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Abstract—In the classic multi-armed bandits problem, the goal
is to have a policy for dynamically operating arms that each
yield stochastic rewards with unknown means. The key metric
of interest is regret, defined as the gap between the expected
total reward accumulated by an omniscient player that knows
the reward means for each arm, and the expected total reward
accumulated by the given policy. The policies presented in prior
work have storage, computation and regret all growing linearly
with the number of arms, which is not scalable when the number
of arms is large. We consider in this work a broad class of multi-
armed bandits with dependent arms that yield rewards as a linear
combination of a set of unknown parameters. For this general
framework, we present efficient policies that are shown to achieve
regret that grows logarithmically with time, and polynomially in
the number of unknown parameters (even though the number
of dependent arms may grow exponentially). Furthermore, these
policies only require storage that grows linearly in the number of
unknown parameters. We show that this generalization is broadly
applicable and useful for many interesting tasks in networks
that can be formulated as tractable combinatorial optimization
problems with linear objective functions, such as maximum
weight matching, shortest path, and minimum spanning tree
computations.

I. INTRODUCTION

The problem of multi-armed bandits (MAB) is a classic one
in learning theory. In its simplest form, there are N arms, each
providing stochastic rewards that are independent and identi-
cally distributed over time, with unknown means. A policy is
desired to pick one arm at each time sequentially, to maximize
the reward. MAB problems capture a fundamental tradeoff
between exploration and exploitation; on the one hand, various
arms should be explored in order to learn their parameters, and
on the other hand, the prior observations should be exploited
to gain the best possible immediate rewards. MABs have
been applied in a wide range of domains including Internet
advertising [1], [2] and cognitive radio networks [3], [4].

As they are fundamentally about combinatorial optimization
in unknown environments, one would indeed expect to find
even broader use of multi-armed bandits. However, we argue
that a barrier to their wider application in practice has been the
limitation of the basic formulation and corresponding policies,
which generally treat each arm as an independent entity. They
are inadequate to deal with many combinatorial problems

of practical interest in which there are large (exponential)
numbers of arms. In such settings, it is important to consider
and exploit any structure in terms of dependencies between the
arms. We show in this work that when the dependencies take
a linear form, they can be handled tractably with policies that
have provably good performance in terms of regret as well as
storage and computation.

In this work, we formulate and consider the following
general multi-armed bandit problem. There is a vector X
of N random variables with unknown mean that are each
instantiated in an i.i.d. fashion over time. There is a finite
(possibly exponentially large) set of vector actions a ∈ F
from which any action can be selected at each time. When
action a is performed, all elements of X that correspond to
non-zero elements of a are observed, and a linear reward aT X
is obtained. This generalization captures a very broad class
of combinatorial optimization problems with linear objectives
and unknown random coefficients.

A naive application of existing approaches for multi-armed
bandits, such as the well-known UCB1 index policy of Auer
et al. [5], for this problem would yield poor performance
scaling in terms of regret, storage, and computation. This
is because these approaches are focused on maintaining and
computing quantities based on arm-specific observations and
do not exploit potential dependencies between them. In this
work, we instead propose smarter policies that explicitly take
into account the linear form of the dependencies and base all
storage and computations on the unknown variables directly,
rather than the arms. As we shall show, this saves not only
on storage and computation, but also substantially reduces the
regret.

Specifically, we first present a novel single-arm selection
policy for Learning with Linear Rewards (LLR) requires only
O(N) storage, and yields a regret that grows essentially 1

as O(N4 lnn), where n is the time index. We also discuss
how this policy can be modified in a straightforward manner
while maintaining the same performance guarantees when

1This is a simplification of our key result in section V which gives a tighter
expression for the bound on regret that applies uniformly over time, not just
asymptotically.
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the problem is one of cost minimization rather than reward
maximization. A key step in these policies we propose is the
solving of a deterministic combinatorial optimization with a
linear objective. While this is NP-hard in general (as it includes
0-1 integer linear programming), there are still many special-
case combinatorial problems of practical interest which can
be solved in polynomial time. For such problems, the policy
we propose would thus inherit the property of polynomial
computation at each step.

We also present in this paper a more general K-arm for-
mulation, in which the policy is allowed to pick K ≥ 1
different actions at each time. We show how the single-arm
policy can be readily extended to handle this and present the
regret analysis for this case as well.

Through several concrete examples, we show the applica-
bility of our general formulation of multi-armed bandits with
linear rewards to combinatorial network optimization. These
include maximum weight matching in bipartite graphs (which
is useful for user-channel allocations in cognitive radio net-
works), as well as shortest path, and minimum spanning tree
computation. The examples we present are far from exhausting
the possible applications of the formulation and the policies we
present in this work — there are many other linear-objective
network optimization problems [6], [7]. Our framework, for
the first time, allows these problems to be solved in stochastic
settings with unknown random coefficients, with provably
efficient performance.

We expect that our work will also find practical application
in other fields where such linear combinatorial optimization
problems arise naturally, such as algorithmic economics, data
mining, finance, operations research and industrial engineer-
ing.

This paper is organized as follows. We first provide a
survery of related work in section II. We then give a formal
description of the multi-armed bandits with linear rewards
problem we solve in section III. In section IV, we present our
LLR policy and show that it requires only polynomial storage
and polynomial computation per time period. We present the
novel analysis of the regret of this policy in section V and point
out how this analysis generalizes known results on MAB. In
section VI, we discuss examples and applications of maximum
weight matching, shortest path, and minimum spanning tree
computations to show that our policy is widely useful for
various interesting applications in networks with the tractable
combinatorial optimization formulation with linear objective
functions. Section VII shows the numerical simulation results.
We show an extension of our policy for choosing K largest
values in section VIII. Finally, we conclude with a summary
of our contribution and point out avenues for future work in
section IX.

II. RELATED WORK

Lai and Robbins [8] wrote one of the earliest papers on the
classic non-Bayesian infinite horizon multi-armed bandit prob-
lem. Assuming K independent arms, each generating rewards
that are i.i.d. over time from a given family of distributions

with an unknown real-valued parameter, they presented a gen-
eral policy that provides expected regret that is O(K log n), i.e.
linear in the number of arms and asymptotically logarithmic
in n. They also show that this policy is order optimal in
that no policy can do better than Ω(K log n). Anantharam
et al. [9] extend this work to the case when M simultaneous
plays are allowed. The work by Agrawal [10] presents easier
to compute policies based on the sample mean that also
has asymptotically logarithmic regret. However, their policies
need not be directly applied to our problem formulation in
this paper, which involves combinatorial arms that cannot be
characterized by a single parameter.

Our work is influenced by the paper of Auer et al. [5]
that considers arms with non-negative rewards that are i.i.d.
over time with an arbitrary un-parameterized distribution that
has the only restriction that it have a finite support. Further
they provide a simple policy (referred to as UCB1), which
achieves logarithmic regret uniformly over time, rather than
only asymptotically. However, their work does not exploit
potential dependencies between the arms. As we show in this
paper, a direct application of their UCB1 policy therefore
performs poorly for our problem formulation.

There are also some recent works to propose decentralized
policies for the multi-armed bandit problem. Liu and Zhao [4],
and Anandkumar et al. [3] have both developed policies for
the problem of M distributed players operating N independent
arms.

While these above key papers and many others have focused
on independent arms, there have been some works treating
dependencies between arms. The paper by Pandey et al. [1]
divides arms into clusters of dependent arms (in our case
there would be only one such cluster consisting of all the
arms). Their model assumes that each arm provide only binary
rewards, and in any case, they do not present any theoretical
analysis on the expected regret. Ortner [11] proposes to use an
additional arm color, to utilize the given similarity information
of different arms to improve the upper bound of the regret.
They assume that the difference of the mean rewards of
any two arms with the same color is less than a predefined
parameter δ, which is known to the user. This is different from
the linear reward model in our paper.

Mersereau et al. [12] consider a bandit problem where the
expected reward is defined as a linear function of an random
variable, and the prior distribution is known. They show the
upper bound of the regret is O(

√
n) and the lower bound

of the regret is Ω(
√

n). Rusmevichientong and Tsitsiklis [13]
extend [12] to the setting where the reward from each arm
is modeled as the sum of a linear combination of a set of
unknown static random numbers and a zero-mean random
variable that is i.i.d. over time and independent across arms.
The upper bound of the regret is shown to be O(N

√
n) on

the unit sphere and O(N
√

n log3/2 n) for a compact set, and
the lower bound of regret is Ω(N

√
n) for both cases. The

linear models in these works are different from our paper in
which the reward is expressed as a linear combination as a
set of random processes. Also, [12] and [13] assume that only
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the reward is observed at each time. In our work, we assume
that the random variables corresponding to non-zero action
components are observed at each time (from which the reward
can be inferred).

Both [14] and [15] consider linear reward models that are
more general than ours, but also under the assumption that
only the reward is observed at each time. Auer [14] presents a
randomized policy which requires storage and computation to
grow linearly in the number of arms. This algorithm is shown
to achieve a regret upper bound of O(

√
N
√

n log
3
2 (n|F|)).

Dani et al. [15] develop another randomized policy for the
case of a compact set of arms, and show the regret is upper
bounded by O(N

√
n log3/2 n) for sufficiently large n with

high probability, and lower bounded by Ω(N
√

n). They also
show that when the difference in costs (denoted as ∆) between
the optimal and next to optimal decision among the extremal
points is greater than zero, the regret is upper bounded by
O(N2

∆ log3 n) for sufficiently large n with high probability. To
our best knowledge, ours is the first paper to consider linear
rewards with observation of the random variables correspond-
ing to non-zero action components. We present a deterministic
policy with a deterministic combinatorial linear optimization
problem finite time bound of regret which grows O(N4 log n),
i.e., polynomially in the number of unknown random variables
and strictly logarithmically in time.

Our work in this paper is an extension of our recent work
which introduced combinatorial multi-armed bandits [16]. The
formulation in [16] has the restriction that the reward is
generated from a matching in a bipartite graph of users and
channels. Our work in this paper generalizes this to a broader
formulation with linear reward, where the action vector is from
a finite set.

III. PROBLEM FORMULATION

Now we define the problem of multi-armed bandits with
linear rewards that we solve in this paper. We consider a
discrete time system with N unknown random processes
Xi(n), 1 ≤ i ≤ N , where time is indexed by n. We assume
that Xi(n) evolves as an i.i.d. random process over time, with
the only restriction that its distribution have a finite support.
Without loss of generality, we normalize Xi(n) ∈ [0, 1]. We do
not require that Xi(n) be independent across i. This random
process is assumed to have a mean θi = E[Xi] that is unknown
to the users. We denote the set of all these means as Θ = {θi}.

At each decision period n (also referred to interchange-
ably as time slot), an N -dimensional action vector a(n),
representing an arm, is selected under a policy π(n) from
a finite set F . We assume ai(n) ≥ 0 for all 1 ≤ i ≤ N .
When a particular a(n) is selected, only for those i with
ai(n) 6= 0, the value of Xi(n) is observed . We denote
Aa(n) = {i : ai(n) 6= 0, 1 ≤ i ≤ N}, the index set of all
ai(n) 6= 0 for an arm a. We treat each a(n) ∈ F as an arm.
The reward is defined as:

Ra(n)(n) =
N∑

i=1

ai(n)Xi(n). (1)

When a particular action/arm a(n) is selected, the random
variables corresponding to non-zero components of a(n) are
revealed2, i.e., the value of Xi(n) is observed for all i such
that a(n) 6= 0.

We evaluate policies with respect to regret, which is defined
as the difference between the expected reward that could be
obtained by a genie that can pick an optimal arm at each time,
and that obtained by the given policy. Note that minimizing
the regret is equivalent to maximizing the rewards. Regret can
be expressed as:

Rπ
n(Θ) = nθ∗ − Eπ[

n∑
t=1

Rπ(t)(t)], (2)

where θ∗ = max
a∈F

N∑
i=1

aiθi, the expected reward of an optimal

arm. For the rest of the paper, we use ∗ as the index indicating
that a parameter is for an optimal arm. If there is more than
one optimal arm exist, ∗ refers to any one of them.

Intuitively, we would like the regret Rπ
n(Θ) to be as small

as possible. If it is sub-linear with respect to time n, the time-
averaged regret will tend to zero and the maximum possible
time-averaged reward can be achieved. Note that the number
of arms |F| can be exponential in the number of unknown
random variables N .

IV. POLICY DESIGN

A. A Naive Approach

A straightforward, relatively naive approach to solving the
multi-armed bandits with linear regret problem that we defined
is to use the UCB1 policy given by Auer et al. [5]. For UCB1,
the arm that maximizes Ŷk +

√
2 ln n
mk

will be selected at each

time slot, where Ŷk is the mean observed reward on arm k,
and mk is the number of times that arm k has been played.
This approach essentially ignores the dependencies across the
different arms, storing observed information about each arm
independently, and making decisions based on this information
alone.

Auer et al. [5] showed the following policy performance for
regret upper bound as:

Theorem 1: The expected regret under UCB1 policy is at
most

[
8

∑

k:θk<θ∗
(
lnn

∆k
)

]
+ (1 +

π2

3
)(

∑

k:θk<θ∗
∆k) (3)

where ∆k = θ∗ − θk, θk =
∑

i∈Ak

aiθi.

Proof: See [5, Theorem 1].
¥

Note that UCB1 requires storage that is linear in the number
of arms and yields regret growing linearly with the number of

2As noted in the related work, this is a key assumption in our work that
differentiates it from other prior work on linear dependent-arm bandits [14],
[15]. This is a very reasonable assumption in many cases, for instance, in the
combinatorial network optimization applications we discuss in section VI, it
corresponds to revealing weights on the set of edges selected at each time.
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arms. In a case where the number of arms grow exponentially
with the number of unknown variables, both of these are highly
unsatisfactory.

Intuitively, UCB1 algorithm performs poorly on this prob-
lem because it ignores the underlying dependencies. This
motivates us to propose a sophisticated policy which more ef-
ficiently stores observations from correlated arms and exploits
the correlations to make better decisions.

B. A new policy
Our proposed policy, which we refer to as “learning with

linear rewards” (LLR), is shown in Algorithm 1.

Algorithm 1 Learning with Linear Rewards (LLR)
1: // INITIALIZATION
2: If max

a
|Aa| is known, let L = max

a
|Aa|; else, L = N ;

3: for p = 1 to N do
4: n = p;
5: Play any arm a such that p ∈ Aa;
6: Update (θ̂i)1×N , (mi)1×N accordingly;
7: end for
8: // MAIN LOOP
9: while 1 do

10: n = n + 1;
11: Play an arm a which solves the maximization problem

a = arg max
a∈F

∑

i∈Aa

ai


θ̂i +

√
(L + 1) lnn

mi


 ; (4)

12: Update (θ̂i)1×N , (mi)1×N accordingly;
13: end while

Table I summarizes some notation we use in the description
and analysis of our algorithm.

The key idea behind this algorithm is to store and use
observations for each random variable, rather than for each
arm as a whole. Since the same random variable can be ob-
served while operating different arms, this allows exploitation
of information gained from the operation of one arm to make
decisions about a dependent arm.

We use two 1 by N vectors to store the information after
we play an arm at each time slot. One is (θ̂i)1×N in which
θ̂i is the average (sample mean) of all the observed values of
Xi up to the current time slot (obtained through potentially
different sets of arms over time). The other one is (mi)1×N in
which mi is the number of times that Xi has been observed
up to the current time slot.

At each time slot n, after an arm a(n) is played, we get
the observation of Xi(n) for all i ∈ Aa(n). Then (θ̂i)1×N

and (mi)1×N (both initialized to 0 at time 0) are updated as
follows:

θ̂i(n) =

{
θ̂i(n−1)mi(n−1)+Xi(n)

mi(n−1)+1 , if i ∈ Aa(n)

θ̂i(n− 1) , else
(5)

mi(n) =
{

mi(n− 1) + 1 , if i ∈ Aa(n)

mi(n− 1) , else (6)

N : number of random variables.
a : vectors of coefficients, defined on set F ;

we map each a as an arm.
Aa: {i : ai 6= 0, 1 ≤ i ≤ N}.
∗ : index indicating that a parameter is for an

optimal arm.
mi: number of times that Xi has been observed

up to the current time slot.
θ̂i: average (sample mean) of all the observed

values of Xi up to the current time slot.
Note that E[θ̂i(n)] = θi.

θ̂i,mi
: average (sample mean) of all the observed

values of Xi when it is observed mi times.
∆a: R∗ −Ra .
∆min: min

a 6=a∗
∆a.

∆max: max
a 6=a∗

∆a.

Ta(n): number of times arm a has been played
in the first n time slots.

amax: max
a∈F

max
i

ai.
TABLE I

NOTATION

Note that while we indicate the time index in the above
updates for notational clarity, it is not necessary to store the
matrices from previous time steps while running the algorithm.

LLR policy requires storage linear in N . In section V, we
will present the analysis of the upper bound of regret, and show
that it is polynomial in N and logarithmic in time. Note that
the maximization problem (4) needs to be solved as the part of
LLR policy. It is a deterministic linear optimal problem with
a feasible set F and the computation time for an arbitrary F
may not be polynomial in N . As we show in Section VI, that
there exists many practically useful examples with polynomial
computation time.

V. ANALYSIS OF REGRET

Traditionally, the regret of a policy for a multi-armed bandit
problem is upper-bounded by analyzing the expected number
of times that each non-optimal arm is played, and the summing
this expectation over all non-optimal arms. While such an
approach will work to analyze the LLR policy too, it turns
out that the upper-bound for regret consequently obtained is
quite loose, being linear in the number of arms, which may
grow faster than polynomials. Instead, we give here a tighter
analysis of the LLR policy that provides an upper bound which
is instead polynomial in N and logarithmic in time. Like the
regret analysis in [5], this upper-bound is valid for finite n.

Theorem 2: The expected regret under the LLR policy is
at most

[
4a2

maxL
2(L + 1)N lnn

(∆min)2
+ N +

π2

3
LN

]
∆max. (7)
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To proof Theorem 2, we use the inequalities as stated in the
Chernoff-Hoeffding bound [17].

Lemma 1 (Chernoff-Hoeffding bound [17]):
X1, . . . , Xn are random variables with range [0, 1], and
E[Xt|X1, . . . , Xt−1] = µ, ∀1 ≤ t ≤ n. Denote Sn =

∑
Xi.

Then for all a ≥ 0

Pr{Sn ≥ nµ + a} ≤ e−2a2/n

Pr{Sn ≤ nµ− a} ≤ e−2a2/n
(8)

Proof of Theorem 2: Denote Ct,mi as
√

(L+1) ln t
mi

. We

introduce T̃i(n) as a counter after the initialization period. It
is updated in the following way:

At each time slot after the initialization period, one of the
two cases must happen: (1) an optimal arm is played; (2)
a non-optimal arm is played. In the first case, (T̃i(n))1×N

won’t be updated. When an non-optimal arm a(n) is picked
at time n, there must be at least one i ∈ Aa such that i =
arg min

j∈Aa

mj . If there is only one such arm, T̃i(n) is increased

by 1. If there are multiple such arms, we arbitrarily pick one,
say i′, and increment T̃i′ by 1.

Each time when a non-optimal arm is picked, exactly one
element in (T̃i(n))1×N is incremented by 1. This implies that
the total number that we have played the non-optimal arms
is equal to the summation of all counters in (T̃i(n))1×N .
Therefore, we have:

∑

a:a 6=a∗
E[Ta(n)] =

N∑

i=1

E[T̃i(n)]. (9)

Also note for T̃i(n), the following inequality holds:

T̃i(n) ≤ mi(n),∀1 ≤ i ≤ N. (10)

Denote by Ĩi(n) the indicator function which is equal to
1 if T̃i(n) is added by one at time n. Let l be an arbitrary
positive integer. Then:

T̃i(n) =
n∑

t=N+1

1{Ĩi(t) = 1}

≤ l +
n∑

t=N+1

1{Ĩi(t) = 1, T̃i(t− 1) ≥ l}
(11)

where 1(x) is the indicator function defined to be 1 when
the predicate x is true, and 0 when it is false. When Ĩi(t) =
1, a non-optimal arm a(t) has been picked for which mi =
min

j
{mj : ∀j ∈ Aa(t)}. We denote this arm as a(t) since at

each time that Ĩi(t) = 1, we could get different arms. Then,

T̃i(n) ≤ l +
n∑

t=N+1

1{
∑

j∈Aa∗

a∗j (θ̂j,mj(t−1) + Ct−1,mj(t−1))

≤
∑

j∈Aa(t)

aj(t)(θ̂j,mj(t−1) + Ct−1,mj(t−1)), T̃i(t− 1) ≥ l}

≤ l +
n∑

t=N

1{
∑

j∈Aa∗

a∗j (θ̂j,mj(t) + Ct,mj(t))

≤
∑

j∈Aa(t)

aj(t)(θ̂j,mj(t) + Ct,mj(t)), T̃i(t) ≥ l}.

(12)

Note that l ≤ T̃i(t) implies,

l ≤ T̃i(t) ≤ mj(t),∀j ∈ Aa(t). (13)

T̃i(n) ≤ l +
n∑

t=N

1{ min
0<mh1 ,...,mh|Aa∗|≤t

|Aa∗|∑

j=1

a∗hj
(θ̂hj ,mhj

+ Ct,mhj
)

≤ max
l≤mp1 ,...,mp|Aa(t)|

≤t

|Aa(t)|∑

j=1

apj
(t)(θ̂pj ,mpj

+ Ct,mpj
)}

≤ l +
∞∑

t=1

t∑
mh1=1

· · ·
t∑

mh|A∗|=1

t∑

mp1=l

· · ·
t∑

mp|Aa(t)|
=l

1{
|Aa∗|∑

j=1

a∗hj
(θ̂hj ,mhj

+ Ct,mhj
)

≤
|Aa(t)|∑

j=1

apj
(t)(θ̂pj ,mpj

+ Ct,mpj
)}

(14)

where hj (1 ≤ j ≤ |Aa∗|) represents the j-th element in Aa∗
and pj (1 ≤ j ≤ |Aa(t)|) represents the j-th element in Aa(t).
|Aa∗|∑
j=1

a∗hj
(θ̂hj ,mhj

+ Ct,mhj
) ≤

|Aa(t)|∑
j=1

apj
(t)(θ̂pj ,mpj

+

Ct,mpj
) means that at least one of the following must be true:

|Aa∗|∑

j=1

a∗hj
θ̂hj ,mhj

≤ R∗ −
|Aa∗|∑

j=1

a∗hj
Ct,mhj

, (15)

|Aa(t)|∑

j=1

apj (t)θ̂pj ,mpj
≥ Ra(t) +

|Aa(t)|∑

j=1

apj (t)Ct,mpj
, (16)

R∗ < Ra(t) + 2
|Aa(t)|∑

j=1

apj (t)Ct,mpj
. (17)

Now we find the upper bound for Pr{
|Aa∗|∑
j=1

a∗hj
θ̂hj ,mhj

≤ R∗−
|Aa∗|∑
j=1

a∗hj
Ct,mhj

}.
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We have:

Pr{
|Aa∗|∑

j=1

a∗hj
θ̂hj ,mhj

≤ R∗ −
|Aa∗|∑

j=1

a∗hj
Ct,mhj

}

= Pr{
|Aa∗|∑

j=1

a∗hj
θ̂hj ,mhj

≤
|Aa∗|∑

j=1

a∗hj
θhj −

|Aa∗|∑

j=1

a∗hj
Ct,mhj

}

≤ Pr{At least one of the following must hold:

a∗h1
θ̂h1,mh1

≤ a∗h1
θh1 − a∗h1

Ct,mh1
,

a∗h2
θ̂h2,mh2

≤ a∗h2
θh2 − a∗h2

Ct,mh2
,

...

a∗h|Aa∗|
θ̂h1,mh|Aa∗|

≤ a∗h|Aa∗|
θh|Aa∗|

− a∗h|Aa∗|
Ct,mh|Aa∗|

}

≤
|Aa∗|∑

j=1

Pr{a∗hj
θ̂hj ,mhj

≤ a∗hj
θhj

− a∗hj
Ct,mhj

}

=
|Aa∗|∑

j=1

Pr{θ̂hj ,mhj
≤ θhj

− Ct,mhj
}.

∀1 ≤ j ≤ |Aa∗|, applying the Chernoff-Hoeffding bound
stated in Lemma 1, we could find the upper bound of each
item in the above equation as,

Pr{θ̂hj ,mhj
≤ θhj

− Ct,mhj
}

= Pr{mhj
θ̂hj ,mhj

≤ mhj
θhj

−mhj
Ct,mhj

}

≤ e
−2· 1

mhij
·(mhj

)2· (L+1) ln t
mhj

= e−2(L+1) ln t

= t−2(L+1).

Thus,

Pr{
|Aa∗|∑

j=1

a∗hj
θ̂hj ,mhj

≤ R∗ −
|Aa∗|∑

j=1

a∗hj
Ct,mhj

}

≤ |Aa∗|t−2(L+1)

≤ Lt−2(L+1).

(18)

Similarly, we can get the upper bound of the probability for
inequality (16):

Pr{
|Aa(t)|∑

j=1

apj
(t)θ̂pj ,mpj

≥ Ra(t) +
|Aa(t)|∑

j=1

apj
(t)Ct,mpj

}

≤ Lt−2(L+1).
(19)

Note that for l ≥



4(L+1) ln n(
∆a(t)

Lamax

)2




,

R∗ −Ra(t) − 2
|Aa(t)|∑

j=1

apj
(t)Ct,mpj

= R∗ −Ra(t) − 2
|Aa(t)|∑

j=1

apj

√
(L + 1) ln t

mpj

≥ R∗ −Ra(t) − Lamax

√
4(L + 1) lnn

l

≥ R∗ −Ra(t) − Lamax

√
4(L + 1) lnn

4(L + 1) lnn

(
∆a(t)

Lamax

)2

≥ R∗ −Ra(t) −∆a(t) = 0.

(20)

Equation (20) implies that condition (15) is false when l =


4(L+1) ln n(
∆a(t)

Lamax

)2




. If we let l =

⌈
4(L+1) ln n(

∆min
Lamax

)2

⌉
, then (15) is false

for all a(t).
Therefore,

E[T̃i(n)] ≤




4(L + 1) lnn(
∆min
Lamax

)2




+
∞∑

t=1




t∑
mh1=1

· · ·
t∑

mh|A∗|=1

t∑

mp1=l

· · ·
t∑

mp|Aa(t)|
=l

2Lt−2(L+1)




≤ 4a2
maxL

2(L + 1) lnn

(∆min)2
+ 1 + L

∞∑
t=1

2t−2

≤ 4a2
maxL

2(L + 1) lnn

(∆min)2
+ 1 +

π2

3
L.

(21)

So under LLR policy, we have:

Rπ
n(Θ) = R∗n− Eπ[

n∑
t=1

Rπ(t)(t)]

=
∑

a:Ra<R∗
∆aE[Ta(n)]

≤ ∆max

∑

a:Ra<R∗
E[Ta(n)]

= ∆max

N∑

i=1

E[T̃i(n)]

≤
[

N∑

i=1

4a2
maxL

2(L + 1) lnn

(∆min)2
+ N +

π2

3
LN

]
∆max

≤
[

4a2
maxL

2(L + 1)N lnn

(∆min)2
+ N +

π2

3
LN

]
∆max.

(22)
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Remark 1: Note that when the set of action vectors consists
of binary vectors with a single “1”, the problem formulation
reduces to an multi-armed bandit problem with N independent
arms. In this special case, the LLR algorithm is equivalent to
UCB1 in [5]. Thus, our results generalize that prior work.

Remark 2: We have presented F as a finite set in our
problem formation. We note that the LLR policy we have
described and its analysis actually also work with a more gen-
eral formulation when F is an infinite set with the following
additional constraints: the maximization problem in (4) always
has at least one solution; ∆min exists; ai is bounded. With the
above constraints, Algorithm 1 will work the same and the
conclusion and all the details of the proof of Theorem 2 can
remain the same.

Remark 3: Theorem 2 also holds for random variables
Xi, 1 ≤ i ≤ N that are not i.i.d. over time, but with the
only weaker assumption that E[Xi(t)|Xi(1), . . . , Xi(t−1)] =
θi,∀1 ≤ i ≤ N . This is because the Chernoff-Hoeffding bound
only needs a weak assumption E[Xi(t)|Xi(1), . . . , Xi(t −
1)] = θi,∀1 ≤ i ≤ N .

VI. APPLICATIONS

We now describe some applications and extensions of the
LLR policy for combinatorial network optimization in graphs
where the edge weights are unknown random variables.

A. Maximum Weighted Matching

Maximum Weighted Matching (MWM) problems are
widely used in the many optimization problems in wireless
networks such as the prior work in [18], [19]. Given any graph
G = (V, E), there is a weight associated with each edge and
the objective is to maximize the sum weights of a matching
among all the matchings in a given constraint set, i.e., the
general formulation for MWM problem is

max RMWM
a =

|E|∑

i=1

aiWi

s.t. a is a matching

(23)

where Wi is the weight associated with each edge i.
In many practical applications, the weights are unknown

random variables and we need to learn by selecting different
matchings over time. This kind of problem fits the general
framework of our proposed policy regarding the reward as
the sum weight and a matching as an arm. Our proposed
LLR policy is a solution with linear storage, and the regret
polynomial in the number of edges, and logarithmic in time.

Since there are various algorithms to solve the different
variations in the maximum weighted matching problems, such
as the Hungarian algorithm for the maximum weighted bipar-
tite matching [20], Edmonds’s matching algorithm [21] for a
general maximum matching. In these cases, the computation
time is also polynomial.

Here we present a general problem of multiuser channel
allocations in cognitive radio network. There are M secondary
users and Q orthogonal channels. Each secondary user requires

a single channel for operation that does not conflict with
the channels assigned to the other users. Due to geographic
dispersion, each secondary user can potentially see different
primary user occupancy behavior on each channel. Time is di-
vided into discrete decision rounds. The throughput obtainable
from spectrum opportunities on each user-channel combination
over a decision period is denoted as Si,j and modeled as an
arbitrarily-distributed random variable with bounded support
but unknown mean, i.i.d. over time. This random process is
assumed to have a mean θi,j that is unknown to the users.
The objective is to search for an allocation of channels for all
users that maximizes the expected sum throughput.

Assuming an interference model whereby at most one
secondary user can derive benefit from any channel, if the
number of channels is greater than the number of users, an
optimal channel allocation employs a one-to-one matching of
users to channels, such that the expected sum-throughput is
maximized.

Figure 1 illustrates a simple scenario. There are two sec-
ondary users (i.e., links) S1 and S2, that are each assumed to be
in interference range of each other. S1 is proximate to primary
user P1 who is operating on channel 1. S2 is proximate
to primary user P2 who is operating on channel 2. The
matrix shows the corresponding Θ, i.e., the throughput each
secondary user could derive from being on the corresponding
channel. In this simple example, the optimal matching is for
secondary user 1 to be allocated channel 2 and user 2 to be
allocated channel 1. Note, however, that, in our formulation,
the users are not a priori aware of the matrix of mean values,
and therefore must follow a sequential learning policy.

S1

P1
P2

S2

0.9 0.2

0.3 0.8

S2

C1 C2

S1

Fig. 1. An illustrative scenario

Note that this problem can be formulated as a multi-armed
bandits with linear regret, in which each arm corresponds
to a matching of the users to channels, and the reward
corresponds to the sum-throughput. In this channel allocation
problem, there is M ×Q unknown random variables, and the
number of arms are P (Q,M), which can grow exponentially
in the number of unknown random variables. Following the
convention, instead of denoting the variables as a vector, we
refer it as a M by Q matrix. So the reward as each time slot
by choosing a permutation a is expressed as:

Ra =
M∑

i=1

Q∑

j=1

ai,jSi,j (24)

where a ∈ F , F is a set with all permutations, which is defined
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as:

F = {a : ai,j ∈ {0, 1},∀i, j ∧
Q∑

i=1

ai,j = 1 ∧
Q∑

j=1

ai,j = 1}.

(25)

We use two M by Q matrices to store the information after
we play an arm at each time slot. One is (θ̂i,j)M×Q in which
θ̂i,j is the average (sample mean) of all the observed values
of channel j by user i up to the current time slot (obtained
through potentially different sets of arms over time). The other
one is (mi,j)M×Q in which mi,j is the number of times that
channel j has been observed by user i up to the current time
slot.

Applying Algorithm 1, we get a linear storage policy for
which (θ̂i,j)M×Q and (mi,j)M×Q are stored and updated at
each time slot. The regret is polynomial in the number of users
and channels, and logarithmic in time. Also, the computation
time for the policy is also polynomial since (4) in Algorithm 1
now becomes the following deterministic maximum weighted
bipartite matching problem

arg max
a∈F

∑

(i,j)∈Aa

(
θ̂i,j +

√
(L + 1) lnn

mi,j

)
(26)

on the bipartite graph of users and channels with edge weights(
θ̂i,j +

√
(L+1) ln n

mi,j

)
. It could be solved with polynomial

computation time (e.g., using the Hungarian algorithm [20]).
Note that L = max

a
|Aa| = min{M, Q} for this problem,

which is less than M×Q so that the bound of regret is tighter.
The regret is O(min{M, Q}3MQ log n) following Theorem 2.

B. Shortest Path

Shortest Path (SP) problem is another example where
the underlying deterministic optimization can be done with
polynomial computation time. If the given directed graph is
denoted as G = (V, E) with the source node s and the
destination node d, and the cost (e.g., the transmission delay)
associated with edge (i, j) is denoted as Di,j ≥ 0, the
objective is find the path from s to d with the minimum sum
cost, i.e.,

min CSP
a =

∑

(i,j)∈E

ai,jDi,j (27)

s.t. ai,j ∈ {0, 1},∀(i, j) ∈ E (28)

∀i,
∑

j

ai,j −
∑

j

aj,i =





1 : i = s
−1 : i = t
0 : otherwise

(29)

where equation (28) and (29) defines a feasible set F , such that
F is the set of all possible pathes from s to d. When (Dij) are
random variables with bounded support but unknown mean,
i.i.d. over time, an dynamic learning policy is needed for this
multi-armed bandit formulation.

Note that corresponding to the LLR policy with the objec-
tive to maximize the rewards, a direct variation of it is to find
the minimum linear cost defined on finite constraint set F ,

by changing the maximization problem in to a minimization
problem. For clarity, this straightforward modification of LLR
is shown below in Algorithm 2, which we refer to as Learning
with Linear Costs (LLC).

Algorithm 2 Learning with Linear Cost (LLC)
1: // INITIALIZATION PART IS SAME AS IN ALGORITHM 1
2: // MAIN LOOP
3: while 1 do
4: n = n + 1;
5: Play an arm a which solves the minimization problem

a = arg min
a∈F

∑

i∈Aa

ai


θ̂i −

√
(L + 1) lnn

mi


 ; (30)

6: Update (θ̂i)1×N , (mi)1×N accordingly;
7: end while

LLC (Algorithm 2) is a policy for a general multi-armed
bandit problem with linear cost defined on any constraint set.
It is directly derived from the LLR policy (Algorithm 1), so
Theorem 2 also holds for LLC, where the regret is defined as:

Rπ
n(Θ) = Eπ[

n∑
t=1

Cπ(t)(t)]− nC∗ (31)

where C∗ represents the minimum cost, which is cost of the
optimal arm.

Using the LLC policy, we map each path between s and t as
an arm. The number of unknown variables are |E|, while the
number of arms could grow exponentially in the worst case.
Since there exist polynomial computation time algorithms such
as Dijkstra’s algorithm [22] and Bellman-Ford algorithm [23],
[24] for the shortest path problem, we could apply these
algorithms to solve (30) with edge cost θ̂i −

√
(L+1) ln n

mi
.

LLC is thus an efficient policy to solve the multi-armed bandit
formulation of the shortest path problem with linear storage,
polynomial computation time. Note that L = max

a
|Aa| = |E|.

Regret is O(|E|4 log n).
Another related problem is the Shortest Path Tree (SPT),

where problem formulation is similar, and the objective is to
find a subgraph of the given graph with the minimum total
cost between a selected root s node and all other nodes. It is
expressed as [25], [26]:

min CSPT
a =

∑

(i,j)∈E

ai,jDi,j (32)

s.t. ai,j ∈ {0, 1},∀(i, j) ∈ E (33)∑

(j,i)∈BS(i)

aj,i −
∑

(i,j)∈FS(i)

ai,j

=
{ −n + 1 : i = s

1 : i ∈ V/{s} (34)

where BS(i) = {(u, v) ∈ E : v = i}, FS(i) = {(u, v) ∈ E :
u = i}. (34) and (33) defines the constraint set F . We can
also use the polynomial computation time algorithms such as
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Dijkstra’s algorithm and Bellman-Ford algorithm to solve (30)
for the LLC policy.

C. Minimum Spanning Tree

Minimum Spanning Tree (MST) is another combinatorial
optimization with polynomial computation time algorithms,
such as Prim’s algorithm [27] and Kruskal’s algorithm [28].
The objective for the MST problem can be simply presented
as

min
a∈F

CMST
a =

∑

(i,j)∈E

ai,jDi,j (35)

where F is the set of all spanning trees in the graph.
With the LLC policy, each spanning tree is treated as an

arm, and L = |E|. Regret bound also grows as O(|E|4 log n).

VII. NUMERICAL SIMULATION RESULTS
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Fig. 2. Simulation Results of a system with 7 orthogonal channels and 4
users.
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Fig. 3. Simulation Results of a system with 9 orthogonal channels and 5
users.

We present in the section the numerical simulation results
with the example of multiuser channel allocations in cognitive
radio network.

Fig 2 shows the simulation results of using LLR policy
compared with the naive policy in IV-A. We assume that the
system consists of Q = 7 orthogonal channels in and M = 4

secondary users. The throughput {Si,j(t)}t≥1 for the user-
channel combination is an i.i.d. Bernoulli process with mean
θi,j ((θi,j) is unknown to the players) shown as below:

(θi,j) =




0.3 0.5 0.9 0.7 0.8 0.9 0.6
0.2 0.2 0.3 0.4 0.5 0.4 0.5
0.8 0.6 0.5 0.4 0.7 0.2 0.8
0.9 0.2 0.2 0.8 0.3 0.9 0.6




(36)
where the components in the box are in the optimal arm.
Note that P (7, 4) = 840 while 7 × 4 = 28, so the storage
used for the naive approach is 30 times more than the LLR
policy. Fig 2 shows the regret (normalized with respect to the
logarithm of time) over time for the naive policy and the LLR
policy. We can see that under both policies the regret grows
logarithmically in time. But the regret for the naive policy is
a lot higher than that of the LLR policy.

Fig 3 is another example of the case when Q = 9 and M =
5. The throughput is also assumed to be an i.i.d. Bernoulli
process, with the following mean:

(θi,j) =



0.3 0.5 0.9 0.7 0.8 0.9 0.6 0.8 0.7
0.2 0.2 0.3 0.4 0.5 0.4 0.5 0.6 0.9
0.8 0.6 0.5 0.4 0.7 0.2 0.8 0.2 0.8
0.9 0.2 0.2 0.8 0.3 0.9 0.6 0.5 0.4
0.6 0.7 0.5 0.7 0.6 0.8 0.2 0.6 0.8




.

(37)

For this example, P (9, 5) = 15120, which is much higher
than 9 × 5 = 45 (about 336 times higher), so the storage
used by the naive policy grows much faster than the LLR
policy. Comparing with the regrets shown in Table II for both
examples when t = 2 × 106, we can see that the regret also
grows much faster for the naive policy.

TABLE II
REGRET WHEN t = 2× 106

Naive Policy LLR
7 channels, 4 users 2443.6 163.6
9 channels, 5 users 24892.6 345.2

VIII. K SIMULTANEOUS ACTIONS

The reward-maximizing LLR policy presented in Algorithm
1 and the corresponding cost-minimizing LLC policy pre-
sented in 2 can also be extended to the setting where K arms
are played at each time slot. The goal is to maximize the total
rewards (or minimize the total costs) obtained by these K
arms. For brevity, we only present the policy for the reward-
maximization problem; the extension to cost-minimization is
straightforward. The modified LLR-K policy for picking the
K best arms are shown in Algorithm 3.

Theorem 3 states the upper bound of the regret for the
extended LLR-K policy.
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Algorithm 3 Learning with Linear Rewards while selecting
K arms (LLR-K)

1: // INITIALIZATION PART IS SAME AS IN ALGORITHM 1
2: // MAIN LOOP
3: while 1 do
4: n = n + 1;
5: Play arms {a}K ∈ F with K largest values in (38)

∑

i∈Aa

ai


θ̂i +

√
(L + 1) lnn

mi


 ; (38)

6: Update (θ̂i)1×N , (mi)1×N for all arms accordingly;
7: end while

Theorem 3: The expected regret under the LLR-K policy
with K arms selection is at most

[
4a2

maxL
2(L + 1)N lnn

(∆min)2
+ N +

π2

3
LK2LN

]
∆max. (39)

Proof:
The proof is similar to the proof of Theorem 2, but now we

have a set of K arms with K largest expected rewards as the
optimal arms. We denote this set as A∗ = {a∗,k, 1 ≤ k ≤ K}
where a∗,k is the arm with k-th largest expected reward. As
in the proof of Theorem 2, we define T̃i(n) as a counter when
a non-optimal arm is played in the same way. Equation (9),
(10), (11) and (13) still hold.

Note that each time when Ĩi(t) = 1, there exists some
arm such that a non-optimal arm is picked for which mi is
the minimum in this arm. We denote this arm as a(t). Note
that a(t) means there exists m, 1 ≤ m ≤ K, such that the
following holds:

T̃i(n) ≤ l +
n∑

t=N

{
∑

j∈Aa∗,m

a∗,mj (θ̂j,mj(t) + Ct,mj(t))

≤
∑

j∈Aa(t)

aj(t)(θ̂j,mj(t) + Ct,mj(t)), T̃i(t) ≥ l}.
(40)

Since at each time K arms are played, so at time t, an
random variable could be observed up to Kt times. Then (14)
should be modified as:

T̃i(n) ≤ l +
∞∑

t=1

Kt∑
mh1=1

· · ·
Kt∑

mh|A∗,m|=1

Kt∑

mp1=l

· · ·
Kt∑

mp|Aa(t)|
=l

{
|Aa∗,m |∑

j=1

a∗,mhj
(θ̂hj ,mhj

+ Ct,mhj
)

≤
|Aa(t)|∑

j=1

apj
(t)(θ̂pj ,mpj

+ Ct,mpj
)}.

(41)

Equation (15) to (20) are similar by substituting a∗ with
a∗,m. So, we have:

E[T̃i(n)] ≤




4(L + 1) lnn(
∆min
Lamax

)2




+
∞∑

t=1




Kt∑
mh1=1

· · ·
Kt∑

mh|A∗|=1

Kt∑

mp1=l

· · ·
Kt∑

mp|Aa(t)|
=l

2Lt−2(L+1)




≤ 4a2
maxL

2(L + 1) lnn

(∆min)2
+ 1 +

π2

3
LK2L.

(42)

Hence, we get the upper bound for the regret as:

Rπ
n(Θ) ≤

[
4a2

maxL
2(L + 1)N lnn

(∆min)2
+ N +

π2

3
LK2LN

]
∆max.

(43)

IX. CONCLUSION

We have considered multi-armed bandit problems that pro-
vide for arms with rewards that are a linear function of a
smaller set of random variables with unknown means. For
such problems, if the number of arms is exponentially large
in the number of underlying random variables, existing arm-
based index policies such as the well-known UCB1 [5] have
poor performance in terms of storage, computation, and regret.
The LLR and LLR policies we have presented are smarter
in that they store and make decisions at each time based
on the stochastic observations of the underlying unknown-
mean random variables alone; they require only linear storage
and result in a regret that is bounded by a polynomial
function of the number of unknown-mean random variables. If
the deterministic version of the corresponding combinatorial
optimization problem can be solved in polynomial time, our
policy will also require only polynomial computation per step.
We have shown a number of problems in the context of
networks where this formulation would be useful, including
maximum-weight matching, shortest path and spanning tree
computations.

While this work has provided useful insights into real-world
linear combinatorial optimization with unknown-mean random
coefficients, there are many interesting open problems to be
explored in the future. One open question is to derive a lower
bound on the regret achievable by any policy for this problem.
We conjecture on intuitive grounds that it is not possible to
have regret lower than Ω(N log n), but this remains to be
proved rigorously. It is unclear whether the lower bound can
be any higher than this, and hence, it is unclear whether it is
possible to prove an upper bound on regret for some policy
that is better than the O(N4 log n) upper bound shown in our
work.

In the context of channel access in cognitive radio networks,
other researchers have recently developed distributed policies
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in which different users each select an arm independently [3],
[4]. A closely related problem in this setting would be to
have distributed users selecting different elements of the
action vector independently. The design and analysis of such
distributed policies is an open problem.

Finally, it would be of great interest to see if it is possible to
also tackle non-linear reward functions, at least in structured
cases that have proved to be tractable in deterministic settings,
such as convex functions.
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