
Combinatorial Optimization
of Graphical User Interface
Designs
This article surveys combinatorial optimization as a flexible and powerful tool for

computational generation and adaptation of graphical user interfaces (GUIs).

By ANTTI OULASVIRTA , NIRAJ RAMESH DAYAMA, MORTEZA SHIRIPOUR, MAXIMILIAN JOHN,

AND ANDREAS KARRENBAUER

ABSTRACT | The graphical user interface (GUI) has become the

prime means for interacting with computing systems. It lever-

ages human perceptual and motor capabilities for elementary

tasks such as command exploration and invocation, informa-

tion search, and multitasking. For designing a GUI, numerous

interconnected decisions must be made such that the out-

come strikes a balance between human factors and technical

objectives. Normally, design choices are specified manually

and coded within the software by professional designers and

developers. This article surveys combinatorial optimization as

a flexible and powerful tool for computational generation and

adaptation of GUIs. As recently as 15 years ago, applications

were limited to keyboards and widget layouts. The obstacle has

been the mathematical definition of design tasks, on the one

hand, and the lack of objective functions that capture essential

aspects of human behavior, on the other. This article presents

definitions of layout design problems as integer programming

tasks, a coherent formalism that permits identification of

problem types, analysis of their complexity, and exploitation

Manuscript received April 8, 2019; revised October 9, 2019 and January 12,
2020; accepted January 17, 2020. Date of publication February 17, 2020; date of
current version March 4, 2020. This work was supported in part by the European
Research Council (ERC) through the European Union’s Horizon 2020 Research
and Innovation Program under Grant 637991 and in part by the Academy of
Finland projects Bayesian Artefact Design (BAD) and Human Automata.
(Corresponding author: Antti Oulasvirta.)

Antti Oulasvirta is with the Department of Communications and Networking,
School of Electrical Engineering, Aalto University, 02150 Espoo, Finland, and also
with the Finnish Center for Artificial Intelligence (FCAI), 02015 Espoo, Finland
(e-mail: antti.oulasvirta@aalto.fi).

Niraj Ramesh Dayama andMorteza Shiripour are with the Department of
Communications and Networking, School of Electrical Engineering, Aalto
University, 02150 Espoo, Finland.

Maximilian John and Andreas Karrenbauer are with the Max Planck Institute
for Informatics, 66123 Saarbrücken, Germany.

Digital Object Identifier 10.1109/JPROC.2020.2969687

of known algorithmic solutions. It then surveys advances in

formulating evaluative functions for common design-goal foci

such as user performance and experience. The convergence

of these two advances has expanded the range of solvable

problems. Approaches to practical deployment are outlined

with a wide spectrum of applications. This article concludes by

discussing the position of this application area within optimiza-

tion and human–computer interaction research and outlines

challenges for future work.

KEYWORDS | Combinatorial optimization; computational

design; graphical user interfaces (GUIs); human–computer

interaction (HCI); integer programming; interactive optimiza-

tion; meta-heuristic optimization.

I. I N T R O D U C T I O N

This article surveys combinatorial optimization approaches
for graphical user interface (GUI) design. GUIs have
become the prime user interface type for interacting with
computing systems. They leverage our perceptual and
motor capabilities to cater for elementary interactions with
computer programs, such as exploration and invocation of
commands, parameter selection, information search, and
multitasking. Familiar GUI types include widget layouts,
forms, hypertext, toolbars, windows, and menu systems.
The design of these GUIs critically affects the usability,
usefulness, learnability, and enjoyability of a system, and
it shapes the ultimate success and acceptance [1]. Pro-
fessional titles such as “Interaction Designer” and “User
Experience Designer” now represent common professions
across major technology companies.

Among the various computational techniques to decide
on the GUI design and interactions, combinatorial opti-
mization is distinguished by its algorithmic capacity,

434 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2498-7837
https://orcid.org/0000-0001-6129-3220

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

controllability, and generalizability [2]. Its potential to
complement human designers’ work lies in its capability
to search for large numbers of possible designs, a target
that might otherwise be out of reach. In combinatorial
optimization, GUI design is addressed as the algorithmic
process of combining design decisions to find acceptable
or optimal solutions as defined by an objective function.
Design, then, is defined as the process of trying out various
decisions to find combinations that yield the highest value
for that function. This process is a natural match with
user interface design, where a set of elements must be
organized and their properties defined. Many intercon-
nected decisions are made, from the selection of function-
ality to various decisions on how to present them and
implement their interaction. A good design must strike a
balance among numerous objectives, such as usefulness of
functionality, functions’ identifiability and ease of use, and
complexity and learnability.

In comparison to formal methods, such as logic,
combinatorial optimization offers an effective but a flexible
way of expressing design knowledge and objectives in a
computable manner. Compared to data-driven approaches
based on machine learning, such as artificial neural net-
works, combinatorial optimization allows direct and mean-
ingful control of design outcomes via specific design objec-
tives. It does not rely on the acquisition of a large training
set, although its input parameters can be learned from data
sets through machine learning methods. Combinatorial
optimization approaches can offer proofs for solution qual-
ity and, at the same time, can utilize the so-called black-
box solvers to include complex models and simulators in
objective functions. As a generative method, this can be
made as transparent and controllable as desired.

Notwithstanding these apparent benefits, which have
been recognized in this domain at least since the 1970s
(see Section II), applications beyond simple button layouts
have remained out of reach for combinatorial optimiza-
tion techniques. One reason is that computational opti-
mization techniques tend to insist on explicit and precise
inputs. On the contrary, design practice is a character-
istically ill-defined process [3]. The fitness of design is
best determined in actual use, which is hard to antici-
pate in advance. Moreover, designers’ work is concerned
not only with a concrete layout but also with hard-
to-formalize conceptual, structure-based, functional, and
esthetic aspects of design [4]. To this end, they consider
multiple types of constraints when they create, shape, and
determine use-oriented qualities [4], [5]. Their success
draws from their capabilities of creativity, problem-solving,
sensemaking, empathy, and collaboration [4], [6]–[10].
They continuously engage in refining the design objec-
tives and constraints [5], [11]. To explore their ideas,
they sketch and implement rapid prototypes [12]. This
process is iterative, selective, and corrective: at times, they
explore the design space for satisfactory approaches and
then switch to an in-depth analysis of the problem to
identify a hypothetical best design. They alternate between

Fig. 1. Uses of combinatorial design methods in the user-centered

design process.

a constructive and a critical stance. Criticality allows them
to assess which aspects of a solution belong together
and which are compatible with background data. Design
also deploys a multiplicity of representations of human
needs and behavior, including user profiles, use cases,
storyboards, user requirements, and scenarios. These are
used constructively to envision opportunities or to set and
refine objectives. Final choices are, for the most part,
specified manually for the software by designers and devel-
opers. To this end, they use a variety of means, from
direct hard-coding to higher level tools offered by software
development environments (SDEs). It is fair to ask how
combinatorial optimization can assume a role in such
a practice.

The goal of this article is to offer a comprehensive
survey of the combinatorial optimization approach; this
includes the assumptions made, key technical elements,
the noteworthy achievements reported over the past few
years, and also the major issues encountered. Applications
of combinatorial optimization in human–computer interac-
tion (HCI) have been expanding recently. These advances
build on convergence of three ideas demonstrated in those
areas: 1) definition of appropriate constraints for ruling
out infeasible designs, which is sufficient for generating
some partial designs (e.g., in GUI layouts, element orders,
or placements); 2) definition of user-related design objec-
tives such as movement performance or visual acuity,
which makes the outcomes more usable and better cus-
tomized to individuals; and 3) identification of suitable
algorithmic methods, which has made larger and more
realistic problem instances solvable. There is increasing
understanding of how to formulate objective functions for
more comprehensive design objectives, as well as a math-
ematical understanding of the design decisions involved.
These advances have opened up new applications. It is pos-
sible to produce usable menu systems, as well as toolbars,
and thus document content layouts and collages, web lay-
outs, wireframes, and others. Beyond applications, there
is increasing understanding of how best to utilize combi-
natorial optimization in user-centered design (see Fig. 1).
The research surveyed in this article is revealing ways in
which design problems can be specified interactively for an
optimizer or learned from a data set with machine-learning

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 435

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

Fig. 2. Elementary GUI design tasks reviewed in this article include selecting the functionality, choosing labels and icons, assigning and

ordering these (in slots, containers, and hierarchies), and deciding on properties for them such as colors. (a) Desktop application.

(b) Hierarchical menu.

methods, such that the results better capture the relevant
objectives and empirical tendencies. Optimizers can be
integrated into design tools to assist designers in sketching,
wireframing, and prototyping. Moreover, optimizers can be
integrated into software systems that adapt user interfaces
to individual users.

Optimization offers a rich and flexible toolbox for prac-
tical design problems. It can be used to find the optimal
design, surprising (different distinct) solutions, designs
with particular tradeoffs, or solutions that strike the best
compromise among competing objectives or are robust to
changes in conditions. A designer can identify how far
the present interface is from the best achievable design.
Choices behind design can be scrutinized and justified,
for better support of building and sharing of knowledge
in teams. A computer scientist can use well-established
algorithmic techniques—for example, from optimization
or operations research (OR)—to analyze problems and
hence identify efficient methods to solve them. Advances
in algorithms and hardware have made it possible to
solve larger problem instances and consider the integra-
tion of optimization into design tools. They offer a viable
opportunity for finding good or optimal solutions, and,
in certain conditions when the so-called exact methods
are used, mathematical guarantees (bounds) can be com-
puted. An optimizer can make rigorous statements such as
“this design is within 5% of the best achievable design”;
such information cannot be delivered by any other known
noncomputational methods applied in design. These appli-
cations rely on the ability of optimization techniques to
search very large numbers of options that designers might
have little time to explore manually.

A. Scope

This is the first article to survey combinatorial optimiza-
tion methods in the area of GUIs. The relevant literature
was searched via academic search engines [Google Scholar,
IEEE Xplore, and Association for Computing Machinery
(ACM) Digital Library (DL)], for combinations of terms
related to combinatorial optimization and user interfaces.
Ninety-two articles were selected initially, and the pool was
expanded by traversing of citation trees.

This article examines combinatorial optimization as a
means for generating GUI designs. It focuses on a few
recurring issues and design decisions recognized in popu-
lar guidance on GUI design (see [13] and [14]): 1) select-
ing which program functions are to be manipulated and
which presented to the user; 2) selecting widget types and
their properties, such as labels and colors, and interactive
features; 3) deciding how associated interactions map to
state-changes in the program; 4) organizing components
within the space of their containers, with decisions on
positions and on sizes and (overlap-free) shapes; and
5) distributing components across containers to form a
hierarchy. Fig. 2 illustrates two common types of GUIs:
application GUI and menu. They consist of differing mix-
tures of elementary decisions and constraints.

Another goal for this article is to expose elements con-
stitutive to graphical interface design. These have been
previously scattered around technical articles. To this
end, this article surveys formal definitions for com-
monly used point-and-click GUIs often seen in regular
operating systems, apps, and web sites. Specific tech-
niques for interactive graphics [15], command selec-
tion [16], and 3-D interaction [17] are left for future

436 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

work, as are methods for photo collages [18], document
layouts [19], game levels, real-time layout rendering [20],
and software-engineering-related topics such as GUI pro-
gramming [21] and user-interface description languages
[22], [23]. Emerging work on human computation and
machine-learning-based methods is touched upon only
briefly here, and only in the context of their applications in
combinatorial optimization. Rule-based [24], probabilistic,
and formal methods [25] used for GUI design are similarly
discussed from this angle in Section II. Other scholars
have provided reviews of design tools using computational
methods [2], [13], [26]–[28].

B. Aims

Four technical challenges are addressed in this sur-
vey. The authors believe these to have curtailed progress
previously.

The first issue is capturing a designer’s decision problem
as design variables and constraints in a coherent and solv-
able definition. To formulate a design space requires not
only abstraction and mathematical decomposition but also
understanding of the designer’s subjective and practical
problem. Among the recurring design decisions in GUI
design are the elements’ sizes, colors, and positions and
their types. The Cartesian product of design decisions,
from which infeasible designs are removed by introducing
constraints, forms the design space, also known as the fea-
sible set or the candidate set. The characteristic of interface
design, though at times unnoticed by practicing designers,
is that the size of design spaces easily gets very large. For
example, for n functions there are 2n − 1 ways to combine
the functions in an application, which, for only 50 func-
tions, means 1 125 899 906 842 623 possibilities. Assum-
ing that 50 commands have been selected, one can orga-
nize them into a hierarchical menu in 100! ≈ 10158 ways.
Layout problems are even more vast. Determining whether
a set of nonoverlapping rectangular objects fits on a display
is NP-complete [29]. What optimization offers here is a
systematic way of attacking a design problem nonethe-
less, when the space can be formulated so as to be
efficiently searchable.

The second challenge is to define an appropriate evalua-
tive function. This incorporates assumptions about what
makes a design “good” for end users. The challenge is
to find mathematical descriptions for numerous and often
poorly defined objectives: consider learnability versus use-
fulness, or esthetics versus usability. For example, one
well-known objective in menu design is the ease of select-
ing a command with a pointer. This has been addressed
by placing frequently accessed commands closer to the
entry point to the menu. The entry point in a tabbed
menu is in the top-left corner. Another objective in menu
design involves the grouping of items: placing commands
close to each other can make it easier to find them.
Also, a good menu design balances depth with breadth.
This article synthesizes progress in defining evaluative

functions, which range from simple rules to full-fledged
cognitive simulators.

The third challenge is to formulate the task such that it
can be appropriately parameterized (or instantiated or ini-
tialized) in a particular project. In optimization parlance,
a task instance is a task- and designer-specific parame-
terization of the design task. Every objective function has
parameters, such as weights and coefficients, which must
be filled in for a particular task instance. Not only are
the objectives different from those in previous research on
applied optimization, such as product and assortment opti-
mization in management sciences, but designers under-
stand their work as being iterative, explorative, and cor-
rective rather than about finding the best possible design.
How can one define an optimization task such that it
addresses the objectives that designers hold to be impor-
tant and, yet, fits with the practices of designers and devel-
opers? These considerations can be addressed by the use of
methods familiar from robust and interactive optimization.
Instead of just one “optimal design,” they generate multi-
ple optimization tasks and account for uncertainty in input
data rigorously (see [30]). Machine learning can be used
to learn parameterizations in a data-driven manner.

The final challenge is in the definition of a solver
strategy that matches practical requirements, particularly
as to the availability of such resources as computation
time, the uncertainty of inputs, and the need for
interactively steering optimization. Previous work either
limited the focus to a few decisions at a time or resorted
to black-box optimization. Black-box methods, however,
neither guarantee global optima nor estimate bounds for
the quality of the solution. Exact methods such as integer
programming use a structured (nonrandom) search
approach that guarantees the optimal solution in finite
time. Also, these can provide guarantees (bounds) for
the quality of the solution. They allow exploiting widely
available and efficient commercial solvers. To sum up, the
way these four challenges are solved affects the success or
failure of a real-world application.

C. Guidance for Readers

The rest of this article provides a consolidated overview
of this rapidly developing area, targeted primarily for
researchers in two fields. For optimization researchers,
it offers a characterization of the problem (see Section II),
definition of key design tasks with integer programming
to link them to known problems in operations and opti-
mization research (see Sections III and IV), an overview
of evaluative functions (see Section V), and a discussion
of characteristic challenges (see Sections VI and VII).
An overview of the mathematical problems and their
applications is given in Table 1. For HCI researchers, this
article offers a brief review of the intellectual positioning
of this approach (see Section II), an accessible overview of
recurring design problems and advances (see Section VI),
and guidance on how to formulate design knowledge and

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 437

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

theories formally as evaluative functions (see Section V),
along with an overview of practical issues in deployment,
including evaluative methods (see Section VII).

This article may be of interest also for researchers in
the fields of human factors and design research. Although
there was a significant interest in computational methods
in the early years of HCI and human factors research
[31], [32], the proposed predictive models of human
performance were not linked to research on algorithms
that can generate designs. Curiously, the first articles cited
OR as an example of how models should be combined
with algorithmic research; however, since little advice was
given on technical issues such as optimization tasks and
methods, applications were practically limited to parame-
ter optimizations and simple mappings. In 2001, a survey
of automated usability evaluation [33] was able to identify
only a few articles going beyond usability evaluation to
algorithmically propose suggestions for improving designs.
On the other hand, although OR and management science
have examined related topics in product design, these
turn out to have few touchpoints with graphical inter-
faces. The design of product offerings [34], products [35],
product lines, and product positionings [36]; supply-chain
design [37]; and assortment design [38] focus more on
the selection of features for products and much less on
their concrete design or end-user use [39]. For example,
the Kano model is a product-design model that covers con-
sumer preferences in the features of products [40]. It dis-
tinguishes among various types of product qualities, each
with differential effects on satisfaction. Although there
is more confluence with classic optimization problems
such as packing, ordering, and layouts (see Section IV),
these definitions must be expanded to account for design
and human aspects typifying GUI design; we do this in
Section VI.

II. G U I D E S I G N A S O P T I M I Z AT I O N

A GUI presents the state and control of a computer pro-
gram visuospatially on a display for interaction with a
pointing device [41]. The visual presentation serves two
functions: first, the program state can be conveyed to the
user, and second, it enables changing the state of the
program by interacting with a pointer. Commands are typ-
ically carried out by dwelling (e.g., hover-over), clicking,
or dragging elements with a pointer. Elements express
visually what type of interaction they permit; consider, for
example, buttons, widgets, icons, and adjustment handles.

The traditional GUI paradigm is known as WIMP:
windows, icons, menus, and pointing device. In addition,
modern GUIs offer multiple types of widgets, such as
buttons, entry fields, and choosers. Containers of vari-
ous types are available for media, applications (docks),
and documents (folders), and navigation controls such as
scrollbars, task switchers, search bars, and tabs translate
or update views. In a text-entry mode, text can be entered
also via a virtual or physical keyboard. Keyboard shortcuts
can be used to invoke commands without pointing.

Since most software and services have extensive func-
tionality to offer, GUIs are often organized hierarchically.
Two principles of hierarchical organization are commonly
followed.

1) Visual Containment: Graphically marked containers
such as canvases, windows, and boxes can have other
containers and elements within them.

2) Logical Compositionality: A program can consist of
multiple sub-GUIs, such as a settings panel, a drawing
canvas, and a dialog. These can be presented in
sequence or parallel. For example, the 3-D modeling
software Maya, which offers 1346 functions in a
menu, arranges them in a hierarchical fashion [39].

One popular way of arranging elements in a GUI is the
grid layout [42]. It uses grid lines to organize slots that
determine the possible sizes and positions of graphical ele-
ments. Besides purely technical considerations (e.g., soft-
ware and hardware reliability) and considerations related
to marketing and brands, there are end-user-related design
objectives in GUI design. They include: 1) usefulness;
2) user performance such as speed and accuracy in com-
pleting tasks; 3) learnability; and 4) aspects of user expe-
rience such as esthetics, emotions, or perceived value.
To understand which objectives are important, companies
invest significantly in user research, wherein the methods
include, among others, surveys, online logging, controlled
evaluations, and observational studies. Such techniques
are used to chart the needs, practices, capabilities, and
technical contexts of users. However, it is widely accepted
that the quality of the design is determined in actual
use. This creates a tough challenge for design. A designer
must anticipate how well users will perform and how
they will use and experience a design candidate. To this
end, designers conventionally rely on design heuristics—
well-founded rule-like conventions such as “do not use
more than four colors to code information”—alongside
design patterns, empirical evaluation such as usability and
A/B testing, and personal experience [14]. Research in
the fields of cognitive psychology and human factors has
revealed several mathematical and simulation models that
capture aspects of graphical interaction; however, there
is no comprehensive predictive model yet for GUI inter-
action, although the topic has been of sustained interest
in research. That said, many practical models exist for
focused topics. We review these in Section V.

A. History of Optimization-Based Approaches
in HCI Research

Combinatorial optimization of GUIs has attracted
interest from a number of fields. However, efforts have
been fragmented. The articles surveyed below have been
published in the disciplines of applied mathematics and
OR, artificial intelligence, machine learning, software engi-
neering, HCI, ergonomics, design research, and cogni-
tive psychology. They cover mathematical definitions of
design problems, efficient solvers, the learning of objective

438 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

Table 1 Overview of Paper Structure

function parameters from data, description of design tasks
and device characteristics, creativity support for designers,
the effect on design practice, and psychological models as
objective functions. Although a historical review is beyond
the scope of this survey, four milestones are worth men-
tioning.

The first is the expanding scope of mathematically
defined design problems. The characterization of keyboard
layout tasks as a quadratic assignment task was pioneered
by Pollatschek et al. [43] and later by Burkard and Offer-
mann [44] who proposed efficient solutions to the problem
(see [45], for a recent review). The observation that graph-
ical layouts can be defined as a packing problem was made
by Hart and Yi-Hsin [46].

From the study of Sutherland’s Sketchpad in 1964 [47],
constraints have been used for graphical interaction.
Since then, constraints have been discovered that are
exploitable to guarantee feasible layouts [48]—for exam-
ple, elements not overlapping or getting clipped. Layouts
can be created via adding constraints incrementally [49].
Chorus [50] addressed nonlinear geometric constraints
such as Euclidean geometric, nonoverlapping, and graph
layout constraints. It also introduced soft constraints
with hierarchical strengths or preferences. Cassowary [51]
implemented a linear arithmetic constraint solver to adapt
the layout to changing sizes. Some ideas of this sort have
been implemented in popular commercial systems such as
Apple’s Auto Layout, enabling GUIs to adjust their lay-
out dynamically as window or screen dimensions change
(these definitions, which form the core of combinatorial
solutions, are dealt with in detail in Section IV). Con-
straint satisfaction alone, however, has been inadequate
for producing full designs beyond laying out elements.
Also, constraint systems are hard to develop and maintain;
furthermore, the criterion of “goodness” of a design is
often unclear. Elements can be chosen, ordered, and posi-
tioned with constraints, but without added assumptions
connected with human attention and motor control, many
of the layouts produced remain practically useless.

The second milestone lay in defining design tasks by
using formalisms compatible with software engineering
practices that employ interactive software. Model-based
design engineering (MDE) [52] developed rich notation
and languages for expressing user tasks and software- and
hardware-related constraints. This field, which emphasizes
more on integration with software engineering practices
and standards, has been subject to serious criticism [22],

[23], [28], [53], [54], which can be summarized in terms
of three obstacles: 1) reliance on a large number of
hard-coded heuristics, which make the system hard to
control, expand, and learn; 2) rigidity of the model, with
limited scope of important decisions that can be made;
and 3) limited success with demonstrable improvements
in usability. However, MDE has proposed formulations of
design tasks that allow representing users’ tasks, limits of
the input and output devices, and properties of the user
interface.

The third milestone came in the use of psychologi-
cally plausible models as objective functions, pioneered
by Fisher [32], [55]. These ideas were explored in the
menu and keyboard design, wherein simple navigation and
motor performance models were used to model how users
navigate or how quickly the fingers move. Zhai et al. [56]
developed a widely used approach to keyboard layout
optimization that is based on Fitts’ law. The idea of using
sensorimotor models for objective functions was adopted
by Gajos et al. [57] for widget layout design. However,
their approach assumed functional prespecification of the
interface, including at times a functionality hierarchy,
which imposed an overhead to use and could also strongly
constrain the outcomes of optimization.

The fourth milestone lies in the demonstration of viable
interaction concepts for integrating optimizers into design
tools [58]–[60]. This has made it possible to design a
GUI through an optimizer without deeper understanding
of optimization. We review interaction concepts at the end
of this article.

For overcoming the obstacles faced by previous
attempts, a three-pronged approach is needed, one that:
1) uses empirically verifiable models of interaction and
user experience as objective functions; 2) expresses design
tasks by using a formalism that permits analysis of prob-
lems and solutions, such as integer programming; and
3) integrates with design tools that allow defining design
tasks for a solver interactively without in-depth under-
standing of the mathematical underpinnings.

B. Basic Concepts

This section introduces the fundamental concepts of
combinatorial optimization in the context of GUI design.

User interface design is formulated as algorithmic com-
bination of discrete design decisions utilized with the goal
of obtaining an optimal solution defined by an objective
function. Following a standard definition of combinatorial

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 439

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

optimization [61], we define a design task as

Find x =

�
�����

x1

x2

...
xn

�
����� ∈ X , which maximizes fθ(x)

where x is an n-dimensional design vector, each dimension
describing a design variable, X is a set of candidate
designs, f is an objective function, and θ is a set of
parameters defining the task instance. Further definitions
given in this article fall under this broad definition. This
opens a rigorous but rich set of concepts for formally
describing a design task.

Design space X is the set of candidate designs, or all
to-be-considered design vectors. It is contained in the
Cartesian product of the domains of the design variables.
A design variable can address any open decision, which
may be defined via, for example, Boolean, integer, or cat-
egorical variables. Examples include sizes and colors and
the positions of elements and their types. A benefit of this
formulation is that the size of the design space can be esti-
mated, provided that X is known. In graphical interface
design, the number of combinations of such choices grows
very large easily.

Evaluative knowledge, or assumptions about what
makes a design good for end users, is expressed in the
objective function fθ(x).1 It assigns an objective value to a
design candidate x ∈ X . As discussed later, the functions
might be, for example, if–then rules (heuristics), metrics,
regression models, or simulators. The choice of a func-
tion has a profound effect on outcomes and the process
of optimization.

The task instance is a parameterization of the objective
function in a given design project. It comprises the par-
ticular decision variables, weights of objectives, and con-
straints that characterize the task at hand. As we discuss
later in the article, the acquisition of a task instance is a
major challenge arising from the nature of design practice.

Optimization is the process of searching the design
space for candidates that yield the most desirable value
of f . The candidate that obtains the highest (or lowest,
in minimizing) score is the optimum design. A design is
globally optimal when the search method guarantees that
it achieves the best objective value over the whole design
space. Such guarantees are offered by exhaustive search
and exact methods (e.g., integer programming). Design is
approximately optimal when its objective value is within
some margin of the optimal design or when there is a good
chance that only marginally better designs exist.

Multicriteria optimization describes the case with mul-
tiple objective functions fi : X → R for i = 1, . . . , k

instead of only one. The utopian design, or a solution that

1At times referred to as a loss function, merit function, criteria
function, reward function, evaluative function, utility function, goodness
function, or fitness function.

optimizes all objective functions simultaneously, is often
nonexistent. Therefore, the optimal solutions of multicrite-
ria optimization problems are referred to as Pareto-optimal
points. A feasible solution is described as Pareto-optimal
if one cannot improve any objective function without
the score for another suffering. Several solution strate-
gies for multicriteria optimization problems, among them
hierarchical or aggregating approaches, are discussed in
Section VII.

In the following material, design problems are modeled
via multiobjective models, discussed in more detail in
Section VII-D. Throughout, multiple objectives f1, . . . , fk

will be denoted by (f1| · · · |fk).
After providing an overview of applications of combi-

natorial optimization, we proceed to survey mathematical
representations of interface design tasks.

C. Applications

1) Generative Design: In generative design, the goals are
twofold: 1) to solve problems that are rendered hard by
a large problem size or number of objectives and 2) con-
struct designs algorithmically with high quality of the
design for end users, encompassing goals such as usability,
good ergonomics and user experience, and reliability and
recovery from errors [62]. Demonstrated applications for
GUIs include generation of graphical layouts [13], [30],
[42], [46], [48], [60], [63], [64], creation of document
layouts [65], multiplatform design [66]–[69], generation
from program code [70], generation of forms from data
descriptions [71], [72], retargeting of input spaces for
ergonomics [73], retargeting of web pages [74], dialogue
box layouts [75], distributed user interfaces [76], per-
vasive information displays [77], multiappliance services
[78], and functionality design [39], as well as design for
web pages [79], [80], menus [81], scatterplot visualiza-
tions [82], and widget layouts [83].

2) Interactive Design: The paradigm of “one-shot”
optimization is often impractical. In design practice, prob-
lems are ill-defined and designers learn and update the
problem definition and the design space. Human-in-the-
loop—or optimizer-in-the-loop, depending on the level of
automation—methods can help designers in many ways.
Optimizers may aid in completing partial designs, explor-
ing designs, comparing them, and finding a rationale for
them. They can be categorized in accordance with the way
they coordinate changes with the designer [84]. At one
extreme, the designer commands the optimizer prior to
optimization, defining objectives, constraints, etc. At the
other, the tool recognizes the designer’s task for this arti-
cle or the intent and assists either automatically or by
asking the designer to pick or confirm updates. It can
even “nudge” a novice designer toward better choices.
Strategies in interactive optimization are discussed in
Section VII.

3) Adaptation and Personalization: Combinatorial opti-
mization can adapt designs when its objective function

440 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

is able to represent individual-specific or moment-by-
moment requirements. For example, a design can be
reoptimized when the device orientation changes [85].
Todi et al. [79] adapted web layouts in line with the visual
history of a user [80], and Lindlbauer et al. [86] pro-
posed an algorithm to automatically adapt mixed reality
interfaces in line with the current user context, leveraging
the environment and the cognitive load imposed by the
user’s current task. In real time, their optimization-based
approach adjusts which information is displayed in the
interface and where it gets placed.

In ability-based optimization, designs are generated by
taking an individual’s motor or cognitive impairments into
account [83], [87], [88]. SUPPLE uses a regression model
of pointing time (from Fitts’ law) and heuristic models
of human vision to generate widget layouts for motor-
and vision-impaired users [83]. Sarcar et al. [88] used
simulator-based forward prediction as an objective func-
tion when individuating designs for users with tremors
and dyslexia. They used a simulator model of text entry,
which predicts the movement of the eyes and fingers in
touchscreen text entry. In the cases above, parameters were
manually individuated by reference to the literature.

4) Decision Support: Algorithmic exploration of a design
space can not only generate designs but inform decision-
making. Exact solvers can apply bounds to solution quality,
indicating, for example, that a given design is within
p% of the global optimum. In Pareto front optimization,
equally good (nondominated) designs can be sought as
alternatives to a given design. In robust optimization,
a design can be searched for that is robust to changes in
assumptions (e.g., assumptions about users’ tasks). With
explorative optimization, maximally diverse design options
can be sought that are within some margin of tolerance of
a given design. In local optimization, the best k updates to
a given design can be sought.

III. A P P R O A C H E S T O M O D E L I N G

C O M B I N AT O R I A L O P T I M I Z AT I O N

TA S K S

This section briefly discusses two main approaches avail-
able to model computational design tasks. In Sections IV
and VI, we have opted to use one particular formalism,
integer programming, because of its efficient and natural
representation of design tasks.

The approaches differ in how the design space can be
defined. The design space X , as defined above, is con-
tained in the Cartesian product of the domains of the
design variables. Typically, the design space is a proper
subset since only rarely do all combinations yield feasi-
ble designs. Commonly, a list of constraints is used to
describe the subset of feasible designs. However, it is
possible to discriminate feasible designs from infeasible
designs by penalizing the latter in the objective function,
avoiding constraints that are hard to formalize, or lifting
all constraints. Moreover, the design space can be implicitly

described by a starting design and a transition relation;
that is, the design space may consist of all designs reach-
able from the starting solution after a series of transitions.

Along with this discussion, we also illustrate the two
approaches by means of a representative example: the
menu layout problem. The menu layout task requires to
place n different commands under suitable tabs in a menu
structure. For the purposes of this discussion, the objective
is to attain a balance between the speed of access (selec-
tion time) and the logical interrelation between collocated
commands (searchability).

A. Black-Box Approaches

One widely applicable and generic principle for express-
ing arbitrary design spaces is based on oracle queries—
calls of a black-box function that returns an evaluation of a
given design vector. In essence, any computable function,
even simulations [89], can be used as an oracle. However,
this is both a strength and weakness at the same time
because the expressive power renders good designs hard to
find. Appropriate transition relations could provide some
structure that makes local neighborhood search heuristics
effective. Moreover, machine-learning methods such as
reinforcement learning [90] can be used in this context.

To formulate the menu design problem using black-box
techniques, we first define the evaluation function as a
weighted combination of the performance (access time)
and learnability (relative placement of interrelated com-
mands). In practice, this function covers the time required
to access individual commands and the placement distance
between logically interrelated commands. A large number
of diverse solutions is first generated; this can be done
via randomization or can be done by using construc-
tive heuristic techniques. Thereafter, several meta-heuristic
approaches are available to steadily improve on the origi-
nal seed solutions.

B. Constraint and Integer Programming

Constraint programming [91] is a more structured
approach to separating feasible designs from infeasible
designs. To this end, a list of constraints C1, . . . , Cm is
given, where Ci maps design vectors to {0, 1} for each
i ∈ [m]—that is, to either false or true, where we say
that a constraint is violated in the former case and satisfied
in the latter. A design is feasible if and only if all constraints
are satisfied and infeasible otherwise. The constraints can
consist of logic formulae, including arithmetic predicates.

However, in this article, we focus mainly on constraints
that are linear equations or inequalities over integer vari-
ables, which yields the powerful integer program (IP)
subclass that we discuss in Section IV. Though integer
programming can be considered a special case of constraint
programming, the two approaches differ significantly with
respect to the solution process: the former is centered
more on finding feasible solutions, often by using funda-
mental concepts from logic or graph theory, whereas the

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 441

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

latter exploits numerical algebra for computing bounds of
relaxations. Moreover, there exists an area dubbed con-
straint integer programming [92], an attempt to exploit
both worlds.

The key motivation behind the use of IPs is that it offers
a compact abstraction that is compatible with design.
In practical projects, the formulations outlined in the next
few sections can be employed in a plug-and-play man-
ner: Design knowledge can be implemented as decisions,
objectives, and constraints, with the solution then found
by an IP solver. Irrespective of whether some consideration
(either a constraint or an expression within the objec-
tive) is actually used, the IP solver follows the standard
algorithm and provides results. An IP is a representation
of design tasks that permits analysis and comparison of
complexity as well as direct solving by modern solvers.
If the type of the necessary functions and expressions
so allows, exact methods such as branch-and-bound can
be used. In contrast, using other optimization techniques,
especially black-box optimization, would often require sub-
stantial tuning of parameters whenever any consideration
(constraint or objective) is modified. Moreover, when the
core design tasks are explicated and linked to known
concepts in optimization, one gains a powerful analyt-
ical tool, which increases the general understanding of
graphical interfaces.

Using menu design as an example, one can formulate
the problem in terms of an IP using the following binary
decision variables:

T t
i −→ is command i placed in tab t

Rr
i −→ is command i placed in row r

Zij −→ are commands i, j placed in the same tab.

In addition, we define variable Gi to indicate the time
required to “reach” command i as indicated by Fitts’ law.
Then we can exactly define the objective function verbally
characterized in Section III-A

�
i∈N

�
j∈N

AijZij +
�
i∈N

Fiti.

Here, Fi is the frequency of usage of command i, and Aij is
the logical interrelation between commands i andj. Along
with this objective, the IP requires constraints such as listed
below2

�
t

T t
i = 1 ∀i ∈ N

T t
i ≥ T t

j + Zij − 1 ∀i, j ∈ N,∀t

Rr
i + Rr

j + Zij ≤ 2 ∀i, j ∈ N,∀r.

2The formulation presented above is representative only. More
variables and constraints are required for to completely formulate the
menu layout problem.

IV. I N T E G E R P R O G R A M M I N G

F O R M U L AT I O N S
This section presents elementary integer programming
formulations that underpin the applications of combina-
torial optimization in user interface design dealt with in
Section VI. We provide a brief introduction to integer
programming here; the interested reader is referred to
[93]–[95].

As discussed above, a GUI design is composed of mul-
tiple decisions and specified by a vector x = (x1, . . . , xn)

from the set of candidate designs X ⊆ X1 × · · · × Xn,
where Xi is the domain for decision xi, i ∈ {1, . . . , n}—for
example, reals, rationals, integers, and (most prominently)
binary variables: Xi = {0, 1}. Typically, however, X does
not comprise the whole Cartesian product; it is restricted
to some subset defined by problem-specific constraints.
For example, consider the design of a fixed-size layout.
In this case, the layout specification is considered to be
well-defined only if all elements are (explicitly) connected
to at least one horizontal and one vertical identifier. These
connections can be expressed as a 1-D array, a 2-D table,
or a system of constraints [96]. Lok and Feiner [48]
provide a classification of these constraints as: 1) relational
ones, such as “Element 1 refers to Element 2” and 2) spatial
constraints, such as an element occurring in a particular
location. A typical case of relational constraints is that
a search engine’s Search button is expected to appear
immediately adjacent to the search-text field. A typical
case of spatial constraints is visible in most standard
web sites, which place the company logo in the page
header. Borning et al. [97] extended the constraints-based
approach to the web, and Zeidler et al. [96] applied it to
document layouts.

A straightforward yet powerful class of constraints, used
below, is obtained from linear inequalities, which define
the so-called half-spaces H := {x ∈ R : aT x ≤ β}, where
a ∈ R

n and β ∈ R. The intersection of finitely many
half-spaces is called a polyhedron. Many, if not (almost)
all, interesting sets of candidate designs can be described
as the intersection of a polyhedron with the integer lattice;
for example, X = {x ∈ Z

n : Ax ≤ b} where A is an m × n

constraint matrix, b is the so-called right-hand side, and
the comparison is done componentwise. Most often, A and
b can be chosen to consist of integer entries.

The applications discussed below can be modeled as
a maximization problem for a linear function over the
intersection of such a polyhedron with Z

n. Such an opti-
mization problem is called an integer linear program
(ILP). We will also see models where the objective is a
quadratic function, but this generalization does not add
any modeling power and can be linearized if necessary.
If only a subset of the variables is required to be an
integer, it is called a mixed- ILP (MIP). An MIP can be
reduced to a series of the so-called feasibility problems,
where, instead of maximizing f(x) over all x ∈ X,
we ask whether there is a feasible solution to X ∩ {x ∈

R
n:f(x) ≥ θ} for suitable choices of θ, determined, for

442 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

example, by binary search. If f(x) is a linear function—
that is, f(x) = cT x—then this is just another MIP. If it is
a nonlinear or even a black-box function, outer and inner
piecewise linear approximations can be considered; that
is, f(x) is point-wise overestimated or underestimated by
linear functions. In the case of nonlinear functions that are
out of reach for standard exact solvers, the problems can
be addressed with hybrid solvers.3

The elementary tasks reviewed in the following dis-
cussion are selection, covering, packing, network design,
ordering, assignment, and layouts. Although these are
thoroughly studied problems in operations and optimiza-
tion research, their application in this domain requires spe-
cific modifications to objectives and constraints. We review
the general design decisions (design variables) and con-
straints here to expose the structure of these problems.
The matter of adequate objective functions and solvers is
discussed further along in this article.

A. Selection

Selection problems involve choosing a set of given ele-
ments to meet given requirements while optimizing one
or multiple objective functions. Selection problems are
seen in GUI design when, for example, one is selecting
functions for a design. We divide selection problems into
four subtypes. These formulations extend a book chapter
by some of the authors of this article [98].

1) Covering: In a covering problem, we are given a
set of elements U = {u1, . . . , un} and a set of attributes
A = {a1, . . . , am}. Each element ui is equipped with
a nonempty set of attributes Ai ⊆ A. Moreover, every
attribute aj has a certain requirement rj . The task is to
select a subset of U that satisfies all requirements; that is,
the number of selected elements with attribute aj is at least
rj for each attribute. The goal is to find a selection that
minimizes the total costs—that is, the sum of the costs for
each selected element. Sometimes an element may have
an attribute with some multiplicity; for example, for the
attribute profit, we would be given values associated with
each element. Moreover, it may or may not be allowed to
select an element multiple times.

Consider the selection of widget types as described
in the next section, for example. A designer imposes a
minimum set of requirements for an interface, and there
are multiple widgets to select from, each with distinct
properties. A good solution to this problem covers all the
requirements at a minimal cost.

The quintessential covering problem is a set-covering
problem [99], where all requirements are 1 and in the
cardinality version all costs are 1 as well. The term “set”
refers to the different subsets of elements that share a
common attribute. A special case of the set-covering prob-
lem is a vertex cover where the elements are the nodes
of a given graph and the attributes are the edges; that is,

3For example, Local Solver; see http://localsolver.com/.

we are asked to select a subset of the nodes of minimum
cardinality that contains at least one node of each edge.
A vertex cover is NP-hard, and the general set-covering
problem is NP-hard even to approximate within a factor
of O(log n) [100]. On the other hand, a greedy algorithm
produces an approximate set cover within this logarithmic
optimality guarantee.

2) Packing: Packing problems are similar to covering
problems: again, we are given a set of elements U =

{u1, . . . , un} and attributes A = {a1, . . . , am}. Instead of
requirements, though, we now have positive capacities cj

for each attribute aj , and only those subsets of U are
feasible that do not exceed the capacity for each attribute.
Analogously, a backpack has a certain volume and a total
weight limit over all packed items. The attributes are
volume and weight. Also, the elements are typically asso-
ciated with a valuation (say, pi for element ui) that can
be considered as a profit. Hence, the goal is to find a
selection of the elements that do not exceed the capacities
and maximizes the total profit. Again, it may or may not
be allowed to select an item multiple times.

Consider again the widget selection problem: Not all
available widgets might fit within a canvas of limited size.
If an individual reward is associated with each widget,
it is natural to ask for a fitting selection that yields the
greatest reward. Similarly, not all functionality may be
implemented in a limited time budget.

Packing problems are a dual to covering problems: when
we switch the role of elements and attributes, the role of
capacities and costs, and the role of profits and require-
ments, we obtain the associated dual covering problem.

An important fact that follows from optimization the-
ory [94] is that the profit of any solution for the packing
problem cannot exceed the costs of any solution for the
associated dual covering problem. In particular, this holds
for the maximum profit and the minimum costs. The dual
problem for the vertex cover problem mentioned above
is the so-called matching problem wherein we are asked
to find a maximum cardinality subset of the edges such
that each node is incident to no more than one edge in
the matching. Other well-known packing problems are the
independent set problem, the set packing problem, and
the knapsack problem. The independent set problem often
appears as a subproblem for modeling mutually exclusive
choices. While matching can be solved in polynomial time,
the other problems mentioned in this section are NP-hard.
The independent set type is also NP-hard to approximate
within a factor of O(n1−ε) [101].

3) Network Design: Network design problems are a spe-
cial type of selection problems seen in connection with
graphs. Typically, we are given a graph and are supposed to
select a subset of the edges such that certain connectivity
constraints are satisfied. A simple example is the Steiner
Tree problem: for a given undirected graph G = (V, E) and
a set of terminals T (i.e., T ⊆ V), we shall select edges,
such as E0 ⊂ E, such that between each two terminals

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 443

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

there is a path consisting only of edges from E0. Observe
that at least one edge in a cycle can be removed while
connectivity is still maintained, and, hence, every optimum
solution is a tree. The nodes of the selected edges that are
not terminals are called Steiner nodes. For the Directed
Steiner Tree problem, we are given a directed graph G =

(V, A), a designated root node r ∈ V , and a set of terminals
T ⊆ V \ {r}, and our task is to select arcs such that there
is a directed path from r to each terminal consisting only
of selected arcs. Typically, a cost is associated with each
arc, and we are supposed to find a feasible selection of
minimum costs. Sometimes only the root and the terminals
are given explicitly and the remaining nodes are only given
implicitly—for example, we could have a Steiner node
associated with each subset of the terminals. A feasible
solution would then define a hierarchical clustering of
the terminals.

This problem appears, for instance, in the context of
the design of a hierarchically organized user interface. In
Section VI, we look at the problem of a hierarchical menu
structure as an example. The terminals are the actions
that should be available as menu items. For achieving
quick access times, it makes sense to avoid clutter by
grouping related actions together in a submenu. The root
node represents the menu bar, and an arc represents a
parent–child relationship; that is, selecting an arc from the
root to a menu item means to put this item directly on the
menu bar, hence making it accessible via one click.

B. Ordering

In ordering problems, we are asked to provide a per-
mutation of a given ground set. The permutation should
minimize the cost of traversing the elements in a chosen
order. More specifically, there is a cost associated with
the transition from an element to its successor in the
designated order [102].

A famous example is the traveling salesman problem
(TSP). We are given a set of locations P = {p1, . . . , pn}

and distances dij for each pair of locations i, j. The goal is
to find the shortest tour that visits every location and then
returns to the starting point—that is, to find a permutation
π : [n] → [n] of the locations such that dπ(n),π(1) +�n−1

i=1 dπ(i),π(i+1) is minimized.
In GUI design, consider the task of ordering items in a

linearly organized menu. The goal here is to order a given
set of menu items such that skimming the menu becomes
as fast as possible. Two items, when placed adjacent to
each other, have an associated reading time such that the
first primes the other. For example, reading “Save” after
“Open” is faster than after “Bookmarks.” Another variant,
easier, is to organize the menu for fast access to the most
commonly used commands. In this case, the problem col-
lapses to that of ordering commands by frequency. Linear
ordering is NP-hard. Although many special cases of the
TSP admit a PTAS [103], the general TSP does not do so
unless P = NP [104].

C. Assignment

Assignment problems belong to the best-studied class
of optimization problems [105]. In the general version,
the task is to find a one-to-one correspondence between
n items and n locations such that the total cost of the
assignment is minimized. In mathematical notation, x

being a valid assignment can be written as follows:

x ∈ Πn :=

	
x ∈ Z

n×n :

n�
i=1

xik = 1∀k ∈ [n]

and
n�

k=1

xik = 1∀i ∈ [n]

.

The two most popular variants of this problem are the
linear and the quadratic assignment problem. In the former
case, the objective function is linear (i.e., of the form�

i,k cikxik) and the optimal solution can be computed
efficiently. Two famous algorithms for the linear assign-
ment problem are the Hungarian method, which runs in
O(n3), and the bipartite matching algorithm of Duan and
Su [106], which runs in time O(n5/2 log C) for an integer
cost of, at most, C.

In many practical applications, we need to account addi-
tionally for the interaction between the items and the inter-
action between the locations, but the linear assignment
problem cannot address this. Therefore, the quadratic
assignment problem, which adds a quadratic term of the
form

�
i,j,k,` cijk`xikxj` to the objective function, becomes

more and more relevant.
In the variant of Koopmans and Beckmann [107],

the cost can be factored into two parts, one being relevant
for either only items or only locations. Mathematically, this
means we can write cijk` = fij ·dk`, where we interpret fij

as the dependence of item i on item j and dk` as the dis-
tance between the locations k and `. Though this factoriza-
tion simplifies the problem, the quadratic assignment prob-
lem remains one of the hardest combinatorial optimization
problems. There even exist unsolved instances of only 30

items and locations. Queyranne [108] showed that it is
NP-hard to approximate this problem within any constant
factor, even if the cost can be factorized to a symmetric
block diagonal flow matrix and a distance matrix describ-
ing the distances of a set of points on a line. One systematic
way to tackle this complexity is to compute relaxations in
a branch-and-bound framework, where the performance
of such a relaxation is measured in the quality of the lower
bound it produces and also in the time needed to compute
its solution. While many of the early relaxations published
[109]–[111] replace the quadratic term with an increased
number of linear terms, semidefinite programming relax-
ations have been gaining interest lately [112]–[115].
In-depth treatments of the quadratic assignment problem
exist [116], [117].

Examples of assignment problems in user interfaces are
the linear and grid menu problems, which are discussed

444 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

in Section VI. For a given set of commands and positions,
the target is to uniquely assign the commands to positions.
Beyond other criteria, one goal with these problems is to
minimize the gap between closely interrelated problems,
which can be modeled by the quadratic objective function
of the assignment problem.

D. Layouts

Layout problems are closely related to packing prob-
lems: We have to fit a set of objects onto a canvas. A set
of objects is given, and they have to be placed in line
with feasibility constraints such that there is no overlap
or overflow of objects. The most common instances of
this problem class appear in geometric 2-D layout; that is,
we are given a set of objects in the plane, such as rectangles
or bounding boxes of other shapes, and we are supposed
to fit them within a 2-D canvas [118].

The layout of rectangle i can be specified by the coordi-
nates of the top-left corner (x, y) together with its width
w and height h. Typically, width and height are given
for each rectangle (or at least by lower bounds) while
the coordinates are variables. If a grid layout is desired,
these variables are constrained to be integers. To avoid an
overlap of two rectangles, one of them has to be to the left
of or above the other. Rectangle i is to the left of rectangle
j if and only if xi + wi ≤ xj . Similarly, i is above j if
and only if yi + hi ≤ yj . Switching the roles of i and j,
we obtain xj + wj ≤ xi and yi + hi ≤ yj , where at least
one of these four constraints has to hold and it is clear
that not all of them can do so at the same time. Hence,
we have to model the disjunction of constraints. This is
done via auxiliary binary variables, as in using dij and aij ,
to (de)activate the respective constraints

xi + wi ≤ xj + W · (1 − dij) (1)

yi + hi ≤ yj + H · (1 − aij) (2)

xj + wj ≤ xi + W · (1 − dji) (3)

yj + hj ≤ yi + H · (1 − aji) (4)

where W and H are the width and height of the canvas
and at least one of them has to be activated

dij + aij + dji + aji ≥ 1. (5)

While these layout problems are typically NP-hard, there
often exists a constant approximation or even a PTAS for
them [119], [120].

V. O B J E C T I V E F U N C T I O N S :

M AT H E M AT I C A L R E P R E S E N TAT I O N

O F E V A L U AT I V E K N O W L E D G E

Evaluative knowledge can be represented in combinato-
rial optimization in various ways, ranging from if–then
rules to step-by-step-executed simulation models. Table 2

provides an overview of the main categories of mod-
els from the perspective of their psychological domain.
The factors reported on thus far cover most recognized
aspects of usability, including user performance, learnabil-
ity, experience, and ergonomics. Ivory and Hearst [33]
reviewed models and methods for automated usability
evaluation, including cognitive models such as GOMS and
GLEAN, as well as cognitive task analysis and Petri nets.
This section of the article focuses on models from the
perspectives of empirical validity and computational effi-
ciency. In Sections IV and VI, indications as to objective
functions are given where possible, but the design tasks
were defined without imposition of any specific ones. This
formulation allows flexibility in replacing and improving
those used.

Mathematically, an objective function is a function that
maps a design candidate x ∈ X to n real-valued predic-
tors: f : X → R

n, n ≥ 1. There are four considerations in
model selection:

1) computational efficiency;
2) coverage of relevant factors;
3) quality of design choices for end users;
4) parameter selection for new task instances.

However, state-of-the-art models often come with a perfor-
mance handicap. Although they may cover a wider range
of phenomena and produce the most valid results, they
are typically too inefficient for the optimization of large
problems. Per-simulation execution times range from sec-
onds to days. Moreover, models with multiple parameters
may be harder to fit to data and are prone to overfitting.
On the other hand, the simplest linear models are very fast
and are easier to fit to data but cover a narrower range of
phenomena.

An objective function makes empirically verifiable
predictions linking design choices and outcomes for users.
To be useful in optimization, they must permit counter-
factual reasoning of the type “if the design were like
this, these consequences would occur (for end users).”
An antecedent (“if speech were used for typing”) is linked
to a numerically expressed consequent (“words per minute
would be 70 and error rate 5%”). For example, in Fitts’
law, [124], which is widely used for keyboard optimization
[45], the consequent is MT, or movement time, and two
design-related antecedent conditions are stated: 1) D,
or distance to target from the present location of a pointer
and 2) W , or width of target.

An objective function may also have empirical parame-
ters that need to be calibrated for the task instance at hand.
This can be done, for example, by preference elicitation
methods [125] or via statistical fitting of parameters to
some data set. For example, Fitts’ law has two free para-
meters, a and b, which are shaped by user-, posture-, and
device-related factors and are set via ordinary least squares
(OLS). At the end of this article, we return to discussing
parameter inference and empirical evidence for the models
presented here.

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 445

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

Table 2 Selected Examples of Objective Functions Used in User Interface Optimization

Keyboard optimization is an application area closely
related to combinatorial optimization. This field has seen
several objective functions developed, addressing differ-
ent human factors and types of input devices [45].
Models and heuristics have been proposed to optimize
keyboards for one-finger pointing performance, chorded
finger-movement performance, touch typing performance,
reduction in muscle fatigue and strain, and ideal motor
complexity. The usability of a GUI is similarly determined
by a multitude of factors. However, more emphasis is put
on attention, perception, and cognitive aspects of use, such
as learning and navigation, alongside experiential aspects
(esthetics, etc.).

A. Mathematical Representation of Evaluative

Knowledge

1) Boolean Functions and Equality Constraints: Design
heuristics are rules of thumb used in design [126], such as
“white space should be minimized,” “pixel density should
be balanced” [127], or “feedback should be provided
for user actions.” Hundreds of design heuristics are pre-
sented in the literature—with the list growing constantly
[128]–[130]—and have been used for menu optimization
[131] and graphic design (e.g., poster) optimization [63].
In a pioneering article, AIDE [59] implemented heuristic
objectives of efficiency (path length for moving between
elements in optimal versus candidate layout), alignment,
balance (the weight of one side relative to the other), and
(designer-provided) constraints for widget layout design.

Mathematically, some design heuristics are Boolean
functions. In the presence of a feature, they yield 1, return-
ing 0 otherwise. The function implicitly partitions the can-
didate set of designs into heuristic-adhering XH ∈ X and
nonadhering sets. Some design heuristics can be expressed
by means of equality or inequality constraints

gi(x) = ci, for i = 1, . . . , n equality constraint

hj(x) ≥ cj , for j = 1, . . . , n inequality constraint.

Here, g and h are constraints to be satisfied by a
design.

Heuristics have two major drawbacks. The first involves
conflict resolution [28]: Often, multiple heuristics are
needed for attacking a real-world problem. Because each
heuristic influences only a few of the decisions, weights or
conflict-resolution rules must be introduced in larger num-
bers [64]. The optimization system may become fragile—a
small change in weight or rule may produce vast differ-
ences in results. The second issue is validity. As a product
of design practice rather than scientific inquiry, many
heuristics are subjective and their predictive validity is
questionable [132].

2) Linear and Nonlinear Regression Models: Linear mod-
els express a predictor of interest (y) as a linear function
of the design variables of interest

y = β0 + x1 + · · ·βnxn. (6)

446 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

Nonlinear models generalize this

y = f(x, β) (7)

where y is an outcome variable of interest, x is a vector of
design variables or derivatives thereof, and β is a vector of
coefficients. For example, search–decide–point (SDP) is a
regression model predicting task completion time in menu
selection [133]. It postulates a nonlinear term for decision
time and a linear term for search time. As the user becomes
more experienced with a menu, a calibration parameter
expresses a shift from serial visual search to a decision
among competing elements. Statistical models such as
SDP provide a stronger link between design variables and
predicted user performance.

3) Image Metrics: Image metrics are computer programs
that output quantitative values for a graphical rendering of
interface design. One example of esthetic-related metrics
is related to harmonic colors [134]. The system defines
a set of colors that combine to produce a perception of
a user interface as visually pleasing. Harmony is deter-
mined by relative positioning in the color space rather
than by specific hues. Templates, provided to test any
given set of colors against the harmonic set, consist of
one or two sectors of the hue wheel, with given angu-
lar sizes. They can be arbitrarily rotated to create new
sets. The distance of an interface from a template is
computed from the arc-length distance between the hue
of an element and the hue of the closest sector border,
and from the element’s saturation channel. Objective func-
tions in this class are often expensive to compute. Recent
advances in deep learning may make it possible to evaluate
image metrics in milliseconds [135]. A recently published
repository provides a collection of numerous image-based
metrics [136].

4) Simulations: Simulators are step-wise-executed func-
tions M(θ) that map the model’s θ parameters to
behavior-related predictions. The θ parameters cap-
ture characteristics of the user, task, design, or con-
text. If random variables are included in the simu-
lator, its outputs can fluctuate randomly even when
the θ values are fixed. Fields witnessing simulators’
use for combinatorial optimization so far include cog-
nitive architectures, reinforcement learning models, bio-
mechanical, and neuromechanical modeling, and neural
network simulators.

For example, visual search of graphical 2-D layouts is
complex cognitive-perceptual activity driven by the ocu-
lomotor system and affected by task and by incoming
information. The Kieras–Hornof model of visual atten-
tion [137] is a simulator predicting fixation locations in
looking for a given target in a given graphical layout.
It is based on a set of availability functions that deter-
mines how perceivable the features of a target are from
the user’s current eye location. The availability functions

are based on the eccentricity from the current eye loca-
tion and angular size s of the target. Additive Gaussian
random noise with variance proportional to the size of
the target is assumed. For each feature, a threshold is
computed, as is the probability that the feature is per-
ceivable. These determine where to look next in the
layout. Simulation terminates when a fixation lands on
the target.

Simulators are generative models in the sense that
they generate not just a prediction of outcome (e.g., task
completion time) but process traces also. They predict
not just the outcomes of interaction but their joint pro-
duction and emergence in interaction with design. Fur-
thermore, most simulators in the HCI field include causal
mechanisms that link design variables to outcomes in
interaction. This is valuable in design, since one does
not merely output predictions for aggregates but also can
examine predicted interaction in detail. Another benefit
is high representational power: simulators can capture
the relationships among multiple factors. Some simu-
lation models are Turing-strong formalisms with mem-
ory and the ability to execute programs. These benefits
come at the expense of computational efficiency. Certain
optimization methods, in particular, most of the exact
methods, are practically ruled out as solvers. For exam-
ple, for a recent application of reinforcement learning
with a task-completion time model [keystroke-level model
(KLM)], optimization of user interfaces extended to only
five states [138].

VI. D E S I G N TA S K D E F I N I T I O N S

This section surveys definitions of GUI design tasks. The
definitions build on the elementary IP tasks reviewed in
Section IV and references made to objectives defined in
Section V.

A. Functionality Selection

Given a set of functionality candidates V , the task is
to select a subset X ⊆ V that end users find useful,
satisfying, and easy to use and that is profitable for the
developer. This is a selection problem with 2n − 1 possible
designs.

A formulation was proposed recently for optimization
against four criteria [39]

max(U |S|E|P).

The objectives are introduced below.
Usefulness, or U , is modeled thus: Let uv denote the

usefulness of the individual function v. This usefulness
depends not just on it but also on the presence of related
functions. For example, print setup is useless without
print. Therefore, we define dependencies in terms of the
presence and absence of features; that is, let uvw denote
the usefulness of function v when w too is selected, and

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 447

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

let uvw̄ denote the usefulness of v in the absence of w. The
total usefulness for X is given by

U =
�
v∈X

�
��

w∈X

uvw +
�
w 6∈X

uvw̄

�

=
�
v∈V

xv

�
w∈V

uvwxw + uvw̄(1 − xw)

=
�
v∈V

�
w∈V

ūvwxvxw (8)

where ū is effective usefulness as demonstrated by
Oulasvirta et al. [39]. Note that, in general, the depen-
dencies are not symmetrical; e.g., print still makes sense
without print setup.

Satisfaction S is defined as the sum of the satisfaction
scores for the functions included in a design

S =
�
v∈X

sv =
�
v∈V

svxv. (9)

This score refers to the subjective experience of the func-
tionality, as opposed to usefulness.

Ease-of-use value E can be defined as the aggregated
ease of use over all functions included in the design

E =
�
v∈X

ev =
�
v∈V

evxv (10)

where ev denotes the ease of use of a single function.
Profitability pv of function v is defined in terms of its

business value vv ∈ R and costs cv ∈ R: pv = vv − cv

P =
�
v∈X

pv =
�
v∈X

(vv − cv) =
�
v∈V

(vv − cv)xv. (11)

Note that if cv > vv, profitability is negative. Including
functions that are of negative profitability is justifiable in
light of the other parts of the objectives.

The ILP can be defined as follows. We allow directional
dependencies; that is, we consider whether the depen-
dence of a function v on a function w is so strong that
having v but not w would yield an objective value that is
worse than the trivial solution of selecting all functions.
As in [39], the canonical integer programming model with
directional dependencies has constraints of the form xw ≤

xv for all features w that depend on feature v; that is,
xv = 0 implies xw = 0 for all dependent features w.
Note that these constraints are not active if xv = 1 and
thus indeed model unidirectional dependencies. Another
possibility is to extend the model of [39] by defining
a regret value uvw ≥ 0, which penalizes the objective
value of a solution that selects the dependent feature w

without v. Let b : V → R denote the aggregated value
of each function. Note that a value may be negative, if its
development is more expensive than its payoff. However,

we might still choose a feature with a negative value to
satisfy dependencies that enable obtaining a larger total
payoff. Accordingly, the complete ILP is this

max
�
v∈V

bvxv −
�

w depends on v

uvwyvw

s.t. xw − xv − yvw ≤ 0 ∀v,w ∈ V : w depends on v

xv ∈ {0, 1} ∀v ∈ V. (12)

This ILP can be solved efficiently in polynomial time by
exploiting its structural properties. The ILP (12) is equiva-
lent to its linear program relaxation

max{bT x − uT y : AT x − y ≤ 0, 0 ≤ x ≤ 1, y ≥ 0}

where A is the node-arc-incidence matrix of the directed
graph describing the dependencies. The dual of this prob-
lem is

min{1T z0 : Az + z0 ≥ b, 0 ≤ z ≤ u}

which is used to show that the linear program relaxation
is equivalent to a min cost flow problem and can be solved
in O(nm log n + n2 log2 n) time [139]; that is, within the
same timebound as the simpler model in [39].

Oulasvirta et al. [39] developed an exploratory tool
using robust optimization to find diverse design candidates
for a stated functionality selection task.

B. Label Selection

A similar approach can be adopted for the problem of
label selection. Given a set of commands, each with one
or more alternative labels or command names, the task is
to select a set that is memorable, consistent, and quickly
typed. Formally, we are given a set U of commands as
well as a set Lu of possible labels for every command
u ∈ U , the goal being to assign every command to one of its
possible labels. The naming is modeled by binary variables
xu` having a value of 1 if and only if we label command u

with label `.
We consider three objectives that we want to synchro-

nously optimize. First, the labeling should be memorable,
meaning that one should find it to be intuitive and easy
to understand, the purpose of a particular command when
given its label. We model this by a value mu` for every
command u ∈ U and label ` ∈ Lu, which describes the
difficulty of memorizing command u with label `. For the
sake of consistency, we interpret smaller values of mu`

to be easier to memorize. Therefore, we will minimize
this objective function. Second, we want the labels chosen
to be fast-to-type ones. We can easily measure the time
it takes for a certain label to be typed on the underly-
ing keyboard and save the value for every label ` ∈ L

in t`.

448 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

The last objective requires consistency of the labeling
of two separate commands. In the simplest setting, this
consistency is independent of the actual commands, so we
only compare the consistency of the chosen labels. In this
case, we have distance values dk` for every pair of labels
k, ` ∈ L that we want to minimize. The resulting optimiza-
tion problem can be written as a quadratic problem of the
following form:

min

�
��

`∈L

t`y`

������
�
u∈U

�
`∈Lu

mu`xu`

������
�

k,`∈L

dk`yky`

�
�

s.t.
�

`∈Lu

xu` = 1 ∀u ∈ U

y` ≥
�

u∈U`

xu` ∀` ∈ L

0 ≤ y` ≤ 1 ∀` ∈ L

xu` ∈ {0, 1} ∀u ∈ U, ` ∈ L. (13)

Note that we introduced the auxiliary variables y` for
every label ` ∈ L, denoting whether the respective label
is selected by any command or not. It is sufficient to
require nonnegativity of the auxiliary variables because
any optimal solution to this problem (13) will contain
only binary values for y. We also introduced the set U` :=

{u ∈ U |` ∈ Lu}, in order to simplify the formulation of
the second constraint. While the first constraint guarantees
each command being assigned exactly one of its possible
labels, the second constraint links the x and y variables.
Lastly, we make sure that no label is taken more than once.

In a more complex scenario, we consider the similarity
of commands also with regard to consistency. We want
to achieve more consistent labeling of similar commands,
on the one hand, while, on the other, giving less of a
penalty to inconsistent labels for nonsimilar commands.
In this scenario, we are given similarity measurements suv

for two commands u, v ∈ U . The resulting minimization
problem comprises the same constraints as above (13), but
the objective function is slightly more complex

�
��

`∈L

t`y`

������
�
u∈U

�
`∈Lu

mu`xu`

������
�

u,v∈U

�
k,`∈L

suvdk` xukxv`

�
�.
(14)

The number of terms in the third part of the objective
function, which is already the hardest part of the pre-
vious problem (13) on account of its quadratic nature,
is increased by a factor of |U |2. This optimization problem
is a special case of the quadratic assignment problem,
which is computationally very hard, as we discussed in
Section III-C.

C. Icon Selection

A similar approach can be used for icon selection.
Comprehensibility and identifiability of icons are two

central goals in the design of command labels and icons,
as noted by Laursen et al. [140], who formulated icon set
design as an optimization problem. Candidate icons are
assumed to belong to function sets, with one from each
getting selected for the final set. The authors presented
a crowd-based approach for obtaining input values indi-
cating comprehensibility and identifiability. The task was
then to choose a set that is maximally comprehensible with
identifiable items that are visually distinct from each other.
This can be done in O(mn), where n is the number of
function sets and m the number of candidates per set.

D. Widget Selection

In menus and simple push-button panels, elements are
often homogeneous. With advanced software libraries for
GUIs, a designer often has multiple types of widgets and
controls to choose from. In the widget selection problem,
there are multiple widgets, or widget types, but there is
only a limited-size canvas to place them on. Two aspects of
this problem can be identified.

The first involves the designer specifying a minimum set
of requirements for an interface, where there are multiple
widgets to select from, each with distinct properties. For
example, there may be a requirement that the user selects
one option out of many. This may be implemented via,
for example, a menu or a drop-down list, where each
option has its associated “costs” in terms of learnability,
usability, use of display space, etc. A good solution to
this problem covers all the requirements at a minimum
cost. This is a practical example of a covering problem,
a class discussed in Section III-A. In the second part of the
problem, the goal is to find a selection of elements that,
without exceeding the capacities, maximizes some positive
value, such as usefulness to end users. Again, it may or
may not be permissible to select an item multiple times.
This is a classical packing problem. The formal details are
described in Section IV-A.

E. Menus

Menus are widely used interfaces for command explo-
ration and invocation. Here, we look at menus where
options are presented visually and selected by means
of a pointing device. From the combinatorial viewpoint,
the task can be formulated as assignment [58], [141]:
For a given set of commands N and set of positions P ,
the task is to assign every command i ∈ N to a unique
position p ∈ P . Three evaluation criteria are used. 1) Fitts’
law is used to calculate and minimize the selection time
required to move the cursor to any intended command i.
2) Association score αij for any pair of commands i, j ∈ N

is used as a weight for identifying and minimizing the gap
between closely related elements. While the one-to-one
assignment between sets N and P would usually entail a
classical assignment formulation, the two-part (Fitts’ law
and association) objective function leads to a novel opti-
mization problem. 3) Some way of controlling for group or

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 449

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

tab size is introduced, such as the Hick–Hyman law, which
links selection time to the number of commands in a group
[ST= log2(N)].

A generic version of the menu optimization problem
can be formulated in terms of the classical assignment
decision variable xip, denoting whether or not command i

is assigned to position p. In conjunction with xip, we define
the time cost Tp required to navigate to position p and
frequency Fi of command i. Then, the selection time
criterion is defined as follows:

S =
�
i∈C

�
p∈P

FiTpxip. (15)

By this criterion alone, commands with higher frequencies
would be placed in the top positions. The other criterion
is Association, A, aimed at placing the related commands
near each other to help the user find them easily. For
example, the commands for copying, cutting, and pasting
are closely related to each other. We define the parameter
αi,j to indicate the logical correlation or association of
commands i, j. Also, we define decision variable yi,j for
indicating that these two commands are located next to
each other. By means of this variable, the overall asso-
ciation score for a given menu layout is quantified as
follows:

A =
�
i∈C

�
j∈C

αi,j yi,j . (16)

Selection Time and the Association score are the two
important criteria in the design of various kinds of menus,
discussed in Sections VI-E1–VI-E3. For further details on
evaluation criteria, the interested reader is referred to the
work of Ramesh et al. [81].

1) Linear Menus: Linear menus are organized in a single
row or column with no internal substructure such as group-
ing. Each command is assumed to have some association
with the positions for “before” and “after” the command.
The following constraints constitute one option for linking
positioning variable xip to the association variable defined
earlier, yij :

yi,j + 1 ≥ xi,p + xj,p+1 + xj,p−1 ∀i, j ∈ C; p ∈ P (17)

xi,p−1 + xi,p+1 + 1 ≥ yi,j + xj,p ∀i, j ∈ C; p ∈ P. (18)

The objective function typically utilized is the weighted
sum of selection time [see (15)] and Association
[see (16)].

2) Grid Menus and Toolbars: Now consider toolbars and
menus arranged in grids. We have rows, r ∈ M , and
columns, c ∈ N , so each position is defined by (r, c). Then,
xi,r,c = 1 if and only if command i is placed on row r and
in column c.

The association of each position with those surrounding
it (e.g., top, down, right, left, top-right, top-left, down-
right, and down-left) should be calculated. For example,
if we use binary decision variable γi,j to indicate whether
or not command j is on the right side of command i,
the following constraints will identify this scenario:

γi,j +1 ≥ xi,r,c+xj,r,c+1 ∀i, j ∈ C, r ∈ M, c ∈ N (19)

xi,r,c+1 ≥ γi,j+xj,r,c+1 ∀i, j ∈ C, r ∈ M, c ∈ N. (20)

Similar constraints can be defined, analogously, for other
positions. The objective function for a grid menu is sim-
ilar to that for a linear menu, but in place of a verti-
cal/horizontal list there must be calculated grid positions,
and the binary variables for a linear menu must be replaced
with those for a grid menu.

3) Hierarchical Menus: Matsui and Yamada [141], [142]
represented a hierarchical cell-phone menu as a tree struc-
ture. They used simulated annealing (SA) to optimize it
for selection time with a mixture of logarithmic pointing
time and number of items. Grouping was controlled with
a function similarity term and a menu granularity term
that penalizes having a large number of descendants.
A generalization of this problem is developed below.

Larger menu systems (involving 20+ elements) require
some type of hierarchical organization, typically achieved
via tabbing, groups, folding, cascades, or submenus.
Classical approaches for hierarchical menu design use
assignment-based formulations [58]. However, as is clear
from examining outputs published by Bailly et al. [58],
assignment alone does not sufficiently represent the orga-
nization of individual elements within larger entities.
Rather, it leads to frequency-ordered groupings that often
ignore the top-level commands’ effect of representing the
rest of the menu; the topmost items are not necessar-
ily a good indicator of the remaining content of the
relevant menu.

This challenge can be addressed by means of an eval-
uative function based on information foraging theory
(IFT) [81], [143]. An IFT-based objective enables assessing
search performance in the case of groups. In the context
of hierarchically organized menus, it offers a quantitative
model of a rational but time-limited agent that navi-
gates a hierarchy composed of discrete areas or sets. The
agent must decide whether to explore the current set of
commands (group/tab) or instead abandon/skip this set
in favor of the next. When used as the objective of an
optimizer, that translates to evaluation and minimization
of the time wasted by the user in the irrelevant parts of
the menu. This minimization results in layouts that place
semantically indicative items at the top of the menu.

Menu design with the IFT-based approach can be imple-
mented via MIP by formulating a sample–discard–explore
paradigm. This paradigm captures the four logical out-
comes that are possible during any search process.

450 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

1) True Positive: The user guesses that the set contains
the target command, and it indeed contains that com-
mand. In this case, the cost during search within the
set is the time consumed (per Fitts’ law) to scan the
list and move the pointer over the required command
in the set.

2) True Negative: The user guesses that the current set
does not contain the required command, and the set
indeed does not contain it. No further cost is incurred.

3) False Positive: The user guesses that the set contains
the required command, but it actually does not. The
additional cost incurred for this set is the time con-
sumed (under Fitts’ law) to navigate all commands in
the set. This cost is proportional to the size of the set.

4) False Negative: The user guesses that the set does not
contain the required command, but in reality it does.
Now the user must fruitlessly analyze all succeeding
sets, such as subsequent groups on the tab.

We assume that the user begins the search by sequen-
tially analyzing (sampling) the lead elements of every
set encountered. On the basis of the decision made to
discard or explore any specific set, the user invests the
corresponding effort for that set. This process repeats until
a true positive (target) is reached. This logic can be applied
recursively at any level of a hierarchy where multiple
options (sets) are available. In our application, we assume
two levels: tab and group. The insight is that the total time
expended in locating a specific command is the summation
of time spent in the four possible scenarios, weighted
by the probability of the user making the corresponding
decision for the relevant set. To obtain an estimate for
the entire menu structure generated by an optimizer, the
estimated costs are further weighted by the frequency
of use.

An integer programming formulation based on the
above model requires the following decision variables:

uj
c =

	
1. . .if command j leads group c

0. . .otherwise

Φc
i = Total time / cost for command i computed for

group c

xc
i =

	
1. . .if command i is placed in group c

0. . .otherwise

rr
i =

	
1. . .if command i is placed on the rth row

0. . .otherwise

ti = The time required to reach command i

pc = Starting position (row number) of group c within|

its tab.

Decision variables such as x define the unordered struc-
ture of the groups and tabs. The absolute positioning of
commands is provided by such variables as r. In addition,
further connecting decision variables will be required,
for guaranteed sanity of the overall mathematical model.

Fig. 3. Menu generated for the Windows Notepad text editor via

an information-foraging-based approach [81].

The objective is to minimize weighted cost Φ (the weight-
ing is for frequency of use) for the time taken to reach any
command placed within any set

Min
�
i∈N

�
c∈C

FiΦ
c
i

where Fi is the frequency of usage of command i in a
set N of commands to be subdivided into groups C. The
resulting MIP formulation can find optimal menu layouts
for a typical data instance (40–50 commands) within
around 20–30 min of computational effort. As an exam-
ple, the optimized menu layout for the classical Windows
Notepad application is shown in Fig. 3.

F. Grid Layouts

Grids are an important organizing principle for GUIs
[42]. A design grid divides a display via grid lines for
assignment of elements: containers, buttons, etc. Hart and
Yi-Hsin [46] presented an ILP to solve the rectangular
packing problem in GUI layouts. Their formulation takes
care of ordering of items on a display and avoids infeasible
solutions that include overlap, overflow, or illegal orien-
tation of an element. It assumes a predefined grid layout
with columns and introduces constraints for making sure
elements are presented no more than once, are not clipped,
respect the maximum and minimum size specified, and
occur in the predefined columns. An efficient branch-and-
bound solver was developed.

This section extends earlier layout formulations toward
a generic definition. In terms of optimization problems,
addressing the topic involves the following factors.

1) Esthetics: Overall, end users prefer a grid-like arrange-
ment with generally rectangular placement.

2) Semantic Association: Mutually interrelated widgets
are preferably grouped together, in close proximity.

3) Relative Placement: Some elements may need to be
at a specific side of another element. For example,
the Search button for an Internet search-engine web
site is expected to be located to the right side of the
search-text field in the English locale.

4) Multiple Near-Optimal Solutions: The optimizer is
expected to produce a wide variety of dissimilar lay-
outs, so that the designer can choose from diverse
options. This option to choose from a broad range
of varied layouts induces a mathematical problem of
finding a set of diverse layouts instead of a single
optimal solution.

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 451

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

Fig. 4. Usage of grid lines to define placement of all elements with

the MIP approach.

5) Computational Performance: Designers prefer not to
wait an inordinate amount of time for computation
of layouts. The formulation must be compact enough
to yield near-optimal results within the reasonable
computational effort.

For related work in constraint-based approaches to text
document layouts, (see the article by Hurst et al. [19]).

It is possible to address these challenges with a limited
computational effort by using a nondiscretized placement
model [30]. The position and size of every element i is
modeled by continuous variables `i, ti (representing the
top-left corner) and bi, ri (representing the bottom-right
corner). We do not discretize individual pixels, so the
formulation size is independent of the size of the can-
vas. It is easy to enforce direct constraints on `, r, t, b to
satisfy sizing requirements and also prevent the overflow
of elements. Overlap avoidance is assured through con-
straints imposed in formulae 1–5. Having made sure that
a nonoverflowing, nonoverlapping layout can be obtained
via a nondiscretized formulation with good computational
performance, we now enforce the other placement objec-
tives. To guarantee grid alignment, we construct a (ver-
tical or horizontal) grid line to cover every edge of every
element being placed. It is possible (and desirable) that
some grid lines will match the edges of more than one
element; in that case, we refer to the relevant elements
as edge-aligned with each other. For a problem involving
n elements (resulting in a 4n edge count), a maximum of
4n grid lines is required. In the mathematical construction,
we allow all of these 4n grid lines in the model; however,
we introduce a decision variable to specify whether a
specific grid-line is used or not. Furthermore, we introduce
decision variables to specify the locations of the grid lines
actually used (the X- or Y -coordinate axis intercept of
each particular grid line). This concept of grid lines is
illustrated in Fig. 4.

The figure shows a layout of three elements represented
by means of eight grid lines; four grid lines have not been
used. This fact can be captured by using 12 binary decision
variables (for a grid line being used or not). Furthermore,
the location of grid line G6 is shown with the yellow
arrow on the top-left corner. This location can be captured
by a continuous decision variable. Thus, eight continuous

decision variables are sufficient to specify the complete
grid structure of Fig. 4. An MIP model working with the
objective of minimizing the total number of grid lines
actually used will automatically result in a well-aligned
grid-like structure for the overall layout (for examples, see
Fig. 5).

Another concern within the realm of esthetic factors
is that of having an overall rectangular outline for the
entire layout. This is not automatically addressed with the
foregoing discussion of grid-lines. For example, consider
Fig. 6, showing two separate solutions for a five-element
problem instance. Both solutions use seven grid lines, but
the solution in the right panel has a clean rectangular
outline while the solution on the left has a jagged out-
line. Clearly, the summation for the number of grid lines
cannot, on its own, address the esthetic requirement of a
rectangular outline.

To resolve the rectangularity issue, consider Fig. 7,
which shows a candidate solution with resulting actual
overall jagged nonrectangular outline (marked with a
red outline) on the left. The ideal rectangular outline is
formally identified by the four extremal grid lines (red
lines) shown in the right-hand panel. We note that the
nonextremal or intermediate grid lines (the black lines
in the bottom image) do not play any part in defining
the overall rectangular outline. In fact, any element edges
aligned with the intermediate (black) lines may potentially
cause jagged nonrectangular outlines. Therefore, the rec-
tangularity objective effectively means that the difference
between the red-colored jagged polygon (on the left)
and the red rectangle (on the right) is to be minimized
or eliminated.

Applying this intuition, we augment our MIP formu-
lation as follows: For every element i, we define four
binary decision variables to specify whether the four edges
of the element align with any intermediate (black) grid
line or with any extremal (red) grid line. In the objective
function, we penalize every case wherein an element edge
aligns with any intermediate (black) grid line. Conversely,
we reward every case in which an element edge aligns
with any extremal (red) grid line. Returning to Fig. 6, from
earlier, we see that the newly defined objective function
will penalize the jagged layout on the left side and will
prefer the clean rectangular layout on the right.

Next, we consider the proximal collocation require-
ment we discussed for semantic associations (#2 above).
To address this, we define λij as the mutual semantic
association between elements i and j. The λij values are
defined in the range 0–100, with higher values indicat-
ing greater association. Also, we utilize decision variables
hij , vij to indicate the horizontal and vertical distance
between two elements i and j. Then, the following objec-
tive function dictates that the closely interrelated elements
be placed in close proximity to each other:

min
�
i∈N

�
j∈N

λij
hij + vij

2
. (21)

452 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

Fig. 5. Example grid layouts generated for a web wireframe problem instance [30].

Requirement #3, dealing with the relative positioning
of a pair of elements, is easily addressed by forcing the A

or D variable to be nonzero. Furthermore, it is possible to
situate the elements in the immediate vicinity of each other
by adding substantially greater weight to the coefficient of
the relevant distance term in the objective function.

The most interesting challenge faced in layout prob-
lems is to guarantee that multiple, varied (near-optimal)
solutions are provided by the optimizer. The classical
MIP approach is typically geared for computing only
one optimal solution. Commercial ILP solvers do provide
options to generate a wider solution pool, but the solu-
tions in this pool are often indistinguishable (not suffi-
ciently different from each other) for a human user. For
example, the Gurobi optimizer considers two solutions
to be different if at least one discrete decision variable
takes a different value. But the resulting impact from
only one decision variable is often negligible for the
end user.

We resolve this matter via the following reasoning: For
the case where the summation of all A decision variables
is larger than that of all D decision variables, the solu-
tions will be radically different from the converse case.
Accordingly, the diversity of potential solutions can be
captured by enforcing different metrics for (

�
A/
�

D).
If the maximum and minimum values of the metric are
deduced, then the candidate solutions can be distributed
across these known limits. Candidate solutions thus calcu-
lated for constrained values of (

�
A/
�

D) are sufficiently
distinct from each other. Fig. 5 shows a set of GUI grid
wireframes generated in line with this approach.

G. Distributed Interfaces

Consider a collaborative environment such as a meet-
ing or workshop wherein multiple participants can access
devices of multiple types (handheld, computer-screen,
large-display, etc.). The resulting plethora of input and out-
put channels can be better utilized if the GUI application
automatically distributes its underlying elements among
the devices in an efficient and controllable manner.

The automatic distribution of user interface elements
across multiple devices can be modeled through math-
ematical models [76]. The MIP formulation used here
utilizes decision variable xed to indicate that element e is
shown via device d. Another decision variable, oeu, indi-
cates whether element e is accessible to user u. Finally, sed

specifies the area of element e on device d. The objective
is to maximize the perceived user satisfaction. However,
user satisfaction can be quantified in a variety of ways.
For example, consider a parameter ced encapsulating the
value realized by displaying element e on device d. Another
parameter, aue, indicates the relative interest of user u

in accessing element e. Finally, parameter bud indicates
whether or not user u can access device d. The decision
variables listed above are sufficient to model most of the
potential metrics.

VII. D E P L O Y M E N T

This section surveys practical advice on developing and
deploying optimizers for GUI design. Fig. 8 shows six
interrelated themes that must be addressed in deploying
combinatorial optimization to that end:

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 453

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

Fig. 6. Rectangular outlines not achieved by grid-line minimization

alone.

Fig. 7. Overall rectangular outlines can be achieved if the element

edges align more with the extremal (red) grid lines than the

intermediate (black) grid.

1) design space;
2) evaluation function;
3) task instance;
4) multiobjective solution;
5) solver;
6) empirical validation.

This section is geared toward HCI researchers interested
in practical applications. However, the discussion in Sec-
tions VII-E and VII-F may be of interest for computer
scientists, since some topics are specific to GUI design as
an application field. Section VII-F is general in nature.

A. Design Space

Numerous methods in the field of combinatorial opti-
mization are available for expressing a design space. For
example, placement decisions (locations) are generally
discretized to a grid, and sequences of actions (modeled
as nodes on a graph) induce Hamiltonian cycles over arcs

Fig. 8. Development of an optimization approach for practical

deployment in design.

(sequencing), typically represented by immediate prece-
dence variables. In GUI design, there is often a variety-rich
set of solutions that perform comparably well for the stated
objectives. However, the final impact of any modeling
decision is not immediately evident. Many permissible
alternatives for a certain key decision may lead to good
(near-optimal) solutions that all are quite different from
each other.

Also, the objective functions in GUI design often show
great differences from classical OR. For example, human
users seldom can discern very small changes in position,
size, or color. Hence, the optimizer need not traverse
decision trees to such an extent. With these points in mind,
we arrive at two considerations when modeling a design
space.

1) If a specific metric for the design space can be dis-
cretized to a large number of decision variables, then
discrete decision variables should not be used to
represent it; continuous decision variables should be
used wherever possible. Discretization would lead to
a loose and voluminous formulation.

2) Generally, discrete variables should be chosen for
decisions that will substantially reduce the search
space within a short traversal of the decision tree.
Often such decision variables may not be of interest
to the human user. For example, the variables Dij in
Section VI-F and U in Section VI-E (under 3) are of
little interest to human users, but deciding for these
variables substantially restricts the remaining search
space.

B. Evaluation Function

An evaluation function can be modeled as an objec-
tive or with constraints. The latter allows us to model a
wider class of objective functions than just linear ones—for
example, convex functions over a discrete domain via rais-
ing to a higher dimensional space. The key consideration
is the tradeoff among computational performance, model
validity, and representational flexibility. While certain mod-
els reviewed in the previous section can be modeled as
hard constraints and others as soft constraints, some have
been implemented programmatically as simulators and
cannot be reformulated as constraints. From the opti-
mizer’s perspective, they are essentially black boxes. More-
over, most simulators are stochastic and require multiple
executions, to build a reliable estimate. The computational
cost per evaluation may be too high for practical purposes.

C. Task Instance

“Task instantiation” refers to the provisioning of para-
meter values that describe the specific design problem at
hand. For example, a task instance can express a list of
commands that a menu optimizer must organize into a
menu, together with scores for association between the
commands and their relative priorities for a user. Real
projects may involve tens or even hundreds of input

454 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

parameters, including: 1) the to-be-considered elements
of a design; 2) relative weights of objectives in the eval-
uative function; 3) empirical parameters of evaluative
models; and 4) governing hyperparameters to tune the
solver.

Task instantiation is often tricky because the task cannot
be precisely defined at the outset: Designers may not know
which elements to include or what their types should
be. Relative weights too are at the designer’s discretion
and are hard to determine without exposure to outcome
quality. Results may be sensitive to minute changes in
input parameters. Finally, setting parameters for the solver
necessitates some understanding of solvers’ algorithms;
this often lies outside the GUI designer’s domain.

The literature distinguishes five approaches, which are
somewhat complementary.

1) Specification by demonstration is the process wherein
a task instance is obtained by creating a full or partial
solution. For example, one can draw a full layout
for a workspace, which can then be worked on by
the optimizer. Alternatively, some elements may be
locked or otherwise marked as out of bounds for the
optimizer [30].

2) In the process of design mining, weights, objectives,
or constraints are learned from data [48], [63],
[144]–[146]. For example, a probabilistic model can
be developed to represent locations of headers on web
pages. One can then bias an optimizer to adhere to a
prescribed style. The domain-free and domain-bound
aspects of the resulting multiobjective task have to be
calibrated, so that the learned domain model cannot
dominate the outcomes. Another known challenge
is overfitting to training data and out-of-distribution
predictions.

3) Robust optimization assumes that the input values
either change or are uncertain [147]–[149]. Several
techniques exist, only one of which, the Monte Carlo
method, has been attempted in GUI design. An explo-
rative optimization method has been presented for
the functionality selection problem [39]. On the basis
of human-expressed uncertainty in input data, mul-
tiple optimization tasks are generated and handled
individually. Designer-stated levels of input values’
uncertainty inform distributions of input weights (as
opposed to point values), and several task instances
are generated accordingly. The resulting candidate
solutions are then mined for novel or robust designs.
Thus, the most probable interpretations from the
designer’s input get represented in the outputs. How-
ever, this approach depends on efficient per-instance
solving.

4) Online learning enables arriving at parameter values
via online experiment design. Key parameters’ values
are tried out with a selected group of experimental
users, and outcome quality is measured. One can use
Bayesian optimization to obtain the values [150]. See
Koyama and Igarashi ’s work [151] on applications in

crowd-based parametric design optimization.
5) Finally, empirical parameter-fitting addresses the fre-

quent need for fitting evaluative functions’ coeffi-
cients to the case. For example, the two empirical
parameters of Fitts’ law (a and b) depend on the input
device and user group. If these parameters are invalid,
incorrect tradeoffs between element size and location
propagate to the optimization. In HCI more gen-
erally, parameter inference may be hard, especially
if the model lacks an easily computable likelihood
that could be maximized. Besides tuning parameters
manually and adopting values from the literature,
common fitting methods include grid search and local
optimization. To this end, representative observations
from the target domain are needed. Bayesian opti-
mization has been introduced recently [152], using a
proxy model (e.g., a Gaussian process) to determine
where to sample next. The benefit is that reliably esti-
mating model parameters does not require as many
observations.

D. Multiobjective Solutions

GUI design typically involves multiple objectives, com-
prising ergonomic, esthetic, and other criteria. The result-
ing objectives fi for i = 1, . . . , k may conflict with each
other. A solution that is optimal for one objective may
perform poorly for others. This is a well-studied topic
in the field of combinatorial optimization but considered
relatively little in this application area.

One common technique is to combine the objectives into
a single objective expression. This can be done in many
ways—by using weighted sums, the lexicographic method,
goal-programming methods, etc. [153]. The resulting
problem can then be solved via well-established algo-
rithms [154]. In the lexicographic method, one defines
a hierarchical ordering of the objective functions. The
optimizer then iteratively finds an optimal solution to
one objective function while not degrading higher-ordered
objectives. Recent generations of MIP solvers have intro-
duced the specification of multiple objectives so that
the user does not have to manually handle the various
techniques discussed above. If, however, there are no
preferences among the objective functions and it might,
then, be unreasonable to assign weights or a hierarchy to
them, so-called no-preference methods provide an alterna-
tive strategy. The goal-programming method, for example,
calculates the ideal objective vector z∗

i = inf
x∈X

fi(x) for

i = 1, . . . , k and scalarizes the objective function

min
x∈X

kf(x) − z∗k.

An alternative is to choose one function fj as the main
objective function and bound the values of the other objec-
tive functions in the constraints as fi(x) ≤ εi. This method
is usually referred to as the ε-constraint method [155].

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 455

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

Other approaches involve metaheuristic algorithms [156].
Here, the problem is solved with all objectives and then
the Pareto front of all solutions is computed [157], [158].
Among the successful algorithms used in these are Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [159]
and Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[160]. The most common approach in GUI computation
has been the weighted sum approach, which is sensitive to
objective weights.

E. Interactive Optimization

Interactive optimization refers to an optimization
process that can be steered by a human during solving
[55], [59], [161], [162]. Interactivity is beneficial when
the design problem cannot be precisely articulated. When
incorporated into a design tool, an optimizer can assist in
creative problem-solving and potentially “nudge” novice
designers toward better, more usable designs [28].

Meignan et al. [162] offer a comprehensive review
of interactive optimization approaches. Search-oriented
interaction lets the designer provide additional informa-
tion during the optimization process. The user can take
any of several roles in this process: In the assisting role,
the designer modifies solutions. The guiding role entails
the designer steering the exploration by affecting decision
variables. In the tuning role, a designer sets solver-specific
parameters. Model-oriented interaction, an alternative to
search-orientation, allows the designer to modify and
refine the optimization model during the optimization
process. This, in turn, can be divided into two approaches.
The adjusting designer can change parameters to the
objective function or constraints when the objective is
not fully known at the beginning of the process. The
enriching designer can add objectives or constraints. The
initial model is assumed to be incomplete, and solutions
are invalidated or validated in light of interactive feedback.
Thus far, the literature does not offer guidelines for choos-
ing between approaches.

A subset of these techniques has been applied to GUI
design. Among those for defining input are control panels
[59], preference elicitation [125], constraint editing [163],
and storyboarding [164]. Techniques for interacting with
optimizer outputs include interactive example galleries
[60], [64], [165], Pareto front visualizations [58], local-
ized suggestions on a design canvas [58], and localized
critique of design outputs [125]. During search, one can
steer an optimizer by selecting promising designs (biasing
the local search) [60], completing part-solutions [30],
visualizing optimization landscapes for steering, and lock-
ing part-solutions that are ready [30], [58].

Besides interaction techniques, to support participation
of various stakeholders, optimization should allow fast def-
inition and redefinition of the task instance. In an iterative
design process, the problem definition is evolving con-
stantly. Also, there should be room for interactive explo-
ration of the design space by the designer, with questions

such as “what would happen if I placed the element here?”
[58]. There is a need to work with tacit, “subjective” crite-
ria as well: stakeholders often wish to make manual adjust-
ments to proposed solutions, applying background criteria
such as assumptions about users’ habits, cultural specifics,
and subjective preferences. A “subjective function” could
be learned, then articulated and used as an additional
objective in optimization of future solutions. Finally, it is
important to provide explanations and justification for
design choices, as opposed to merely producing a design.
A stakeholder might ask “why is this element here?” or seek
to understand how well the design reflects each particular
objective. Techniques that reveal how changes to certain
input parameters affect the design and vice versa could
aid in such navigation of the design space and make the
optimization more controllable.

F. Solvers

There are two principle approaches to solving a design
problem. First, black-box methods can address the problem
irrespectively of the objective function and without making
explicit assumptions regarding the objective function. They
treat it as a black box or an oracle that decides the objective
value of a given candidate. If evaluating the objective
function for a given configuration is inexpensive, random-
search-based heuristics are often an effective way to obtain
high-quality solutions. Such methods offer no guarantees
of finding the global optimum, though. Neither do they
provide any metrics for solution quality. There is no explicit
criterion for stopping either, to trigger termination of the
optimization process.

1) Black-Box Solvers: There are deterministic and ran-
domized black-box methods. Though it is possible to ran-
domly try out candidates and return the best solution
after a certain time, efficiency is often greater with a
more systematic approach. Greedy algorithms divide the
construction of a solution into multiple, sequential deci-
sions. These decisions are made in a certain order and are
not revoked later. A typical example is packing problems,
solved by picking item by item until further items cannot
be picked anymore. It is natural to proceed by choosing the
next item from among those that still fit and yielding the
largest growth in profit relative to the current selection.
The main ingredient of local search is the definition of a
neighborhood for a given configuration. In GUIs, the neigh-
borhood metric may consist of, for example, spatial dis-
tance between elements or their positions relative to each
other. Starting with the initial configuration, local search
proceeds by choosing a neighboring configuration that has
an objective value at least as good as the current one. These
choices might be, for example, greedy or randomized.

Metaheuristic black-box methods have some way of con-
trolling lower level heuristics. For example, SA is a special
case of local search with added randomness. The main dif-
ference is that a neighboring configuration may be chosen
not only when it yields a better objective value but also,

456 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

with a certain probability, when it is worse. That likelihood
decreases with the extent of deterioration of the objective
value. Typically, the probability is exp(−β∆), where ∆

is the difference in objective value and β a parameter
referred to as inverse temperature. In this domain, SA has
been applied for menu hierarchy design [142] and other
uses. Further members of this class used in GUI design
have been evolutionary algorithms [141], [166] and ant
colony optimization [58].

2) Exact Solvers: If a rigorous analytical description of
the design space and the evaluative function is available,
exact techniques such as integer programming can be
utilized. Exact methods are restricted in the objective
functions amenable to them, but they are superior in terms
of formal modeling capabilities and the ability to guarantee
an optimal solution or a metric for solution quality. Exact
methods use a structured (nonrandom) search approach
that guarantees the optimal solution, provided that com-
putational effort is sufficient. Modern commercial solvers
(e.g., CPLEX and Gurobi) have proven to be efficient and
flexible for addressing GUI design.

Explicit enumeration is the simplest exact method. The
objective value of each element in the solution space is
evaluated, and the current best solution—the so-called
incumbent—is updated. In contrast, implicit enumeration
makes use of relaxations that can be solved efficiently;
that is, only a subset of the constraints is considered, such
that the problem becomes tractable. We can thereby obtain
information about a subset of the possible solutions, by, for
example, partial assignment of the variables, and compare
it with the incumbent. If the best objective value for the
relaxation with restriction to a subset of solutions is worse
than the objective value of the incumbent, we can discard
all solutions from this subset at once, because none of them
can replace the incumbent. Moreover, if the relaxation of a
subset is already infeasible, the subset under consideration
must be empty. In either case, we conclude that the nega-
tion of the conditions that qualified the subset must hold
for all potential new incumbents. This additional informa-
tion may be helpful to strengthen further relaxations. In
addition, relaxations deliver guarantees as to the quality
of the incumbent; for example, if the optimum objective
value of the incumbent is only 1% away from the optimum
objective value of the relaxation, we know also that it can
be no more than 1% from the optimum for the original
problem.

Branch and bound is one very popular form of implicit
enumeration. Among the standard methods for handling
integer (linear) programs, this represents search as a tree,
where we make a decision at each node to partition the
search space. In a simple branching strategy, one variable
is fixed in each iteration. Suppose we have already found
a feasible solution with an objective value of z. If we now
have an oracle that tells us at some node that all feasible
integral solutions in the subtree rooted at this node have
an objective value of at least z, we can discard the entire

subtree because it will not offer an improvement. More
generally, two kinds of pruning can be done based on:
1) infeasibility (e.g., two elements cannot be assigned to
the same slot) and 2) bounds, where the lower bound is
worse than the objective value of the incumbent. Finding
a good incumbent early in the process of implicit enu-
meration usually allows one to discard a larger quantity
of subsets. Hence, state-of-the-art IP solvers expend sig-
nificant effort in implementing heuristics for generating a
new primal solution as well as for deciding which subset
of partial assignments to consider next. If the designer’s
insight into the model to be optimized is sufficient to
provide a good starting solution to the solver, this small
amount of added information can be exploited to speed up
the whole optimization process considerably.

3) Techniques for Improving Exact Solver Performance:

Improvements in solver performance are possible with
known MIP techniques. We will describe them with appli-
cation examples from graphical interface generation.

First, discrete decision variables can be avoided. Con-
sider a pair of elements i, j with no mutual association.
Furthermore, other observations have led to the conclusion
that these elements are sufficiently distant from each other
on the canvas (say, in different quadrants of the available
space). It might then be possible to make A, D into contin-
uous variables for this pair. In fact, it may be possible to
drop these decision variables completely from the model.
Post facto, if it is observed that the elements do overlap,
then the variables can be added as separate cuts.

Second, heuristic upper bounds can be computed. After
the branch-and-bound tree of the MIP solver has made
the initial key decisions, it is possible to utilize a custom
repair heuristic that can compute a solution much more
quickly than traversing the remaining branch-and-bound
tree. Assuming that the (

�
A/
�

D) value is specified,
the heuristic can use the practical domain knowledge via
a greedy space-filling approach to get results that would
otherwise require substantial traversal of the branch-and-
bound tree. This gives the upper bound and also presents
a viable solution.

Third, key decisions can be made from prior knowledge.
For example, the presence of relatively large elements
can often preclude several other potential solutions. Some
starting positions specified for key elements can serve as a
good option to reduce computational effort while meeting
other objectives. However, specification of location need
not be a heuristic step that eliminates any good solutions.
We can proceed as follows: We modify the branch-and-
bound progression of the MIP solver to start with two
custom branches. The first branch forces the element e

to lie in the top half of the available space. The second
branch constrains e not to lie in the top half. The next
stage of branching specifies that the element e must lie
on the left-hand or right-hand half of the canvas. Collec-
tively, the branches guarantee that all possible options are
logically covered.

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 457

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

Fourth and finally, for sufficiently large-sized instances
(especially where elements are of relatively small size), it is
possible to employ a column generation approach over the
A, D variables.

G. Empirical Evaluation

The outcomes of computational design are ultimately
assessed not by evaluative functions or in terms of numeri-
cal performance but in the real benefits afforded to people.
To claim “computational design” is to make a falsifiable
statement about value produced for end users and other
stakeholders. Hence, it is fair to insist on evidence as to
whether the designs generated are actually usable, that
the optimization can support decision-making and creative
processes, or of how the outcomes compare in quality with
those of human-designed interfaces.

From the application-oriented articles surveyed,
we identified a subset on using combinatorial optimization
for generation of GUIs and that presented empirical
evaluation carried out with either end users or designers
as participants. We excluded writings that failed to report
the empirical method or were flagged by the authors as
tentative, pilot, or preliminary. The articles can be divided
into three main classes on the basis of their purpose and
the type of empirical methodology followed.

Design studies are used to assess benefits of optimiza-
tion as a tool in the design process. Professional or stu-
dent designers are asked to generate interface designs
in response to a given design brief. To generalize to
design practice, design studies should be aimed at using
representative materials, participants, and conditions. For
GUI design, professional background should be related
to interaction design, usability engineering, user inter-
face or user experience design, or related areas of soft-
ware engineering. Interactive grid layout sketching has
been assessed in two studies. Using Sketchplorer [60],
a black-box multiobjective approach to GUI wireframe
generation, professional designers (N = 10) were asked to
generate layouts with the system. Most designers included
a suggestion by the optimizer in their final design, and
they deemed the outcomes as good as their own. In a
follow-up by Ramesh et al. [30], 16 professional interface
designers had a similar task, but the optimizer was based
on MIP, which was faster and could handle larger instances
than the earlier black-box optimizer. Overall, feedback was
positive, especially about support for layout exploration,
particularly in the early stages of design. Again, most
designers included optimized layout suggestions in the
final designs. In a design study of functionality selection in
product design (N = 11), an IP-based tool was compared
to a process of nonsupported design [39]. Most designers
ranked an optimizer-generated design in their top three
designs by quality. From this article and a workshop
study at a real-world company, the authors concluded that
the tool’s most significant benefit is to aid in exploring
alternatives to an existing design idea. In a study with

MenuOptimizer, novice designers (12 computer science
students) [58] were asked to design menu systems with
and without interactive optimization support in an SDE.
Although the eventual designs were equal in quality levels,
design took significantly less effort (with fewer editing
steps) when the optimizer was used. In a design study by
Park et al. [76], participants with a computer science back-
ground (N = 6) were asked to design two distributed user
interfaces, using either an ILP-based optimizer (AdAM) or
pen and paper, and rated the results afterward. The two
approaches were not significantly different. Although the
users commended the optimizer as powerful, using sliders
to control the objectives was deemed tricky and took
time.

Usability tests use a representative sample of end users
who are asked to complete tasks with computer-generated
user interfaces. In a study of ILP-generated hierarchical
menus, university students (N = 24) were asked to find
commands and click them. Computer-generated menus
were compared to commercially available counterparts.
The ILP-generated designs were found significantly faster
to use. In a study of IP-assisted adaptation of web GUIs,
Todi et al. [80] asked users (N = 16) to interact with web
pages and assessed how quickly they could find items on
a previously unseen page. The page layout was either as
designed originally or rearranged via a black-box approach
wherein a visual-search model fit to the user’s history was
used as the objective function. The optimizer’s goal was to
find a layout with elements placed such that they are closer
to where the user may expect them to be. The approach
demonstrated a significant improvement in the number
of fixations needed for finding elements. In a task-based
evaluation (N = 11) of GUI widget layouts generated
by SUPPLE [83], motor-impaired and healthy users were
asked to perform simple tasks. In a predesign step, para-
meters of a model were fit to individuals’ motor character-
istics. The ability-based interfaces proved significantly less
error-prone and faster to use than the nonindividualized
ones, with a 28% improvement in task-completion time
relative to baselines. In a task-based evaluation of applica-
tion menus generated by Sketchplorer [60], 20 users were
asked to perform icon selections. The computer-generated
menus were significantly faster than baseline commercial
designs after some experience was gained. The optimized
designs were also just as esthetically pleasing, with better
color harmony and less symmetry, though this was not
an objective for the system. In task-based assessment of
user interfaces for printing services, users (N = 48) were
asked to carry out printing tasks with commercial designs
and with ones generated via a rule-based approach [62].
Subjects were twice as fast with computationally gener-
ated designs, particularly when the approach accounted
for expectations of element locations due to prior expe-
rience. In a field experiment on information displays [77],
IP-generated information layouts, created with IFT for the
objective function, were compared to regular slide-based
rotating displays. The attention of passersby was measured

458 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

by a computer vision sensor. Computer-generated layouts
attracted twice as much attention as the baseline.

Quality ratings involve questionnaire-based studies that
can be run for subjectively assessing the quality of the
designs produced. In a rating-based study with software
developers (N = 20), portrait/landscape transformations
of GUIs [85] were performed by an optimizer using design
heuristics for objectives. No statistical testing was utilized.
Although the optimized results received a lower rating
than human-generated ones, the respondents perceived
the results to be of high quality and a good starting point
for design. In a crowdsourced study with DesignScape
[64], 40 novices were asked to create graphic designs.
Other novices found the designs created with the help of
the system better than those created without. In another
ratings-based study, computer science students (N = 15)
evaluated button layouts generated via a constraint-based
approach [96]. This article was focused on identifying
which layout objective is most useful for which level of
complexity in layout managers. Finally, icon sets’ compre-
hensibility was assessed in a crowdsourcing-based study
by Laursen et al. [140]. The results showed a high cor-
relation between the optimizer’s comprehensibility score
and human selection of icons for a given prompt but no
correlation for the identifiability of icons.

VIII. C O N C L U S I O N

This article has surveyed combinatorial optimization as a
computational method for the generation and refinement
of GUIs. It enables attacking more realistic design problems
with increasing efficacy. Published results cover, among
other problems, command selection, functionality selec-
tion, widget type selection, icon selection, menu design,
layout design, and distribution of functionality. The main
takeaway is that combinatorial optimization is emerging
as a powerful and flexible complement to existing, mostly
noncomputational design methods. It can be used for much
more than to find a single optimal design. By virtue of
abstraction, multiple instances of the same design problem
can be solved. A menu optimizer, for example, can be run
for any task instance.

The article has pointed out potentials that can be catego-
rized under eight classes: 1) improved quality and robust-
ness of designs; 2) solutions to very hard problems that
are beyond human problem-solving capacity; 3) estimates
of the practically achievable improvements possible for a
given seed design; 4) information about the complexity
and structure of a problem; 5) systems that adapt a design
in real time; 6) integration of optimization with interactive
design tools, to support both exploration and problem-
solving; 7) personalization and customization of interfaces
in line with individuals’ preferences; and 8) an explicit,
scrutinizable approach that can improve understanding of
HCI and support knowledge-building in design teams.

Convergence of three advances has made this pos-
sible and constitutes a platform for future research.
First, predictive models in algorithmic design were pre-

viously limited to simple models such as Fitts’ law or,
worse, hand-coded heuristics. Recent work demonstrates
exploitation of a much wider range of user-related objec-
tives, informed by research in psychology and HCI. In areas
from performance to errors, ergonomics, and learnability,
there is increasing understanding of how to represent the
results of behavioral sciences in objective functions. This
is a significant step forward in model-based approaches.
One benefit of the design task definitions synthesized in
this article is that any “oracle” that can produce feasible
designs can be used. That could include scientific models
but also, in the future, crowd-computing- or data-driven
models. This allows separating assumptions about evalua-
tive knowledge from the decision task.

Second, there is increased understanding of how to
make combinatorial optimization not only compatible with
but more broadly useful in design practice. Several con-
cepts have been developed for integration and interaction
with optimizers. These tackle obstacles that previously
crippled the approach. Thanks to techniques that allow
interactively specifying the task and steering an optimizer,
professional designers can more readily delegate suitable
hard tasks to a computer. An exciting aspect of this
development is that it will open the possibility of novice
users designing high-quality GUIs. Optimizers can guide
a novice designer toward a good design [28], [30], [60].
We believe, further, that the use of empirically and the-
oretically sound evaluative functions is critical. Although
numerous models have been presented in the literature
(especially for vision, motor performance, and cognition),
these have not been adopted in design practice. Only a few
of them have ended up being taught in design schools and
featuring in contemporary design standards and guide-
lines. If prevailing practice relies on quantitative models
at all, it does so less than on empathy, tacit knowledge,
heuristics, and empirical testing [167]. By their integration
into design tools supported by optimization methods, the
models can be made readily useful in design practice.
Optimization can be used to inform such determinations
in design as estimating the distance of a design from
the global optimum. We believe the broader potentials
are still unexploited. By defining the interests of several
user groups in a multiobjective function, combinatorial
optimization can aid in identifying the best compromises in
a design space [39]. Using methods of robust optimization,
one can find the design that is the best compromise even if
assumptions about use change.

Third, combinatorial optimization offers a much-
needed, coherent formalism for understanding what
design is. It exposes the shape of GUI design problems from
a rigorous but actionable mathematical perspective. While
our understanding previously was limited to assignment
problems, we can now see a spectrum of them—from
packing to assignment problems and, further, to layout
tasks. Cataloging them will help us understand the prop-
erties of these problems and identify efficient solution
methods from the literature. We have taken the first steps

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 459

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

here by defining various common design tasks as integer
programming tasks.

Combinatorial optimization will supply insights into the
complexity and nature of GUI design. From a theoretical
point of view, we know that integer programming is NP-
hard. There exists a concise formulation—that is, one of
polynomial size—for any problem that is in NP [168]. This
implies that IP offers great modeling power for real-world
problems, including GUI design. Therefore, it is good prac-
tice to proceed from an initial model of the problem as an
IP, which enables the first experiments and further theoret-
ical analyses. Since not every problem in NP is intractable,
it might turn out that the given problem is contained in P .
Hence, one should be able to refine the model into a
linear program (i.e., avoid integrality constraints), because
linear programming is P -complete. An example was given
with regard to functionality selection with price-collecting
dependencies. Even if this is not the case for the general
problem under consideration, there might be confinements
to special cases or relaxations that are tractable. Identi-
fying such restrictions and relaxations can be useful for
designing approximation algorithms where we embed an
instance of the general problem in the restricted space.
One can look for a proxy instance that is tractable, find a
solution, and transform it for the original problem, or one
can try to adjust an optimum solution obtained for the
relaxation such that it is feasible for the original problem.

Uncertainty poses an unresolved theoretical problem for
further applications in this area. The roots of the issue lie
in the characteristically ill-defined nature of design, the
degree of variability we see in human behavior, and the
lack of precise predictive models (see chemical or civil
engineering). Consequently, objective functions should be
designed with uncertainty in mind. The problem of opti-
mization in conditions of uncertainty plays a prominent
role in optimization theory. It is commonly assumed that
the uncertainties can be classified via probability distribu-
tions, which is not true in most of the challenges described
in this article. Sahinidis [149] has provided a detailed
survey of optimization under uncertainty. Related research
is emerging also in robust optimization, a field whose prob-
lems have uncertain components that are contained in a
prespecified uncertainty set. Instead of using a probability
distribution, we can assume that a decision-maker may
arbitrarily choose values from within this uncertainty set
(see [148] for a brief introduction to robust optimization).

However, the scenario of integer programming in GUI
design is slightly different. In many cases, it is not possible
to define a probability distribution or even an uncer-
tainty set for our models. The reason is that subjective
opinions about valuations of various designs can change
during the optimization process. For example, after gen-
eration of the first solutions that are feasible according
to the current model, the user might detect unwanted
behavior and change weights in the objective function
or even restrict the model by adding further constraints.
In practice, this dynamic change in optimization models

also restricts us from using off-the-shelf solvers. These
solvers cannot benefit from earlier optimization processes
if the model changes too much, which leads to solving the
problem from scratch after every user input. In conclu-
sion, though GUI design is closely related to the field of
optimization amid uncertainty and of robust optimization,
the special nature of this subjective and often unstructured
uncertainty justifies considering interactive optimization a
distinct field of research. Interactive optimization encom-
passes all optimization wherein users interact with the
model or the solution methods during the optimization
process, a vast field that poses new challenges to state-of-
the-art optimization methods. A survey of the categoriza-
tion of this broad area and its recent advances is provided
by Meignan et al. [162].

We note also that there is a dire need to develop empir-
ical methodology specifically for evaluating computational
design systems. The empirical evidence reviewed in this
article suggests that at least in the case of GUI layouts and
element selection tasks, optimizer-generated designs can
be of high quality and even comparable to expert-designed
interfaces. Designers report benefiting from the approach
especially earlier in the design process, when exploration
of options can “nudge” them and help them avoid fixating
on any one idea too soon. However, empirical studies are
still fairly rare, relative to the volume of articles present-
ing technical solutions. Thus, although published results
have been positive, much work remains to be done to
collect data in more realistic settings and, to that end,
determine the most valid methods. One recognized issue
is how to select representative tasks: if the tasks are too
complex, studies are expensive to run and can be com-
putationally hard [76]. If they are too easy, optimization
may bring little practical value. Also, materials and tasks
can be “cherry-picked” to produce confirmatory results.
Indeed, we could find only one paper on work wherein
computer-generated designs were compared outside the
laboratory [77]. Another challenge that remains is to assist
designers, who may not have used optimization systems
before, to control multiobjective optimization [76]. For
example, Bailly et al. [58] reported a menu optimizer being
hard to understand and the models difficult to control.
Others’ articles acknowledge an expensive ramp-up stage
for defining an optimization task for the optimizer [39],
[62]. A third issue is the need for critically testing the
objective functions empirically. One of the most signifi-
cant benefits of the approach is that it yields empirically
verifiable predictions. Empirical data’s collection serves
assessment not only of the outcome itself but also of the
objective function that was used. We know of only three
studies thus far that have compared empirical data against
objective functions [30], [60], [96].

In conclusion, above and beyond these observations,
perhaps the most exciting academic prospect of combina-
torial optimization for the field of HCI lies in offering
a truly interdisciplinary yet principled solution to one of
its most profound questions: how data and theory can

460 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

inform design [31], [169]. Combinatorial optimization
invites computer scientists to figure out what “design”
means and how “data” can become models, and it also
calls for psychologists, cognitive scientists, and designers
to define models for what “good” means for humans in
HCI. However, first and foremost, optimization is a call
for deriving solutions from first principles, similar to engi-
neering design [170]. This encourages proper formulation
of problems and analysis of conditions in which good

outcomes can be reached. Optimization could promote
a change of culture in design by facilitating the expli-
cation, scrutinizing, and accumulation of design knowl-
edge. We expect that the future will see interaction
design—which has been considered to be, through and
through, empathic, nuanced, tacit, and dynamic activity—
that abstracts, decomposes, and algorithmically solves a
widening array of problems, all, moreover, in a manner
acceptable to designers and end users.

R E F E R E N C E S

[1] W. R. King and J. He, “A meta-analysis of the
technology acceptance model,” Inf. Manage.,
vol. 43, no. 6, pp. 740–755, Sep. 2006.

[2] A. Oulasvirta, X. Bi, and A. Howes, Computational

Interaction. Oxford, U.K.: Oxford Univ. Press,
2018.

[3] N. Cross, Designerly Ways of Knowing. London,
U.K.: Springer, 2006.

[4] J. Löwgren and E. Stolterman, Thoughtful

Interaction Design: A Design Perspective on

Information Technology. Cambridge, MA, USA:
MIT Press, 2004.

[5] A. Chevalier and M. Y. Ivory, “Web site designs:
Influences of designer’s expertise and design
constraints,” Int. J. Human-Comput. Studies,
vol. 58, no. 1, pp. 57–87, Jan. 2003.

[6] A. Dix, Human-Computer Interaction. London,
U.K.: Springer, 2009.

[7] L. Hallnäs and J. Redström, “Interaction design:
Foundations, experiments,” Textile Res. Centre,
Swedish School Textiles, Univ. Borås, Interact.
Inst., Borås, Sweden, 2006.

[8] J. Preece, H. Sharp, and Y. Rogers, Interaction

Design: Beyond Human-Computer Interaction.
Hoboken, NJ, USA: Wiley, 2015.

[9] D. Saffer, Designing for Interaction: Creating

Innovative Applications and Devices. London, U.K.:
New Riders, 2010.

[10] T. Winograd, “The design of interaction,” in
Beyond Calculation. London, U.K.: Springer, 1997,
pp. 149–161.

[11] K. Dorst and N. Cross, “Creativity in the design
process: Co-evolution of problem–solution,”
Design Studies, vol. 22, no. 5, pp. 425–437,
Sep. 2001.

[12] B. Buxton, Sketching User Experiences: Getting the

Design Right and the Right Design. San Mateo, CA,
USA: Morgan Kaufmann, 2010.

[13] S. Feuerstack, M. Blumendorf, V. Schwartze, and
S. Albayrak, “Model-based layout generation,” in
Proc. Work. Conf. Adv. Vis. Interfaces, 2008,
pp. 217–224.

[14] W. O. Galitz, The Essential Guide to user Interface

Design: An Introduction to GUI Design Principles

and Techniques. Hoboken, NJ, USA: Wiley, 2007.
[15] J. D. Foley, V. L. Wallace, and P. Chan, “The human

factors of computer graphics interaction
techniques,” IEEE Comput. Grap. Appl., vol. 4,
no. 11, pp. 13–48, Nov. 1984.

[16] G. Bailly, E. Lecolinet, and L. Nigay, “Visual menu
techniques,” ACM Comput. Surv., vol. 49, no. 4,
p. 60, 2017.

[17] D. Bowman, E. Kruijff, J. J. LaViola, Jr., and
I. P. Poupyrev, 3D User Interfaces: Theory and

Practice, CourseSmart eTextbook. Reading, MA,
USA: Addison-Wesley, 2004.

[18] J. Wang, L. Quan, J. Sun, X. Tang, and H.-Y. Shum,
“Picture collage,” in Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 1, Jun. 2006,
pp. 347–354.

[19] N. Hurst, W. Li, and K. Marriott, “Review of
automatic document formatting,” in Proc. 9th

ACM Symp. Document Eng., 2009, pp. 99–108.
[20] L. A. Meyerovich and R. Bodik, “Fast and parallel

Webpage layout,” in Proc. 19th Int. Conf. World

Wide Web, 2010, pp. 711–720.
[21] Ž. Mijailović and D. Milićev, “Empirical analysis of

GUI programming concerns,” Int. J.

Human-Comput. Studies, vol. 72, nos. 10–11,
pp. 757–771, Oct. 2014. [Online]. Available:
http://www.sciencedirect.
com/science/article/pii/S1071581914000664

[22] J. Vanderdonckt, “Model-driven engineering of
user interfaces: Promises, successes, failures, and
challenges,” in Proc. ROCHI, vol. 8, 2008, p. 32.

[23] G. Meixner, F. Paternò, and J. Vanderdonckt, “Past,
present, and future of model-based user interface
development,” I-Com Zeitschrift Interaktive

Kooperative Medien, vol. 10, no. 3, pp. 2–11, 2011.
[24] R. Popp, J. Falb, D. Raneburger, and H. Kaindl,

“A transformation engine for model-driven UI
generation,” in Proc. 4th ACM SIGCHI Symp. Eng.

Interact. Comput. Syst. (EICS), New York, NY, USA,
2012, pp. 281–286, doi: 10.1145/2305484.
2305532.

[25] M. Heymann and A. Degani, “Formal analysis and
automatic generation of user interfaces:
Approach, methodology, and an algorithm,”
Human Factors, vol. 49, no. 2, pp. 311–330,
Apr. 2007.

[26] S. E. Hudson and C.-N. Hsi, “A synergistic
approach to specifying simple number
independent layouts by example,” in Proc. Conf.

Human Factors Comput. Syst. (INTERACT CHI),
1993, pp. 285–292.

[27] W. C. Kim and J. D. Foley, “Don: User interface
presentation design assistant,” in Proc. 3rd Annu.

ACM SIGGRAPH Symp. User Interface Softw.

Technol. (UIST), New York, NY, USA, 1990,
pp. 10–20, doi: 10.1145/97924.97926.

[28] B. Myers, S. E. Hudson, and R. Pausch, “Past,
present, and future of user interface software
tools,” ACM Trans. Comput.-Human Interact.,
vol. 7, no. 1, pp. 3–28, Mar. 2000.

[29] R. J. Beach, “Setting tables and illustrations with
style,” Univ. Waterloo, Waterloo, ON, Canada,
Tech. Rep. AAI0556392, 1985.

[30] N. D. Ramesh, K. Todi, A. Oulasvirta, and
T. Saarelainen, “Interactive grid layout design
with integer programming,” in Proc. CHI Conf.

Human Factors Comput. Syst., 2020.
[31] S. K. Card, A. Newell, and T. P. Moran, The

Psychology of Human-Computer Interaction. Boca
Raton, FL, USA: CRC Press, 1983.

[32] D. L. Fisher, “Optimal performance engineering:
Good, better, best,” Human Factors, J. Human

Factors Ergonom. Soc., vol. 35, no. 1, pp. 115–139,
1993.

[33] M. Y. Ivory and M. A. Hearst, “The state of the art
in automating usability evaluation of user
interfaces,” ACM Comput. Surv., vol. 33, no. 4,
pp. 470–516, 2001.

[34] A. Shocker and V. Srinivasan, “A consumer-based
methodology for the identification of new product
ideas,” Manage. Sci., vol. 20, no. 6, pp. 921–937,
1974. [Online]. Available:
http://www.jstor.org/stable/2630205

[35] M. D. Albritton and P. R. McMullen, “Optimal
product design using a colony of virtual ants,” Eur.

J. Oper. Res., vol. 176, no. 1, pp. 498–520, 2007.
[36] V. Krishnan and K. T. Ulrich, “Product development

decisions: A review of the literature,” Manage.

Sci., vol. 47, no. 1, pp. 1–21, 2001.
[37] J. R. Jiao, T. W. Simpson, and Z. Siddique,

“Product family design and platform-based
product development: A state-of-the-art review,”

J. Intell. Manuf., vol. 18, no. 1, pp. 5–29,
Jul. 2007.

[38] A. G. Kök and M. L. Fisher, “Demand estimation
and assortment optimization under substitution:
Methodology and application,” Oper. Res., vol. 55,
no. 6, pp. 1001–1021, Dec. 2007.

[39] A. Oulasvirta, A. Feit, P. Lähteenlahti, and
A. Karrenbauer, “Computational support for
functionality selection in interaction design,” ACM

Trans. Comput.-Human Interact., vol. 24, no. 5,
pp. 1–30, Oct. 2017.

[40] N. Kano, N. Seraku, F. Takahashi, and S. Tsuji,
“Attractive quality and must-be quality,” J. Jpn.

Soc. Quality Control, vol. 14, no. 2, pp. 39–48,
1984.

[41] A. M. Memon, M. L. Soffa, and M. E. Pollack,
“Coverage criteria for gui testing,” ACM SIGSOFT

Softw. Eng. Notes, vol. 26, no. 5, pp. 256–267,
2001.

[42] S. K. Feiner, “A grid-based approach to automating
display layout,” in Proc. Graph. Interface, Toronto,
ON, Canada, 1988, pp. 192–197. [Online].
Available: http://dl.acm.org/citation.
cfm?id=102313.102339

[43] M. Pollatschek, M. Gershoni, and Y. Tadday,
“Improving the hebrew typewriter,” Technion,
Haifa, Israel, Tech. Rep., 1975.

[44] R. E. Burkard and J. Offermann, “Entwurf von
Schreibmaschinentastaturen mittels quadratischer
Zuordnungsprobleme,” Z. Oper. Res., vol. 21,
no. 4, pp. B121–B132, Aug. 1977.

[45] A. M. Feit et al., “Assignment problems for
optimizing text input,” Aalto Univ., Espoo,
Finland, Tech. Rep. 103/2018, 2018.

[46] S. M. Hart and L. Yi-Hsin, “The application of
integer linear programming to the
implementation of a graphical user interface:
A new rectangular packing problem,” Appl. Math.

Model., vol. 19, no. 4, pp. 244–254,
Apr. 1995.

[47] I. E. Sutherland, “Sketchpad a man-machine
graphical communication system,” Simulation,
vol. 2, no. 5, pp. R-3–R-20, May 1964.

[48] S. Lok and S. Feiner, “A survey of automated
layout techniques for information presentations,”
in Proc. SmartGraph., 2001, pp. 61–68.

[49] B. N. Freeman-Benson, J. Maloney, and
A. Borning, “An incremental constraint solver,”
Commun. ACM, vol. 33, no. 1, pp. 54–63,
Jan. 1990, doi: 10.1145/76372.77531.

[50] H. Hosobe, “A modular geometric constraint
solver for user interface applications,” in Proc.

14th Annu. ACM Symp. Interface Softw. Technol.

(UIST), New York, NY, USA, 2001, pp. 91–100,
doi: 10.1145/502348.502362.

[51] P. Hertzog, “Binary space partitioning layouts to
help build better information dashboards,” in
Proc. 20th Int. Conf. Intell. Interfaces (IUI),
New York, NY, USA, 2015, pp. 138–147,
doi: 10.1145/2678025.2701383.

[52] A. R. Puerta, H. Eriksson, J. H. Gennari, and
M. A. Musen, “Beyond data models for automated
user interface generation,” in Proc. BCS HCI,
1994, pp. 353–366.

[53] P. A. Akiki, A. K. Bandara, and Y. Yu, “Adaptive
model-driven user interface development
systems,” ACM Comput. Surv., vol. 47, no. 1,
pp. 1–33, May 2014.

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 461

http://dx.doi.org/10.1145/97924.97926
http://dx.doi.org/10.1145/76372.77531
http://dx.doi.org/10.1145/502348.502362
http://dx.doi.org/10.1145/2678025.2701383
http://dx.doi.org/10.1145/2305484.2305532
http://dx.doi.org/10.1145/2305484.2305532

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

[54] J. Coutaz, “User interface plasticity: Model driven
engineering to the limit!” in Proc. 2nd ACM

SIGCHI Symp. Eng. Interact. Comput. Syst., 2010,
pp. 1–8.

[55] M. Fisher, “Interactive optimization,” Ann. Oper.

Res., vol. 5, no. 3, pp. 539–556, 1985.
[56] S. Zhai, M. Hunter, and B. A. Smith, “Performance

optimization of virtual keyboards,”
Human-Comput. Interact., vol. 17, nos. 2–3,
pp. 229–269, 2002.

[57] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock,
“Automatically generating personalized user
interfaces with Supple,” Artif. Intell., vol. 174,
nos. 12–13, pp. 910–950, Aug. 2010.

[58] G. Bailly, A. Oulasvirta, T. Kötzing, and S. Hoppe,
“Menuoptimizer: Interactive optimization of menu
systems,” in Proc. 26th Annu. ACM Symp. Interface

Softw. Technol., 2013, pp. 331–342.
[59] A. Sears, “Aide: A step toward metric-based

interface development tools,” in Proc. 8th Annu.

ACM Symp. Interface Softw. Technol., 1995,
pp. 101–110.

[60] K. Todi, D. Weir, and A. Oulasvirta, “Sketchplore:
Sketch and explore with a layout optimiser,” in
Proc. ACM Conf. Designing Interact. Syst., 2016,
pp. 543–555.

[61] S. S. Rao, Engineering Optimization: Theory and

Practice. Hoboken, NJ, USA: Wiley, 2009.
[62] J. Nichols, D. H. Chau, and B. A. Myers,

“Demonstrating the viability of automatically
generated user interfaces,” in Proc. SIGCHI Conf.

Human Factors Comput. Syst., 2007,
pp. 1283–1292.

[63] P. O’donovan, A. Agarwala, and A. Hertzmann,
“Learning layouts for single-pagegraphic designs,”
IEEE Trans. Vis. Comput. Graphics, vol. 20, no. 8,
pp. 1200–1213, Aug. 2014.

[64] P. O’Donovan, A. Agarwala, and A. Hertzmann,
“DesignScape: Design with interactive layout
suggestions,” in Proc. 33rd Annu. ACM Conf.

Human Factors Comput. Syst., 2015,
pp. 1221–1224.

[65] E. Schrier, M. Dontcheva, C. Jacobs, G. Wade, and
D. Salesin, “Adaptive layout for dynamically
aggregated documents,” in Proc. 13th Int. Conf.

Intell. Interfaces, 2008, pp. 99–108.
[66] K. Gajos et al., “Fast and robust interface

generation for ubiquitous applications,” in Proc.

Int. Conf. Ubiquitous Comput. Springer, 2005,
pp. 37–55.

[67] F. Paterno and C. Santoro, “One model, many
interfaces,” in Computer-Aided Design of User

Interfaces III. London, U.K.: Springer, 2002,
pp. 143–154.

[68] B. Price, R. Greiner, G. Häubl, and A. Flatt,
“Automatic construction of personalized customer
interfaces,” in Proc. 11th Int. Conf. Intell.

Interfaces, 2006, pp. 250–257.
[69] M. Nebeling, “Xdbrowser 2.0: Semi-automatic

generation of cross-device interfaces,” in Proc.

Conf. Human Factors Comput. Syst. (CHI), 2017,
pp. 4574–4584.

[70] C. M. Beshers and S. Feiner, “Scope: Automated
generation of graphical interfaces,” in Proc. 2nd

Annu. ACM SIGGRAPH Symp. Interface Softw.

Technol. (UIST), New York, NY, USA, 1989,
pp. 76–85, doi: 10.1145/73660.73670.

[71] C. Janssen, A. Weisbecker, and J. Ziegler,
“Generating user interfaces from data models and
dialogue net specifications,” in Proc. Conf. Human

Factors Comput. Syst. (INTERACT CHI), New York,
NY, USA, 1993, pp. 418–423,
doi: 10.1145/169059.169335.

[72] A. Pizano, Y. Shirota, and A. Iizawa, “Automatic
generation of graphical user interfaces for
interactive database applications,” in Proc. 2nd

Int. Conf. Inf. Knowl. Manage. (CIKM), New York,
NY, USA, 1993, pp. 344–355,
doi: 10.1145/170088.170166.

[73] R. A. M. Murillo, S. Subramanian, and
D. M. Plasencia, “Erg-O: Ergonomic optimization
of immersive virtual environments,” in Proc. 30th

Annu. ACM Symp. Interface Softw. Technol., 2017,
pp. 759–771.

[74] R. Kumar, J. O. Talton, S. Ahmad, and

S. R. Klemmer, “Bricolage: Example-based
retargeting for Web design,” in Proc. SIGCHI Conf.

Human Factors Comput. Syst., 2011,
pp. 2197–2206.

[75] J. Fogarty and S. E. Hudson, “Gadget: A toolkit for
optimization-based approaches to interface and
display generation,” in Proc. 16th Annu. ACM

Symp. Interface Softw. Technol., 2003,
pp. 125–134.

[76] S. Park et al., “Adam: Adapting multi-user
interfaces for collaborative environments in
real-time,” in Proc. Conf. Human Factors Comput.

Syst. (CHI), 2018, p. 184.
[77] M. L. Montoya Freire, D. Potts, N. R. Dayama,

A. Oulasvirta, and M. Di Francesco,
“Foraging-based optimization of pervasive
displays,” Pervas. Mobile Comput., vol. 55,
pp. 45–58, Apr. 2019.

[78] J. Nichols, B. Rothrock, D. H. Chau, and
B. A. Myers, “Huddle: Automatically generating
interfaces for systems of multiple connected
appliances,” in Proc. 19th Annu. ACM Symp.

Interface Softw. Technol. (UIST), New York, NY,
USA, 2006, pp. 279–288,
doi: 10.1145/1166253.1166298.

[79] K. Todi, J. Jokinen, K. Luyten, and A. Oulasvirta,
“Familiarisation: Restructuring layouts with visual
learning models,” in Proc. 23rd Int. Conf. Intell.

Interfaces, 2018, pp. 547–558.
[80] K. Todi, J. Jokinen, K. Luyten, and A. Oulasvirta,

“Individualising graphical layouts with predictive
visual search models,” ACM Trans. Interact. Intell.

Syst., vol. 10, no. 1, pp. 1–24, Aug. 2019.
[81] N. Ramesh, M. Shiripour, A. Oulasvirta, E. Ivanko,

and A. Karrenbauer, “Foraging-based optimization
of menu systems,” submitted for publication.

[82] L. Micallef, G. Palmas, A. Oulasvirta, and
T. Weinkauf, “Towards perceptual optimization of
the visual design of scatterplots,” IEEE Trans. Vis.

Comput. Graphics, vol. 23, no. 6, pp. 1588–1599,
Jun. 2017.

[83] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld,
“Improving the performance of motor-impaired
users with automatically-generated, ability-based
interfaces,” in Proc. SIGCHI Conf. Human Factors

Comput. Syst., 2008, pp. 1257–1266.
[84] A. Oulasvirta, “User interface design with

combinatorial optimization,” Computer, vol. 50,
no. 1, pp. 40–47, Jan. 2017.

[85] C. Zeidler, G. Weber, W. Stuerzlinger, and
C. Lutteroth, “Automatic generation of user
interface layouts for alternative screen
orientations,” in Proc. IFIP Conf. Human-Comput.

Interact. London, U.K.: Springer, 2017, pp. 13–35.
[86] D. Lindlbauer, A. M. Feit, and O. Hilliges,

“Context-aware online adaptation of mixed reality
interfaces,” in Proc. 32nd Annu. ACM Symp.

Interface Softw. Technol. (UIST), New York, NY,
USA, 2019, pp. 147–160.

[87] J. Abascal, A. Aizpurua, I. Cearreta, B. Gamecho,
N. Garay-Vitoria, and R. Miñón, “Automatically
generating tailored accessible user interfaces for
ubiquitous services,” in Proc. 13th Int. ACM

SIGACCESS Conf. Comput. Accessibility, 2011,
pp. 187–194.

[88] S. Sarcar, J. P. Jokinen, A. Oulasvirta, Z. Wang,
C. Silpasuwanchai, and X. Ren, “Ability-based
optimization of touchscreen interactions,” IEEE

Perv. Comput., vol. 17, no. 1, pp. 15–26,
Jan. 2018.

[89] S. Amaran, N. V. Sahinidis, B. Sharda, and
S. J. Bury, “Simulation optimization: A review of
algorithms and applications,” Ann. Oper. Res.,
vol. 240, no. 1, pp. 351–380, May 2016,
doi: 10.1007/s10479-015-2019-x.

[90] R. S. Sutton and A. G. Barto, Reinforcement

Learning: An Introduction. Cambridge, MA, USA:
MIT Press, 2018.

[91] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook

of Constraint Programming (Foundations of
Artificial Intelligence), vol. 2. Amsterdam,
The Netherlands: Elsevier, 2006. [Online].
Available: http://www.sciencedirect.
com/science/bookseries/15746526/2

[92] T. Achterberg, T. Berthold, T. Koch, and K. Wolter,

“Constraint integer programming: A new
approach to integrate CP and MIP,” in Integration

of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization

Problems, L. Perron and M. A. Trick, Eds. Berlin,
Germany: Springer, 2008, pp. 6–20.

[93] A. Schrijver, Theory of Linear and Integer

Programming. Hoboken, NJ, USA: Wiley, 1998.
[94] D. Bertsimas and J. Tsitsiklis, Introduction to

Linear Optimization, 1st ed. Belmont, MA, USA:
Athena Scientific, 1997.

[95] G. Rinaldi and L. A. Wolsey, “Integer programming
and combinatorial optimization,” in Proc. IPCO,
vol. 3, 1993.

[96] C. Zeidler, C. Lutteroth, and G. Weber, “Constraint
solving for beautiful user interfaces: How solving
strategies support layout aesthetics,” in Proc. 13th

Int. Conf. NZ Chapter ACM’s Special Interest

Group Human-Comput. Interact., 2012,
pp. 72–79.

[97] A. Borning, R. Lin, and K. Marriott, “Constraints
for the Web,” in Proc. 5th ACM Int. Conf.

Multimedia, 1997, pp. 173–182.
[98] A. Oulasvirta and A. Karrenbauer, “Combinatorial

optimization for user interface design,” in
Computational Interaction. Oxford, U.K.: Oxford
Univ. Press, 2018.

[99] A. Caprara, P. Toth, and M. Fischetti, “Algorithms
for the set covering problem,” Ann. Oper. Res.,
vol. 98, no. 1, pp. 353–371, Dec. 2000,
doi: 10.1023/A:1019225027893.

[100] D. Moshkovitz, “The projection games conjecture
and the NP-hardness of LN N-approximating
set-cover,” Theory Comput., vol. 11, pp. 221–235,
Aug. 2015.

[101] N. Alon, U. Feige, A. Wigderson, and
D. Zuckerman, “Derandomized graph products,”
Comput. Complex., vol. 5, no. 1, pp. 60–75,
Mar. 1995, doi: 10.1007/bf01277956.

[102] T. Schiavinotto and T. Stützle, “The linear
ordering problem: Instances, search space analysis
and algorithms,” J. Math. Model. Algorithms,
vol. 3, no. 4, pp. 367–402, 2004,
doi: 10.1023/b:jmma.0000049426.06305.d8.

[103] S. Arora, “Polynomial time approximation
schemes for Euclidean TSP and other geometric
problems,” in Proc. 37th Conf. Found. Comput. Sci.,
Oct. 1996, pp. 2–11.

[104] L. Engebretsen and M. Karpinski, “Approximation
hardness of TSP with bounded metrics,” in
Automata, Languages and Programming, F. Orejas,
P. G. Spirakis, and J. van Leeuwen, Eds. Berlin,
Germany: Springer, 2001, pp. 201–212.

[105] J. Munkres, “Algorithms for the assignment and
transportation problems,” J. Soc. Ind. Appl. Math.,
vol. 5, no. 1, pp. 32–38, 1957.

[106] R. Duan and H.-H. Su, “A scaling algorithm for
maximum weight matching in bipartite graphs,”
in Proc. 23rd Annu. ACM-SIAM Symp. Discrete

Algorithms. Philadelphia, PA, USA: SIAM, 2012,
pp. 1413–1424.

[107] T. Koopmans and M. J. Beckmann, “Assignment
problems and the location of economic activities,”
Cowles Found. Res. Econ., Yale Univ., New Haven,
CT, USA, Cowles Found. Discuss. Papers 4, 1955.

[108] M. Queyranne, “Performance ratio of polynomial
heuristics for triangle inequality quadratic
assignment problems,” Oper. Res. Lett., vol. 4,
no. 5, pp. 231–234, Feb. 1986.

[109] P. C. Gilmore, “Optimal and suboptimal algorithms
for the quadratic assignment problem,” SIAM J.

Appl. Math., vol. 10, pp. 305–313, Jun. 1962.
[110] E. L. Lawler, “The quadratic assignment problem,”

Manage. Sci., vol. 9, no. 4, pp. 586–599, 1963.
[111] L. Kaufman and F. Broeckx, “An algorithm for the

quadratic assignment problem using benders’
decomposition,” Eur. J. Oper. Res., vol. 2, no. 3,
pp. 204–211, 1978.

[112] F. Rendl, G. Rinaldi, and A. Wiegele, “Solving
max-cut to optimality by intersecting semidefinite
and polyhedral relaxations,” Math. Program.,
vol. 121, no. 2, pp. 307–335, Feb. 2010.

[113] J. Povh and F. Rendl, “Copositive and semidefinite
relaxations of the quadratic assignment problem,”
Discrete Optim., vol. 6, no. 3, pp. 231–241,
Aug. 2009.

462 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

http://dx.doi.org/10.1145/73660.73670
http://dx.doi.org/10.1145/169059.169335
http://dx.doi.org/10.1145/170088.170166
http://dx.doi.org/10.1145/1166253.1166298
http://dx.doi.org/10.1007/s10479-015-2019-x
http://dx.doi.org/10.1023/A:1019225027893
http://dx.doi.org/10.1007/bf01277956
http://dx.doi.org/10.1023/b:jmma.0000049426.06305.d8

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

[114] Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz,
“Semidefinite programming relaxations for the
quadratic assignment problem,” J. Combinat.

Optim., vol. 2, no. 1, pp. 71–109, 1998.
[115] M. John and A. Karrenbauer, “A novel SDP

relaxation for the quadratic assignment problem
using cut pseudo bases,” in Proc. Int. Symp.

Combinat. Optim., 2016, pp. 414–425.
[116] C. W. Commander, “A survey of the quadratic

assignment problem, with applications,” Morehead

Electron. J. Applicable Math., vol. 4, no. 4,
pp. 1–15, 2005, Paper MATH-2005-01.

[117] E. M. Loiola, N. M. M. de Abreu,
P. O. Boaventura-Netto, P. Hahn, and T. Querido,
“A survey for the quadratic assignment problem,”
Eur. J. Oper. Res., vol. 176, no. 2, pp. 657–690,
2007.

[118] A. Caprara and M. Monaci, “On the
two-dimensional knapsack problem,” Oper. Res.

Lett., vol. 32, no. 1, pp. 5–14, 2004. [Online].
Available: http://www.sciencedirect.
com/science/article/pii/S0167637703000579

[119] K. Jansen, “A fast approximation scheme for the
multiple knapsack problem,” in Proc. Theory Pract.

Comput. Sci. (SOFSEM), M. Bieliková,
G. Friedrich, G. Gottlob, S. Katzenbeisser, and
G. Turán, Eds. Berlin, Germany: Springer, 2012,
pp. 313–324.

[120] S. Heydrich and A. Wiese, “Faster approximation
schemes for the two-dimensional knapsack
problem,” in Proc. 28th Annu. ACM-SIAM Symp.

Discrete Algorithms (SODA), Philadelphia, PA,
USA: Society for Industrial and Applied
Mathematics, 2017, pp. 79–98. [Online].
Available: http://dl.acm.org/citation.
cfm?id=3039686.3039692

[121] B. Lee, S. Kim, A. Oulasvirta, J.-I. Lee, and E. Park,
“Moving target selection: A cue integration
model,” in Proc. Conf. Human Factors Comput.

Syst. (CHI), 2018, p. 230.
[122] S. Sridhar, A. M. Feit, C. Theobalt, and

A. Oulasvirta, “Investigating the dexterity of
multi-finger input for mid-air text entry,” in Proc.

33rd Annu. ACM Conf. Human Factors Comput.

Syst., 2015, pp. 3643–3652.
[123] M. Bachynskyi, G. Palmas, A. Oulasvirta, and

T. Weinkauf, “Informing the design of novel input
methods with muscle coactivation clustering,”
ACM Trans. Comput.-Human Interact., vol. 21,
no. 6, pp. 1–25, Jan. 2015.

[124] J. Accot and S. Zhai, “Refining Fitts’ law models
for bivariate pointing,” in Proc. SIGCHI Conf.

Human Factors Comput. Syst., 2003, pp. 193–200.
[125] K. Gajos and D. S. Weld, “Preference elicitation for

interface optimization,” in Proc. 18th Annu. ACM

Symp. Interface Softw. Technol., 2005,
pp. 173–182.

[126] J. Nielsen and R. Molich, “Heuristic evaluation of
user interfaces,” in Proc. SIGCHI Conf. Human

Factors Comput. Syst., 1990, pp. 249–256.
[127] S. Lok, S. Feiner, and G. Ngai, “Evaluation of

visual balance for automated layout,” in Proc. 9th

Int. Conf. Intell. Interfaces (IUI), New York, NY,
USA, 2004, pp. 101–108,
doi: 10.1145/964442.964462.

[128] C. Ling and G. Salvendy, “Extension of heuristic
evaluation method: A review and reappraisal,”
Ergonomia IJE & HF, vol. 27, no. 3, pp. 179–197,
2005.

[129] J. Tidwell, Designing Interfaces: Patterns for

Effective Interaction Design. Newton, MA, USA:
O’Reilly Media, 2010.

[130] R. Y. Gómez, D. C. Caballero, and J.-L. Sevillano,
“Heuristic evaluation on mobile interfaces: A new
checklist,” Sci. World J., vol. 2014, pp. 1–19,
Sep. 2014.

[131] I. Khaddam, S. Bouzit, G. Calvary, and D. Chêne,
“Menuergo: Computer-aided design of menus by
automated guideline review,” in Proc. Actes 28th

Conf. Francophone Interact. Homme-Mach., 2016,
pp. 36–47.

[132] F. Paz, F. A. Paz, D. Villanueva, and
J. A. Pow-Sang, “Heuristic evaluation as a
complement to usability testing: A case study in
Web domain,” in Proc. 12th Int. Conf. Inf.

Technol.-New Generat. (ITNG), 2015, pp. 546–551.
[133] A. Cockburn and C. Gutwin, “A predictive model

of human performance with scrolling and
hierarchical lists,” Human-Comput. Interact.,
vol. 24, no. 3, pp. 273–314, Jul. 2009.

[134] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and
Y.-Q. Xu, “Color harmonization,” ACM Trans.

Graph., vol. 25, no. 3, pp. 624–630, 2006.
[135] Z. Bylinskii et al., “Learning visual importance for

graphic designs and data visualizations,” in Proc.

30th Annu. ACM Symp. Interface Softw. Technol.,
2017, pp. 57–69.

[136] A. Oulasvirta et al., “Aalto interface metrics (AIM):
A service and codebase for computational GUI
evaluation,” in Proc. 31st Annu. ACM Symp.

Interface Softw. Technol. Adjunct, 2018, pp. 16–19.
[137] D. E. Kieras and A. J. Hornof, “Towards accurate

and practical predictive models of
active-vision-based visual search,” in Proc. SIGCHI

Conf. Human Factors Comput. Syst., 2014,
pp. 3875–3884.

[138] K. Leino, A. Oulasvirta, and M. Kurimo, “RL-KLM:
Automating keystroke-level modeling with
reinforcement learning,” in Proc. 24rd Int. Conf.

Intell. Interfaces, 2019, pp. 476–480.
[139] J. Orlin, “A faster strongly polynomial minimum

cost flow algorithm,” in Proc. 20th Annu. ACM

Symp. Theory Comput. (STOC), New York, NY,
USA, 1988, pp. 377–387,
doi: 10.1145/62212.62249.

[140] L. F. Laursen et al., “Icon set selection via human
computation,” in Proc. Pacific Graph. Short Papers,
Goslar, Germany, 2016, pp. 1–6.

[141] S. Matsui and S. Yamada, “Genetic algorithm can
optimize hierarchical menus,” in Proc. SIGCHI

Conf. Human Factors Comput. Syst. (CHI), New
York, NY, USA, 2008, pp. 1385–1388,
doi: 10.1145/1357054.1357271.

[142] S. Matsui and S. Yamada, “Optimizing hierarchical
menus by genetic algorithm and simulated
annealing,” in Proc. 10th Annu. Conf. Genetic Evol.

Comput. (GECCO), New York, NY, USA, 2008,
pp. 1587–1594, doi: 10.1145/1389095.1389397.

[143] P. Pirolli and S. Card, “Information foraging,”
Psychol. Rev., vol. 106, no. 4, p. 643, 1999.

[144] R. Kennard and R. Steele, “Application of software
mining to automatic user interface generation,” in
Proc. Int. Conf. Softw. Methods Tools. Amsterdam,
The Netherlands: IOS Press, 2008.

[145] R. Kumar et al., “Webzeitgeist: Design mining the
Web,” in Proc. SIGCHI Conf. Human Factors

Comput. Syst., 2013, pp. 3083–3092.
[146] J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman,

and R. Měch, “Learning design patterns with
Bayesian grammar induction,” in Proc. 25th Annu.

ACM Symp. User Interface Softw. Technol.,
New York, NY, USA, Oct. 2012, pp. 63–74,
doi: 10.1145/2380116.2380127.

[147] H.-G. Beyer and B. Sendhoff, “Robust
optimization—A comprehensive survey,” Comput.

Methods Appl. Mech. Eng., vol. 196, nos. 33–34,
pp. 3190–3218, 2007.

[148] B. L. Gorissen, İ. Yanikoǧlu, and D. den Hertog,
“A practical guide to robust optimization,” Omega,
vol. 53, pp. 124–137, Jun. 2015. [Online].
Available: http://www.sciencedirect.com/
science/article/pii/S0305048314001698

[149] N. V. Sahinidis, “Optimization under uncertainty:
State-of-the-art and opportunities,” Comput.

Chem. Eng., vol. 28, no. 6, pp. 971–983,
Jun. 2004. [Online]. Available:
http://www.sciencedirect.com/
science/article/pii/S0098135403002369

[150] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams,
and N. De Freitas, “Taking the human out of the
loop: A review of Bayesian optimization,” Proc.

IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016.

[151] Y. Koyama and T. Igarashi, “Computational design
with crowds,” Comput. Interact., vol. 9849, p. 153,
Jan. 2018.

[152] A. Kangasrääsiö, K. Athukorala, A. Howes,
J. Corander, S. Kaski, and A. Oulasvirta, “Inferring
cognitive models from data using approximate
Bayesian computation,” in Proc. Conf. Human

Factors Comput. Syst. (CHI), 2017, pp. 1295–1306.
[153] R. T. Marler and J. S. Arora, “Survey of

multi-objective optimization methods for
engineering,” Struct. Multidisciplinary Optim.,
vol. 26, no. 6, pp. 369–395, 2004.

[154] F. Hillier and G. Lieberman, Introduction to

Operations Research (Introduction to Operations
Research), vol. 1. New York, NY, USA:
McGraw-Hill, 2001. [Online]. Available:
https://books.google.it/books?id=
OEhUDQEACAAJ

[155] M. Kaisa, Nonlinear Multiobjective Optimization

(International Series in Operations Research &
Management Science), vol. 12. Boston, MA, USA:
Kluwer, 1999.

[156] K.-L. Du et al., Search and Optimization By

Metaheuristics. Cambridge, MA, USA: Birkhaüser,
2016.

[157] E.-G. Talbi, Metaheuristics: From Design to

Implementation, vol. 74. Hoboken, NJ, USA: Wiley,
2009.

[158] S. Chand and M. Wagner, “Evolutionary
many-objective optimization: A quick-start guide,”
Surv. Oper. Res. Manage. Sci., vol. 20, no. 2,
pp. 35–42, Dec. 2015.

[159] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan,
“A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[160] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2:
Improving the strength Pareto evolutionary
algorithm,” Dept. Elect. Eng., Swiss Federal Inst.
Technol., Zurich, Switzerland, Tech. Rep. 103,
2001.

[161] G. W. Klau, N. Lesh, J. Marks, M. Mitzenmacher,
and G. T. Schafer, “The hugs platform: A toolkit
for interactive optimization,” in Proc. Work. Conf.

Adv. Vis. Interfaces, 2002, pp. 324–330.
[162] D. Meignan, S. Knust, J.-M. Frayret, G. Pesant,

and N. Gaud, “A review and taxonomy of
interactive optimization methods in operations
research,” ACM Trans. Interact. Intell. Syst., vol. 5,
no. 3, p. 17, 2015.

[163] A. Swearngin, A. J. Ko, and J. Fogarty, “Scout:
Mixed-initiative exploration of design variations
through high-level design constraints,” in Proc.

31st Annu. ACM Symp. Interface Softw. Technol.

Adjunct (UIST), New York, NY, USA, 2018,
pp. 134–136, doi: 10.1145/3266037.3271626.

[164] M. R. Frank and J. D. Foley, “Model-based user
interface design by example and by interview,” in
Proc. 6th Annu. ACM Symp. Interface Softw.

Technol. (UIST), New York, NY, USA, 1993,
pp. 129–137, doi: 10.1145/168642.168655.

[165] B. Lee, S. Srivastava, R. Kumar, R. Brafman, and
S. R. Klemmer, “Designing with interactive
example galleries,” in Proc. SIGCHI Conf. Human

Factors Comput. Syst., 2010, pp. 2257–2266.
[166] J. C. Quiroz, S. J. Louis, and S. M. Dascalu,

“Interactive evolution of XUL user interfaces,” in
Proc. 9th Annu. Conf. Genetic Evol. Comput.

(GECCO), New York, NY, USA, 2007,
pp. 2151–2158, doi: 10.1145/1276958.1277373.

[167] W. L. P. Wong and D. F. Radcliffe, “The tacit nature
of design knowledge,” Technol. Anal. Strategic

Manage., vol. 12, no. 4, pp. 493–512, 2000,
doi: 10.1080/713698497.

[168] M. R. Garey and D. S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-

Completeness. New York, NY, USA: Freeman, 1991.
[169] J. Nielsen, Usability Engineering. Amsterdam,

The Netherlands: Elsevier, 1994.
[170] N. Cross and R. Roy, Engineering Design Methods,

vol. 4. New York, NY, USA: Wiley, 1989.

Vol. 108, No. 3, March 2020 | PROCEEDINGS OF THE IEEE 463

http://dx.doi.org/10.1145/964442.964462
http://dx.doi.org/10.1145/62212.62249
http://dx.doi.org/10.1145/1357054.1357271
http://dx.doi.org/10.1145/1389095.1389397
http://dx.doi.org/10.1145/2380116.2380127
http://dx.doi.org/10.1145/3266037.3271626
http://dx.doi.org/10.1145/168642.168655
http://dx.doi.org/10.1145/1276958.1277373
http://dx.doi.org/10.1080/713698497

Oulasvirta et al.: Combinatorial Optimization of Graphical User Interface Designs

A B O U T T H E A U T H O R S

Antti Oulasvirta received the Ph.D. degree in cognitive science

from the University of Helsinki, Helsinki, Finland, in 2006.

He leads the User Interfaces Research Group, School of Elec-

trical Engineering, Aalto University, Espoo, Finland, and leads the

Interactive Artificial Intelligence Research Program at the Finnish

Center for AI FCAI. His research interests include computational

design and cognitive modeling.

Niraj Ramesh Dayama received the Ph.D. degree in operations

research (OR) from the IIT Bombay, Mumbai, India, in 2014.

He is currently a Postdoctoral Researcher with the User Inter-

faces Research Group, Aalto University, Espoo, Finland. Besides this

research background, he has been a Software Delivery Manager

and an IT Consultant. His research interests include mathematical

modeling and combinatorial optimization.

Morteza Shiripour is working toward the Ph.D. degree at Aalto

University, Espoo, Finland.

He is currently working on the graphical layout optimization.

His main research interests are focused on applying mathematical

modeling, developing exact, and metaheuristic algorithms.

Maximilian John is working toward the Ph.D. degree at the Max

Planck Institute for Informatics, Saarbrücken, Germany, and Saar-

land University, Saarbrücken.

His research focuses on integer programming.

Andreas Karrenbauer received the Ph.D. degree in computer

science from Saarland University, Saarbrücken, Germany, in 2007.

He was a Postdoctoral at École polytechnique fédérale de

Lausanne (EPFL), Lausanne, Switzerland, from 2008 to 2010,

before moving to the University of Konstanz, Konstanz, Germany,

to become a Research Fellow and a Research Group Leader. He has

been a Senior Researcher with the Algorithms and Complexity

Department, Max Planck Institute for Informatics, Saarbrücken,

since 2013. His research interest is in the area of mathematical

optimization.

464 PROCEEDINGS OF THE IEEE | Vol. 108, No. 3, March 2020

