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Abstract—Graph matching aims to establish node correspondence between two graphs, which has been a fundamental problem for

its NP-hard nature. One practical consideration is the effective modeling of the affinity function in the presence of noise, such that the

mathematically optimal matching result is also physically meaningful. This paper resorts to deep neural networks to learn the node and

edge feature, as well as the affinity model for graph matching in an end-to-end fashion. The learning is supervised by combinatorial

permutation loss over nodes. Specifically, the parameters belong to convolutional neural networks for image feature extraction, graph

neural networks for node embedding that convert the structural (beyond second-order) information into node-wise features that leads to

a linear assignment problem, as well as the affinity kernel between two graphs. Our approach enjoys flexibility in that the permutation

loss is agnostic to the number of nodes, and the embedding model is shared among nodes such that the network can deal with varying

numbers of nodes for both training and inference. Moreover, our network is class-agnostic. Experimental results on extensive

benchmarks show its state-of-the-art performance. It bears some generalization capability across categories and datasets, and is

capable for robust matching against outliers.

Index Terms—Graph Matching, Deep Learning, Graph Embedding, Combinatorial Optimization.

✦

1 INTRODUCTION AND PRELIMINARIES

G RAPH matching (GM) aims to solve the problem of
finding node correspondences over two or multiple

graphs. It incorporates both node-wise unary similarity
and edge-wise [1], [2] (or even higher-order [3], [4], [5])
similarity to establish a matching, in order to maximize the
similarity between the matched graphs. By encoding the
structural information in the objective, graph matching can
often achieve more robust performance against disturbance.
In contrast, the point based methods e.g. RANSAC [6] and
iterative closet point (ICP) [7] do not explicitly account
for such edge-to-edge information. For its expressiveness,
graph matching has lied at the heart of many computer
vision applications [8] such as action recognition, robotics,
visual tracking, weak-perspective 3-D reconstruction. Refer
to [9] for a more comprehensive literature review.

As a classic combinatorial problem, graph matching is
known in general NP-hard [10], which has been addressed
mostly by approximate techniques leading to inexact solu-
tions. Consider the classic setting of two-graph matching be-
tween G1, G2, it can be generally expressed by the quadratic
assignment programming (QAP) form:

J(X) = vec(X)⊤Kvec(X), (1)

X ∈ {0, 1}N1×N2 , X1 = 1, X
⊤
1 ≤ 1

where X is a binary permutation matrix encoding the
node correspondence, and the so-called affinity matrix K ∈
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R
N1N2×N1N2 encoding the node-to-node and edge-to-edge

affinity between two graphs, by its diagonal elements and
off-diagonal ones, respectively. To calculate K, a practical

form is the Gaussian kernel by Kia,jb = exp
(

(fij−fab)
2

σ2

)

where fij denotes the feature vector of edge ij. Note the
node similarity can also be encoded given the node index
ia = jb holds.

In particular, Eq. 1 is called Lawler’s QAP [11], which
can incorporate other more specific forms e.g. Koopmans-
Beckmann’s QAP [10]:

J(X) = tr(X⊤
F1XF2) + tr(K⊤

p X) (2)

where F1 ∈ R
N1×N1 , F2 ∈ R

N2×N2 are weighted adjacency
matrices of graph G1, G2 respectively. Matrix Kp denotes
the node-to-node affinity. The connection to Lawler’s QAP
becomes clear by setting K = F2 ⊗ F1.

Another popular formulation is the so-called factorized
graph matching model [12], which shows how to factorize
affinity matrix K as a Kronecker product of smaller matri-
ces. For concise, here we write the undirected version [12]:

K = (H2 ⊗H1)diag(vec(L))(Hj ⊗Hi)
⊤ (3)

where Hk = [Gk, Ink
] ∈ {0, 1}nk×(mk+nk), k = i, j

L =

[

K
q −Kq

G
⊤
j

−GiK
q

GiK
q
G

⊤
j +K

p

]

where ni and mi is the number of nodes and edges in graph
Gi respectively and ⊗ is the Kronecker product operation
between matrices. Kp ∈ R

ni×nj denotes the node affinity
matrix, and K

q ∈ R
mi×mj for the edge affinity matrix.

The graph structure is specified by the node-edge incidence
matrix G ∈ R

n×m such that the non-zero elements in each
column of G indicate the starting and ending nodes in the
corresponding edge. The factorization provides a taxonomy
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for GM and reveals the connection among several methods.
Readers are referred to [12] for greater details.

In parallel, recent efforts also try to explore higher-
order affinity information which is beyond the second-order.
Tensor marginalization is a popular technique as widely
used by hypergraph matching works [5], [13], [14], [15]:

x
∗ = argmax(H⊗1 x⊗2 x . . .⊗m x) s.t. (4)

X1 = 1,X⊤
1 ≤ 1,x = vec(X) ∈ {0, 1}N1N2×1

where m is the order of the affinity model, and H is the
m-order affinity tensor which encodes hyperedge affinity.
While ⊗k is the tensor product [3]. Readers are referred
to Section 3.1 in [14] for details on tensor multiplication.
In particular, these works all assume the affinity tensor is
invariant regarding with the index of hyperedge pairs, to
facilitate the optimization.

Meanwhile, there are works on multi-graph matching,
aiming to establish node correspondence among multiple
graphs. Two typical methodologies have been developed: i)
transform the multi-graph problem into a two-graph match-
ing QAP in each iteration [16], [17]; ii) obtain the putative
matchings by first solving a two-graph matching problem
for further smoothing in post-processing step [18], [19], [20],
[21]. Compared with two graph matching, the advantage of
joint matching of multiple graphs lie in that the information
across graphs can be fused to resist outliers and noises.

Moreover, for all the cases of two-graph, hyper-graph
and multi-graph matching, it has been a fundamental
requirement for devising appropriate node/edge feature
extractor and affinity model to transform the real-world
matching task into an equivalent mathematical model, in
the sense that the optimal solution corresponds to the
meaningful and correct matching. However, the challenge
lies in that the manually designated models (e.g. a Gaussian
kernel with Euclid distance) may not be expressive enough
to fit with the problem and data at hand, especially in the
presence of outliers and noises.

Seeing these issues, recently a thread of works aim to
learn the affinity model for graph matching, to improve the
flexibility and model capacity for affinity modeling. The
hope is that the bias introduced by the manually prede-
fined affinity model can be effectively dismissed and the
mathematically optimal solution (according to the affinity
model and the corresponding objective) can truly reflect the
meaningful correspondence. In deed, such learning based
works, which are the focus of this paper, are somehow
orthogonal to those focusing on devising effective solvers
given the predefined affinity model [1], [2], [3], [14].

In summary, we have devised an end-to-end learnable
supervised deep network for graph matching, which is
known in general NP-hard. The presented work is an ex-
tended version1 to the preliminary conference version [22]

1. Compared with [22], the extensions include: i) a new iterative
cross-graph embedding technique with the resulting method IPCA-
GM; ii) an added treatment incorporating dummy nodes in Sinkhorn
network against outliers with new experimental results; iii) compre-
hensive study on the behavior of our model on transfer learning
across datasets, categories and with/without outliers, and the study
on the learned CNN module and embedding module respectively;
and iv) an extended literature review on graph matching that covers
both learning-free and learning based approaches. These new results
highlight the robustness of our approach in practice.

and it involves the following features:
i) We transform the graph matching problem to a lin-

ear assignment one by utilizing graph embedding network
and specifically graph convolutional network, to extract the
graph structures into node-wise feature vector i.e. graph
embedding. The embedded node features are expected to
contain structural information around the node such that
even higher-order (beyond second-order) information can
be incorporated in the matching procedure. In this way,
the model circumvents the notoriously challenging QAP
problem. Such a design also allows for different numbers
of nodes in different graph pairs for training and testing. To
our best knowledge, this is the first time for adopting a deep
graph embedding network for learning graph matching.

ii) Combined with our embedding model, a Sinkhorn
net based permutation loss for combinatorial optimization
is developed. It applies Sinkhorn iteration on the input
non-negative matrix to obtain a double-stochastic matrix as
the soft matching, such that the cross-entropy loss which
is often used for classification can be readily used as the
loss for measuring the difference between the soft matching
matrix and the ground truth. Such a combinatorial loss also
allows for flexible handling of varying-sized graphs which
is a persistent challenge in graph matching. For instance,
in the structured support vector machine based learning
model [23], the number of graphs has to be fixed for training
a model. However, such condition can be unrealistic in prac-
tice. To our knowledge, this is the first work for adopting the
above permutation loss for graph matching.

iii) Experimental results including ablation studies show
the effectiveness of our devised components including the
permutation loss, graph convolutional network based node
embedding, convolutional network based node-wise image
feature extraction layer, cross-graph affinity module, and
the iterative cross-graph embedding component. In par-
ticular, our method outperforms the state-of-the-art peer
method [24] based deep networks regarding with matching
accuracy. Our method also outperforms [23] in accuracy
while being more flexible as the method in [23] assumes
fixed number of nodes for matching in both training and
testing sets. Detailed study on transfer learning capability
shows the robustness of our approach in the presence of
outliers, when the training set and testing set are from dif-
ferent object categories, as well as from distinctive datasets.

The paper is organized as follows. Section 2 discusses the
related work on graph matching for both learning-free and
learning based methods. The main approach is presented in
Section 3, which is evaluated in Section 4 with peer methods.
Section 5 concludes this paper.

2 RELATED WORK

Graph matching has been a long standing problem in vision
and pattern recognition. There is a recent trend for learning
of graph matching, which is the focus of this paper.

In this section, we first review the learning-free methods
over the decades, and then discuss the recent line of research
on learning based graph matching. Readers are referred to
the survey [9] to take a detailed review. For learning, the ba-
sic idea is to model the feature extraction and representation
of graph nodes and edges, as well as the affinity function
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between graphs. Moreover, the solver can also be learned in
different ways. Some related techniques as adopted in our
approach are also discussed.

2.1 Learning-free Graph Matching

Over the decades, the majority line of research on graph
matching are focused solving the constrained combinatorial
optimization problem for graph matching, which assumes
the affinity model is given. Along this direction, we review
the related works in three aspects: i) two-graph match-
ing, which is the classic setting for graph matching; ii)
hypergraph matching namely higher-order graph match-
ing, whereby the higher-order edge information is used in
matching in contrast to the first case, in which only up to
the second-order affinity is considered; iii) joint matching of
multiple graphs and its online incremental matching setting.

2.1.1 Two-graph matching

Most existing works deal with the two-graph matching
problem which is known NP-hard in general. Different
(deterministic) optimization based techniques have been de-
vised. The annealing based continuation method is adopted
in early work [2] which addresses the second-order match-
ing problem by iterative formulating and solving a linear
assignment problem. Such strategy is widely adopted in
followup works [1], [25] and the quadratic assignment
model is explicitly formulated in [26] by introducing the
so-called affinity matrix. Based on this compact writing,
different relaxation techniques have been explored and a
popular treatment is to relax the permutation matrix into
a double-stochastic one which is in fact the convex hull in
the continuous space [27]. Meanwhile factorization on the
affinity matrix is also studied to reduce the space complexity
for directly dealing with the affinity matrix, and a contin-
uation method based on convex-concave relaxation [28] is
developed. Meanwhile some (quasi-)discrete methods [29],
[30] are also developed to avoid the truncation from contin-
uous solution to the binary one which can incur unexpected
accuracy loss. More recently, state-of-the-art graph matching
solvers [31], [32], [33] are presented with high accuracy as
well as heavy computational cost.

2.1.2 Hypergraph Matching

Beyond second-order edge information, hyperedges are also
considered to improve the model robustness and expressive-
ness [3], [15], [34]. Though some improvements on accuracy
have been achieved while the involved additional cost is
not ignorable. To address this issue, the authors in [4] show
a technique to decompose the higher-order (up to fourth
order) model into second-order one such that the problem
can be solved using classic second-order graph matching
solvers. In another work [5], a discrete method is devised
for more efficient hyperedge based matching.

2.1.3 Multiple graph Matching

Recently it receives more attention for joint matching of mul-
tiple graphs. This setting is especially pronounced in real-
world scenarios when it is required to matching a batch of
graphs. Also, accessing multiple graphs simultaneously fur-
ther provides the opportunity to fuse the local information

from each graph, which can be noisy or even fundamentally
ambiguous and difficult to process independently. These
works usually fall into two categories, the first one divides
the matching into two stages [18], [20], [35]: first performing
two-graph matching independently and then smoothing the
pairwise matchings by global cycle-consistency. Here the
concept of consistency refers to the correspondence loop
closure across three or more graphs. Other works [16], [17]
incorporate cycle-consistency into matching process over it-
erations, in addition with maximizing the affinity objective.

Graph data can arrive in a streaming way such that an
incremental matching approach is welcomed to efficiently
handle the new coming graphs and existing ones with
matching results. The authors in [36] give one such solution
by clustering the existing graphs into groups based on
cluster-wise randomness and diversity, and incorporates the
newly arrived graph by matching it with one of the clusters.

2.2 Learning for Graph Matching

2.2.1 Modeling and learning affinity

To address the challenges of mimicking the real-world set-
ting of the graph matching problem, learning the node-
wise and edge-wise affinity has been an effective way of
utilizing training data, either in a supervised [23], [24], [37],
unsupervised [38] or semi-supervised [38] way. This is in
contrast to the aforementioned methods that use simple and
predefined parametric models that often involve a Gaussian
kernel in the Euclid space for feature distance calculation.

One shallow and unified treatment is to design an affin-
ity function Φ(G1,G2, π) in the form [23]:

Φ = [· · · , sv(au, aπ(u)), · · · , se(auv, aπ(u)π(v)) · · · ]
⊤

where π is the node mapping function from one graph
to the other, and sv denotes the similarity value between
node u and its mapping in the other graph π(v), which
are with attributes (or features) au and aπ(v) respectively.
Similar notation holds for the edge similarity se between
edge auv and aπ(u)π(v). One can compute the accumulated
similarity by re-weighting and adding up all the elements
in Φ(Gi,Gj , π) with weighting column vector β, so that
S(Gi,Gj , π, β) = β⊤Φ(Gi,Gj , π). As observed in [23], the
above simple model can incorporate most previous shallow
learning models [37], [38], [39]. Specifically, [37] uses a 60-
dimensional model sv for feature points and a binary simi-
larity function se for edges. In [38], a multi-dimensional se
is adopted to measure similarity while sv is ignored. In [39],
2-dimensional sv and se are devised to model appearance
similarity, occlusion, and geometric compatibility.

Differing from the above non-deep learning models, the
seminal work [24] shows how to integrate the feature extrac-
tion, affinity computing, spectral matching components into
an end-to-end learnable pipeline via deep neural networks.
The graph embedding is not considered in their approach
and a regression based offset loss is used. In particular, we
argue that a combinatorial loss can be a better choice which
has been devised in the paper.

2.3 Graph Neural Networks and Embedding

Node embedding has recently been an active research area
whose purpose is to embed the network structure informa-
tion around the node into a vectorized feature. As such,
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(a) Vanilla feed-forward methods PIA-GM and PCA-GM.
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(b) Iterative cross-graph embedding method IPCA-GM.

Fig. 1. Overview of our (a) permutation loss based intra-graph affinity (PIA-GM), cross-graph affinity (PCA-GM) and (b) iterative cross-graph affinity
(IPCA-GM) approaches for deep combinatorial learning of graph matching. The CNN features are extracted from image pairs followed by node
embedding and Sinkhorn operation for matching. The CNN model, embedding model and affinity metric are all learnable in an end-to-end fashion.

traditional classification and regression based techniques
can be readily reused on the graph-like data. One com-
mon technique refers to the so-called graph neural net-
works (GNN) [40]. In a GNN, node features are aggregated
from its neighbors and often a same transfer function is
shared among different nodes. As such, the output of GNN
is invariant to permutations of graph elements. There are
many followup variants such as the SNDE model [41] that
is developed for deep node embedding by exploiting the
first-order and second-order proximity jointly. Conversely
there are some shallow embedding models which mostly
only consider the structure rather than attribute of nodes
and edges, including node2vec [42] inspired by skip-gram
language model [43], DeepWalk [44] based on random
walk, as well as LINE [45] which explicitly defines first-
order proximity and second-order proximity and builds the
corresponding heuristics models. These shallow models can
be more scalable on large networks compared SNDE. Nev-
ertheless, all these models cannot be directly used for end-
to-end training in graph matching, neither the embedding
model is designated for matching which calls for particular

discrimination among nodes.
In this paper, we adopt the graph convolutional net-

work (GCN) [46] modeling graph structure whose param-
eters are learnable in an end-to-end fashion. Moreover,
its output is also invariant to the permutation of graph
elements. Also, the model can allow for different numbers
of nodes for each graph for training.

2.4 Learning of Combinatorial Optimization

There are emerging works on using deep neural networks
to solve the combinatorial problems. One advantage is that
the learned model is expected to better capture the specific
structure of the problem at hand, instead of a general
solver that is not tailored to the dataset. Moreover, the deep
networks can be computational friendly to GPUs, leading to
efficiency in solving optimization problem compared with
pure CPU based pipeline. For instance, the NP-hard Trav-
elling Salesman Problem (TSP) problem is explored in [47]
via graph attention network based method to find a tour.
In [48], another classic NP-hard graph coloring problem is
addressed via deep reinforcement learning, which uncovers
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new and effective heuristics for graph coloring. In [49] a
deep leaning based approach is developed which involves
permutation invariant objective functions to a set of nodes.

Recall graph matching bears the combinatorial nature
and in general can be formulated as a quadratic assignment
problem (QAP). In [50], a QAP solver is learned given pre-
defined affinity matrix. While in our approach, the affinity
model is part of the learning components hence the work
[50] can be complementary to ours. On the other hand, as
many traditional methods transform the QAP problem into
linear assignment problem (LAP) in each iteration, learning
of linear assignment can be of relevance. In particular, it is
know that Sinkhorn algorithm [51] is the approximate and
differentiable version of Hungarian algorithm [52]. Given
predefined assignment cost, the LAP solver is learnt by the
Sinkhorn Network in [53], whereby doubly-stochastic regu-
lation is added on non-negative square matrix. Similarly, the
Sinkhorn AutoEncoder [54] is devised to minimize Wasser-
stein distance in AutoEncoders. Reinforcement learning is
adopted in [55] for learning a linear assignment solver. In
DeepPermNet [56], the Sinkhorn layer is employed with a
deep convolutional network, to solve a permutation pre-
diction problem. However, DeepPermNet predicts a per-
mutation matrix by fully-connected layers and is therefore
not invariant to input permutation. Hence DeepPermNet
need a predefined node permutation as reference which is
unnatural for graph matching. Moreover, DeepPermNet is
incapable to handle varying number of input nodes.

Our approach differs from the above methods in several
ways. First our model computes node-wise similarity di-
rectly between two graphs, and the output of our network
is invariant to input node permutations. Meanwhile, our
model involves an affinity learning module to encode the
structure affinity into node-wise embeddings. By doing so,
graph matching is transformed into a linear assignment task
which can be readily solved by the Sinkhorn layer, which
can also be called permutation learning.

3 PROPOSED APPROACH

3.1 Notations

From dataset D, we consider the matching between graphs
G1 = (V1, E1) and G2 = (V2, E2), where the number of
nodes |V1| = N1, |V2| = N2. Without loss of generality,
we assume N1 ≤ N2 for simplified notations. Graphs are
indexed by subscript s and nodes are indexed by subscript
i in the following content. The connectivity of graph s is
represented by adjacency matrix As.

In particular, for graphs built on images as mainly
assumed in the paper, we note each node to a 2D pixel

coordinate in image Is denoted as Psi = (x, y). While h
(k)
si

represent the node embedding vector at keypoint i, layer
k in graph s. M ∈ R

+N1×N2 is a non-negative affinity
matrix encoding node-node similarity between two graphs.
S ∈ [0, 1]N1×N2 is a so-called doubly (sub-)stochastic matrix,
which satisfies S1 = 1 and S

⊤
1 ≤ 1. S is denoted as the

soft matching result of our model. Node-to-node matching
is also represented by X ∈ {0, 1}N1×N2 , which is a discrete
permutation matrix s.t. X1 = 1,X⊤

1 ≤ 1.

3.2 Approach Overview

We present three deep graph matching methods: i)
permutation loss and intra-graph affinity based graph
matching (PIA-GM), ii) permutation loss and cross-graph
affinity graph matching model (PCA-GM) and iii) iterative
permutation loss and cross-graph affinity based one (IPCA-
GM). All models are built upon a deep network where both
image feature and structure information are exploited, and a
Sinkhorn network predicting permutation in a differentiable
fashion allowing for gradient back propagation. Among
them, PIA-GM and PCA-GM are vanilla feed-forward em-
bedding networks where PCA-GM adopts an extra cross-
graph component which aggregates cross-graph features.
IPCA-GM further exploits an iterative update scheme for
cross-graph aggregation. Figure 1(a) summarizes vanilla
feed-forward methods PIA-GM and PCA-GM and Fig-
ure 1(b) shows the iterative update scheme IPCA-GM.

The proposed models are built on a CNN feature extrac-
tor, a graph embedding component, an affinity metric and
a permutation prediction layer. From the given node (i.e.
keypoint) positions, graph structures are built by Delaunay
triangulation. CNN (VGG16 in our model) extracts image
features as graph nodes, and they are aggregated through
intra-graph and cross-graph embedding layers. The net-
work predicts a permutation for node-to-node correspon-
dence from raw pixel inputs.

3.3 Node Feature Extraction on Images

A CNN architecture is adopted to extract features from raw
RGB images, where node features are constructed by bi-
linear interpolation on CNN’s feature map. The extracted
feature on the keypoint Psi of image Is is:

h
(0)
si = Interp(Psi,CNN(Is)) (5)

where Interp(P,X) bi-linearly interpolates on point P from
feature map X . CNN(I) feeds image I into a CNN and out-
puts a feature tensor. Inspired by Siamese Network [57], the
same CNN structure and weights are shared between two
input images. We extract feature vectors from CNN layers
at different depth for fusing both local texture and global
semantic features. For fair comparison with [24], VGG16
pretrained with ImageNet on the classification task [58] is
adopted as the CNN backbone.

3.4 Intra-graph Node Embedding

Researchers have shown that graph matching methods ex-
ploiting graph structure can reach a more robust match-
ing [9] against point based methods [6], [7]. In PIA-GM,
graph affinity is embedded by multiple embedding layers
encoding higher-order information in graphs. We develop
an intra-graph message passing scheme based on the pop-
ular embedding approach GCN [46], where features are
effectively aggregated from adjacency nodes including a
self-update path for node features:

m
(k)
si =

1

|(i, j) ∈ Es|

∑

j:(i,j)∈Es

fmsg(h
(k−1)
sj ) (6)

n
(k)
si =fnode(h

(k−1)
si ) (7)

h
(k)
si =fupdate(m

(k)
si ,n

(k)
si ) (8)
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Algorithm 1: Vanilla cross-graph node embedding
(CrossEmb)

Input: (k − 1)-th layer features {h
(k−1)
1i ,h

(k−1)
2j }i∈V1,j∈V2

1 // similarity prediction Eqs. 17, 20

2 build M̂ from {h
(k−1)
1i ,h

(k−1)
2j } by Eq. 17;

3 Ŝ← Sinkhorn(M̂);
4 // cross-graph aggregation Eqs. 12, 13, 14

5 {h
(k)
1i } ← CrossConv(Ŝ, {h

(k−1)
1i }i∈V1

, {h
(k−1)
2j }j∈V2

);

6 {h
(k)
2j } ← CrossConv(Ŝ⊤, {h

(k−1)
2j }j∈V2

, {h
(k−1)
1i }i∈V1

);

Output: k-th layer features {h
(k)
1i ,h

(k)
2j }i∈V1,j∈V2

Here Eq. 6 updates feature along edges and fmsg denotes
the message passing function. As a common practice, we
normalize the aggregated features from adjacent nodes by
the total number of adjacent nodes to avoid bias brought by
varying numbers of neighbors owned by different nodes.
Eq. 7 updates feature for each node via a self-passing
function fnode. With fupdate, Eq. 8 accumulates information
from adjacent nodes and the node itself to update the state
of node i. fmsg, fnode, fupdate may take any differentiable form
in implementation. In our models, we design single-layer
neural networks with ReLU [59] activation for fmsg, fnode,
and summation for fupdate. Note Eqs. 6, 7, 8 are denoted as
graph convolution (GConv) from layer k − 1 to layer k:

{h
(k)
si } = GConv(As, {h

(k−1)
si }), i ∈ Vs (9)

Eq. 9 represents one node embedding layer. The connectivity
of graph s is encoded by adjacency matrix As ∈ {0, 1}

N×N .

h
(0)
si is initialized by the CNN feature of node i in graph s.

3.5 Cross-graph Node Embedding

We improve from intra-graph embedding by a cross-graph
aggregation step, where features are aggregated from the
other graph with nodes containing similar features. The
hope is to better fuse the information between two relevant
graphs via joint embedding. First, we compute similarity
based on graph features from shallower embedding lay-
ers and utilize a Sinkhorn network to predict a doubly-
stochastic similarity matrix (see details in Section 3.7 and

Section 3.8). The predicted cross-graph similarity matrix Ŝ

encodes the node-to-node similarity between two graphs.

M̂i,j = faff(h
(1)
1i ,h

(1)
2j ), i ∈ V1, j ∈ V2 (10)

Ŝ = Sinkhorn(M̂) (11)

where faff represents the affinity measure (see Eq. 17), and

the superscript (1) means h
(1)
1i ,h

(1)
2j are from the output of

first graph convolution layer.
We adopt a similar message passing scheme from intra-

graph convolution introduced in Eq. 9, while the adjacency

matrix is replaced by cross-graph similarity matrix Ŝ, and

features are aggregated across two graphs. Note that Ŝ is
doubly-stochastic therefore we need no normalization for
cross-graph aggregation. The cross-graph embedding is:

m
(k)
1i =

∑

j∈V2

Ŝi,jfmsg-cross(h
(k−1)
2j ) (12)

n
(k)
1i =fnode-cross(h

(k−1)
1i ) (13)

h
(k)
1i =fupdate-cross(m

(k)
1i ,n

(k)
1i ) (14)

Algorithm 2: Iterative cross-graph node embedding
(IterCrossEmb)

Input: CNN features {h
(0)
1i ,h

(0)
2j }i∈V1,j∈V2

; number of
iterations K

1 // first intra-graph aggregation Eq. 6, 7, 8

2 {h
(1)
si } ← GConv1(As, {h

(0)
si });

3 // Initialize Ŝ
(0) as zero matrix

4 Ŝ
(0) ← 0

N×N ;
5 for k ← {1..K} do
6 // cross-graph aggregation Eq. 12, 13, 14

7 {h
(2)
1i } ← CrossConv(Ŝ(k−1){h

(1)
1i }, {h

(1)
2j });

8 {h
(2)
2j } ← CrossConv(Ŝ(k−1)⊤, {h

(1)
2j }, {h

(1)
1i });

9 // second intra-graph aggregation Eq. 6, 7, 8

10 {h
(3)
si } ← GConv2(As, {h

(2)
si });

11 // correspondence prediction Eq. 17, 20

12 build M̂ from {h
(3)
1i }, {h

(3)
2j } by Eq. 17;

13 Ŝ
(k) ← Sinkhorn(M̂);

Output: embedding features {h
(3)
1i ,h

(3)
2j }i∈V1,j∈V2

where fmsg-cross, fnode-cross are implemented as identity map-
ping, fupdate-cross is a concatenation of two input feature
tensors followed by a linear layer. Introducing learnable
parameters to fmsg-cross, fnode-cross may result in training in-
stability, as witnessed in experiments. For graph pairs
G1 = (V1, E1),G2 = (V2, E2), the cross-graph aggregation
scheme can be denoted as:

{h
(k+1)
1i }i∈V1

= CrossConv(Ŝ, {h
(k)
1i }i∈V1

, {h
(k)
2j }j∈V2

)

{h
(k+1)
2j }j∈V2

= CrossConv(Ŝ⊤, {h
(k)
2j }j∈V2

, {h
(k)
1i }i∈V1

)
(15)

where Ŝ denotes the predicted correspondence from G2 to

G1 and Ŝ
⊤ denotes such relation from G1 to G2. Ŝ can

be regarded as an early-stage prediction on matching. We
summarize this (vanilla) cross-graph embedding approach
as CrossEmb(·) in Algorithm 1.

3.6 Iterative Cross-graph Node Embedding

The cross-graph embedding scheme introduced in Algo-
rithm 1 considers the cross-graph matching relationship at
shallower embedding layers, which is proved to advantage
matching by experiments in [22]. However, Algorithm 1
only computes the matching by single forward pass, which
is relatively simple and its prediction can be further im-
proved. With the motivation that more precise cross-graph
prediction will probably lead to better embedding feature
and vice versa, we design and experiment an iterative
update approach for a more accurate prediction of cross-
graph similarity, where the cross-graph similarity matrix

Ŝ is predicted iteratively. The embedding layers (including
intra-graph embedding layers) in our iterative cross-graph
embedding design is summarized by IterCrossEmb(·) in

Algorithm 2. In this alternative design, Ŝ(0) is initialized

as zero matrix, and we iteratively predict Ŝ(k) from Ŝ
(k−1)

through both cross-graph embedding (L6 - L8) and intra-
graph embedding (L10) layers. We predict a similarity ma-
trix from embedding outputs (L12), and finally calculate a

doubly-stochastic matching matrix Ŝ by Sinkhorn algorithm
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(L13). Note that the predicted matching matrix Ŝ is regarded
as the weighting matrix of cross-graph update paths. As will
be shown in the experiment part, further improvement can
be brought by this iterative cross-graph design.

3.7 Affinity Metric Learning

With the proposed embedding model, we encode the struc-
tural information between two graphs into node-to-node
similarity in the embedding space. Such an embedding
scheme allows to simplify the traditional second-order affin-
ity matrix K in Eq. 1 into a linear one. Then the NP-hard
problem in quadratic form is reduced into a linear one
which is solvable in polynomial time. Let h1i and h2j be
the feature of i and j from the first graph and the second
graph, respectively:

Mi,j = faff(h1i,h2j), i ∈ V1, j ∈ V2 (16)

The node-wise affinity matrix M ∈ R
+N1×N2 encodes

any node-to-node similarity between two graphs. Mi,j cor-
responds to the affinity score between node i in the first
graph and node j in the second graph, considering node
features and higher-order information inside and across
graphs.

We assign faff as a weighted bi-linear function followed
by an exponential function forcing all elements in the affin-
ity matrix being positive2.

faff(h1i,h2j) = exp

(

h
⊤
1iAh2j

τ

)

(17)

If the feature is a m-dimensional vector, i.e. ∀i ∈ V1, j ∈ V2
and h1i,h2j ∈ R

m×1, A ∈ R
m×m contains learnable

weights for this affinity function. τ is a regularization pa-
rameter controlling the discriminate level of the affinity
function. For τ > 0, with τ → 0+, Eq. 17 becomes more
discriminative, while there will be a higher chance of explo-
sive gradient if τ is too small.

3.8 Sinkhorn Layer for Linear Assignment

With the node-wise affinity matrix in Eq. 17, Sinkhorn
method is used for linear assignment, where the discrete
assignment constraint is relaxed to doubly-stochastic matrix.
Sinkhorn layer takes any non-negative square matrix as in-
put and outputs a doubly-stochastic matrix as the predicted
matching result. The doubly-stochastic matrix is considered
as a continuous relaxation of permutation matrix. Sinkhorn
networks have been shown effective in network based per-
mutation prediction [53], [56]. We initialize M

(0) = M. For

M
(k−1) ∈ R

+N×N
, the Sinkhorn operator is:

M
(k)′ =M

(k−1) ⊘ (M(k−1)
11

⊤) (18)

M
(k) =M

(k)′ ⊘ (11⊤
M

(k)′) (19)

where ⊘ means element-wise division, and 1 is a column
vector whose elements are all ones. Sinkhorn algorithm
involves alternatively taking row-normalization (Eq. 18) and

2. We have also experimented other more flexible fully-connected
and attention-like layers, while we empirically find the simple expo-
nential function is more stable for learning.

column-normalization (Eq. 19) till convergence. It is found
about 10 iterations often leads to a satisfying result.

After passing the linear affinity matrix into Sinkhorn
network we get a doubly-stochastic matrix S, which is
treated as our model’s prediction in training. The Sinkhorn
layer is summarized as:

S = Sinkhorn(M) (20)

If two graphs are of equal size i.e. N1 = N2 = N ,
then M ∈ R

+N×N , the Sinkhorn algorithm works straight
forward. If there exist outliers in graph 2, i.e. N1 < N2,
M ∈ R

+N1×N2 is no longer a square matrix and cannot be
directly handled by Sinkhorn network. Under such circum-
stance, we add dummy nodes to G1 by padding M by zeros
into a N2 × N2 square matrix. After the Sinkhorn step, the
padded zero elements are discarded in the resulting soft
matching matrix S ∈ [0, 1]N1×N2 . We further apply loss
metric on it. Our treatment on outliers is summarized in
L21 of Algorithm 3. Adopting dummy nodes is a common
practice when matching graphs against outliers [1]. It is also
a standard technique in linear programming.

Note Sinkhorn net is differentiable as its operation only
involves matrix-vector multiplication and element-wise di-
vision, making it appealing to end-to-end pipelines. The
backward gradient of Sinkhorn layer derived from [24] is:

∂L

∂M(k)′
=

∂L

∂M(k)
[1⊤

M
(k)]−1

− 1diag

(

[1⊤
M

(k)]−2
M

(k)⊤ ∂L

∂M(k)

)⊤

(21)

∂L

∂M(k−1)
=

∂L

∂M(k)′
[M(k)′

1]−1

− diag

(

[M(k)′
1]−2 ∂L

∂M(k)′
M

(k)′⊤

)

1
⊤ (22)

where [ · ] builds a diagonal matrix from the given vec-
tor. While Sinkhorn can be efficiently implemented with
automatic differentiation available in PyTorch [60]. During
testing, we perform Hungarian algorithm [61] on S as a final
discretization step to obtain a binary permutation matrix X.

X = Hungarian(S) (23)

3.9 Permutation Cross-Entropy Loss

Our methods directly utilize node-to-node matching labels,
i.e. permutation matrix, as the supervision for end-to-end
training. As the matching result computed via Sinkhorn
layer in Eq. 20 is a doubly-stochastic matrix, we propose
a linear assignment based permutation loss to evaluate the
difference between predicted doubly-stochastic matrix and
ground truth permutation matrix for training.

Our models are trained end-to-end based on cross en-
tropy loss. We take the ground truth permutation matrix
X

gt provided by the dataset, and compute the cross entropy
between S and X

gt. We denote it as permutation loss, which
is the supervision adopted to train most of our deep graph
matching models Lperm:

−
∑

i∈V1,j∈V2

(

X
gt
i,j logSi,j + (1−X

gt
i,j) log(1− Si,j)

)

(24)



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3005590, IEEE

Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 3: Permutation and intra/cross/iterative-
cross graph affinity learning for graph matching
(PIA-GM/PCA-GM/IPCA-GM)

Input: Graph pairs from D with node correspondence;
initial model weights W; learning rate lr;
number of cross-graph iterations K .

1 repeat
2 // Draw image pair and ground truth from dataset,

s = 1, 2 denoting two input images
3 {(Is, {Psi}i∈Vs

,As)|s = 1, 2},Xgt ∈ D;
4 // extract CNN features Eq. 5

5 {h
(0)
si } ← Interp({Psi},CNN(Is));

6 if PIA-GM then
7 // intra-graph aggregation Eqs. 6, 7, 8
8 for k ← {1, 2, 3} do

9 {h
(k)
si } ← GConvk(As, {h

(k−1)
si });

10 if PCA-GM then
11 // first intra-graph aggregation Eqs. 6, 7, 8

12 {h
(1)
si } ← GConv1(As, {h

(0)
si });

13 // cross-graph embedding Alg. 1

14 {h
(2)
1i ,h

(2)
2j } ← CrossEmb({h

(1)
1i ,h

(1)
2j });

15 // second intra-graph aggregation Eqs. 6, 7, 8

16 {h
(3)
si } ← GConv2(As, {h

(2)
si });

17 if IPCA-GM then
18 // iterative cross-graph embedding Alg. 2

19 {h
(3)
1i ,h

(3)
2j } ← IterCrossEmb({h

(0)
1i ,h

(0)
2j },K)

20 // build M ∈ R
+N2×N2 from {h

(3)
1i }, {h

(3)
2j } Eq. 17

21 Mi,j =

{

faff(h1i,h2j), if 1 ≤ i ≤ N1

0, if N1 < i ≤ N2
;

22 S← Sinkhorn(M);
23 // end-to-end training based on Eq. 24

24 W← −lr ×
∂Lperm(S,X

gt)

∂W
+W;

25 until convergence;
Output: learned model weights W.

Note GMN [24] applies “displacement loss” based on
pixel offset. It computes an offset vector d from all matching
candidates by a weighted summation. The offset loss is
computed as the difference between predicted offset vector
and ground truth offset vector.

di =
∑

j∈V2

(Si,jP2j)− P1i (25)

Loff =
∑

i∈V1

√

||di − d
gt
i ||

2 + ǫ (26)

where {P1i}, {P2j} are the keypoint coordinates in G1 and
G2, respectively. While ǫ is a small value added for nu-
merical stability. In comparison, our cross entropy loss can
directly learn a linear assignment cost based permutation
loss in an end-to-end fashion.

3.10 Further Discussion

Our proposed deep graph matching methods PIA-GM,
PCA-GM and IPCA-GM are summarized in Algorithm 3.
Here we further discuss our network design including
embedding layers, Sinkhorn network and permutation loss
compared to peer methods.

Lperm = 5.139,   Loff = 0.070

Fig. 2. A failure case of offset loss: source image with keypoint (left) and
target image with matching candidates (right), where numbers denote
the probability of predicted matching. Ground truth matching nodes are
colored in rose (only receives 0.05 probability by this poor prediction,
where the model mistakenly match the right ear to the left ear). Offset
loss is computed by a weighted sum among all candidates, resulting in a
misleading low loss 0.070. In this example offset loss fails to distinguish
between left/right ears and such information will not be learned under its
supervision. Our permutation loss, on the contrary, issues a reasonably
high loss 5.139. The underlying rationale is that the problem at hand is
fundamentally a combinatorial problem rather than a regression task.

3.10.1 Predefined affinity vs. embedding

Existing algorithms in graph matching aims to model
second-order [1], [26] and higher-order [3], [5] graph affinity
feature with an explicitly pre-defined affinity matrix or
tensor. An N1N2 ×N1N2 affinity matrix can be adopted to
encode node-wise and edge-wise affinity information. Op-
timization techniques are applied to compute the matching
result via graph affinity maximization.

In contrast, we resort to the node embedding technique
with two merits. First, the space occupation of the affinity
matrix is reduced to N1×N2. Second, the embedding layers
can implicitly model higher-order feature in graphs, while
only the second-order edge information can be encoded by
the affinity matrix K in Eq. 1.

3.10.2 Sinkhorn net vs. spectral matching

Spectral matching (SM) [26] is adopted by GMN [24]. The
SM solver actually computes the leading eigenvector of K
and is capable for back propagation. In contrast, we adopt
the Sinkhorn net instead. In fact, the input of Sinkhorn is
of complexity O(N1N2) while the input size is of O(N2

1N
2
2 )

for spectral matching. Meanwhile, it is observed that SM
takes more iterations to converge. We empirically observe
there exists an optimal value for the number of iterations, as
heavy iteration may bring negative effect to the accuracy of
back propagation. In fact, spectral matching is designed for
graph matching while Sinkhorn net is for linear assignment,
which is relaxed from NP-hard graph matching owing to
the embedding layers.

3.10.3 Pixel offset loss vs. permutation loss

The method GMN [24] adopts a pixel offset loss func-
tion named “displacement loss”. The loss firstly computes
a weighted sum from all matching candidates, and then
compute the so-called offset vector from the source image
(G1) to the target image (G2). Under the supervision of
offset loss, GMN learns to minimize the difference between
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predicted offset vector and ground truth offset vector on
training samples. In comparison, based on the Sinkhorn net,
a permutation loss is computed where the cross entropy
between predicted matching and ground truth matching is
evaluated. Such permutation loss directly takes the ground
truth matching relationship as supervision, and utilize such
information for end-to-end training. The performance gap
between offset loss and permutation loss becomes more
significant with the existence of outliers, as will be shown in
the experiments. Permutation loss models the combinatorial
nature of graph matching problems.

Figure 2 presents a real failure case produced by using
the offset loss. In this case, the model makes a poor predic-
tion, but the offset loss is unreasonably low. In contrast, the
permutation loss provides correct information. Experiments
also reveal that our permutation loss models surpass models
trained with offset in matching accuracy.

4 EXPERIMENTS

We report the performance on both synthetic data and
real-image datasets for semantic point matching. State-of-
the-art peer methods including both deep learning [24]
and shallow learning [23] are compared in our experi-
ment. We further show that our methods enjoy some ro-
bustness against outliers, different datasets and different
categories. Detailed results are also provided for further
insights on our proposed methods. Experiments are con-
ducted on our workstation with i9-7920X@2.90GHz and
quad RTX2080Ti GPU. We also provide a project homepage:
http://thinklab.sjtu.edu.cn/IPCA GM.html.

4.1 Evaluation Metrics and Peer Methods

We evaluate the matching accuracy between two given
graphs G1,G2, whose sizes are of N1 and N2, respectively.
We evaluate the models’ performance under two configura-
tions: 1) N1 = N2 so that there exists no outliers between
two graphs. Each node in one graph is labeled to another
node in the other graph, i.e. a bijection between G1 and
G2; and 2) N1 ≤ N2 as we allow outliers exist in G2. The
matching problem becomes more challenging and it is more
appealing to real world applications. The model predicts
a node-to-node correspondence between two graphs. Such
correspondence is represented by a permutation matrix X.

We evaluate the matching accuracy computed from the
permutation matrix, by the number of node pairs correctly
matched averaged by the total number of ground truth
node pairs. For settings with and without outliers, given
a predicted permutation matrix X ∈ {0, 1}N1×N2 and a
ground truth permutation X

gt ∈ {0, 1}N1×N2 , the matching
accuracy in category C is computed by:

acc =

∑

C
〈X,Xgt〉

∑

C
〈Xgt,Xgt〉

(27)

where 〈·, ·〉 denotes inner product and graph pairs are
sampled from the given category C.

When matching on graphs from real-world images, each
node i of graph s corresponds to a keypoint with position
Psi. In our experiments, Psi is taken from the dataset’s
ground truth annotation and fed into the network.

The evaluation involves the following peer methods:
GMN. Graph Matching Network (GMN) [24] is the

seminal model built on VGG16 [62] network to extract im-
age features. GMN extracts shallower (relu4 2) and deeper
(relu5 1) CNN features as node and edge features, re-
spectively. Graph matching is tackled by spectral match-
ing (SM) [26], which is an unlearnable graph matching
solver. This model is agnostic to object categories, mean-
ing an universal model is learned for all instance classes.
G1 and G2 are constructed by Delaunay triangulation and
as fully-connected, respectively. GMN is the first end-to-
end pipeline for deep graph matching which incorporates
deep CNNs. Note there exists a major difference that their
loss function is an offset based loss given by Eq. 26. We
follow [24] and re-implement GMN with PyTorch as their
code is not publicly available at the time when the paper
is written. Also, we modify the the raw GMN model by
replacing the regression based node position output with
the permutation matrix for node matching, in order to
make GMN consistent with the graph matching evaluation
protocol i.e. matching accuracy.

HARG-SSVM. It is a graph matching learning method
based on structured SVM [23]. We adopt it as the baseline for
shallow graph matching learning methods. HARG-SSVM
is class-specific, where it learns a graph model for each
object category. We use the source code released by the
authors upon their approval. The experimental setting in
[23] assumes that keypoint position of the target graph G2
is unknown, and they adopt a Hessian detector [63] to
produce candidate positions. In our setting, however, all
candidate positions are known to the model and we slightly
modify the originally released code. From all candidate
points found by the Hessian detector, we assign the nearest
neighbor from ground truth position as matching candidate.
We discovered such practice is originally taken during the
training process of HARG-SSVM. In experiments, graphs
are constructed with hand-crafted features namely HARG.

PIA/PCA/IPCA-GM. We build our models on
VGG16 [62] as the CNN backbone, and features are
extracted from relu4 2 and relu5 1 in line with [24]. We
concatenate these features to fuse both local and global
information. In PIA-GM, we build 3 intra-embedding layers
on top of VGG16 while in PCA-GM, the embedding module
contains sequentially 1 intra layer, 1 cross layer and 1
intra layer. IPCA-GM is built in line with PCA-GM, while
the cross-graph similarity matrix is updated iteratively.
All methods contain an affinity mapping as Eq. 17 after
the embedding layers. The output feature dimension
of all embedding layers is 2048. Models are trained by
permutation loss Eq. 24. Two input graphs are both
constructed by Delaunay triangulation and we set τ = 0.05
for PIA-GM and PCA-GM, τ = 0.005 for IPCA-GM in
Eq. 17. Our models are implemented by PyTorch.

GMN-PL & PIA/PCA-GM-OL. GMN-PL and PIA/PCA-
GM-OL are variants from the original GMN [24] and our
PIA/PCA-GM, respectively. We build GMN-PL by simply
changing the offset loss in GMN to permutation loss. While
in PIA/PCA-GM-OL we switch the permutation loss to
offset loss, leaving all other components unchanged.

For natural image tests, we randomly draw image pairs
from the dataset, and build two graphs from the given

http://thinklab.sjtu.edu.cn/IPCA_GM.html
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Fig. 3. Performance comparison of different methods on synthetic dataset with noise on feature vectors, inlier numbers and outlier numbers, as well
as using different affinity models and losses. Default setting: Kin = 20,Kout = 0, σfeat = 1.5, σcoo = 10.

TABLE 1
Matching accuracy (%) on Pascal VOC Keypoint, without outliers (white) and with outliers (gray). Note after replacing the offset loss by

permutation loss, GMN-PL outperforms GMN [24] almost in all categories. PIA-GM surpasses GMN baselines, while both PCA-GM and IPCA-GM
further boost the matching accuracy, by utilizing (vanilla) cross-graph embedding and iterative cross-graph embedding, respectively. Results with
white background are obtained without outliers, and the gray background are with outliers. Note that here we report improved results for PCA-GM

compared to [22] by changing the hyper-parameter τ from 0.005 to 0.05.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
GMN [24] 31.9 47.2 51.9 40.8 68.7 72.2 53.6 52.8 34.6 48.6 72.3 47.7 54.8 51.0 38.6 75.1 49.5 45.0 83.0 86.3 55.3
GMN-PL 31.1 46.2 58.2 45.9 70.6 76.4 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9
PIA-GM 41.5 55.8 60.9 51.9 75.0 75.8 59.6 65.2 33.3 65.9 62.8 62.7 67.7 62.1 42.9 80.2 64.3 59.5 82.7 90.1 63.0

PCA-GM 51.2 61.3 61.6 58.4 78.8 73.9 68.5 71.1 40.1 63.3 45.1 64.4 66.4 62.2 45.1 79.1 68.4 60.0 80.3 91.9 64.6
IPCA-GM 51.0 64.9 68.4 60.5 80.2 74.7 71.0 73.5 42.2 68.5 48.9 69.3 67.6 64.8 48.6 84.2 69.8 62.0 79.3 89.3 66.9
GMN [24] 34.2 55.0 46.4 39.6 77.0 60.5 46.9 54.5 31.7 51.0 48.0 48.0 48.5 50.8 28.8 73.8 49.8 38.3 69.4 83.9 51.8
GMN-PL 38.9 56.1 47.9 41.0 79.1 66.5 49.0 57.9 33.7 54.4 43.7 49.5 53.5 55.4 31.2 76.6 53.0 37.8 71.3 86.4 54.1
PIA-GM 43.8 60.6 51.5 43.5 75.4 70.6 58.9 62.0 35.3 54.4 44.3 57.1 56.1 58.6 40.0 76.5 60.1 36.5 76.1 86.3 57.4

PCA-GM 44.6 63.6 53.7 45.9 78.0 69.5 52.7 63.1 37.6 56.4 44.4 58.3 56.2 57.5 39.0 80.1 59.6 40.2 69.4 87.1 57.8
IPCA-GM 44.5 63.9 54.6 47.6 79.9 69.8 54.7 64.4 37.9 59.4 55.6 57.5 57.5 57.4 40.2 80.1 60.0 41.2 71.4 86.9 59.2

keypoints. Graph structures are agnostic to the model, and
graphs are constructed according to different methods (see
discussions above). The CNN model is pretrained on Ima-
geNet [58] classification task with 21,841 subcategories and
14 million images, downloaded from PyTorch model zoo.

4.2 Synthetic Keypoint Matching

We first evaluate models on generated synthetic graphs,
where the protocol is built following [1]. Graphs are gen-
erated with a given inlier keypoint number Kin. Each inlier
is assigned with a 1024-dimensional random vector simu-
lating CNN feature (512 dimensions for relu4 2 and 512
dimensions for relu5 1), and a 2D position in U(0, 256).
Keypoint features are under the same Gaussian distribu-
tion N (µf , σ

2
feat), where the Gaussian center µf is sam-

pled from uniform distribution: µf ∼ U(−1, 1). During
training and testing, we randomly sample keypoint fea-
tures and blur keypoint coordinates by a random affine

transform





s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1



 with s ∼ U(0.8, 1.2), θ ∼

U(−60, 60), {tx, ty} ∼ U(−50, 50), followed by an additive
random noise N (0, σ2

coo). For outlier points, their features
are randomly sampled from U(−1, 1) and their positions
are from U(0, 256). Note that we adopt no CNN feature ex-
tractor during synthetic experiments, and we compare only
graph modeling approaches and loss metrics. The match-
ing accuracy of IPCA-GM, PCA-GM, GMN-PL, GMN and

unlearning peer methods SM [26], BPF-G [32], SK-JA [33]
are evaluated with respect to Kin, σfeat and Kout. For each
trial, we generate 300 random graphs (200 for training and
100 for testing) from the same distribution. We conduct 10
trials under each setting and report the averaged accuracy.
All generated samples are cached and shared among all
methods. Figure 3 contains our experimental result showing
the robustness of our PCA-GM against feature deformation
and complicated graph structure. Note that compared to
GMN-PL supervised by permutation loss, the performance
of GMN supervised by offset loss degenerates significantly
when the number of outlier increases. The learning based
methods also surpass learning-free baselines [26], [32], [33].

4.3 Pascal VOC Keypoints Matching

We experiment on large-scale real image matching dataset
with Pascal VOC [64] with additional keypoint annotation
from [65], namely Pascal VOC Keypoint. It contains 20
classes of instances with ground truth keypoint positions.
Following [24], we filter the original dataset into 7,020 train-
ing images and 1,682 testing images. Note that the number
of training samples grows combinatorially w.r.t. number of
images since we can iterate over all combinations of image
pairs. During experiment, we randomly draw image pairs
from the same category in the dataset. All instances are
cropped around its bounding box and resized to 256 × 256
before passing to the network. We perform experiment
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TABLE 2
Matching accuracy (%) for transfer learning test in the presence of

outliers on Pascal VOC Keypoint. “Transfer w/o outliers” means directly
transfer learned weights from outlier-free setting, and “finetune with
outliers” means finetuning the weights with outliers. The last column
reports results trained from scratch with outliers. Note ‘–’ means the

model fails to converge under this setting.

method
transfer finetune training

w/o outliers with outliers with outliers
GMN [24] 51.7 51.8 51.3
GMN-PL 53.2 54.1 50.2
PIA-GM 55.2 57.4 –

PCA-GM 56.0 57.8 57.6
IPCA-GM 54.1 59.2 –

under two settings on Pascal VOC Keypoint: 1) A simplified
setting N1 = N2 without outliers where we leave only
the keypoints co-existent in two images (i.e. inliers) to be
matched; 2) A more challenging setting N1 ≤ N2 where G1
contains only inliers, but outlier keypoints are not filtered in
G2. Problems with N1 < 3 is not considered in both settings
since they are relatively easy to solve. We regard Pascal VOC
Keypoint a challenging dataset under both setting as objects
vary greatly in their pose, texture and illumination, and the
number of labeled keypoints ranges from 6 to 23.

We test on Pascal VOC Keypoint [65] and report perfor-
mance on 20 Pascal categories. We compare GMN, GMN-PL,
PIA-GM, PCA-GM, IPCA-GM and present detailed experi-
mental results in Table 1 with (white background) and with-
out (gray background) outliers. Our proposed methods PIA-
GM, PCA-GM, IPCA-GM surpass competing methods in
most categories, especially the mean accuracy over 20 cate-
gories, and they are robust with the existence of outliers (see
detailed discussion in Section 4.4.1). With dual RTX2080Ti
GPUs, PCA-GM runs at around 18 pairs per second and
IPCA-GM runs at about 16 during training. The result
shows the superiority of the combinatorial permutation loss
over offset loss in training, embedding and Sinkhorn over
fixed SM [26] in affinity modeling, and cross-graph embed-
ding, especially iterative cross-graph embedding over intra-
graph embedding in the embedding module.

4.4 Transfer Learning Experiments

As summarized in Figure 4, the robustness and generaliza-
tion capability of our methods are tested by the following
aspects: transfer learning by using outlier-free training data
and the testing data from the same dataset (but different
samples) added with outliers (Figure 4(a) green), transfer
learning across different datasets (Figure 4(a) red), gen-
eralization capability when training and testing instances
are from different categories (Figure 4(b)) and finally the
generalization behavior of learned CNN and embedding
modules (Figure 4(a) blue and purple).

4.4.1 Transfer learning in the presence of outliers

We experiment the transfer learning capability of our pro-
posed methods against the existence of outliers. As illus-
trated by the green dashed arrow in Figure 4(a), we firstly
pretrain models on Pascal VOC Keypoint without outliers,
and directly apply them on the dataset with outliers. These
models are later finetuned on Pascal VOC Keypoint with

Pascal VOC 
Keypoint w/o 

outliers

Willow Object 
Class

Pascal VOC 
Keypoint with 

outliers

cat
relu4_2

relu5_1

cat
relu4_2

relu5_1

learned VGG16

ImageNet VGG16

learned embedding

RRWM

RRWM solverdatasets

(a) Solid arrows represent the baseline model. Green dashed arrow rep-
resents the inlier/outlier transfer setting for Section 4.4.1 and Table 2.
Red dashed arrow represents the cross-dataset transfer protocol for Sec-
tion 4.4.2 and Table 3. Blue and purple arrows stand for generalization
study for CNN and embedding modules in Section 4.4.4 and Table 4.

single category of 
Pascal VOC 

Keypoint

other categories 
of Pascal VOC 

Keypoint

cat
relu4_2

relu5_1

learned VGG16 learned embedding

datasets

(b) Cross-category learning test in Section 4.4.3 and Figure 5.

Fig. 4. Illustration of transfer learning experiments for our methods.

outliers. Experimental result reported in Table 2 shows the
superiority of our proposed methods in transfer learning
against outliers. Direct learning with outliers seems chal-
lenging for IPCA-GM, and one possible reason is the pre-
dicted cross-graph similarity matrix may be sub-stochastic
since there are outliers (the summations of columns may
be less equal to 1), misleading the iterative cross-graph
update scheme at early training stage. PIA-GM also fails
to converge when directly trained with outliers, which may
be caused by its poor model capacity. In contrast, transfer
learning from outlier-free models will result in better per-
formance and more stable training. The outlier results in
Table 1 are based on transfer learning.

4.4.2 Cross-dataset transfer with Willow ObjectClass

Knowledge transfer between different datasets is experi-
mented on Willow ObjectClass dataset, which is a real image
matching dataset collected by [23]. It contains 5 instance
categories collected from Caltech-256 (face, duck and wine
bottle) and Pascal VOC 2007 (car and motorbike), while each
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Fig. 5. Transfer learning among eight categories from Pascal VOC Keypoint represented by confusion matrix. Models are trained on categories on
the y-axis, and testing results are reported on categories on the x-axis. Note that accuracy does not degenerate much for our embedding models
between similar categories (such as cat and dog). Numbers in cells are the corresponding accuracy. Here we plot two lines of confusion matrices
in parallel for better illustration. For blue matrices, the color map stands for accuracy normalized by the highest accuracy on this column, and they
do not denote the absolute value of accuracy among different categories and matrices. For the orange matrices, we plot the ranking of accuracy on
this current cell among all 5 confusion matrices. Darker color corresponds to higher ranking in accuracy. We also report accuracy for elements in
diagonal and overall for each confusion matrix, as shown in brackets on the top of blue matrices (best viewed in color and zoom in for better view).

TABLE 3
Matching accuracy (%) for transfer learning test across datasets on

Willow ObjectClass. GMN-VOC means model trained on Pascal VOC
Keypoint, likewise for Willow ObjectClass.

method face m-bike car duck w-bottle
HARG-SSVM [23] 91.2 44.4 58.4 55.2 66.6

GMN-VOC [24] 98.1 65.0 72.9 74.3 70.5
PCA-GM-VOC 100.0 69.8 78.6 82.4 95.1

IPCA-GM-VOC 100.0 67.1 73.3 82.1 91.7
GMN-Willow [24] 99.3 71.4 74.3 82.8 76.7
PCA-GM-Willow 100.0 76.7 84.0 93.5 96.9

IPCA-GM-Willow 100.0 77.7 90.2 84.9 95.2

category contains at least 40 images. All instances from the
same category are carefully aligned in their pose, and in
the same category all instances have 10 visible keypoints.
Further more, it lacks scale, background and illumination
changes and we therefore consider it an easier dataset
compared to Pascal VOC Keypoint. We resize images to
256 × 256 before passing to CNN. Since every object from
the same category shares the same number of keypoints, we
do not perform outlier test on Willow ObjectClass dataset.

We follow the source code released by the authors of [23],
with which HARG-SSVM is trained and evaluated. Fol-
lowing the red dashed arrow in Figure 4(a), cross-dataset
generalization capability is evaluated for other competing
methods. For deep graph matching models, their weights
are firstly initialized on a slightly modified Pascal VOC
Keypoint dataset, from which we remove all VOC 2007 car
and motorbike images. These transferred models are de-
noted as GMN-VOC, PCA-GM-VOC and IPCA-GM-VOC.
We further fine-tune them on the Willow dataset, namely
GMN-Willow, PCA-GM-Willow and IPCA-GM-Willow, re-
spectively. Note that HARG-SSVM is class-specific so that
it learns a specific model for each class, while GMN, PCA-

GM and IPCA-GM are class-agnostic and a unified model
is learned for all classes. We only report cross-dataset
transfer learning result because Willow ObjectClass is too
small to train a deep graph matching model from scratch.
Table 3 demonstrates our proposed PCA-GM and IPCA-
GM showing superior transfer learning capability across
different datasets, and outperform all competing methods
in all categories of Willow ObjectCalss dataset.

4.4.3 Cross-category generalization capability

To testify the generalization behavior of our model among
different categories, we train IPCA-GM, PCA-GM, PCA-
GM-OL, GMN-PL, GMN on eight arbitrarily selected cat-
egories in Pascal VOC Keypoint and report testing result
on each category as shown in Figure 5. The experimental
setup is illustrated by Figure 4(b). We follow the train/test
split provided by the benchmark for each category. Cross-
category test result is plotted via confusion matrix (y-axis
stands for training category and x-axis stands for testing
category) with blue color denoting relative accuracy and
orange color denoting the ranking among 5 models on
each certain cell. Our learned embedding models generalize
soundly to unseen similar categories, such as between cat
and dog. It shows that embedding based models general-
ize better to unseen categories on off-diagonal cells, while
the permutation loss offers better supervision on diagonal
elements. We notice that IPCA-GM ranks comparatively on
diagonal cells with PCA-GM, while PCA-GM and PCA-GM-
OL generalize better on off-diagonal cells. A possible ex-
planation may be IPCA-GM is with higher model capacity,
therefore it fits better on its training category and achieves
higher accuracy on diagonal elements in confusion matrix.
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TABLE 4
Matching accuracy (%) on Pascal VOC Keypoint with different module configurations. For column “CNN”, “DGM” indicates the CNN module

learned with PCA-GM and “ImgNet” means the CNN is only pretrained on ImageNet. For column “graph”, “Emb” corresponds to learned
cross-graph embedding in PCA-GM while “RRWM” means the existing RRWM solver [1]. The first row is identical to PCA-GM baseline in Table 1.

CNN graph aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
DGM Embed 51.2 61.3 61.6 58.4 78.8 73.9 68.5 71.1 40.1 63.3 45.1 64.4 66.4 62.2 45.1 79.1 68.4 60.0 80.3 91.9 64.6
DGM RRWM 44.0 61.4 53.5 51.7 72.1 67.7 64.5 59.6 41.0 55.8 53.9 58.6 60.0 57.2 41.3 78.8 61.8 45.2 74.2 88.1 59.5

ImgNet Embed 36.5 46.9 51.9 43.0 42.7 52.0 53.4 57.7 33.5 47.5 44.9 54.7 54.6 48.1 28.0 61.8 57.2 39.9 72.6 58.3 49.3
ImgNet RRWM 29.9 44.7 41.4 41.6 34.7 44.9 45.2 38.8 27.0 34.3 36.7 37.7 41.4 41.7 24.9 57.2 41.2 30.7 68.3 53.3 40.8

4.4.4 Generalization of CNN and embedding modules

Our deep graph matching pipeline generally learns image
feature (with CNN) and graph feature (with embedding)
simultaneously. We conduct further study on how they
generalize with other modules and how do they couple with
each other. In this experiment, we decompose the learned
PCA-GM into two parts: a CNN backbone (denoted as
“DGM”) tuned by the matching dataset at hand, and the
embedding component, and plug them into existing graph
matching solver RRWM [1] and a vanilla VGG16 pretrained
on ImageNet classification, respectively. In Figure 4(a), blue
arrows represent “ImgNet+Embed” and the purple arrow
represents “DGM+RRWM”. Experimental result in Table 4
shows that the learned CNN module generalizes soundly
after replacing the embedding module by RRWM, especially
on categories such as bike, chair and table. In comparison,
the learned embedding module seems more tightly coupled
with the learned CNN. However, the “ImgNet+Embed”
configuration outperforms “ImgNet+RRWM” in all cate-
gories, and in some categories “ImgNet+Embed” performs
comparatively with “DGM+RRWM”. Therefore, the learned
embedding module is still meaningful when transferred to
different CNN backbones.

4.5 Discussion and Further Study

4.5.1 Model design details

There are few hyper-parameters for tuning, including num-
ber of embedding layers, regularization factor τ of affinity
metric and the number of cross-graph iterations in IPCA-
GM. The parameter configuration is determined by aver-
aged accuracy on Pascal VOC Keypoint dataset without
outliers, and applied to all datasets under various settings.

For the number of embedding layers, we test PCA-GM
and PIA-GM with varying configurations, and find PIA-GM
is insensitive to the number of layers while PCA-GM best
performs with 3 layers, as shown in Table 5. Introducing
more than one cross-graph layers will also make the model
fail to converge. A possible explanation to this phenomenon
is deep graph convolutional nets may suffer from over-
smoothing [66], especially for our cross-graph convolution.
We keep all networks with 3 embedding layers for fair
comparison. For hyperparameter setting, we perform grid
search on τ = {0.5, 0.05, 0.005, 0.0005} and number of
cross-graph iterations = {2, 3, 4, 5}, and we adopt the best-
performing τ = 0.005, with 3 iterations for IPCA-GM and
τ = 0.05 for PCA-GM and PIA-GM under all settings. We
regard such parameter setting a suitable choice for various
scenes and graph sizes, as Pascal VOC Keypoint dataset
contains 20 categories with various graph sizes. As shown in
Table 6, more complicated IPCA-GM seems more sensitive

TABLE 5
Matching accuracy (%) of PIA-GM and PCA-GM by number of

embedding layers on Pascal VOC Keypoint with no outliers.

# of embedding layers 2 3 4 5 6
PIA-GM 60.5 63.0 63.0 62.9 62.7
PCA-GM 62.5 64.6 49.5 47.6 47.7

TABLE 6
Matching accuracy (%) of PIA-GM, PCA-GM and PCA-GM by different
τ on Pascal VOC Keypoint with no outliers. ‘–’ means the model fails to

converge under this setting.

τ 0.5 0.05 0.005 0.0005
PIA-GM 61.8 63.0 62.5 -
PCA-GM 63.4 64.6 63.8 63.1
IPCA-GM 55.1 65.0 66.9 -

TABLE 7
Ablation study on proposed components using the Pascal VOC

Keypoint as benchmark. Tick denotes the feature is activated. For
finetuned CNN feature it means it is fine-tuned using the graph

matching training data, otherwise the CNN is pretrained by ImageNet.

finetuned CNN intra-graph cross-graph iterative affinity
accuracy

feature embedding embedding embeding metric
X X X X X 66.9
X X X X × 66.3
X X X × × 64.2
X X × × × 62.1
X × × × × 54.8
× × × × × 41.9

TABLE 8
Matching accuracy (%) by number of iterations for iterative cross-graph

affinity component design in the IPCA-GM method on Pascal VOC
Keypoint. Here ‘–’ means the model fails to converge under this setting.

# of iterations 1 2 3 4 5
IPCA-GM (Alg. 2) 63.1 65.3 66.9 64.2 –
Intra1-IPCA-GM 64.6 64.1 63.8 63.6 63.0

to parameter τ compared to PCA-GM and PIA-GM, since it
is crucial to select a suitable discriminative level of affinity
metric at early iterations in IPCA-GM. And there will be a
higher chance of explosive gradient if τ is too small, causing
PIA-GM and IPCA-GM fail to converge with τ = 0.0005.

4.5.2 IPCA-GM components

We conduct ablation study by enabling/disabling different
IPCA-GM components and report results in Table 7. The
ablation study reveals that all our components have pos-
itive effect on matching accuracy. We initialize VGG16 by
pretrained weights on ImageNet classification, embedding
layers by random weights from uniform distribution, and
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TABLE 9
Matching accuracy (%) on Pascal VOC Keypoint without outliers tested with varying numbers of iterations during testing. The model weights are all

from the learned IPCA-GM model reported in Table 1, trained with 3 iterations.

# iters aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
3 51.0 64.9 68.4 60.5 80.2 74.7 71.0 73.5 42.2 68.5 48.9 69.3 67.6 64.8 48.6 84.2 69.8 62.0 79.3 89.3 66.9
5 50.0 64.8 65.6 60.1 80.3 75.6 69.7 72.9 41.7 66.7 52.5 67.2 67.6 62.7 46.2 82.5 71.3 61.0 79.6 90.6 66.4

10 49.9 64.9 65.3 59.8 80.4 75.8 69.7 73.1 41.9 66.7 52.5 67.1 67.7 62.6 46.4 82.5 71.3 60.1 79.5 90.5 66.4
20 50.0 65.0 65.2 59.8 80.4 75.8 69.7 73.1 41.9 66.7 52.5 67.1 67.6 62.6 46.2 82.5 71.4 59.3 79.7 90.5 66.4

the weighting matrix of affinity function by identity matrix
disturbed by uniform random noise.

4.5.3 Cross-graph component design

The the cross-graph matrix in iterative cross-graph in Algo-

rithm 2, is initialized Ŝ
(0) as a zero matrix. We experiment

a family of models where Ŝ
(0) is initialized by the output of

first intra-graph embedding layer h
(1)
1i ,h

(1)
2j namely “Intra1-

IPCA-GM”, and we find they do not perform comparatively
compared to our zero-initialization design. We also test with
fmsg-cross, fmsg-cross in Eqs. 12, 13 implemented by single fully-
connect layer followed by ReLU activation, however the
model fails to converge, which may be due to too much
complexity in the cross-graph layer. As shown in Table 8,
too many cross-graph iterations (e.g. 4, 5) will degener-
ate the model’s performance, even causing the model fail
to converge. A possible explanation would be the heavy
iteration adopted (including iterative cross-graph update
and Sinkhorn iterations) may cause instability for backward
gradient computation. We empirically find 3 iterations for
IPCA-GM introduced in Algorithm 2 best performs among
all methods, therefore we stick to this design in this paper.

The convergence property of the iterative cross-graph
embedding in IPCA-GM is also studied, and in experiment

the predicted cross-graph similarity matrix Ŝ
(k) gradually

converges when the number of iterations k grows. By adopt-
ing the IPCA-GM model weights reported in Table 1, we
report its test result with 5, 10 and 20 cross-graph iterations
in Table 9. Interestingly, the performance does not vary
much compared to the original configuration, therefore we
stick with 3 iterations for its cost-efficiency.

Compared to Algorithm 2, the iterative update scheme
discussed in Section 4.5 of [22] can be improved. It will

become identical to Algorithm 2 if we assign {h
(3)
1i }, {h

(3)
2j }

to {h
(1)
1i }, {h

(1)
2j } after L13 inside the loop. Such an update

scheme assumes features in the first and the last embedding
layers are in the same feature space, which violates different
feature mapping functions in different embedding layers.
Therefore, the iterative update scheme in Section 4.5 of [22]
performs poorly in experiments.

Recently, another differentiable replacement of Sinkhorn
module for linear assignment problem is proposed by [67].
However, it seems to suffer from poor convergence speed
compared to Sinkhorn algorithm under our deep graph
matching setting. We empirically find [67] needs around 200
inner loops and 100 outer loops to converge. In contrast,
Sinkhorn algorithm requires only 10 iterations. Thus we
stick to Sinkhorn algorithm in our model design.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel deep graph
matching pipeline, which parameterizes the graph matching
affinity with deep CNN and novel embedding layers. To
model the arbitrary transformation between two graphs, a
permutation loss is proposed as the learning objective. We
demonstrate our methods achieve state-of-the-art matching
accuracy, robustness against outliers, and generalization
capability across different datasets and different categories
with extensive experimental results, including an abla-
tion study on proposed components and the comparison
with peer methods. Future work may explore the semi-
supervised and unsupervised settings by incorporating the
cycle consistency over multiple graphs.
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