+1 =
γµ(aµ+1).next and γµ+1 = (γµ(aµ+1).map) ◦ γµ.

- If µ = m, output gj,im ◦ γµ, for j = 1, . . . , aim as the list of all occurrences of Aquery

in B. (We give the transformations as output to keep output complexity small.)

This query algorithm requires at most m steps (one for each point of Aquery that is
identified), and each step requires only some computations of mappings (in Gd ) and
one point location operation, which can be done in O(log n), so the total query time is
O(m log n) plus the time for the output of all matches, if we need them all.

The time needed to build this structure is essentially determined by the number r of
maximally repeated patterns times the maximum size of all of the Zi structures, which
for translations is O(n2), so for translations this time is O(rn2 log n).

The one difference for other groups Gd is that we need to begin with patterns big
enough that a mapping from Gd is determined by its values on that pattern. Thus a single
point, as used as the starting configuration for the translations, is of course also a repeated
pattern for congruences, but there are infinitely many congruences mapping that point on
a point of B. To make the structure above work, we need instead to start with a sufficiently
high-dimensional simplex in our query pattern that uniquely defines its extension by a
Gd -mapping (c(G) points, as discussed in Section 2, in the trivial algorithm). We have to
bring each of these O(nc(Gd )) simplices in a normalized position, and collect for each of
them the occurrences of that simplex in B represented by the group operations g ∈ Gd

mapping that canonical-position simplex into B. For each of these starting simplices we
now have to construct the possible extensions, the Zi -structure. The size of each Zi -
structure is at most n times the maximum number of occurrences of a pattern in B (the
function discussed in Section 2), and for each of those nc(Gd ) starting simplices there are
at most r such structures to be built, where r is again the number of maximally repeated
subsets. Using the trivial bound on the number of occurrences of a pattern, this gives a
rough upper bound of rn2c(Gd )+1 for the total size of the structure, which can be built in
rn2c(Gd )+1 log n time.

For the query algorithm we start with an arbitrary (c(Gd)−1)-dimensional simplex
in Aquery, bring it in some normalized position (in O(1) time) so that it can be decided
whether that simplex is among those occurring in B, and if it occurs several times,
follow the algorithm above, in the structure built for that starting simplex. This gives
again O(m log n) query time, plus the time to output all matches.



Combinatorial Geometry Problems in Pattern Recognition 509

Proof of Theorem 4. It is sufficient to prove the theorem for similarities as the most
general case.

Let B be the background set and let B ′ = B ∩ D be a set of at least two points cut out
by the circular disc D. Then the Delaunay-triangulation of B ′ has a common edge with
that of B. Indeed, such edges can be found easily: Let D′ ⊆ D be the smallest circular
disc that contains B ′; then there is some point b1 ∈ B ′ on the boundary of D′. Consider
the family of discs contained in D′ having b1 on their boundary (with a common tangent
with D′); then there is a smallest such disc D′′ which contains another point b2 of B ′.
Then b1, b2 are on the boundary of the disc D′′, which does not contain any point of
B ′ in its interior, and neither any point of B (since D′′ ⊂ D), so b1b2 is an edge of the
Delaunay-triangulations of B and B ′.

Thus, given the pattern A, we determine the smallest disc DA containing A (in
O(m log m) time) and select a point a1 on the boundary of DA. Then we compute
for each point a ∈ A the radius of the disc tangent to DA in a1 and containing a on
its boundary, and choose as a2 the point generating the disc of smallest radius (in time
O(m)). Then a1a2 is a Delaunay-edge of A, and also a Delaunay-edge of any superset
of A that does not intersect DA in any further points. So in any occurrence of a similar
copy of A cut out by a circular window of B the image b1b2 of a1a2 under that similarity
must be a Delaunay-edge of B. There are only O(n) Delaunay-edges, and a similarity in
the plane is determined by the image of two points. So there are at most O(n) possible
matches, which can be found by constructing the Delaunay-triangulation in O(n log n)

time.
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