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Abstract

Many fundamental NP-hard problems can be formulated as integer linear programs (ILPs). A

famous algorithm by Lenstra allows to solve ILPs in time that is exponential only in the di-

mension of the program. That algorithm therefore became a ubiquitous tool in the design of

fixed-parameter algorithms for NP-hard problems, where one wishes to isolate the hardness of

a problem by some parameter. However, it was discovered that in many cases using Lenstra’s

algorithm has two drawbacks: First, the run time of the resulting algorithms is often doubly-

exponential in the parameter, and second, an ILP formulation in small dimension can not easily

express problems which involve many different costs.

Inspired by the work of Hemmecke, Onn and Romanchuk [Math. Prog. 2013], we develop

a single-exponential algorithm for so-called combinatorial n-fold integer programs, which are

remarkably similar to prior ILP formulations for various problems, but unlike them, also allow

variable dimension. We then apply our algorithm to a few representative problems like Closest

String, Swap Bribery, Weighted Set Multicover, and obtain exponential speedups in

the dependence on the respective parameters, the input size, or both.

Unlike Lenstra’s algorithm, which is essentially a bounded search tree algorithm, our result

uses the technique of augmenting steps. At its heart is a deep result stating that in combinatorial

n-fold IPs an existence of an augmenting step implies an existence of a “local” augmenting step,

which can be found using dynamic programming. Our results provide an important insight into

many problems by showing that they exhibit this phenomenon, and highlights the importance of

augmentation techniques.
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1 Introduction

The Integer Linear Programming (ILP) problem is fundamental as it models many

combinatorial optimization problems. Since it is NP-complete, we naturally ask about the

complexity of special cases. A fundamental algorithm by Lenstra from 1983 shows that

ILPs can be solved in polynomial time when their number of variables (the dimension) d is

fixed [30]; that algorithm is thus a natural tool to prove that the complexity of some special

cases of other NP-hard problems is also polynomial.

A systematic way to study the complexity of “special cases” of NP-hard problems has

been developed in the past 25 years in the field of parameterized complexity. There, the

problem input is augmented by some integer parameter k, and one then measures the problem

complexity in terms of both the instance size n as well as k. Of central importance are

algorithms with run times of the form f(k)nO(1) for some computable function f , which are

called fixed-parameter algorithms; the key idea is that the degree of the polynomial does not

grow with k. For background on parameterized complexity, we refer to the monograph [7].

Kannan’s improvement [23] of Lenstra’s algorithm runs in time dO(d)n, which is thus a

fixed-parameter algorithm for parameter d. Gramm et al. [17] pioneered the application of

Lenstra’s and Kannan’s algorithm in parameterized complexity, giving a fixed-parameter

algorithm for the Closest String problem [17]. This led Niedermeier [34] to propose:

[...] It remains to investigate further examples besides Closest String where

the described ILP approach turns out to be applicable. More generally, it would

be interesting to discover more connections between fixed-parameter algorithms and

(integer) linear programming.

Since then, many more applications of Lenstra’s and Kannan’s algorithm for parameterized

problems have been proposed. However, essentially all of them [5, 9, 10, 21, 33, 29] share

a common trait with the algorithm for Closest String: they have a doubly-exponential

dependence on the parameter. Moreover, it is difficult to find ILP formulations with small

dimension for problems whose input contains many objects with varying cost functions, such

as in Swap Bribery [4, Challenge #2].

Our contributions. We show that a certain form of ILP, which is closely related to the

previously used formulations for Closest String and other problems, can be solved in

single-exponential time and in variable dimension. For example, Gramm et al.’s [17] algorithm

for Closest String runs in time 22O(k log k)

logL and has not been improved since 2003, while

our algorithm runs in time kO(k2) logL. Moreover, our algorithm has a strong combinatorial

flavor and is based on different notions than are typically encountered in parameterized

complexity, most importantly augmenting steps.

As an example of our form of ILP, consider the following ILP formulation of the Closest

String problem. We are given k strings s1, . . . , sk of length L that come (after some
preprocessing) from alphabet [k] := {1, . . . , k}, and an integer d. The goal is to find a string
y ∈ [k]L such that, for each si, the Hamming distance dH(y, si) is at most d, if such y
exists. For i ∈ [L], (s1[i], . . . , sk[i]) is the i-th column of the input. Clearly there are at
most kk different column types in the input, and we can represent the input succinctly with
multiplicities bf of each column type f ∈ [k]k. Moreover, there are k choices for the output
string y in each column. Thus, we can encode the solution by, for each column type f ∈ [k]k

and each output character e ∈ [k]k, describing how many solution columns are of type (f , e).
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This is the basic idea behind the formulation of Gramm et al. [17], as depicted on the left:

∑

e∈[k]

∑

f∈[k]k

dH(e, fj)xf ,e ≤ d
∑

f∈[k]k

∑

(f ′,e)∈[k]k+1

dH(e, fj)xf

f ′,e ≤ d ∀j ∈ [k]

∑

e∈[k]

xf ,e = bf

∑

(f ′,e)∈[k]k+1

x
f

f ′,e = bf ∀f ∈ [k]k

xf ,e ≥ 0 ∀(f , e) ∈ [k]k+1

xf
′

f ,e = 0 ∀f ′ 6= f , ∀e ∈ [k]
0 ≤ xf

f ,e ≤ bf ∀f ∈ [k]k

Let (1 · · · 1) = 1⊺ be a row vector of all ones. Then we can view the above as

D1 D2 · · · Dkk ≤ d D D · · · D ≤ d

1⊺ 0 · · · 0 = b1 1⊺ 0 · · · 0 = b1

0 1⊺ · · · 0 = b2 0 1⊺ · · · 0 = b2

...
...

. . .
... =

...
...

...
. . .

... =
...

0 0 · · · 1⊺ = bkk

0 0 · · · 1⊺ = bkk

,

where D = (D1 D2 . . . Dkk ). The formulation on the right is clearly related to the one

on the left, but contains “dummy” variables which are always zero. This makes it seem

unnatural at first, but notice that it has the nice form

min
{

f(x) | E(n)x = b , l ≤ x ≤ u , x ∈ Z
nt

}

, where E(n) :=















D D · · · D

A 0 · · · 0

0 A · · · 0
...

...
. . .

...

0 0 · · · A















. (1)

Here, r, s, t, n ∈ N, u, l ∈ Z
nt, b ∈ Z

r+ns and f : Znt → Z is a separable convex function, E(n)

is an (r+ns)×nt-matrix, D ∈ Z
r×t is an r×t-matrix and A ∈ Z

s×t is an s×t-matrix. We call

E(n) the n-fold product of E = ( D
A ). This problem (1) is known as n-fold integer programming

(IP )E(n),b,l,u,f . Building on a dynamic program of Hemmecke, Onn and Romanchuk [19]

and a so-called proximity technique of Hemmecke, Köppe and Weismantel [18], Knop and

Koutecký [25] prove that:

◮ Proposition 1 ([25, Theorem 7]). There is an algorithm that, given (IP )E(n),b,l,u,f encoded

with L bits, solves1 it in time aO(trs+t2s) · n3L, where a = max{‖D‖∞, ‖A‖∞}.

However, since the ILP on the bottom right of the previous page has t = kk, applying

Proposition 1 gives no advantage over applying Lenstra to solve the Closest String

problem. We overcome this by focusing on a special case with A = (1 · · · 1) = 1⊺ ∈ Z
1×t,

(b1, . . . , bn) ≥ 0, ui
j ∈ {0, ‖b‖∞} for all i ∈ [n] and j ∈ [t]2, and f(x) = w⊺x, i.e., the

objective is linear. We denote f i(xi) = wi⊺xi. We call this form combinatorial n-fold IP3,

and achieve an exponential speed-up in t:

1 Given an (IP), we say that to solve it is to either (i) declare it infeasible or unbounded or (ii) find a
minimizer of it.

2 More precisely, x ≥ 0 and 1⊺xi = bi imply xi
j ≤ bi and thus we just need either ui

j = 0 or ui
j ≥ bi.

3 We deliberately use the term “n-fold IP” even if our objective is linear, making it an ILP, in order to be
consistent with the previous literature [19, 31, 35].

ESA 2017
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◮ Theorem 2. Let (IP )E(n),b,0,u,w be a combinatorial n-fold IP instance with L = 〈b,0,u,w〉

and a = ‖D‖∞. Then it can be solved in time tO(r)(ar)O(r2)n3L.

Observe that, when applicable, our algorithm is not only faster than Lenstra’s, but works

even if the number n is variable (not parameter).

By applying this result to a few selected problems we obtain exponential improvements in

the dependence on the parameter, the length of the input, or both, as presented in Table 1.

Statements whose proofs are omitted due to space constraints are marked with ⋆.

Stringology. A typical problem from stringology is to find a string y satisfying certain dis-

tance properties with respect to k strings s1, . . . , sk. All previous fixed-parameter algorithms

for such problems we are aware of for parameter k rely on Lenstra’s algorithm, or their

complexity status was complexity open (e.g., the complexity of Optimal Consensus [1] was

unknown for all k ≥ 4). Interestingly, Boucher and Wilkie [3] show the counterintuitive fact

that Closest String is easier to solve when k is large, which makes the parameterization

by k even more significant. Finding an algorithm with run time only single-exponential

in k was a repeatedly posed open problem, e.g. [6, Challenge #1] and [2, Problem 7.1]. By

applying our result, we close this gap for a wide range of problems.

◮ Theorem 3 (⋆). The problems

Closest String, Farthest String, Distinguishing String Selection, Neighbor

String, Closest String with Wildcards, Closest to Most Strings, c-HRC

and Optimal Consensus are solvable in time kO(k2) logL, and,

d-Mismatch is solvable in time kO(k2)L2 logL,

where k is the number of input strings, L is their length, and we are assuming that the input

is presented succinctly by multiplicities of identical columns.

Computational Social Choice. A typical problem in computational social choice involves

an election with voters (V ) and candidates (C). A natural and much studied parameter is

the number of candidates |C|. For a long time, only algorithms double-exponential in |C|

were known, and improving upon them was posed as a challenge [4, Challenge #1]. Recently,

Knop et al. [27] solved the challenge using Proposition 1. However, Knop et al.’s result has a

cubic dependence O(|V |3) on the number of voters, and the dependence on the number of

candidates is still quite large, namely |C|O(|C|6). We improve their result as follows:

◮ Theorem 4 (⋆). R-Swap Bribery can be solved in time

|C|O(|C|2)T 3(log |V |+ log σmax) for R any natural scoring protocol, and,

|C|O(|C|4)T 3(log |V |+ log σmax) for R any C1 rule,

where T ≤ |V | is the number of voter types and σmax is the maximum cost of a swap.

Weighted Set Multicover. Bredereck et al. [5] define the Weighted Set Multicover

(WSM) problem, which is a significant generalization of the classical Set Cover problem.

Their motivation to study WSM was that it captures several problems from computational

social choice and optimization problems on graphs [11, 13, 29, implicit in]. Bredereck et al. [5]

design an algorithm for WSM that runs in time 22O(k log k)

logn, using Lenstra’s algorithm.

Again, applying our result yields an exponential improvement over that of Bredereck et

al. [4] both in the dependence on the parameter and the size of the instance:

◮ Theorem 5. There is an algorithm that solves the Weighted Set Multicover problem

and runs in time kO(k2)W 3(logn+ logwmax), where k is the size of the universe, n denotes

the number of sets, W is the number of different weights and wmax is the maximum weight.
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Table 1 Complexity improvements for a few representative problems.

Problem Previous best runtime Our result

Closest String 22O(k log k)

log L [17] kO(k2) log L

Optimal Consensus FPT for k ≤ 3, open for k ≥ 4 [1] kO(k2) log L

Score-Swap Bribery 22O(|C| log |C|)

log |V | [9] / |C|O(|C|6)|V |3 [27] |C|O(|C|2)T 3 log |V |, with T ≤ |V |

C1-Swap Bribery 22O(|C| log |C|)

log |V | [9] / |C|O(|C|6)|V |3 [27] |C|O(|C|4)T 3 log |V |, with T ≤ |V |

Weighted Set Multicover 22O(k log k)

n [5] kO(k2) log n

Huge n-fold IP FPT with D = I and A totally unimodular FPT with parameter-sized domains

Huge n-fold IP. Onn [36] introduces a high-multiplicity version of the standard n-fold IP

problem (1). It is significant because of its connection to the Bin Packing problem in the

case of few item sizes, as studied by Goemans and Rothvoss [16]. Previously, Huge n-fold

IP was shown to be fixed-parameter tractable when D = I and A is totally unimodular; using

our result, we show that it is also fixed-parameter tractable when D and A are arbitrary,

but the size of variable domains is bounded by a parameter.

A summary of our results is given in Table 1; this list is not meant to be exhaustive.

In fact, we believe that for any Lenstra-based result in the literature which only achieves

double-exponential run times, there is a good chance that it can be sped up using our

algorithm. The only significant obstacle seem to be large coefficients in the constraint matrix.

We provide further insights and discussion in the full version of the paper [26].

Related work. Our main inspiration are augmentation methods based on Graver bases,

especially a fixed-parameter algorithm for n-fold IP of Hemmecke, Onn and Romanchuk [19].

Our result improves the runtime of their algorithm for a special case. All the following

related work is orthogonal to ours in either the achieved result, or the parameters used for it.

In fixed dimension, Lenstra’s algorithm [30] was generalized for arbitrary convex sets and

quasiconvex objectives by Khachiyan and Porkolab [24]. The currently fastest algorithm

of this kind is due to Dadush et al. [8]. The first notable fixed-parameter algorithm for

a non-convex objective is due to Lokshtanov [32], who shows that optimizing a quadratic

function over the integers of a polytope is fixed-parameter tractable if all coefficients are

small. Ganian and Ordyniak [14] and Ganian et al. [15] study the complexity of ILP with

respect to structural parameters such as treewidth and treedepth, and introduce a new

parameter called torso-width.

Besides fixed-parameter tractability, there is interest in the (non)existence of kernels of

ILPs, which formalize the (im)possibility of various preprocessing procedures. Jansen and

Kratsch [22] show that ILPs containing parts with simultaneously bounded treewidth and

bounded domains are amenable to kernelization, unlike ILPs containing totally unimodular

parts. Kratsch [28] studies the kernelizability of sparse ILPs with small coefficients.

2 Preliminaries

For positive integers m,n we set [m : n] = {m, . . . , n} and [n] = [1 : n]. For a graph G we

denote by V (G) the set of its vertices. We write vectors in boldface (e.g., x,y etc.) and their

entries in normal font (e.g., the i-th entry of x is xi). Given an matrix A ∈ Z
m×n, vectors

ESA 2017
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b ∈ Z
m, l,u ∈ Z

n and a function f : Zn → Z, we denote by (IP )A,b,l,u,f the problem

min {f(x) | Ax = b , l ≤ x ≤ u , x ∈ Z
n} .

We say that x is feasible for (IP )A,b,l,u,f if Ax = b and l ≤ x ≤ u. If we want to talk about

any such IP, we simply denote it as (IP).

Graver Bases and Augmentation. Let us now introduce Graver bases, how they can be

used for optimization, and also the special case of n-fold IPs. For background, we refer to

the books of Onn [35] and De Loera et al. [31].

Given two n-dimensional integer vectors x and y, we say they are sign-compatible if they

lie in the same orthant, or equivalently, if for each i ∈ [n], the sign of xi and yi is the same.

We say
∑

i gi is a sign-compatible sum if all gi are pair-wise sign-compatible. Moreover, we

write y ⊑ x if x and y are sign-compatible and |yi| ≤ |xi| for each i ∈ [n], and write y ⊏ x if

at least one of the inequalities is strict. Clearly, ⊑ imposes a partial order called “conformal

order” on n-dimensional vectors. For an integer matrix A ∈ Z
m×n, its Graver basis G(A)

is the set of ⊑-minimal non-zero elements of the lattice of A, kerZ(A) = {z ∈ Z
n | Az = 0}.

An important property of G(A) is the following.

◮ Proposition 6 ([35, Lemma 3.2]). Every integer vector x 6= 0 with Ax = 0 is a sign-

compatible sum x =
∑

i gi of Graver basis elements gi ∈ G(A), with some elements possibly

appearing with repetitions.

Given a feasible solution x to an (IP), we call g a feasible step if x + g is feasible in (IP).

Moreover, we call a feasible step g augmenting if f(x + g) < f(x). Given a feasible solution

x to (IP), we call a tuple (g, α) with α ∈ Z a Graver-best step if g is an augmenting step and

∀g̃ ∈ G(A) and ∀α′ ∈ Z, f(x +αg) ≤ f(x +α′g̃). We call α the step length. The Graver-best

augmentation procedure for an (IP) and a given feasible solution x0 works as follows:

1. If there is no Graver-best step for x0, return it as optimal.

2. If a Graver-best step (α,g) for x0 exists, set x0 := x0 + αg and go to 1.

◮ Proposition 7 ([31, implicit in Theorem 3.4.1]). Given a feasible solution x0 and a separable

convex function f , the Graver-best augmentation procedure finds an optimum in at most

2n− 2 logM steps, where M = f(x0)− f(x∗) and x∗ is any minimizer.

n-fold IP. The structure of E(n) (in problem (1)) allows us to divide the nt variables of x

into n bricks of size t. We use subscripts to index within a brick and superscripts to denote

the index of the brick, i.e., xi
j is the j-th variable of the i-th brick with j ∈ [t] and i ∈ [n].

3 Combinatorial n-fold IPs

This section is dedicated to proving Theorem 2. We fix an instance of combinatorial n-fold

IP, that is, a tuple (n,D,b,u,w).

3.1 Graver complexity of combinatorial n-fold IP

The key property of the n-fold product E(n) is that, for any n ∈ N, the number of nonzero

bricks of any g ∈ G
(

E(n)
)

is bounded by some constant g(E) called the Graver complexity

of E. A proof is given for example by Onn [35, Lemma 4.3]; it goes roughly as follows.

Consider any g ∈ G
(

E(n)
)

and take its restriction to its nonzero bricks ḡ. By Proposition 6,
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each brick ḡj can be decomposed into elements from G(A), giving a vector h whose bricks

are elements of G(A). Then, consider a compact representation v of h by counting how many

times each element from G(A) appears. Since g ∈ G
(

E(n)
)

and h is a decomposition of its

nonzero bricks, we have that
∑

j Dhj = 0. Let G be a matrix with the elements of G(A) as

columns. It is not difficult to show that v ∈ G(DG). Since ‖v‖1 is an upper bound on the

number of bricks of h and thus of nonzero bricks of g and clearly does not depend on n,

g(E) = maxv∈G(DG) ‖v‖1 is finite. Let us make precise two observations from this proof.

◮ Lemma 8 ([20, Lemma 3.1], [35, implicit in proof of Lemma 4.3]). Let (g1, . . . ,gn) ∈ G
(

E(n)
)

.

Then, for all i ∈ [n] there exist vectors hi,1, . . . ,hi,ni ∈ G(A) such that gi =
∑ni

k=1 hi,k, and
∑n

i=1 ni ≤ g(E).

◮ Lemma 9 ([20, Lemma 6.1], [35, implicit in proof of Lemma 4.3]). Let D ∈ Z
r×t, A ∈ Z

s×t,

G ∈ Z
t×p be the matrix whose columns are elements of G(A) and p = |G(A)| ≤ ‖A‖st

∞, and

let E = ( D
A ). Then g(E) ≤ maxv∈G(DG) ‖v‖1 ≤ ‖A‖

st
∞ · (r‖DG‖∞)r.

Notice that this bound on g(E) is exponential in t. Our goal now is to exploit the fact

that the matrix A in a combinatorial n-fold IP is very simple and thus get a better bound.

◮ Lemma 10. Let D ∈ Z
r×t, E =

(

D
1⊺

)

, and a = ‖D‖∞. Then, g(E) ≤ t2(2ra)r.

To see this, we will need to understand the structure of G(1⊺):

◮ Lemma 11. It holds that G(1⊺) = {g | g has one 1 and one −1 and 0 otherwise} ⊆ Z
t,

|G(1⊺)| = t(t− 1), and for all g ∈ G(1⊺), ‖g‖1 = 2.

Proof. Observe that the claimed set of vectors is clearly ⊑-minimal in kerZ(1⊺). We are

left with proving there is no other non-zero ⊑-minimal vector in kerZ(1⊺). For contradiction

assume there is such a vector h. Since it is non-zero, it must have a positive entry hi. On the

other hand, since 1⊺h = 0, it must also have a negative entry hj . But then g with gi = 1,

gj = −1 and gk = 0 for all k 6∈ {i, j} is g ⊏ h, a contradiction. The rest follows. ◭

Proof of Lemma 10. We simply plug into the bound of Lemma 9. By Lemma 11, p =

t(t − 1) ≤ t2. Also, ‖DG‖∞ ≤ maxg∈G(1⊺) {‖D‖∞ · ‖g‖1} ≤ 2a where the last inequality

follows from ‖g‖1 = 2 for all g ∈ G(1⊺), again by Lemma 11. ◭

3.2 Dynamic programming

Hemmecke, Onn and Romanchuk [19] devise a clever dynamic programming algorithm to find

augmenting steps for a feasible solution of an n-fold IP. Lemma 8 is key in their approach, as

they continue by building a set Z(E) of all sums of at most g(E) elements of G(A) and then

use it to construct the dynamic program. However, such a set Z(E) would clearly be of size

exponential in t, which we cannot afford. Our insight here is to build a different dynamic

program. In [20], the layers of the dynamic program correspond to partial sums of elements

of G(A); in our dynamic program, the layers will correspond directly to elements of G(A).

This makes it impossible to enforce feasibility with respect to lower and upper bounds in the

same way as done in [20]; however, we work around this by exploiting the special structure of

G(A) = G(1⊺) and simpler lower and upper bounds and enforce them by varying the number

of layers of given types. Additionally, we also differ in how we enforce feasibility with respect

to the upper rows (D D · · · D).

Given a brick i ∈ [n] and j ∈ [t], let Hi
j =

{

h ∈ G(1⊺) | hj = −1,h ≤ ui
}

∪ {0 ∈ Z
t};

here Hi
j represents the steps which can decrease coordinate xi

j . Observe that |Hi
j | ≤ t. Let

Σ(E) =
∏r

j=1 [−2g(E)a : 2g(E)a] be the signature set of E whose elements are signatures.

ESA 2017
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S

h, Dh

...

...

h,σ

...

...

ĥ,

σ +Dĥ

...

...

·,0

·,0

...

...

· · · · · · · · ·

T

M layers

|Hi
j | · |Σ(E)|

xi
j layers correspond-

ing to coordinate xi
j

Figure 1 A schema of the augmentation graph DP (x).

Essentially, we will use the signature set to keep track of partial sums of selected elements

from h ∈ G(1⊺) to ensure that a resulting vector g satisfies Dg = 0. However, we notice

that to ensure Dg = 0, it is sufficient to remember the partial sum of elements Dh for

h ∈ G(1⊺), thus shrinking them to dimension r. This is another insight which allows us

to avoid the exponential dependence on t. Note that |Σ(E)| ≤ (1 + 4g(E)a)
r
. Given x

with 0 ≤ x ≤ u, we define an index function µ: for i ∈ [n], j ∈ [t] and ℓ ∈ [xi
j ] let

µ(i, j, ℓ) :=
(

∑i−1
k=1 ‖x

k‖1

)

+
(

∑j−1
j′=1 x

i
j′

)

+ ℓ. In the following text, we consider any vector x

satisfying 0 ≤ x ≤ u even though it would be natural to consider a feasible solution. This is

deliberate, as we will later show that we need these claims to hold also for vectors x derived

from feasible solutions which, however, need not be feasible solutions themselves.

◮ Definition 12 (Augmentation Graph). Given a vector x with 0 ≤ x ≤ u, we define the

augmentation graph DP (x) to be the following vertex weighted directed layered graph.

There are two distinguished vertices S and T in DP (x), called the source and the sink. We

split the remaining vertices of DP (x) into M = ‖x‖1 layers, denoted L(1), . . . ,L(M). With

i ∈ [n], j ∈ [t] and ℓ ∈ [xi
j ] we associate the layer L(1) = {(1,h, Dh) | h ∈ H1

1} if µ(i, j, ℓ) = 1

and L
(

µ(i, j, ℓ)
)

=
{

µ(i, j, ℓ)
}

×Hi
j ×Σ(E) otherwise. Let L = maxℓ=1,...,M |L(ℓ)|. A vertex

(

µ(i, j, ℓ),h,σ
)

has weight f i(h + xi)− f i(xi).

There are the following edges in DP (x). From S to every vertex in the first layer L(1).

Let u ∈ L(ℓ) and v ∈ L(ℓ + 1) be vertices in consecutive layers with u = (ℓ,hℓ,σℓ) and

v = (ℓ+ 1,hℓ+1,σℓ+1). If σ
ℓ+1 = σ

ℓ +Dhℓ+1, then there is an edge oriented from u to v.

Finally, there is an edge from every vertex u ∈ L(M) to T if u = (M,h,0).

Note that by the bounds on |G(1⊺)| (Lemma 11) and g(E) (Lemma 10), there are at

most L ≤ t
(

t2(2ra)r
)r

vertices in each layer of DP (x). For an overview of the augmentation

graph refer to Fig. 1.

Let P be an S–T path in DP (x) and let hℓ ∈ G(1⊺) be such that (ℓ,hℓ,σ) is its (ℓ+ 1)-st

vertex. For each i ∈ [n], let gi =
∑t

j=1

∑xi
j

ℓ=1 hµ(i,j,ℓ). We say that h = (h1, . . . ,hM ) is

the P -augmentation vector and that g = (g1, . . . ,gn) is the compression of h (denoted by

g = h↓). Conversely let g ∈ G
(

E(n)
)

and recall that M is the number of layers of DP (x). By

Lemma 8, for all i ∈ [n] there exist vectors hi,1, . . . ,hi,ni ∈ G(1⊺) such that gi =
∑ni

k=1 hi,k,

and
∑n

i=1 ni ≤ g(E). For each i ∈ [n] and j ∈ [t], let mi
j be the number of hi,k with

hi,k
j = −1. The expansion of g is h = (h1, . . . ,hM ) defined as follows (we denote this as
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h = g↑). Fix i ∈ [n] and j ∈ [t]. Assign the distinct mi
j vectors hi,k with hi,k

j = −1 to

hµ(i,j,ℓ) for ℓ ∈ [mi
j ], and let hµ(i,j,ℓ) = 0 for ℓ ∈ [mi

j + 1 : xi
j ]. Essentially, we pad the

vector h obtained by Lemma 8 with 0 bricks to construct an h = g↑. Also notice that

an S–T path P such that h is a P -augmentation vector can be constructed by choosing

appropriate σ ∈ Σ(E) for each brick of h.

Let 0 ≤ x ≤ u. We say that g is a solution of DP (x) if 0 ≤ x + g ≤ u and there exists

an S–T path P with P -augmentation vector h and g = h↓; the weight w(g) is then defined

as the weight of the path P ; note that w(g) = f(x + g) − f(x). A solution g is called a

minimal solution of DP (x) if it is a solution of minimal weight. The following lemma relates

solutions of DP (x) to potential feasible steps in G
(

E(n)
)

.

◮ Lemma 13. Let x ∈ Z
nt satisfy 0 ≤ x ≤ u and let g be a solution of DP (x). It holds that

0 ≤ x + g ≤ u and E(n)g = 0.

Proof. It follows from the definition that there are exactly xi
j layers in which it is possible

to select a vector h such that hi
j = −1. Observe further that all other layers that are derived

from the i-th brick can only increase the value of gi
j . It follows that x + g ≥ 0.

Recall that ui
j ∈ {0, ‖b‖∞}. If ui

j = 0, then we have excluded all vectors h with hi
j = 1

from Hi
k for all k ∈ [t]. Thus xi

j + gi
j = xi

j = 0 ≤ 0 as claimed. On the other hand, if

ui
j = ‖b‖∞, then observe that

∑t
k=1 g

i
k = 0 and because x + g ≥ 0, we conclude that

xi
j + gi

j ≤ b
i ≤ ‖b‖∞ = ui

j .

Let (hk,σk), for each k ∈ [M ], be the vertex from the k-th layer of path P corresponding

to g↑. Note that σM = 0. If follows that σℓ+1 =
(

∑ℓ
k=1 Dhk

)

+Dhℓ+1 for all 1 ≤ ℓ ≤M−1.

Thus
∑M

k=1 Dhk = 0 and because we have Ahk = 0 from the definition of Hi
j we conclude

that E(n)g = 0. ◭

◮ Lemma 14. (⋆) Let x ∈ Z
nt satisfy 0 ≤ x ≤ u. Every g̃ ∈ G

(

E(n)
)

with 0 ≤ x + g̃ ≤ u

is a solution of DP (x).

We define the g(E)-truncation of x as the vector x given by xi
j = min{xi

j , g(E)}.

◮ Lemma 15. (⋆) Let x ∈ Z
nt satisfy 0 ≤ x ≤ u. Every g̃ ∈ G

(

E(n)
)

with 0 ≤ x + g̃ ≤ u

is a solution of DP (x).

Clearly our goal is then to find the lightest S–T path in the graph DP (x). However,

there will be edges with negative weights. Still, finding the lightest path can be done in a

layer by layer manner (see e.g. [19, Lemma 3.4]) in time O(|V (DP (x))| · L) = O(‖x‖1 · L
2).

The following lemma is then an immediate consequence of Lemmas 14 and 15.

◮ Lemma 16 (Optimality certification). Given x ∈ Z
nt with 0 ≤ x ≤ u, it is possible to find

a vector g such that E(n)g = 0, 0 ≤ x + g ≤ u, and f(x + g) < f(x), or decide there is none

such g, in time ‖x‖1 · L
2 ≤ tO(r)(ar)O(r2)n.

Proof. It follows from Lemma 13 that all solutions of DP (x) fulfill the first two conditions.

Observe that if we take g to be a minimal solution of DP (x), then either f(x) = f(x + g) or

f(x) < f(x + g). Due to Lemma 15 the set of solutions of DP (x) contains all g̃ ∈ G
(

E(n)
)

with 0 ≤ g̃ ≤ u. Thus, by Proposition 7, if f(x) = f(x + g), no g satisfying all three

conditions exist.

Now simply plug in our bounds on ‖x‖1 and L and compute a minimal S–T path:

L ≤ |G(1⊺)| · |Σ(E)| ≤ t2 ·
(

1 + 4t2a(2ra)r
)r
≤ tO(r)(ar)O(r2)

is the maximum size of a layer and ‖x‖1 ≤ nt · g(E) ≤ nt · t2(2ra)r ≤ O(t2)(ar)O(r)n is the

number of layers. ◭
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3.3 Long steps

So far, we are able to find an augmenting step in time independent of M ; however, each step

might only bring an improvement of O(1) and thus possibly many improving steps would be

needed. Now, given a step length α ∈ N, we will show how to find a feasible step g such that

f(x + αg) ≤ f(x + αg̃) for any g̃ ∈ G
(

E(n)
)

. Moreover, we will show that there are not too

many step lengths that need to be considered in order to find a Graver-best step which, by

Proposition 7, leads to a good bound on the required number of steps.

Let α ∈ N and let x with 0 ≤ x ≤ u. We define xα to be the α-reduction of x, xα =
⌊

x
α

⌋

.

This operation takes priority over the truncation operation, that is, by xα we mean the

g(E)-truncation of vector xα (i.e., xα = (xα)). Note that for large enough α, DP (xα)

contains only two vertices S and T and no arcs and thus there is no S–T path and no

solutions.

◮ Lemma 17. (⋆) Let α ∈ N and let x with 0 ≤ x ≤ u. Every g̃ ∈ G
(

E(n)
)

with

0 ≤ x + αg̃ ≤ u is a solution of DP (xα).

However, a Graver-best step might still be such that its step length α is large and thus

we cannot afford to find a minimal solution of DP (xα) for all possible step lengths. We need

another observation to see that many step lengths need not be considered. Let the state of

xα, ψ(xα) ∈ {0, 1, 2}[n]×[t], be defined by:

ψ(xα)i
j = 0 if (xα)i

j = 0,

ψ(xα)i
j = 1 if 1 ≤ (xα)i

j < g(E), and,

ψ(xα)i
j = 2 if (xα)i

j ≥ g(E).

Given a feasible solution x, we call a step length α interesting if xα 6= xα+1 and boring

otherwise. Moreover, α is irrelevant if there is no Graver-best step with step length α.

◮ Lemma 18. (⋆) If α is boring, then it is irrelevant.

◮ Definition 19 (Candidate step lengths Γ). Let Γ be a set of candidate step lengths

constructed iteratively as follows:

Input: vector x with 0 ≤ x ≤ u and g(E)

Computes: set of candidate steps Γ

Γ← {1} and γ ← 2

while xγ > 0 do

foreach i, j with ψ(xγ)i
j = 1 do

Γi
j ←

{(

k, ⌊xi
j/k⌋

)

| k ∈ N, 0 <
⌊

xi
j/k

⌋

< (xγ−1)i
j

}

γi
j ← k such that (k, q) ∈ Γi

j , q is maximal, and secondary to this k also

maximal

γ̃1 ← min
{

γi
j | ψ(xγ)i

j = 1
}

γ̃2 ← min
{⌊

xi
j

g(E)

⌋

| ψ(xγ)i
j = 2

}

add min{γ̃1, γ̃2} to Γ

γ ← max Γ + 1

return Γ

◮ Lemma 20. If α is the step length of a Graver-best step, then α ∈ Γ.
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Proof. We will prove that Γ contains all interesting step lengths. Consider an α 6∈ Γ. Either

xα = 0 and clearly in that case DP (xα) does not yield an augmenting step since it has no

layers and thus no weighted vertices, and thus α is irrelevant.

Otherwise, take γ := min{γ′ | γ′ ∈ Γ, γ′ ≥ α}. Because of the minimality of γ with

respect to all of the min{·} clauses of the algorithm of Definition 19, we have that xα = xγ

and thus α is boring and by Lemma 18 irrelevant.

Since Γ contains all remaining step lengths, it also contains all interesting steps and must

contain the step length for any Graver-best step. ◭

◮ Lemma 21. |Γ| ≤ O(nt · g(E)) and Γ can be constructed in time O(|Γ| · log ‖x‖∞).

Proof. Fix a coordinate xi
j of x and consider a run of the algorithm of Definition 19. If

xi
j > g(E), γ̃2 :=

⌊

xi
j

g(E)

⌋

is added to Γ at some point. For every γ > γ̃2 we have that

(xγ)i
j < g(E) and thus we need not consider the min{·} clause for ψ(xγ)i

j = 2.

Consider a step of the algorithm which adds γ̃1, and observe that γ̃1 is chosen such that

(xγ̃1
)i
j > (xγ̃1+1)i

j . But since (xγ̃2+1)i
j < g(E), such situation can occur at most g(E) times.

Thus we have added at most O(g(E)) different step lengths to Γ per coordinate, O(nt·g(E))

step lengths in total.

Regarding the time it takes to construct Γ, we perform O(|Γ|) arithmetic operations,

and since we are dealing with numbers of size at most ‖x‖∞, each operation takes time

O(log ‖x‖∞), concluding the proof. ◭

◮ Lemma 22 (Graver-best computation). Given a feasible solution x of a combinatorial n-fold

IP, in time tO(r)(ar)O(r2)n2 one can either find a Graver-best step (α,g) or decide that none

exists.

Proof. For γ ∈ Γ let gγ be a minimal solution of DP (xγ) and let α := arg minγ∈Γ

(

f(x + γgγ)
)

.

Finally, let g := gα. Then we claim that (α,g) is a Graver-best step.

By Lemma 17 for all g̃ ∈ G
(

E(n)
)

it holds that f(x + αg) ≤ f(x + αg̃). Moreover, by

Lemma 20, if there exists a Graver-best step with step length γ, then γ ∈ Γ, and thus by the

construction of α, (α,g) is Graver-best step.

Regarding the time complexity, to obtain g we need to solve DP (xγ) for each γ ∈ Γ by

Lemma 16, requiring time |Γ| · tO(r)(ar)O(r2)n ≤ tO(r)(ar)O(r2)n2. ◭

3.4 Finishing the proof

Proof of Theorem 2. In order to prove Theorem 2 we need to put the pieces together.

First, let us assume that we have an initial feasible solution x0. In order to reach the

optimum, by Proposition 7 we need to make at most (2nt − 2) · O(L) Graver-best steps,

where L = 〈b,0,u,w〉; this is because O(L) is an upper bound on f(x0)− f(x∗) for some

minimum x∗. By Lemma 22, it takes time tO(r)(ar)O(r2)n2 to find a Graver-best step.

Now we are left with the task of finding a feasible solution. We follow along the lines

of [19, Lemma 3.8] and solve an auxiliary combinatorial n-fold IP given by the bimatrix

Ê =
(

D̂
Â

)

with D̂ := (D Ir − Ir 0) and Â := (A 12r+1) = 1⊺ ∈ Z
t+2r+1, where Ir is the

identity matrix of dimension r, 0 is a column vector of length r and 12r+1 is the vector of all

1s of length 2r + 1.

The variables x̂ of this problem have a natural partition into nt variables x corresponding

to the original problem and n(2r + 1) new auxiliary variables x̃. Keep the original lower

and upper bounds on x and introduce a lower bound 0 and upper bound ‖b‖∞ on each

auxiliary variable. Finally, let the new linear objective ŵ⊺x̂ be the sum of the auxiliary
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variables. Observe that it is easy to construct an initial feasible solution by setting x = 0

and computing x̃ accordingly, as x̃ serve the role of slack variables.

Then, applying the algorithm described previously either finds a solution with objective

value 0, implying x̃ = 0, and thus x is feasible for the original problem, or no such solution

exists, meaning that the original problem is infeasible. ◭

4 An Application to Weighted Set Multicover

In applications, it is practical to use combinatorial n-fold IP formulations which contain

inequalities. Given an n-fold IP (in particular a combinatorial n-fold IP), we call the upper

rows (D D · · · D)x = b0 globally uniform constraints, and the lower rows Axi = bi, for

all i ∈ [n], locally uniform constraints. In the full version [26] we show that introducing

inequalities into a combinatorial n-fold IP is possible, however we need a slightly different

approach than in a standard n-fold IP to keep the rigid format of a combinatorial n-fold IP.

Weighted Set Multicover. We demonstrate Theorem 2 on the following problem:

Weighted Set Multicover

Input: A universe of size k, U = [k], a set system represented by a multiset
F = {F1, . . . , Fn} ⊆ 2U , weights w1, . . . , wn ∈ N, demands d1, . . . , dk ∈ N.

Find: A multisubset F ′ ⊆ F minimizing
∑

Fi∈F′ wi and satisfying
∣

∣{i | Fi ∈ F ′, j ∈ Fi}
∣

∣ ≥ dj

for all j ∈ [k].

Proof of Theorem 5. Observe that since W is the number of different weights, and there

can be at most 2k different sets F ∈ 2U , each pair (F,w) on the input is of one of T ≤W2k

different types; let n1, . . . , nT ∈ N be a succinct representation of the instance.

We shall construct a combinatorial n-fold IP to solve the problem. Let xτ
f for each f ∈ 2U

and each τ ∈ [T ] be a variable. Let uτ
f = 0 for each f ∈ 2U such that f 6= F τ , and let

uτ
f = max nτ for f = F τ . The variable xτ

f with f = F τ represents the number of sets of type

τ in the solution. The formulation is straightforward and reads

min

T
∑

τ=1

∑

f∈2U

wτxτ
f

s.t.

T
∑

τ=1

∑

f∈2U

fix
τ
f ≥ di, for all i ∈ [k]

∑

f∈2U

xτ
f ≤ nτ for all τ ∈ [T ];

note that fi is 1 if i ∈ f and 0 otherwise. Let us determine the parameters â, r̂, t̂, n̂ and L̂ of

this combinatorial n-fold IP instance. Clearly, the largest coefficient â is 1, the number of

globally uniform constraints r̂ is k, the number of variables per brick t̂ is 2k, the number of

bricks n̂ is T , and the length of the input L̂ is at most logn+ logwmax. ◭

5 Open problems

Can our result be extended to minimizing a separable convex function f? Is Huge n-fold

IP fixed-parameter tractable for parameters r, s, t and a? It is not difficult to see that

optimality certification is fixed-parameter tractable using ideas similar to Onn [36]; however,

one possibly needs exponentially (in the input size) many augmenting steps.
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For most of our applications, complexity lower bounds are not known to us. Our

algorithms yield complexity upper bounds of kO(k2) on the dependence on parameter k for

various problems, such as Closest String, Weighted Set Multicover, Score-Swap

Bribery or even Makespan Minimization [25]. Is this just a common feature of our

algorithm, or are there hidden connections between some of these problems? And what are

their actual complexities? All we know so far is a trivial ETH-based 2o(k) lower bound for

Closest String based on its reduction from Satisfiability [12].
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