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Abstract We consider generalizations of Schützenberger’s promotion operator on
the set L of linear extensions of a finite poset of size n. This gives rise to a strongly
connected graph on L. By assigning weights to the edges of the graph in two different
ways, we study two Markov chains, both of which are irreducible. The stationary state
of one gives rise to the uniform distribution, whereas the weights of the stationary
state of the other have a nice product formula. This generalizes results by Hendricks
on the Tsetlin library, which corresponds to the case when the poset is the anti-chain
and hence L = Sn is the full symmetric group. We also provide explicit eigenvalues
of the transition matrix in general when the poset is a rooted forest. This is shown by
proving that the associated monoid is R-trivial and then using Steinberg’s extension
of Brown’s theory for Markov chains on left regular bands to R-trivial monoids.

Keywords Linear extensions · Posets · Promotion operator · Markov chains

1 Introduction

Schützenberger [30] introduced the notion of evacuation and promotion on the set of
linear extensions of a finite poset P of size n. This generalizes promotion on standard
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Young tableaux defined in terms of jeu-de-taquin moves. Haiman [19] as well as
Malvenuto and Reutenauer [26] simplified Schützenberger’s approach by expressing
the promotion operator ∂ in terms of more fundamental operators τi (1 ≤ i < n),
which either act as the identity or as a simple transposition. A beautiful survey on
this subject was written by Stanley [33].

In this paper, we consider a slight generalization of the promotion operator de-
fined as ∂i = τiτi+1 · · · τn−1 for 1 ≤ i ≤ n with ∂1 = ∂ being the original promotion
operator. Since the operators ∂i act on the set of all linear extensions of P , denoted
L(P ), this gives rise to a graph whose vertices are the linear extensions and edges
are labeled by the action of ∂i . We show that this graph is strongly connected (see
Proposition 4.1). As a result we obtain two irreducible Markov chains on L(P ) by
assigning weights to the edges in two different ways. In one case, the stationary state
is uniform, that is, every linear extension is equally likely to occur (see Theorem 4.3).
In the other case, we obtain a nice product formula for the weights of the stationary
distribution (see Theorem 4.5). We also consider analogous Markov chains for the ad-
jacent transposition operators τi , and give a combinatorial formula for their stationary
distributions (see Theorems 4.4 and 4.7).

Our results can be viewed as a natural generalization of the results of Hen-
dricks [20, 21] on the Tsetlin library [36], which is a model for the way an arrange-
ment of books in a library shelf evolves over time. It is a Markov chain on permu-
tations, where the entry in the ith position is moved to the front (or back depending
on the conventions) with probability pi . Hendricks’ results from our viewpoint cor-
respond to the case when P is an anti-chain and hence L(P ) = Sn is the full sym-
metric group. Many variants of the Tsetlin library have been studied and there is a
wealth of literature on the subject. We refer the interested reader to the monographs
by Letac [24] and by Dies [14], as well as the comprehensive bibliographies in [17]
and [6].

One of the most interesting properties of the Tsetlin library Markov chain is that
the eigenvalues of the transition matrix can be computed exactly. The exact form
of the eigenvalues was independently investigated by several groups. Notably Don-
nelly [15], Kapoor and Reingold [23], and Phatarfod [27] studied the approach to
stationarity in great detail. There has been some interest in finding exact formulas for
the eigenvalues for generalizations of the Tsetlin library. The first major achievement
in this direction was to interpret these results in the context of hyperplane arrange-
ments [4, 6, 7]. This was further generalized to a class of monoids called left regular
bands [10] and subsequently to all bands [11] by Brown. This theory has been used
effectively by Björner [8, 9] to extend eigenvalue formulas on the Tsetlin library from
a single shelf to hierarchies of libraries.

In this paper, we give explicit combinatorial formulas for the eigenvalues and mul-
tiplicities for the transition matrix of the promotion Markov chain when the under-
lying poset is a rooted forest (see Theorem 5.2). This is achieved by proving that
the associated monoid is R-trivial and then using a generalization of Brown’s the-
ory [10] of Markov chains for left regular bands to the R-trivial case using results by
Steinberg [34, 35].

Computing the number of linear extensions is an important problem for real world
applications [22]. For example, it relates to sorting algorithms in computer science,
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rankings in the social sciences, and efficiently counting standard Young tableaux in
combinatorics. A recursive formula was given in [16]. Brightwell and Winkler [12]
showed that counting the number of linear extensions is #P -complete. Bubley and
Dyer [5] provided an algorithm to (almost) uniformly sample the set of linear exten-
sions of a finite poset quickly. We propose new Markov chains for sampling linear
extensions uniformly randomly. Further details are discussed in Sect. 7.

The paper is outlined as follows. In Sect. 2, we define the extended promotion
operator and investigate some of its properties. The extended promotion and transpo-
sition operators are used in Sect. 3 to define various Markov chains, whose properties
are studied in Sect. 4. We also prove formulas for the stationary distributions and ex-
plain the connection with the Tsetlin library there. In Sect. 5, we derive the partition
function for the promotion Markov chains for rooted forests as well as all eigenvalues
together with their multiplicities of the transition matrix. The statements about eigen-
values and multiplicities are proven in Sect. 6 using the theory of R-trivial monoids.
We end with possible directions for future research in Sect. 7. In the Appendix, we
provide details about implementations of linear extensions, Markov chains, and their
properties in Sage [28, 29] and Maple.

2 Extended promotion on linear extensions

2.1 Definition of extended promotion

Let P be an arbitrary poset of size n, with partial order denoted by �. We assume
that the elements of P are labeled by integers in [n] := {1,2, . . . , n}. In addition, we
assume that the poset is naturally labeled, that is, if i, j ∈ P with i � j in P then
i ≤ j as integers. Let L := L(P ) be the set of its linear extensions,

L(P ) =
{

π ∈ Sn | i ≺ j in P =⇒ π−1
i < π−1

j as integers
}

, (2.1)

which is naturally interpreted as a subset of the symmetric group Sn. Note that the
identity permutation e always belongs to L. Let Pj be the natural (induced) subposet
of P consisting of elements k such that j � k [32].

We now briefly recall the idea of promotion of a linear extension of a poset P .
Start with a linear extension π ∈ L(P ) and imagine placing the label π−1

i in P at the
location i. By the definition of the linear extension, the labels will be well-ordered.
The action of promotion of π will give another linear extension of P as follows:

(i) The process starts with a seed, the label 1. First remove it and replace it by the
minimum of all the labels covering it, i, say.

(ii) Now look for the minimum of all labels covering i in the original poset, and
replace it, and continue in this way.

(iii) This process ends when a label is a “local maximum.” Place the label n + 1 at
that point.

(iv) Decrease all the labels by 1.

This new linear extension is denoted π∂ [33].
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Fig. 1 A linear extension π

(left) and π∂ (right)

Example 2.1 Figure 1 shows a poset (left) to which we assign the identity linear
extension π = 123456789. The linear extension π ′ = π∂ = 214537869 obtained by
applying the promotion operator is depicted on the right. Note that indeed we place
π

′−1
i in position i, namely 3 is in position 5 in π ′, so that 5 in π∂ is where 3 was

originally.
Figure 2 illustrates the steps used to construct the linear extension π∂ from the

linear extension π from Fig. 1. The Appendix includes Sage implementation of this
action.

We now generalize this to extended promotion, whose seed is any of the numbers
1,2, . . . , n. The algorithm is similar to the original one, and we describe it for seed j .
Start with the subposet Pj and perform steps 1–3 in a completely analogous fashion.
Now decrease all the labels strictly larger than j by 1 in P (not only Pj ). Clearly,
this gives a new linear extension, which we denote π∂j . Note that ∂n is always the
identity.

The extended promotion operator can be expressed in terms of more elementary
operators τi (1 ≤ i < n) as shown in [19, 26, 33] and has explicitly been used to count
linear extensions in [16]. Let π = π1 · · ·πn ∈ L(P ) be a linear extension of a finite
poset P in one-line notation. Then

πτi =

⎧

⎪

⎨

⎪

⎩

π1 · · ·πi−1πi+1πi · · ·πn if πi and πi+1 are not

comparable in P,

π1 · · ·πn otherwise.

(2.2)

Alternatively, τi acts non-trivially on a linear extension if interchanging entries πi

and πi+1 yields another linear extension. Then as an operator on L(P ),

∂j = τj τj+1 · · · τn−1. (2.3)

2.2 Properties of τi and extended promotion

The operators τi are involutions (τ 2
i = 1) and partially commute (τiτj = τj τi when

|i − j | > 1). Unlike the generators for the symmetric group, the τi do not al-
ways satisfy the braid relation τiτi+1τi = τi+1τiτi+1. They do, however, satisfy
(τiτi+1)

6 = 1 [33].
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Fig. 2 Constructing π∂ from π

Proposition 2.2 Let P be a poset on [n]. The braid relations

πτj τj+1τj = πτj+1τj τj+1

hold for all 1 ≤ j < n − 1 and all π ∈ L(P ) if and only if P is a union of disjoint

chains.

The proof is an easy case-by-case check. Since we do not use this result, we omit
the proof.

It will also be useful to express the operators τi in terms of the generalized pro-
motion operator.

Lemma 2.3 For all 1 ≤ j ≤ n − 1, each operator τj can be expressed as a product

of promotion operators.
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Proof We prove the claim by induction on j , starting with the case that j = n−1 and
decreasing until we reach the case that j = 1. When j = n − 1, the claim is obvious
since τn−1 = ∂n−1. For j < n − 1, we observe that

τj = τj τj+1 · · · τn−1τn−1 · · · τj+2τj+1

= ∂j τn−1 · · · τj+2τj+1.

By our inductive hypothesis, each of τj+1, . . . , τn−1 can be expressed as a product of
promotion operators, and hence so too can τj . �

3 Various Markov chains

We now consider various discrete-time Markov chains related to the extended pro-
motion operator. For completeness, we briefly review the part of the theory relevant
to us.

Fix a finite poset P of size n. The operators {τi | 1 ≤ i < n} (resp., {∂i | 1 ≤ i ≤ n})
define a directed graph on the set of linear extensions L(P ). The vertices of the
graph are the elements of L(P ) and there is an edge from π to π ′ if π ′ = πτi (resp.,
π ′ = π∂i ). We can now consider random walks on this graph with probabilities given
formally by x1, . . . , xn which sum to 1. In each case, we give two ways to assign the
edge weights, see Sects. 3.1–3.4. An edge with weight xi is traversed with that rate.
A priori, the xi ’s must be positive real numbers for this to make sense according to
the standard techniques of Markov chains. However, the ideas work in much greater
generality and one can think of this as an “analytic continuation.”

A discrete-time Markov chain is defined by the transition matrix M , whose entries
are indexed by elements of the state space. In our case, they are labeled by elements
of L(P ). We take the convention that the (π ′,π) entry gives the probability of going
from π → π ′. The special case of the diagonal entry at (π,π) gives the probability
of a loop at the π . This ensures that column sums of M are one and consequently,
one is an eigenvalue with row (left-) eigenvector being the all-ones vector. A Markov
chain is said to be irreducible if the associated digraph is strongly connected. In
addition, it is said to be aperiodic if the greatest common divisor of the lengths of
all possible loops from any state to itself is one. For irreducible aperiodic chains, the
Perron–Frobenius theorem guarantees that there is a unique stationary distribution.
This is given by the entries of the column (right-) eigenvector of M with eigenvalue 1.
Equivalently, the stationary distribution w(π) is the solution of the master equation,
given by

∑

π ′∈L(P )

Mπ,π ′w
(

π ′
)

=
∑

π ′∈L(P )

Mπ ′,πw(π). (3.1)

Edges which are loops contribute to both sides equally and thus cancel out. For more
on the theory of finite state Markov chains, see [25].

We set up a running example that will be used for each case. The Appendix shows
how to define and work with this poset in Sage.
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Fig. 3 Uniform transposition
graph for Example 3.1. Every
vertex has four outgoing edges
labeled x1 to x4 and self-loops
are not drawn

Example 3.1 Define P by its covering relations {(1,3), (1,4), (2,3)}, so that its
Hasse diagram is as shown below:

� �

1 2

� �

4 3

�
�
�

Then the elements of L(P ) = {1234,1243,1423,2134,2143} are represented by
the following diagrams, respectively:

� �

1 2

� �

4 3

�
�
�

� �

1 2

� �

3 4

�
�
�

� �

1 3

� �

2 4

�
�
�

� �

2 1

� �

4 3

�
�
�

� �

2 1

� �

3 4

�
�
�

3.1 Uniform transposition graph

The vertices of the uniform transposition graph are the elements of L(P ) and there is
an edge between π and π ′ if and only if π ′ = πτj for some j ∈ [n], where we define
τn to be the identity map. This edge is assigned the symbolic weight xj . The name
“uniform” is motivated by the fact that the stationary distribution of this Markov
chain turns out to be uniform. Note that this chain is more general than the chains
considered in [22] in that we assign arbitrary weights xj on the edges.

Example 3.2 Consider the poset and linear extensions of Example 3.1. The uniform
transposition graph is illustrated in Fig. 3.

The transition matrix, with the lexicographically ordered basis, is given by
⎛

⎜

⎜

⎜

⎜

⎝

x2 + x4 x3 0 x1 0
x3 x4 x2 0 x1
0 x2 x1 + x3 + x4 0 0
x1 0 0 x2 + x4 x3
0 x1 0 x3 x2 + x4

⎞

⎟

⎟

⎟

⎟

⎠

.

Note that the weight x4 only appears on the diagonal since τ4 acts as the identity for
n = 4. By construction, the column sums of the transition matrix are one. Note that in
this example the row sums are also one (since the matrix is symmetric), which means
that the stationary state of this Markov chain is uniform. We will prove this in general
in Theorem 4.4.
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Fig. 4 Transposition graph for
Example 3.1. Every vertex has
four outgoing edges labeled x1
to x4 and self-loops are not
drawn

3.2 Transposition graph

The transposition graph is defined in the same way as the uniform transposition
graph, except that the edges are given the symbolic weight xπj

whenever τj takes
π → π ′.

Example 3.3 The transposition graph for the poset in Example 3.1 is illustrated in
Fig. 4. The transition matrix is given by

⎛

⎜

⎜

⎜

⎜

⎝

x2 + x4 x4 0 x2 0
x3 x3 x4 0 x2
0 x2 x1 + x2 + x3 0 0
x1 0 0 x1 + x4 x4
0 x1 0 x3 x1 + x3

⎞

⎟

⎟

⎟

⎟

⎠

. (3.2)

Again, by definition the column sums are one, but the row sums are not one in this
example. In fact, the stationary distribution (column vector with eigenvalue 1) is given
by the eigenvector

(

1,
x3

x4
,

x2x3

x4
2

,
x1

x2
,

x1x3

x2x4

)T

. (3.3)

We give a closed form expression for the weights of the stationary distribution in the
general case in Theorem 4.7.

3.3 Uniform promotion graph

The vertices of the uniform promotion graph are labeled by elements of L(P ) and
there is an edge between π and π ′ if and only if π ′ = π∂j for some j ∈ [n]. In this
case, the edge is given the symbolic weight xj .

Example 3.4 The uniform promotion graph for the poset in Example 3.1 is illustrated
in Fig. 5. The transition matrix, with the lexicographically ordered basis, is given by

⎛

⎜

⎜

⎜

⎜

⎝

x4 x3 x1 + x2 0 0
x2 + x3 x4 0 x1 0

0 x2 x3 + x4 0 x1
0 x1 0 x4 x2 + x3
x1 0 0 x2 + x3 x4

⎞

⎟

⎟

⎟

⎟

⎠

.
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Fig. 5 Uniform promotion
graph for Example 3.1. Every
vertex has four outgoing edges
labeled x1 to x4 and self-loops
are not drawn

Fig. 6 Promotion graph for
Example 3.1. Every vertex has
four outgoing edges labeled x1
to x4 and self-loops are not
drawn

Note that as in Example 3.2 the row sums are one although the matrix is not sym-
metric, so that the stationary state of this Markov chain is uniform. We prove this for
general finite posets in Theorem 4.3.

As in the uniform transposition graph, x4 occurs only on the diagonal in the above
transition matrix. This is because the action of ∂4 (or in general ∂n) maps every linear
extension to itself resulting in a loop.

3.4 Promotion graph

The promotion graph is defined in the same fashion as the uniform promotion graph
with the exception that the edge between π and π ′ when π ′ = π∂j is given the
weight xπj

.

Example 3.5 The promotion graph for the poset of Example 3.1 is illustrated in
Fig. 6. Although it might appear that there are many more edges here than in Fig. 5,
this is not the case. The transition matrix this time is given by

⎛

⎜

⎜

⎜

⎜

⎝

x4 x4 x1 + x4 0 0
x2 + x3 x3 0 x2 0

0 x2 x2 + x3 0 x2
0 x1 0 x4 x1 + x4
x1 0 0 x1 + x3 x3

⎞

⎟

⎟

⎟

⎟

⎠

.

Notice that row sums are no longer one. The stationary distribution, as a vector writ-
ten in row notation is

(

1,
x1 + x2 + x3

x1 + x2 + x4
,

(x1 + x2)(x1 + x2 + x3)

(x1 + x2)(x1 + x2 + x4)
,

x1

x2
,

x1(x1 + x2 + x3)

x2(x1 + x2 + x4)

)T

.
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Again, we will give a general such result in Theorem 4.5.

In the Appendix, implementations of these Markov chains in Sage and Maple

are discussed.

4 Properties of the various Markov chains

In Sect. 4.1, we prove that the Markov chains defined in Sect. 3 are all irreducible.
This is used in Sect. 4.2 to conclude that their stationary state is unique and either
uniform or given by an explicit product formula in their weights.

Throughout this section, we fix a poset P of size n and let L := L(P ) be the set
of its linear extensions.

4.1 Irreducibility

We now show that the four graphs of Sect. 3 are all strongly connected.

Proposition 4.1 Consider the digraph G whose vertices are labeled by elements of L

and whose edges are given as follows: for π,π ′ ∈ L, there is an edge between π and

π ′ in G if and only if π ′ = π∂j (resp., π ′ = πτj ) for some j ∈ [n] (resp., j ∈ [n−1]).
Then G is strongly connected.

Proof We begin by showing the statement for the generalized promotion operators
∂j . From an easy generalization of [33], we see that extended promotion, given by
∂j , is a bijection for any j . Therefore, every element of L has exactly one such edge
pointing in and one such edge pointing out. Moreover, ∂j has finite order, so that
π∂k

j = π for some k. In other words, the action of ∂j splits L into disjoint cycles. In
particular, π∂n = π for all π so that it decomposes L into cycles of size 1.

It suffices to show that there is a directed path from any π to the identity e. We
prove this by induction on n. The case of the poset with a single element is vacu-
ous. Suppose the statement is true for every poset of size n − 1. We have two cases.
First, suppose π−1

1 = 1. In this case, ∂2, . . . , ∂n act on L in exactly the same way as
∂1, . . . , ∂n−1 on L′, the set of linear extensions of P ′, the poset obtained from P by
removing 1. Then the directed path exists by the induction assumption.

Instead, suppose π−1
1 = j and π−1

k = 1, for j, k > 1. In other words, the label j is
at position 1 and label 1 is at position k of P . Since j is at the position of a minimal
element in P , it does not belong to the upper set of 1 (that is j � 1 in the relabeled
poset). Thus, the only effect on j of applying ∂1 is to reduce it by 1, i.e., if π ′ = π∂1,
then π ′−1

1 = j − 1. Continuing this way, we can get to the previous case by the action

of ∂
j−1
1 on π .

The statement for the τj now follows from Lemma 2.3. �

Corollary 4.2 Assuming that the edge weights are strictly positive, all Markov chains

of Sect. 3 are irreducible and their stationary distribution is unique.
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Proof Since the underlying graph of all four Markov chains of Sect. 3 is strongly con-
nected, they are irreducible. The existence of a single loop at any vertex of the graph
guarantees aperiodicity. The uniqueness of the stationary distribution then follows by
standard theory of Markov chains [25, Chap. 1]. �

4.2 Stationary states

In this section, we prove properties of the stationary state of the various discrete-time
Markov chains defined in Sect. 3, assuming that all xi ’s are strictly positive.

Theorem 4.3 The discrete-time Markov chain according to the uniform promotion

graph has the uniform stationary distribution, that is, each linear extension is equally

likely to occur.

Proof Stanley showed [33] that the promotion operator has finite order, that is, ∂k =

id for some k. The same arguments go through for the extended promotion operators
∂j . Therefore, at each vertex π ∈ L(P ), there is an incoming and outgoing edge
corresponding to ∂j for each j ∈ [n]. For the uniform promotion graph, an edge for
∂j is assigned weight xj , and hence the row sum of the transition matrix is one, which
proves the result. Equivalently, the all ones vector is the required eigenvector. �

Theorem 4.4 The discrete-time Markov chain according to the uniform transposition

graph has the uniform stationary distribution.

Proof Since each τj is an involution, every incoming edge with weight xj has an
outgoing edge with the same weight. Another way of saying the same thing is that
the transition matrix is symmetric. By definition, the transition matrix is constructed
so that column sums are one. Therefore, row sums are also one. �

We now turn to the promotion and transposition graphs of Sect. 3. In this case, we
find nice product formulas for the stationary weights.

Theorem 4.5 The stationary state weight w(π) of the linear extension π ∈ L(P ) for

the discrete-time Markov chain for the promotion graph is given by

w(π) =

n
∏

i=1

x1 + · · · + xi

xπ1 + · · · + xπi

, (4.1)

assuming w(e) = 1.

Remark 4.6 The entries of w do not, in general, sum to one. Therefore, this is not a
true probability distribution, but this is easily remedied by a multiplicative constant
ZP depending only on the poset P .

Proof of Theorem 4.5 We prove the theorem by induction on n. The case n = 1 is
trivial. By Remark 4.6, it suffices to prove the result for any normalization of w(π).



864 J Algebr Comb (2014) 39:853–881

For our purposes it is most convenient to use the normalization

w(π) =

n
∏

i=1

1

xπ1 + · · · + xπi

. (4.2)

To prove (4.2), we need to show that it satisfies the master equation (3.1), rewritten
as

w(π)

(

n
∑

i=1

xπi

)

=

n
∑

j=1
π ′=πτn−1···τj

xπ ′
j
w

(

π ′
)

. (4.3)

The left-hand side is the contribution of the outgoing edges, whereas the right-hand
side gives the weights of the incoming edges of vertex π .

Singling out the term j = n and setting π̃ := πτn−1, the right-hand side of (4.3)
becomes

xπnw(π) +

n−1
∑

j=1
π ′=π̃τn−2···τj

xπ ′
j
w

(

π ′
)

. (4.4)

Now, notice that the nth entry of π ′ in one-line notation in every term of the sum is
π̃n which is either πn or πn−1. Let σ̃ be considered as a permutation of size n − 1
given by (π̃1, . . . , π̃n−1). Then using the formula for w in (4.2) to separate out the
last term in the product, we obtain

n−1
∑

j=1
π ′=π̃τn−2···τj

xπ ′
j
w

(

π ′
)

=
1

xπ1 + · · · + xπn

n−1
∑

j=1
σ ′=σ̃ τn−2···τj

xσ ′
j
w

(

σ ′
)

(4.5)

The induction assumption now applies to the sum on the right hand side, and
hence (4.3) yields

xπnw(π) +

n−1
∑

j=1
π ′=π̃τn−2···τj

xπ ′
j
w

(

π ′
)

= xπnw(π) +
1

xπ1 + · · · + xπn

w(σ̃ )(xπ̃1 + · · · + xπ̃n−1),

= xπnw(π) + w(π̃)(xπ̃1 + · · · + xπ̃n−1).

We now distinguish two cases: either τn−1 acts trivially on π or not. In the first
case, set π̃ = π and we immediately obtain the left-hand side of (4.3). In the second
case, observe that w(π) as in (4.2) satisfies the following recursion if τj acts non-
trivially

w(πτj ) =
xπ1 + · · · + xπj

xπ1 + · · · + xπj−1 + xπj+1

w(π).
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Using this for j = n − 1 and xπ̃1 + · · · + xπ̃n−1 = xπ1 + · · · + xπn−2 + xπn yields the
left-hand side of (4.3). �

When P is the n-antichain, then L = Sn. In this case, the probability distribution
of Theorem 4.5 has been studied in a completely different context by Hendricks [20,
21] and is known in the literature as the Tsetlin library [36], which we now describe.
Suppose that a library consists of n books b1, . . . , bn on a single shelf. Assume that
only one book is picked at a time and is returned before the next book is picked up.
The book bi is picked with probability xi and placed at the end of the shelf.

We now explain why promotion on the n-antichain is the Tsetlin library. A given
ordering of the books can be identified with a permutation π . The action of ∂k on
π gives πτk · · · τn−1 by (2.3), where now all the τi ’s satisfy the braid relation since
none of the πj ’s are comparable. Thus the kth element in π is moved all the way to
the end. The probability with which this happens is xπk

, which makes this process
identical to the action of the Tsetlin library.

The stationary distribution of the Tsetlin library is a special case of Theorem 4.5.
In this case, ZP of Remark 4.6 also has a nice product formula, leading to the proba-
bility distribution,

w(π) =

n
∏

i=1

xπi

xπ1 + · · · + xπi

. (4.6)

Letac [24] considered generalizations of the Tsetlin library to rooted trees (meaning
that each element in P besides the root has precisely one successor). Our results hold
for any finite poset P .

Theorem 4.7 The stationary state weight w(π) of the linear extension π ∈ L(P ) of

the transposition graph is given by

w(π) =

n
∏

i=1

xi−πi
πi

, (4.7)

assuming w(e) = 1.

Proof To prove the above result, we need to show that it satisfies the master equation
(3.1), rewritten as

w(π)

(

n
∑

i=1

xπi

)

=

n
∑

j=1

x
π

(j)
j

w
(

π (j)
)

, (4.8)

where π (j) = πτj . Let us compare π (j) and π . By definition, they differ at the po-

sitions j and j + 1 at most. Either π (j) = π , or π
(j)

j = πj+1 and π
(j)

j+1 = πj . In the
former case, we get a contribution to the right hand side of (4.8) of xπj

w(π), whereas
in the latter, xπj+1w(π (j)). But note that in the latter case by (4.7)

w(π (j))

w(π)
=

x
j−πj+1
πj+1 x

j+1−πj
πj

x
j−πj
πj

x
j+1−πj+1
πj+1

=
xπj

xπj+1

,
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and the contribution is again xπj
w(π). Thus the j th term on the right matches that

on the left, and this completes the proof. �

5 Partition functions and eigenvalues for rooted forests

For a certain class of posets, we are able to give an explicit formula for the prob-
ability distribution for the promotion graph. Note that this involves computing the
partition function ZP (see Remark 4.6). We can also specify all eigenvalues and their
multiplicities of the transition matrix explicitly.

5.1 Main results

Before we can state the main theorems of this section, we need to make a couple
of definitions. A rooted tree is a connected poset, where each node has at most one
successor. Note that a rooted tree has a unique largest element. A rooted forest is a
union of rooted trees. A lower set (resp., upper set) S in a poset is a subset of the
nodes such that if x ∈ S and y � x (resp., y 	 x), then also y ∈ S. We first give the
formula for the partition function.

Theorem 5.1 Let P be a rooted forest of size n and let x�i =
∑

j�i xj . The partition

function for the promotion graph is given by

ZP =

n
∏

i=1

x�i

x1 + · · · + xi

. (5.1)

Proof We need to show that w′(π) := ZP w(π) with w(π) given by (4.1) satisfies
∑

π∈L(P )

w′(π) = 1.

We shall do so by induction on n. Assume that the formula is true for all rooted forests
of size n − 1. The main idea is that the last entry of π in one-line notation has to be a
maximal element of one of the trees in the poset. Let P = T1 ∪ T2 ∪ · · · ∪ Tk , where
each Ti is a tree. Moreover, let T̂i denote the maximal element of Ti . Then

∑

π∈L(P )

w′(π) =

k
∑

i=1

∑

σ∈L(P \{T̂i})

w′(σ T̂i).

Using (4.1) and (5.1)

w′(σ T̂i) = w′(σ )
x
�T̂i

x1 + · · · + xn

,

which leads to

∑

π∈L(P )

w′(π) =

k
∑

i=1

x
�T̂i

x1 + · · · + xn

∑

σ∈L(P \{T̂i })

w′(σ ).
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By the induction assumption, the rightmost sum is 1, and since each xj occurs in one
and only one numerator of the sums over i, an easy simplification leads to the desired
result, �

Let L be a finite poset with smallest element 0̂ and largest element 1̂. Follow-
ing [10, Appendix C], one may associate to each element x ∈ L a derangement num-

ber dx defined as

dx =
∑

y	x

μ(x, y)f
(

[y, 1̂]
)

, (5.2)

where μ(x, y) is the Möbius function for the interval [x, y] := {z ∈ L | x � z �

y} [32, Sect. 3.7] and f ([y, 1̂]) is the number of maximal chains in the interval [y, 1̂].
A permutation is a derangement if it does not have any fixed points. A linear

extension π is called a poset derangement if it is a derangement when considered as
a permutation. Let dP be the number of poset derangements of the poset P .

A lattice L is a poset in which any two elements have a unique supremum (also
called join) and a unique infimum (also called meet). For x, y ∈ L the join is denoted
by x ∨ y, whereas the meet is x ∧ y. For an upper semi-lattice we only require the
existence of a unique supremum of any two elements.

Theorem 5.2 Let P be a rooted forest of size n and M the transition matrix of the

promotion graph of Sect. 3.4. Then

det(M − λ1) =
∏

S⊆[n]
S upper set in P

(λ − xS)dS ,

where xS =
∑

i∈S xi and dS is the derangement number in the lattice L (by inclusion)
of upper sets in P . In other words, for each subset S ⊆ [n], which is an upper set in P ,
there is an eigenvalue xS with multiplicity dS .

The proof of Theorem 5.2 will be given in Sect. 6. As we will see in Lemma 6.5,
the action of the operators in the promotion graph of Sect. 3.4 for rooted forests have
a Tsetlin library type interpretation of moving books to the end of a stack (up to
reordering).

When P is a union of chains, which is a special case of rooted forests, we can
express the eigenvalue multiplicities directly in terms of the number of poset de-
rangements.

Theorem 5.3 Let P = [n1] + [n2] + · · · + [nk] be a union of chains of size n whose

elements are labeled consecutively within chains. Then

det(M − λ1) =
∏

S⊆[n]
S upper set in P

(λ − xS)dP \S ,

where d∅ = 1.

The proof of Theorem 5.3 is given in Sect. 5.2.
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Corollary 5.4 For P a union of chains, we have the identity

∣

∣L(P )
∣

∣ =
∑

S⊆[n]
S upper set in P

dS =
∑

S⊆[n]
S lower set in P

dS . (5.3)

Note that the antichain is a special case of a rooted forest and in particular a union
of chains. In this case, the Markov chain is the Tsetlin library and all subsets of [n] are
upper (and lower) sets. Hence Theorem 5.2 specializes to the results of Donnelly [15],
Kapoor and Reingold [23], and Phatarfod [27] for the Tsetlin library.

The case of unions of chains, which are consecutively labeled, can be interpreted
as looking at a parabolic subgroup of Sn. If there are k chains of lengths ni for
1 ≤ i ≤ k, then the parabolic subgroup is Sn1 × · · · × Snk

. In the realm of the Tsetlin
library, there are ni books of the same color. The Markov chain consists of taking a
book at random and placing it at the end of the stack.

5.2 Proof of Theorem 5.3

We deduce Theorem 5.3 from Theorem 5.2 by which the matrix M has eigenvalues
indexed by upper sets S with multiplicity dS . We need to show that dP \S = dS .

Let P be a union of chains and L the lattice of upper sets of P . The Möbius
function of P is the product of the Möbius functions of each chain. This implies that
the only upper sets of P with a nonzero entry of the Möbius function are the ones
with unions of the top element in each chain.

Since upper sets of unions of chains are again unions of chains, it suffices to con-
sider d∅ for P as dS can be viewed as d∅ for P \ S. By (5.2) we have

d∅ =
∑

S

μ(∅, S)f
(

[S, 1̂]
)

,

where the sum is over all upper sets of P containing only top elements in each
chain. Recall that f ([S, 1̂]) is the number of chains from S to 1̂ in L. By inclusion–
exclusion, the claim that d∅ = dP is the number of poset derangements of P , that
is, the number of linear extensions of P without fixed points, follows from the next
lemma.

Lemma 5.5 Let P = [n1]+ [n2]+ · · ·+ [nk]. Fix I ⊆ [k] and let S ⊆ P be the upper

set containing the top element of the ith chain of P for all i ∈ I . Then f ([S, 1̂]) is

equal to the number of linear extensions of P that fix at least one element of the ith

chain of P for all i ∈ I .

Proof Let n = n1 + n2 + · · · + nk denote the number of elements in P . Let N1 = 0
and define Ni = n1 + · · · + ni−1 for all 2 ≤ i ≤ k. We label the elements of P con-
secutively so that Ni + 1,Ni + 2, . . . ,Ni+1 label the elements of the ith chain of P

for all 1 ≤ i ≤ k.
The linear extensions of P are in bijection with words w of length n in the

alphabet E := {e1, e2, . . . , ek} with ni instances of each letter ei . Indeed, given a
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linear extension π of P , we associate such a word w to π by setting wj = ei if
πj ∈ {Ni + 1, . . . ,Ni+1}; i.e., if j lies in the ith column of P under the extension π .
For the remainder of the proof, we will identify a linear extension π (and properties
of π ) with its corresponding word w. We also view ei as standard basis vectors in Zk .

For any 1 ≤ i ≤ k and 1 ≤ j ≤ ni , the element Ni + j is fixed by w if and only if
w satisfies the following two conditions:

• wNi+j = ei (i.e., w sends Ni + j to the ith column of P ) and
• the restriction of w to its first Ni +j letters, which we denote w|[1,...,Ni+j ], contains

exactly j instances of the letter ei (i.e., Ni + j is the j th element of the ith column
of P under the extension w).

Moreover, it is clear that the set of all j ∈ {1, . . . , ni} such that w fixes Ni + j is
an interval of the form [ai, bi].

With I and S defined as in the statement of the lemma, let

n′
i :=

{

ni − 1 if i ∈ I,

ni if i /∈ I.

Similarly, define N ′
1 = 0 and N ′

i = n′
1 + · · · + n′

i−1 for i ≥ 2. We see that f ([S, 1̂])

counts the number of words of length n − |I | in the alphabet E with n′
j instances of

each letter ej . This is because S corresponds to the element δI defined by

δI (i) =

{

1 if i ∈ I,

0 if i /∈ I,

of L. The maximal chains in L from δI to (n1, n2, . . . , nk) are lattice paths in Zk with
steps in the directions of the standard basis vectors e1, e2, . . . , ek .

Having established this notation, we are ready to prove the main statement of the
Lemma. Let W denote the collection of all words in the alphabet E of length n with
nj instances of each letter ej that fix an element of the ith chain of P for all i ∈ I .
Let W ′ denote the collection of all words of length n − |I | in the alphabet E with n′

j

instances of each letter ej .
We define a bijection ϕ : W → W ′ as follows. For each i ∈ I , suppose w ∈ W

fixes the elements Ni + ai, . . . ,Ni + bi from the ith chain of P . We define ϕ(w) to
be the word obtained from w by removing the letter ei in position wNi+bi

for each
i ∈ I . Clearly, ϕ(w) has length n − |I | and n′

j instances of each letter ej .
Conversely, given w′ ∈ W ′, let Ji be the set of indices N ′

i +j with 0 ≤ j ≤ n′
i such

that w′|[1,...,N ′
i+j ] contains exactly j instances of the letter ei . Here we allow j = 0

since it is possible that there are no instances of the letter ei among the first N ′
i letters

of w′. Again, it is clear that each Ji is an interval of the form [N ′
i + ci, . . . ,N

′
i + di]

and w′
Ni+j = ei for all j ∈ [ci + 1, . . . , di], though it is possible that w′

N ′
i+ci

�= ei .

Thus we define ϕ−1(w′) to be the word obtained from w′ by inserting the letter ei

after w′
N ′

i+di
for all i ∈ I . �

We illustrate the proof of Lemma 5.5 in the following example.
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Example 5.6 Let P = [3] + [4] + [2] + [5], I = {2,4}, and consider the linear exten-
sion

π := 1 10 4 8 5 6 2 3 11 9 7 12 13 14,

which corresponds to the word

w = e1e4e2|e3e2e2e1|e1e4|e3e2e4e4e4.

Here we have divided the word according to the chains of P . The fixed points of π in
the second and fourth chains of P are shown in bold, along with their corresponding
entries of the word w. In this case, ϕ(w) = e1e4e2e3e2e1e1e4e3e2e4e4.

Conversely, consider

w′ = e2e1e4|e3e3e1|e2e1|e2e4e4e4 ∈ W
′.

Again, we have partitioned w′ into blocks of size n′
i for each i = 1, . . . ,4. In this case,

J2 = {4} and J4 = {10,11,12}, so ϕ−1(w′) is the following word, with the inserted
letters shown in bold:

ϕ−1(w′
)

= e1e1e4|e3e2e1e3|e2e1|e2e4e4e4e4.

Remark 5.7 The initial labeling of P in the proof of Lemma 5.5 is essential to the
proof. For example, let P be the poset [2] + [2] with two chains, each of length
two. Labeling the elements of P so that 1 < 2 and 3 < 4 admits two derangements:
3142 and 3412. On the other hand, labeling the elements of P so that 1 < 4 and
2 < 3 only admits one derangement: 2143. In either case, the eigenvalue 0 of M has
multiplicity 2.

6 R-Trivial monoids

In this section, we provide the proof of Theorem 5.2. We first note that in the case
of rooted forests the monoid generated by the relabeled promotion operators of the
promotion graph is R-trivial (see Sects. 6.1 and 6.2). Then we use a generalization of
Brown’s theory [10] for Markov chains associated to left regular bands (see also [6,
7]) to R-trivial monoids. This is, in fact, a special case of Steinberg’s results [34,
Theorems 6.3 and 6.4] for monoids in the pseudovariety DA as stated in Sect. 6.3.
The proof of Theorem 5.2 is given in Sect. 6.4.

6.1 R-Trivial monoids

A finite monoid M is a finite set with an associative multiplication and an identity
element. Green [18] defined several preorders on M. In particular, for x, y ∈M right
and left order is defined as

x ≤R y if y = xu for some u ∈M,

x ≤L y if y = ux for some u ∈M.
(6.1)
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(Note that this is, in fact, the opposite convention used by Green). This ordering gives
rise to equivalence classes (R-classes or L-classes)

x R y if and only if xM = yM,

x L y if and only if Mx = My.

The monoid M is said to be R-trivial (resp., L-trivial) if all R-classes (resp., L-
classes) have cardinality one.

Remark 6.1 A monoid M is a left regular band if x2 = x and xyx = xy for all
x, y ∈ M. It is not hard to check (see also [3, Example 2.4]) that left regular bands
are R-trivial.

Schocker [31] introduced the notion of weakly ordered monoids which is equiv-
alent to the notion of R-triviality [3, Theorem 2.18] (the proof of which is based on
ideas by Steinberg and Thiéry).

Definition 6.2 A finite monoid M is said to be weakly ordered if there is a finite
upper semi-lattice (LM,�) together with two maps supp,des :M → LM satisfying
the following axioms:

(i) supp is a surjective monoid morphism, that is, supp(xy) = supp(x) ∨ supp(y)

for all x, y ∈ M and supp(M) = LM.
(ii) If x, y ∈M are such that xy ≤R x, then supp(y) � des(x).

(iii) If x, y ∈M are such that supp(y) � des(x), then xy = x.

Theorem 6.3 [3, Theorem 2.18] Let M be a finite monoid. Then M is weakly or-

dered if and only if M is R-trivial.

If M is R-trivial, then for each x ∈ M there exists an exponent of x such that
xωx = xω. In particular, xω is idempotent, that is, (xω)2 = xω.

Given an R-trivial monoid M, one might be interested in finding the underlying
semi-lattice LM and maps supp,des.

Remark 6.4 The upper semi-lattice LM and the maps supp,des for an R-trivial
monoid M can be constructed as follows:

(i) LM is the set of left ideals Me generated by the idempotents e ∈ M, ordered
by reverse inclusion.

(ii) supp : M → LM is defined as supp(x) = Mxω.
(iii) des : M → LM is defined as des(x) = supp(e), where e is some maximal ele-

ment in the set {y ∈M | xy = x} with respect to the preorder ≤R.

The idea of associating a lattice (or semi-lattice) to certain monoids has been used
for a long time in the semigroup community [13].
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Fig. 7 Rooted tree used in
Example 6.6

6.2 R-Triviality of the promotion monoid

Now let P be a rooted forest of size n and ∂̂i for 1 ≤ i ≤ n the operators on L(P )

defined by the promotion graph of Sect. 3.4. That is, for π,π ′ ∈ L(P ), the operator

∂̂i maps π to π ′ if π ′ = π∂
π−1

i
. We are interested in the monoid M∂̂ generated by

{∂̂i | 1 ≤ i ≤ n}.

Lemma 6.5 Let P and ∂̂i be as above, and π ∈ L(P ). Then π∂̂i is the linear exten-

sion in L(P ) obtained from π by moving the letter i to position n and reordering all

letters j 	 i.

Proof Suppose π−1
i = k. Then the letter i is in position k in π . Furthermore by

definition π∂̂
π−1

i
= π∂̂k = πτkτk+1 · · · τn−1. Since π is a linear extension of P , all

comparable letters are ordered within π . Hence τk either tries to switch i with a letter
j 	 i or an incomparable letter j . In the case j 	 i, τk acts as the identity. In the
other case, τk switches the elements. In the first (resp., second) case, we repeat the
argument with i replaced by its unique successor j (resp., i) and τk replaced by τk+1,
etc. It is not hard to see that this results in the claim of the lemma. �

Example 6.6 Let P be the union of a chain of length 3 and a chain of length 2, where
the first chain is labeled by the elements {1,2,3} and the second chain by {4,5}. Then
41235∂̂1 = 41253, which is obtained by moving the letter 1 to the end of the word
and then reordering the letters {1,2,3}, so that the result is again a linear extension
of P .

As another example, let P be the rooted tree of Fig. 7. Then 31245 ∈ L(P ).
It is easy to check from the definition that 31245 ∂̂3 = 12345. In accordance with
Lemma 6.5, we can move the letter 3 to the back to obtain 12453. However, then the
letters 3,4,5 in j 	 3 are out of order and need to be reordered to obtain 12345.

Let x ∈ M∂̂ . The image of x is im(x) = {πx | π ∈ L(P )}. Furthermore, for each
π ∈ im(x), let fiber(π, x) = {π ′ ∈ L(P ) | π = π ′x}. Let rfactor(x) be the maximal
common right factor of all elements in im(x), that is, all elements π ∈ im(x) can be
written as π = π1 · · ·πm rfactor(x) and there is no bigger right factor for which this
is true. Let us also define the set of entries in the right factor Rfactor(x) = {i | i ∈

rfactor(x)}. Note that since all elements in the image set of x are linear extensions
of P , Rfactor(x) is an upper set of P .

By Lemma 6.5, linear extensions in im(∂̂i) have as their last letter maxP {j | j 	 i};
this maximum is unique since P is a rooted forest. Hence it is clear that im(∂̂ix) ⊆
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im(x) for any x ∈ M∂̂ and 1 ≤ i ≤ n. In particular, if x ≤L y, that is y = ux for

some u ∈ M∂̂ , then im(y) ⊆ im(x). Hence x, y can only be in the same L-class if
im(x) = im(y).

Fix x ∈ M∂̂ and let the set Ix = {i1, . . . , ik} be maximal such that ∂̂ij x = x for
1 ≤ j ≤ k. The following holds.

Lemma 6.7 If x is an idempotent, then Rfactor(x) = Ix .

Proof Recall that the operators ∂̂i generate M∂̂ . Hence we can write x = ∂̂α1 · · · ∂̂αm

for some αj ∈ [n].
The condition ∂̂ix = x is equivalent to the condition that for every π ∈ im(∂̂i) there

is a π ′ ∈ im(x) such that fiber(π, ∂̂i) ⊆ fiber(π ′, x) and π ′ = πx. Since x is idem-
potent we also have π ′ = π ′x. The first condition fiber(π, ∂̂i) ⊆ fiber(π ′, x) makes
sure that the fibers of x are coarser than the fibers of ∂̂i ; this is a necessary condi-
tion for ∂̂ix = x to hold (recall that we are acting on the right) since the fibers of
∂̂ix are coarser than the fibers of ∂̂i . The second condition π ′ = πx ensures that
im(∂̂ix) = im(x). Conversely, if the two conditions hold, then certainly ∂̂ix = x.
Since x2 = x is an idempotent, we hence must have ∂̂αj

x = x for all 1 ≤ j ≤ m.

Now let us consider x∂̂αj
. If αj /∈ Rfactor(x), then, by Lemma 6.5, we have

Rfactor(x) � Rfactor(x∂̂αj
) and hence |im (x∂̂αj

)| < |im (x)|, which contradicts the
fact that x2 = x. Therefore, αj ∈ Rfactor(x).

Now suppose ∂̂ix = x. Then x = ∂̂i ∂̂α1 · · · ∂̂αm and by the same arguments as above
i ∈ Rfactor(x). Hence Ix ⊆ Rfactor(x). Conversely, suppose i ∈ Rfactor(x). Then
x∂̂i has the same fibers as x (but possibly a different image set since rfactor(x∂̂i) =

rfactor(x)∂̂i which can be different from rfactor(x)). This implies x∂̂ix = x. Hence
considering the expression in terms of generators x = ∂̂α1 · · · ∂̂αm ∂̂i ∂̂α1 · · · ∂̂αm , the
above arguments imply that ∂̂ix = x. This shows that Rfactor(x) ⊆ Ix and hence
Ix = Rfactor(x). This proves the claim. �

Lemma 6.8 Ix is an upper set of P for any x ∈ M∂̂ . More precisely, Ix = Rfactor(e)

for some idempotent e ∈M∂̂ .

Proof For any x ∈ M∂̂ , rfactor(x) ⊆ rfactor(xℓ) for any integer ℓ > 0. Also, the
fibers of xℓ are coarser or equal to the fibers of x. Since the right factors can be of

length at most n (the size of P ) and M∂̂ is finite, for ℓ sufficiently large we have
(xℓ)2 = xℓ, so that xℓ is an idempotent. Now take a maximal idempotent e in the ≥R

preorder such that ex = x (when Ix = ∅ we have e = 1) which exists by the previous
arguments. Then Ie = Ix which, by Lemma 6.7, is also Rfactor(e). This proves the
claim. �

Let M be the transition matrix of the promotion graph of Sect. 3.4. Define M to
be the monoid generated by {Gi | 1 ≤ i ≤ n}, where Gi is the matrix M evaluated at
xi = 1 and all other xj = 0. We are now ready to state the main result of this section.

Theorem 6.9 M is R-trivial.
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Fig. 8 Monoid M in right
order for the poset of
Example 6.11

Remark 6.10 Considering the matrix monoid M is equivalent to considering the

abstract monoid M∂̂ generated by {∂̂i | 1 ≤ i ≤ n}. Since the operators ∂̂i act on the

right on linear extensions, the monoid M∂̂ is L-trivial instead of R-trivial.

Example 6.11 Let P be the poset on three elements {1,2,3}, where 2 covers 1 and
there are no further relations. The linear extensions of P are {123,132,312}. The
monoid M with R-order, where an edge labeled i means right multiplication by Gi ,
is depicted in Fig. 8. From the picture it is clear that the elements in the monoid are
partially ordered. This confirms Theorem 6.9 that the monoid is R-trivial.

Example 6.12 Now consider the poset P on three elements {1,2,3}, where 1 is
covered by both 2 and 3 with no further relations. The linear extensions of P are
{123,132}. This poset is not a rooted forest. The corresponding monoid in R-order
is depicted in Fig. 9. The two elements

(

0 1
1 0

)

and

(

1 0
0 1

)

are in the same R-class. Hence the monoid is not R-trivial, which is consistent with
Theorem 6.9.

Proof of Theorem 6.9 By Theorem 6.3, a monoid is R-trivial if and only if it is
weakly ordered. We prove the theorem by explicitly constructing the semi-lattice
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Fig. 9 Monoid M in right
order for the poset of
Example 6.12

LM and maps supp,des : M∂̂ → LM of Definition 6.2. In fact, since we work with

M∂̂ , we will establish the left version of Definition 6.2 by Remark 6.10.

Recall that for x ∈ M∂̂ , we defined the set Ix = {i1, . . . , ik} to be maximal such
that ∂̂ij x = x for 1 ≤ j ≤ k.

Define des(x) = Ix and supp(x) = des(xω). By Lemma 6.7, for idempotents x we

have supp(x) = des(x) = Ix = Rfactor(x). Let LM = {Rfactor(x) | x ∈ M∂̂ , x2 =

x} which has a natural semi-lattice structure (LM,�) by inclusion of sets. The join
operation is union of sets.

Certainly by Lemma 6.7 and the definition of LM, the map supp is surjective.
We want to show that in addition supp(xy) = supp(x) ∨ supp(y), where ∨ is the join
in LM. Recall that supp(x) = des(xω) = Rfactor(xω). If x = ∂̂j1 · · · ∂̂jm in terms of
the generators and Jx := {j1, . . . , jm}, then, by Lemma 6.5, Rfactor(xω) contains the
upper set of Jx in P plus possibly some more elements that are forced if the upper set
of Jx has only one successor in the semi-lattice of upper sets in P . A similar argument
holds for y with Jy . Now again by Lemma 6.5, supp(xy) = Rfactor((xy)ω) contains
the elements in the upper set of Jx ∪Jy , plus possibly more forced by the same reason
as before. Hence supp(xy) = supp(x) ∨ supp(y). This shows that Definition 6.2(i)
holds.

Suppose x, y ∈M∂̂ with yx ≤L x. Then there exists a z ∈M∂̂ such that zyx = x.
Hence supp(y) � supp(zy) � Ix = des(x) by Lemmas 6.7 and 6.8. Conversely, if

x, y ∈ M∂̂ are such that supp(y) � des(x), then by the definition of des(x) we have
supp(y) � Ix , which is the list of indices of the left stabilizers of x. By the definition
of supp(y) and the proof of Lemma 6.7, yω can be written as a product of ∂̂i with
i ∈ supp(y). The same must be true for y. Hence yx = x, which shows that the left
version of (ii) and (iii) of Definition 6.2 hold.

In summary, we have shown that M∂̂ is weakly ordered in L-preorder and hence
L-trivial. This implies that M is R-trivial. �

Remark 6.13 In the proof of Theorem 6.9 we explicitly constructed the semi-lattice

LM = {Rfactor(x) | x ∈ M∂̂ , x2 = x} and the maps supp,des : M∂̂ → LM of Defi-
nition 6.2. Here des(x) = Ix is the set of indices Ix = {i1, . . . , im} such that ∂̂ij x = x

for all 1 ≤ j ≤ m and supp(x) = des(xω) = Ixω = Rfactor(xω).



876 J Algebr Comb (2014) 39:853–881

Fig. 10 The left graph is the
lattice LM of the weakly
ordered monoid for the poset in
Example 6.14. The right graph
is the lattice L of all upper sets
of P

Example 6.14 Let P be the poset of Example 6.11. The monoid M with R-order,
where an edge labeled i means right multiplication by Gi , is depicted in Fig. 8.
The elements x = 1,G2,G3,G2G3,G

2
1 are idempotent with supp(x) = des(x) =

∅,2,123,123, 123, respectively. The only non-idempotent element is G1 with
supp(G1) = 123 and des(G1) = ∅. The semi-lattice LM is the left lattice in Fig. 10.
The right graph in Fig. 10 is the lattice L of all upper sets of P .

6.3 Eigenvalues and multiplicities for R-trivial monoids

Let M be a finite monoid (for example, a left regular band) and {wx}x∈M a proba-
bility distribution on M with transition matrix for the random walk given by

M(c,d) =
∑

xc=d

wx (6.2)

for c, d ∈ C, where C is the set of maximal elements in M under right order ≥R. The
set C is also called the set of chambers.

Recall that by Remark 6.4 we can associate a semi-lattice LM and functions
supp,des : M → LM to an R-trivial monoid M. For X ∈ LM, define cX to be
the number of chambers in M≥X , that is, the number of c ∈ C such that c ≥R x,
where x ∈ M is any fixed element with supp(x) = X.

Theorem 6.15 Let M be a finite R-trivial monoid with transition matrix M as

in (6.2). Then M has eigenvalues

λX =
∑

y
supp(y)�X

wy (6.3)

for each X ∈ LM with multiplicity dX recursively defined by

∑

Y	X

dY = cX. (6.4)

Equivalently,

dX =
∑

Y	X

μ(X,Y ) cY , (6.5)

where μ is the Möbius function on LM.
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Brown [10, Theorem 4, p. 900] proved Theorem 6.15 in the case when M is a left
regular band. Theorem 6.15 is a generalization to the R-trivial case. It is, in fact, a
special case of a result of Steinberg [34, Theorems 6.3 and 6.4] for monoids in the
pseudovariety DA. This was further generalized in [35].

6.4 Proof of Theorem 5.2

By Theorem 6.9, the promotion monoid M is R-trivial, hence Theorem 6.15 applies.
Let L be the lattice of upper sets of P and LM the semi-lattice of Definition 6.2

associated to R-trivial monoids that is used in Theorem 6.15. Recall that for the
promotion monoid LM = {Rfactor(x) | x ∈M∂̂ , x2 = x} by Remark 6.13. Now pick
S ∈ L and let r = r1 . . . rm be any linear extension of P |S (denoting P restricted to S).
By repeated application of Lemma 6.5, it is not hard to see that x = ∂̂r1 · · · ∂̂rm is an
idempotent since r1 . . . rm ⊆ rfactor(x) and x only acts on this right factor and fixes
it. rfactor(x) is strictly bigger than r1 . . . rm if some further letters beyond r1 . . . rm
are forced in the right factors of the elements in the image set. This can only happen
if there is only one successor S′ of S in the lattice L. In this case, the element in S′ \S

is forced as the letter to the left of r1 . . . rm and is hence part of rfactor(x).
Recall that f ([S, 1̂]) is the number of maximal chains from S to the maximal

element 1̂ in L. Since L is the lattice of upper sets of P , this is precisely the number
of linear extensions of P |P \S . If S ∈ L has only one successor S′, then f ([S, 1̂]) =

f ([S′, 1̂]). Equation (5.2) is equivalent to

f
(

[S, 1̂]
)

=
∑

T 	S

dT

(see [10, Appendix C] for more details). Hence f ([S, 1̂]) = f ([S′, 1̂]) implies that
dS = 0 in the case when S has only one successor S′.

Now suppose S ∈ LM is an element of the smaller semi-lattice. Recall that cS

of Theorem 6.15 is the number of maximal elements in x ∈ M∂̂ with x ≥R s for
some s with supp(s) = S. In M the maximal elements in R-order (or equivalently,

in M∂̂ in L-order) form the chamber C (resp., C ∂̂ ) and are naturally indexed by the
linear extensions in L(P ). Namely, given π = π1 . . . πn ∈ L(P ) the element x =

∂̂π1 · · · ∂̂πn is idempotent, maximal in L-order and has as image set {π}. Conversely,

given a maximal element x in L-order it must have rfactor(x) ∈ L(P ). Given s ∈M∂̂

with supp(s) = S, only those maximal elements x ∈ M∂̂ associated to π ∈ im(s) are
bigger than s. Hence for S ∈ LM we have cS = f ([S, 1̂]).

The above arguments show that instead of LM one can also work with the lattice
L of upper sets since any S ∈ L but S /∈ LM comes with multiplicity dS = 0 and
otherwise the multiplicities agree.

The promotion Markov chain assigns a weight xi for a transition from π to π ′

for π,π ′ ∈ L(P ) if π ′ = π∂̂i . Recall that elements in the chamber C ∂̂ are natu-
rally associated with linear extensions. Let x, x′ ∈ C ∂̂ be associated to π,π ′, re-
spectively. That is, π = τx and π ′ = τx′ for all τ ∈ L(P ). Then x′ = x∂̂i since
τ(x∂̂i) = (τx)∂̂i = π∂̂i = π ′ for all τ ∈ L(P ). Equivalently in the monoid M we
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would have X′ = GiX for X,X′ ∈ C. Hence comparing with (6.2), setting the proba-
bility variables to wGi

= xi and wX = 0 for all other X ∈ M, Theorem 6.15 implies
Theorem 5.2.

Example 6.16 Figure 10 shows the lattice LM on the left and the lattice L of upper
sets of P on the right, for the monoid displayed in Fig. 8. The elements 2,23,12 in
L have only one successor and hence do not appear in LM.

7 Outlook

Two of our Markov chains, the uniform promotion graph and the uniform transposi-
tion graph, are irreducible and have the uniform distribution as their stationary distri-
butions. Moreover, the former is irreversible and has the advantage of having tunable
parameters x1, . . . , xn whose only constraint is that they sum to 1. Because of the
irreversibility property, it is plausible that the mixing times for this Markov chain is
smaller than the ones considered by Bubley and Dyer [5]. Hence the uniform promo-
tion graph could have possible applications for uniformly sampling linear extensions
of a large poset. This is certainly deserving of further study.

It would also be interesting to extend the results of Brown and Diaconis [4] (see
also [1]) on rates of convergence to the Markov chains in this paper. For the Markov
chains corresponding to R-trivial monoids of Sect. 5, one can find polynomial time
exponential bounds for the rates of convergence after ℓ steps of the form c ℓkλℓ−k ,
where c is the number of chambers, λ = maxi(1−xi), and k is a parameter associated
to the poset. More details on rates of convergence and mixing times can be found
in [2].

In this paper, we have characterized posets, where the Markov chains for the pro-
motion graph yield certain simple formulas for their eigenvalues and multiplicities.
The eigenvalues have explicit expressions for rooted forests and there is a concrete
combinatorial interpretation for the multiplicities as derangement numbers of permu-
tations for unions of chains by Theorem 5.3. However, we have not covered all possi-
ble posets, whose promotion graphs have nice properties. For example, the non-zero
eigenvalues of the transition matrix of the promotion graph of the poset in Exam-
ple 3.1 are given by

x3 + x4, x3, 0, and −x1,

even though the corresponding monoid is not R-trivial (in fact, it is not even ape-
riodic). Note that the last eigenvalue is negative. On the other hand, not all posets
have this property. In particular, the poset with covering relations 1 < 2, 1 < 3, and
1 < 4 has six linear extensions, but the characteristic polynomial of its transition ma-
trix does not factorize at all. It would be interesting to classify all posets with the
property that all the eigenvalues of the transition matrices of the promotion Markov
chain are linear in the probability distribution xi . In such cases, one would also like
an explicit formula for the multiplicity of these eigenvalues. In this paper, this was
only achieved for unions of chains. Further details are discussed in [2].
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Appendix: Sage and Maple implementations

We have implemented the extended promotion and transposition operators on linear
extensions in Maple and also the open source software Sage [28, 29]. The Maple
code is available from the homepage of one of the authors (A.A.) as well as the
preprint version on the arXiv, whereas the Sage code was already integrated into
sage-5.0 (by A.S.). Some of the figures in this paper were produced in Sage.

Here we illustrate how to reproduce Example 2.1 in Sage. We define the poset,
view it, and create its linear extensions:

sage: P = Poset(([1,2,3,4,5,6,7,8,9],

[[1,3],[1,4],[2,3],[3,6],[3,7],[4,5],[4,8],[6,9],[7,9]]),

linear_extension = True)

sage: P.show()

sage: L = P.linear_extensions()

Then we define the identity linear extension and compute the promotion on it:
sage: pi = L([1,2,3,4,5,6,7,8,9])

sage: pi.promotion()

[2, 1, 4, 5, 3, 7, 8, 6, 9]

Next we reproduce the examples of Sect. 3. The poset and linear extensions of
Example 3.1 can be constructed as follows:

sage: P = Poset(([1,2,3,4],[[1,3],[1,4],[2,3]]))

sage: L = P.linear_extensions()

sage: L.list()

[[2, 1, 3, 4], [2, 1, 4, 3], [1, 2, 3, 4], [1, 2, 4, 3],

[1, 4, 2, 3]]

To compute the generalized promotion operator on this poset, using the algorithm
defined in Sect. 2.1, we first need to make sure that the poset P is associated with the
identity linear extension:
sage: P = P.with_linear_extension([1,2,3,4])

Alternatively, this is achieved via
sage: P = Poset(([1,2,3,4],[[1,3],[1,4],[2,3]]),

linear_extension = True)

sage: Q = P.promotion(i=2)

sage: Q.show()

The various graphs of Sects. 3.1–3.4 can be created and viewed, respectively, as fol-
lows:
sage: G = L.markov_chain_digraph(action=’tau’)

sage: G = L.markov_chain_digraph(action=’tau’,

labeling=’source’)
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sage: G = L.markov_chain_digraph(action=’promotion’)

sage: G = L.markov_chain_digraph(action=’promotion’,

labeling=’source’)

sage: view(G)

The transition matrices can be computed via
sage: L.markov_chain_transition_matrix(action=’tau’)

with again other settings for “action” or “labeling”, depending on the desired graph.
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