LA-UR- BF-77977

Approved for public release;
distribution is unlimited.

Title: | Combinatorial nuclear level-density model

Author(s): | Sven Aberg and Henrik Uhrenholt, Lund University
Peter Moller, T-2
Takatoshi Ichikawa, RIKEN

Intended for: | Physical Review C

/Lp)os Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)



Combinatorial nuclear level-density model
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A microscopic nuclear level-density model is presented. The model is a completely combinatorial
(micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit
treatment of pairing, rotational and vibrational states. The microscopic character of all states
enables extraction of level distribution functions with respect to pairing gaps, parity and angular
momentum. The results of the model are compared to available experimental data: neutron sepa-
ration energy level spacings, data on total level-density functions from the Oslo method and data

on parity ratios.
I. INTRODUCTION

Nuclear many-body level-density models are key ingre-
dients in nuclear reaction theories, where they, for exam-
ple, govern the rates and decay patterns of astrophysical
processes and nuclear fission. In statistical methods, for
example the Hauser-Feshbach formalism [1], for describ-
ing nuclear reactions, a knowledge of the level density is
crucial [2-4]. How to calculate the nuclear level density
(NLD) has been a long-standing challenge that recently
has been subject to renewed interest, theoretically as well
as experimentally [5-8].

The simplest type of model is the Fermi-gas model,
which is based on the partition-function method. It pro-
vides simple analytical formulas for the NLD [9]. Several
phenomenological extensions have been proposed in order
to reproduce experimental data. By adjusting free model
parameters to data these models give unprecedented ac-
curacy in the region of the parameter fit [4, 10]. Also
semi-classical methods have been used to obtain expres-
sions for the level density [11]. However, the Fermi-gas
models are unreliable outside these regions, eg. when
they are extrapolated fo higher excitation energies or to
nucleon numbers far from stability. Ideally nuclear struc-
ture should be included in NLD models. Several combi-
natorial models based on nuclear mean-field theory have
been proposed, see eg. Refs. [12, 13]. Beyond mean-field
methods have also been used to model the NLD, eg. the
Shell-Model Monte-Carlo method [14, 15] and the inter-
acting shell model [16]. These models take into account
effective nucleon-nucleon interactions, but at the same
time suffer from limitations due to the limited size of
the Hilbert space and hence are presently unable to pro-
vide global predictions for level spacings at the neutron-
separation energy.

Experimentally the NLD has been subject to renewed
interest in the last decade partly due to the development
of the Oslo method, which has provided a new types
experimental data [17]. The Oslo method provides the
level density over extended regions of excitation energy
as opposed to the neutron-separation level-spacings data
which only provide one data point at relatively high ex-
citation energy. Also recent measurements of separate

level densities of 2* and 2~ states [18] challenge theory
to reproduce these observed parity ratios.

Few nuclear-structure models have been used to simul-
taneously globally describe nuclear masses, fission barri-
ers, ground-state spins and decay rates. The microscopic-
macroscopic FRLDM model has previously been used
to model these observables [3, 19-21] and here serve as
the starting point for calculating the nuclear level den-
sity. In this paper a combinatorial (micro-canonical)
nuclear level-density model based on the folded-Yukawa
single-particle model is presented. The model is fully mi-
croscopic with pairing correlations, vibrations, and ro-
tational excitations calculated for each many-particle-
many-hole excited state. No additional parameters are
introduced, and no refitting of parameters of the FRLDM
is performed. In Sec. II the combinatorial folded-Yukawa
(CFY) level-density model is described. The model al-
lows explicit tracking of quantum numbers, parity, an-
gular momentum, pairing gaps of individual many-body
configurations, and level distributions, which are dis-
cussed in Sec. III. Results from the CFY model are com-
pared to experimental data in Sec. IV and in Sec. V the
CFY model is compared to other theoretical NLD mod-
els. Finally, a short summary is given in Sec. VI.

II. THE COMBINATORIAL MODEL OF NLD
(CFY)

It is important to base the level-density calculation
on a mean field that is able to describe several nuclear
physics properties. Therefore we base the CFY model on
the folded-Yukawa single-particle potential with parame-
ters, including ground-state deformations, taken from an
extensive calculation of nuclear masses [19]. The NLD is
calculated by means of combinatorial counting of excited
many-particle-many-hole states. Pairing is taken into ac-
count for all excited states by explicitly solving the BCS
equations for all individual configurations. Rotations
are taken into account combinatorially with a pairing-
dependent moment of inertia. The vibrational contribu-
tion to the NLD is investigated by including microscopi-
cally described phonons using the Quasi-particle Tamm-



Dancoff Approximation (QTDA). All produced nuclear
levels are sorted into a binned level density, where the
typical bin size is in the range 30-50 keV. The level
density is calculated as

E;+4F
J:;(E,-,{,:rr)=&iEfE_%g S 6(E - E,(I,m)dE, (1)

where Ej is the energy center of bin i and E,(J,7) de-
notes the calculated state with energy E,, angular mo-
mentum I and parity 7. The total level density at a given
excitation energy FE is

par(E) = 3 p(E, I,m). (2)
Ix

Deformed nuclei are assumed to have constant defor-
mation for all excitation energies which is expected to be
a good approximation for excitation energies below the
neutron separation energy.

The good agreement between ground-state spins cal-
culated in the FRLDM model and experiment implies
that the single-particle spectrum close to the Fermi sur-
face is well described [20]. The NLD critically relies on
a good description of the single-particle structure and of
low-lying excited states.

A. Pairing

The many-body wave-function of the excited states is
approximated by the BCS wave-function with excited
quasi-particles
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where 73,71 and 7y denote the spaces of double, single
and zero quasi-particle excitations, respectively. U, and
V,, are the standard BCS vacancy and occupation factors
and |0) is the particle vacuum [22]. For the excited pairs
in the group 7» the effect is simply
U, = -V, Vi, = U,. (4)
The pairing gap A and the Fermi energy A are obtained
by solving the BCS-equations

A - G z UpVy = Z Uy”Vy" ] (5)
VETO v''ET
N=2)V+ 3 1+2 ) Ul. (6)
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The theoretical BCS ground-state pairing gaps have been
fitted to reproduce experimental nuclear masses [23].

This fit results in a 4.5 MeV average-pairing-gap param-
eter and a corresponding mass table with o = 0.63 MeV
using the BCS implementation of Ref. [24]. The pairing
strength G, which is used for all excited states in the
level-density calculation, is determined from this aver-
age pairing gap for each nuclear system, for details see
Ref. [24].

It follows that the excitation energy of the intrinsic
many-body configurations for one nucleon type is

By =12 Z e, V2 + Z ey, +2 Z e, U —

VETH v'ET) v'Ery

GZV;}—%ZI—GZ Uﬁn—%z—Ef,, (7)
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where ¢ denotes protons or neutrons and Ef is the proton
or neutron part of the ground-state energy. The total
intrinsic excitation energy is Emp = Eb, + ER,.

B. Rotations

Rotational states are taken into account combinatori-
ally by adding a modified rotor energy to each of the in-
trinsic band-heads for deformed nuclei (defined as nuclei
with calculated deformation |e2| > 0.05). The rotational
energy is given by

I(I+1)-K?
2;71.{5‘21 Apa An) i

where [ is the nuclear spin, K is the spin projection on
the symmetry axis of the intrinsic state upon which the
rotational band is built and 7, (€2, Ap, An) is the mo-
ment of inertia around an axis perpendicular to the sym-
metry axis. The moment of inertia is approximated by
the rigid-body moment of inertia with deformation &9,
modified by the calculated pairing gaps for the consid-
ered state, as given in Ref. [25]. Given the angular mo-
mentum projection K and parity 7 of the band-head the
rotational band includes the following levels

Erot - (8)

K™ (K +1),(K +2)7, ... if K#0,
1™ ={ 0F,2+ 4+, .. if K=0%, (9)
S if K=0".

The Coriolis anti-pairing effect is neglected and no vir-
tual crossings of rotational bands are taken into account.
Thus, the pairing gap is assumed to be unchanged from
the band-head pairing gap for all states in the rotational
band.

Fig. 1 shows the rotational enhancement, K., for
12Dy (cf. Fig. 14) calculated as the ratio of the level
density when rotations are included or excluded. For
low excitation energies there are large fluctuations which
are artifacts of the low level density combined with the
smoothing procedure of Sec. IID. For higher excita-
tion energies (2 3 MeV) the rotational enhancement is a
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FIG. 1: (Color online) Rotational enhancement, K., for the
nucleus '**Dy as a function of excitation energy. The inset
shows the enhancement compared to the simple enhancement
model of Ref. [26] (red dashed line).

slowly increasing function, of the order of a factor 5. This
prediction is in contrast to the SU(3) model of Ref. [26],
which is often used to model NLD (see eg. Ref. [27]) and
which is shown in the inset of Fig. 1. The SU(3) model
gives almost an order of magnitude larger enhancement
for excitation energies in the region of the neutron separa-
tion energy. Furthermore, there have been experimental
efforts to search for the fade out of collective rotations
at excitation energies far beyond the neutron separation
energy, as given by the SU(3) model. These searches
[28, 29] have given no experimental support for the fade-
out profile used.

In the present model of combinatorially taking into ac-
count the rotations there is an explicit double counting
of levels. However, this effect is expected to be negligi-
ble for excitation energies below the neutron separation

energy [5].

C. Vibrations

In order to describe vibrational states the Quasi-
particle-Tamm-Dancoff-Approximation (QTDA) is used.
According to the Brink-Axel hypothesis [30, 31] phonons
are built on every intrinsic many-body configuration
Eqp. The QTDA equation is solved for each state in or-
der to get phonon excitation energies and wave-functions.
The residual interaction is approximated by the double
stretched Quadrupole-Quadrupole interaction. This in-
teraction is well defined in the case of a harmonic oscil-
lator potential. In the case of a finite-depth potential as
the folded-Yukawa potential the interaction should take
into account additional finite size effects, for example as
is done in Ref. [32]. In the present work the finite-depth
effects are ignored and the double stretched approach is
used as defined in Refs. [33, 34].

The QTDA secular equation can be written [35]

15 [ [Qax | W) UV + VL)
X2K g (10)

(EP +EP)—hw

where the effect of Eq. (4) has not been explicitly writ-
ten out. @k is the double stretched quadrupole op-
erator, where the components K = 0 and K = 2 are
considered. The roots hw of this equation are the exci-
tation energies of the vibrational phonons, whereas the
poles EPP = \/(e, — A)Z + AZ are the unperturbed two-
quasiparticle excitations on the many-body configuration
Emp and the e, are the single-particle energies.
The self-consistent coupling strength is given by [33]

8w Muw}

X2K = —/ =: 1 (11)
5 A() + a4 (Qao)
where g30 = 1 and go; = —1. The expectation-values

(7?) and (Q20) are calculated in double stretched coor-
dinates [33].

Double counting is explicitly avoided by the following
procedure. The phonon wave functions are given by

of = 3. X,.ala, (12)
[

where X, , are the wave-function components of all ex-
cited quasi-particle states a;ﬂa,. on top of the many-
particle-many-hole configuration E,;,. The level density
is increased by one state at the energy of the phonon hw,
and decreased by the amount given by the wave-function
component X7 , at the energy of the corresponding pole.
The change in level density due to one phonon is thus

6p(E) = 6(E — Emp — hw)—
ZXﬁ_,,cS (E ] Emb = (Eﬁp + Egp)) ’ (13)
e

where E is the excitation energy relative to the ground-
state.

The vibrational enhancement factor in this method is
in general quite small, of the order of a few percent. This
is in sharp contrast to other methods that describe the
vibrational enhancement in level densities. For example,
the often employed attenuated phonon method gives up
to an order of magnitude enhancement at the neutron
separation energy [10, 12, 36]. Fig. 2 shows the vibra-
tional enhancement as a function of excitation energy for
162Dy. The effect is very small, close to 1 % at 7 MeV
excitation energy. For the same nucleus the attenuated
phonon method gives an enhancement factor of about 3
as shown in the inset of Fig. 2.

In calculations for a large number of nuclei it is pos-
sible to extract systematics of the Giant Quadrupole
Resonances (GQR) and test if the double stretched
quadrupole interaction is reasonable. Fig. 3 shows the



: r
e SR R L S SR RO rE e e
3= ~

= f’ .
$2510 = g
E oy -~

1015 15k = 3

L B LERET e PO (ST MRS PO S
¢ 1 2.3 4 5. & 7 3

Excitation Energy [MeV]

1005~

Vibrational Enhancement K -
s
T

1 s 1 l L L L i 1 i | i |
7

7 3 4 5 6
Excitation Energy [MeV]

FIG. 2: (Color online) Vibrational enhancement, Kyip, using
the QTDA method for the nucleus '*?Dy as a function of exci-
tation energy. The inset shows the enhancement compared to
the enhancement of the attenuated phonon model of Ref. [10]
(red dashed line).

i & o K=0

GQR Energy [MeV]
T

0 0 10 00 20 300

150
Mass Number A

FIG. 3: (Color online) Energy of the giant quadrupole reso-
nances as a function of mass number A. The black circles and
red squares show the K = 0 and K = 2 resonances, respec-
tively, and the solid black line shows the theoretical energy
centroid waqr = 5847'/% [33].

energies of the K = 0 and K = 2 components of the (iso-
scalar) GQR as functions of mass number for the dataset
of nuclei which are used to calculate the neutron reso-
nance level spacings in Sec. IVA. The calculated GQR
energies agree well with the systematic wgqr = 584~1/%
[33].

The level-density enhancement due to quadrupole vi-
brations is found to be very small. Higher multipole vi-
brations (as octupole vibrations) are expected to con-
tribute with enhancements of the same order of magni-
tude or less and are neglected in the CFY model.

D. Many-body damping width

In the mean-field approach all excited many-body
states are treated as non-interacting. A residual two-
body interaction will mix the many-body states obtained
from the combinatorics. Smearing effects from the resid-
ual interaction can approximately be taken into account
by assuming a spreading width of all excited states. The
spreading width is implemented in terms of a Gaussian
envelope with width o, i.e. the delta functions in Eq. 1
are replaced by Gaussians. Estimates of the spreading
width FWHM gives [37]

A ~103 /
- 3/2
I' =0.039 (1 ) U*/* MeV, (14)

where the FWHM is related to the Gaussian spreading
width o = Wz_rln:!‘

Assuming that all excited many-body states in an en-
ergy bin AFE is uniformly distributed the level density

are
E; +AE/2—E.-) i

1
p(E;) = ) _p(Ej)5 |exf
; 72 [ ( V2o

- (BAE]

for bin-point 7. The method implies a smearing out of
level-density properties over a range I', which is smoothly
increasing with excitation energy. As a consequence fluc-
tuations of energies and wave-functions in the range I’
follow GOE statistics of Random Matrix theory, that is
often denoted as quantum chaos in the nucleus.

III. LEVEL DISTRIBUTIONS

In the present combinatorial approach it is possible to
extract distributions of several quantities that depend on
level densities.. We present here microscopically calcu-
lated distributions for pairing gaps, parity, and angular
momentum.

A. Pairing-gap distribution

The BCS equations, Egs. (5) and (6), are solved for all
individual many-body configurations and hence pairing
gaps for all states are obtained.

In Fig. 4 the distribution of proton pairing gaps for
182Dy is shown for a number of excitation energies. For

~ the lowest excitation energies only the ground-state and

the states in the ground-state rotational band exist. The
pairing gap of the levels in the rotational band is fixed
to be the same as the pairing gap of the band-head, see
Sec. IIB. As the excitation energy increases levels with
reduced pairing gaps appear. However, no transition to a
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FIG. 4: (Color online) Proton pairing-gap distributions at
different excitation energies E; for '**Dy shown in 20 keV
pairing-gap bins. The proportion of paired states (A > 0) are
shown in percent in the boxes.
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FIG. 5: Proton pairing gap mean value (A) at different exci-
tation energies for '®’Dy. The mean values are given by the
distributions in Fig. 4.

completely unpaired system is observed, and levels with
non-collapsed gaps (A > 0) survive to the highest con-
sidered excitation energies. In the region of the neutron
separation energy at 8.4 MeV 36% of the levels still have
a non-zero pairing gap for %2Dy, see Fig. 4. The mean
value of the proton pairing gap (A) at different excita-
tion energies is shown in Fig. 5 for **Dy. Between 2 MeV
and 3.5 MeV excitation energy there is a rapid decrease
in the mean pairing gap. At higher excitation energies
the decrease is slower. At 8.4 MeV excitation energy the
mean value is (A) = 0.2 MeV. The non-collapsed pairing
gaps influence the moment of inertia and keep it reduced
as compared to the rigid-body value. This implies that
even at excitation energies in the region of the neutron
separation energy the moment of inertia is on average
smaller than the rigid-body value.
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FIG. 6: (Color online) Parity ratio versus excitation energy
for #18r calculated with different ground-state deformations.
Large deformations imply a parity distribution close to 1 even
at low excitation energies. For small deformations the parity
non-equilibrium can survive to high excitation energies.

B. Parity distribution

In Fermi-gas level-density models there is an implicit
assumption of equal number of states with different par-
ity at any given excitation energy. However, models that
take into account microscopic effects show clear struc-
ture in the parity ratio, see eg. Refs. [14, 38, 39]. In
connection with astrophysical reaction rates the parity
ratio can be included in the Hauser Feshbach formalism,
see eg Refs. [40, 41].

From the single-particle point of view it is clear that
the parity ratio should show structure. For §Srs6 the sit-
uation is illuminating. The nucleus is close to spherical
in its ground-state (€2 = 0.05) [19]. It has 10 protons in
the pf shell and 6 neutrons in the gy/, shell. Since there
are large gaps in the single-particle spectrum the energy
to excite nucleons across the gaps, which cause changes
in parity, is quite large. The parity ratio displays long-
range oscillations (see upper left panel of Fig. 6) which
are directly connected to the large single-particle gaps.
The single-particle gaps effectively decrease with increas-
ing deformation, and smaller oscillations are therefore
expected at larger deformations. To test these ideas the
parity ratio in *Sr is calculated at different deformations,
see Fig. 6. Indeed, for larger deformations the oscillatory
pattern vanishes and the parity ratio equilibrates at lower
energies.

In Fig. 7 the parity ratios for *6Fe, ®*Ni and ®Zn are
shown and compared to two calculations of Ref, [14]. The
solid blue lines show the CFY model, the red dashed
lines show the statistical parity projection model and
the black dots show ecalculations using the Shell-Model
Monte-Carlo method. The Fe and Ni isotopes are not
equilibrated below 15 MeV in any of the calculations
while %Zn equilibrates at much lower energies (below
10 MeV). For ®Ni and %Zn there is a clear oscillatory
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The solid blue lines are calculated with the CFY model. The
red dashed line and blacked dots are given by a statistical
model and a Monte-Carlo method, respectively [14].
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FIG. 8: (Color online) Parity ratio versus excitation energy
for Sr isotopes. The solid blue lines are obtained from the
CFY model and the dashed red lines are obtained from the
statistical parity projection of Ref. [41].

behavior prior to equilibration in the CFY model, and
in the case of Ni there is a good agreement between the
Monte-Carlo method and the CFY model, especially in
the region of 8-12 MeV excitation energy. Note, however,
that fluctuations seen in the micro-canonical approach
may be smeared out by the grand-canonical approach in
Ref. [41]

The parity ratio has been calculated for Sr-isotopes
within a statistical method in Ref. [41] where the im-
pact on astrophysical reaction rates was investigated and
found to be small. The statistical method gives at most
one oscillatory maximum before it equilibrates, as seen
in Fig. 8. In the CFY model the parity ratio has substan-
tially more structure. Nuclei with small ground-state de-
formations show long range oscillations which survive to
high excitation energies before equilibration. The overall
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FIG. 9: (Color online) Angular-momentum distribution for
%8Zn in 4 different excitation-energy regions. The black lines
with dots show results from the CFY model. The red solid
lines and blue dashed lines show the Gaussians given by
Eq. (16) using the spin cutoff factors from Ref. [4] and a direct
fit to CFY, respectively.

results are quite different from the model of Ref. [41].

C. Angular momentum distribution

In Fermi-gas models the distribution of angular mo-
mentum is given by the Gaussian envelope in the spin
cutoff model, see eg. Ref. [4], which is obtained by ran-
dom coupling of uncorrelated spins of the nucleons

FU,J) = 2J+1exp (—J(J+1)

202 202 ) : (26)

where the spin cutoff factor, o, is defined by

Jrigia [U
of = = \/; (17)

where Jrigia is the rigid-body moment of inertia, U =
E — § is the effective excitation energy shifted by the
back-shift §, and a is the level-density parameter.

In Figs. 9 and 10 the angular-momentum distributions
for ®Zn and '®Dy are shown for several excitation-
energy regions. The black lines with dots show the CFY
model results while the red solid lines show the Gaussian
distribution of Eq. (16) with spin cutoff factors given in
Ref. [4], and the blue dashed lines show Gaussian distri-
butions fitted to the combinatorial calculation. For low
excitation energies there are clear deviations from the
Gaussian profiles while for higher excitations the com-
binatorial distribution tends to the Gaussian profile. In
addition, for low excitation energies in ®Zn there is an
odd-even spin staggering which is not explained by the
spin cutoff model. This effect has also been observed in
Fe-isotopes in the Shell Model Monte-Carlo Method [15].
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tor as a function of excitation energy for '*’Dy in the CFY
model (black solid line) and the statistical model of Ref. [4]
(red dashed line). The bottom panel shows the ratio of the
combinatorial and statistical spin cutoff factors of the top
panel.

Fig. 11 shows the spin cutoff factor deduced from the
CFY model (black solid line) and from the statistical
model [4] (red dashed line), as a function of excitation
energy for 1¥2Dy. The spin cutoff factor for excitation
energies 2 3 MeV is similar in shape but ~10 % larger
than in the statistical model [4].

IV. COMPARISON WITH EXPERIMENTAL
DATA

A. Neutron separation-energy level spacings

The s-wave neutron resonance spacings constitute the
most comprehensive experimental database for compar-
ison with NLD calculations [42]. This database serves
as a benchmark for all large-scale level-density models
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FIG. 12: Ratio between theoretical and experimental level
spacings at neutron separation energy versus mass number
A. The rms-factor is frms = 4.18. The experimental data are
taken from Ref. [42].

4, 12, 13, 27].
The s-wave neutron resonance spacing Dy at the neu-

tron separation energy S, of the compound nucleus
(Z,N) is calculated as

1 —
5 =
{ P (Sn, Io + 1/2,m0) + p (Sn, Io — 1/2,m0) for Ip > 0,
p(50,1/2,m) for I = 0.
(18)

where I is the ground-state spin and mg is the ground-
state parity of the target nucleus (Z, N — 1).

The quality of a model can be estimated by the rms-
factor [13]

i i 3 1/2
frms = exp I:Fe ; In* T:]p : (19)
and the mean factor
o D ]
m:exp[mglnﬁ- A (20)

where Dj; and Dj,, are the theoretical and experimen-
tal level spacings and N, is the number of nuclei in the
database. The CFY model gives fims = 4.18, see Fig. 12,
which is comparable to other statistical and combinato-
rial models, see Table. I. The mean factor is m = 1.09
which indicates that the model is describing the level
spacings well on average.

As seen in Fig. 12 there seems to be a clear residual
shell structure in the level spacings, especially in the dou-
bly magic ?°*Pb region. A similar effect can be observed
for the Gogny model in Ref. [13] and in results of Skyrme-
model calculations with the BSk9 interaction, as shown
in Ref. [12]. The overall deviation from experimental
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FIG. 13: (Color online) Top panel shows the ratio between
theoretical and experimental level spacings at neutron sepa-
ration energy versus the absolute value |2 of the calculated
quadrupole deformation. The bottom panel shows this ratio
as a function of the microscopic energy. The solid red line
shows an exponential fit to illustrate the correlation. The mi-
croscopic energies and the quadrupole deformations are taken
from Ref. [19]. The experimental data are from Ref. [42].

data is correlated with the ground-state deformation as
seen in Fig. 13 where the level spacings are shown versus
the absolute value of the deformation. However, there is
no clear correlation with the microscopic energy Fie of
Ref. [19] as seen in the lower panel of Fig. 13.

B. Detailed level-density functions

The Oslo method is a commonly used experimental
method for extracting detailed level-density functions for
large ranges of excitation energy [17]. It provides a valu-
able test for NLD models, and below the CFY is com-
pared to data for a number nuclei where experimental
data are available [43-48].

In Fig. 14 we show level densities of the rare-earth
nuclei 14%:149Gy, 161,621y, 166,167Fy and 170171172y}, a5
functions of excitation energy. The data are in general
well reproduced by the CFY model, with an error of less
than a factor of 2. The good agreement between the
calculated and experimental slopes slopes indicates that
the single-particle structure and the moments of inertia in
the rotational bands are sound. However, an observable
trend in this mass region is that the level density for
even-even nuclei is slightly over-estimated and for odd
nuclei the level density is slightly under-estimated. The
effective back-shift is to a large extent controlled by the
ground-state pairing gap. By fine-tuning the pairing gaps
it is possible to get an almost perfect agreement with
experiment. However, in this paper no such local fits
are performed. Instead the ground-state pairing gaps are
given by the mass model, see the introduction..

Experimental level-density functions are available also

p [MeV']

p [MeV']

o [MeV™]

p [MeV™]

0 1 2 3 4 5 6

7
Excitation Energy [MeV]

FIG. 14: (Color online) Level densities p as functions of ex-
citation energy for Sm, Dy, Er and Yb isotopes. The black
solid lines show the CFY model results and the red dots show
the experimental data [45-48].

for lighter mass regions and in Figs. 15 and 16 data for
V and Mo isotopes are shown. The overall agreement
between the model and these experimental data is some-
what inferior to what was obtained in the rare-earth re-
gion. For the Mo isotopes in Fig. 16 the CFY model is
roughly a factor of 3 too large for high excitation energies
while for the V isotopes in Fig. 15 the over-estimation is
roughly a factor of 4. However, these errors are con-
sistent with the overall results from the neutron sepa-
ration level spacing, see Fig. 12, which have an overall
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FIG. 15: (Color online) Level densities as functions of exci-
tation energy for *»*'V. The black solid lines show results
from the combinatorial calculation and the red dots show the
experimental data [43].
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FIG. 16: (Color online) Level densities as functions of exci-
tation energy for °**Mo. The black solid lines show results
from the combinatorial calculation and the red dots show the
experimental data [44]. y

frms = 4.18. Also, the slopes and the detailed struc-
tures are not as well described in these nuclei as in the
rare-earths. Especially ®°V exhibit an oscillatory pat-
tern in the CFY model, which is an effect of the small
ground-state deformation e2 = 0.05. A corresponding
oscillatory pattern is not as clearly present in the experi-
mental data. In ®'V the features of the model results and
experimental data are reversed. The experimental data
shows oscillatory behavior while the CFY model is more
smooth. The ground-state deformation is slightly larger
with 2 = 0.083, which in the CFY model means that
since the moment of inertia is larger the rotational states
have a larger influence and smooths the level density.

Level Density [MeV ']
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FIG. 17: (Color online) Level density of the 2 (black solid)
and 2~ (red dashed) components of the level density as a
function of excitation energy for “°Zr. Data from Ref. [18]
are shown as black dots and red diamonds with error-bars for
2% and 27, respectively.
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FIG. 18: (Color online) Parity ratio versus excitation energy
for “Zr. The solid black and dashed red lines show the CFY
model results for the total level density and the I=2 compo-
nent, respectively. The blue dot-dashed line show the Skyrme-
HFB model of Ref. [12]. Data are from Ref. [18].

C. Parity Ratio

The parity ratio has been measured experimentally by
Kalmykov et.al. [18] for the two spherical nuclei, **Ni
and %°Zr. For these nuclei the I = 2 angular-momentum
components of the level density are measured and sepa-
rated into parity components. In Fig. 17 the level-density
components p(E,I = 2,7 = £1) for %°Zr are compared
to CFY model calculations. The level densities from the
CFY model are in good agreement with experimental
data, and in Fig. 18 the parity ratio is shown. Predictions
for the total level density as well as the I = 2 component
are shown as black solid and red dashed lines, respec-
tively. The difference between the parity ratio for the to-
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FIG. 19: (Color online) Same as Fig. 17 but for **Ni.
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FIG. 20: (Color online) Same as Fig. 18 but for **Ni.

tal level density and the I = 2 component decreases with
excitation energy, because the spin cutoff model becomes
more realistic when the excitation energy increases, see
Sec. IIIC. For the parity ratio the CFY model result is
within the experimental error-bars for all excitation en-
ergies and seems to show a similar pattern as the experi-
ments: a high parity ratio at 8 MeV and a low ratio at 11
MeV excitation energy. The blue dot-dashed line shows
the Skyrme-HFB model of Ref. [12]. It is also within the
experimental error-bars for all excitation energies except
at 9 MeV where the HFB model gives a large positive
ratio (~ 3) while the experiments and the CFY model
are close to unity.

The I = 2 component of the level density in **Ni is
shown in Fig. 19. The agreement between experimental
data and the CFY model is somewhat inferior to what
we obtained for *°Zr. For both parities the level density
seems to increase faster in the CFY model than what is
seen in the experimental data. At 14 MeV excitation en-
ergy the model overestimates the level density by roughly
a factor of 6. The parity ratio is shown in Fig. 20. The
experimental parity ratio is close to unity at 8 MeV and
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FIG. 21: (Color online) Level density of the 1™ components of
the level density as a function of excitation energy for **Nb.
The black solid and red dashed lines show the CFY model
and Skyrme-HFB model of Ref. [12], respectively. Data from
Ref. [18] are shown as black dots with error-bars.

then decreases with increasing excitation energy. The
CFY model shows a different pattern. It gives a very
low parity ratio at low excitation energies with an al-
most monotonic increase with increasing excitation en-
ergy. The ratio only becomes close to unity at 20 MeV.
The Skyrme-HFB model of Ref. [12] shows a similar pat-
tern as the CFY model but with an even lower ratio for
excitation energies below 20 MeV.

The 1* component of the level density of °°Nb has also
been measured in Ref. [18]. Fig. 21 shows the experimen-
tal data compared to the CFY and Skyrme HFB models.
In the experimental data there is a clear oscillating struc-
ture. The CFY model over-estimates the level density
and the oscillating structure is much less pronounced. In
the Skyrme-HFB model there are long-range oscillations
similar to what is seen in the experimental data, but the
energy separation between consecutive minima is larger.
The level density is under-estimated in the Skyrme-HFB
model, whereas the CFY model over-estimates the level
density by a similar factor.

V. COMPARISON WITH OTHER MODELS

The CFY model is here compared to other statisti-
cal and combinatorial NLD models that provide neutron
resonance level spacings. In general the statistical mod-
els listed in in Table. I have an rms deviation just be-
low 2. This low rms deviation is obtained because sev-
eral parameters in the level-density formulas are directly
adjusted to the neutron separation-energy level spacings
and low-lying discrete energy levels.

The back-shifted Fermi model of Ref. [27] is based on
a simple Fermi-gas formula whereas the Constant Tem-
perature model is based on the approach of Gilbert and
Cameron [8]. Both models contain explicit enhance-



Sta.tistlcal MOdBlS fn—ns REf.
Back-shifted Fermi Model 1.71 [27]
Const. Temp. Model 1.77 [27]

Back-shifted Fermi + Const. Temp. Model 1.7 [4]

Generalized Superfluid Model 1,94 [27)
Combinatorial Models frms Ref.
Skyrme-HFB 2.35 [27]
Gogny-HFB 4.55 [13]
CFY 4.18 Present

TABLE I: Table of rms-factors frms for statistical and combi-
natorial models for neutron separation energy level spacings
[4, 13, 27].
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FIG. 22: Vibrational enhancements at the neutron separation
energy in the attenuated phonon method (top panel) and the
QTDA method (bottom panel) versus of mass number A.

ment factors for rotations and vibrations. The model
by Rauscher, Thielemann and Kratz [4] is also based on
the approach of Gilbert and Cameron. In contrast to
the first two models this model has no explicit enhance-
ment factors for rotations and vibrations. It accounts for
shell effects and thermal damping in terms of an effective
level-density parameter. The model uses the microscopic
energy corrections of Ref. [19] together with three free
parameters in the fitting procedure. The Generalized Su-
perfluid Model is similar to the models mentioned above.
In addition it takes into account how pairing evolves with
increasing excitation energy. It also incorporates explicit
rotational and vibrational enhancements [27).
Predictions by statistical models in regions outside
the fitting region probably give much less accurate re-
sults than in the adjustment region. On the other hand,
since the combinatorial models are all based on calcu-
lated single-particle spectra they could in principle have
better predictive power, in particular in regions where
the single-particle model is sound. In contrast, they are
not equally flexible in terms of parameter fits to the level
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spacings database. Therefore, the rms deviation factor
of combinatorial models with respect to known data is
larger than for the statistical models. The fims = 4.18
for the CFY model is about a factor of 2 larger than in
statistical models. However, the latter result is obtained
with no parameters specifically fitted to the level-density
data. But it is impressive that the mean deviation factor
m = 1.09 indicates that the level density is on average
correct. There is no need to include any additional order
of magnitude collective enhancements in the CFY model
as proposed by the SU(3) rotational enhancement or the
attenuated phonon method, see Figs. 1 and 2 and the
discussion below.

In the lower part of Table. I the CFY model is com-
pared to two other large-scale combinatorial NLD mod-
els based on the HFB method. The model of Ref. [13]
is based on the Gogny D1S interaction for the mean-
field and incorporatés combinatorial rotations (similar to
Sec. IIB but no pairing dependence of the moment of
inertia), and the attenuated phonon method is applied
to account for vibrational states. Pairing is included
explicitly for the ground-state, and excited states are
back-shifted by an energy-dependent gap procedure. The
model gives frms = 4.55 for the subset of even-even axi-
ally deformed nuclei. The error is slightly larger than the
CFY model.

For the Skyrme-HFB NLD model the deviation factor
i8 frms = 2.35 [27], which is ~ 35% larger than the sta-
tistical models and 44% smaller that in the CFY model.
This model is based on a Skyrme-HFB mean-field to-
gether with combinatorial rotations and the attenuated
phonon method for modeling vibrational states. In ad-
dition a phenomenological deformation change from de-
formed to spherical shape at some specified excitation
energy is incorporated.

The attenuated phonon method is a phenomenological
way to model nuclear vibrations, see eg. Refs. [10, 12]. It
assumes that the quadrupole and octupole phonon states
in nuclei can be modeled by a gas of non-interacting
bosons. The vibrational excitation energies are taken
from systematics of the lowest non-rotational 2+ and 3~
states. The model is formulated as a multiplicative factor
Kipr = exp [0S — 8U/T) which enhances the level den-
sity. T is the nuclear temperature and the 65 and U are
the entropy and internal energy change induced by the
bosons. The occupation probabilities of the bosons are
described by damped Bose statistics, where the damping
sets in at considerably higher energies than the neutron
separation energy. At excitation energies close to or be-
low the neutron separation energy the damping has neg-
ligible effect which implies that the phonons are allowed
to be repeated several times. The repetition of phonons
effectively leads to a large enhancement. But, numer-
ous repetitions of phonons is highly questionable even in
strongly vibrational nuclei, see eg. Ref. [49)].

The vibrational enhancement at the neutron separa-
tion energy is quite small in the QTDA method as com-
pared to the attenuated phonon method, see Fig. 22. The
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FIG. 23: Rotational enhancement at the neutron separation
energy in the CFY model and in the SU(3) method of Ref. [26]
(inset) versus mass number A,

QTDA gives an enhancement of the order of a few percent
compared to up to a factor 7 in the attenuated phonon
method. The QTDA phonons are microscopically built
from states with energies not much different than the
phonon energy. The way to fully account for double-
counting of phonon states (Eq. 13), thus implies a small
vibrational enhancement. On the other hand, phonons
in the attenuated phonon model are not described mi-
croscopically, and double-counting of states may appear.

Inclusion of the attenuated phonon model in the CFY
model would introduce a too large level density on av-
erage and thus a poorer total result in general with
frms = 6.24 and m = 0.35. That corresponds to a
systematic over-estimate of the level density at the neu-
tron separation energy by a factor of 3. The attenuated
phonon method gives the largest vibrational contribu-
tions for medium-mass nuclei, especially in the A = 100
and A = 150 regions. There does not seem to be a sub-
stantial over-estimate of the level spacings (i.e. under-
estimate of level density) in these regions in the CFY
model as seen in Fig. 12. However, inclusion of the at-
tenuated phonon method would give almost an order of
magnitude over-estimate of the level density in these re-
gions.

The QTDA gives its largest vibrational enhancements
for the A = 75 region and Cd isotopes in the A = 115
region, see Fig. 22, which is consistent with the fact that
Cd isotopes are known to have a strong vibrational char-
acter, see eg. Refs. [49, 50].

In Fig. 23 the rotational enhancement in the CFY
model at the neutron separation energy is shown . The
enhancement is increasing almost linearly with mass
number. The inset shows the SU(3) rotational enhance-
ment model which gives an order-of-magnitude larger en-
hancement compared to the CFY model. Hence, both
phenomenological models, the SU(3) rotational enhance-
ment and the attenuated phonon model, each gives al-
most an order-of-magnitude larger enhancement than
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what is obtained in the approach used in the CFY model.
Since the neutron resonance level spacings are well de-
scribed on average in the CFY model there is therefore
no justification to use additional order-of-magnitude col-
lective enhancement factors in the CFY model, although
such factors occur in the SU(3) and attenuated phonon
methods.

VI. SUMMARY

A combinatorial model for the nuclear level density
is presented. The model is based on the folded-Yukawa
single-particle model with ground-state deformations and
parameters from Ref. [19]. The model is used to calcu-
late the neutron resonance level spacings, yielding an rms
deviation of fims = 4.18, which is comparable to other
combinatorial NLD models. It also compares very favor-
ably with experimental level density data versus excita-
tion energy for several nuclei in the rare-earth region as
measured by the Oslo method.

The role of collective enhancements has been investi-
gated in detail. Pairing is incorporated for each individ-
ual many-body configuration and the distribution of the
pairing gaps is investigated. No sharp pairing phase tran-
sition is observed. Instead, even at the highest excitation
energy considered, a non-negligible fraction of the states
have a considerable pairing gap.

Rotational states are included combinatorially by a
simple rotor model with a moment of inertia dependent
on the deformation and pairing gap. Vibrational states
are included using a Quasi-particle-Tamm-Dancoff Ap-
proximation. It is found that the vibrational enhance-
ment in the QTDA model is very small, on the order
of a few percent at the neutron separation energy. This
model result is in sharp contrast to the widely used at-
tenuated phonon model [10], which gives up to a fac-
tor of 7 enhancement at the neutron separation energy.
Since the neutron separation level spacings are on aver-
age well described in the CFY model further inclusion
of vibrational enhancements (like the attenuated phonon
method) would introduce large mean discrepancies rela-
tive to the experiments, see Sec. IV A.

The parity distribution in the CFY model shows large
oscillatory patterns for nuclei which have large gaps in
the single-particle spectrum, separating shells with dif-
ferent parities. This is often the case for nuclei with
small deformations. The patterns are quite different from
the smooth pattern of the statistical parity distribution
model of Ref. [14]. The CFY model is compared to other
models and to experimental data when available.

The angular-momentum distribution in the CFY
model is compared to the spin cutoff model in Sec. III C.
It is found that the Gaussian envelope of the spin cutoff
model is in good agreement with the CF'Y model for high
excitation energies. For low excitation energies the CFY
model shows some structure. For the nucleus 92Dy the
spin cutoff factor ¢ is compared in the CFY model with



the results of a commonly used formula. It is found that
the spin cutoff factors in the two models are very similar
in functional form but differ by ~ 10% at high excitation
energies.
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