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Abstract. Let ~t 'n be a linear hyperplane arrangement in R n. We define two 
corresponding posets ff~(~r and ~k(Jt'*) of oriented matroids, which approximate 
the Grassmannian Gk(R ~) and the Stiefel manifold Vk(R"). The basic conjectures are 
that the "OM-Grassmannian" f~k(Jr has the homotopy type of Gk(~n), and that 
the "OM-Stiefel bundle" An: A~k(J[ ~) -* Af~k(Jt '") is a surjective map. These con- 
jectures can be proved in some cases: we survey the known results and add some 
new ones. The conjectures fail if they are generalized to nonrealizable oriented 
matroids .gcn. 

1. Introduction 

A combina tor ia l  mode l  for the real Gras smann ian  Gk(~ n) arises when the " ambien t  
space" R n is app rox ima ted  by the cell complex of a finite real hyperp lane  
ar rangement  J(n. F o r  this we consider  all the possible extensions of ~r by 
k-dimensional  flats V k that  a re  al lowed to be topologica l ly  deformed,  but  mi ldly  
enough to make  sure that  the intersections of V k with the hyperplanes  in Jr define 
a correct  (pseudo) a r rangement  in V k. This is mode led  in the unit  sphere S " -  1 ~ R, 
using the theory of  pseudoarrangements and oriented matroids [BLS § see Section 
2 below. 

The combina to r i a l  equivalence classes of extensions of the hyperp lane  
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arrangement Jr'" by such pseudo k-flats form a finite poset 

~k(~e ") 

whose order complex (simplicial complex of chains) serves as a combinatorial 
model for real Grassmannian Gk(R"). The basic conjecture is that ffk(Jr has the 
homotopy type of Gk(R *) for all real arrangements, that is, for all realizable oriented 
matroids ~r 

Recent interest in such combinatorial models for real Grassmannians stems 
from two independent sources: 

Characteristic Classes. In the case of simplicial manifolds, where a differentiable 
structure is not available, Gel'fand and MacPherson [GM],  [Ma] suggest the 
following combinatorial model (which Gel'fand calls the "MacPhersonian") as a 
substitute for the target of the Gauss map. The MacPhersonian McP(n, k) is the 
order complex of the poset of all oriented matroids of rank k on n elements, 
ordered by weak maps. From this point of view it is interesting to find whether 
the cohomology of the MacPhersonian (with Z/2-coefficients) agrees with that of 
Gk(R"). We see below that the MacPhersonian is in fact canonically isomorphic 
to (~k(~-"), where ~-" is the free oriented matroid of coordinate hyperplanes in R". 
We collect some supporting evidence for the conjecture that this model has the 
required properties. 

Extension Spaces and Semialgebraic Geometry. Consider a projection n: P ~ Q 
of polytopes. The finite set of polyhedral subdivisions of Q that are induced by n 
is partially ordered by refinement. The Generalized Baues Conjecture, as posed 
by Billera et al. [BKS], is that the order complex of this poset always has the 
homotopy type of a sphere of dimension dim(P) - dim(Q) - 1. The special case 
when P is a cube (and hence Q is a zonotope) is equivalent to the "extension space 
conjecture," stating that ~ ,_  1(Jr - RP"-1 whenever ~r is realizable, see [SZ]. 

This conjecture is of special interest from the point of view of linear representa- 
tions of oriented matroids (which is a form of first-order ordered field theory). The 
space dr(~r162 can be seen as an intrinsically defined representation space of an 
oriented matroid. In fact, the chain complex of the poset of all embeddings of 
adjoints of ~t'" into g(~r162 can be considered as a first approximation of the space 
of linear representations of ./t". From this point of view the homotopy type of 
g(~r can be a very nontrivial invariant of linear representability. 

In this paper we start (Section 2) with the construction of f~k(~r162 and a 
collection of partial results about its topology, which are all very recent. In Section 
3 we define the OM-Stiefel space ~k(Jr over the OM-Grassmannian and present 
evidence for the conjecture that the projection map is always surjective. In 
particular, this is true in the case of the MacPhersonian, ~t" = ~-". 

There is an analogous treatment possible for the oriented Grassmannians, 
where the double cover of f~k(./r n) is constructed by replacing every oriented 
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matroid by its two possible basis orientations (chirotopes). This provides, in 
particular, the setting for the extension space conjecture mentioned above. To 
avoid technicalities we restrict our attention to the unoriented case in this paper. 

We feel that the OM-Grassmannians and the OM-Stiefel bundles are both very 
basic objects that can unify the treatment of some crucial but delicate geometric 
questions. We do not claim originality: the basic idea is due to MacPherson and 
many of the observations in this paper are probably "folklore." 

2. The OM-Grassmannian and Its Homotopy Type 

We refer to [BLS +] for an exposition of the theory of oriented matroids. A good 
reference for the methods of combinatorial topology is [Bj]. Here we only review 
the basic set-up and fix terminology. 

Let {H a . . . . .  H,,} be a set of m hyperplanes through the origin in ~". Without 
loss of information we can intersect with the unit sphere S"-1 and consider the 
corresponding sphere arrangement d "  = {S o . . . .  , S ~ in S"-1. Assume that the 
intersection (-]7'=1 S o = ~ is trivial, and that a positive side S + has been chosen 
for every hyperplane. Then the arrangement defines a regular cell decomposition 
F(d")  of S"- 1. Every face of the cell decomposition corresponds to a covector, i.e., 
a sign vector X E { +,  - ,  0}", where Xi = + means that the face lies on the positive 
side of the ith hyperplane, Xi = 0 means that it lies on the ith hyperplane, etc. 
This set L~ ~_ { + ,  --, 0}" of sign vectors satisfies the covector axioms for oriented 
matroids [BLS +, Section 4.1]; it is referred to as the oriented matroid Jt" of rank 
n associated with d "  (given by its covectors). 

The covectors are partially ordered componentwise, where 0 < + and 0 < - .  
The corresponding partially ordered set of sign vectors, also denoted by ~, is 
canonically isomorphic to the face poset of the arrangement (resp. of F(d")). In 
particular, the order complex AZP(~/")\0 is isomorphic to the barycentric subdivi- 
sion sd(F(d")). Thus the arrangement d "  can be reconstructed from the oriented 
matroid up to homeomorphism. 

In general, the simplicial complex A ~  of an oriented matroid ~g" does not 
correspond to a real arrangement, that is, the oriented matroid is not realizable. 
However, A ~  is the barycentric subdivision of a PL regular cell decomposition 
F(Jt'") of S"- 1 which corresponds to an arrangement of pseudospheres, i.e., images 
of S "-2 under a self-homeomorphism of S"-1 [BLS +, Section 5.1]. For general 
oriented matroids (as they occur in the OM-Grassmannians) it has to be allowed 
that the arrangements under consideration contain multiple copies of a pseudo- 
sphere, and possibly "loops," given by copies of the ambient sphere S"-1. We refer 
to Section 5.1 of [BLS +] for precise definitions and for details. In all of the 
following ~t'" denotes an oriented matroid of rank n on a ground set of size m, 
which we identify with the set Ira] .'= {1 . . . . .  m}. With these precautions, the 
Topological Representation Theorem of Folkman and Lawrence [FL], [BLS +, 
Chapters 4 and 5] asserts an equiValence between 

�9 the oriented matroids of rank n on Ira] (as given by their covectors), and 
�9 the equivalence classes of arrangements of m pseudospheres in S"- 1 
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If Mr" and JV k are two oriented matroids on the set [m], then their relation is 
described as a strong map, and denoted by .g"  ~ JV k, if every covector of sir k is 
a covector of .g".  Note that this condition implies n > k [-BLS +, Section 7.7]. 

If ./ffk and ./V k are two oriented matroids on the set [m] of the same rank, 
then their relation is described as a weak map, and denoted by .Ark ~.. d(~, if every 
covector X 2 ~ Le(~k2) satisfies X 2 < X 1 for some covector XI  e ~(JVkx) [BLS § 
Section 7.7]. 

Definition 2.1. Let ~ ' "  be an oriented matroid of rank n on the set [m]. The 
OM-Grassmannian of ~g~ is the poset 

: =  

of all strong map images of Jr'" that have rank k, partially ordered by weak maps: 

To get a geometric interpretation, we can consider ~k(~  n) a s  the set of 
equivalence classes of embeddings h: sk-~--* S n - t  such that the intersections of 
the pseudospheres S O with h(S k-  1) determines a pseudoarrangement in S k-  1. Two 
such embeddings are considered equivalent if their images intersect the same set 
of faces of ./gk (i.e., open cells of F(jgk)). 

Thus every equivalence class of embeddings corresponds to a strong map 
.Xt"~  ,/V k. For the converse, note that whenever ~ g " ~  sir k, the inclusion 
.W(JV "k) ~_ .W(,g") defines a canonical simplicial embedding of the (k - D-sphere 
A(.~(,W'k)\0) into the topological realization A(~(~g")\0) = sdF(~-/") of ~g". 

Now a weak map of oriented matroids corresponds to a deformation of the 
extension sphere into a "more  special position." Thus A~gk(,I/" ) is in fact a 
topological model for the space of all extensions of F(.~g n) by a pseudo (k - 1)- 
sphere. 

If ~g" is realizable, then there is a natural map 7r: Gk(R") ~ ~r However, 
this map (the "oriented matroid stratification of GR(R")") is universal in the sense 
that even for k = 3 and . / t " =  ~-~ every semialgebraic variety (up to trivial 
stabilization) occurs as a fiber, for large enough n [ M ] .  Also the map is not in 
general surjective, due to the existence of nonrealizable oriented matroids. Thus, 
we cannot expect this map to carry a homotopy equivalence. 

However, the hope is that, for realizable ~g", the space A~k(.At'" ) is nevertheless 
a good approximation to Gk(R" ) if ~ '  is "dense," and that its homotopy structure 
does not depend on this density condition. 

Conjecture 2.2. l f  ~W n is realizable, then its Grassmannians are homotopy equivalent 
to the real Grassmannian, that is, 

for  all 1 < k <_ n -  1. 
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The following two theorems explain the current status of this conjecture. The 
first one collects the supporting evidence that is available, the second one shows 
two negative results: the conjecture becomes false if only the realizable extensions 
of ~r are considered, and also if it is applied to the subspace of the OM- 
Grassmannian that is spanned by realizable oriented matroids. 

Theorem 2.3. Let ~r be an arbitrary oriented matroid. 

(1) I f  k = 1, then f#k(.l[ ~) is homeomorphic to GI(R ~) = ~p~-1  
I f  k = 2, then f#k(~r162 is homotopy equivalent to Gk(Rn). In particular, it is 
always connected. 

(2) I f k  = n - 1, then f~k(J[ ~) ~-- ~(~')/2 is the unoriented extension space o f  Jr  ~. 
This space is homotopy equivalent to RP  ~- 1 = G,_ I(R") 

if  n < 3 ,  
if  m < n + 2, and 
if Jr'" = C r''" is an alternating oriented matroid. 

(3) I f  Jr = ~ "  is the free oriented matroid on m = n elements, then f~k(~r ~) ~-- 
McP(n,  k) is the MacPhersonian. 
(a) I f  k <_ 3, then the MacPhersonian (gk(~") is homotopy equivalent to 

Gk(R"). 
(b) For all k, the MacPhersonian f~k(~ ~) is connected. 

Proof. (1) This is equivalent to the Topological Representation Theorem: in fact, 
fgx(~ ~) is the poset of all opposite pairs of nonzero covectors of ~'", so Af~x(~r 
is obtained from A(&a(~(")\0)= sdF(J[")~  S"-~ by identification of antipodal 
points. 

To see that (#2(~#") is connected we use basic facts about the "poset of 
regions," which can be found in Sections 4.2 and 4.4 of [BLS§ First observe that 
every extension in ~2(Jr ~) can be deformed to general position. Now consider two 
extensions Jff~ and ~4r 2 in general position, and choose corresponding regions (also 
known as maximal covectors or topes) R~, R2 of ,r which are crossed by Jtr~ 
(resp. Jff2). Then Yl  corresponds to a maximal chain ~1 in the poset of regions 
J(~//*, R1), and JtP2 corresponds to a maximal chain in 3-(~'", R2). We can choose 
a maximal chain c~ of ~-(J/", Rx) that contains R2: it will correspond to an 
extension Jff and also to a maximal chain in 9-'(~ '", R2) that contains R~. Now 
we need that the extensions in f~2(./r ~) that correspond to maximal chains in 
~(~r R~) are connected to each other, showing that Jff~ is connected to j~r in 
f~2(~t'*), and similarly that ~ is connected to Jff2. However, this follows from a 
lemma of Salvetti [S, Lemma 11], which is easy to generalize to oriented matroids, 
see Lemma 4.4.4 of [BLS+]. 

The much stronger result (~2(Jr ~) ~- G2(R") was announced by Babson [Bal],  
[Ba2]. 

(2) This is equivalent to some main results from Sturmfels and Ziegler [SZ], 
to where we refer for details and proofs. The key fact needed for the translation 
to the unoriented Grassmannian, as considered here, is that the homotopy 
equivalences constructed in [SZ] are equivariant with respect to the antipodal 
action of 7//2. 
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(3) This follows from the observation that, for every oriented matroid ~r 'k on 
the ground set I-n], there is a strong map ~ "  --, ~t 'k. 

Part (3a) and related results will appear in Babson [Bal]. We also refer to his 
work for more information about flag spaces of oriented matroids, etc. 

Part (3b) follows from the observation that the minimal elements of McP(n, k) 
are exactly the oriented matroids with exactly one basis. Those are all realizable 
and easily seen to be connected in McP(n, k), using matroid basis exchange. [] 

Theorem 2.4 [SZ], [MR]. 

(1) There is a realizable oriented matroid Suv(14) 3 of rank 3 on 14 points whose 
space of all realizable extensions C~2(Suv(14)3)rea I is not homotopy equivalent 
to a sphere. 

(2) There is a nonrealizable uniform oriented rnatroid R(19) 4 of rank 4 on 19 
points whose extension space contains two isolated points. 

Part (2) of Theorem 2.4 means that if the extension space conjecture is true, 
then the extension complex gives nontrivial criteria for realizability which are of 
a completely new kind from a logic point of view. For each chirotope of an oriented 

matroid X: (~ ) - - ,  { + , - , 0 }  we can canonically associate the formula 

�9 z(X) = (s ~ )  s ign(detXs)=X(J)) ,  

where Xj is a square submatrix of the variable matrix X = (xu) 1_< L<,. l z~sk" (By 
the Universality Theorem [M] every formula of first-order ordered field theory 
has such a form.) Consider the proposition "3X: ~x(X)." The realizability problem 
of X is the problem whether "3X: r is a theorem of first-order ordered field 
theory. In such a context the extension complex is a structured set of formulas 
which almost look like Ox" It will be extremely interesting to understand the 
natural structure of such a "cloud of formulas" around Oz, and to what extent it 
has a "memory"  about whether "3X: Ox(X)" is a theorem or not. 

3. The OM-Stiefel Space and Its Projection 

Definition 3.1. Let ~r be an oriented matroid on [m], and let 1 ___ k _< n - 1. 
The OM-Stiefel poset ~/r~(Jt'") is the set of all extensions of J / "  to an oriented 
matroid ~r on [rn + n - k] such that the set of n - k "new" elements 

A , =  {m + 1 . . . . .  m + n - k }  

is independent, that is, the contraction .~" /A has rank k. The set ~k(.//") is 
partially ordered by weak maps. 
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The chain complex A~k(.At"), the "OM-Stiefel  space," is supposed to serve as 
a topological model  for the (noncompact)  Stiefel manifold Vk(~'): the space of all 
ordered sets of n - k linearly independent  vectors, or, equivalently, of all extensions 
of R n by n - k linear oriented hyperplanes whose intersection has dimension k. 
Intersection of the hyperplanes induces a map p: Vk(R" ) ~ Gk(~'). This defines the 
Stiefel bundle, a locally trivial fiber bundle with fiber GL(~ "-k) [H].  The combina-  
torial analogue of this bundle is given as follows. 

Lemma  3.2. There is an order-preserving map to the OM-Grassmannian 

which induces a simplicial projection map 

A~: A~(~'")  ~ A~k(~"). 

Conjecture 3.3. For every arrangement (realizable oriented matroid) Jg" the projec- 
tion map 

Arc: A~-k(~g ~) -~ A~k(Jg') 

of Lemma 3.2 is surjective for all k. 

Conjecture 3.3 asks only the first main  structural question. Of  course, we would 
also like to know whether  ~k(J4  n) is in general h o m o t o p y  equivalent to the Stiefel 
manifold Vk(gr and about  the structure of  the fibers of the m a p  An, which should 
approximate  the group  GL(~"-k) .  

Fur thermore,  it is natural  to consider the OM-flag spaces 

~ ( J g " ;  n - 1 . . . . .  k).'-- {(~g,-  1 . . . . .  jgg): ~g,  ~ ~g , -1  ~ . . .  ~ jgk}, 

as studied by Babson [Ba l i .  There is a natural  m a p  from the Stiefel space ,~k(~.[n) 
to the OM-f lag  space ~ ( J g ' ;  n - 1 . . . . .  k), which is induced by successive contrac-  
tions. Again, it is natural  to ask whether these maps  are always surjective [Ba2]. 

We now list the support ing evidence for Conjecture 3.3, then point  out that  it 
is not true without  the realizability assumption.  

Theorem 3.4. 

(1) I f k  = 1, then An: A~k(,At 'n) ~ A~k(Jt  'n) is surjective. 
(2) I f  k = n - 1, then n: ~k(Jg ~) ~ ~k( ,g  ~) is an isomorphism of posets. 
(3) I f  Jg  ~ = ~ ,  then An: A~k(~g ~) --* A~k( ,g ' )  is surjective. 
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Proof (1) For  this, lexicographic extensions can be used [BLS +, Section 7.2]. 
In fact, every maximal simplex of fr can be represented by a maximal flag 0 < 
YX < -'- < Y" of covectors in LP = .~e(./r After relabeling and reorientation we 
may assume that the Y' are determined by the basis {1, 2 . . . . .  n} of .//" via 

0 if i e { s + l  . . . . .  n}, 
YT= if i~{1 . . . . .  s}. 

Now we construct lexicographic extensions 

, g ]  .'= ./r + [e~] + [e~] + ' " +  [e+], 

~.g~ := ./r + [e~', ei-] + [e~'] +--"  + [e+], 

^ " ' -  .,r162 [e~, e?] + " "  + [e, +, e;].  ..r162 + [e~, e;]  + 

To see that this yields the required result, first observe two facts: 

(a) If el and f l  are different and not parallel, then the lexicographic extensions 
p = [e~', . . . .  e~ k] and p' = [f~ '  . . . . .  f~q commute: 

..r162 + p + p' =..CC" + p' + p. 

(b) For  k > l, there is a weak map between lexicographic extensions 

./4" + Eel', . . . .  e~ k] ~-* ~r + [e~', . . . .  e~C]. 

From this we get that there is a sequence of weak maps ~',"-~-*...~.* ~r ~-* Jr 
Furthermore, by induction on s it follows that the extension hyperplanes of ~r 
intersect in + Y~. This proves that the simplex [ +  Y", . . . .  _+ y2, _+ y1] is in the 
image of An, with 

+ y .  ~ . . .  ~ + y 2  ~ + y 1 .  

(2) This is an immediate consequence of the embedding into the first barycentric 
subdivision, as discussed after Definition 2.1, see Exercise 7.30 of [BLS+]. 

(3) That the map lr: "Ch(.gr ) ~ f~k(A(")--~ McP(n, k) is surjective follows from 
Brylawski and Ziegler [BZ, Theorem 2]. In fact, the construction "Jr ~ i O \ A "  
given there describes an explicit section. To see that in fact An is surjective, we 
can use a simpler variant of the construction from [BZ], which is not concerned 
about the complementary minor; in particular, we avoid the use of unions, which 
in general do not preserve weak maps. 
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Let Jr k ... k "~ ~/r ~" -~ ~r be a chain of oriented matroids of rank k on the set 
[n]. We assume, after suitable relabeling, that l-k] is a basis of .~'~, and thus of 
all .//~. (This choice corresponds to the selection of a suitable Schubert cell in 
fgk(Jt'" ), over which we construct a section.) 

For  each j, consider the dual oriented matroid (J[~)*, for which (k + 1 . . . . .  n} 
is a basis. Then let (J[~)* + B denote its extension to 

E = [ n ] w B : = [ n ] w { n + k +  1 . . . . .  2n} 

in such a way that i is parallel to i -  n, for all i~B.  We claim that the dual 
~/j._~k ._  ((.//k), + B)* has the required properties. In fact, by construction J[k is an 
oriented matroid of rank n on the ground set I-n] u B. If ~/k is represented by a 
matrix (1Cj), then ~ k  is represented by 

Furthermore,  

('0 0) 

~'~/B ---- ((,~'~)* + B)*/B = ( ( ( ~ ) *  + B)\B)* = (.Mk) **J  = Jf~ 

and 

~ \ B  = ((~'~)* + B)*\B = (((Jr + B)/B)* = (loops on [n])* = ~'". 

Finally, ~ was constructed by parallel extensions and by duality. Both operations 
preserve weak maps, and hence we get 

so that the simplex [./L k . . . . .  j / k ]  e Afgk(~ ") is in the image of Alt. [ ]  

Theorem 3.5 JR]. There is an oriented matroid R(12) 4 of rank 4 on 12 points with 
an extension of rank 2 that is not in the image of the projection map 

z~: 3V'2(R(12) '~) -~ ~2(R(12)4). 

More  geometrically, the example of Theorem 3.5 asserts the following. The 
oriented matroid  R(12) 4 can be represented by an arrangement of pseudo 2-spheres 
in S 3. This arrangement  can be extended by a pseudo 1-sphere h(S t) with the 
following property:  there is no extension of this arrangement by a pseudosphere 
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k(S 2) that intersects all the regions of MR(12)* which are intersected by h(Sl). 
Assuming that we use the canonical embeddings into the barycentric subdivision 
(so that h(S t) is not knotted in S 3) this is equivalent to saying that there is no 
embedding of S 2 so that k(S 2) _ h(St). 

In particular, this kills an old conjecture of Las Vergnas (from 1975, see [AL] 
and Conjecture 7.7.4 of [BLS+]) that every strong map of oriented matroids can 
be factored into an extension followed by a contraction. In our terminology this 
is equivalent to the conjecture that the projection map of Lemma 3.2 is always 
surjective on the set of vertices, which Theorem 3.5 disproves. In the case of 
ordinary matroids this statement, the "Higgs factorization theorem," is true, 
although nontrivial [K]. 

Acknowledgments 

We gratefully acknowledge helpful conversations with Robert D. MacPherson, 
Eric Babson, and Bernd Sturmfels on topics related to this paper. 

References 

[AL] 

[Bali  
[Ba2] 

[BKS] 

[Bj] 

[BLS +] 

[BZ] 

EFL] 
[GM] 

[HI 
[K] 

[Ma] 
[M] 

[MR] 

[R] 

[S] 

[sz] 

L. Allys and M. Las Vergnas: Minors of matroid morphisms, J. Combin. Theory Set. B (to 
appear). 
E. K. Babson: A combinatorial flag space, Ph.D. Thesis, MIT, 1993. 
E. K. Babson: Personal communication. 
L. J. Billera, M. M. Kapranov, and B. Sturmfels: Cellular strings on polytopes, Proc. Amer. 
Math. Soc., to appear. 
A. Bjrrner: Topological methods, in: Handbook of  Combinatorics (R. Graham, M. Grrtschel, 
and L. Lovfisz, eds.), North-Holland, Amsterdam, to appear. 
A. Bjfrner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler: Oriented Matroids, 
Encyclopedia of Mathematics, Cambridge University Press, Cambridge, 1993. 
T. H. Brylawski and G. M. Ziegler: Topological representation of dual pairs of oriented 
matroids, Discrete Comput. Geom., this issue, pp. 237-240. 
J. Folkman and J. Lawrence: Oriented matroids, J. Combin. Theory Ser. B 25 (1978), 199-236. 
I. M. Gel'fand and R. D. MacPherson: A combinatorial formula for the Pontrjagin classes, 
Bull. Amer. Math. Soc. 26 (1992), 304-309. 
D. Husemoller: Fiber Bundles, McGraw-Hill, New York, 1966. 
J. P. S. Kung: Strong maps, in: The Theory ofMatroids (N. White, ed.), Cambridge University 
Press, Cambridge, 1986, pp. 224-253. 
R. D. MacPherson: Combinatorial differential manifolds, Preprint, 1992. 
N. E. Mn~v: The universality theorems on the classification problem of configuration varieties 
and convex polytopes varieties, in: Topology and Geometry--Rohlin Seminar (O. Ya Viro, 
ed.), Lecture Notes in Mathematics, Vol. 1346, Springer-Verlag, Berlin, 1988, pp. 527-544. 
N. E. Mn~v and J. Richter-Gebert: Two constructions of oriented matroids with dis- 
connected extension space, Discrete Comput. Geom., this issue, pp. 271-285. 
J. Richter-Gebert: Oriented matroids with few mutations, Discrete Comput. Geom., this issue, 
pp. 251-269. 
M. Salvetti: Topology of the complement of real hyperplanes in C N, Invent. Math. 88 (1987), 
603-618. 
B. Sturmfels and G. M. Ziegler: Extension spaces of oriented matroids, Discrete Comput. 
Geom. 10(1) (1993), 23-45. 

Received December 23, 1991. 


