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ABSTRACT

COMBINATORIAL OPTIMIZATION ON MASSIVE DATASETS:

STREAMING, DISTRIBUTED, AND MASSIVELY PARALLEL COMPUTATION

Sepehr Assadi

Sanjeev Khanna

With the emergence of massive datasets across different application domains, there is a

rapidly growing need to solve various optimization tasks over such datasets. This raises the

following fundamental question: How well can we solve a large-scale optimization problem

on massive datasets in a resource-efficient manner? The focus of this thesis is on answering

this question for various problems in different computational models for processing massive

datasets, in particular, streaming, distributed, and massively parallel computation models.

The first part of this thesis is focused on graph optimization, in which we study

several fundamental graph optimization problems including matching, vertex cover, and

connectivity. The main results in this part include a tight bound on the space complexity

of the matching problem in dynamic streams, a unifying framework for achieving algorithms

that improve the state-of-the-art for matching and vertex cover problems in all the men-

tioned models, and the first massively parallel algorithm for connectivity on sparse graphs

that improve upon the classical parallel PRAM algorithms for a large family of graphs.

In the second part of the thesis, we consider submodular optimization and in par-

ticular two canonical examples of set cover and maximum coverage problems. We establish

tight bounds on the space complexity of approximating set cover and maximum coverage

in both single- and multi-pass streams, and build on these results to address the general

problem of submodular maximization across all aforementioned models.

In the last part, we consider resource constrained optimization settings which re-

quire computation over data which is not particularly large but still imposes restrictions of

similar nature. Examples include optimization over data which can only be accessed with

limited adaptivity (e.g. in crowdsourcing applications), or corresponds to private informa-

tion of agents and is not available in an integrated form (e.g., in auction and mechanism

design applications). We use the toolkit developed in the first two parts of the thesis to

obtain several new results for such problems, significantly improving the state-of-the-art.

A common theme in this thesis is a rigorous study of problems from both an algorithmic

perspective and impossibility results. Rather than coming up with ad hoc solutions to prob-

lems at hand, the goal here is to develop general techniques for solving various large-scale

optimization problems in a unified way in different models, which in turns requires further

understanding of the limitations of known approaches for addressing these problems.
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Chapter 1

Introduction

Massive datasets abound. For instance, Google has been processing more than 20 Petabytes

of data on a day-to-day basis for nearly a decade now [115], Facebook graph has contained

more than trillion edges for quite some time [100], and in some applications, we now need

to process streams of data at a rate of Gigabytes per second [91]. The need to process

such massive datasets necessitates rethinking the task of algorithm design as the traditional

computational models do not capture these scenarios accurately. For instance, it is no longer

realistic to assume the standard random access model where the data can be accessed in an

arbitrary order and that each data access has unit cost. As a result, we are now encountering

a paradigm shift toward modern computational models that can more accurately capture

the essence of computation on massive datasets.

A salient challenge in processing massive datasets is that the entire input is orders

of magnitude larger than the amount of storage on one processor. To address this chal-

lenge, several different computational models have been introduced, each focusing on certain

additional resources needed to solve large-scale problems. Examples include the stream-

ing model, the distributed communication model, and the massively parallel computation

(MPC) model that is a common abstraction of MapReduce-style computation. The main

target resources in these models are the (internal) memory in case of streaming algorithms,

the communication in distributed algorithms, and both memory and communication, as

well as number of rounds of computation, for MPC algorithms.

This thesis we will be concerned with the theoretical challenges in solving combinato-

rial optimization problems on massive datasets. Combinatorial optimization appear in an

amazingly vast variety of domains including in computer science, operations research, data

science, economics, and numerous others. The emergence of massive datasets in recent years

has changed the nature of the optimization tasks that we are facing. Classical algorithms for

well-studied optimization problems, say maximum matching or set cover, no longer result in

efficient solutions in modern computational models. At the same time, previous notions of

“hardness” of a problem, e.g., NP-hardness, are also not necessarily a good indicator of the

complexity of a problem in these modern models, which focus primarily on resources other

than computation time. It is therefore critical to study these problems with an eye towards

modern computational models: how to design new and provably efficient algorithms for

different problems across these modern computational models? What are the barriers to

efficiency or inherent limitations to optimization in these models? What are some general

techniques applicable to a wide variety of large-scale optimization problems?

1



The research presented in this thesis stems from pursuing the above questions for two

general family of combinatorial optimization problems, namely graph optimization and sub-

modular optimization.

Massive graphs are ubiquitous. For example, both the web graph and models of the

human brain use around 1010 nodes [242]. Analyzing massive graphs via classical algorithms

can be challenging given the sheer size of these graphs. As such, there has been extensive

interest in studying graph optimization problems in different models of computation over

massive datasets. Submodular optimization also encompasses a wide variety of problems

in combinatorial optimization including set cover, maximum coverage, minimum/maximum

cut, to name a few. These problems have various applications in different areas including

in machine learning, operations research, information retrieval, data mining, and web host

analysis. As a result, submodular optimization has also received quite a lot of attention in

models of computation over massive datasets.

We describe new techniques for developing algorithms and impossibility results for

graph optimization and submodular optimization problems on massive datasets, with the

following broad consequences:

• a general algorithmic approach for graph optimization applicable to all three models

discussed above that bypasses the impossibility results known for prior techniques;

• the first MPC algorithm for a graph problem that breaks the well-known linear-

memory barrier in this model;

• the first non-trivial impossibility result for a graph or submodular optimization prob-

lem in dynamic streams that can be solved “easily” in insertion-only streams;

• a new framework for proving impossibility results for multi-round distributed algo-

rithms and multi-pass dynamic streaming algorithms.

Using these techniques we analyze a variety of central optimization problems in modern

computational models for processing massive datasets and closely related models, and obtain

improved algorithms and impossibility results for the following:

• the maximum matching problem;

• the minimum vertex cover problem;

• the graph connectivity problem in undirected graphs;

• the problem of estimating rank of a given matrix;

• the set cover problem;

• the maximum coverage problem;

2



• constrained submodular maximization;

• welfare maximization in combinatorial auctions;

• best arm identification in stochastic multi-armed bandits;

• ranking from pairwise comparisons;

A common theme in this thesis is a rigorous theoretical study of the problems from

both an algorithmic perspective and impossibility results. Rather than coming up with an

ad hoc solution to each problem at hand, the goal here is to develop general techniques

for solving large-scale optimization problems in a unified way in different computational

models. This can only be achieved by understanding the powers and limitations of current

algorithmic approaches for solving these problems to know when and why these techniques

fail and how a new approach can circumvent such limitations.

In the rest of this section, we elaborate more on our results and backgrounds. We start

by formally defining the modern computational models that we work with in this thesis in

Section 1.1. In Section 1.2, we review some of the research that has been done in this area

in the past. Section 1.3 next describes our main contributions in this thesis. A short outline

of the remainder of this thesis appears in Section 1.4.

1.1. Computational Models for Processing Massive Datasets

The three main computational models that we consider in this thesis are streaming, dis-

tributed communication, and massively parallel computation (MPC) model. We define these

models below and review some basic backgrounds about each. We then describe some of

the main connections between these models and general algorithmic approaches that are

applicable to all these models simultaneously.

1.1.1. The Streaming Model

Data streams are ubiquitous. Examples include the network traffic flowing past a router, files

read from an external memory device, or data transmitted by a satellite. The streaming

model abstracts the main algorithmic constraint when processing such data: sequential

access to data and limited working memory.

Let us start by an example. Consider a collection of large unstructured data files such as

search-engine log-files or biological data. As these files are too large to fit the main memory

of a computer, they need to be stored on external devices such as massive hard-drives. The

problem that arises is that access to data on such devices can be very slow if the data is

accessed in an arbitrary order, the common assumption of random order access in classical

algorithms. This is because while such devices have reasonable transfer rates, i.e., data can

be transferred sequentially at speed, the seek times of these devices is often prohibitively

3



large. In this setting, having a streaming algorithm that is able to process the data in these

files as a stream of sequential accesses, while using a limited working memory (that resides

on the main memory of a computer) can lead to a dramatic boost in the efficiency.

We now define the streaming model formally. For our purpose, we simply consider a

data stream as a long sequence of data items, A = 〈a1, . . . , am〉 where each data item ai

comes from some large universe U . Depending on the application, this universe U can be,

say, numerical values in some range, a collection of subsets of a known ground-set, or edges

of a graph, to mention a few. The goal is to compute a known function of the data stream,

which in the context of the examples above can be, number of distinct elements in A, a

minimum set cover of the ground-set using the sets in A, or a maximum matching in the

graph defined by A. In order to do this, the algorithms are allowed to make (preferably) one

or a few passes over the stream A, while using a limited memory which is (much) smaller

than both A and U . The algorithm outputs the solution after the last pass over the stream.

As is clear from the discussion above, the main resources of interest in streaming al-

gorithms are number of passes over the input and memory requirement or space

complexity of the algorithm. In different settings the limits on these resources vary. For

instance, in external memory applications, multiple passes over the input maybe feasible,

whereas processing the traffic flow of a router inherently requires a single-pass streaming

algorithm; additionally, in the former example, a working memory that is, say, quadrati-

cally smaller than the input size may be accommodated while in the latter application one

typically needs algorithms with space complexity exponentially smaller than the input size.

We remark that for typical optimization problems in the streaming model—the focus of

this thesis—the former setting of parameters, i.e., allowing multiple (yet small) number of

passes over the input and memory requirement which is smaller only by a polynomial factor

from the input size is the main setting of interest.

Stream order. One important facet of the streaming model is how the items are ordered

in the data stream. A common approach here is to make no assumption about the ordering

of the items arriving in data stream, a setting often referred to as adversarially-ordered

streams. However, this approach is often too pessimistic and may limit the power of algo-

rithms to the point of ruling out any non-trivial theoretical guarantees. As such, depending

on the underlying application, it is sometimes preferable to consider random order streams

in which the ordering of the m items in data stream is chosen uniformly at random from

all m! possible orderings.

Dynamic stream. The definition of data stream provided above is referred to as insertion-

only streams as the data stream is only inserting new items to the underlying instance of

the problem. Another widely studied model is dynamic streams (also referred to as turnstile
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streams) in which both insertion and deletion of items are allowed in the stream, and the

goal is to solve the problem on the final set of data items present. More formally, each entry

of the data stream is a pair (a,∆) for a ∈ U and ∆ ∈ {−,+}, and the interpretation is that

the item a is inserted to input whenever ∆ = + and is deleted otherwise. We assume that

no item is ever deleted in the stream before being inserted (a model known as strict turnstile

model). It is immediate to verify that dynamic streams is a generalization of insertion-only

streams. We study both models in this thesis.

The streaming model evolved primarily over the course of three papers [17, 179, 141]

although it has its root in several older papers [251, 253, 145]. We refer the interested reader

to a survey by Muthukrishnan [254] for more details.

1.1.2. The Distributed Communication Model

Oftentimes a massive dataset is distributed across multiple machines, which are inter-

connected by a communication network, and to process the data, the machines need jointly

compute a function defined on the union of their inputs by exchanging messages with each

other. For instance, social network graphs are usually stored on many different machines

and to answer queries such as whether the whole graph is connected, we have to synthesize

data from all the machines. The distributed communication model is a common abstrac-

tion of computation in these scenarios, focusing primarily on the amount of communication

between machines, and the number of rounds of communication (under various constraints

on what messages can be sent by each machine in each round).

We now define this model formally. Let A = (a1, . . . , am) be a collection of input data

items chosen from a universe U . As before, these items can be anything ranging from

numerical values to edges of some graph. The input A is partitioned across k machines

P (1), . . . , P (k) sometimes referred to as players. We assume additionally that there exists an

additional party, called the coordinator, who receives no input. Players can only commu-

nicate with the coordinator and not with each other directly. The addition of coordinator

is only for simplifying the model: instead of player P (i) sending a message x to player P (j)

directly, P (i) can simply send the message (x, j) to the coordinator and the coordinator can

relay this message to P (j)1. Communication happens over synchronous rounds. In each

round, all players simultaneously send a message to a central coordinator who then commu-

nicates back to all machines to guide the computation for the next round. We sometimes

refer to distributed algorithms as protocols also. We make the standard assumption that the

players in this model have access to public randomness, i.e., a shared tape of randomness

bits that they can all access.

1Note that this “simulation” increases the communication by a multiplicative factor of O(log k) which is
typically negligible.
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Similar in spirit to the assumptions made on the ordering of data streams in the stream-

ing model, here also one can make different assumptions about the partitioning of the input

across different machines. Two common assumptions are adversarial partitions, where data

items can be partitioned arbitrarily, and random partitions, where each item is sent to one

of the machines chosen uniformly at random.

The main computational resources of interest in the distributed communication model

are round complexity and communication complexity, which are respectively, the to-

tal number of communication rounds, and the total communication by players measured in

the number of bits communicated. It is easy to see that communication linear in input size

always allows for solving the problem in one round of communication. Alas, such a commu-

nication is prohibitively expensive in case of massive inputs—the focus of this thesis—and

hence in this model we are interested in protocols with (much) smaller communication

complexity than the input size.

We note that, depending on the application, different variations of the distributed

communication model we defined above have been studied in the literature (the model that

we adopt is typically referred to as the coordinator model in the literature, see, e.g. [268]).

The choice of this particular model in this thesis is tailored specifically towards large-scale

optimization on massive datasets to capture the necessity of obtaining protocols with low-

cost communication complexity that are “fast” i.e., finish the computation in a small number

of parallel rounds of communication.

1.1.3. The Massively Parallel Computation Model

For over a decade now, we have witnessed the emergence of various parallel computing

platforms such as MapReduce, Hadoop and Spark for processing massive datasets (see,

e.g. [115, 299, 309]). A key differentiating feature of these platforms from previous (theoret-

ical) models of parallel computation is that they interleave sequential and parallel computa-

tion by allowing much more local computational power and storage to processors compared

to classical settings such as PRAM. The massively parallel computation (MPC) model has

been proposed in the theory community to capture this key feature of these platforms to

allow an algorithmic approach to these platforms.

Let A = (a1, . . . , am) again be a collection of input data items chosen from some known

universe U . In the MPC model, we have p machines each with local memory s. The input

is originally partitioned across the machines in a load balanced way. It is required that

both the number of machines and the local memory of each machine to be at most m1−δ

for some constant δ > 0, and that the total memory of the system be at most Õ(m), i.e.,

proportional (within logarithmic factors) to the total input size2. The motivation behind

2We implicitly assumed that each data item from universe U can be represented by polylog(m) bits and
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these constraints is that the number of machines, and local memory of each machine should

be much smaller than the input size to the problem since these frameworks are used to

process massive datasets.

Computation in this model proceeds in synchronous rounds. During a round, each

machine runs a local algorithm on the data assigned to it. No communication between

machines is allowed during a round. Between rounds, machines are allowed to communicate

so long as each machine send or receive a communication no more than its memory. Any

data output from a machine must be computed locally from the data residing on the machine

(this data includes the previous messages received and stored by the machine as well). The

primary resource of interest in the MPC model is the total number of rounds, referred to

as the round complexity of the algorithm.

The MPC model was initially introduced by Karloff et al. [213] and was further refined

in a series of work [161, 23, 53]. In this thesis, we adopt the most stringent (as well as the

most popular) definition of this model due to Beame et al. [53].

We point out that the MPC model is a special case of the Bulk-Synchronous-Parallel

(BSP) model [294], but has the advantage of having fewer parameters. This makes algorithm

design more “coarse-grained” and streamlines the search for efficient algorithms, as evident

by the omnipresence of this model in practice.

Comparison with PRAM algorithms. Before we move on from this section, it is

imperative to compare the power of MPC algorithms with the classical parallel algorithms

in the PRAM model. It was first shown in [213] that one can simulate T steps of an EREW

PRAM algorithm by an MPC algorithm in O(T ) MPC rounds. Subsequently, it was show

in [161] how to simulate T steps of CRCW PRAM algorithms (the most general family of

PRAM) in O(T · logsM) MPC rounds where s is the per-machine memory of the MPC

algorithm and M is the total memory used by the PRAM algorithm. Finally, in [277], it is

shown that even “weak” lower bounds on the round complexity of MPC algorithms would

imply “strong” lower bounds in the PRAM model. We defer the exact technical details of

this result to later chapters but mention that this result implies that any ω(1) round lower

bound in the MPC model when machines have memory which is only polynomially smaller

than the input size would imply that NC1 ( P, a major breakthrough in complexity theory

which seems way beyond the scope of current techniques.

1.1.4. Connections Between These Models

The three models above, along with their seemingly different target resources, turn out to

be closely related. Below, we describe some of the obvious and not-so-obvious connections

hence the input size is Õ(m) indeed. Throughout this thesis, this is always going to be the case. However,
in general, one should use the input size in the discussion above instead of the parameter m.
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between these models. We start by reviewing some general algorithmic techniques that tar-

get all these models simultaneously and then present some results that extend impossibility

results in one model to another ones.

General Techniques for One Round/Pass Algorithms

A basic and abstract algorithmic approach to large-scale optimization is as follows: partition

the data into multiple pieces, compute a representation or a summary of each piece, merge

the summaries together and recover the solution from the merge without further accessing

the original input. The main (and the most non-trivial) step in this approach is the second

one that constructs representations that are on one hand “small” and on the other hand

“mergeable” and allow for recovering an approximate solution to the original problem. One

can implement this idea in each of the models above to obtain efficient algorithms:

• Distributed communication model: The data is already partitioned into multiple pieces

in this model. Each machine can thus compute a small and mergeable representation

of its input and send it to the coordinator. The coordinator can then merge these

summaries and recover the solution from them. It is immediate that the communica-

tion complexity of this protocol is proportional to size of the representations and that

this protocol is round optimal, i.e., only requires one round of communication.

• MPC model: The idea here is quite the same as above. By partitioning the data

into multiple pieces, we can ensure that each piece would fit the small memory of

each machine, and by ensuring the size of representations are small, we can fit all the

representations on a single machine and solve the problem.

• Streaming model: The application to streaming is slightly more subtle but still quite

simple. This time, we partition consecutive parts of an insertion-only stream into

multiple pieces. Next, we read one piece of the stream at a time and store it entirely

in the memory and then compute its representation. After that we store this repre-

sentation in the memory and discard the stored piece of stream and read the next

one. As a result, the memory requirement of this algorithm is proportional to size of

one piece of the stream, and the total size of small representations.

We point out that a key feature of this approach is that it can be implemented with a

minimal number of rounds or passes, i.e., only one, in the aforementioned models.

Two particularly successful techniques for designing small and mergeable represen-

tations in above strategy are linear sketches and composable coresets. Linear sketching

technique corresponds to taking a linear projection of the input data as its representative

summary. The “linearity” of the sketches is then used to obtain a sketch of the combined

pieces from which the final solution can be extracted. Coresets on the other hand are sub-
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sets of the input that suitably preserve properties of the input data, and they are said to

be composable if the union of coresets for each input piece yields a coreset for the union of

the pieces. We now define each technique in more detail.

Linear sketches. Let A = (a1, . . . , am) be a collection of items from a universe U with

size n. The frequency vector of A is an n-dimensional vector fA ∈ Nn where the i-th entry

denotes the number of times the i-th item of U appears in A. Let M ∈ Rd×n be a matrix

(possibly chosen randomly). Then, the d-dimensional matrix M ·fA is called a linear sketch

of fA (or A). The goal is to design a distribution over matrices M such that the solution

to a particular problem on A, say the number of distinct elements in A, can be recovered

from the linear sketch M · fA with no further access to A. It is easy to see that by setting

M to be the n× n identity matrix this task can be done trivially. However, linear sketches

are interesting when the parameter d, i.e., the number of rows of the sketching matrix M is

much smaller than n, and hence the resulting sketch is much smaller than fA (throughout,

we always assume that the bit-representation of entries of M are O(log n)).

The approach explained earlier in this section can be used to obtain efficient distributed

communication, MPC algorithms, and streaming algorithms using linear sketches. However,

one can in fact use linear sketches in a more clever way to obtain even more efficient

streaming algorithms in the most general variant of the model, i.e., dynamic streams. The

algorithm picks a sketching matrixM at the beginning of the stream and upon any incoming

update (ai,∆i) of the dynamic stream, the linear sketch is updated toM ·fi =M ·fi−1+∆ ·
M ·1a where fi is the frequency vector of the underlying input at this point, fi−1 is the one

before receiving the i-th update, and 1a is an n-dimensional vector which is only one for the

entry corresponding to item a ∈ U . This way, the algorithm can maintain a linear sketch of

the underlying input and at the end of the stream use it to solve the problem. The memory

requirement of this algorithm is O(d) to store the linear sketch plus the space needed to

(implicitly) store the matrix M—typically much smaller by a careful careful choice of the

sketching matrix with limited independence).

We refer the interested reader to surveys by McGregor [242] and Woodruff [301] for

further applications of linear sketches and more details.

Composable coresets. Composable coresets were first introduced by Indyk et al. [186].

Let U be a universe of n items. We say that an algorithm ALG outputs a composable

coreset for some fixed optimization problem, if given any A ⊆ U , ALG outputs a subset

ALG(A) ⊆ A in a way that for any collection A1, . . . , Ak of subsets of U , the optimal

solution on ALG(A1) ∪ . . . ∪ ALG(Ak) is (approximately) equal to the optimal solution on

A1 ∪ . . . ∪ Ak. Intuitively speaking, this means that the ALG(A) preserves the optimal

solution in A, i.e., is a “coreset”, and that ALG(A) ∪ ALG(B) is as (almost) as good as
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ALG(A ∪B), i.e., is “composable”. A trivial composable coreset would be to store A as its

coreset, however, similar to linear sketches (and all other representations), the interesting

case is when the size of coreset is much smaller than the size of the original input.

Let us give an example of a composable coreset in the context of graph optimization

problems for the minimum spanning tree problem. We define ALG as an algorithm that given

any graph G(V,E), outputs an arbitrarily minimum spanning tree of G as ALG(G). We

argue that ALG indeed outputs a composable coreset for the minimum spanning tree problem

that allows for recovering an exact optimum solution. Consider ALG(G1)∪ . . .∪ALG(Gk) for
any collection of k graphs G1, . . . , Gk on the same set of vertices and let G := G1∪ . . .∪Gk.
A minimum spanning tree of G can be found using only the edges in ALG(G1)∪. . .∪ALG(Gk)
by picking any arbitrary minimum spanning tree of this subgraph of G (this can be proven

easily by, for example, by considering the execution of the Kruskal’s algorithm on G and

noticing that it never needs any edge outside the union of the coresets). We point out that

various other fundamental graph problems such as connectivity, sparsifiers, and spanners

admit similar natural composable coresets.

We note that in addition to linear sketches and composable coresets, techniques such

as sampling or mergable summaries introduced by Agarwal et al. [5] are also related to the

approaches discussed in this section, but are less applicable to optimization problems.

General Techniques for Multi-Round/Pass Algorithms

One can extend the general approach in the previous part to multi-round/pass algorithms

in all the three models discussed in this thesis. The high-level idea is, instead of recovering

a solution directly from the merged representations, use the representations gathered in

the first round/pass to guide our choice of the next set of representations. For example, in

the application to the distributed communication model, after receiving the representations

from all the machines, the coordinator sends back a summary of these messages to every

machine so as to guide the construction of representations for the next round.

Sample-and-prune. A more concrete instantiation of this idea is the sample-and-prune

technique of Kumar et al. [223] for implementing greedy algorithms in these three models

and its special case for graph problems, referred to as filtering, by Lattanzi et al. [225]. We

describe this technique in the distributed communication model, but extending this idea to

both MPC and streaming models is straightforward.

Consider a greedy algorithm for some problem that picks a set of items sequentially and

irrevocably in the solution (think of the greedy algorithm for finding a maximal matching

or a minimum spanning tree of a graph). The idea is to first sample a relatively large

subset of the items in the input across the machines and send them to the coordinator. The
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coordinator then run the greedy algorithm on these items to pick a partial solution and this

partial solution is shared with the machines. In the round, the machines discard all items

that no longer can be picked by the greedy algorithm given this partial solution and repeat

the sampling process again, until the coordinator is able to append its partial solutions

obtained over rounds to a complete solution. We refer the interested reader to [223] for

further details and extension of this idea to streaming and MPC models.

Adaptive linear sketching. Another widely used technique following this general ap-

proach is adaptive linear sketching. As in the previous part, we describe this technique in

the distributed communication model while noting that extending it to MPC or streaming

algorithms is straightforward.

In this technique, the machines first jointly pick a sketching matrix M using public

randomness, and each machine P (i), sends the linear sketch M · fAi to the coordinator,

where fAi is the frequency vector of the input set Ai on this machine. This way, the

coordinator can compute M · fA for A := A1 ∪ . . .∪Ak, i.e., the linear sketch for the whole

input set (by linearity of the sketches). This sketch is then shared with all machines. The

machines then pick another sketching matrix adaptively from the distribution of matrices

conditioned on the first linear sketch. This process is repeated over multiple rounds until

the coordinator outputs the final solution. We refer the interested to [10] and [209] for some

instantiations of this technique and further details.

Connections Between Impossibility Results Across Models

One can establish many simple (but perhaps not so useful) connections between these three

models. For instance, it is easy to see that any streaming algorithm with s bits of memory

leads to a distributed algorithm with O(s · p) communication per machine (p is the number

of passes of the streaming algorithm) and the total number of rounds equal to p times the

number of machines. We leave establishing similar-in-spirit connections between streaming

and MPC algorithms or between distributed protocols and MPC algorithms as an exercise.

However, there are also many more intricate connections between these models. Most

related to the topics in this thesis, are two amazing results by Li et al. [230] and Ai et

al. [14] that present a characterization of dynamic streaming algorithms in terms of linear

sketches and prove that any dynamic streaming algorithm with space s can be transformed

into a distributed protocol with O(s · p) communication per machine (p is the number of

passes of the streaming algorithm) and the same exact number of rounds as the number of

passes of the dynamic streaming algorithm. The transformation of the streaming algorithm

is quite non-trivial and computationally expensive and so this result may not be considered

as a useful algorithmic approach for transferring the algorithms from dynamic streaming

model to distributed setting. However, an extremely useful implication of this result is that
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impossibility results in the distributed communication model also imply impossibility results

in the dynamic streaming model. This is a highly non-trivial fact and can be exploited to

prove impossibility results in the dynamic streaming model which are not achievable by

previous techniques. We use this direction of these results in multiple places in this thesis.

Finally, by the remark made at the end of Section 1.1.3, achieving similar connection for

establishing impossibility results in the MPC model seems quite unlikely.

1.2. Overview of the Previous Research

Designing algorithms for optimization problems on modern computational models for pro-

cessing massive datasets has been a highly active area of research for more than a decade

now. In what follows, we give a brief overview of the research that has been done in this

area. In subsequent sections and chapters, we shall go into further detail about some of

the work that is directly relevant to the results presented in this thesis. We emphasize that

what follows is by no means a comprehensive list of all results in this area. We further point

out due to different connections between these models discussed in Section 1.1.4, many of

the results in one model can be translated to the other models as well and hence we may

not explicitly repeat these results again for each model.

1.2.1. Streaming Algorithms

Traditionally, the main focus in the streaming model was on numerical estimation problems

such as frequency moment estimations, quantiles, heavy hitters, and many others, and this

still remains an active area of research in this model (we refer the reader to [254] for a survey

of initial results). However, in the last decade or so, extensive attention in the streaming

model have been dedicated to optimization problems as well.

Graph problems have been considered in the streaming model starting from one of

the earliest papers in this model by Henzinger et al. [179] (see also [45]). This trend

got momentum by a paper of Feigenbaum et al. [139] that identified a “sweet-spot” for

streaming algorithms for processing graphs, the so-called semi-streaming algorithms. These

are algorithms that on an n-vertex graph are allowed to use n · polylog(n) memory, which

is quadratically smaller than the input size when the graph is dense, i.e., has Ω(n2) edges.

Feigenbaum et al. [139] showed that most graph problems including connectivity, minimum

spanning tree, matching, etc., require Ω(n) space and that some of these problems can

also be also solved or approximated in n ·polylog(n) memory, hence justifying this choice of

parameters. Since then, numerous graph problems have been studied in the streaming model

including connectivity and minimum spanning tree [139], shortest path and diameter [140,

170], maximum matchings [139, 241, 125, 221, 160, 204, 267, 198], minimum and maximum

cuts [310, 206, 207], sparsification [7, 217], spanners [127, 48, 126], maximum independent

sets and cliques [171, 172], subgraph counting [45, 82, 202, 77, 246], random walks [282], and
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many more. We refer the reader to these papers and references therein for more information.

The results mentioned above all targeted insertion-only streams. The next wave of

results started with two papers by Ahn, Guha, and McGregor [11, 12] that introduced for

the first time the idea of graph sketching, i.e., linear sketches for graph problems. This

resulted in a flurry of results extending previous algorithms in insertion-only streams to

dynamic graph streams (recall that linear sketches immediately imply efficient streaming

algorithms for dynamic streams); see, e.g. [11, 12, 13, 209, 208, 102, 61, 169, 243, 182] and

references therein for dynamic streaming algorithms for a wide range of problems such as

connectivity, minimum spanning tree, sparsification, spanners, subgraph counting, etc.

Different problems in the family of submodular optimization have also been studied

extensively in the streaming model. For instance, Saha and Getoor initiated the study of

the set cover problem in the streaming model [281] which evolved into an active area of

research [281, 108, 128, 116, 187, 174, 90, 50]. Another widely studied set of problems

is submodular maximization under various constraints such as cardinality, matroids, p-

systems, etc; see, e.g. [223, 87, 40, 93, 129, 247] and references therein.

1.2.2. Distributed Communication Algorithms

The distributed communication model presented in Section 1.1.2 has been studied exten-

sively in recent years (see, e.g., [268, 67, 302, 303, 304, 183], and references therein). Tradi-

tionally, the focus in this model has been on optimizing the communication cost and round

complexity issues have been typically ignored. However, in recent years, motivated by ap-

plication to big data analysis, there have been growing interest in studying round efficient

protocols in this model as well (see, e.g., [11, 12, 209, 186, 165, 249, 112, 166]).

Both graph optimization and submodular optimization problems have been studied

considerably in the distributed communication model. For instance, it was shown in [268]

and [183] that solving connectivity problem or even a weak polylog(n)-approximation to

matching, respectively, requires Ω(nk/polylog(n)) communication regardless of number of

rounds (n is the number of vertices in the graph and k is the number of machines). Another

example is the results of [186, 249, 112] for constrained submodular maximization.

It is also worth mentioning that while strong tools and techniques are developed for

proving communication complexity lower bounds in this model (see, e.g. [268, 302, 67]

and references therein), not much progress is made in the literature toward proving round

complexity lower bounds in this model. On this front, Alon et al. [19] proved lower bounds

for the bipartite matching problem in the setting where each machine receives the edges

incident on a single vertex in the left side of the graph (this is related to the welfare

maximization problem in unit-demand auctions which we elaborate more on in Section 1.3

and subsequently in Chapter 9). This lower bound was improved by Braverman and Oshman
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in [73] to obtain tight bounds. However, these results focus on the regime of communication

complexity ≪ n per machine (where n is the number of vertices in the graph) and are not

applicable to the setting of parameters we consider for optimization on massive graphs

in which we allow at least Ω(n) communication per machine and are hence interested in

super-linear in n communication lower bounds. As was nicely pointed out by Guruswami

and Onak [170], proving super-linear lower bounds requires embedding a difficult problem

into the “space of edges” as opposed to the “space of vertices”, which turns out to be a

much more difficult task in many cases.

1.2.3. Massively Parallel Algorithms

As stated in Section 1.1.3, classical parallel algorithms for the PRAM model typically give

rise to MPC algorithms without incurring any asymptotic blow up in the number of rounds.

As such, one can readily translate the large body of work on PRAM algorithms to the MPC

model. The interesting question here is then to exploit the additional power of the MPC

model (more local storage and computational power) over PRAM to achieve algorithms

with much smaller number of rounds than the ones “inherited” from the PRAM model.

The first such improvement over PRAM algorithms in context of graph optimization

was achieved by Karloff et al. [213] who developed algorithms for graph connectivity and

minimum spanning tree in O(1) MPC rounds on machines with local memory n1+Ω(1) (n

is the number of vertices in the graph). This improves upon the Ω(log n) rounds needed in

PRAM model (and their direct MPC simulation) for these problems. Since then, numerous

algorithms have been designed for various graph optimization problems including matching

and vertex cover, minimum cut, densest subgraph, etc., that achieve O(1) round complexity

with n1+Ω(1) per machine memory (see, e.g., [225, 223, 11, 9, 42] and references therein).

The next set of improvements reduced the memory per machine to O(n) (possibly at the

cost of a slight increase in the number of rounds). For example, an O(1) round algorithm for

connectivity and minimum spanning tree using only O(n) memory per machine has been

proposed in [197] building on previous work in [156, 178, 235] (see also [11, 55, 228] for

further related results). A very recent result of [111], have also achieved an O((log log n)2)-

round algorithm for the maximum matching problem when the memory per machine is

O(n) or even n/(log log n)O(log log (n).

Alas, this progress has came to a halt at the truly sublinear in n regime, i.e., n1−Ω(1)

space per-machine. This setting of parameter is particularly relevant to sparse graphs with

O(n) edges, as in this scenario, Ω(n) memory per-machine allows to fit the entire input on

a single machine, thereby trivializing the problem.

Submodular optimization and in particular constrained submodular maximization have

also been extensively studied in the MPC model [99, 63, 223, 250, 186, 249, 112, 113]. For
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instance, Kumar et al. [223] developed a method to implement the greedy algorithms for

constrained submodular maximization in O(logm) MPC rounds on machines of memory

mΩ(1) where m is the number of items in the input. This was subsequently improved dra-

matically by [113] to O(1) MPC rounds and asymptotically the same memory per machine.

Another line of research also considered achieving algorithms with small approximation ratio

for constrained submodular maximization and its special cases such as maximum coverage,

in a very small number of rounds, i.e., in only one or two MPC rounds [186, 249, 112].

Finally, as pointed out already in Section 1.1.3, proving round complexity lower bounds

in the MPC model turns out to be a challenging task (see, e.g., [277] for implication of

such lower bounds to long standing open problems in complexity theory). As a result, most

previous work on lower bounds concerns either communication complexity in a fixed number

of rounds or specific classes of algorithms (for round lower bounds); see, e.g., [3, 53, 269, 189]

(see also [277] for more details).

1.3. Our Main Contributions

We now presents our main contributions in this thesis and the background for each one.

We start by presenting our results for graph optimization. Tables 1 and 2 contain,

respectively, a summary of our algorithms and impossibility results in this part.

Chapter 3 – Maximum Matching in the Streaming Model. We saw in Section 1.2.1

that for nearly all graph problems studied in insertion-only streams, researchers were able to

subsequently obtain algorithms with similar guarantees in the dynamic streaming model as

well. A curious omission from the list of successes was the prominent problem of maximum

matching in single-pass dynamic streams. This was quite surprising given that matching is

one of the most studied problems in the graph streaming literature. Achieving algorithms

for the matching problem in dynamic streams was a main open problem in this area (for

example, it featured prominently in “List of Open Problems in Sublinear Algorithms” [59]).

In this thesis, we fully settle the space complexity of the maximum matching problem

in single-pass dynamic streams. As a corollary of this result, we obtain that any single-pass

dynamic streaming algorithm that achieves even a weak approximation ratio of no(1) to the

maximum matching problem requires n2−o(1) space (here n is the number of vertices in the

graph). This is the first lower bound on the space complexity of any natural graph opti-

mization problem in dynamic stream which is “easy” in insertion-only streams (maximum

matching admits a simple 2-approximation in O(n) space in insertion-only streams).

We further consider the (algorithmically easier) problem of estimating the size of a

maximum matching (as opposed to finding the actual edges) in both insertion-only and
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dynamic streams. We show that while this problem provably requires less space than finding

approximate matchings in both models, achieving a near optimal solution, i.e., a (1 + ε)-

approximation, still requires (almost) quadratic in n space. As a corollary of this result,

we also obtain that estimating the rank of a given matrix in data streams requires (almost)

quadratic space. Our results constitute the first super-linear lower bound (in number of

vertices of the graph or rows of the matrix) for both problems, addressing open questions

posed by Kapralov et al. [205] and Li and Woodruff [232].

The materials in this chapter are based on two papers, one with Sanjeev Khanna, Yang

Li, and Grigory Yaroslavtsev [35] in SODA’16, and another one with Sanjeev Khanna and

Yang Li [33] in SODA’17 (also invited to “Highlights of Algorithms” conference, HALG’17).

Chapter 4 – A Framework for Graph Optimization on Massive Graphs. Inci-

dentally, our results in [35, 33] can also rule out applicability of existing general-purpose

algorithmic approaches for designing one round/pass streaming, distributed, and MPC al-

gorithms such as linear sketching and composable coresets (discussed in Section 1.1.4) for

solving matching and the closely related vertex cover problems. This suggests that to

address these problems in a unified way in these models, new techniques are needed.

To address this issue, we develop a new framework for designing algorithms for graph

optimization problems, in particular matching and vertex cover, in the three models above.

Our main insight is that the intractability of matching and vertex cover is inherently

connected to the adversarial ordering/partitioning of the underlying graph in these mod-

els. Building on this, we propose a general approach that can achieve significantly bet-

ter algorithms for these problems under the assumption that the input is randomly or-

dered/partitioned (this assumption is not even needed for MPC algorithms).

We further use this approach to design a single unified algorithm that improves the

state-of-the-art in all the three models studied in this thesis simultaneously. For example,

in random arrival streams, our algorithm computes an (almost) 3/2-approximate matching

in a single pass with O(n1.5) space (here n is the number of vertices); this significantly

improves upon previous single-pass algorithms using subquadratic space, and is the first

result to present strong evidence of a separation between random and adversarial order for

matching. Another example is in the MPC model: Given O(n1.5) space per machine, our

algorithm computes an (almost) 3/2-approximate matching in only two MPC rounds; this

significantly improves upon all previous results with a small constant number of rounds.

This chapter is based on a paper with Sanjeev Khanna [30] in SPAA’17 (recipient of

the “best paper award”; also invited to “Highlights of Algorithms”, HALG’18) and a paper

with Hossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff Stein [29] in SODA’19.

16



Chapter 5 – Massively Parallel Algorithms for Matching and Vertex Cover

with Linear Memory Per Machine. One of the most natural and practical choice of

memory per machine in the MPC model when processing massive graphs is O(n·polylog(n)),
i.e., near-linear in the number of vertices (similar-in-spirit to restrictions in other models

such as semi-streaming). Unfortunately however, previous round-efficient algorithms in the

MPC model for most graph optimization problems, including matching and vertex cover,

all required n1+Ω(1) memory per machine. This situation was somewhat remedied very

recently by a result of Czumaj et al. [111] in STOC’18 that achieved an O((log log n)2)-

round algorithm for the maximum matching problem on machines with memory O(n),

even in fact slightly sublinear in n, i.e., O(n/polylog(n)). The authors of [111] conjectured

that the number of rounds in this result can be reduced to O(log log n) MPC rounds and

furthermore posed the question of obtaining similar algorithms for the minimum vertex

cover problem as an open problem.

We build on our techniques in the previous part to design an algorithm that achieves

an O(1)-approximation to both matching and vertex cover in only O(log log n) MPC rounds

and O(n/polylog(n)) memory per machine, hence settling the conjecture of [111] in affirma-

tive, and resolving their open question regarding vertex cover. Perhaps more importantly,

we achieve these improvements using a fairly simple algorithm and analysis (both the algo-

rithms and analysis in [111] were quite complicated).

The materials in this part are based on a (solo-author) manuscript [26], and a paper

with Hossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff Stein [29] in SODA’19.

Chapter 6 – Massively Parallel Algorithms for Connectivity on Sparse Graphs.

Massive graphs that appear in practice are believed to be typically sparse, i.e., have only

O(n) edges, where n is the number of vertices in the graph. One natural example is social

networks, in which most participants are likely to have a bounded number of friends. Despite

this, most computational models for studying massive graphs including the streaming and

distributed communication models are inherently not suited to process sparse graphs. The

reason is that for most problems of interest, it is easy (often even trivial) to prove an Ω(n)

lower bound on the space or communication complexity in these models (even for sparse

graphs), and on the other hand allowing O(n) space or communication “trivialize” the

problem in case of sparse graphs as the whole input can be stored or communicated.

One important exception is the MPC model which in principle allows for a non-trivial

treatment of sparse graphs as well. In particular, having an algorithm with n1−Ω(1) memory

per machine would allow processing massive sparse graphs in a memory efficient manner.

However, to date, all existing algorithms for graph problems in the MPC model that use
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n1−Ω(1) memory per machine, require Ω(log n) rounds which is prohibitively large in prac-

tice. This is also quite unfortunate from the theoretical point of view as algorithms with

such performance can be achieved by simple MPC simulation of classical O(log n)-round

PRAM algorithms that have been known in the literature for more than three decades. In

other words, current algorithms cannot benefit from the additional power of the MPC model

over PRAM algorithms (more local storage and computational power) on sparse graphs.

The research in the MPC model has identified a captivating algorithmic challenge for

breaking the linear-memory barrier in the MPC model: connectivity on sparse undirected

graphs. However, despite the great attention this problem has received in the last few years

(see, e.g. [213, 271, 218, 23, 277] and references therein), no better than o(log n)-round

algorithm for this problem has yet been achieved. This led some researchers to conjecture

that such algorithms may not even exist [53, 271, 23, 277, 307] and in fact use sparse graph

connectivity as a hardness assumption for proving conditional lower bounds in the MPC

model for other problems; see [23, 307] and references therein for further details (recall

that by the remark at the end of Section 1.1.3, achieving even “weak” unconditional lower

bounds in the MPC model seems beyond the reach of current techniques).

In this thesis, we take an opportunistic approach to the sparse connectivity problem,

which exploits the connectivity structure of the underlying graph. In particular, we use

spectral gap as a quantitative measure of “connectedness” of a graph and design an algorithm

for connectivity with improved performance guarantee depending on the spectral gap of the

connected components of the underlying graph. For example, when connected components

of the graph have large spectral gap, say Ω(1) or even Ω(1/polylog(n)), our algorithm

only requires O(log log n) MPC rounds while using nΩ(1) memory per machine and O(n ·
polylog(n)) total memory. Examples of such graphs include random graphs and expanders

(see also [239, 159] for real-life examples in social networks). This constitutes the first

non-trivial improvement on the standard O(log n)-round algorithms for connectivity in the

MPC model when the memory per machine is nΩ(1) for a general family of input graphs.

This chapter is based on a joint work with Xiaorui Sun and Omri Weinstein [36].

We now present our results for submodular optimization over massive datasets. Tables 3

and 4 contain, a summary of our algorithms and impossibility results in this part.

Chapter 7 – Coverage Problems in the Streaming Model. Minimum set cover and

maximum coverage, henceforth collectively referred to as coverage problems, are among

the canonical examples of submodular optimization. Introduced originally by Saha and

Getoor [281], streaming coverage problems have been studied extensively in the streaming

literature [281, 108, 40, 128, 116, 187, 174, 90, 50, 129, 247], resulting in numerous efficient
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Problem Model Mem./Comm. Apx Rounds/Passes

Maximum

Matching

random streams O(n1.5) 1.5 one pass

random partition
distributed model O(n) 1.5 one round

MPC model
O(n1.5) 1.5 two rounds

O(n) 1 + ε O(log log n) rounds

Minimum

Vertex Cover

random partition
distributed model O(n) 3 one round

MPC model O(n) O(1) O(log log n) rounds

Sparse

Connectivity
MPC model nΩ(1) - O(log log n+ log 1

λ)

Table 1: A sample of our algorithms for graph optimization on massive graphs. The third column measures
the space in case of streaming algorithms, communication per machine in case of distributed algorithms, and
memory per machine in case of MPC algorithms. Here n is the number of vertices and λ (in the last row)
is a lower bound on the spectral gap of every connected component of the input graph. For simplicity of
exposition, logarithmic factors are omitted in the third column (similarly (1+ε) factors in the approximation
ratio column when appropriate).

algorithms for these problems. However, a shortcoming of all these algorithms for the

streaming set cover problem was that they either required strictly more than one pass over

the stream, or achieved very large approximation ratios of O(
√
n) (where n is the number

of elements in the universe). As such, obtaining single-pass streaming algorithms for set

cover with sublinear space over the stream was a main open problem in this area (cf. [187]

and its follow-up version in [174]).

In this thesis, we establish tight bounds on the space-approximation tradeoff for single-

pass streaming algorithms for the set cover problem. Our results rule out the existence of

any non-trivial single-pass algorithm for the streaming set cover problem and hence provide

a strong negative answer to the aforementioned open questions. This also suggests a strong

separation between power of single-pass vs multi-pass (even only two-pass) streaming algo-

rithms for this problem: For instance, while one can achieve a 2-approximation algorithm

to set cover in only two passes over the input and O(m
√
n) memory (with exponential

running time) [116], in one pass over the stream, the best approximation ratio achievable

in O(m
√
n) memory is Ω(

√
n) (here m is the number of sets and n is the size of universe).
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Problem Model Mem./Comm. Apx Rounds/Passes

Maximum

Matching

&
Minimum

Vertex Cover

dynamic streams n2−o(1) no(1) one pass

distributed model n2−o(1) no(1) one round

MPC model n2−o(1) no(1) one round

random partition
distributed model Ω(n) O(1) one round

Estimating

Maximum

Matching Size

&

Matrix Rank

insertion-only
streams n

1+Ω( 1
log logn

)
1+o(1) one pass

dynamic streams n2−O(ε) 1 + ε one pass

dynamic streams n1−o(1) no(1) one pass

Table 2: A sample of our impossibility results for graph optimization on massive graphs. The third column
measures the space in case of streaming algorithms, communication per machine in case of distributed
algorithms, and memory per machine in case of MPC algorithms. Here n is the number of vertices in the
graph or rows of the matrix.

We further study the space-approximation tradeoff for multi-pass streaming algorithms

for both set cover and coverage problems. We (slightly) improve the state-of-the-art algo-

rithms for set cover that are allowed multiple passes over the stream and more importantly

also prove that the space-approximation tradeoff achieved by this algorithm is information-

theoretically optimal. Qualitatively similar results for maximum coverage are also presented.

This chapter is based on a joint work with Sanjeev Khanna and Yang Li [32] in STOC’16,

and a (solo-author) paper [27] in PODS’17 (recipient of “best student paper award”).

Chapter 8 – Submodular Maximization in the Distributed Communication Model.

Submodular maximization subject to cardinality constraint and its illustrative example,

maximum coverage, have been studied extensively in models of computation for mas-

sive datasets including in distributed communication model (e.g., [186, 249]), MPC model

(e.g., [99, 223]), and the streaming model (e.g. [50, 247]).

Previous constant factor approximation algorithms for maximum coverage and sub-

modular maximization with cardinality constraint in general in the distributed model can

be divided into two main categories: communication efficient protocols that require a large
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number of rounds (e.g., [40, 247]), or round efficient protocols that incur a large communi-

cation cost (e.g. [223]). For the maximum coverage problem, these two categories amount

to Õ(n) communication and Ω(k) rounds in one case, and O(1) rounds and k ·mΩ(1) com-

munication in the other case (here m and n are respectively the number of sets and size

of the universe in the input instance and k is the number of machines). This state-of-the-

affairs raised the following natural question: Does there exist a truly efficient distributed

protocol submodular maximization and in particular maximum coverage, that is, a protocol

that simultaneously achieves Õ(n) communication cost, O(1) round complexity, and gives a

constant factor approximation?

We refute the possibility of this optimistic scenario in this thesis. We present a tight

tradeoff between the three main measures of efficiency in this model: the approximation

ratio, the communication cost, and the number of rounds for any algorithm for the maximum

coverage problem. This proves that for the maximum coverage problem in particular and

constrained submodular maximization in general, one is always handicapped with either a

large communication cost or a large number of rounds in the distributed communication

model. To prove this result, we provide a general framework for proving communication

lower bounds for bounded-round protocols hence also partially addressing the shortcoming

of previous techniques for proving round complexity lower bounds in this model (recall the

discussion at the end of Section 1.2.2).

As a corollary of our results, we also obtain lower bounds on the number of passes

needed to solve these two problems in dynamic streams. This is the first multi-pass lower

bound for any optimization problem that is specific to dynamic streams, i.e., does not fol-

low from a lower bound in insertion-only streams. Interestingly, these impossibility results

also guides us to develop a very simple MPC algorithm for submodular maximization sub-

ject to cardinality constraint with performance guarantee that matches the state-of-the-art

algorithms in the MPC model [113].

This chapter is based on a paper with Sanjeev Khanna [31] in SODA’18.

We further consider optimization in settings where the goal is to perform computation over

data which may not be particularly large but still imposes restrictions of similar nature,

the setting which we refer to as resource constrained optimization. We use the toolkit

developed in the first two parts of the thesis to obtain several algorithms and impossibility

results for problems of this nature, settling multiple open questions in the literature.

Chapter 9 – Interaction in Combinatorial Auctions. We study the necessity of in-

teraction between bidders with subadditive valuations in a combinatorial auctions for max-

imizing the social welfare. This problem was originally introduced by Dobzinski, Nisan,
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Problem Model Mem./Comm. Apx Rounds/Passes

Set Cover
insertion-only

streams O(m · n1/α) α O(α) passes

Maximum

Coverage

dynamic streams O(n) e
e−1 O(log n) passes

distributed model O(n) n1/(r+1) r rounds

MPC model mΩ(1) e
e−1 O(1) rounds

Submodular

Maximization

with

Cardinality

Constraint

dynamic streams O(n) e
e−1 O(log n) passes

MPC model mΩ(1) e
e−1 O(1) rounds

Table 3: A sample of our algorithms for submodular optimization over massive datasets. The third column
measures the space in case of streaming algorithms, communication per machine in case of distributed
algorithms, and memory per machine in case of MPC algorithms. Here m and n are respectively the number
of sets (items) and size of the universe. For simplicity of exposition, logarithmic factors are omitted in the
third column (similarly (1 + ε) factors in the approximation ratio column when appropriate).

and Oren [119] as the following simple market scenario: m items are to be allocated among

n bidders in a distributed setting where bidders valuations are private and hence commu-

nication is needed. The communication happens in rounds: in each round, each bidder,

simultaneously with others, broadcasts a message to all parties involved. The central plan-

ner computes an allocation solely based on the communicated messages.

Dobzinski et al. [119] showed that (at least some) interaction is necessary for obtaining

any efficient allocation: no non-interactive (1-round) protocol with polynomial communi-

cation (in the number of items and bidders) can achieve approximation ratio better than

Ω(m1/4), while O(logm) rounds of interaction suffice to obtain an (almost) efficient alloca-

tion, i.e., a polylog(m)-approximation. Subsequently, Alon, Nisan, Raz, and Weinstein [19]

studied the qualitatively similar but technically disjoint setting of bidders with unit-demand

valuations and proved that Ω(log logm) rounds of interaction are necessary in this case.

Dobzinski et al. [119] and Alon et al. [19] both posed the problem of proving round com-

plexity lower bounds for the setting of combinatorial auctions with subadditive valuations

as an open problem. Alon et al. [19] mentioned that: “from a communication complexity
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Problem Model Mem./Comm. Apx Rounds/Passes

Set Cover
insertion-only

streams

Ω(m · n/α) α one pass

O(1p ·m · n1/α) α p passes

Maximum

Coverage

insertion-only
streams Ω(1p ·m/ε2) 1 + ε p passes

dynamic streams nω(1) O(1) o(log n) passes

distributed model nω(1) o(n1/2r) r rounds

Table 4: A sample of our impossibility results for submodular optimization over massive datasets. The
third column measures the space in case of streaming algorithms, communication per machine in case of
distributed algorithms, and memory per machine in case of MPC algorithms. Here m and n are respectively
the number of sets (items) and size of the universe. For simplicity of exposition, logarithmic factors are
omitted in the third column. As maximum coverage is a special case of submodular maximization with
cardinality constraint, all lower bounds for maximum coverage clearly hold for the latter problem as well.

perspective, lower bounds in this setup [of combinatorial auctions] are more compelling,

since player valuations require exponentially many bits to encode, hence interaction has the

potential to reduce the overall communication from exponential to polynomial”.

We resolve this fascinating question by providing an almost tight round-approximation

tradeoff for this problem, when the players are communicating only polynomially many bits

(in n and m). As a corollary, we prove that Ω( logm
log logm) rounds of interaction are necessary

for obtaining any efficient allocation (i.e., a constant or even a polylog(m)-approximation) in

these markets. Our proof builds on the similarity between this problem and the distributed

communication model and the lower-bound framework we provide in Chapter 8.

The materials in this chapter are based on a (solo-author) paper [25] in EC’17.

Chapter 10 – Learning With Limited Rounds of Adaptivity. In many learning

settings, active/adaptive querying is possible, but the number of rounds of adaptivity—the

number of rounds of interaction with the feedback generation mechanism—is limited. For

example, in crowdsourcing, one can actively request feedback by sending queries to the

crowd, but there is typically a waiting time before queries are answered; if the overall task
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is to be completed within a certain time frame, this effectively limits the number of rounds

of interaction. Similarly, in marketing applications, one can actively request feedback by

sending surveys to customers, but there is typically a waiting time before survey responses

are received; again, if the marketing campaign is to be completed within a certain time

frame, this effectively limits the number of rounds of interaction.

We study the relationship between query complexity and adaptivity in identifying the

k most biased coins among a set of n coins with unknown biases. This problem is a common

abstraction of many well-studied problems, including the problem of identifying the k best

arms in a stochastic multi-armed bandit, and the problem of top-k ranking from pairwise

comparisons. Our main result establish an optimal lower bound on the number of rounds

adaptivity needed to achieve the optimal worst case query complexity for all these problems.

In particular, we show that, perhaps surprisingly, no constant number of rounds suffices for

this task, and the “correct” number of rounds of adaptivity is log∗ (n) (an upper bound of

log∗ (n) rounds was also established in a joint work with Agarwal, Agarwal, and Khanna [4]).

The materials in this chapter are based on a joint paper with Arpit Agarwal, Shivani

Agarwal, and Sanjeev Khanna [4] in COLT’17.

1.4. How to Read this Thesis

In Chapter 2, we introduce the basic definitions and primary tools that are used throughout

this thesis. In Chapters 3, 4, 5, and 6, we present the first part of our results on graph

optimization. Chapters 7 and 8 contain the second part of our results for submodular

optimization. The final part of our results, i.e., the applications of main tools in this thesis

to other areas, appear in Chapters 9 and 10. Each of these chapters starts with the definition

and significance of the addressed problems, a review of the relevant literature, followed by

a formal statement of the contributions together with an overview of the proof techniques.

The formal proofs are given in the main body of the chapter. These chapters are designed

to be self-contained (beside assuming the background in Chapter 2) to allow the reader to

directly consider the part of most interest. The only exception is Chapters 4 and 5 which

are closely tied to each other and are hence better to be read in this order.
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Chapter 2

Background

In this chapter, we provide the basic definitions, notation and facts that will be employed

throughout this thesis. This in particular includes simple tools from theory of submodu-

lar functions, information theory, communication complexity, and information complexity.

Additional notation with a specific scope are defined locally in each respective section.

2.1. Notation and Preliminaries

General notation. For any integer t ≥ 1, we define [t] := {1, . . . , t}. We say that a set

S ⊆ [n] with |S| = s is a s-subset of [n]. For a k-dimensional tuple X = (X1, . . . , Xk) and

index i ∈ [k], we define X<i := (X1, . . . , Xi−1) and X−i := (X1, . . . , Xi−1, Xi+1, . . . , Xk).

All logarithms are in base two unless stated explicitly otherwise. The notation “X ∈R U”

indicates that X is chosen uniformly at random from a set U .

When it may lead to confusion, we use san-serif font, e.g. A, to denote random variables,

and normal font, e.g., A, to denote the value these variables take (this notation is mostly

used in our information-theoretic arguments).

We use the terms “w.p.” and “w.h.p.” to abbreviate “with probability” and “with high

probability” respectively, where with high probability means a probability which is close to

one by an additive factor which is polynomially small in the dimension of the problem (e.g.,

1− 1/poly(n) where n is the number of vertices in the graph).

Asymptotic notation. For simplicity of exposition, we use the “soft” O- and Ω-notation,

defined as Õ(f) := O(f) · polylog(f) and Ω̃(g) := Ω(g)/polylog(g).

Graph notation. Graphs are denoted by G(V,E), where V is the set of vertices and E

is the set of edges. We define V (G) := V and E(G) := E. We use n and m to denote the

number of vertices and edges in the underlying graph, i.e., n = |V (G)| and m = |E(G)|.

2.1.1. Concentration Bounds

We use the following standard versions of Chebyshev inequality and Chernoff bound (see,

e.g., [123]) throughout.

Proposition 2.1.1 (Chebyshev inequality). For any random variable X,

Pr (|X − E [X]| ≥ t) ≤ Var [X]

t2
.

Proposition 2.1.2 (Chernoff bound). Let X1, . . . , Xn be independent random variables
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taking values in [0, 1] and let X :=
∑n

i=1Xi. Then, for any ε ∈ (0, 1),

Pr (|X − E [X]| ≥ ε · E [X]) ≤ 2 · exp
(
−ε

2 · E [X]

2

)
.

In some places, we work with a generalization of Chernoff bound for variables with

bounded independence.

Proposition 2.1.3 (Chernoff bound with bounded independence [285]). Let X1, . . . , Xn be

κ-wise independent variables taking value in [0, 1] and X :=
∑n

i=1Xi. For any δ ∈ (0, 1), if

κ ≤ δ2 · E [X] /2, then, Pr
(
|X − E [X]| ≥ δ · E [X]

)
≤ 2 · exp

(
−κ

2

)
.

We also need the method of bounded differences in our proofs. A function f(x1, . . . , xn)

is called d-Lipschitz, iff for all i ∈ [n], |f(a)− f(a′)| ≤ d, whenever a and a′ differ only in

the i-th coordinate.

Proposition 2.1.4 (Method of bounded differences; cf [123]). If f is d-Lipschitz and

X1, . . . , Xn are independent random variables, then,

Pr (|f(X1, . . . , Xn)− E [f(X1, . . . , Xn)]| > t) ≤ 2 · exp
(
− 2t2

n · d2
)
.

2.1.2. Balls and Bins Experiments

We use the following standard balls and bins argument in our proofs throughout this thesis.

Proposition 2.1.5 (# of Non-Empty Bins in a Balls and Bins Experiment). Consider the

process of throwing N balls into B bins where N ≤ ε ·B for some parameter ε ∈ (0, 1/100)

such that each bin is chosen uniformly at random. Let X denote the number of non-empty

bins. Then, Pr
(
|X −N | ≥ 2ε ·N

)
≤ 2 · exp

(
−ε2 ·N

)
.

Proof. Define an indicator random variable Xi ∈ {0, 1} for any i ∈ [B], where Xi = 1 iff

the i-th bin is non-empty. Clearly X =
∑B

i=1Xi denotes the number of non-empty bins.

As each bin is chosen uniformly at random by a ball, we have that,

E [X] =

B∑

i=1

E [Xi] = B ·
(
1−

(
1− 1

B

)N )
∈ [(1− ε) ·N, (1 + ε) ·N ].

(using the fact that 1− x ≤ e−x ≤ 1− x+ x2/2 for x ≤ 1 and that N/B ≤ ε)

Random variables X1, . . . , XB are correlated and hence not amenable to a straightforward

application of Chernoff bound. We instead use the method of bounded differences in Propo-

sition 2.1.4 to prove the concentration of X around E [X].
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Define N independent random variables Y1, . . . , YN , where Yi denotes the index of the

bin, the i-th ball is sent to. Define f(Y1, . . . , YN ) as the number non-empty bins (which is

clearly only a function of Y1, . . . , YN ). We have f(Y1, . . . , YN ) = X and that f is clearly

1-Lipschitz as changing any Yi can only make one more bin empty or non-empty. As such,

by Proposition 2.1.4,

Pr (|f(Y1, . . . , YN )− E [f(Y1, . . . , YN )]| > ε ·N) ≤ 2 · exp
(
−2ε2 ·N

)
.

As f(Y1, . . . , YN ) = X and |E [X]−N | ≤ εN , we have,

Pr (|X − E [X]| ≥ 2εN) ≤ 2 · exp
(
−2ε2 ·N

)
,

finalizing the proof.

2.2. Matching and Vertex Cover

We provide a brief overview of simple definitions and facts about matchings and vertex

covers in this section. The interested reader is referred to excellent texts by Lovasz and

Plummer [237] and Schrijver [286] for more details and missing proofs.

2.2.1. Matchings

Formally, a matching M of an undirected graph G(V,E) is any collection of edges that

do not share vertices. A vertex is matched by a matching M if one of its incident edges

belong to M and is otherwise free. A matching is called perfect iff it matches all vertices. A

matching M is called maximum iff its size, i.e., the number of edges it contains, is largest

among all matchings in G. Throughout this thesis, we use MM(G) to denote the size of a

maximum matching in G.

A maximal matching M in G is a matching which is not a proper subset of any other

matching in G. Clearly, any maximum matching is also maximal but the reverse is not

true. However, we have the following basic fact showing that a maximal matching cannot

be much smaller than a maximum matching either.

Fact 2.2.1. Any maximal matching M of a graph G has size at least half of the size of any

maximum matching in G, i.e., |M | ≥ (1/2) ·MM(G).

Augmenting paths. An important notion in matchings is that of augmenting paths. A

path P in G whose edges are alternately inside and outside a matching M and starts and

finishes in two different free vertices is called an augmenting path for M . Formally, an

augmenting path P of a matching M is an odd length path P := v1, v2, . . . , v2k+1 where

(v2i, v2i+1) ∈ M and (v2i−1, v2i) ∈ G \ M for any i ∈ [k], and v1 and v2k+1 are free
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vertices. An augmentation of matching M with respect to an augmenting path P is a new

matching M ′ obtained from M by switching the matched edges of P (with respect to M)

with unmatched edges. It is clear that an augmentation increases the size of M by one.

Fact 2.2.2. Let M be any matching in G and M∗ be a maximum matching of G. Then M

admits at least (|M∗| − |M |) many vertex-disjoint augmenting paths.

An immediate corollary of Fact 2.2.2 is that a matchingM is maximum in G iff it admits

no augmenting paths. This suggests an iterative approach for finding a maximum matching:

start from any maximal matching (which can be found easily by a simple greedy algorithm)

and augment it iteratively by finding augmenting paths. This strategy is behind many of

the algorithms for finding maximum matchings, including the celebrated Hopcroft-Karp

algorithm [181] and Micali-Vazirani algorithm [248] that achieve (currently best) running

time of O(m
√
n) on bipartite graphs and non-bipartite graphs, respectively.

Another simple corollary of Fact 2.2.2 is a generalization of Fact 2.2.1 that states that

a matching with no “short” augmenting paths is a “good” approximation of maximum

matching. Formally,

Proposition 2.2.3 ([181]). For any integer k ≥ 1, any matching M with shortest aug-

menting path of length 2k + 1 is a
(
k+1
k

)
-approximation to maximum matching.

Proof. Fix any maximum matching M∗. By Fact 2.2.2, M admits at least |M∗| − |M |
many vertex-disjoint augmenting paths. Since the length of each such path is at least

2k + 1, and since they are vertex-disjoint (and hence edge-disjoint), the total number of

such path can be at most |M | /k (any such path “uses” at least k edges from M). As such,

|M∗| − |M | ≤ 1
k · |M | and hence |M∗| ≤

(
k+1
k

)
· |M |.

In a simpler form, Proposition 2.2.3 implies that any matching with no augmenting path of

length O(1/ε), is a (1 + ε)-approximate matching.

2.2.2. Vertex Cover

A vertex cover of a graph G(V,E) is a collection of vertices C ⊆ V such that any edge in

G is incident on at least one vertex of C. We use VC(G) throughout this thesis to denote

the size of a smallest vertex cover of G.

There are many connections between matchings and vertex covers. For example, size of

any maximum matching of a graph G is always at most equal to the size of a vertex cover of

G (as at least one end point of any edge from the matching need to be in the vertex cover).

For bipartite graphs, this connection is in fact tight :

Fact 2.2.4. Size of a maximum matching in a bipartite graph G is always equal to the size
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of a minimum vertex cover in G, i.e., MM(G) = VC(G).

An easy way to prove Fact 2.2.4 is to see that the standard linear programs for matching

and vertex cover are dual of each other and the matching polytope on bipartite graphs always

admit an integral optimal solution.

On the other hand, one can also show that size of a minimum vertex cover cannot

be much larger than a maximum matching. This is because the vertices matched by any

maximal matchingM of G form a vertex cover of G (as otherwise one can add any uncovered

edge to M to get a superset matching of M , contradicting the maximality). This implies

the following basic fact.

Fact 2.2.5. For any graph G, MM(G) ≤ VC(G) ≤ 2 ·MM(G).

We note that in Fact 2.2.5, we can bound the RHS with two times the size of any maximal

matching of G not necessarily a maximum matching.

We further have the following simple proposition that suggests that a matching and

vertex cover can serve as a “witness” to near-optimality of each other.

Proposition 2.2.6. Suppose M and C are respectively, a matching and a vertex cover of a

graph G such that α · |M | ≥ |C|; then, both M and C are α-approximation to their respective

problems.

Proof. VC(G) ≥
Fact 2.2.5

MM(G) ≥ |M | ≥ 1
α · |V ′| ≥ 1

α · VC(G) ≥
Fact 2.2.5

1
α ·MM(G).

2.3. Ruzsa-Szemerédi Graphs

Several of our results in this thesis are based on a remarkable family of extremal graphs

known as Ruzsa-Szemerédi graphs, introduced by Ruzsa and Szemerédi [279]. In this sec-

tion, we define these graphs and provide a brief background on them.

For any graph G, a matching M of G is an induced matching iff for any two vertices u

and v that are matched in M , if u and v are not matched to each other, then there is no

edge between u and v in G.

Definition 2.1 (Ruzsa-Szemerédi graph). A graph G is an (r, t)-Ruzsa-Szemerédi graph

(or (r, t)-RS graph for short), iff the set of edges in G consists of t pairwise disjoint induced

matchings M1, . . . ,Mt, each of size r.

Figure 1 presents an example of very simple RS graph with 4 induced matchings of size 2

each, namely a (2, 4)-RS graph.
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Figure 1: A (2, 4)-RS graph (the left most graph) along with its partitioning into induced
matchings (the four right graphs).

RS graphs, first introduced by Ruzsa and Szemerédi [279], have been extensively studied

as they arise naturally in property testing, PCP constructions, additive combinatorics, etc.

(see, e.g., [290, 176, 143, 62, 18, 160, 16, 20, 147]). These graphs are of interest typically

when r and t are large relative to the number of vertices in the graph.

One particularly interesting range of the parameters is when r = Θ(n) [143, 146, 147],

i.e., when the induced matchings are of linear size. We use the notation RS(n) to denote the

largest possible value for the parameter t such that an (r, t)-RS graph on n vertices with r =

Θ(n) exists. It is a major open problem to determine the asymptotic of RS(n) [146, 163, 147],

but currently there is a huge gap between existing upper and lower bounds for RS(n): it is

known that for any constant c < 1/4, a (c ·n, t)-RS graph with t = nΩ(1/ log logn) exists [143]

(see also [160]); however, the best known upper bound only shows that for (c·n, t)-RS graphs,

where c is any constant less than 1/4, t is upper bounded by n
log(x) n

, with x = O(log 1
c ),

(log(x)(n) denotes the x-fold iterative logarithm of n) [146]. Slightly better upper bounds

are known for large values of c; in particular, it is shown in [147] that for 1/5 < c < 1/4,

t = O(n/ log n). We refer the interested reader to [147, 18] for more on the history of

Ruzsa-Szemerédi graphs and to [18, 160] for their application to different areas of computer

science, including proving lower bounds for streaming algorithms.

Even though obtaining (r, t)-RS graphs for r = Θ(n) and t = nΩ(1) seems to be out of

the scope of the current techniques, Alon et al. [18] provided a surprising construction of

(very) dense RS graphs when we allow r to be just slightly sublinear in n:

Proposition 2.3.1 ([18]). For infinitely many integers n, there are (r, t)-RS graphs on n

vertices with parameters r = n1−o(1) and r · t =
(
n
2

)
− o(n2)
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2.4. Set Cover and Maximum Coverage

We define the set cover and maximum coverage problems in this section. In the set cover

problem, we are given a collection of m sets S := {S1, . . . , Sm} from a universe [n]. The

goal is to pick a smallest number of sets from S whose union is [n], or in other words, cover

the universe. The set cover problem is one of Karp’s original 21 NP-hard problems [215].

A simple greedy algorithm that iteratively picks the set that covers the most number of

uncovered elements achieves a (lnn)-approximation [194, 289] and this is best possible unless

P = NP [117, 135, 238, 252].

Similarly, in the maximum coverage problem, we are given a collection of m sets S :=

{S1, . . . , Sm} from a universe [n] and an integer k ≥ 1. The goal is to pick k sets from S
whose union has maximum size, i.e., cover the most number of elements. A simple reduction

from the set cover problem establishes the NP-hardness of the maximum coverage problem.

The greedy algorithm that that for k times, iteratively picks the set that covers the most

number of uncovered elements, achieves a
(

e
e−1

)
-approximation [256] and this is also best

possible unless P = NP [135].

2.5. Submodular, XOS, and Subadditive Functions

Let V = {a1, . . . , am} be a ground set of m items and f : 2V → N+ be a non-negative set

function. Function f is called monotone iff f(A) ≤ f(B) for all A ⊆ B ⊆ V . When clear

from the context, we abuse the notation and for a ∈ V , use f(a) instead of f({a}).

Subadditive functions. A set function f : 2V → N+ is called subadditive iff for all

A,B,⊆ V ,

f(A ∪B) ≤ f(A) + f(B). (2.1)

XOS functions. A set function f : 2V → N+ is called XOS (or equivalently fractionally

subadditive), iff there exists a family of linear functions g1, . . . , gt such that for all A ⊆ V :

f(A) = max
i∈[t]

gi(A). (2.2)

Submodular functions. A set function f : 2V → N+ is called submodular iff for all

A,B,⊆ V ,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B). (2.3)

It is easy to see that both submodular and XOS functions are also subadditive.
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In this thesis, we are mostly concerned with submodular functions. In the following,

we present some of their basic properties that we use in our proofs.

2.5.1. Basic Properties of Submodular Functions

One of the main properties of submodular functions that make them attractive in many

different setting is the so-called diminishing marginal contribution property: for any set

function f : 2V → N+ and A ⊆ V , we define the marginal contribution to set A in f as a

set function fA : 2V → N such that for all B ⊆ V , fA(B) := f(A ∪B)− f(A). We have,

Fact 2.5.1. A set function f : 2V → N+ is submodular iff for all sets A ⊆ B ⊆ V and any

item x ∈ V \B: fA(x) ≥ fB(x).

Fact 2.5.1 presents another definition of submodular functions which is equivalent to Eq (2.3).

We also use the following standard facts about monotone submodular functions.

Fact 2.5.2. Let f : 2V → N+ be a monotone submodular function, then:

∀A ⊆ V,B ⊆ V f(B) ≤ f(A) +
∑

x∈B\A
fA(x).

Fact 2.5.3. Let f : 2V → N+ be a submodular function, then, for any A ⊆ V , fA(·) is also

submodular (and hence subadditive).

2.5.2. Constrained Submodular Maximization

Let I ⊆ 2V be a hereditary set system, that is a collection of sets such that whenever

S ∈ I, all subsets of S also belong to I. An example of hereditary set systems are matroids.

In a constrained submodular maximization problem, we are given a submodular function

f : 2V → N+ and a hereditary set system I and the goal is to return A∗ ⊆ V such that:

A∗ ∈ argmaxA∈I f(A).

Constrained submodular maximization is studied under various constraints, i.e., hered-

itary set systems, including cardinality or knapsack constraints, matroids, p-systems, etc.,

and (near) optimal algorithms (mostly based on sequential greedy algorithms) are known

for this problem under these different constraints; see, e.g. [256, 142, 85, 80, 122].

Monotone Submodular Maximization Subject to Cardinality Constraint. In this

thesis, we are mostly interested in one of the most basic variants of the constraints for

submodular maximization, namely the cardinality constraint: Given an integer k ≥ 1 and

a monotone submodular function f : 2V → N+, our goal is to find a set A∗ ⊆ V such that

|A∗| ≤ k and f(A∗) is maximized.
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As coverage functions are monotone submodular, it is easy to see that submodular

maximization subject to cardinality constraint generalizes the maximum coverage problem.

Similar to maximum coverage problem, the greedy algorithm that that for k times, iter-

atively picks the item with maximum marginal contribution among the remaining items

achieves a
(

e
e−1

)
-approximation and this is also best possible unless P = NP [135].

2.6. Information Theory

We now briefly introduce some definitions and facts from information theory that are needed

in this thesis. We refer the interested reader to the text by Cover and Thomas [109] for an

excellent introduction to this field.

For a random variable A, we use supp(A) to denote the support of A and dist(A) to

denote its distribution. When it is clear from the context, we may abuse the notation and

use A directly instead of dist(A), for example, write A ∼ A to mean A ∼ dist(A), i.e., A

is sampled from the distribution of random variable A.

We denote the Shannon Entropy of a random variable A by H(A), which is defined as:

H(A) :=
∑

A∈supp(A)
Pr (A = A) · log (1/Pr (A = A)) (2.4)

The conditional entropy of A conditioned on B is denoted by H(A | B) and defined as:

H(A | B) := E
B∼B

[H(A | B = B)] , (2.5)

where H(A | B = B) is defined in a standard way by using the distribution of A conditioned

on the event B = B in Eq (2.4).

The mutual information of two random variables A and B is denoted by I(A ;B) and is

defined as:

I(A ;B) := H(A)−H(A | B) = H(B)−H(B | A). (2.6)

The conditional mutual information I(A ;B | C) is H(A | C) − H(A | B,C) and hence by

linearity of expectation:

I(A ;B | C) = E
C∼C

[I(A ;B | C = C)] . (2.7)

We use H2 to denote the binary entropy function where for any real number 0 < δ < 1,

H2(δ) = δ log 1
δ + (1− δ) log 1

1−δ (i.e., the entropy of a Bernoulli random variable).
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2.6.1. Useful Properties of Entropy and Mutual Information

We shall use the following basic properties of entropy and mutual information throughout.

Proofs of these properties mostly follow from convexity of the entropy function and Jensen’s

inequality and can be found in [109], Chapter 2.

Fact 2.6.1. Let A, B, C, and D be four (possibly correlated) random variables.

1. 0 ≤ H(A) ≤ log |supp(A)|. The right equality holds iff dist(A) is uniform.

2. I(A ;B) ≥ 0. The equality holds iff A and B are independent.

3. Conditioning on a random variable reduces entropy: H(A | B,C) ≤ H(A | B). The

equality holds iff A ⊥ C | B.

4. Subadditivity of entropy: H(A,B | C) ≤ H(A | C) +H(B | C).

5. Chain rule for entropy: H(A,B | C) = H(A | C) +H(B | C,A).

6. Chain rule for mutual information: I(A,B ;C | D) = I(A ;C | D) + I(B ;C | A,D).

7. Data processing inequality: suppose f(A) is a deterministic function of A, then

I(f(A) ;B | C) ≤ I(A ;B | C).

The following Fano’s inequality states that if a random variable A can be used to estimate

the value of another random variable B, then A should “consume” most of entropy of B.

Fact 2.6.2 (Fano’s inequality). Let A,B be random variables and f be a function that given

A predicts a value for B. If Pr (f(A) 6= B) ≤ δ, then H(B | A) ≤ H2(δ) + δ · (log |B| − 1).

If B is binary, then the bound improves to H(B | A) ≤ H2(δ).

We also use the following two standard propositions, regarding the effect of conditioning on

mutual information.

Proposition 2.6.3. For random variables A,B,C,D, if A ⊥ D | C, then,

I(A ;B | C) ≤ I(A ;B | C,D).

Proof. Since A and D are independent conditioned on C, by Fact 2.6.1-(3), H(A | C) =

H(A | C,D) and H(A | C,B) ≥ H(A | C,B,D). We have,

I(A ;B | C) = H(A | C)−H(A | C,B) = H(A | C,D)−H(A | C,B)
≤ H(A | C,D)−H(A | C,B,D) = I(A ;B | C,D).
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Proposition 2.6.4. For random variables A,B,C,D, if A ⊥ D | B,C, then,

I(A ;B | C) ≥ I(A ;B | C,D).

Proof. Since A ⊥ D | B,C, by Fact 2.6.1-(3), H(A | B,C) = H(A | B,C,D). Moreover, since

conditioning can only reduce the entropy (again by Fact 2.6.1-(3)),

I(A ;B | C) = H(A | C)−H(A | B,C) ≥ H(A | D,C)−H(A | B,C)
= H(A | D,C)−H(A | B,C,D) = I(A ;B | C,D).

Finally, we also use the following simple inequality that states that conditioning on a random

variable can only increase the mutual information by the entropy of the conditioned variable.

Proposition 2.6.5. For random variables A,B and C, I(A ;B | C) ≤ I(A ;B) +H(C).

Proof. By chain rule for mutual information (Fact 2.6.1-(6)), we can write:

I(A ;B | C) = I(A ;B,C)− I(A ;C) = I(A ;B) + I(A ;C | B)− I(A ;C)

≤ I(A ;B) +H(C | B) ≤ I(A ;B) +H(C),

where the first two equalities are by chain rule (Fact 2.6.1-(6)), the second inequality is

by definition of mutual information and its positivity (Fact 2.6.1-(2)), and the last one is

because conditioning can only reduce the entropy (Fact 2.6.1-(3)).

2.6.2. Measures of Distance Between Distributions

We use two main measures of distance (or divergence) between distributions, namely the

Kullback-Leibler divergence (KL-divergence) and the total variation distance.

KL-divergence. For two distributions µ and ν over the same probability space, the

Kullback-Leibler divergence between µ and ν is denoted by D(µ || ν) and defined as:

D(µ || ν) := E
a∼µ

[
log

Prµ(a)

Prν(a)

]
. (2.8)

We also have the following relation between mutual information and KL-divergence.

Fact 2.6.6. For random variables A,B,C,

I(A ;B | C) = E
(b,c)∼(B,C)

[
D(dist(A | C = c) || dist(A | B = b,C = c))

]
.
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Total variation distance. We denote the total variation distance between two distribu-

tions µ and ν on the same support Ω by |µ− ν|tvd, defined as:

|µ− ν|tvd := max
Ω′⊆Ω

(
µ(Ω′)− ν(Ω′)

)
=

1

2
·
∑

x∈Ω
|µ(x)− ν(x)| . (2.9)

We use the following basic properties of total variation distance.

Fact 2.6.7. Suppose µ and ν are two distributions for E, then, Prµ(E) ≤ Prν(E)+|µ− ν|tvd .

Finally, the following Pinskers’ inequality bounds the total variation distance between

two distributions based on their KL-divergence,

Fact 2.6.8 (Pinsker’s inequality). For any distributions µ and ν, |µ− ν|tvd ≤
√

1
2 · D(µ || ν).

2.7. Communication Complexity

Communication complexity constitutes one of the most useful methods for proving uncondi-

tional lower bounds. Throughout this thesis, we study various problems through the lens of

communication complexity to provide further insight on (in)tractability of these problems

in different computational models for processing massive datasets.

In this section, we review basic definitions and tools from communication complexity

that we employ in this thesis. We closely follow the presentation in the text by Kushilevitz

and Nisan [224] and refer the interested reader to this excellent text for more details. We

start by defining the two-player communication model and then provide its extension to the

multi-party setting we study in this thesis.

2.7.1. Two-Party Communication Complexity

We use standard definitions of the two-party communication model introduced by Yao [305].

Let P : X ×Y → Z be a relation. We will consider two parties, Alice and Bob, who receive

x ∈ X and y ∈ Y and their goal is to find some z ∈ P (x, y). For non-trivial P , Alice

and Bob will need to communicate with each other to compute any P (x, y), and do this

according to some fixed protocol π.

Communication happens in rounds. In each round, the protocol π determines which

player should speak next. This information depend only on the bits communicated thus far,

as this is the only information common to both parties. Whenever it is a party’s turn to

speak, the protocol π must specify what the party sends, and this must depend only on the

communication thus far and the input of the party. Finally, π should also determine when

the protocol terminates, in which case, it should output π(x, y) ∈ P (x, y). For a protocol

π, we use Πx,y to denote the transcript of the messages on input (x, y).
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We are only interested in the amount of communication between Alice and Bob, mea-

sured in number of bits. We thus allow Alice and Bob to be computationally unbounded.

The cost of a protocol π on input (x, y) is the number of bits communicated by π on (x, y),

i.e., the length of the transcript Πx,y, denoted by |Πx,y|. The communication cost of a

protocol π is the maximal cost of π over all inputs (x, y), denoted by ‖π‖ := maxx,y |Πx,y|.

We can now use this to define the communication complexity of a problem, or equiva-

lently a relation P .

Definition 2.2 (Deterministic Communication Complexity). For a relation P : X × Y →
Z, the deterministic communication complexity of P , denoted by D(P ), is the minimum

communication cost of any protocol π that compute P .

Notice that clearly, D(P ) ≤ min (log |X |, log |Y|) as the RHS is the communication cost of

a trivial protocol that simply communicates the whole input of one player to another.

We are most interested in two-party communication setting when Alice and Bob ad-

ditionally have access to random coins. In particular, in a private-coin protocol Alice and

Bob have access to infinite long random strings rA and rB, respectively, that are chosen

independent of each other and the input, and are only known to their corresponding parties

(hence the term “private”). In this case, the messages communicated by Alice are function

of both her input x and the random string rA, and similarly the messages communicated

by Bob are function of both y and rB.

In a public-coin protocol, Alice and Bob in addition to private coins, also have access

to a shared source of randomness rpub (again chosen independent of all other variables) and

can use this to determine the next messages as well as the order the parties should speak. It

is easy to see that a public-coin protocol is simply a distribution on private coins protocols,

run by first using shared randomness to sample a random string r and then running the

corresponding private coin protocol πr.

The communication cost of a randomized protocol is the worst case number of bits sent

by the protocol over any inputs (x, y) and random bits (rA, rB, rpub) (it is also possible to

define the communication cost as an average number of bits, although we do not take this

approach in this thesis).

When considering a randomized protocol, we allow the protocol to output a wrong

answer with some small probability. In particular, we say that a protocol π computes a

relation P with δ-error iff for every (x, y): PrrA,rB ,rpub

(
π(x, y) ∈ P (x, y)

)
≥ 1− δ.

We can now define the randomized communication complexity of a problem.

Definition 2.3 (Randomized Communication Complexity). For a relation P : X ×Y → Z,
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and any δ ∈ (0, 1), the randomized communication complexity of P with error probability δ,

denoted by Rδ(P ), is the minimum communication cost of any δ-error protocol π for P that

has access to public-coins.

Throughout this thesis, by communication complexity, we refer to the randomized commu-

nication complexity with some small error bounded away from half, say, 1/10.

In Definition 2.3, we allowed the protocols to have access to public-coins. Clearly, any

protocol that only uses private-coins can be simulated by a public-coin protocol by simply

partitioning the public random bits between Alice and Bob so that each player have his or

her “private” random coins. A close converse to this also holds due to Newman [257].

Proposition 2.7.1 ([257]). Fix any δ, δ′ > 0. Let π be a δ-error public-coin protocol for

a relation P : X × Y → Z with m := max {log |X |, log |Y|}. There exists a private-coin

(δ + δ′)-error protocol for P with communication cost ‖π′‖ ≤ ‖π‖+O(logm+ log (1/δ′)).

Proposition 2.7.1 implies that we might as well just focus on public-coin protocols (as in

our Definition 2.3) and use this proposition to extend the results to private-coin protocols.

Up until now, we have been discussing protocols which, for every input (x, y), err

with probability at most δ, where the probability is only over the random strings of the

protocol. In some scenarios, it is more convinent to look at protocols which err on a certain

distribution on inputs.

Definition 2.4 (Distributional Communication Complexity). Let µ be a probability distri-

bution over X×Y. For a relation P : X×Y → Z, and any δ ∈ (0, 1), the (µ, δ)-distributional

communication complexity of P , denoted by Dµ,δ(P ), is the minimum cost of any determin-

istic protocol for P which errs with probability at most δ on inputs chosen from µ (the

probability of error is with respect to distribution µ).

The famous Yao’s minimax principle [306] relates Dµ,δ(P ) to Rδ(P ), that is:

Rδ(P ) = max
µ

Dµ,δ(P ),

where µ is taken over all distributions over X ×Y. For our purpose, we only need the easy

direction of Yao’s minimax principle, as we show below.

Proposition 2.7.2 (Easy Direction of Yao’s Minimax Principle [306]). Let P : X ×Y → Z
be any relation and µ be a probability distribution over X × Y. For any δ ∈ (0, 1):

Rδ(P ) ≥ Dµ,δ(P ).
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Proof. Let π be any δ-error protocol for P with communication cost ‖π‖ = Rδ(P ). We

use r := (rA, rB, rpub) to denote all the randomness used by π. By definition, for all (x, y),

Prr (π(x, y) /∈ P (x, y)) ≤ δ. As such,

δ ≥ Pr
r,µ

(π(x, y) /∈ P (x, y)) = E
r

[
Pr
µ
(π(x, y) /∈ P (x, y))

]
.

This means that there exists a fixed choice of r such that the protocol πr (i.e., the protocol

obtained by fixing the randomness of π to be r) errs with probability at most δ on inputs

chosen from µ. But πr is a deterministic protocol with the communication cost at most as

large as π. Hence, Dµ,δ(P ) ≤ ‖πr‖ ≤ ‖π‖ ≤ Rδ(P ).

One-Way Protocols

In many of the applications we consider, we have an even simpler model for communication,

the one-way communication model. In this model, Alice and Bob are given inputs (x, y) as

before, but the communication only happens in one round, in which Alice computes some

function M(x) of her input x and send it to Bob. Bob then attempts to compute P (x, y)

using only M(x) and y. We have,

Definition 2.5 (One-way Communication Complexity). For a relation P : X × Y → Z,
and any δ ∈ (0, 1), the one-way randomized communication complexity of P with error

probability δ, denoted by R
1-way
δ (P ), is the minimum communication cost of any δ-error

protocol π for P in which only a single message is sent from Alice to Bob.

All previous definitions can be tailored similarly to the one-way communication model

in a straightforward way. Moreover, it is easy to see that Proposition 2.7.2 continues to

hold even for one-way protocols.

2.7.2. Some Standard Communication Problems

Throughout this thesis, we establish various communication complexity lower bounds for

optimization problems we study, such as maximum matching or set cover. Some of these

proofs involve a direct or indirect reduction from a well-known communication problem. For

convenience of the reader, we gather these communication problems in this section, along

with their communication complexity lower bounds that we use. We note that however,

depending on the application, we may need a more specialized versions of these problems

and their corresponding communication bounds which we would define locally later.

The following three problems are relevant to the one-way communication model.

Index problem. In the index problem, denoted by Indexn, Alice is given a string x ∈ {0, 1}n

and Bob is given i ∈ [n]. The goal of the players is to determine the value of xi, i.e.,
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Indexn(x, i) = xi. It is clear that in the two-player communication model, only O(log n)

communication is needed to solve the problem by Bob sending his index to Alice. The

non-trivial (yet not hard to prove) fact is that in the one-way communication model, where

only Alice can send a single message to Bob, Ω(n) communication is needed. Formally,

Proposition 2.7.3 ([1, 222]). For any n ≥ 1 and δ < 1/3, R1-way
δ (Indexn) = Ω(n).

It is immediate that this is also tight as Alice can send her input to Bob.

Boolean hidden matching problem. In the boolean hidden matching problem (BHM),

denoted by BHMn, Alice is given a boolean vector x ∈ {0, 1}n where n = 2k (for some

integer k ≥ 1) and Bob gets a perfect matching M on n vertices, and a boolean vector

w ∈ {0, 1}n/2. Let Mx denote the length n/2 boolean vector (xu1 ⊕ xv1 , . . . , xun/2
⊕ xvn/2

)

where (u1, v1), . . . , (un/2, vn/2) are the edges of M (⊕ stands for addition modulo 2, i.e.,

the 2-bit XOR function). It is promised that either Mx = w or Mx = w. The goal of the

problem is for Bob to output Yes when Mx = w and No when Mx = w.

The BHM problem was originally introduced by Gavinsky et al. [153] to prove certain

separation between quantum and classical communication complexity. For our purpose, we

need the following one-way communication complexity lower bound for this problem.

Proposition 2.7.4 ([153]). For any even n ≥ 2 and δ < 1/3, R1-way
δ (BHMn) = Ω(

√
n).

It is easy to prove a matching O(
√
n) upper bound using Birthday paradox.

Boolean hidden hypermatching problem. In the boolean hidden hypermatching prob-

lem (BHH), denoted by BHHn,t, Alice is given a boolean vector x ∈ {0, 1}n where n = 2kt

(for some integer k ≥ 1) and Bob gets a perfect t-hypermatching M on n vertices, and

a vector w ∈ {0, 1}n/t. Let Mx be the boolean vector (
⊕

1≤i≤t xM1,i , . . . ,
⊕

1≤i≤t xMn/t,i
)

of length n/t where {M1,1,, . . . ,M1,t} , . . . ,
{
Mn/t,1, . . . ,Mn/t,t

}
are the edges of M (here

⊕ stands for addition modulo 2, i.e., the t-bit XOR function). It is promised that either

Mx = w or Mx = w. The goal of the problem is for Bob to output Yes when Mx = w and

No when Mx = w

It is easy to see that the boolean hidden matching problem is a special case of this

problem when t = 2, i.e., BHMn = BHHn,t. The boolean hidden hypermatching problem

was introduced by Verbin and Yu [295] for proving streaming lower bounds for various

problems in single-pass streams.

Proposition 2.7.5 ([295]). For any t ≥ 2, integer n = 2kt for some k > 0, and δ < 1/3,

R
1-way
δ (BHHn,t) = Ω(n1−1/t).
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One can prove tightness of this bound similar to Proposition 2.7.4.

All communication problems introduced above are “easy” when we consider protocols

that communicate more than one round. The following two problems are “hard” in the

most general two-party communication model where there is no limit on the number of

rounds of communication.

Set disjointness problem. In the Set Disjointness problem, denoted by Disjn, Alice and

Bob are given A,B ⊆ [n] and the goal is to output Yes if A ∩B = ∅ and No otherwise.

A first lower bound of Ω(
√
n) for disjointness was proved by Babai et al. [39]. This

bound was strengthened to Ω(n) by Kalyanasundaram and Schnitger [201], simplified by

the Razbarov [272], and further simplified (through the notion of information complexity)

by Bar-Yossef et al. [44], leading to the following result.

Proposition 2.7.6 ([201, 272, 44]). For any n ≥ 1 and δ < 1/3, Rδ(Disjn) = Ω(n).

We remark that further advances allowed the calculation of the communication com-

plexity of disjointness precisely, up to additive o(n) terms [68], or the correct dependence

on the advantage in probability of success over random guessing [72].

Gap hamming distance problem. In the gap hamming distance problem, denoted by

GHDn, Alice and Bob are given two sets A,B ⊆ [n] and the goal is to output:

GHDn(A,B) :=





Yes ∆(A,B) ≥ n/2 +√n
No ∆(A,B) ≤ n/2 +√n
⋆ otherwise

, (2.10)

where ⋆ means that the answer can be arbitrary; here, ∆(A,B) denotes the hamming

distance between A and B, i.e., the size of the symmetric difference of A and B.

The gap hamming distance was originally introduced by Indyk and Woodruff [188] for

proving streaming lower bounds and has since been studied extensively in the literature

(see [88] and references therein), leading to the following result.

Proposition 2.7.7 ([88]). For any n ≥ 1 and sufficiently small δ > 0, Rδ(GHDn) = Ω(n).

2.7.3. Multi-Party Communication Complexity

We now extend the previous definitions for two-party communication model to the multi-

party setting. The model we consider here is referred in the literature to as the multi-party

number-in-hand communication model with shared blackboard.
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Let P : X1 × . . .× Xk → Z be a k-ary relation. In this model, k parties P (1), . . . , P (k)

receive inputs x1, . . . , xk and their goal is to compute z ∈ P (x1, . . . , xk). In order to do so,

the parties need to communicate with each other. The communication proceeds in rounds.

In each round r, the players simultaneously write a message on a shared blackboard visible

to all parties. In a deterministic protocol, the message sent by any player P (i) in each round

can only depend on the private input of the player, i.e., xi, plus the messages of all players

in previous rounds, i.e., the content of the blackboard. In a randomized protocol, we further

allow the players to have access to both public and private randomness and the message of

players can depend on them as well.

For a protocol π, we use Π := (Π1, . . . ,Πk) to denote the transcript of the messages

communicated by the parties, i.e., the content of the blackboard. In addition to the k

parties, there exists an additional party called the referee or the coordinator which does not

have any input and is responsible for outputting the answer in the last round, solely based

on the content of the blackboard Π (and the public randomness).

The communication cost of a protocol π, denoted by ‖π‖, is the sum of worst-case length

of the messages communicated by players, i.e., ‖π‖ =
∑k

i=1 |Πi|, where |Πi| is worst-case

length of the message communicated by player P (i) over all choice of input and randomness.

Using this, we can define the communication complexity of a problem P as follows.

Definition 2.6 (Multi-Party Randomized Communication Complexity). For a relation

P : X1 × . . .× Xk → Z, integer r ≥ 1, and any δ ∈ (0, 1), the r-round randomized commu-

nication complexity of P with error probability δ, denoted by Rr-round
δ (P ), is the minimum

communication cost of any δ-error r-round protocol π for P .

We further consider per-player communication complexity which informally speaking

measures the maximum amount of communication done by any one player as opposed to

collective communication of all players. It is clear that per-player communication complexity

of a k-party problem is at least 1/k fraction of its communication complexity.

One can define distributional communication complexity for r-round protocols in this

model the same way as before. Moreover, it is straightforward to verify that Proposi-

tion 2.7.2 continues to hold for any number of rounds and parties.

Simultaneous Protocols

A special case of the multi-party communication model that we frequently revisit in this

thesis, is when only one round of communication happens, i.e., the simultaneous communi-

cation model. In this case, the parties receive x1, . . . , xk as before, but each party P (i) now

simply computes some function Mi(xi) of the input and send it directly to the referee or

the coordinator. The referee then outputs the answer using only M1(x1), . . . ,Mk(xk) (and
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the public randomness). We refer to 1-round protocols as simultaneous protocols.

Definition 2.7 (Multi-Party Simultaneous Communication Complexity). For a relation

P : X1 × . . . × Xk → Z, and any δ ∈ (0, 1), the simultaneous randomized communication

complexity of P with error probability δ, denoted by R
||
δ (P ), is the minimum communication

cost of any δ-error simultaneous protocol π for P .

One can see that for any P and δ, R
||
δ (P ) = R1-round

δ (P ), as the role of blackboard in

1-round protocols is unnecessary and can be ignored. As before, we can tailor all previous

definitions for the simultanous communication model in a straightforward way.

Remark 2.7.8. To facilitate our proofs throughout this thesis, when studying simultaneous

protocols, we sometimes need to give the referee an auxiliary input as well, which is jointly

distributed with the input of the k players. The referee’s answer then would be a function

of the k messages he receives as well as his input.

2.7.4. Applications to Streaming Lower Bounds

The similarity between the setting of (multi-party) communication complexity and the

distributed communication model we introduced in Section 1.1.2 is obvious and need no

further explanation. This allows us to prove lower bounds on the communication cost of

distributed protocols by studying their communication complexity. However, both models

of two-party and multi-party communication models introduced in this section are also

extremely useful for studying space complexity of streaming algorithms as we elaborate

more in this section.

Two-Party Communication Complexity and Insertion-Only Streams

Many connections between two-party communication complexity and space complexity of

streaming algorithms in insertion-only streams are by now standard facts and have been

studied since one of the earliest papers that introduced the streaming model [17]. For

completeness, we present two of such results that we use in this thesis.

Proposition 2.7.9 (Folklore; e.g. [17, 167]). Let P : X × Y → Z be a relation. For

any integer p ≥ 1 and δ > 0, any p-pass streaming algorithm that computes P on streams

A ∈ X ◦ Y (where ◦ denotes the concatenation operator on two consecutive parts of the

stream) with probability at least 1− δ requires Ω(1p) · Rδ(P ) space.

Proof. Let ALG be any p-pass streaming algorithm for P on streams in X ◦ Y with space

complexity s. We create the following two-party protocol π for P : X × Y → Z from ALG:

Alice runs ALG on her input x and send the content of the memory of the streaming
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algorithm to Bob as the message. As ALG is a streaming algorithm, Bob can continue

running ALG on his input y using only the memory content, and again send the memory

content back to Alice. This way, the players can simulate ALG on the stream x ◦ y using

O(p · s) bits of communication as the memory content of ALG never has size more than s

and they only need O(p) back and forth communication.

This results in a O(p · s) communication protocol for P with the same error probability

as ALG, hence s ≥ Ω(1p) · Rδ(P ) by definition.

Proposition 2.7.10 (Folklore; e.g. [17]). Let P : X ×Y → Z be a relation. For any integer

p ≥ 1 and δ > 0, any single-pass streaming algorithm that computes P on streams A ∈ X ◦Y
(where ◦ denotes the concatenation operator on two consecutive parts of the stream) with

probability at least 1− δ requires R
1-way
δ (P ) space.

Proof. The proof is identical to that of Proposition 2.7.9 using the fact that a single-pass

streaming algorithm would result in a one-way protocol for P .

Multi-Party Communication Complexity and Dynamic Streams

A by far more non-trivial connection between communication complexity and streaming

model was established in two beautiful results by Li et al. [230] and Ai et al. [14] by

providing an interesting characterization of dynamic streaming algorithms. We elaborate

more on this connection below.

All known algorithms for problems in dynamic streams are linear sketching algorithms

(recall the definition of linear sketching algorithms from Section 1.1.4). It was shown in [230]

that this is not just a coincidence: any single-pass streaming algorithm for computing

(approximately) any arbitrary function on multiplicity vector fA of a dynamic stream A

can be reduced to an algorithm which, before the stream begins, samples a matrix M

uniformly at random from a set of hardwired integer matrices, and then maintains the

linear sketch M · fA (mod q), where q = (q1, . . . , qr) is a vector of positive integers and r is

the number of rows of A. The space complexity of this linear sketching algorithm is only

larger from the original algorithm by an additive factor of the space required to sample M

and q (which is shown to be logarithmic in the dimension of the vector f in [230]).

It is a well-known fact that any linear sketching algorithm that requires at most p passes

of adaptive sketching can be implemented in the multi-party communication model with

p rounds of communication: each player simply computes the linear sketches on its input

and writes that on the shared blackboard; by linearity of the sketches, the players can then

combine these sketches and obtain a linear sketch of the whole input. This allows the players

to implement each round of adaptive sketching in one round of communication and compute
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the final answer. It is also easy to see that the per player communication cost of this new

algorithm is at most the size of the linear sketch. Combining this with the reduction of [14]

implies that if one can prove a lower bound on the per-player communication complexity of

a problem in the multi-party communication model, one also obtains a lower bound on the

space complexity of dynamic streaming algorithms; notice that since in the communication

model we can perform the sampling of sketching matrix M and q via public-coins, hence

free of communication charge, we do not even need to pay for the extra additive factor in

space in the reduction; we refer the interested reader to [14] for more details.

Proposition 2.7.11 ([230, 14]). Suppose that a p-pass randomized streaming algorithm

ALG solves a problem P on any dynamic stream A with probability at least 1− δ, and that

the space complexity of ALG depends only on the dimension of the frequency vector of the

stream A (and in particular not the length of the stream). Then, for any integer k ≥ 1,

assuming Pk : X1 × . . . × Xk → Z is a relation such that Pk(x1, . . . , xk) = P (fx1◦...◦xk)

(where ◦ denotes the concatenation operator on two consecutive parts of the stream), the

space complexity of ALG, denoted by s(ALG), is at least as large as the per-player p-round

communication complexity of Pk with error 2δ. In particular,

s(ALG) = Ω

(
1

p · k

)
· Rp-round

2δ (Pk).

A few remarks are in order. Firstly, we assume that the problem P in Proposition 2.7.11

is only a function of the frequency vector of the stream A and not the order in which the

items are being deleted or inserted. This is consistent with our definition of dynamic streams

and all problems we consider in this thesis satisfy this requirement, i.e., they are only a

function of the final state of the stream. Second, we assume that the space complexity of

streaming algorithm for P does not have a dependence on the length of the stream. Again,

this is a common assumption satisfied by all algorithms in the dynamic streaming model for

optimization problems; for instance, for graph problems, the space complexity of algorithms

is only a function of number of vertices, n, independent of the length of the stream. Finally,

we note that while originally [14] states this result only for constant p, it continues to hold

even when p is super-constant depending on the dimension of the frequency vector [300]

(regardless, the main application of this result for us is the case p = 1, i.e., between single-

pass algorithms and simultaneous communication complexity).

2.8. Information Complexity

Information complexity has emerged as an amazingly strong tool for studying various funda-

mental questions in communication complexity. This section introduces some of the central

concepts from information complexity used in this thesis. For a more detailed overview of
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information complexity, we refer the reader to [66, 297].

2.8.1. Two-Party Information Complexity

Consider the same setting of two-party communication model introduced in Section 2.7.1.

Rather than measuring the communication cost of a protocol π, we are now interested in

measuring the “information” revealed by this protocol, which informally speaking captures

the (average) amount of additional information that Alice and Bob learn about each others

inputs from the protocol π. We formalize this in the following definition.

Definition 2.8 (Internal Information Cost [89, 44, 46]). The internal information cost of

a protocol π on inputs chosen according to some distribution µ on X × Y is given by:

ICint
µ (π) := I(X ;Π,Rpub | Y) + I(Y ;Π,Rpub | X).

Here (X,Y) ∼ µ denotes the joint input of Alice and Bob, Π is the random variable for the

transcript of the protocol, and Rpub denotes the public coins.

Two remarks are in order. Firstly, the information cost of a protocol π depends on the

prior distribution µ, as the mutual information between the transcript Π of the protocol

and the inputs depends on the prior distribution on the inputs. Secondly, we only consider

public coins in the cost of the protocol not the private coins (informally speaking, only

public coins can reveal information to the other player after conditioning on the messages).

The above notion of information cost is defined as “internal” information cost as it

measures the amount of information revealed to players (who already know some information

about the other player’s input as the input maybe correlated in general). Another useful

notion of information cost is “external” information cost which informally speaking measures

the amount of information revealed to an external observer who can only sees the transcript

of the protocol and not the input to players. Formally,

Definition 2.9 (External Information Cost [89, 44, 46]). The external information cost of

a protocol π on inputs chosen according to some distribution µ on X × Y is given by:

ICext
µ (π) := I(X,Y ;Π,Rpub).

Here (X,Y) ∼ µ denotes the joint input of Alice and Bob, Π is the random variable for the

transcript of the protocol, and Rpub denotes the public coins.

This latter definition is more useful to us when we are working with one-way protocols.

Remark 2.8.1. In the context of information complexity, we always consider protocols that
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have access to both private- and public-coins even against a prior distribution on

inputs. This may seem counterintuitive at first glance: in randomized communication

complexity, we could ignore private-coins and simply use public-coins to simulate them;

similarly in distributional setting, by the easy direction of Yao’s minimax principle (Propo-

sition 2.7.2) we could ignore all randomness by fixing the randomness of the protocol to

one particular choice of random bits. These arguments fail however when one considers

information complexity. The reason is that it is plausible that private-coins are useful in

“hiding” information about the input and hence switching them with public-coins or fixing

them in the distributional setting would in principle dramatically increase the information

cost of the protocol (see [297] for a simple example when this actually happens).

Before we move on, we present a simple proposition that allows us to simplify the role

of public-coins in measuring the information costs of the protocols.

Proposition 2.8.2. For any protocol π and distribution µ on X × Y:

ICint
µ (π) = I(X ;Π | Y,Rpub) + I(Y ;Π | X,Rpub), ICext

µ (π) = I(X,Y ;Π | Rpub).

Proof. We prove this for external information cost; the same exact argument applied to

each term in internal information cost proves the first part as well. By definition,

ICext
µ (π) = I(X,Y ;Π,Rpub) =

Fact 2.6.1-(6)
I(X,Y ;Rpub) + I(X,Y ;Π | Rpub)

= 0 + I(X,Y ;Π | Rpub),

where the last equality is because Rpub ⊥ X,Y and by Fact 2.6.1-(2).

As any bit communicated by players can never reveal more than one bit of information,

the communication cost of a protocol always upper bounds it information cost.

Proposition 2.8.3 (cf. [74]). For any protocol π and any distribution µ on X × Y:

ICint
µ (π) ≤ ICext

µ (π) ≤ ‖π‖.

Proof Sketch. For intuition, we prove the right inequality in above proposition:

ICext
µ (π) =

Proposition 2.8.2
I(X,Y ;Π | Rpub) ≤ H(Π | Rpub)

≤
Fact 2.6.1-(3)

H(Π) ≤
Fact 2.6.1-(1)

log |supp(Π)| ≤ ‖π‖.
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One can now use the information cost of protocols to define information complexity of

a problem (with respect to a distribution µ) by taking the minimum information cost of

a δ-error protocol for this problem on µ. We avoid presenting this definition formally due

to some subtle technical issues that need to be addressed which lead to multiple different

but similar-in-spirit definitions1. As such, we only use the term information complexity in

informal discussions and in formal statements always use information cost directly.

Proposition 2.8.3 provides us with a strong tool for proving communication complexity

lower bounds by lower bounding the information cost of the protocols instead of their

communication cost. This approach turns out to be quite useful as information cost exhibits

“nicer” properties than communication cost in general (we give an example in next section).

We finish this section by remarking that in the one-way model, the information cost of

protocols can be simplified further as the messages do not depend on Bob’s input.

Proposition 2.8.4. For any one-way protocol π on distribution µ over X × Y:

ICint
µ (π) = I(X ;Π | Y,Rpub), ICext

µ (π) = I(X ;Π | Rpub).

Proof. By Proposition 2.8.2, we have,

ICint
µ (π) = I(X ;Π | Y,Rpub) + I(Y ;Π | X,Rpub) = I(X ;Π | Y,Rpub),

ICext
µ (π) = I(X,Y ;Π | Rpub) =

Fact 2.6.1-(6)
I(X ;Π | Rpub) + I(Y ;Π | X,Rpub) = I(X ;Π | Rpub),

where in both equations we used the fact that I(Y ;Π | X,Rpub) = 0 because π is a one-way

protocol and hence Π is only a function of X and Rpub independent of Y (and hence by

Fact 2.6.1-(2) its conditional mutual information with Y is zero).

2.8.2. Direct Sum and Additivity of Information Cost

An important notion in complexity theory is that of direct sum. Informally speaking, direct

sum results assert a lower bound on the complexity of solving n copies of a problem P in

parallel, in terms of the cost of a single copy. Let us define this more formally in the context

of communication complexity.

Let P : X ×Y → Z be any relation and Pn : X n×Yn → Zn denote the relation which

maps the tuple ((x1, . . . , xn), (y1, . . . , yn)) to (P (x1, y1), . . . , P (xn, yn)). How “harder” is to

solve Pn compared to P? For instance, can we relate, say, the deterministic communication

complexity of Pn, i.e., D(Pn), to that of P , i.e., D(P )? Certainly D(Pn) ≤ n · D(P ) as we
1An example of such issue: does the protocol need to be δ-error only on the distribution µ or is it δ-error

on all inputs and only the information cost is measured over µ? Both definitions make sense and depending
on the application one may need to work with one or another as we shall do in different places of this thesis.
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can simply run the best protocol for P on every coordinates of Pn; can we do any better?

Generally speaking, direct sum results aim to show that this naive protocol is essentially

the best possible, i.e., the cost of solving n copies of P grows linearly with n. To quote [297]:

“The value of such a result is clear: a direct sum result, together with a lower bound on

the (easier-to-reason-about) sub-problem, yields a lower bound on the composite problem

in a “black-box” fashion (a method also known as hardness amplification)”.

Reviewing the vast literature on direct sum results (even within the scope of commu-

nication complexity) is far out of the scope of the current thesis; for this, we refer the

interested reader to [211, 134, 210, 89, 21, 224, 219, 46, 190, 75, 151, 297] and references

therein. We only mention in passing that a recent breakthrough result of Ganor et al. [151]

(see also [270] for a simplified proof) rules out the existence of a tight direct sum result for

randomized communication complexity (see [151] for details).

Perhaps the single most remarkable property of information cost is that it is a fully

additive measure over composition of tasks; in other words, information complexity, unlike

communication complexity, indeed admits a tight direct sum result.

Proposition 2.8.5 (cf. [44, 46, 74, 297]). Let P : X × Y → Z be a relation, µ be a

distribution on X × Y and µn be the distribution on X n × Yn obtained by picking each

coordinate independently from µ. Suppose πn is a δ-error protocol for Pn on µn for δ > 0.

Then, there exists a δ-error protocol π for P on µ such that ‖π‖ = ‖πn‖ but

ICint
µ (π) ≤ 1

n
· ICint

µn(π
n).

A word of interpretation is in order. In Proposition 2.8.5, we use the protocol πn for

Pn to achieve a protocol π for P with the same error probability and communication cost.

This part is not at all interesting on its own; of course a protocol that solves n copies of

P , i.e., Pn can also solve one copy of it with the same cost and error probability. The

interesting part however is that this new protocol has a much smaller information cost

than the original protocol, i.e., by a factor of n. Hence, we obtain a protocol for P which

communicates “a lot” while revealing a “tiny” amount of information (on average) about

the input. Using this we can easily prove a direct sum result for information complexity:

if solving P requires protocols with internal information cost at least I, then solving Pn,

i.e., n parallel copies of P , requires at least n · I information cost, i.e., n times larger. Even

though we do not use this proposition directly in this thesis, we use many different simple

or not-so-simple extensions of it tailored to the specific problem at hand to prove various

information complexity and ultimately communication complexity lower bounds.
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Part I

Graph Optimization on Massive

Graphs
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Chapter 3

Maximum Matching in the Streaming Model

Starting from this chapter, we delve into details of our own contributions in this thesis and

present our results and techniques developed along the way to prove these results. We begin

with our impossibility results for maximum matching problem in the streaming model in

this chapter. Throughout this chapter we solely focus on single-pass streaming algorithms.

The materials in this chapter are based on two papers [35, 33] with additional simplifications

and details along with some previously unpublished results.

As stated earlier in Section 1.2.1, graph optimization constitutes one of the most active

area of research on streaming algorithms. In particular, the maximum matching problem,

the focus of this chapter, has been studied extensively in this model [241, 139, 125, 130,

160, 221, 311, 11, 8, 170, 204, 205, 110, 102, 242, 9, 131, 220, 35, 101, 83, 244, 267, 33, 29].

Despite this, several fundamental questions regarding the complexity of this problem in

graph streams have remained unresolved. In particular,

(i) How well can we approximate the maximum matching problem in a single-pass over a

dynamic streams? (cf. the “List of Open Problems in Sublinear Algorithms” [59])

A straightforward 2-approximation single-pass algorithm in O(n) space over insertion-

only streams has been known for over a decade (by computing a maximal matching).

However, no non-trivial single-pass streaming algorithm using space o(n2) was pre-

viously known. This is in sharp contrast to most other graph problems that admit

algorithms with similar guarantees in both insertion-only and dynamic streams (as

discussed in Section 1.2.1).

(ii) Can we estimate the size of a maximum matching in a space strictly smaller than

what is needed for finding edges of an approximate matching? In general, what is

the space-approximation tradeoff for estimating the maximum matching size in graph

streams? (cf. [131, 244, 205])

Previously, it was known that achieving better than e/(e− 1)-approximation to max-

imum matching size requires nΩ(1/ log logn) [204, 160, 205], while getting (1 + ε)-

approximation requires up to n1−O(ε) space [131, 83] (these bounds hold for both

insertion-only and dynamic streams). No super-linear in n lower bounds on space

or super-constant lower bounds on approximation were known previously. On the

other hand, the only existing non-trivial algorithm is a folklore that an O(
√
n)-

approximation can be obtained in polylog(n) space even in dynamic streams. We

note that other algorithms that use o(n) space for this problem also exist, but they
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only work under certain conditions on the input: either the edges are presented in a

random order [205] or the input graph has bounded arboricity [131, 101, 83, 244].

We address these fundamental questions from both upper bound and lower bound ends

in this chapter. In particular, we resolve the space-approximation tradeoff for maximum

matching in single-pass over dynamic streams, hence fully settling the first open question

above. Our results suggest that to even achieve a very weak approximation ratio of no(1)

to the maximum matching problem, an almost quadratic space of n2−o(1) is needed, which

is in sharp contrast to complexity of this problem in insertion-only streams.

We further provide a host of new upper and lower bounds on space complexity of

estimating the size of a maximum matching in both insertion-only and dynamic streams.

Our results show that while the problem of matching size estimation is provably easier than

the problem of finding an approximate matching, the space complexity of the two problems

starts to converge together rapidly as the accuracy desired in the computation approaches

near-optimality. In particular, we establish both the first super-linear space lower bound

(in number of vertices) and the first super-constant approximation lower bound for the

matching size estimation problem. A well-known connection between matching size and

matrix rank allows us to carry our lower bound results to the problem of estimating rank of

a matrix in the streaming model, and we show that essentially quadratic space is necessary

to obtain a near-optimal approximation of matrix rank.

HighLights of Our Contributions

In this chapter, we will establish:

• Tight upper and lower bounds on the space needed to find an approximate matching

in dynamic streams (Sections 3.4 and 3.5).

• Lower bounds on the space needed to estimate maximum matching size to within very

large approximation factors in dynamic streams (Section 3.6).

• Lower bounds on the space needed to estimate maximummatching size very accurately

in both insertion-only streams and dynamic streams (Section 3.7).

Along the way, we also discuss further applications of our impossibility results to other

models of computation such as MPC and distributed communication model.

3.1. Background

Recall that in an insertion-only streams, the edges of an input (multi-)graph are presented

one by one in a stream, while in dynamic streams, the stream contains both insertions and

deletions of an edges of a (multi-)graph and the goal is to solve the problem on the set of

edges present at the end of the stream.
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Maximum matching is among the most well-studied problems in the graph streaming lit-

erature. For single-pass insertion-only streams, it is known that any exact algorithm for the

maximum matching problem (even for matching size problem) requires Ω(n2) space [139].

It is also easy to compute a 2-approximate matching using Õ(n) space in insertion-only

streams: simply maintain a maximal matching during the stream; here n denotes the

number of vertices in the input graph. This can be done similarly for computing an α-

approximate matching in Õ(n/α) space for any α ≥ 2. These are the best o(n2) space

algorithms known for the maximum matching problem. On the lower bound side, it is

shown in [204, 160] that computing better than a e/(e− 1)-approximate matching requires

n1+Ω(1/ log logn) space.

Despite the huge body of work on the matching problem in insertion-only streams, for

dynamic graph streams, no non-trivial single-pass streaming algorithm using space o(n2)

was known previously. Indeed, the only previous result concerning matchings in the single-

pass dynamic graph streams is the recent paper by Chitnis et al. [102], which provides an

algorithm for computing a maximal matching of size k using Õ(nk) space. However, for

multi-pass dynamic graph streams, Ahn and Guha [9] provide a (1+ε)-approximation algo-

rithm for the weighted non-bipartite matching problem using O(p/ε) passes with Õ(n1+1/p)

space (see also [242]).

For the seemingly easier problem of estimating the maximum matching size, the result

of [204, 160] can be modified to show that computing better than a e/(e−1)-approximation

for matching size requires nΩ(1/ log logn) space (see also [205]). It was shown later in [131] that

computing better than a 3/2-approximation requires Ω(
√
n) bits of space. More recently,

this lower bound was extended by [83] to show that computing a (1+ε)-estimation requires

n1−O(ε) space. On the other hand, the only existing non-trivial algorithm is a folklore that

an O(
√
n)-approximation can be obtained in polylog(n) space even in dynamic streams

(see [33] Appendix A). We note that other algorithms that use o(n) space for this problem

also exist, but they only work under certain conditions on the input: either the edges are

presented in a random order [205] or the graph has bounded arboricity [131, 101, 83, 244].

3.2. Our Results and Techniques

We say that an algorithm α-approximates the maximum matching problem iff it finds an

actual matching (i.e., the set of edges) which is within an α factor of the maximum matching.

An algorithm is said to α-estimates the maximum matching size, iff it outputs a number

which is an α-approximation to the size of the maximum matching. In the following, we

present our results for α-approximation and α-estimation separately.
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3.2.1. Approximation Algorithms for the Maximum Matching Problem

We resolve the space complexity of dynamic streaming algorithms for approximating max-

imum matchings by proving tight upper and lower bounds on their space requirement.

Result 3.1. There exists a single-pass streaming algorithm that outputs an α-approximate

matching w.h.p. in dynamic graph streams, while using (i) Õ(n2/α3) space for α ≤ √n
and (ii) Õ(n/α) space for α ≥ √n.

Our algorithm in Result 3.1 is a sampling based algorithm that takes advantage of

the well-known ℓ0-samplers in dynamic stream. The algorithm maintains a set of (edge)

samplers that are coordinated in such a way that the sampled edges are “well-spread” across

different parts of the graph, and hence contain a large matching. We point out that for

weighted graphs with poly(n)-bounded weights, the Crouch-Stubbs technique [110] can be

used to obtain a similar result for approximating weighted matchings, while increasing the

space complexity by a factor of O(log n).

Note that Ω(n/α) is always a lower bound on the space requirement of any α-approximation

algorithm for matching simply since the output can be this large whenever the optimal

matching is of size Ω(n). Therefore, our algorithm immediately achieves optimal space

requirement (up to log-factors) when α ≥ √n. More interestingly, we also show a space

lower bound of Ω(n2/α3) for α ≤ √n. Since n2/α3 ≥ n/α for any α ≤ √n, our Result 3.1
achieves the optimal space bound (up to log-factors) for any approximation ratio.

Result 3.2. For any α ≤ √n, any randomized single-pass streaming algorithm that out-

puts an α-approximate matching in dynamic graph streams with a constant probability

requires Ω(n2/α3) space in the worst case.

As a corollary of Result 3.2 (by setting α = no(1)), we obtain that even a very weak ap-

proximation ratio of no(1) for maximum matching problem requires almost-quadratic space

of n2−o(1) (recall that O(n2) is a trivial upper bound on the space complexity of any graph

problem in graph streams). This resolves an open problem posed at the Bertinoro workshop

on sub-linear and streaming algorithms in 2014 (see the “List of Open Problems in Sublin-

ear Algorithms” [59]), regarding the possibility of having a constant factor approximation

algorithm for the maximum matching in sub-quadratic space in dynamic streams.

As was shown previously in Proposition 2.7.11, the results in [230, 14] imply that to

establish Result 3.2, it suffices to prove the same lower bound on the per-player communica-

tion complexity of simultaneous protocols for the maximum matching problem. We establish

such a lower bound for simultaneous protocols following the line of work by [160, 204] on

using constructions based on Ruzsa-Szemerédi graphs (RS graphs) [279], which are graphs

that can be decomposed into large-size induced matchings (recall their exact definition from
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Section 2.3). However, our focus is on simultaneous protocols (instead of one-way proto-

cols studied previously) and polynomial approximation regime (instead of constant). We

provide a new approach for this setting that benefits from a very dense construction of RS

graphs [18] and hence bypass the n1+Ω(1/ log logn) barrier in the aforementioned work on the

value of the space lower bound.

Remark 3.2.1. Our Result 3.2 improves upon our previous published result in [35] (see

also [34]) by a factor of no(1) in the space complexity, at a cost of increasing multiplicity of

edges in the underlying graph by a factor of no(1).

We formalize Results 3.1 and 3.2 in Sections 3.4 and 3.5, respectively.

3.2.2. Estimation Algorithms for the Maximum Matching Size Problem

One can prove that α-estimating maximum matching size is strictly easier than finding

an α-approximate matching: There exist single-pass streaming algorithms that for any

2 ≤ α ≤ √n, w.h.p., output an α-estimation of the maximum matching size in insertion-

only streams using Õ(n/α2) space and in dynamic streams using Õ(n2/α4) space, respec-

tively [33]. This provides a non-trivial separation between approximate estimation and

approximate computation of matchings in both dynamic and insertion-only streams, which

in turn suggests that to prove lower bounds for the estimation problem, new ideas are

needed as we do in this part.

Our first lower bound result concerns computing an α-approximation of the maximum

matching size in dynamic streams for any α ≥ 1, not necessarily a constant. Recall that a

graph G has arboricity ν if the set of edges in G can be partitioned into at most ν forests.

Result 3.3. Any randomized single-pass streaming algorithm that computes an α-

estimation of maximum matching size with a constant probability in dynamic streams

requires Ω(
√
n/α2.5) bits of space. This bound holds even if the input graph is both

sparse and has arboricity O(α). Moreover, if the input graph is allowed to be dense,

then Ω(n/α2) bits of space is necessary.

The lower bounds in Result 3.3 are the first non-trivial space lower bounds for super-

constant approximation algorithms for matching size estimation. Obtaining space lower

bounds for polylog(n)-approximation of matching size has been posed as an open problem

by Kapralov et al. [205], who also mentioned that “existing techniques do not seem to lend

easily to answer this question and it will be very useful (quite possibly for other related

problems) to develop tools needed to make progress on this front”. Our Result 3.3 makes

progress on this question in dynamic streams.

An interesting aspect of our lower bound in Result 3.3 is that it holds even for bounded
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arboricity graphs. There is an active line of research on estimating matching size of bounded

arboricity graphs in graph streams [101, 83, 131, 244], initiated by Esfandiari et al. [131].

The state-of-the-art (at the time our results were established) is an O(1)-approximation

in Õ(n4/5) space for dynamic streams in bounded-arboricity graphs [101, 83, 244] (see

Section 3.2.3 for subsequent results).

Our second lower bound result concerns computing a (1 + ε)-approximation of the

maximum matching size in both insertion-only streams and in dynamic streams. In the

following, let RS(n) denote the maximum number of edge-disjoint induced matchings of size

Θ(n) in any n-vertex graph (recall the definition of RS(n) from Section 2.3).

Result 3.4. Any (randomized) single-pass streaming algorithm that with a constant

probability outputs a (1 + ε)-estimation of the maximum matching size in insertion-

only streams requires RS(n) · n1−O(ε) space. The lower bound improves to n2−O(ε) for

dynamic streams.

Since RS(n) is known to be at least nΩ(1/ log logn) [143], Result 3.4 immediately implies

that no Õ(n · poly(1/ε))-space algorithm can output a (1 + ε)-approximation of matching

size in insertion-only streams. Interestingly, it is known that by allowing multiple passes

over the stream, a (1+ ε)-approximate matching (as opposed to only its size) can be found

in Õ(n ·poly(1/ε)) space, even in dynamic streams and even for the weighted version of the

problem [9, 8] (see also [242]).

Our lower bounds in Result 3.4 are the first super linear (in n) space lower bounds for

estimating matching size in graph streams. An interesting implication of these lower bounds

is that while the problem of matching size estimation is provably easier than the problem of

finding an approximate matching (by our results in [33]), the space complexity of the two

problems starts to converge together rapidly as the accuracy desired in the computation

approaches near-optimality.

Schatten p-norms. The Schatten p-norm of a matrix A is defined as the ℓp-norm of the

vector of the singular values of A (see [232] for more detail); in particular, the case of p = 0

corresponds to the rank of the matrix A. Schatten norms and rank computation have been

previously studied in the streaming and sketching models [104, 83, 232, 229, 233, 231]. It is

shown that exact computation of matrix rank in data streams requires Ω(n2) space [104, 231]

(even allowing multiple passes), and (1 + ε)-approximation requires n1−O(ε) space [83]; the

latter result was recently extended to all Schatten p-norms for odd values of p [232].

It is well-known that computing the maximum matching size is equivalent to computing

the rank of the Tutte matrix [292, 237]. Consequently, all our lower bounds stated for

matching size estimation also hold for matrix rank computation. This in particular implies
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an Ω(
√
n) space lower bound for any constant approximation of rank in sparse matrices

and a near-optimal n2−O(ε) space lower bound for (1+ ε)-approximation in dense matrices,

answering an open question of Li and Woodruff [232].

3.2.3. Subsequent Work

Approximation Algorithms. Independently and concurrently to our work on approxi-

mating matchings in dynamic graph streams published in [35] (see [34] for an earlier version

of our work), Chitnis et al. [101] and Konrad [220] also obtained new results on this prob-

lem. Chitnis et al. [101] also developed an α-approximation algorithm in dynamic graph

streams using Õ(n2/α3) space for α ≤ √n (similar to first part of our Result 3.1). Although

both the algorithm of [101] and our algorithm are based on sampling, our result is somewhat

stronger in that (i) we also obtain an optimal space bound for the regime α >
√
n, and (ii)

we achieve an update time of polylog(n) in contrast to an update time of O(n) achieved

by [101]. Konrad [220] gives an upper bound of Õ(n2/α2) on space for α-approximation

algorithm and a lower bound of Ω(n3/2/α4). Both our upper and lower bound results (Re-

sults 3.1 and 3.2) are stronger than the results established in [220]. We point out that while

at a high level, the lower bound approach used in our work and the one used in [220] are

similar, the constructions and proof techniques are quite different.

Estimation Algorithms. After our work on estimating maximum matching size was

published in [33], new algorithms for estimating the maximum matching size in bounded

arboricity graphs were developed in [107, 245], culminating in an O(ν)-approximation to the

size of maximum matching in graphs with arboricity ν in only O(log n) space in insertion-

only streams, and Õ(n2/3) space in dynamic streams. Note that our Result 3.3 (first part)

rules out o(ν)-approximation in o(
√
n) space in graph with arboricity ν in dynamic streams.

3.3. Preliminaries

ℓ0-Samplers. We use the following powerful tool developed in the streaming literature

for performing sampling in a dynamic stream.

Definition 3.1 (ℓ0-sampler [148]). An ℓ0-sampler is an algorithm which given access to a

dynamic stream A with a d-dimensional frequency vector fA, either outputs FAIL or outputs

an index i ∈ [d], where i is chosen uniformly at random from the support of fA.

We use ℓ0-samplers to recover an edge between a pre-defined set of vertices, if one exists.

Lemma 3.3.1 ([195]). For any 0 < δ < 1, there is an implementation of ℓ0-sampler for

vectors in Rn, which fails with probability at most δ, using O(log2 n · log (δ−1)) bits of space.
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3.3.1. Boolean Hidden Hypermatching Problem

Recall the boolean hidden hypermatching problem (BHH) from Section 2.7.2. In this prob-

lem, Alice is given a string x ∈ {0, 1}n, Bob is given a t-hypermatching M on vertices [n]

and a vector w ∈ {0, 1}n/t, and needs to determine whetherM ·x = w (mod 2) orM ·x = w

(mod 2). The following is a hard distribution for BHHn,t used in [295]:

The distribution D for BHHn,t.

• Alice: The input to Alice is a vector x ∈ {0, 1}n chosen uniformly at random.

• Bob: The input to Bob is a perfect t-hypermatchingM chosen uniformly at random

and a boolean vector w such that, w.p. 1/2, w =Mx and w.p. 1/2, w =Mx.

Proposition 3.3.2 (Distributional Communication Complexity of BHHn,t [295]). For any

t ≥ 2, suppose n = 2kt for some integer k ≥ 1, and δ ∈ (0, 1/2). Let γ := 1
2 − δ; then,

D
1-way
D,δ (BHHn,t) = Ω

(
γ · n1−1/t

)
.

We point out that the communication lower bound for BHHn,t stated in [295] (and

similarly for BHMn stated in [153]), has a dependence of γ2 instead of γ; however, obtaining

the linear dependence on γ is straightforward and we omit the details (see our paper [33]).

For our application, we need a (stronger) lower bound on the information complex-

ity of BHHn,t rather than its communication complexity. This result follows from those

of [295, 153] with proper modifications. One way to prove this result is to use the message

compression technique of [191] for bounded-round communication protocols (as generally

speaking, while there is an exponential separation between information complexity and com-

munication complexity [151, 152, 270], for bounded-round communication protocols it can

be shown that these two measures are asymptotically the same (ignoring the dependence

on error probability)); see also our paper [33] for a self-contained proof.

Proposition 3.3.3 (Information Complexity of BHHn,t). For any t ≥ 2, any n = 2kt for

some integer k ≥ 1, and any constant δ < 1/2, the information cost of any δ-error one-way

protocol π for BHHn,t on distribution D is ICext
D (π) = Ω

(
n1−1/t

)
.

BHH and matching size estimation. For our purpose, it is more convenient to work

with a special case of the BHHn,t problem, namely BHH0
n,t where the vector w = 0n/t and

hence the goal of Bob is simply to decide whether Mx = 0n/t (Yes case) or Mx = 1n/t (No

case). We define BHM0
n := BHH0

n,2 (similar to BHMn; see Section 2.7.2). It is known that

(see, e.g. [295, 83, 232]) any instance of the original BHHn,t problem can be reduced to an
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instance of BHH0
2n,t deterministically and with no communication between the players.

Corollary 3.5. For any n = 2kt (for some integer k ≥ 1), there exists a distribution DBHH

for BHH0
n,t such that:

• For any δ ∈ (0, 1) and γ := 1
2 − δ, D

1-way
DBHH,δ

(BHH0
n,t) = Ω(γ · n1−1/t).

• For any constant δ < 1/2, and any δ-error one-way protocol π for BHH0
n,t on distri-

bution DBHH, IC
ext
DBHH

(π) = Ω(n1−1/t).

• Alice’s input X ∼ DBHH is supported on boolean vectors x ∈ {0, 1}n with ‖x‖0 = n
2 .

The BHH0
n,t problem has been used previously in [131, 83] to prove lower bounds for

estimating maximum matching size in data streams. We briefly describe this connection.

The following reduction was first proposed by [83]. Given an instance (x,M)1 of BHH0
n,t,

we create a graph G(V ∪W,E) with |V | = |W | = n as follows:

• For any xi = 1, Alice adds an edge between vi and wi to E.

• For any hyperedge e in the t-hypermatchingM, Bob adds to E a clique between the

vertices wi where i is incident on e.

The following claim, proven originally by [83], establishes the correctness of this reduc-

tion. For the sake of completeness, we provide a simple proof this claim here.

Claim 3.3.4 ([83]). Suppose G(V ∪W,E) is the graph obtained from an instance (x,M)

of BHH0
n,t (for an even integer t) with the property that ‖x‖0 = n/2;

• if Mx = 0n/t (i.e., Yes case), then MM(G) = 3n
4 ,

• if Mx = 1n/t (i.e., No case), then MM(G) = 3n
4 − n

2t .

Recall that MM(G) denotes the maximum matching size in G.

Proof. Denote by M∗ a maximum matching in G. Since the vertices in V all have degree

one, without loss of generality, we can assume all edges in V ×W belong to M∗, and we

only need to consider the maximum matching size between the remaining vertices. Since the

remaining vertices in V all have degree 0, we only need to consider the remaining vertices

in W (and n/2 vertices in W remains since ‖x‖0 = n
2 ).

In the Yes case, for each hyperedge e, the clique created by e has t vertices, and even

number of these vertices will be matched by edges in V ×W . Since t is even, even number

of the vertices of the clique remain. Since there is still a clique between these remaining

1In order to distinguish between matchings and hypermatchings, when not clear from the context, we
use M instead of M to denote a hypermatching.
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(a) Alice’s input. (b) Bob’s input. (c) Yes case. (d) No case.

Figure 2: Illustration of the reduction in Claim 3.3.4 when t = 2.

vertices, there is a matching that matches all of them, and hence has size n
2 + 1

2 · n2 = 3n
4 .

In the No case, for each hyeredge e, the clique created by e has odd number of vertices

remained. Therefore, for every hyperedge, one vertex will be left unmatched. Since there

are n
t hyperedges, MM(G) ≤ n

2 + 1
2

(
n
2 − n

t

)
= 3n

4 − n
2t . See Figure 2 for an illustration.

3.4. An α-Approximation Algorithm for Matching

In this section, we establish the following theorem, formalizing Result 3.1.

Theorem 3.6. There exists a single-pass streaming algorithm that outputs an α-approximate

matching w.h.p. in dynamic graph streams, while using (i) Õ(n2/α3) space for α ≤ √n and

(ii) Õ(n/α) space for α ≥ √n. Moreover, the algorithm has polylog(n) update time for

each edge insertion/deletion.

Without loss of generality, we make the following assumptions. First, we assume that

the input graph is bipartite; otherwise by applying the standard technique of choosing a

random bipartition of the vertices upfront (using a pairwise independent hash function) and

only considering edges that cross the bipartition, we can make the graph bipartite, while

increasing the approximation ratio by a factor of 2. Moreover, we assume that the algorithm

is provided with a value õpt that is a 2-approximation of opt := MM(G), i.e., the size of a

maximum matching in G. This is without loss of generality, since we can run our algorithm

for O(log n) different estimates of opt in parallel and output the largest matching among

the matchings found for all estimates. We further assume our goal is to output an O(α)-

approximation not exactly an α-approximation; a simple rescaling of parameters extend the

result to latter case as well. Finally, to simplify the analysis, we can assume opt ≥ 103 · α,
since otherwise a single edge is an O(α)-approximation of the maximum matching, which

can be obtained by maintaining an ℓ0-sampler over all edges in the graph.

At a high level, our algorithm randomly (using pairwise independent hash functions)
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partitions the vertices on each side into Θ(opt/α) groups. Then, for each group on the left,

it chooses a subset of Õ(opt/α2) groups on the right uniformly at random and maintain

one ℓ0-sampler between the left group and each chosen group on the right. At the end of

the stream the algorithm samples one edge from each ℓ0-sampler and computes a maximum

matching of these edges. Formally,

DynamicStreamMatching(G, õpt). A single-pass dynamic stream algorithm for computing

an α-approximate matching.

Input: A dynamic graph stream defining a bipartite graph G(L,R,E) with n vertices

on each side, and a 2-approximation õpt of the maximum matching size opt := MM(G).

Output: A matching M with size Ω(opt/α).

• Pre-processing:

1. Let γ :=
⌈
õpt
α

⌉
and β := 100

⌈
õpt
α2

⌉
· log n.

2. Create two collections L and R, each containing γ sets (called groups). Create two

pairwise independent hash functions hL : L 7→ L and hR : R 7→ R. Each vertex

u ∈ L (resp. v ∈ R) is assigned to the group hL(u) ∈ L (resp. hR(v) ∈ R).
3. For each Li ∈ L, assign β groups in R to Li chosen independently and uniformly

at random with replacement. For each Rj assigned to Li, we say Rj is an active

partner of Li and (Li, Rj) form an active pair.

• Streaming updates:

∗ For each active pair (Li, Rj), maintain an ℓ0-sampler over the edges between the

vertices assigned to Li and Rj .

• Post-processing:

∗ Compute a maximum matching over the edges sampled from the ℓ0-samplers.

We first note that in the following, whenever we use ℓ0-samplers, we always apply

Lemma 3.3.1 with parameter δ = n−3. Since the number of ℓ0-samplers used by our

algorithm is bounded by O(n2), with high probability, none of them will fail. Hence we will

not explicitly account for the probability of ℓ0-samplers failure in our proofs.

DynamicStreamMatching stores two pairwise independent hash functions hL and hR to

assign vertices to their groups, which requires O(log n) bits of space, the identities of all

active pairs, which requires Õ(γ · β) bits, and O(γ · β) ℓ0-samplers for the active pairs

during the stream, where each requires O(log3 n) bits (Lemma 3.3.1). Hence, the total
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space complexity of DynamicStreamMatching is:

Õ(γ · β) =




Õ(n2/α3) if α ≤ √n
Õ(n/α) otherwise

,

where we used the obvious bound of õpt = O(n) and that β = O(log n) when α >
√
n.

Moreover, for any update on any edge (u, v), we apply hL on u and hR on v to identify the

groups they belongs to, and update the ℓ0-sampler for the edges between the groups hL(u)

and hR(v) if they form an active pair. Therefore, the update time is polylog(n).

We now prove the correctness of the algorithm. We begin by introducing some notation.

Notation. Fix a maximum matching M∗ in G (of size opt). We say a vertex v is in M∗

if v is matched by M∗. For any group Li ∈ L, (resp. Rj ∈ R) each edge in M∗ incident

on Li (resp. Rj) is referred to as a matching edge of this group. We say an (Li, Rj) pair is

matchable if Li and Rj share at least one matching edge.

The general idea behind the proof is to treat each group as a single vertex (which forms a

new graph G), and to show that the ℓ0-samplers we stored for G contain an O(1)-approximate

matching for G which in turn leads to an O(α)-approximate matching in G. More specifi-

cally, we show that there exists a subset of the groups in L and R where in the subgraph of

G induced by this subset, each vertex has bounded degree while the total number of edges is

sufficiently large. Then, using the following well-known fact (which we give a simple proof

here for completeness), we can conclude that Algorithm DynamicStreamMatching outputs a

large matching in G, which will be an O(α)-approximate matching in G.

Proposition 3.4.1. Let G(L,R,E) be a bipartite graph with m edges and max-degree d.

Suppose for every vertex u ∈ L, we pick one edge incident on u uniformly at random; then

w.p. at least 1− exp(−Θ(m/d)), the sampled edges contain a matching of size Ω(m/d).

Proof. Follows from a simple balls and bins experiment in which we throw N := |L| balls
into B := |R| bins. The number of non-empty bins in this process is equal to number

of vertices in R which are “hit” by a vertex in L, which is clearly a lower bound on the

size of a maximum matching in the sampled edges. Moreover, number of non-empty bins

is Ω(min {N,B}) with probability 1 − exp (−Θ(min {N,B})) by Proposition 2.1.5. Since

maximum degree of G is d and G has m edges, min {N,B} ≥ m/d, finalizing the proof.

We now present the proof of Theorem 3.6. We start by examining the number of edges

of M∗ that end up in different pairs of (Li, Rj) groups. Since we only consider the edges in

M∗, and the grouping leads to all edges between each (Li, Rj) pair treated as a single edge,

it is crucial that enough edges of M∗ remain in distinct pair of groups.
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Claim 3.4.2. With probability at least 0.5, the number of edges of M∗ that appear in

different pairs of (Li, Rj) groups is at least min
{
opt/32, γ2/2

}
.

Proof. We will consider two cases. First suppose opt > 4γ2. Let Yi,j be the random variable

counting the number of edges in M∗ that appear in (Li, Rj). The total number of distinct

(Li, Rj) pairs is γ
2, and each edge inM∗ appears in any (Li, Rj) pair with probability 1/γ2.

Hence E [Yi,j ] = opt/γ2 > 4. Since the end points of any two edges ofM∗ are independently

assigned to the groups L and R (using pairwise independent hash functions hL and hR),

Var [Yi,j ] ≤ E [Yi,j ]. By Chebyshev inequality (Proposition 2.1.1),

Pr (Yi,j = 0) ≤ Pr (|Yi,j − E [Yi,j ]| ≥ E [Yi,j ]) ≤
Var [Yi,j ]

(E [Yi,j ])2
≤ 1

E [Yi,j ]
≤ 1

4
.

Hence, the expected number of (Li, Rj) pairs that do not contain any edge from M∗ is at

most γ2/4, and by Markov inequality, with probability at least 0.5, the number of (Li, Rj)

pairs that do not contain an edge from M∗ is at most γ2/2.

Now suppose opt ≤ 4γ2. Consider the first opt/16 edges of M∗. For any two edges e1

and e2 in M∗, the probability that e1 and e2 belong to the same (Li, Rj) pair, for some

Li and Rj , (i.e., e1 and ej collide) is 1/γ2. Therefore, the expected number of collisions

between the first opt/16 edges is (opt/16)2/γ2 ≤ opt/64 (since opt ≤ 4γ2). Hence, with

probability at least 0.5, the total number of collision is less than opt/32. Since all collisions

can be resolved after removing opt/32 edges, at least (opt/16− opt/32) = opt/32 edges of

M∗ are assigned to distinct (Li, Rj) pairs.

In the following, we focus on the case where at least min
{
opt/32, γ2/2

}
edges of M∗

appears in distinct (Li, Rj) pairs. By Claim 3.4.2, this happens with probability at least 0.5.

We consider the cases for γ2/2 edges (Lemma 3.4.3) and opt/32 edges (Lemma 3.4.4) sepa-

rately, and prove that in each case, the algorithm outputs an O(α)-approximate matching,

hence proving Theorem 3.6.

Lemma 3.4.3. If at least γ2/2 edges of M∗ appear in distinct (Li, Rj) pairs, then the

algorithm DynamicStreamMatching outputs a matching of size Ω(opt/α) w.p. at least 1/4.

Proof. If at least γ2/2 edges of M∗ appears in distinct (Li, Rj) pairs, then at least 1/4

fraction of the groups in L (denoted by L′) have at least γ/3 different matchable groups

in Rj . Otherwise, the total number of edges incident on L would be strictly less than

γ/4 · γ + 3γ/4 · (γ/3) = γ2/2, which is a contradiction. Then, the groups L′ and R forms a

graph (treating each group as a singe vertex) with at least (γ/3) · (γ/4) edges where each

vertex has degree at most γ (there are only γ groups on each side).
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It remains to show that any Li in L′ will pick at least one matchable Rj ∈ R as

an active partner with probability 1 − 1/n2, and moreover, the matchable Rj is chosen

uniformly at random. We can then apply Proposition 3.4.1 to complete the argument.

Each Li is matchable to 1/3 fraction of the groups in R and since Li picks more than 6 log n

active partners (independently and uniformly at random), by Chernoff bounds, Li will pick

a matchable Rj with probability at least 1−1/n2. By union bound, all Li’s in L′ will pick at

least one matchable Rj ∈ R. Moreover, for each Li in L′, a matchable Rj would be picked

uniformly at randomly from all groups matchable to Li. Now, by Proposition 3.4.1, the edges

returned by these matchable (Li, Rj) pairs contain a matching of size Ω(γ2/γ) = Ω(opt/α)

with probability at least (1 − exp(−Θ(γ)). Since γ =
⌈
õpt/α

⌉
≥ 500, the probability of

failure is at most 1/2, and the total probability that DynamicStreamMatching outputs a

matching of size Ω(opt/α) is at least 1/4.

Lemma 3.4.4. If at least opt/32 edges of M∗ appear in distinct (Li, Rj) pairs, then the

algorithm DynamicStreamMatching outputs a matching of size Ω(opt/α) w.p. at least 0.15.

Proof. We need some additional definition for this case. We say a group Li ∈ L (resp.

Rj ∈ R) is good if the number of vertices in M∗ that belong to Li (resp. Rj) is in range

[0.999α, 1.001α]. The rest of the groups are bad. We first show that most groups are good.

Claim 3.4.5. W.p. at least 0.9, at most 0.001 fraction of the groups in L and R are bad.

Proof. We only prove for the argument for the groups in L; the same argument works for

R, as well. For each group Li ∈ L, let Xi be the random variable counting the number

of vertices in M∗ that are in Li, we show that Pr
(∣∣Xi − α

∣∣ ≥ 0.001α
)
≤ 0.0001. Then in

expectation, at most 0.0001 fraction of the groups in L are bad, and by Markov inequality,

w.p. at most 1/10, more than 0.001 fraction of the groups are bad, proving the claim.

Let L(M∗) be the set of vertices in L that are matched in M∗. For any vertex u ∈
L(M∗), define Xi

u to be the indicator random variable denoting whether u belongs to Li.

We have Xi =
∑

u∈L(M∗)X
i
u. The expectation of Xi is

E[Xi] =
∑

u∈L(M∗)

E[Xi
u] = |L(M∗)| · (1/γ) = opt · (α/opt) = α.

Since we use a pairwise independent hash function hL to assign vertices in L to groups in L,
Var

[
Xi
]
≤ E

[
Xi
]
. By Chebyshev inequality (Proposition 2.1.1), Pr

(∣∣Xi − α
∣∣ ≥ 0.001α

)
≤

Pr
(∣∣Xi − E[Xi]

∣∣ ≥ 100
√
α
)
≤ 0.0001, for sufficiently large n. Claim 3.4.5

Consider the joint event that (i) at least opt/32 edges of M∗ appear in distinct (Li, Rj)

pairs, (ii) at most 0.0001 fraction of L are bad, and (iii) at most 0.0001 fraction of R are
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bad. By Claim 3.4.5, this event happens with probability at least 1−1/2−1/10−1/10 = 0.3.

Moreover, the total number of edges in M∗ that are incident on good groups in L is at least

0.999α·0.999γ ≥ 0.998opt. Therefore, removing the bad groups in L only removes 0.002·opt
edges ofM∗. Similarly, removing the bad groups in R only removes 0.002 ·opt edges ofM∗.

Therefore, in the worst case, the total number of edges inM∗ that appear in distinct (Li, Rj)

pairs where both Li and Rj are good groups is at least (1/32− 0.002 · 2) · opt ≥ opt/40.

Now, opt/40 edges are incident on (at most) γ groups on each side where each group is

only incident on at most 1.001α of them. Hence, at least 1/80 fraction of the good L groups

(denoted by L′′) must be incident on at least α/100 edges, since otherwise, the total number

of edges incident on L would be strictly less than γ/80 · 1.001α+ 79γ/80 · α/100 < opt/40,

a contradiction.

For each group Li in L′′, α/100 good R groups are matchable to Li. Since Li picks

at least 100·opt logn
α2 active partners and each time, the picked active partner is matchable

to Li with probability at least (α/100)/γ = α2/(100 · opt), by Chernoff bounds, with

high probability, we will pick at least one matchable group in R for Li and the first picked

matchable group is chosen uniformly at random from all matchable groups of Li. By Propo-

sition 3.4.1, DynamicStreamMatching outputs a matching of size Ω(opt/α) with probability

at least (1 − exp(−Θ(opt/α)). Since opt ≥ 103α, the probability of failure is at most 1/2,

and hence the total probability of success is at least 0.3 · 0.5 = 0.15. Lemma 3.4.4

Theorem 3.6 now follows immediately from Claim 3.4.2 and Lemmas 3.4.3 and 3.4.4.

3.5. A Space Lower Bound for α-Approximation of Matching

In this section, we formalize Result 3.2 which shows that any dynamic streaming algo-

rithm for approximating matchings requires n2−o(1)/α3 space in order to achieve an α-

approximation. By the connection between simultaneous communication complexity and

dynamic streaming algorithms established by [230, 14] (Proposition 2.7.11), it suffices to

prove a simultaneous communication lower bound for matching to obtain Result 3.2.

We define ApxMatchn,k,α as the k-party communication problem of α-approximating

matching in an n-vertex input graph G(V,E), partitioned across k players. We have,

Theorem 3.7. For any α ≤ √n, there exists some k = α ·
(
n
α

)o(1)
such that the k-party

simultaneous communication complexity of finding an α-approximate matchings is

R
||
1/10(ApxMatchn,k,α) = k · Ω(n2/α3).

We remark that although we state Theorem 3.7 for general graphs, using the same

reduction based on random partitioning of vertices mentioned earlier in Section 3.4, the
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same lower bound also holds for bipartite graphs.

By the easy direction of Yao’s minimax principle (Proposition 2.7.2), to prove Theo-

rem 3.7, it suffices to prove the lower bound for deterministic protocols over a fixed dis-

tribution D of the inputs. In our hard distribution, each player will be given an (r, t)-RS

graph with half of the edges discarded uniformly at random from each induced matchings

(see Section 2.3 for a reminder on definition of RS graphs). The final graph is constructed

in a correlated way where for each player, only one of the induced matchings is “special”

and the all other edges will be incident on the same set of vertices. We carefully choose the

parameters such that the referee/coordinator has to know the edges of the private induced

matchings for outputting a large matching. However, since each player is unaware of the

identity of his special matching, he has to send enough information for recovering a large

fraction of the edges from every induced matching.

A hard input distribution D. (parameterized by a sufficiently large integer N > 0)

Parameters: r = N1−o(1), t =
(N2 )−o(N2)

r , k = 10α·N
r , n = N + 2 · k · r.

1. Fix an (r, t)-RS graph GRS on N vertices with induced matchings MRS
1 , . . . ,MRS

t .

2. Pick j∗ ∈ [t] uniformly at random.

3. For each player P (i) independently,

(a) Denote by Gi the input graph of P (i), initialized to be a copy of GRS with

vertices Vi = [N ]. Moreover, define V ∗
i as the set of vertices incident on MRS

j∗ .

(b) Drop each edge in Gi w.p. 1/2 independently and keep the remaining edges.

4. Pick a random permutation σ of [n]. For every player P (i), for each vertex v in

Vi \ V ∗
i with label ℓ, relabel v with σ(ℓ). Enumerate the vertices in V ∗

i (from the

one with the smallest label to the largest), and relabel the ℓ-th enumerated vertex

with σ(N + (i − 1) · 2r + ℓ). In the final graph, the vertices with the same label

correspond to the same vertex.

In the input graph Gi of player P
(i) in D, those vertices whose labels belong to σ([N ])

are referred to as shared vertices since they belong to the input graph of every player, and

the vertices V ∗
i are referred to as the private vertices as they only appear in the input graph

of P (i) (in the final graph, i.e., after relabeling). We refer to the induced matching between

private vertices of any player P (i) as the special matching of P (i). We point out that, in

general, the final graph constructed by this distribution is a multi-graph with n vertices

and O(kN2) = O(n2/α) edges (counting the multiplicities); the multiplicity of each edge is

also at most k. Finally, the existence of an (r, t)-RS graph GRS with the parameters used
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(a) Local view of a
single player.

(b) Special match-
ing of player one.

(c) Special match-
ing of player two.

(d) Global view.

Figure 3: Illustration of the hard distribution D in Theorem 3.7 with two players.

in this distribution is guaranteed by a result of [18] (see Proposition 2.3.1).

We prove that distributional complexity of ApxMatch on D is “large”, i.e.,

D
||
D,1/3(ApxMatchn,k,α) ≥ k · rt/10α = k · Ω(n2/α3). (3.1)

We remark that our proof of this equation in this thesis differs significantly from our

earlier proof published in [35] (see also [34]), and follows more closely the framework we will

introduce in Chapter 8 for proving multi-party communication complexity lower bounds.

This further allows us to strenghten the bounds in [35] by an no(1) factor.

Notation. In the following, fix any deterministic (1/3)-error protocol π for ApxMatch. Let

us use Σ and J to denote the random variable for permutation σ and index j∗ ∈ [t] in D. We

further define Mi,j for any i ∈ [k] and j ∈ [t] to denote the random variable for the matching

MRS
j (after dropping some of its edges) in graph Gi of player P (i). Finally, recall that

Π := (Π1, . . . ,Πk) denotes the transcript of the messages sent from players P (1), . . . , P (k) to

the referee in π. We assume that the referee (but definitely not the players) is additionally

given the permutation σ and index j∗; this clearly can only strengthen our lower bound

proof. This means that the output matching of referee is a function of Π as well as Σ, J.

We denote this matching by Mπ(Π,Σ, J).

In distribution D, all edges except for the special matchings M1,J, . . . ,Mk,J are incident

on the same set of shared vertices. As such,Mπ(Π,Σ, J) needs to have a “large” intersection

with M1,J, . . . ,Mk,J to be a large matching. But for this to happen, the players need to make

sure that the “uncertainty” about M1,J, . . . ,Mk,J is “low” for the referee. At the same time,
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the players are oblivious to which matching in their input is Mi,J, i.e. is special, and which

ones are not special. Consequently, to reduce the uncertainty about Mi,J, the player P (i)

needs to reduce the uncertainty about all induced matchings in his input. We use this

intuition to lower bound the communication cost of π.

We start by bounding the size of the matching output by the referee based on the

information revealed about special matchings by the protocol.

Lemma 3.5.1. E |Mπ(Π,Σ, J)| ≤ N + I(M1,J, . . . ,Mk,J ;Π | Σ, J).

Proof. All edges in G except for M1,J, . . . ,Mk,J are incident on at most N shared vertices.

Hence, the total contribution of all those edges to Mπ(Π,Σ, J) is at most N . All the

remaining edges in Mπ(Π,Σ, J), denoted by M ′
π(Π,Σ, J), now belong to M1,J, . . . ,Mk,J.

Fix any assignment of Π, σ, j∗ for (Π,Σ, J). Given Π, σ, j∗, the referee is only able to

output an edge e in the final matching M ′
π(Π, σ, j

∗) (note that this matching is now fixed),

iff e always appear in M1,J, . . . ,Mk,J | Π = Π,Σ = σ, J = j∗, as otherwise the referee may

output an edge which does not belong to the input graph, a contradiction.

Let ℓ := |M ′
π(Π, σ, j

∗)|. The above discussion implies that at least ℓ edges inM1,J, . . . ,Mk,J

are “fixed” conditioned on Π = Π, Σ = σ and J = j∗. This implies that:

H(M1,J, . . . ,Mk,J | Π = Π,Σ = σ, J = j∗) ≤ rk − ℓ,

as the support of M1,J, . . . ,Mk,J has size 2rk−ℓ (after fixing ℓ edges to always be present)

and by Fact 2.6.1-(1). By taking expectation over all Π, σ, j∗, we have,

H(M1,J, . . . ,Mk,J | Π,Σ, J) = E [H(M1,J, . . . ,Mk,J | Π = Π,Σ = σ, J = j∗)]

≤ rk − E
∣∣M ′

π(Π,Σ, J)
∣∣ ≤ rk − (E |Mπ(Π,Σ, J)| −N) .

Finally, using the fact that M1,J, . . . ,Mk,J is uniform over its support (which has size 2rk)

conditioned on Σ, J, we have (by Fact 2.6.1-(1)),

I(M1,J, . . . ,Mk,J ;Π | Σ, J) = H(M1,J, . . . ,Mk,J | Σ, J)−H(M1,J, . . . ,Mk,J | Π,Σ, J)
≥ E |Mπ(Π,Σ, J)| −N.

This concludes the proof of the lemma.

Our goal is now to bound I(M1,J, . . . ,Mk,J ;Π | Σ, J) ≤ N which would be sufficient

to prove Eq (3.1) using Lemma 3.5.1. We first bound the information revealed about the

matchings M1,J, . . . ,Mk,J to the referee by the summation of information revealed by each
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player P (i) about his special matching Mi,J.

Lemma 3.5.2. I(M1,J, . . . ,Mk,J ;Π | Σ, J) ≤∑k
i=1 I(Mi,J ;Πi | Σ, J).

Proof. Intuitively, the lemma is true because after conditioning on Σ and J, the input of

players become independent of each other (it would only be a function of which edges are

dropped from GRS given to each player). As a result, the messages communicated by one

player do not give extra information about the special matching of another player.

Recall that Π = (Π1, . . . ,Πk). By chain rule of mutual information,

I(M1,J, . . . ,Mk,J ;Π1, . . . ,Πk | Σ, J) =
Fact 2.6.1-(6)

k∑

i=1

I(M1,J, . . . ,Mk,J ;Πi | Π<i,Σ, J).

We first show that for each i ∈ [k],

I(M1,J, . . . ,Mk,J ;Πi | Π<i,Σ, J) ≤ I(M1,J, . . . ,Mk,J ;Πi | Σ, J), (3.2)

i.e., “dropping” the conditioning on Π<i only increases the information. This is because

Πi ⊥ Π<i | M1,J, . . . ,Mk,J,Σ, J as after conditioning on Σ and J, the inputs the players, and

so their deterministic functions Πi and Π<i become independent of each other. Hence, we

can apply Proposition 2.6.4. By chain rule of mutual information (Fact 2.6.1-(6)),

I(M1,J, . . . ,Mk,J ;Πi | Σ, J) = I(Mi,J ;Πi | Σ, J) + I(M−i,J ;Πi | Mi,J,Σ, J) = I(Mi,J ;Πi | Σ, J),

since I(M−i,J ;Πi | Mi,J,Σ, J) = 0 as Πi is independent of M−i,J after conditioning on Σ, J.

The lemma now follows from Eq (3.2) and above equation.

We now prove that no player cannot reveal much information about his special matching

without making a much larger communication (by a factor of t, i.e., the number of induced

matchings in GRS). This is established via a direct sum style argument (see Section 2.8.2)

which argues that since the player is unaware of the identity of his special matching, he

needs to reveal enough information on every matching he has in order to reveal enough

information on the (unknown) special one.

Lemma 3.5.3. For any i ∈ [k], I(Mi,J ;Πi | Σ, J) ≤ |Πi|/t.

Proof. Define Φi as (random variable for) the labeling function that labels the vertices

of graph Gi given to player P (i). Function Φi is uniquely determined by permutation Σ

and index J. Additionally, the input to player P (i) (and consequently the message Πi) is

uniquely determined by the matchings Mi,1, . . . ,Mi,t and the labeling function Φi as they
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fully determine the graph Gi. We first argue that, I(Mi,J ;Πi | Σ, J) ≤ I(Mi,J ;Πi | Φi, J).
As stated above, Πi ⊥ Σ | Mi,J,Φi, J. As such, since Σ and J determine Φi, conditioning on

whatever left of Σ beside Φi can only decrease the mutual information by Proposition 2.6.4,

leading to this equation. We can bound the RHS in this equation as follows,

I(Mi,J ;Πi | Φi, J) = E
j∼J

[I(Mi,j ;Πi | Φi, J = j)]

=
1

t
·

t∑

j=1

I(Mi,j ;Πi | Φi, J = j) =
1

t
·

t∑

j=1

I(Mi,j ;Πi | Φi),

where the final equality is because the joint distribution of (Mi,j ,Πi,Φi) is independent of

the event J = j. Finally,

I(Mi,J ;Πi | Φi, J) =
1

t
·

t∑

j=1

I(Mi,j ;Πi | Φi) ≤
1

t
·

t∑

j=1

I(Mi,j ;Πi | Φi,M>j
i )

(as M>j
i ⊥ Mi,j and Proposition 2.6.3)

=
1

t
· I(Mi,1, . . . ,Mi,t ;Πi | Φi) ≤

1

t
H(Πi) ≤

1

t
· |Πi| ,

(by chain rule of mutual information (Fact 2.6.1-(6)) and Fact 2.6.1-(1))

finalizing the proof.

Proof of Theorem 3.7. By the easy direction of Yao’s minimax principle (Proposition 2.7.2),

to prove Theorem 3.7, it suffices to prove Eq (3.1). Let π be any deterministic protocol

on distribution D with communication cost ‖π‖ < k · rt/10α. By Lemmas 3.5.1, 3.5.2,

and 3.5.3, we have that, expected size of the matching Mπ output in this protocol is:

E |Mπ| ≤ N +
1

t
·
k∑

i=1

|Πi| = N + ‖π‖/t < N + k · r/10α ≤ 2N. (as kr = 10αN)

By Markov bound, this implies that with probability at least 1/2, |Mπ| ≤ 4N . At the same

time, there exists a matching of size k · r/2 − O(
√
k · r) > 4αN with high probability in

G ∼ D by simply taking all special matchings. This means that with probability at least

1/3, the returned matching is not an α-approximate matching, a contradiction.

3.6. Space Lower Bounds for α-Estimating Matching Size

We present our space lower bounds for α-estimation algorithms in dynamic streams. Similar

to before, we prove this lower bounds in the simultaneous communication model and then

invoke the results of [14, 230] (see Proposition 2.7.11) to extend them to dynamic streams.
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3.6.1. An Ω(
√
n/α2.5) Lower Bound for Sparse Graphs

We consider the sparse graphs case in this section (i.e., Part (1) of Result 3.3), and show

that any single-pass streaming algorithm that computes an α-estimation of matching size

must use Ω(
√
n/α2.5) bits of space even if the input graph only has O(n) edges.

Define the sparse matching size estimation problem, SMSn,k, as the following k-party

communication problem: each player P (i) is given a matching Mi over a set V of n + n
k

vertices2 and the goal of the players is to approximate the maximum matching size of

G(V,
⋃
i∈[k]Mi) to within a factor smaller than k+1

2 . We prove the following lower bound

on the communication complexity of SMSn,k.

Theorem 3.8. For integers n, k ≥ 2, and any constant δ < 1/2: R
||
δ (SMSn,k) = Ω

( √
n

k
√
k

)
.

Part (1) of Result 3.3 immediately follows from Theorem 3.8 as we show below.

Proof of Result 3.3, Part (1). Any simultaneous protocol for estimating matching size to

within a factor of α < k+1
2 can be used to solve the SMSn,k problem. As by Proposi-

tion 2.7.11, simultaneous communication complexity of a k-player problem is at most k

times the space complexity of any single-pass streaming algorithm in dynamic streams; this

finalizes the first part of the proof.

To see that the space complexity holds even when the input graph is both sparse and

having bounded arboricity, notice that any graph G in SMSn,k has exactly k · nk = n edges

(hence sparse); furthermore, since each player is given a matching (which is always a forest),

the arboricity of G is at most k ≤ 2α.

In the following, we focus on proving Theorem 3.8. This theorem is ultimately proved

by a reduction from the BHM0 problem defined in Section 3.3.1. However, this reduction is

non-standard in the sense that it is protocol-dependent : given any protocol π for SMS, we

create a protocol for BHM0 by embedding an instance of BHM0 in the input of SMS, whereby

the embedding is designed specifically for the protocol π. It is worth mentioning that BHM0

is a hard problem even in the one-way model, while the distribution that we create for SMS

is only hard in the simultaneous communication model, meaning that if any player is allowed

to send a single message to any other player (instead of the referee), then O(log n) bits of

communication suffices to solve the problem. Therefore, a key technical challenge here is to

design a reduction from a one-way problem to a problem that is “inherently” simultaneous.

2To simplify the exposition, we use n+ n
k
instead of the usual n as the number of vertices.
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A Hard Input Distribution for SMSn,k

Let DBHM be the hard input distribution of BHM0
2n
k

in Corollary 3.5 (for t = 2) and DY
BHM

and DN
BHM be, respectively, the distribution on Yes and No instances of DBHM.

The distribution DSMS for SMSn,k:

1. For each i ∈ [k], independently draw a BHM0
2n
k

instance (MB
i , x

B
i ) ∼ DBHM.

2. Draw a random permutation σ on
[
n+ n

k

]
.

3. For each player i ∈ [k], we define a mapping σi : [
2n
k ]→

[
n+ n

k

]
as follows:

• For each j ∈ [2nk ] with x
B
i (j) = 1, if xBi (j) is the ℓ-th smallest index with value

1, let σi(j) := σ(ℓ)a.

• For each j ∈ [2nk ] with x
B
i (j) = 0, if xBi (j) is the ℓ-th smallest index with value

0, let σi(j) := σ(i · nk + ℓ).

4. The input to each player P (i) is a matching Mi :=
{
(σi(u), σi(v)) | (u, v) ∈MB

i

}
.

aHere, we use the fact that ‖xB
i ‖0 = n

k
in DBHM by Corollary 3.5

Observe that the distribution DSMS is defined by k instances of BHM0
2n
k

, i.e., (MB
i , x

B
i )

(for i ∈ [k]), along with a mapping σ. The mapping σ relates the vectors xBi to the set of

vertices in the final graph G while ensuring that across the players, for any j ∈ [2nk ] where

xBi (j) = 1, the vertex that j maps to is shared, while the vertices with xBi (j) = 0 are unique

to each player. Moreover, the mapping σi provided to each player effectively describes the

set of vertices (denoted by Vi) that the edges of P (i) will be incident on, and the matching

MB
i describes the edges between Vi. Hence, we can uniquely define the input of each player

P (i) by the pair (MB
i , σi), and from now on, without loss of generality, we assume the input

given to each player P (i) is the pair (MB
i , σi).

We should note right away that the distribution DSMS is not a “hard” distribution for

SMSn,k in the traditional (distributional) sense: it is not hard to verify that for any graph

G ∼ DSMS, maximum matching size MM(G) of G is concentrated around its expectation,

and hence it is trivial to design a protocol when instances are promised to be only sampled

from DSMS: always output EG∼DSMS
[MM(G)], which needs no communication.

Nevertheless, the way we use the distribution DSMS as a hard distribution is to consider

any protocol πSMS that succeeds uniformly, i.e., on any instance of SMSn,k; we then execute

πSMS on DSMS and argue that in order to perform well on every instance of DSMS, πSMS

must convey a non-trivial amount of information about the input of the players in some

sub-distribution of DSMS. To continue, we need the following definitions.

Definition 3.2 (Input Profile). For each graph G ∼ DSMS, we define the input profile of G
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to be a vector f ∈ {Yes,No}k, where f(i) = Yes iff the i-th BHM instance (MB
i , x

B
i ) in G is

a Yes instance and otherwise f(i) = No.

The 2k different possible input profiles partition DSMS into 2k different distributions.

For any input profile f , we use DSMS | f to denote the distribution of DSMS conditioned on

its input profile being f . Two interesting profiles for our purpose are the all-equal profiles,

i.e., fYes := (Yes, . . . ,Yes) and fNo := (No, . . . ,No), due to the following claim.

Claim 3.6.1. For any graph G ∼ (DSMS | fYes), MM(G) ≥ n
2 + n

2k , while for any graph

G ∼ (DSMS | fNo), MM(G) ≤ n
k .

Proof. In (DSMS | fYes), each BHM instance (MB
i , x

B
i ) (for i ∈ [k]) is drawn from DY

SMS,

meaning that for every edge (u, v) ∈ MB
i , x

B
i (u) ⊕ xBi (v) = 0. Therefore, either xBi (u) =

xBi (v) = 0 or xBi (u) = xBi (v) = 1. Since MB
i is a perfect matching over the set [2nk ] and

the hamming weight of xBi is n
k (by Corollary 3.5), for half of the edges in MB

i , we must

have xBi (u) = xBi (v) = 0. Moreover, as DSMS maps every vertex with xBi (j) = 0 to a

distinct vertex in G, these 1
2 ·
∣∣MB

i

∣∣ = n
2k edges are vertex-disjoint with any other edge in

the final graph G. Hence, between the k players, these edges together form a matching of

size k · n2k = n
2 . Finally, there is also a matching of size n

2k between the shared vertices:

simply use the edges corresponding to a matching MB
i of an arbitrary player P (i) that are

incident on shared vertices. This means that in this case, MM(G) ≥ n
2 + n

2k .

In (DSMS | fNo), each BHM instance (MB
i , x

B
i ) (for i ∈ [k]) is drawn from DN

SMS, meaning

that for every edge (u, v) ∈MB
i , x

B
i (u)⊕xBi (v) = 1. Therefore, exactly one of xBi (u) or x

B
i (v)

is equal to 1. In DSMS, for every player, the vertices where xBi (j) = 1 are all mapped to the

(same) set of vertices
{
σ(1), σ(2), . . . , σ(nk )

}
(denoted by V0). Therefore, in the final graph

G, every edge of every player is incident on some vertex in V0, and hence the maximum

matching size in G is at most |V0| = n
k .

In the following, we fix any δ-error protocol πSMS for SMSn,k. By Claim 3.6.1, πSMS

is also a δ-error protocol for distinguishing between the two distributions (DSMS | fYes) and
(DSMS | fNo): simply output Yes if the estimate of MM(G) is strictly larger than n

k and

output No otherwise. From here on, with a slight abuse of notation, we say that πSMS

outputs Yes whenever it estimates MM(G) strictly larger than n
k and outputs No otherwise

(this is defined for any input, not necessarily chosen from (DSMS | fYes) or (DSMS | fNo)).

Intuitively, to distinguish between (DSMS | fYes) and (DSMS | fNo), one should solve (at

least one of) the BHM0 instances embedded in the distribution. This naturally suggests

the possibility of performing a reduction from BHM0 and arguing that the distribution on

(DSMS | fYes) and (DSMS | fNo) is a hard distribution for SMSn,k. However, in the case of
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these two distributions, the k BHM0 instances are highly correlated and hence it is hard

to reason about which BHM0 instance is “actually being solved”. To get around this,

we try πSMS on other input profiles, with, informally speaking, less correlation across the

BHM instances. An immediate issue here is that, unlike the case for the distributions

(DSMS | fYes) and (DSMS | fNo), the matching sizes for graphs drawn from the other input

profiles do not have a large gap. Hence, a priori it is not even clear what the actual task

of πSMS is, or why πSMS should be able to distinguish them. However, we show that there

are special pairs of input profiles (other than fYes and fNo) with our desired property (i.e.,

“low” correlation between the BHM0 instances) that πSMS is still able to distinguish. These

pairs are ultimately connected to the (property of) protocol πSMS itself and hence vary

across different choices for the protocol πSMS; this is the main reason that we perform a

protocol-dependent reduction in our proof.

For any input profile f , define pYf (resp. pNf ) as the probability that πSMS outputs Yes

(resp. No) when its input is sampled from DSMS | f . We define the notation of informative

index for the protocol πSMS.

Definition 3.3 (Informative Index). We say that an index i ∈ [k] is γ-informative for the

protocol πSMS iff there exist two input profiles f and g where f(i) = Yes, g(i) = No, and

f(j) = g(j) for all j 6= i, such that pYf + pNg ≥ 1 + 2γ. In this case, the input profiles f and

g are called the witness of i.

Informally speaking, if πSMS has a γ-informative index i, then πSMS can distinguish

whether the i-th BHM0 instance is a Yes or No instance w.p. at least 1
2 +γ (i.e., πSMS solves

the i-th BHM0 instance). In the rest of this section, we prove that indeed every protocol

πSMS has an informative index.

Lemma 3.6.2. Any δ-error protocol πSMS for SMS has a γ-informative index for γ = 1−2δ
2k .

Proof. Suppose towards a contradiction that for any two input profiles f and g that differ

only on one entry (say i, and f(i) = Yes, g(i) = No), we have, pYf +p
N
g < 1+2γ for γ = 1−2δ

2k .

Consider the following sequence of (k + 1) input profiles:

(fYes =)(Yes,Yes, . . . ,Yes), (No,Yes, . . . ,Yes), (No,No, . . . ,Yes), . . . , (No,No, . . . ,No)(= fNo)

whereby, for the j-th input profile of this sequence (denoted by fj), the first j − 1 entries

of fj are all No, and the rest are all Yes.

Observe that for any j ∈ [k], the input profiles fj and fj+1 differ in exactly one entry

j, and fj(j) = Yes, while fj+1(j) = No. Hence, by our assumption, we have pYfj + pNfj+1
<
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1 + 2γ, which implies pYfj < 1 + 2γ − pNfj+1
= pYfj+1

+ 2γ as pYfj+1
+ pNfj+1

= 1. Therefore,

pYf1 < pYf2 + 2γ < pYf3 + 2γ · 2 < · · · < pYfk+1
+ 2γ · k, which implies (by adding pNfk+1

to both

sides of the inequality)

pYf1 + pNfk+1
< pYfk+1

+ pNfk+1
+ 2γ · k = 1 + 2γ · k = 2 · (1− δ), (3.3)

by our choice of γ. However, since πSMS is a δ-error protocol for SMSn,k, by Claim 3.6.1,

the probability that πSMS succeeds in distinguishing (DSMS | fYes) from (DSMS | fNo) on the

distribution 1
2 (DSMS | fYes) + 1

2 (DSMS | fNo) is at least 1− δ. Therefore, 1
2 · (pYf1 + pNfk+1

) ≥
1− δ, a contradiction to Eq (3.3).

In the next section, we use existence of a γ-informative index in any protocol πSMS for

SMSn,k to obtain a protocol for BHM0
2n
k

w.p. of success at least 1
2 + γ, based πSMS.

The Reduction From the BHM
0
2n
k

Problem

Recall that πSMS is a δ-error protocol for the distribution DSMS. Let i
∗ be a γ-informative

index of πSMS (as in Lemma 3.6.2), and let input profiles fi∗ and gi∗ be the witness of i∗.

We design the following protocol πBHM using πSMS as a sub-routine.

Protocol πBHM. A protocol for reducing BHM0
2n
k

to SMSn,k

Input: An instance (M,x) ∼ DBHM of BHM0
2n
k

.

Output: Yes if Mx = 0
n
k and No if Mx = 1

n
k .

1. Bob creates the input (MB
i∗ , σi∗) for the player P (i∗) as follows:

• Let MB
i∗ =M .

• Using public randomness, Bob picks σi∗ to be a uniformly random injection

from [2nk ] to [n+ n
k ].

• Let Vi∗ be the image of σi∗ (i.e., Vi∗ =
{
σi∗(j) | j ∈ [2nk ]

}
).

2. Alice generates the inputs for all other players. Using private randomness, Alice

first randomly partitions the set [n+ n
k ] \ Vi∗ into (k − 1) sets {V ′

i }i∈[k]\{i∗}, where
each V ′

i has size n
k . She then generates the input of each player P (i) (i 6= i∗) as

follows:

• If fi∗(i) = Yes (resp. fi∗(i) = No), Alice draws a BHM0
2n
k

instance (MB
i , x

B
i )

from DY
BHM (resp. from DN

BHM).

• The mapping σi : [
2n
k ] → [n + n

k ] is defined as follows. For the n
k entries in

[2nk ] where xi is 0, Alice assigns a uniformly random bijection to V ′
i . For each

entry j in [2nk ] where x
B
i (j) = 1, suppose xBi (j) is the ℓ-th 1 of xi, Alice assigns
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σi(j) = σi∗(j
′) where j′ is the index such that x(j′) is the ℓ-th 1 of x.a

3. Bob runs πSMS for the i∗-th player and Alice runs πSMS for all other players and

sends the messages of all other players to Bob.

4. After receiving the messages from Alice, Bob runs the referee part of the protocol

πSMS, and outputs the same answer as πSMS.

aRecall that x is the input vector to Alice in a BHM
0 instance.

It is straightforward to verify that the distribution of the instances created by this re-

duction and the original distributions (DSMS | fi∗) and (DSMS | gi∗) are identical. Formally,

Claim 3.6.3. Suppose (M,x) is a Yes (resp. No) BHM instance; then the SMS instance

constructed by Alice and Bob is sampled from DSMS | fi∗ (resp. DSMS | gi∗).

We now use this to prove Theorem 3.8.

Proof of Theorem 3.8. Let γ = 1−2δ
2k ; we first argue that πBHM outputs a correct answer for

BHM0
2n
k

w.p. at least 1
2 +γ. If the input BHM

0 instance (M,x) is a Yes (resp. No) instance,

then by Claim 3.6.3, the distribution of the SMS instance created in πBHM is exactly DSMS |
fi∗ (resp. DSMS | gi∗); consequently, πSMS outputs the correct answer w.p. 1

2 ·
(
pYfi∗ + pNgi∗

)
.

Since i∗ is a 1−2δ
2k -informative instance, we have 1

2 ·
(
pYfi∗ + pNgi∗

)
≥ 1

2 + 1−2δ
2k = 1

2 + γ and

hence the protocol ΠBHM outputs the correct answer w.p. at least 1
2 + γ.

Now notice that in πBHM, Alice is sending messages of k − 1 players in πSMS to Bob

and hence communication cost of πBHM is at most the communication cost of πSMS. Since

solving BHM 2n
k
on DBHM w.p. of success 1

2+γ requires at least Ω(γ ·
√

n
k ) communication by

Corollary 3.5, we have ‖πSMS‖ = Ω(γ ·
√

n
k ). Moreover, γ = ε

k for some constant ε > 0 (since

δ > 1/2), hence we obtain that ‖πSMS‖ = Ω
( √

n

k
√
k

)
, finalizing the proof. Theorem 3.8

3.6.2. An Ω(n/α2) Lower Bound for Dense Graphs

We now switch to the dense graphs case (i.e., Part (2) of Result 3.3), and establish a better

lower bound of Ω(n/α2) for computing an α-estimation to matching in dynamic streams.

We define EstMatchingn,k,α as the k-player communication problem of estimating the

matching size to within a factor of α, when edges of an n-vertex input graph G(V,E) are

partitioned across the k-players. In this section, we prove the following lower bound on the

information complexity of EstMatchingn,k,α in the simultaneous communication model.

Theorem 3.9. For any sufficiently large n and α, there exists some k = α ·
(
n
α

)o(1)

such that for any constant δ < 1
2 , the δ-error simultaneous communication complexity of
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EstMatchingn,k,α is R
||
δ (EstMatchingn,k,α) = k · Ω(n/α2).

Theorem 3.9, together with the fact that simultaneous communication complexity of a

k-player problem lower bounds (up to factor k) the space complexity of single-pass streaming

algorithms in dynamic streams [230, 14] (Proposition 2.7.11), implies the Ω(n/α2) lower

bound in Part (2) of Result 3.3. We now prove Theorem 3.9.

Consider the following distribution DEM for EstMatchingn,k,α.

The hard distribution DEM for EstMatchingn,k,α:

Parameters: r = N1−o(1), t =
(N2 )−o(N2)

r , k = (α+1)N
r , n = N + 2k · r.

1. Fix an (r, t)-RS graph GRS on N vertices with induced matchings MRS
1 , . . . ,MRS

t .

2. Pick j∗ ∈ [t] and θ ∈ {0, 1} independently and uniformly at random.

3. For each player P (i) independently,

(a) Denote by Gi the input graph of P (i), initialized to be a copy of GRS with

vertices Vi = [N ]. Moreover, define V ∗
i as the set of vertices incident on the

matching MRS
j∗ .

(b) Let x(i) be a t-dimensional vector, whereby x(i)(j∗) = θ and for any j 6= j∗,

x(i)(j) is chosen uniformly at random from {0, 1}.
(c) For any j ∈ [t], if x(i)(j) = 0 remove the matching MRS

j∗ from Gi (otherwise,

do nothing).

4. Pick a random permutation σ of [n]. For every player P (i), for each vertex v in

Vi \ V ∗
i with label j (∈ [N ]), relabel v to σ(j). Enumerate the vertices in V ∗

i

(from the one with the smallest label to the largest), and relabel the j-th vertex to

σ(N+(i−1) ·2r+j). In the final graph, the vertices with the same label correspond

to the same vertex.

The vertices whose labels belong to σ([N ]) are referred to as shared vertices since they

belong to the input graph of every player, and the vertices V ∗
i are referred to as the private

vertices of the player P (i) since they only appear in the input graph of P (i) (in the final

graph, i.e., after relabeling). We point out that, in general, the final graph constructed by

this distribution is a multi-graph with n vertices and O(kN2) = O(n2/α) edges (counting

the multiplicities); the multiplicity of each edge is also at most k. Finally, the existence

of an (r, t)-RS graph GRS with the parameters used in this distribution is guaranteed by a

result of [18] (see Proposition 2.3.1).

Fix any deterministic δ-error protocol πEM for EstMatchingn,k,α on DEM. We are going
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to prove that ‖πEM‖ = Ω(n/α2). This implies that D
||
DEM,δ

(EstMatchingn,k,α) = Ω(n/α2)

which in turns by the easy direction of Yao’s minimax principle (see Proposition 2.7.2)

would imply Theorem 3.9.

Claim 3.6.4. Let:

opt1 := min
G

(
MM(G) | G is chosen from DEM conditioned on θ = 1

)

opt0 := max
G

(
MM(G) | G is chosen from DEM conditioned on θ = 0

)
.

then, opt1 > α · opt0.

Proof. Notice that in each graph Gi, except for the matching MRS
j∗ , all other matching

edges are incident on the set of shared vertices. This implies that across the players, the

total contribution of all matchings except for MRS
j∗ ’s is at most N . Consequently, when

θ = 0, i.e., when the matching MRS
j∗ of each player is removed, MM(G) ≤ N . On the other

hand, when θ = 1, since the matching MRS
j∗ of each player is incident on a unique set of

vertices of G (i.e., private vertices), they form a matching of size k · r = (α+1) ·N . Hence,

MM(G) ≥ (α+ 1) ·N in this case.

Claim 3.6.4 shows that any δ-error protocol πEM for EstMatchingn,k,α can determine

the value of the parameter θ in the distribution DEM (also with error prob. δ). We use

this fact to prove a lower bound on the mutual information between θ and the message

of the players. Define Θ, Σ, and J, as random variables for, respectively, θ, the random

permutation σ, and the index j∗ in the distribution. We have the following simple claim.

Claim 3.6.5. I(Θ ;ΠEM | Σ, J) = Ω(1).

Proof. As proven in Claim 3.6.4, protocol πEM can be used directly to determine the value

of Θ w.p. 1− δ. Hence, by Fano’s inequality (Fact 2.6.2), H(Θ | ΠEM) ≤ H2(δ), since πEM

uses only the message ΠEM to output the answer. We further have,

H2(δ) ≥ H(Θ | ΠEM) ≥ H(Θ | ΠEM,Σ, J)

(conditioning can only reduce the entropy (Fact 2.6.1-(3)))

= H(Θ | Σ, J)− I(Θ ;ΠEM | Σ, J) = 1− I(Θ ;ΠEM | Σ, J),

where the last equality is because Θ is chosen uniformly at random from {0, 1} independent
of Σ and J. Consequently, we have I(Θ ;ΠEM | Σ, J) ≥ 1−H2(δ) = Ω(1) (since δ < 1/2).

We now use the bound in Claim 3.6.5 to lower bound the communication cost of πEM.
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Lemma 3.6.6. Communication cost of πEM is ‖πEM‖ = Ω(t).

Proof. By Claim 3.6.5, I(Θ ;ΠEM | Σ, J) = Ω(1); in the following, we prove that for this to

happen, πEM needs to communicate Ω(t) bits. We have,

I(Θ ;ΠEM | Σ, J) = E
j∈[t]

[I(Θ ;ΠEM | Σ, J = j)] =
1

t

t∑

j=1

I(Θ ;ΠEM | Σ, J = j)

=
1

t

t∑

j=1

I(Yj ;Π
(1)
EM, . . . ,Π

(k)
EM | Σ, J = j).

Here, for any j ∈ [t], Yj := (X1,j ,X2,j , . . . ,Xk,j), where Xi,j (for any i ∈ [k]) is the random

variable denoting x(i)(j). This equality holds since conditioned on J = j, for any i ∈ [k],

each x(i)(j) is assigned to be θ (i.e., Θ = Xi,j conditioned on J = j) . Moreover,

I(Θ ;ΠEM | Σ, J) =
1

t

t∑

j=1

k∑

i=1

I(Yj ;Π
(i)
EM | Π<iEM,Σ, J = j) ≤ 1

t

t∑

j=1

k∑

i=1

I(Yj ;Π
(i)
EM | Σ, J = j),

by Proposition 2.6.4 since for any i ∈ [k], Π
(i)
EM ⊥ Π−i

EM | Yj ,Σ, J = j and hence conditioning

on Π<iEM can only decrease the mutual information in the above term.

For any player P (i), define Σi as the random variable that denotes how the vertices of the

graph Gi chosen for player P (i) map to G according to Σ, i.e., specify the labels of vertices.

We claim that, I(Θ ;ΠEM | Σ, J) ≤ 1
t

∑t
j=1

∑k
i=1 I(Yj ;Π

(i)
EM | Σi, J = j). To see this, define

Σ−i as the “remainder” of Σ such that Σ = (Σi,Σ−i). We have Π
(i)
EM ⊥ Σ−i | Σi, J = j

as Π
(i)
EM is only a function of the input given to player P (i) and is hence independent of

the labeling of vertices in other players input after conditioning on σi, J = j. As such,

by Proposition 2.6.4, removing the conditioning on Σ−i in the previous equation can only

increase the mutual information.

We can also drop the conditioning on the event J = j and have, I(Θ ;ΠEM | Σ, J) ≤
1
t

∑t
j=1

∑k
i=1 I(Yj ;Π

(i)
EM | Σi). The reason is as follows. Firstly, Π

(i)
EM is a function of (Xi,Σi)

where Xi := (Xi,1, . . . ,Xi,t) is a random variable for the vector x(i). Moreover, Xi defines

the graph Gi without the labels, i.e., over the set of vertices Vi := [N ] and Σi is the random

variable denoting how the vertices of the player P (i) map to G, i.e., specify the labels of

vertices. Therefore (Xi,Σi) is independent of J = j (given the input graph Gi, each matching

has the same probability of being the chosen matching for j∗); hence it is easy to see that all

three random variables in above term are independent of the event J = j. Hence, dropping

the event J = j does not change the term above.

Moreover, since Yj and Y−j are independent of each other, even conditioned on Σi, by
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conditioning on Y<j below we can only increase the mutual information (Proposition 2.6.3),

I(Θ ;ΠEM | Σ, J) ≤
1

t

k∑

i=1

t∑

j=1

I(Yj ;Π
(i)
EM | Y<j ,Σi)

=
Fact 2.6.1-(6)

1

t

k∑

i=1

I(Y1, . . . ,Yt ;Π
(i)
EM | Σi)

=
1

t

k∑

i=1

I(X1, . . . ,Xk ;Π
(i)
EM | Σi)

(Y1, . . . ,Yt uniquely determines X1, . . . ,Xk and vice versa)

≤
Fact 2.6.1-(1)

1

t

k∑

i=1

∣∣∣Π(i)
EM

∣∣∣ = 1

t
· ‖πEM‖.

As by Claim 3.6.5, I(Θ ;ΠEM | Σ, J) = Ω(1), we have that ‖πEM‖ = Ω(t). Lemma 3.6.6

Theorem 3.9 now follows from Lemma 3.6.6 by noticing that n = (2α+ 1) ·N , r = 2αN/k

and t ≥ N2

2r = N ·k
2α = Ω(nk/α2).

3.7. Space Lower Bounds for (1+ ε)-Estimating Matching Size

In this section, we present our space lower bounds for algorithms that compute a (1 + ε)-

approximation of the maximum matching size in graph streams. We first introduce some

notation which will be used throughout this section.

Notation. Fix any (r, t)-RS graph GRS(V,E) (for any parameters r, t) with induced match-

ings MRS
1 , . . . ,MRS

t . For each matching MRS
i , we assume an arbitrary ordering of the edges

in MRS
i , denoted by ei,1, . . . , ei,r, and further denote ei,j := (ui,j , vi,j) for all j ∈ [r]. Let

L(MRS
i ) := {ui,1, . . . , ui,r} and R(MRS

i ) := {vi,1, . . . , vi,r}. We emphasize that we do not

require GRS(V,E) to be necessarily a bipartite graph; each bipartition L(MRS
i ) and R(MRS

i )

(for i ∈ [t]) is defined locally for the matching itself and hence a vertex v is allowed to belong

to, say, L(MRS
i ) and R(MRS

j ) for i 6= j, simultaneously.

Furthermore, for each matching MRS
i and any boolean vector x ∈ {0, 1}r, we define

the matching MRS
i |x as the subset of (the edges) of MRS

i obtained by retaining the edge

ei,j ∈ MRS
i (for any j ∈ [r]) iff x(j) = 1. In addition, for the vertex set R(MRS

i ) and any

perfect p-hypermatching3 M on [r], we define the p-clique family of M on R(MRS
i ) to be

a set of |M| cliques where the vertices Ce of each clique is defined by a distinct hyperedge

e ∈M: Ce := {vi,k | k ∈ e}.
3Throughout this section, we use p instead of the usual parameter t for hypermatchings in order to avoid

confusion with the parameter t in RS graphs
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3.7.1. Insertion-Only Streams

We define EstMatchingn,ε as the two-player one-way communication problem of estimating

the matching size to within a factor of (1 + ε), when Alice and Bob are each given a subset

of the edges of an n-vertex input graph G(V,E). In this section, we prove the following

lower bound on the communication complexity of EstMatchingn,ε.

Theorem 3.10. For large n and small ε < 1/2, the δ-error one-way communication com-

plexity of EstMatchingn,ε for constant δ < 1/2 is R
1-way
δ (EstMatchingn,ε) = RS(n) · n1−O(ε).

Similar to the previous section, this result together with the fact that one-way commu-

nication complexity lower bounds space complexity of single-pass insertion-only streaming

algorithms (Proposition 2.7.10), implies the RS(n) · n1−O(ε) space lower bound in Part-(1)

of Result 3.4. We now prove Theorem 3.10.

Suppose the maximum value for RS(n) is achieved by an (r, t)-RS graph with the param-

eter r = crs · n. We propose the following (hard) input distribution DM for EstMatchingn,ε.

The hard distribution DM for EstMatchingn,ε:

Parameters: N := n
2−2crs

, r := crs ·N , t := RS(N), and p :=
⌊
crs
2ε

⌋
.

• The input to the players is a graph G(V,EA ∪ EB) where EA is given to Alice and

EB is given to Bob.

• Alice:

1. Let V1 (⊂ V ) and V2 := V \ V1 be, respectively, a set of N and n−N vertices.

2. Let H be any fixed (r, t)-RS graph with V (H) = V1.

3. Draw r-dimensional binary vectors x(1), . . . , x(t) independently following the

distribution DBHH for BHH0
r,p.

4. The input to Alice is the edge-set EA :=M1∪ . . .∪Mt, where Mj :=MRS
j |x(j) .

• Bob:

1. Pick j∗ ∈ [t] uniformly at random.

2. For the vector x(j
∗), draw a perfect p-hypermatchingM following the distribu-

tion DBHH conditioned on x(j
∗); consequently, (x(j

∗),M) is a BHH0
r,p instance

drawn from the distribution DBHH.

3. Let EB,1 be an arbitrary perfect matching between V1 \ V (MRS
j∗ ) and V2.

4. Let EB,2 be the edges of the p-clique family ofM on R(MRS
j∗ ).

5. The input to Bob is the edge-set EB := EB,1 ∪ EB,2.

We say that the instance (x(j
∗),M) of BHH0

r,p in the distribution (denoted by IBHH) is

embedded inside DMM. The following claim established the connection between IBHH and
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maximum matching size in G.

Claim 3.7.1. Let:

optYes := min
G

(
MM(G) | G is chosen from DM conditioned on IBHH being a Yes instance

)

optNo := max
G

(
MM(G) | G is chosen from DM conditioned on IBHH being a No instance

)

then, (1− ε) · optYes > optNo.

Proof. LetM∗ be a maximum matching in G. Since all vertices in V2 have degree 1, without

loss of generality, we can assume M∗ contains the matching EB,1 between V1 \V (MRS
j∗ ) and

V2. Consequently the size of M∗ only depends on how many vertices in V (MRS
j∗ ) can be

matched with each other.

Consider the subgraph H := G[L(MRS
j∗ ) ∪ R(MRS

j∗ )] of G; by Claim 3.3.4, if IBHH is a

Yes instance, then MM(H) = 3r
4 . Hence, in this case,

MM(G) = |V2|+MM(H) = N − 2r +
3r

4
= N − 5crsN

4
=

4− 5crs
4

·N

If IBHH is a No instance, then opt(H) = 3r
4 − r

2p . Hence, in this case,

MM(G) = |V2|+MM(H) ≤ N − 2r +
3r

4
− r

2p
= N − 5crsN

4
− crs

2p
N =

4− 5crs
4

·N − crs

2p
N

The bound on optYes and optNo now follows from the fact that p ≤ crs
2ε and therefore

crs
2pN ≥ εN > ε ·

(
4−5crs

4 ·N
)
.

Fix any δ-error protocol ΠMatching for EstMatchingn,ε on DM; Claim 3.7.1 implies that

ΠMatching is also a δ-error protocol for solving the embedded instance IBHH: simply return Yes

whenever the estimate is larger than optNo and return No otherwise. We now use this fact

to design a protocol ΠBHH for solving BHH0
r,p on DBHH, and prove that the communication

cost of ΠMatching is t times the communication complexity of BHH0
r,p.

The protocol ΠBHH for reducing BHH0
r,p to EstMatchingn,ε.

1. Let (x,M) be the input BHH0
r,p instance (x is given to Alice and M is given to

Bob).

2. Using public randomness, Alice and Bob sample an index j∗ ∈ [t] uniformly at

random.

3. Let x(1), . . . , x(t) be t vectors in {0, 1}r whereby x(j∗) = x and for any j 6= j∗, x(j) is
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sampled by Alice using private randomness as in the distribution DM. Alice creates

the edges EA following the distribution DM using these vectors.

4. Given the p-hypermatching M as input, Bob creates EB,1 as an arbitrary perfect

matching between V1 \ V (MRS
j∗ ) and V2. He also creates EB,2 as the edges of the

p-clique family ofM on R(MRS
j∗ ) (V1, V2, and M

RS
j∗ are defined exactly as in DM).

5. The players then run ΠMatching on the graph G(V,EA ∪EB) and Bob outputs Yes if

the output is larger than optNo and No otherwise.

The correctness of the protocol follows immediately from Claim 3.7.1. We now bound

the information cost of this new protocol and use it to bound its communication cost by

Proposition 2.8.3.

Lemma 3.7.2. ICext
DBHH

(ΠBHH) ≤ 1
t · ICext

DM
(ΠMatching).

Proof. Let R denote the public randomness used by ΠBHH. We have,

ICext
DBHH

(ΠBHH) = I(X ;ΠBHH | R) (by Proposition 2.8.4 as ΠBHH is a one-way protocol)

= I(X ;ΠMatching | J)
(R = J and the message of ΠBHH is the same as ΠMatching after fixing the index j∗)

= E
j∈[t]

[I(X ;ΠMatching | J = j)] =
1

t
·

t∑

j=1

I(Xj ;ΠMatching | J = j)

(distribution of (ΠMatching,Xj), conditioned on J = j, is the same under DM and DBHH)

=
1

t
·

t∑

j=1

I(Xj ;ΠMatching),

where the last equality is true since the random variables Xj and ΠMatching are both inde-

pendent of the event J = i (by definition of the distribution DM) and hence we can drop

the conditioning. Finally,

ICext
DBHH

(ΠBHH) =
1

t
·

t∑

j=1

I(Xj ;ΠMatching) ≤
1

t
·

t∑

j=1

I(Xj ;ΠMatching | X<j)

(since Xj ⊥ X<j and by Proposition 2.6.3)

=
Fact 2.6.1-(6)

I(X1, . . . ,Xt ;ΠMatching) =
1

t
· ICext

DM
(ΠMatching).

where the second last inequality is again by Proposition 2.8.4 as X1, . . . ,Xt uniquely deter-

mines the input EA to Alice in ΠMatching.
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Theorem 3.10 now follows from Lemma 3.7.2, lower bound of Ω(r1−1/p) = n1−O(ε)

for information complexity of BHH0
r,p in Corollary 3.5, and the choice of t = RS(n) (and

applying Proposition 2.8.3 to extend the information cost to a communication lower bound).

3.7.2. Dynamic Streams

We define EstMatchingn,k,ε as the k-player simultaneous communication problem of esti-

mating the maximum matching size to within a factor of (1+ ε), when edges of an n-vertex

input graph G(V,E) are partitioned across the k-players and the referee (see Remark 2.7.8).

In this section, we prove the following lower bound on the communication complexity of

EstMatchingn,k,ε in the simultaneous communication model.

Theorem 3.11. For any sufficiently large n and sufficiently small ε < 1
2 , there exists

some k = no(1) such that the δ-error k-party simultaneous communication complexity of

EstMatchingn,k,ε for constant δ < 1/2 is R
||
δ (EstMatchingn,k,ε) = n2−O(ε).

Similar to before, Theorem 3.11 together with the fact that simultaneous communica-

tion complexity lower bounds space complexity of single-pass dynamic streaming algorithms

(Proposition 2.7.11), implies the n2−O(ε) space lower bound in Part-(2) of Result 3.4 (as

k = no(1) in Theorem 3.11). We now prove Theorem 3.11.

We propose the following (hard) distribution DM for EstMatchingn,k,ε.

The hard distribution DM for EstMatchingn,k,ε:

Parameters: r = N1−o(1), t =
(N2 )−o(N2)

r , k = N
ε·r , n = N + k · r, and p :=

⌊
1
8ε

⌋
.

1. Fix an (r, t)-RS graph GRS on N vertices.

2. Pick j∗ ∈ [t] uniformly at random and draw a BHH0
r,p instance (x(j

∗),M) from the

distribution DBHH.

3. For each player P (i) independently,

(a) Denote by Gi the input graph of P (i), initialized to be a copy of GRS with

vertices Vi = [N ].

(b) Let V ∗
i be the set of vertices matched in the j∗-th induced matching of Gi.

Change the induced matching MRS
j∗ of Gi to Mj∗ :=MRS

j∗ |x(j∗) .
(c) For any j ∈ [t] \ {j∗}, draw a vector x(i,j) ∈ {0, 1}r following the distribution

DBHH for BHH0
r,p, and change the induced matching MRS

j of Gi to Mj :=

MRS
j |x(j) .

(d) Create the p-clique family of M on the vertices R(MRS
j∗ ), and give the edges

of the p-clique family to the referee.

4. Pick a random permutation σ of [n]. For every player P (i), for each vertex v in
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Vi \ V ∗
i with label j (∈ [N ]), relabel v to σ(j). Enumerate the vertices in V ∗

i

(from the one with the smallest label to the largest), and relabel the j-th vertex to

σ(N+(i−1) ·2r+j). In the final graph, the vertices with the same label correspond

to the same vertex.

The vertices whose labels belong to σ([N ]) are referred to as shared vertices since they

belong to the input graph of every player, and the vertices V ∗
i are referred to as the private

vertices of the player P (i) since they only appear in the input graph of P (i) (in the final

graph, i.e., after relabeling). We point out that, in general, the final graph constructed by

this distribution is a multi-graph with n vertices and O(kN2) = O(n2) edges (counting the

multiplicities); the multiplicity of each edge is also at most k. Finally, the existence of an

(r, t)-RS graph GRS with the parameters used in this distribution is guaranteed by a result

of [18] (see Proposition 2.3.1).

Similar to the lower bound in Section 3.7.1, let IBHH be the embedded BHH0
r,p instance

(x(i),M). The following claim is analogous to Claim 3.7.1 in Section 3.7.1.

Claim 3.7.3. Let:

optYes := min
G

(
MM(G) | G is chosen from DM conditioned on IBHH being a Yes instance

)

optNo := max
G

(
MM(G) | G is chosen from DM conditioned on IBHH being a No instance

)

then, (1− ε) · optYes > optNo.

Proof. We partition the edges of G into k + 1 groups: for any i ∈ [k], group i contains

the edges that are between the private vertices V ∗
i of player P (i), and group k + 1 contains

the edges incident on at least one shared vertex. Let Hi := G[V ∗
i ], i.e., the subgraph of G

induced on the vertices V ∗
i .

If IBHH is a Yes instance, then for any i ∈ [k], opt(Hi) =
3r
4 by Claim 3.3.4. Since V ∗

i

are private vertices, one can choose any matching from each Hi, and the collection of the

chosen edges form a matching of G. Therefore, MM(G) >
∑k

i=1MM(Hi) =
3kr
4 = 3N

ε . Note

that, MM(G) is strictly larger than 3N
ε since one can add (any) edge between the public

vertices to the matching.

If IBHH is a No instance, then MM(Hi) =
3r
4 − r

2p . Since MM(G) is at most the summa-

tion of the maximum matching size in each group, we have MM(G) ≤∑k
i=1MM(Hi)+N ≤

3kr
4 − kr

2p +N ≤ 3N
ε − 3N, and the gap between optYes and optNo follows.

Fix any δ-error protocol ΠMatching for EstMatchingn,k,ε on DM; Claim 3.7.3 implies that
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ΠMatching is also a δ-error protocol for solving the embedded instance IBHH: simply return

Yes whenever the estimate is larger than optNo and return No otherwise. In the following,

we use this fact to design a protocol ΠBHH for solving BHH0
r,p on DBHH, and then prove that

the information cost of ΠMatching is t times the information cost of BHH0
r,p.

In the protocol ΠBHH, Alice will simulate all k players of EstMatchingn,k,ε and Bob will

simulate the referee; Alice and Bob will use public coins to draw the special index j∗ and the

permutation σ. Together with the input from DBHH, Alice and Bob will be able to create

a EstMatchingn,k,ε instance. The reduction is formally defined as follows (the parameters

used in the reduction are exactly the same as that in the definition of DM).

The protocol ΠBHH for reducing BHH0
r,p to EstMatchingn,k,ε.

1. Let (x,M) be the input BHH0
r,p instance (x is given to Alice and M is given to

Bob).

2. Using public randomness, Alice and Bob sample an index j∗ ∈ [t], and a permutation

σ on [n] uniformly at random.

3. For any player P (i), let x(i,1), . . . , x(i,t) be t vectors in {0, 1}r whereby x(i,j
∗) = x

(i.e., Alice’s input in the BHH0
r,p problem) and for any j 6= j∗, x(i,j) is sampled

by Alice using private randomness as in the distribution DM. Alice then uses these

vector together with permutation σ to create the input graph Gi for each player P (i)

for i ∈ [k] following how Gi is created in the distribution DM for EstMatchingn,k,ε.

4. The vertices R(MRS
j∗ ) of each player will be mapped (by σ) to a different set of

vertices in G. Since Bob knows σ and j∗, and the (input) p-hypermatchingM, Bob

can create the p-clique families of each player (following referee’s input in DM).

5. The players then run ΠMatching on the EstMatchingn,k,ε that they created, and Bob

outputs Yes if the matching size estimate is larger than optNo and No otherwise.

It is straightforward to verify that the distribution of the EstMatchingn,k,ε instance

created by the protocol ΠBHH is identical to the distribution DM. The correctness of the

protocol now follows immediately from Claim 3.7.1. The following lemma now bounds the

information cost of this protocol. The proof is almost identical to the proof of Lemma 3.6.6

in Section 3.6.2 and hence we do not repeat it again here (see [33] for the detailed proof).

Lemma 3.7.4. ICext
DBHH

(ΠBHH) ≤ 1
t · ‖ΠMatching‖.

Theorem 3.11 now follows from Lemma 3.7.4, the lower bound of Ω(r1−1/p) = n1−O(ε) for

information cost of BHH0
r,p in Corollary 3.5, and the choice of t = Θ(n).
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3.8. Further Implications of Our Impossibility results

We conclude this chapter by listing some simple applications of our impossibility results

to other problems as well as models of computation and general techniques such as linear

sketches and composable coresets studied in this thesis. The results in this part have not

been published previously (albeit hinted at in our subsequent paper [30]).

Extension to the minimum vertex cover problem. Our lower bound in Result 3.2

can also be extended to the minimum vertex cover problem implying the following.

Theorem 3.12. For any α ≤ √n, any randomized single-pass streaming algorithm that

outputs an α-approximate vertex cover in dynamic graph streams with a constant probability

requires Ω(n2/α3) space in the worst case.

Theorem 3.12 follows from the following more general result.

Theorem 3.13. For any α ≤ √n, there exists some k = α ·
(
n
α

)o(1)
such that the k-party

simultaneous communication complexity of finding an α-approximate vertex cover, denoted

by ApxVCn,k,α, is R
||
1/10(ApxVCn,k,α) = k · Ω(n2/α3).

In the following, we briefly give the high level idea behind the proof of Theorem 3.13.

Recall the proof of Theorem 3.7 in the simultaneous communication model and the distri-

bution used in the proof of this theorem. Suppose we instead use the following distribution

(the difference is only that we are now sampling edges in each induced matching at a rate

of 1/α instead of 1/2).

A hard input distribution D for minimum vertex cover. (parameterized by a

sufficiently large integer N > 0)

Parameters: r = N1−o(1), t =
(N2 )−o(N2)

r , k = 10α·N
r , n = N + 2 · k · r.

1. Fix an (r, t)-RS graph GRS on N vertices with induced matchings MRS
1 , . . . ,MRS

t .

2. Pick j∗ ∈ [t] uniformly at random.

3. For each player P (i) independently,

(a) Denote by Gi the input graph of P (i), initialized to be a copy of GRS with

vertices Vi = [N ]. Moreover, define V ∗
i as the set of vertices incident on MRS

j∗ .

(b) Sample each edge in Gi w.p. 1/α independently and drop the remaining edges.

4. Pick a random permutation σ of [n]. For every player P (i), for each vertex v in

Vi \ V ∗
i with label ℓ, relabel v with σ(ℓ). Enumerate the vertices in V ∗

i (from the
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one with the smallest label to the largest), and relabel the ℓ-th enumerated vertex

with σ(N + (i − 1) · 2r + ℓ). In the final graph, the vertices with the same label

correspond to the same vertex.

It is easy to see that in this distribution, the minimum vertex cover is of size O(nα)

by picking all shared vertices as well as one of the endpoints of each edge from the special

matchings (note that by our sampling strategy, the total size of all special matchings is

now O(n/α) instead of Ω(n) in the distribution of Theorem 3.7). On the other hand, if

the players communicate o(n2/α3), then the coordinator is not able to find the edges of

special matchings and is hence forced to pick almost all vertices in V ∗
i for every player P (i)

to ensure that a vertex cover of the graph is chosen, hence resulting in a vertex cover of

size Ω(n). We leave the formal proof of Theorem 3.13 as an exercise but emphasize that

the proof follows in a straightforward way from the proof of Theorem 3.7.

Extension to other settings. The following results follow from simple applications of

the proof of Results 3.2 (in particular Theorem 3.7 and its aforementioned extension to

the minimum vertex cover problem in Theorem 3.13), and the connection between different

models cited in Section 1.1.4:

• Any linear sketch or composable coreset for approximating the maximum matching

or minimum vertex cover problems to within a factor of no(1) requires n2−o(1) space.

• Any distributed communication protocol with one round of communication for ap-

proximating the maximum matching or minimum vertex cover problems to within a

factor of no(1) requires n2−o(1) total communication.

• Any MPC algorithm with one round of computation in which the output is stored

on a single machine that is able to approximate the maximum matching or minimum

vertex cover problems to within a factor of no(1) requires n2−o(1) memory per-machine.

Informally speaking, the above implications suggest that achieving even a weak approxi-

mation ratio of no(1) for the maximum matching problem does not have a better solution

than essentially either storing the whole graph as a linear sketch or composable coreset, or

communicate it entirely in the distributed communication and MPC models. Similar impli-

cations as above hold for the problem of estimating the maximum matching size (instead

of finding the actual edges), albeit for the much more accurate approximation of (1± o(1))
using Results 3.3 and 3.4.
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Chapter 4

A Framework for Optimization on Massive Graphs

In this chapter, we introduce a new framework for graph optimization on massive graphs

and apply it to two prominent problems of maximum matching and minimum vertex cover.

The materials in this chapter are based on [30, 29] with further simplifications.

A basic and abstract algorithmic approach to large-scale optimization is as follows:

partition the data into multiple pieces, compute a representation or a summary of each

piece, merge the summaries together and recover the solution from the merge without further

accessing the original input. As we argued in Section 1.1.4, various algorithmic approaches

for processing massive datasets—most notably linear sketches and composable coresets—in

streaming, distributed communication, and MPC models fall under this category. Indeed,

successful applications of these techniques has yielded numerous efficient algorithms for

many graph problems including connectivity, minimum spanning tree, cut and spectral

sparsifiers, spanners, densest subgraphs, subgraph counting, and so on (see, e.g., [11, 12,

13, 209, 208, 102, 61, 169, 243, 182] and references therein).

Nevertheless, our results in the previous chapter (see Section 3.8), ruled out the applica-

bility of these techniques for the prominent problems of maximum matching and minimum

vertex cover. In this chapter, we introduce a simple tweak to this general strategy and

introduce a new framework for graph optimization on massive graphs that can bypass the

aforementioned impossibility results (in some cases, by making natural assumptions about

the input) and even improve the state-of-the-art in a unified way across multiple models.

In the next chapter, we show further modifications of this framework that is tailored to the

MPC model and allows for even more efficient algorithms in that model.

HighLights of Our Contributions

In this chapter, we will establish:

• An algorithmic approach for bypassing the impossibility results for matching and ver-

tex cover in streaming, distributed, and MPC models by making natural assumptions

about the input partitioning (Section 4.4).

• Lower bounds on the performance of any algorithm using this new approach proving

the near optimality of our results in terms of their resource requirement (Section 4.5).

• Better algorithms using this approach that improve the state-of-the-art in a unified

way across multiple models in one or all parameters involved (Section 4.6).
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4.1. Background

As massive graphs become more prevalent, there is a rapidly growing need for scalable al-

gorithms that solve classical graph problems on large datasets, in particular the streaming,

distributed communication model, and the MPC model studied in this thesis. Given the

variety of relevant models for processing massive graphs, there has been a lot of attention

on designing general algorithmic techniques that can be applicable across a wide range of

settings. Two particularly successful techniques in this context are linear sketches and com-

posable coresets introduced in Section 1.1.4. There has been a considerable amount of work

in designing linear sketches and composable coresets for optimization problems in recent

years [10, 12, 208, 35, 101, 81, 209, 61, 243, 40, 43, 49, 186, 250, 249]. Successful applica-

tions of these two techniques has yielded Õ(n) size summaries for many graph problems.

However, two prominent problems are notably absent from the list of successes, namely, the

maximum matching problem and the minimum vertex cover problem. Indeed, our results

from Chapter 3 (in particular Section 3.8) imply that both matching and vertex cover re-

quire summaries of size n2−o(1) for even computing a weak no(1)-approximate solution using

these techniques, implying that these techniques are essentially useless for these problems.

This state-of-affairs is the starting point for our work in this chapter. Our main insight

is that a natural data oblivious partitioning scheme completely alters this landscape: both

matching and vertex cover problems admit O(1)-approximate composable coresets of size

Õ(n) provided the edges of the graph are randomly partitioned across multiple pieces

(as opposed to linear sketches and composable coresets that assume arbitrarily partitioning

of input). The idea that random partitioning of data can help in these scenarios was nicely

illustrated in the recent work of [249] on maximizing submodular functions. Our work

can be seen as the first illustration of this idea in the domain of graph algorithms. The

applicability of this idea to graph problems has been cast as an open problem in [249].

4.1.1. Randomized Composable Coresets

We follow the notation of [249] with a modification to adapt to our application in graphs.

Let E be an edge-set of a graph G(V,E); we say that a partition
{
E(1), . . . , E(k)

}
of the

edges E is a random k-partitioning iff the sets are constructed by assigning each edge in

E independently to a set E(i) chosen uniformly at random. A random partitioning of the

edges naturally defines partitioning the graph G(V,E) into k graphs G(1), . . . , G(k) whereby

G(i) := G(V,E(i)) for any i ∈ [k], and hence we use random partitioning for both the

edge-set and the input graph interchangeably.

Definition 4.1 (Randomized Composable Coreset). For a graph problem P , consider an

algorithm ALG that takes as input a graph G and returns a subgraph ALG(G) ⊆ G. ALG is
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said to output an α-approximate randomized coreset for P if given any graph G(V,E) and

a random k-partition of G into
{
G(i)(V,E(i))

}
, P

(
ALG(G(1)) ∪ . . . ∪ ALG(G(k))

)
is an α-

approximation to P (G) with high probability where the probability is taken over the random

choice of the k-partitioning (and the algorithm).

We refer to the number of edges in the returned subgraph by ALG as size of the coreset.

We further augment this definition by allowing the coresets to also contain a fixed solution

to be directly added to the final solution of the composed coresets. In this case, size of the

coreset is measured both in the number of edges in the output subgraph plus the number

of vertices and edges picked by the fixed solution (this is mostly relevant for our coreset for

the vertex cover problem as we explain further below).

The following proposition captures some of the interesting applications of randomized

composable coresets. The proof is straightforward extension of the approach outlined in

Section 1.1.4 for using composable coresets to design algorithms in these models.

Proposition 4.1.1. Suppose ALG outputs an α-approximation randomized coreset of size

s for a problem P . Let G(V,E) be a graph with m = |E| edges. Then, ALG implies:

1. A parallel algorithm in the MPC model that w.h.p. outputs an α-approximation to

P (G) in two rounds with O(
√
m/s) machines, each with O(

√
ms+ n) memory.

2. A streaming algorithm that on random arrival streams outputs an α-approximation to

P (G) with high probability using O(
√
ms) space.

3. A one-round distributed protocol that on randomly partitioned inputs computes an

α-approximation to P (G) w.h.p. using O(s) communication per machine.

4.2. Our Results and Techniques

We present our results in two parts. In the first part, we present simple constructions of ran-

domized composable coresets that achieve O(1)-approximation to matching and O(log n)-

approximation to vertex cover using only Õ(n) space. These results already demonstrate

the power of this approach over the impossibility results known for previous techniques such

as linear sketches composable coresets. We also prove that the size of these coresets are

optimal up to lower order terms. While our results in the this part shows a significant gap

between the power of randomized composable coresets compared to previous approaches on

adversarial partitions, the applications of these results to the computational models stud-

ied in this thesis (using Proposition 4.1.1) are rather weak and cannot compete with the

state-of-the-arts algorithms that were designed specifically for each model.

We remedy this situation in the second part of our results by designing improved ran-
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domized composable coresets using new techniques that achieve (3/2)-approximation to

matching and 2-approximation to vertex cover still in Õ(n) space. Our results in this part

imply a unified approach for solving these two problems across different models and improve

the state-of-the-art in the aforementioned computational models in some or all parameters

involved. We shall remark that the generality of randomized composable coresets can, in

principle, make the problem of designing them harder or even impossible compared to solv-

ing the problem on each specific computational model. It is therefore surprising that using

this unified approach, we can design essentially a single algorithm that can improve the

state-of-the-art algorithms in all these models simultaneously.

4.2.1. Part One: Simple Randomized Composable Coresets

We design efficient randomized composable coresets for matching and vertex cover.

Result 4.1. There exist randomized coresets of size Õ(n) that w.h.p. (over the random

partitioning of the input) give an O(1)-approximation for maximum matching, and an

O(log n)-approximation for minimum vertex cover.

In sharp contrast to the above result, when the graph is adversarially partitioned,

our results from Chapter 3 show that the best approximation ratio conceivable for these

problems in Õ(n) space is only Θ(n1/3). We further remark that Result 4.1 can also be

extended to the weighted version of the problems. Using the Crouch-Stubbs technique [110]

one can extend our result to achieve a coreset for weighted matching (with a factor 2 loss in

approximation and extra O(log n) term in the space). Similar ideas of “grouping by weight”

of edges can also be used to extend our coreset for weighted vertex cover with an O(log n)

factor loss in approximation and space; we omit the details.

The Õ(n) space bound achieved by our coresets above is considered a “sweet spot”

for graph streaming algorithms [254, 139] as many fundamental problems are provably

intractable in o(n) space (sometimes not enough to even store the answer) while admit

efficient solutions in Õ(n) space. However, in the simultaneous model, these considerations

imply only that the total size of all k coresets must be Ω(n), leaving open the possibility

that coreset output by each machine may be as small as Õ(n/k) in size. Our next result

rules out this possibility and proves the optimality of our coresets size.

Result 4.2. Any α-approximation randomized coreset for the matching problem must

have size Ω(n/α2), and any α-approximation randomized coreset for the vertex cover

problem must have size Ω(n/α).

We note that our Result 4.2 can be strengthened significantly to rule out any summary

(not necessarily a coreset) of size o(n/α2) and o(n/α) for α-approximation of matching

and vertex cover, respectively (by proving a communication complexity lower bound in
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the simultaneous communication model on random partitions). However, as this extension

requires a significant detour from our approach in this chapter, we omit the details here

and instead refer the interested reader to the full version of our paper [30].

Our Techniques in the First Part

Randomized Coreset for Matching. Greedy and Local search algorithms are the typical

choices for composable coresets (see, e.g., [186, 249]). It is then natural to consider the

greedy algorithm for the maximum matching problem as a randomized coreset: the one

that computes a maximal matching. However, one can easily show that this choice of

coreset performs poorly in general; there are simple instances in which choosing arbitrary

maximal matching in the graph G(i) results only in an Ω(k)-approximation.

Somewhat surprisingly, we show that a simple change in strategy results in an efficient

randomized coreset: any maximum matching of the graph G(i) can be used as an O(1)-

approximate randomized coreset for the maximum matching problem. Unlike the previous

work in [249, 186] that relied on analyzing a specific algorithm (or a specific family of algo-

rithms) for constructing a coreset, we prove this result by exploiting structural properties of

the maximum matching (i.e., the optimal solution) directly, independent of the algorithm

that computes it. As a consequence, our coreset construction requires no prior coordina-

tion (such as consistent tie-breaking rules used in [249]) between the subgraphs and in fact

one can use a different algorithm on each subgraph for computing the maximum matching

required by the coreset.

Randomized Coreset for Vertex Cover. In the light of our coreset for the matching

problem, one might wonder whether a minimum vertex cover of a graph can also be used as

its randomized coreset. However, it is easy to show that the answer is negative here – there

are simple instances (e.g., a star on k vertices) on which this leads to an Ω(k) approximation

ratio. Indeed, the feasibility constraint in the vertex cover problem depends heavily on the

input graph as a whole and not only the coreset computed by each machine, unlike the case

for matching and in fact most problems that admit a composable coreset [43, 186, 249].

This suggests the necessity of using edges in the coreset to certify the feasibility of the

answer. On the other hand, only sending edges seems too restrictive: a vertex of degree

n− 1 can safely be assumed to be in an optimal vertex cover, but to certify this, one needs

to essentially communicate Ω(n) edges. This naturally motivates a slightly more general

notion of coresets—the coreset contains both subsets of vertices (to be always included in

the vertex cover) and edges (to guide the choice of additional vertices in the vertex cover).

To obtain a randomized coreset for vertex cover, we employ an iterative “peeling”

process where we remove the vertices with the highest residual degree in each iteration

(and add them to the final vertex cover) and continue until the residual graph is sufficiently
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sparse, in which case we can return this subgraph as the coreset. The process itself is a

modification of the algorithm by Parnas and Ron [266]; we point out that other modifications

of this algorithm has also been used previously for matching and vertex cover [263, 205, 60].

However, to employ this algorithm as a coreset we need to argue that the set of vertices

peeled across different machines is not too large as these vertices are added directly to

the final vertex cover. The intuition behind this is that random partitioning of edges in

the graph should result in vertices to have essentially the same degree across the machines

and hence each machine should peel the same set of vertices in each iteration. But this

intuition runs into a serious technical difficulty: the peeling process is quite sensitive to the

exact degree of vertices and even slight changes in degree results in moving vertices between

different iterations that potentially leads to a cascading effect. To address this, we design a

hypothetical peeling process (which is aware of the actual minimum vertex cover in G) and

show that the our actual peeling process is in fact “sandwiched” between two application

of this peeling process with different degree threshold for peeling vertices. We then use this

to argue that the set of all vertices peeled across the machines are always contained in the

solution of the hypothetical peeling process which in turn can we show is a small set.

Lower Bounds for Randomized Coresets. Our lower bound results for randomized

coresets for matching are based on the following simple distribution: the input graph consists

of union of two bipartite graphs, one of which is a random k-regular graph G1 with n/2α

vertices on each side while the other graph G2 is a perfect matching of size n − n/2α.

Thus the input graph almost certainly contains a matching of size n − o(n) and any α-

approximate solution must collect Ω(n/α) edges from G2 overall i.e. Ω(n/αk) edges from

G2 from each machine on average. After random partitioning, the input given to each

machine is essentially a matching of size n/2α from G1 and a matching of size roughly n/k

from G2. The local information at each machine is not sufficient to differentiate between

edges of G1 and G2, and thus any coreset that aims to include Ω(n/αk) edges from G2, can

not reduce the input size by more than a factor of α. Somewhat similar ideas can also be

shown to work for the vertex cover problem.

4.2.2. Part Two: Improved Randomized Composable Coresets

In this part, we develop a new randomized composable coreset for matching and vertex

cover with improved performance compared to our Result 4.1.

Result 4.3. There exist randomized composable coresets of size Õ(n) that for any

constant ε > 0, give a (3/2 + ε)-approximation for maximum matching and a (2 + ε)-

approximation for minimum vertex cover with high probability.

Our approach in Result 4.3 is entirely different than Result 4.1, and in particular we
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go beyond the ubiquitous 2-approximation barrier for matching (in Section 4.4.1, we show

that our previous approach in Result 4.1 provably cannot go below 2.). Result 4.3 yields

a unified framework that improves upon the state-of-the art algorithms for matching and

vertex cover across several computational models, for some or all the parameters involved.

Let us exhibit the most interesting results.

Streaming model. We consider single-pass streaming algorithms for matching. Com-

puting a 2-approximation for matching (and vertex cover) in O(n) space is trivial: simply

maintain a maximal matching. Going beyond this barrier has remained one of the central

open questions in the graph streaming literature since the introduction of the field [139].

No o(n2)-space algorithm is known for this task on adversarially ordered streams and the

lower bound result by Kapralov [204] (see also [160]) proves that an
(

e
e−1

)
-approximation

requires n1+Ω(1/ log logn) space. To make progress on this fascinating open question, Kon-

rad et al. [221] suggested the study of matching in random arrival streams. They presented

an algorithm with approximation ratio strictly better than 2, namely 2 − δ for δ ≈ 0.002,

in O(n) space over random streams. A direct application of our Result 4.3 improves the

approximation ratio of this algorithm significantly at a cost of a larger space.

Corollary 4.4. There exists a single-pass streaming algorithm on random arrival streams

that uses Õ(n
√
n) space and with high probability (over the randomness of the stream)

achieves an (almost) (3/2)-approximation to the maximum matching problem.

Corollary 4.4 provides the first strong evidence of a separation between random-order

and adversarial-order streams for matching, as it is the first algorithm that beats the ratio of(
e
e−1

)
, which is known to be “hard” on adversarial streams [204]. Although the lower bound

of [204] does not preclude achieving the bounds of Corollary 4.4 in an adversarial order

(because our space is Õ(n1.5) rather than Õ(n)), the proof in [204] (see also [160]) suggests

that achieving such bounds is ultimately connected to further understanding of Ruzsa-

Szemerédi graphs, a notoriously hard problem in additive combinatorics (see Section 2.3

and [163, 147, 18]). From a different perspective, most (but not all) streaming lower bounds

are proven by bounding the (per-player) communication complexity of the problem in the

blackboard communication model, including the
(

e
e−1

)
lower bound of [204]. Our algorithm

in Result 4.3 can be implemented with Õ(n) (per-player) communication in this model

which goes strictly below the lower bound of [204], thus establishing the first provable

separation between adversarial- and random-partitioned inputs in the blackboard model for

approximating matchings.

MPC model. Maximum matching and minimum vertex cover are among the most studied

graph optimization problems in the MPC and other MapReduce-style computation models
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[10, 225, 9, 30, 111, 54, 175]. As an application of Result 4.3, we obtain efficient MPC

algorithms for matching and vertex cover in only two rounds of computation.

Corollary 4.5. There exist MPC algorithms that with high probability achieve an (almost)

(3/2)-approximation to matching and an (almost) 2-approximation to vertex cover in two

MPC rounds and Õ(
√
mn+ n) memory per machine1.

It follows from our results in Chapter 3 (in Section 3.8) that sub-quadratic memory is not

possible with one MPC round, so two rounds is optimal. Furthermore, our implementation

only requires one round if the input is distributed randomly in the first place; see [249] for

details on when this assumption applies.

Our matching algorithm in this part outperforms the 2-approximate maximum match-

ing algorithm of Lattanzi et al. [225] in terms of both the approximation ratio (3/2 vs.

2) and round complexity (2 vs. 6) within the same memory. Our result for the matching

problem is particularly interesting as all other MPC algorithms [10, 9, 54] that can achieve

a better than two approximation (which is also a natural barrier for matching algorithms

across different models) require a large (unspecified) constant number of rounds. Achieving

the optimal 2 rounds is significant in this context, since the round complexity of MPC al-

gorithms determines the dominant cost of the computation (see, e.g. [225, 53]), and hence

minimizing the number of rounds is the primary goal in this model.

Distributed communication model. Maximum matching (and to a lesser degree vertex

cover) has been studied previously in the simultaneous communication model owing to many

applications of this model, including in achieving round-optimal distributed algorithms [30],

proving lower bounds for dynamic graph streams [220, 14, 35, 33], and applications to

mechanism design [119, 19, 118]. As an application of Result 4.3, we obtain:

Corollary 4.6. There exist one-round communication protocols on randomly partitioned

inputs that achieve (almost) (3/2)-approximation to matching and (almost) 2-approximation

to vertex cover with high probability (over the randomness of the input partitioning) with

Õ(n) communication per machine/player.

Our protocols achieve optimal communication complexity (up to polylog(n) factors) by the

extension of Result 4.2 in [30] we mentioned earlier.

Our Techniques in the Second Part

Our Result 4.3 is based on a novel application of edge degree constrained subgraphs (EDCS)

that were previously introduced by Bernstein and Stein [57] for maintaining large matchings

1The approximation factor for vertex cover degrades to 4 if one requires local computation on each
machine to be polynomial time; see Remark 4.6.8.
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in dynamic graphs. Previous work on EDCS [57, 58] focused on how large a matching an

EDCS contains and how it can be maintained efficiently in a dynamic graph. We instead

focus on the structural properties of the EDCS, and prove several new facts in this regard.

In particular, we identify the EDCS as a sparse certificate for large matchings and small

vertex covers which are quite robust to sampling and composition: an ideal combination

for a randomized coreset.

Roughly speaking, our results prove that if we randomly partition a graph G into k

pieces G(1), . . . , G(k) (as in a random k-partition), compute an EDCS H(i) of each graph G(i)

(as a coreset), then the graph H := H(1)∪ . . .∪H(k) (i.e., the union of the coresets) is in fact

an EDCS of G. We emphasize that this composability under random partitions of the EDCS

is a highly non-trivial property that we prove in this paper and is entirely different from

most other similar sparse certificates for large matchings such as b-matchings. At this point,

we can use the results in [57, 58] to show that H contains a (3/2)-approximate matching of

G. We further prove that an EDCS H of a graph G also contains a 2-approximate vertex

cover which lead to our coreset for vertex cover using the above approach.

4.3. Preliminaries

Let {Xi}ni=1 and {Yi}ni=1 be a sequence of random variables such that E [Xi | Y1, . . . , Yi−1] =

Xi−1 for all i. The sequence {Xi} is referred to as a martingale with respect to {Yi}.
Azuma’s inequality proves a concentration bound for martingales.

Proposition 4.3.1 (Azuma’s inequality). Let {Xi}ni=0 be a martingale (with respect to

some random variables {Yi}ni=0). Suppose there exists a sequence of integers {ci}ni=1 such

that |Xi −Xi−1| ≤ ci; then, Pr
(
|Xn −X0| ≥ λ

)
≤ 2 · exp

(
− λ2∑n

i=1 c
2
i

)
.

4.3.1. Edge Degree Constrained Subgraph (EDCS)

We introduce edge degree constrained subgraphs (EDCS) in this section and present several

of their properties which are proven in previous work. We emphasize that all other properties

of EDCS proven in the subsequent sections are new to this thesis. An EDCS is defined

formally as follows.

Definition 4.2 ([57]). For any graph G(V,E) and integers β ≥ β− ≥ 0, an edge degree

constraint subgraph (EDCS) (G, β, β−) is a subgraph H := (V,EH) of G with the following

two properties:

(P1) For any edge (u, v) ∈ EH : degH(u) + degH(v) ≤ β.

(P2) For any edge (u, v) ∈ E \ EH : degH(u) + degH(v) ≥ β−.

We sometimes abuse the notation and use H and EH interchangeably.
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In the remainder of this thesis, we use the terms “Property (P1)” and “Property (P2)”

of EDCS to refer to the first and second items in Definition 4.2 above.

One can prove the existence of an EDCS(G, β, β−) for any graph G and parameters

β− < β using the results in [58] (Theorem 3.2) which in fact shows how to maintain an

EDCS efficiently in dynamic graphs (a more direct proof is presented in our paper [29]).

Lemma 4.3.2. Any graph G contains an EDCS(G, β, β−) for any parameters β > β−.

It was shown in [57] (bipartite graphs) and [58] (general graphs) that for appropriate

parameters an EDCS always contains an (almost) 3/2-approximate matching of G.

Lemma 4.3.3 ([57, 58]). Let G(V,E) be any graph and ε < 1/2 be a parameter. For

parameters λ ≥ ε
100 , β ≥ 32λ−3, and β− ≥ (1−λ)·β, in any subgraph H := EDCS(G, β, β−),

MM(G) ≤
(
3
2 + ε

)
·MM(H).

Lemma 4.3.3 implies that an EDCS of G preserves the maximum matching of G approxi-

mately. We show in Section 4.6.1 that this is also the case for the minimum vertex cover.

4.4. Simple Randomized Composable Coresets

We present our first set of randomized composable coresets for matching and vertex cover

in this section, formalizing Result 4.1.

4.4.1. An O(1)-Approximation Randomized Coreset for Matching

The following theorem formalizes Result 4.1 for matching.

Theorem 4.7. Any maximummatching of graphs G(i)(V,E(i)) is a (3+o(1))-approximation

randomized composable coreset of size O(n) for the maximum matching problem.

In Theorem 4.7 we assume thatMM(G) = ω(k log n) since otherwise we can immediately

obtain a (non-randomized) composable coreset with approximation ratio one (an exact

maximum matching) and size Õ(k2) for the matching problem using the results in [101].

A crucial building block in our proof of Theorem 4.7 is a new concentration result for

the size of maximum matching in edge sampled subgraphs that we prove in the next section.

This result is quite general and can be of independent interest.

Concentration of Maximum Matching Size under Edge Sampling

Let G(V,E) be any arbitrary graph and p ∈ (0, 1) be a parameter (possibly depending on

size of the graph G). Define GE
p (V,Ep) as a subgraph of G obtained by sampling each edge

in E independently and with probability p, i.e., an edge sampled subgraph of G. We show

that MM(Gp) is concentrated around its expected value.
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Lemma 4.4.1. Let G(V,E) be any graph, p ∈ (0, 1) be a parameter, and E
[
MM(GE

p )
]
≤ µ.

For any λ > 0, Pr
( ∣∣MM(GE

p )− E
[
MM(GE

p )
]∣∣ ≥ λ

)
≤ 2 · exp

(
−λ2·p

2·µ

)
.

Proof. For simplicity, define Gp := GE
p . Let C be any minimum vertex cover in the graph

G. We use vertex exposure martingales over vertices in C to prove this result. Fix an

arbitrary ordering of vertices in C and for any v ∈ C, define C<v as the set of vertices

in C that appear before v in this ordering. For each v ∈ C, we define a random variable

Yv ∈ {0, 1}V \C<v

as a vector of indicators whether a possible edge (i.e., an edge already

in G) between the vertices v and u ∈ V \ C<v appears in Gp or not. Since C is a vertex

cover of G, every edge in G is incident on some vertex of C. As a result, the graph Gp

is uniquely determined by the vectors Y1, . . . , Y|C|. Define a sequence of random variables

{Xi}|C|
i=1, whereby Xi = E [MM(Gp) | Y1, . . . , Yi]. The following claim is standard.

Claim 4.4.2. The sequence {Xi}|C|
i=1 is a martingale with respect to the sequence {Yi}|C|

i=1.

Proof. For any i ≤ |C|,

E [Xi | Y1, . . . , Yi−1]

= E
(y1,...,yi−1)

[
E [MM(Gp) | Y1 = y1, . . . , Yi−1 = yi−1, Yi] | Y1 = y1, . . . , Yi−1 = yi−1

]

= E
(y1,...,yi−1)

[
MM(Gp) | Y1 = y1, . . . , Yi−1 = yi−1

]

(as we are “averaging out” Yi in the outer expectation)

= E
[
MM(Gp) | Y1, . . . , Yi−1

]
= Xi−1.

Claim 4.4.2

Notice that X0 := E [MM(Gp)] and X|C| = MM(Gp) as fixing Y1, . . . , Y|C| uniquely

determines the graph Gp. Hence, we can use Azuma’s inequality to show that value of X|C|
is close to X0 with high probability. To do this, we need a bound on |C|, as well as each term

|Xi −Xi−1|. Bounding each |Xi −Xi−1| term is quite easy; the set of edges incident on the

vertex i can only change the maximum matching in Gp by 1 (as i can only be matched

once), and hence |Xi −Xi−1| ≤ 1. In the following, we also bound the value of |C|.

Claim 4.4.3. |C| ≤ 2 · µ/p.

Proof. Since size of a minimum vertex cover of a graph G is at most twice the size of its

maximum matching (Fact 2.2.5), we have that |C| ≤ 2 ·MM(G). It is also straightforward

to verify that p ·MM(G) ≤ E
[
MM(Gp)

]
≤ µ, since p fraction of the edges of any maximum

matching of G appear in Gp in expectation; hence |C| ≤ 2 · µ/p. Claim 4.4.3
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We are now ready to finalize the proof. By setting ci = 1 for all i ≤ |C|, we can use

Azuma’s inequality (Proposition 4.3.1) with parameters λ and ci for the martingales {Xi},
and obtain that,

Pr
(
|MM(Gp)− E [MM(Gp)]| ≥ λ

)
= Pr

( ∣∣X|C| −X0

∣∣ ≥ λ
)
≤ 2 · exp

(
− λ2∑

i∈C c
2
i

)

= 2 · exp
(
− λ

2

|C|

)
≤

Claim 4.4.3
2 · exp

(
−λ

2 · p
2 · µ

)
,

finalizing the proof. Lemma 4.4.1

Proof of Theorem 4.7

Let G(V,E) be any arbitrary graph and G(1), . . . , G(k) be a random k-partition of G. Recall

that the coreset algorithm simply computes a maximum matching Mi on each graph G(i)

for i ∈ [k]; hence, we only need to show that the graph H(V,M1 ∪ . . . ∪Mk) has a large

matching compared to the graph G.

Let M∗ be any fixed maximum matching in G, and let µ := |M∗| = MM(G). Our

approach is to show that either each graph G(i) has a large matching already, i.e., |Mi| ≥
µ/3, or many edges of M∗ are picked in Mi as well. In the latter case, the union of edges

in Mi for i ∈ [k] has a large intersection with M∗ and hence contains a large matching.

Define G−(V,E−) whereby E− := E \M∗. Let G−
i := G− ∩ G(i) be the intersection

of the graph G(i) and G−. Finally, define µ−i as the maximum matching size in G−
i . Using

our concentration result from the previous section, we can show that,

Claim 4.4.4. Let ε ∈ (0, 1) be a parameter. Suppose µ ≥ 4 · ε−2 · k log n; then, there

exists an integer µ− ∈ [n] such that with probability 1− o(1) (over the random k-partition),

µ−i = µ− ± ε · µ simultaneously for all i ∈ [k].

Proof. Let p = 1/k; the graph G−
i is a subgraph of G− obtained by picking each edge in

G− independently and with probability p. Let µ− := E
[
MM(G−

i )
]
≤ µ (notice that the

marginal distribution of G−
i graphs for all i ∈ [k] are identical). By setting λ = ε · µ in

Lemma 4.4.1, we have that,

Pr
(∣∣µ−i − µ−

∣∣ ≥ λ
)

≤
Lemma 4.4.1

2 · exp
(
−ε

2 · µ2 · p
2 · µ

)
≤ 2 · exp (−2 log n) ≤ 1

n2

where the second inequality is by the assumption on the value of µ. Taking a union bound

over all k ≤ n subgraphs G−
i for i ∈ [k] finalizes the proof.

In the following, we condition on the event in Claim 4.4.4. We now have,
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Lemma 4.4.5. Let µ, µ− and ε be as in Claim 4.4.4. If µ− ≤ µ/3, then
∣∣∣
⋃k
i=1Mi ∩M∗

∣∣∣ ≥
µ/3− 3ε · µ w.p. 1− o(1).

Proof. Fix an index i ∈ [k] and notice that conditioning on the event in Claim 4.4.4, only

fixes the set of edges in G−
i . Let M−

i be any maximum matching in G−
i ; by definition,

µ−i =
∣∣M−

i

∣∣. By conditioning on the event in Claim 4.4.4, we have µ−i ≤ µ− + 2ε · µ. It is

straightforward to verify that there are at least |M∗| − 2 ·
∣∣M−

i

∣∣ = µ − µ−i ≥ µ/3 − 2ε · µ
edges e in M∗ such that neither of endpoints of e are matched by M−

i . We refer to these

edges as free edges and use M∗
f ⊆M∗ to denote them.

Note that even after conditioning on G−
i , the edges inM

∗, and consequentlyM∗
f , appear

in the graph G(i) independently and with probability 1/k. As such, using a Chernoff bound

(by assumption on the value of µ), w.p. 1−1/n2,
∣∣∣M∗

f

∣∣∣ /k−ε·µ/k edges ofM∗
f appear in G(i).

Since these edges can be directly added to the matching M−
i (as neither endpoints of them

are matched in M−
i ), this implies that there exists a matching of size µ−i + 1

k · (µ/3− 3ε · µ)
in G(i) w.p. 1− 1/n2.

Now let Mi be the maximum matching computed by the coreset algorithm; the above

argument implies that |Mi| ≥ µ−i + 1
k · (µ/3− 3ε · µ). On the other hand, notice that∣∣Mi ∩G−

i

∣∣ ≤ µ−i asMi∩G−
i forms a matching in the graphG−

i and µ−i denotes the maximum

matching size in this graph. This means that |Mi ∩M∗| =
∣∣Mi \G−

i

∣∣ ≥ 1
k ·(µ/3− 3ε · µ). To

finalize the proof, notice that by a union bound over all k matchings Mi, we have that with

probability 1−1/n,
∣∣∣
⋃k
i=1Mi ∩M∗

∣∣∣ =
∑k

i=1 |Mi ∩M∗| ≥ k · 1k ·(µ/3− 3ε · µ) = µ/3−3ε ·µ.
This concludes the proof. Lemma 4.4.5

We can now easily prove Theorem 4.7.

Proof of Theorem 4.7. By our assumption that µ = MM(G) = ω(k log n), we can take ε in

Claim 4.4.4 and Lemma 4.4.5 to be some arbitrary small constant, say ε = o(1). Define

µ− as in Lemma 4.4.5. If µ− > µ/3, we are already done as by Claim 4.4.4, for any

i ∈ [k], |Mi| ≥ µ−−o(µ) ≥ µ/3−o(µ) and hence the union of matchings M1, . . . ,Mk surely

has a (3 + o(1)) approximate matching. On the other hand, if µ− ≤ µ/3, we can apply

Lemma 4.4.5, and argue that µ/3− o(µ) edges of the matching M∗ appear in the union of

matchings M1, . . . ,Mk, which finalizes the proof. Theorem 4.7

Lower Bound on the Approximation Ratio of Maximum Matching Coreset

We also show that there exists a graph for which the approximation ratio of the coreset in

Theorem 4.7 is arbitrarily close to 2. This implies that we cannot improve the analysis of

this coreset much further and in particular beat the approximation ratio of 2.
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Lemma 4.4.6. There exists a graph G(V,E) such that for any random k-partition of G

(k ≤ n1−δ for any constant δ > 0), the maximum matching coreset in Theorem 4.7 can only

find a matching of size at most
(
1
2 + 1

k

)
·MM(G) with high probability.

Proof. The vertex set of the graph G consists of four sets of vertices L1, L2, R1, R2 with

|L1| = n
2 +

n
k and |L2| = |R1| = |R2| = n

2 . G is a bipartite graph with L1∪L2 on one side of

the bipartition and R1 ∪R2 on the other side. There is a complete bipartite graph between

L1 and R2, a perfect matching between L2 and R2 and a matching of size |R1| between L1

and R1.

It is easy to verify that there exists a matching of size |R1|+ |R2| = n in G and hence

MM(G) ≥ n. Suppose we create a random k-partition G(1), . . . , G(k) of G and each machine

i ∈ [k] computes an arbitrary maximum matching Mi of its input graph (i.e., compute the

MaxMatching coreset). In the following, we argue that the maximum matching in the graph

H(V,M1 ∪ . . . ,Mk) is of size (12 + 1
k ) · n with high probability, which concludes the proof.

To prove the lemma, we need the following simple claim about the maximum matching

in the edge sampled subgraphs of G.

Claim 4.4.7. Suppose GE
p (V,Ep) is an edge sampled subgraph of G with probability p = 1/k;

then, w.p. 1− 1/n5, there exists a matching Mp in G such that:

1. Mp is a maximum matching in Gp, i.e., |Mp| = MM(G).

2. No edges between L2 and R2 belong to Mp.

Proof. A simple application of Chernoff bound ensures that the total number of edges

between L1 and R1 in Gp is at most 2p ·n = n/k with probability at least 1− 1/n10. In the

following, we condition on this event. Define M1,1 as the matching consisting of the edges

between L1 and R1 in Gp and let L−
1 := L1 \ L1(M1,1) be the set of vertices in L1 that are

not incident on M1,1.

Consider the graph between L−
1 and R2. Note that since |M1,1| ≤ n/k, we have

∣∣L−
1

∣∣ ≥
|R2|. By the independence in the sampling of edges and the fact that in G, L−

1 and R1 forms

a bipartite clique, the set of edges between L−
1 and R2 in Gp form a random bipartite graph

with probability of having each edge equal to p = 1/k = ω(log n). Using standard facts

about random graphs (see, e.g., [64], Chapter 7), this implies that there exists a matching

of size |R2| between L−
1 and R2 in Gp with probability 1− 1/n10. Let Mp be the union of

this matching and M1,1.

It is clear thatMp does not have any edges between L2 and R2. To see thatMp is indeed

a maximum matching of Gp, notice that all vertices in R1 ∪ R2 in Gp that have non-zero

degree are matched by Mp and so there cannot be any larger matching in G. Claim 4.4.7
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We are now ready to finalize the proof of Lemma 4.4.6. Recall that each graph G(i) is

an edge sampled subgraph of G with probability 1/k. We can apply Claim 4.4.7 to each

graph G(i) and by a union bound, w.p. 1−1/n4, there exists a suitable maximum matching

M
(i)
p in each graph G(i). Since we are choosing an arbitrary maximum matching of G(i) as

its coreset, we can assume that M
(i)
p would be chosen from each graph G(i), i.e., Mi =M

(i)
p

for all i ∈ [k]. This implies that no edge incident to vertices in L2 are chosen among all

coresetsM1∪. . .∪Mk. As a result, the maximum matching in the graph H(V,M1∪. . .∪Mk)

can have size at most |L1| =
(
1
2 + 1

k

)
·n, finalizing the proof as MM(G) = n. Lemma 4.4.6

4.4.2. An O(log n)-Approximation Randomized Coreset for Vertex Cover

The following theorem formalizes Result 4.1 for vertex cover.

Theorem 4.8. There exists an O(log n)-approximation randomized composable coreset of

size O(n log n) for the vertex cover problem.

Let G(V,E) be a graph and G(1), . . . , G(k) be a random k-partitioning of G; we pro-

pose the following coreset for computing an approximate vertex cover of G. This coreset

construction is a modification of the algorithm for vertex cover first proposed by [266].

VC-Coreset(G(i)). An algorithm for computing a composable coreset of each G(i).

1. Let ∆ be the smallest integer such that n/(k · 2∆) ≤ 4 log n and define G
(i)
1 := G(i).

2. For j = 1 to ∆− 1, let:

V
(i)
j :=

{
vertices of degree ≥ n/(k · 2j+1) in G

(i)
j

}

G
(i)
j+1 := G

(i)
j \ V

(i)
j .

3. Return V
(i)
cs :=

⋃∆−1
j=1 V

(i)
j as a fixed solution plus the graph G

(i)
∆ as the coreset.

In VC-Coreset we allow the coreset to, in addition to returning a subgraph, identify a

set of vertices (i.e., V
(i)
cs ) to be added directly to the final vertex cover. In other words, to

compute a vertex cover of the graph G, we compute a vertex cover of the graph
⋃k
i=1G

(i)
∆

and return it together with the vertices
⋃k
i=1 V

(i)
cs . It is easy to see that this set of vertices

indeed forms a vertex cover of G: any edge in G that belongs to G(i) is either incident on

some V
(i)
j , and hence is covered by V

(i)
j , or is present in G

(i)
∆ , and hence is covered by the

vertex cover of G
(i)
∆ .

In the remainder of this section, we bound the approximation ratio of this coreset. To do

this, we need to prove that
∣∣∣
⋃k
i=1 V

(i)
cs

∣∣∣ = O(log n)·VC(G). The bound on the approximation
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ratio then follows as the vertex cover of
⋃k
i=1G

(i)
∆ can be computed to within a factor of 2.

It is easy to prove (and follows from [266]) that the set of vertices V
(i)
cs is of size

O(log n) · VC(G); however, using this fact directly to bound the size of
⋃k
i=1 V

(i)
cs only

implies an approximation ratio of O(k log n) which is far worse than our goal of achieving

an O(log n)-approximation. In order to obtain the O(log n) bound, we need to argue that

not only each set V
(i)
cs is relatively small, but also that these sets are all intersecting in many

vertices. In order to do so, we introduce a hypothetical algorithm (similar to VC-Coreset) on

the graph G and argue that the set V
(i)
cs output by VC-Coreset(G(i)) is, with high probability,

a subset of the output of this hypothetical algorithm. This allows us to then bound the size

of the union of the sets V
(i)
cs for i ∈ [k].

Let O⋆ denote the set of vertices in an arbitrary optimum vertex cover of G and O⋆ :=

V \O⋆. Consider the following hypothetical process on G (defined only for analysis):

1. Let G1 be the bipartite graph obtained from G by removing edges between vertices

in O⋆.

2. For j = 1 to t := ⌈log n⌉, let:

Oj :=
{
vertices in O⋆ of degree ≥ n/2j in Gj

}

Oj :=
{
vertices in O⋆ of degree ≥ n/2j+2 in Gj

}

Gj+1 := Gj \ (Oj ∪Oj).

We first prove that the sets Oj ’s and Oj ’s in this process form an O(log n) approximation

of the minimum vertex cover of G and then show that VC-Coreset(G(i)) (for any i ∈ [k]) is

mimicking this hypothetical process in a sense that the set V
(i)
cs is essentially contained in

the union of the sets Oj ’s and Oj ’s.

Lemma 4.4.8.
∣∣∣
⋃t
j=1Oj ∪Oj

∣∣∣ = O(log n) · VC(G).

Proof. Fix any j ∈ [t]; we prove that Oj ≤ 8 · VC(G). The lemma follows from this since

there are at most O(log n) different sets Oj and the union of the sets Oj ’s is a subset of O⋆

(with size VC(G)).

Consider the graph Gj . The max-degree of Gj is at most n/2j−1 by the definition of

the process. Since all the edges in the graph are incident on at least one vertex of O⋆, there

can be at most |O⋆| · n/2j−1 edges between the remaining vertices in O⋆ and O⋆ in Gj .

Moreover, any vertex in Oj has degree at least n/2
j+2 by definition and hence there can be

at most
(
|O⋆| · n/2j−1

)
/
(
n/2j+2

)
≤ 8 |O⋆| = 8 · VC(G) vertices in Oj .
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We now prove the main relation between the sets Oj ’s and Oj ’s defined above and the

intermediate sets V
(i)
j ’s computed by VC-Coreset(G(i)). The following lemma is the heart

of the proof (See Figure 4a for a simple illustration).

Lemma 4.4.9. Fix an i ∈ [k], and let Aj = V
(i)
j ∩O⋆ and Bj = V

(i)
j ∩O⋆. With probability

1−O(1/n), for any t ∈ [∆]:

1.
⋃t
j=1Aj ⊇

⋃t
j=1Oj.

2.
⋃t
j=1Bj ⊆

⋃t
j=1Oj.

Proof. To simplify the notation, for any t ∈ [∆], we let A<t =
⋃t−1
j=1Aj and A≥t =

⋃∆
j=tAj

(and similarly for Bj ’s, Oj ’s, and Oj ’s). We also use NS(v) to denote the neighbor-set of

the vertex v in the set S ⊆ V .

Note that the vertex-sets of the graphs G and G(i) are the same and we can “project”

the sets Oj ’s and Oj ’s on graph G(i) as well. In other words, we can say a vertex v in G(i)

belongs to Oj iff v ∈ Oj in the original graph G. In the following claim, we crucially use

the fact that the graph G(i) is obtained from G by sampling each edge w.p. 1/k to prove

that the degree of vertices across different sets Oj ’s (and Oj ’s) in G(i) are essentially the

same as in G (up to the scaling factor of 1/k).

Claim 4.4.10. For any j ∈ [∆]:

• For any vertex v ∈ Oj,
∣∣∣NO≥j

(v)
∣∣∣ ≥ n/(k · 2j+1) in the graph G(i) w.p. 1−O(1/n2).

• For any vertex v ∈ O≥j+1,
∣∣NO≥j

(v)
∣∣ < n/(k·2j+1) in the graph G(i) w.p. 1−O(1/n2).

Proof. Fix j ∈ [∆] and v ∈ Oj . By definition of Oj , degree of v is at least n/2j in Gj ; in

other words,
∣∣∣N

O
≥j (v)

∣∣∣ ≥ n/2j in G. Since each edge in G is sampled w.p. 1/k in G(i),∣∣∣N
O

≥j (v)
∣∣∣ ≥ n/(k · 2j) in G(i) in expectation. By the choice of ∆, n/(k · 2j) ≥ 4 log n, and

by Chernoff bound, w.p. 1−O(1/n2),
∣∣∣N

O
≥j (v)

∣∣∣ ≥ n/(k · 2j+1) in G(i).

Similarly for a vertex v ∈ O≥j+1
, degree of v is less than n/2j+2 in Gj by definition

of Oj ; hence, |NO≥j (v)| < n/2j+2 in the graph G. Using a similar argument as before, by

Chernoff bound, w.p. 1−O(1/n2), |NO≥j (v)| < n/(k · 2j+1) in G(i). Claim 4.4.10

By using a union bound on the n vertices in G, the statements in Claim 4.4.10 hold

simultaneously for all vertices of G w.p. 1− O(1/n); in the following we condition on this

event. We now prove Lemma 4.4.9 by induction. See Figure 4b for some intuition.

Let v be a vertex that belongs to O1; we prove that v belongs to the set V
(i)
1 of

VC-Coreset, i.e., v ∈ A1. By Claim 4.4.10 (for j = 1), the degree of v in G
(i)
1 is at least

n/4k. Note that in G
(i)
1 , v may also have edges to other vertices in O⋆ but this can only
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O⋆

O⋆

(a) The peeled sets in the hypothetical
process compared to the actual peeling
process for any choice of t ≤ ∆.

O⋆

O⋆

(b) Neighborhood of a vertex in O⋆ can only be larger in
the actual peeling process compared to the hypothetical
process as green edges only appear in the actual peeling
process while black edges appear in both. The opposite
holds for vertices in O⋆ (not drawn).

Figure 4: Illustration of Lemma 4.4.9 and its proof. Red parts correspond to the hypothet-
ical process and green parts correspond to the actual peeling process.

increase the degree of v. This implies that v also belongs to A1 by the threshold chosen

in VC-Coreset. Similarly, let u be a vertex in O≥2 (i.e., not in O1); we show that u is not

chosen in V
(i)
1 , implying that B1 can only contain vertices in O1. By Claim 4.4.10, degree

of u in G
(i)
1 is less than n/4k. This implies that u does not belong to B1. In summary, we

have O1 ⊆ A1 and B1 ⊆ O1.

Now consider some t > 1 and let v be a vertex in Ot. By induction, B<t ⊆ O<t. This

implies that the degree of v to B≥t is at least as large as its degree to O≥t. Consequently,

by Claim 4.4.10 (for j = t), degree of v in the graph G
(i)
t is at least n/(k · 2t+1) and hence

v also belongs to At. Similarly, fix a vertex u in O≥t+1. By induction, A<t ⊇ O<t and

hence the degree of u to A≥t is at most as large as its degree to O≥t; note that since O⋆ is

a vertex cover, u does not have any other edge in G
(i)
t except for the ones to A≥t. We can

now argue as before that u does not belong to Bt. Lemma 4.4.9

We are now ready to prove Theorem 4.8.

Proof of Theorem 4.8. The bound on the coreset size follows immediately from the fact

that the graph G
(i)
∆ contains at most O(n log n) edges and size of V

(i)
cs is at most n. As

argued before, to prove the bound on the approximation ratio, we only need to show that
⋃k
i=1 V

(i)
cs is of size O(log n) ·VC(G). Let A(i) = V

(i)
cs ∩O⋆ and B(i) = V

(i)
cs ∩O⋆; clearly, each

A(i) ⊆ O⋆ and moreover, by Lemma 4.4.9 (for t = ∆), each B(i) ⊆ ∪∆j=1Oj . Consequently,
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∣∣∣
⋃k
i=1 V

(i)
cs

∣∣∣ ≤ |O⋆|+
∣∣∣
⋃∆
j=1Oj

∣∣∣ ≤ O(log n) · VC(G) (last inequality is by Lemma 4.4.8).

4.5. Lower Bounds for Randomized Composable Coresets

We formalize Result 4.2 in this section, proving the following two theorems.

Theorem 4.9. For any k = o(n/ log n) and α = o(min {n/k, k}), any α-approximation

randomized composable coreset of the maximum matching problem is of size Ω(n/α2).

Theorem 4.10. For any k = o(n/ log n) and α = o(min {n/k, k}), any α-approximation

randomized composable coreset of the minimum vertex cover problem is of size Ω(n/α).

4.5.1. A Lower Bound for Randomized Coresets of Matching

We prove Theorem 4.9 in this section. By Yao’s minimax principle (Proposition 2.7.2), to

prove the lower bound in Theorem 4.9, it suffices to analyze the performance of deterministic

algorithms over a fixed (hard) distribution. We propose the following distribution for this

task. For simplicity of exposition, in the following, we prove a lower bound for (α/4)-

approximation algorithms; a straightforward scaling of the parameters proves the lower

bound for α-approximation.

Distribution DMatching. A hard input distribution for the matching problem.

• Let G(L,R,E) (with |L| = |R| = n) be constructed as follows:

1. Pick A ⊆ L and B ⊆ R, each of size n/α, uniformly at random.

2. Define EAB as a set of edges between A and B, chosen by picking each edge

in A×B w.p. k · α/n.
3. Define EAB as a random perfect matching between A and B.

4. Let E := EAB ∪ EAB.
• Let E(1), . . . , E(k) be a random k-partitioning of E and let the input to player P (i)

be the graph G(i)(L,R,E(i)).

Let G be a graph sampled from the distribution DMatching. Notice first that the graph G

always has a matching of size at least n−n/α ≥ n/2, i.e., the matching EAB. Additionally,

it is easy to see that any matching of size more than 2n/α in G uses at least n/α edges from

EAB: the edges in EAB can only form a matching of size n/α by construction. This implies

that any (α/4)-approximate solution requires recovering at least n/α edges from EAB. We

prove that this is only possible if the coresets of the players are sufficiently large.

For any i ∈ [k], define the induced matching M (i) as the unique matching in G(i) that

is incident on vertices of degree exactly one, i.e., both end-points of each edge in M (i) have
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degree one in G(i). We emphasize that the notion of induced matching is with respect to

the entire graph and not only with respect to the vertices included in the induced matching.

We have the following crucial lemma on the size of M (i). The proof is rather technical but

standard and is hence omitted here (it can be found in our paper [30]).

Lemma 4.5.1 (cf. [30]). W.p. 1−O(1/n), for all i ∈ [k],
∣∣M (i)

∣∣ = Θ(n/α).

Proof of Theorem 4.9. Fix any randomized composable coreset (algorithm) for the match-

ing problem that has size o(n/α2). We show that such a coreset cannot achieve a better

than (α/4)-approximation over the distribution DMatching. As argued earlier, to prove this,

we need to show that this coreset only contains o(n/α) edges from EAB in expectation.

Fix any player i ∈ [k], and let M⋆(i) be the subset of the matching EAB assigned to

P (i). It is clear that M⋆(i) ⊆ M (i) by the definition of M (i). Moreover, define Xi as the

random variable denoting the number of edges from M⋆(i) that belong to the coreset sent

by player P (i). Notice that Xi is clearly an upper bound on the number of edges of EAB
that are in the final matching of coordinator and also belong to the input graph of player

P (i). In the following, we show that E [Xi] = o
(
n
k·α
)
.

Having proved this, we have that the expected size of the output matching by the

coordinator is at most n/α+
∑k

i=1 E [Xi] = n/α+o(n/α) < (α/4) ·MM(G), a contradiction.

We now prove the bound on E [Xi]. In the following, we condition on the event that∣∣M⋆(i)
∣∣ = Θ(n/k) and

∣∣M (i)
∣∣ = Θ(n/α); by Chernoff bound (for the first part, since n/k =

ω(log n)) and Lemma 4.5.1 (for the second part), this event happens with probability 1 −
O(1/n). As such, this conditioning can only change E [Xi] by an additive factor of O(1)

which we ignore in the following.

A crucial property of the distribution DMatching is that the edges in M⋆(i) and the

remaining edges in M (i) are indistinguishable in G(i). More formally, for any edge e ∈ G(i),

Pr
(
e ∈M⋆(i) | e ∈M (i)

)
=

∣∣M⋆(i)
∣∣

∣∣M (i)
∣∣ = Θ(α/k).

On the other hand, for a fixed input M (i) to player P (i), the computed coreset Ci is always

the same (as the coreset is a deterministic function of the player input). Hence,

E [Xi] =
∑

e∈Ci

Pr
(
e ∈M∗

i | e ∈M (i)
)
= |Ci| ·Θ(α/k) = o(n/α2) ·Θ(α/k) = o (n/(α · k)) ,

where the second last equality is by the assumption that the size of the coreset, i.e., |Ci|, is
o(n/α2). This finalizes the proof.
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4.5.2. A Lower Bound for Randomized Coresets of Vertex Cover

In this section, we prove Theorem 4.10. By Yao’s minimax principle (Proposition 2.7.2),

to prove the lower bound in Theorem 4.10, it suffices to analyze the performance of deter-

ministic algorithms over a fixed (hard) distribution. We propose the following distribution

for this task. For simplicity of exposition, in the following, we prove a lower bound for

(c ·α)-approximation algorithms (for some constant c > 0); a straightforward scaling of the

parameters proves the lower bound for α-approximation as well.

Distribution DVC. A hard input distribution for the vertex cover problem.

• Construct G(L,R,E) (with |L| = |R| = n) as follows:

1. Pick A ⊆ L of size n/α uniformly at random.

2. Let EA be a set of edges chosen by picking each edge in A×R w.p. k/2n.

3. Pick a single vertex V ∗ uniformly at random from A and let e⋆ be an edge

incident on V ∗ chosen uniformly at random.

4. Let E := EA ∪ {e⋆}.
• Let E(1), . . . , E(k) be a random k-partitioning of E and let the input to player P (i)

be the graph G(i)(L,R,E(i)).

For any i ∈ [k], we define L1
i as the set of vertices in L with degree exactly one in G(i).

We further define R1
i as the set of neighbors of vertices in L1

i (note that vertices in R1
i do

not not necessarily have degree exactly one). We start by proving a simple property.

Lemma 4.5.2. For any i ∈ [k],
∣∣L1
i

∣∣ = Θ(n/α) and
∣∣R1

i

∣∣ = Θ(n/α) w.p. 1− o(1).

Proof. Fix any player i ∈ [k] and any vertex v ∈ A. The distribution of neighborhood of

v in the graph G(i) is as follows: pick each vertex in R w.p. 1/2n independently; this is

because each vertex in R is chosen w.p. k/2n to be a neighbor of v in G and then each of

these vertices are assigned to the graph G(i) w.p. 1/k by the random k-partitioning. As

such, Pr
(
d(v) = 1 in G(i)

)
=
(
n
1

)
· 1
2n ·

(
1− 1

2n

)n−1 ≈ 1
2
√
e
= Θ(1).

Consequently, we have E
[∣∣L1

i

∣∣] = |A| ·Θ(1) = Θ(n/α) and by Chernoff bound,
∣∣L1
i

∣∣ =
Θ(n/α) (note that for one player V ∗ would also belong to Oi but that only changes the size

of |Oi| by one vertex).

We bound the size of R1
i . Each vertex in L1

i is choosing one vertex uniformly at random

from R and hence we can model this distribution by a simple balls and bins experiment

(throwing
∣∣L1
i

∣∣ balls into n bins, each independently and uniformly at random), and hence

by a standard fact about balls and bins experiments argue that
∣∣R1

i

∣∣ = Θ(n/α) w.p. 1−o(1)
as well (see Proposition 2.1.5 for proof of this fact about balls and bins experiments).
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Proof of Theorem 4.10. Let i be the index of the player P (i) that the edge e⋆ is given to. We

argue that if the coreset sent by player P (i) is of size o(n/α), then the coordinator cannot

obtain a vertex cover of size o(n). As the graph G admits a vertex cover of size (n/α + 1)

(pick A and V ∗), this proves the theorem.

By Lemma 4.5.2, the set of vertices in L with degree exactly one in G(i) and the set

of their neighbors in R, i.e., the sets L1
i and R1

i , are of size Θ(n/α) w.p. 1 − o(1). In the

following, we condition on this event. As the algorithm used by P (i) to create the coreset

is deterministic, given a fixed input, it always creates the same coreset. However, a crucial

property of the distribution DVC is that, conditioned on a fixed assignment to L1
i , the vertex

V ∗ is chosen uniformly at random from L1
i . This implies that if the coreset of player P (i)

contains o(n/α) edges, then w.p. 1−o(1), e⋆ is not part of the coreset (e⋆ is chosen uniformly

at random from the set of all edges incident on L1
i ). Similarly, if the coreset fixes o(n/α)

vertices to be added to the final solution, w.p. 1 − o(1), no end point of e⋆ is added to

this fixed set (V ∗ is chosen uniformly at random from L1
i of size Θ(n/α), and the other end

point of e⋆ is chosen uniformly at random from R1
i of size Θ(n/α)). Finally, the coresets

of other players are all independent of the edge e⋆ and hence as long as the total number

of fixed vertices sent by the players is o(n), w.p. 1 − o(1), no end points of e⋆ are present

in the fixed solution. Conditioned on these three events, w.p. 1 − o(1), the output of the

algorithm does not cover the edge e⋆ and hence is not a feasible vertex cover.

We remark that this argument holds even if we are allowed to add extra vertices to the

final vertex cover (other than the ones fixed by the players or computed as a vertex cover

of the edges in the coresets), since conditioned on e⋆ not being present in any coreset, the

end point of this edge are chosen uniformly at random from all vertices in L \A and R and

hence a solution of size o(n) would not contain either of them w.p. 1− o(1).

4.6. Improved Randomized Composable Coresets

We present our second set of randomized composable coresets for matching and vertex cover

in this section, formalizing Result 4.3. Our results in this part are based on new properties

of edge-degree constrained subgraphs (EDCS) introduced in Section 4.3 that we prove in

this section. As such, we start by presenting these new properties of EDCS and then use

them to prove Result 4.3.

4.6.1. New Properties of Edge Degree Constrained Subgraphs

We study further properties of EDCS in this section. Although EDCS was used prior to

our work, all the properties proven in this section are entirely new to this thesis and look

at the EDCS from a different vantage point.

Previous work in [57, 58] studied the EDCS from the perspective of how large of match-
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ing it contains and how it can be maintained efficiently in a dynamically changing graph.

In this section, we prove several new interesting structural properties of the EDCS itself.

In particular, while it is easy to see that in terms of edge sets there can be many different

EDCS of some fixed graph G(V,E) (consider G being a complete graph), we show that

the degree distributions of every EDCS (for the same parameters β and β−) are almost

the same. In other words, the degree of any vertex v is almost the same in every EDCS

of G(V,E). This is in sharp contrast with similar objects such as maximum matchings or

b-matchings, which can vary a lot within the same graph. This semi-uniqueness renders the

EDCS extremely robust under sampling and composition as we prove next in this section.

These new structural results on EDCS are the main properties that allows their use in

our coresets and parallel algorithms in the rest of the thesis.

Degree Distribution Lemma

We prove the semi-uniqueness property of EDCS defined as follows.

Lemma 4.6.1 (Degree Distribution Lemma). Fix a graph G(V,E) and parameters β, β− =

(1− λ) · β (for λ < 1/100). For any two subgraphs A and B that are EDCS(G, β, β−), and

any vertex v ∈ V , |degA(v)− degB(v)| = O(log n) · λ1/2 · β.

In the rest of this section, we fix the parameters β, β− and the two EDCS A and B in

Lemma 4.6.1. The general strategy of the proof is as follows. We start with a set S1 of

all vertices which has the most difference in degree between A and B. By considering the

two-hop neighborhood of these vertices in A and B, we show that there exists a set S2 of

vertices in V such that the difference between the degree of vertices in A and B is almost

the same as vertices in S1, while size of S2 is a constant factor larger than S1. We then use

this argument repeatedly to construct the next set S3 and so on, whereby each set is larger

than the previous one by a constant factor, while the gap between the degree of vertices in

A and B remains almost the same as the previous set. As this geometric increase in the size

of sets can only happen in a “small number” of steps (otherwise we run out of vertices), we

obtain that the gap between the degree of vertices in S1 could have not been “too large” to

begin with. We now formalize this argument, starting with a technical lemma which allows

us to obtain each set Si from the set Si−1 in the above argument.

Lemma 4.6.2. Fix an integer D > 2λ1/2 · β and suppose S ⊆ V is such that for all v ∈ S,
we have degA(v) − degB(v) ≥ D. Then, there exists a set of vertices S′ ⊇ S such that

|S′| ≥ (1 + 2λ1/2) · |S| and for all v ∈ S′, degA(v)− degB(v) ≥ D − 2λ · β.

Proof. We define the following two sets T and T ′:

• T is the set of all neighbors of vertices in S using only the edges in A \ B. In other
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words, T := {v ∈ V | ∃u ∈ S ∧ (u, v) ∈ A \B}.

• T ′ is the set of all neighbors of vertices in T using only the edges in B \ A. In other

words, T ′ := {w ∈ V | ∃v ∈ T ∧ (v, w) ∈ B \A}.

We start by proving the following property on the degree of vertices in the sets T, T ′.

Claim 4.6.3. We have,

• for all v ∈ T , degB(v)− degA(v) ≥ D − λ · β.

• for all w ∈ T ′, degA(w)− degB(w) ≥ D − 2λ · β.

Proof. For the first part, since v ∈ T , it means that there exists an edge (u, v) ∈ A \B such

that u ∈ S. Since (u, v) belongs to A, by Property (P1) of an EDCS we have degA(v) ≤
β − degA(u) ≤ β − degB(u)−D. On the other hand, since (u, v) does not belong to B, by

Property (P2) of an EDCS we have degB(v) ≥ β − λ · β − degB(u), completing the proof

for vertices in T .

For the second part, since w ∈ T ′, it means that there exists an edge (v, w) ∈ B \ A
such that v ∈ T . Since (v, w) does not belong to A, by Property (P2) of an EDCS we

have degA(w) ≥ β − λ · β − degA(v). Moreover, since (u, v) belongs to B, by Property (P1)

of an EDCS, we have, degB(w) ≤ β − degB(v). This means that degA(w) − degB(w) ≥
degB(v)− degA(v)− λ · β which is at least D − 2λ · β by the first part. Claim 4.6.3

Notice that since D > 2λ · β, by Claim 4.6.3, for any vertex v ∈ T , we have degB(v) >

degA(v) and hence S ∩ T = ∅ (similarly, T ∩ T ′ = ∅, but S and T ′ may intersect). We

define the set S′ in the lemma statement to be S′ := S ∪ T ′. The bound on the degree of

vertices in S′ follows immediately from Claim 4.6.3 (recall that vertices in S already satisfy

the degree requirement for the set S′). In the following, we show that |T ′ \ S| ≥ 2λ1/2 · |S|,
which finalizes the proof.

Recall that EA\B(S) and EA\B(S, T ) denote the set of edges in subgraph A\B incident

on vertices S, and between vertices S and T , respectively. We have,

∣∣EB\A(T, T
′ \ S)

∣∣ =
∣∣EB\A(T )

∣∣−
∣∣EB\A(T, S)

∣∣
(as all the edges in B \A that are incident on T are going to T ′)

≥
∣∣EA\B(T )

∣∣−
∣∣EB\A(T, S)

∣∣
(as by Claim 4.6.3, the degree of vertices in T is larger in B \A compared to A \B)

≥
∣∣EA\B(S)

∣∣−
∣∣EB\A(S)

∣∣
(as all edges in A \B incident on S are also incident on T )
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≥ |S| ·D.
(by the assumption on the degree of vertices in S in subgraphs A and B)

Finally, since B is an EDCS, the maximum degree of any vertex in T ′ \ S is at most β

and hence there should be at least |S|·Dβ ≥ 2λ1/2 ·|S| vertices in T ′\S (as D > 2λ1/2 ·β).

Proof of Lemma 4.6.1. Suppose towards a contradiction that there exists a vertex v ∈ V
s.t. D := degA(v)− degB(v) ≥ 3 ln (n) · λ1/2 · β (the other case is symmetric). Let D0 = D

and S0 = {v} and for i = 1 to t := λ−1/2 · (ln (n) + 1): define the set Si and integer Di

by applying Lemma 4.6.2 to Si−1 and Di−1 (i.e., Si = S′ and Di = Di−1 − 2λ · β). By the

lower bound on the value of D, for any i ∈ [t], we have that Di ≥ D − i · 2λ · β > 2λ1/2 · β,
and hence we can indeed apply Lemma 4.6.2. As a result, we have,

|St| ≥
(
1 + 2λ1/2

)
· |St−1| ≥

(
1 + 2λ1/2

)t
· |S0| ≥ exp

(
λ1/2 · t

)
> exp (ln (n)) = n.

which is a contradiction as there are only n vertices in the graph G. Consequently, we

obtain that for any vertex v, |degA(v)− degB(v)| = O(log n) · λ1/2 · β. Lemma 4.6.1

EDCS in Edge Sampled Subgraphs

In this section, we prove a lemma regarding the structure of different EDCS across sampled

subgraphs. We show that the degree distributions of any two EDCS for two different edge

sampled subgraphs of G is almost the same no matter how the two EDCS are selected or

even if the choice of the two subgraphs are not independent.

Lemma 4.6.4 (EDCS in Edge Sampled Subgraphs). Fix any graph G(V,E) and p ∈ (0, 1).

Let G1 and G2 be two edge sampled subgraphs of G with probability p (chosen not neces-

sarily independently). Let H1 and H2 be arbitrary EDCSs of G1 and G2 with parameters

(β, (1− λ) · β). Suppose β ≥ 750 ·λ−2 · ln (n), then, with probability 1−4/n9, simultaneously

for all v ∈ V :
∣∣degH1

(v)− degH2
(v)
∣∣ ≤ O(log n) · λ1/2 · β.

The proof of this lemma is along the following lines. We start with an EDCS H of the

original graph G with parameters (almost) (β/p, β−/p). We then consider the set of edges

from H in each of the sampled subgraphs G1 and G2, i.e., the two subgraphs H ′
1 := G1 ∩H

and H ′
2 := G2 ∩ H. We use the randomness in the process of sampling subgraphs G1

and G2 to prove that with high probability both H ′
1 and H ′

2 form an EDCS for G1 and

G2, respectively, with parameters (β, β−). Finally, we use our degree distribution lemma

(Lemma 4.6.1) to argue that for any arbitrary EDCS H1 (resp. H2) of G1 (resp. G2), the

degree distribution of H1 (resp. H2) is close to H
′
1 (resp. H

′
2). Since the degree distributions

of H ′
1 and H ′

2 are close to each other already (as they are both sampled subgraphs of H),
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this finalizes the proof.

Proof of Lemma 4.6.4. We first prove that edge sampling an EDCS results in another EDCS

for the sampled subgraph.

Claim 4.6.5. Let H be an EDCS(G, βH , β
−
H) for parameters βH := (1− λ

2 ) ·
β
p and β−H :=

βH − 1. Suppose Gp := GEp (V,Ep) is an edge sampled subgraph of G and Hp := H ∩ Gp;
then, with probability 1− 2/n9:

1. For any vertex v ∈ V ,
∣∣∣degHp

(v)− p · degH(v)
∣∣∣ ≤ λ

5 · β.

2. Hp is an EDCS of Gp with parameters (β, (1− λ) · β).

Proof. For any vertex v ∈ V , E
[
degHp

(v)
]
= p·degH(v) and degH(v) ≤ βH by Property (P1)

of EDCS H. Moreover, since each neighbor of v in H is sampled in Hp independently, by

Chernoff bound (Proposition 2.1.2), we have,

Pr

(∣∣∣degHp
(v)− p · degH(v)

∣∣∣ ≥ λ

5
· β
)
≤ 2 · exp

(
−λ

2 · β
75

)
≤ 2 · exp (−10 lnn) = 2

n10
,

where the second inequality is by the lower bound on β in Lemma 4.6.4 statement. In the

following, we condition on the event that:

∀v ∈ V
∣∣∣degHp

(v)− p · degH(v)
∣∣∣ ≤ λ

5
· β. (4.1)

This event happens with probability at least 1−2/n9 by above equation and a union bound

on |V | = n vertices. This finalizes the proof of the first part of the claim. We are now ready

to prove that Hp is indeed an EDCS(Gp, β, (1− λ) · β) conditioned on this event.

Consider any edge (u, v) ∈ Hp. Since Hp ⊆ H, (u, v) ∈ H as well. Hence, we have,

degHp
(u) + degHp

(v) ≤
Eq (4.1)

p ·
(
degH(u) + degH(v)

)
+

2λ

5
· β ≤ p · βH +

2λ

5
· β

= (1− λ

2
) · β +

2λ

5
· β < β,

where the second inequality is by Property (P1) of EDCS H and the equality is by the

choice of βH . As a result, Hp satisfies Property (P1) of EDCS for parameter β.

Now consider an edge (u, v) ∈ Gp \Hp. Since Hp = Gp ∩H, (u, v) /∈ H as well. Hence,

degHp
(u) + degHp

(v) ≥
Eq (4.1)

p ·
(
degH(u) + degH(v)

)
− 2λ

5
· β ≥ p · β−H −

2λ

5
· β

= (1− λ

2
) · β − p− 2λ

5
· β > (1− λ) · β,
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where the second inequality is by Property (P2) of EDCS H and the equality is by the

choice of β−H . As such, Hp satisfies Property (P2) of EDCS for parameter (1 − λ) · β and

hence Hp is indeed an EDCS(Gp, β, (1− λ) · β). Claim 4.6.5

We continue with the proof of Lemma 4.6.4. Let H be an EDCS(G, βH , β
−
H) for the

parameters βH , β
−
H in Claim 4.6.5. The existence of H follows from Lemma 4.3.2 as β−H <

βH . Define Ĥ1 := H ∩G1 and Ĥ2 := H ∩G2. By Claim 4.6.5, Ĥ1 (resp. Ĥ2) is an EDCS

of G1 (resp. G2) with parameters (β, (1− λ)β) with probability 1− 4/n9. In the following,

we condition on this event.

By Lemma 4.6.1 (Degree Distribution Lemma), since both H1 (resp. H2) and Ĥ1 (resp.

Ĥ2) are EDCS for G1 (resp. G2), the degree of vertices in both of them should be “close”

to each other. Moreover, since by Claim 4.6.5 the degree of each vertex in Ĥ1 and Ĥ2 is

close to p times its degree in H, we can argue that the vertex degrees in H1 and H2 are

close. Formally, for any v ∈ V , we have,

∣∣degH1
(v)− degH2

(v)
∣∣

≤
∣∣∣degH1

(v)− deg
Ĥ1

(v)
∣∣∣+
∣∣∣degĤ1

(v)− deg
Ĥ2

(v)
∣∣∣+
∣∣∣degĤ2

(v)− degH2
(v)
∣∣∣

≤
Lemma 4.6.1

O(log n) · λ1/2 · β +
∣∣∣degĤ1

(v)− p · degH(v)
∣∣∣+
∣∣∣degĤ2

(v)− p · degH(v)
∣∣∣

≤
Claim 4.6.5

O(log n) · λ1/2 · β +O(1) · λ · β,

finalizing the proof. Lemma 4.6.4

EDCS Preserves Approximate Vertex Covers

Recall that Lemma 4.3.3 implies that an EDCS of a graph G(V,E) preserves the maximum

matching of G approximately. We also show a similar result for vertex cover. The basic

idea is that in addition to computing a vertex cover for the subgraph H(to cover all the

edges in H), we also add to the vertex cover all vertices that have degree at least ≥ β−/2

in H, which by Property (P2) of an EDCS covers all edges in G \H.

Lemma 4.6.6. Let G(V,E) be any graph, ε < 1/2 be a parameter, and H := EDCS(G, β, β−)

for parameters β ≥ 4
ε and β− ≥ β · (1− ε/4). Suppose Vhigh is the set of vertices v ∈ V

with degH(v) ≥ β−/2 and Vvc is a minimum vertex cover of H; then Vhigh ∪Vvc is a vertex

cover of G with size at most (2 + ε) · VC(H) (note that VC(H) ≤ VC(G)).

Proof. We first argue that Vhigh ∪ Vvc is indeed a feasible vertex cover of G. To see this,

notice that any edge e ∈ H is covered by Vvc, and moreover by Property (P2) of EDCS,

any edge e ∈ E \H has at least one endpoint with degree at least β−/2 in H and hence is
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covered by Vhigh. In the following, we bound the size of Vhigh \ Vvc by (1 + ε) · |Vvc|, which
finalizes the proof as clearly |Vvc| = VC(H).

Define S := Vhigh \ Vvc and let N(S) be the set of all neighbors of S in the EDCS H.

Since S is not part of the vertex cover Vvc of H, we should have N(S) ⊆ Vvc as otherwise

some edges between S and N(S) would not be covered by the vertex cover Vvc. Now,

since any vertex in S has degree at least β−/2, we should have that degree of any vertex

in N(S) is at most β − β−/2 in order to satisfy Property (P1) of EDCS H. Let E(S)

denote the set of edges incident on S in H. As all vertices in S belong to Vhigh, we have

that |E(S)| ≥ |S| · β−/2. On the other hand, as all edges incident on S are going into

N(S) by definition, and since degree of vertices in N(S) are bounded by β−β−/2, we have
|E(S)| ≤ |N(S)|·(β−β−/2). As such, |S|·β−/2 ≤ |N(S)|·(β − β−/2) ≤ |Vvc|·(1+ε)·β−/2,
implying that |S| ≤ (1 + ε) · |Vvc|, which finalizes the proof.

4.6.2. EDCS as a Randomized Composable Coreset for Matching

and Vertex Cover

We introduce our randomized coresets for matching and vertex cover in this section. Both

of these results are achieved by computing an EDCS of the input graph (for appropriate

choice of parameters) and then applying Lemmas 4.3.3 and 4.6.6.

Computing an EDCS from Random k-Partitions

Let G(V,E) be any arbitrary graph and G(1), . . . , G(k) be a random k-partition of G. We

show that if we compute an arbitrary EDCS of each graph G(i) (with no coordination across

different graphs) and combine them together, we obtain an EDCS for the original graph G.

1. Let G(1), . . . , G(k) be a random k-partition of the graph G.

2. For any i ∈ [k], compute C(i) := EDCS(G, β, (1− λ) · β) for parameters

λ = Θ

(
(
ε

log n
)2
)

and β := Θ(λ−3 · log n).

3. Let C :=
⋃k
i=1C

(i).

Lemma 4.6.7. W.p. 1− 4/n7, the subgraph C is an EDCS(G, βC , β
−
C ) for parameters:

λC := O(log n) · λ1/2 , βC := (1 + λC) · k · β and β−C := (1− 2λC) · k · β.

Proof. Recall that each graph G(i) is an edge sampled subgraph of G with sampling prob-

ability p = 1
k . By Lemma 4.6.4 for graphs G(i) and G(j) (for i 6= j ∈ [k]) and their EDCSs
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C(i) and C(j), with probability 1− 4/n9, for all vertices v ∈ V :

|degC(i)(v)− degC(j)(v)| ≤ O(log n) · λ1/2 · β = λC · β. (4.2)

By taking a union bound on all
(
k
2

)
≤ n2 pairs of subgraphs G(i) and G(j) for i 6= j ∈ [k], the

above property holds for all i, j ∈ [k], with probability at least 1 − 4/n7. In the following,

we condition on this event.

We now prove that C is indeed an EDCS(G, βC , β
−
C ). First, consider an edge (u, v) ∈ C

and let j ∈ [k] be such that (u, v) ∈ C(j) as well. We have,

degC(u) + degC(v) =

k∑

i=1

degC(i)(u) +

k∑

i=1

degC(i)(v)

≤
Eq (4.2)

k · (degC(j)(u) + degC(j)(v)) + k · λC · β

≤ k · β + k · λCβ = βC .

(by Property (P1) of EDCS C(j) with parameter β)

Hence, C satisfies Property (P1) of EDCS for parameter βC .

Now consider an edge (u, v) ∈ G \ C and let j ∈ [k] be such that (u, v) ∈ G(j) \ C(j)

(recall that each edge in G is sent to exactly one graph G(j) in the random k-partition).

We have,

degC(u) + degC(v) =
k∑

i=1

degC(i)(u) +
k∑

i=1

degC(i)(v)

≥
Eq (4.2)

k · (degC(j)(u) + degC(j)(v))− k · λC · β

≥ k · (1− λ) · β − k · λC · β ≥ (1− 2λC) · k · β = β−C .

(by Property (P2) of EDCS C(j) with parameter (1− λ) · β)

Hence, C also satisfies Property (P2) of EDCS for parameter β−C , finalizing the proof.

EDCS as a Coreset for Matching and Vertex Cover

We are now ready to present our randomized coresets for matching and vertex cover using

the EDCS as the coreset, formalizing Result 4.3.

Theorem 4.11. Let G(V,E) be a graph and G(1), . . . , G(k) be a random k-partition of

G. For any ε ∈ (0, 1), any EDCS(G(i), β, (1− λ) · β) for λ := Θ
(
( ε
logn)

2
)

and β :=

Θ(ε−6 · log7 n) is a (3/2 + ε)-approximation randomized composable coreset of size O(n · β)
for the maximum matching problem.
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Proof. By Lemma 4.6.7, the union of the coresets is itself an EDCS(G, βC , β
−
C ), such that

β−C = (1−Θ(ε)) · βC . Hence, by Lemma 4.3.3, the maximum matching in this EDCS is of

size (2/3− ε) ·MM(G). The bound on the size of the coreset follows from Property (P1) of

EDCS as maximum degree in the EDCS computed by each machine is at most β and hence

size of each coreset is O(n · β) = Õε(n).

To present our coreset for the vertex cover problem, we need to use the slightly relaxed

definition of randomized coreset that allows for inclusion of some part of the solution directly

in the coreset.

Theorem 4.12. Let G(V,E) be a graph and G(1), . . . , G(k) be a random k-partition of

G. For any ε ∈ (0, 1), any EDCS(G(i), β, (1− λ) · β) for λ := Θ
(
( ε
logn)

2
)

and β :=

Θ(ε−6 ·log7 n) plus the set of vertices with degree larger than (1−Θ(ε))·β/2 in the EDCS (to

be added directly to the final vertex cover) is a (2 + ε)-approximation randomized composable

coreset of size O(n · β) for the minimum vertex cover problem.

Proof. By Lemma 4.6.7, the union of the coresets is itself an EDCS(G, βC , β
−
C ) C, such that

β−C = (1 − Θ(ε)) · βC . Suppose first that instead of each coreset fixing the set of vertices

to be added to the final vertex cover, we simply add all vertices with degree more than

β−C/2 to the vertex cover and then compute a minimum vertex cover of C. In this case, by

Lemma 4.6.6, the output is a (2 + ε)-approximation to the minimum vertex cover of G.

To complete the argument, recall that the degree of any vertex v ∈ V is essentially the

same across all machines (up to an additive term of ε · β) by Lemma 4.6.4, and hence the

set of vertices with degree more than β−C/2 would be a subset of the set of fixed vertices

across all machines. Moreover, any vertex added by any machine to the final vertex cover

has degree at least (1−Θ(ε)) · β−C/2 and hence we can apply Lemma 4.6.6, with a slightly

smaller parameter ε to argue that the returned solution is still a (2+ ε)-approximation.

Remark 4.6.8. In the proof of Theorem 4.12, we neglected the time necessary to compute

a vertex cover in the union of the coresets (as is consistent with the definition of randomized

coresets). In case we require this algorithm to run in polynomial time, we need to approxi-

mate the final vertex cover in the union of the coresets as opposed to recover it exactly. In

particular, by picking a 2-approximation vertex cover in the union of coreset in the proof of

Lemma 4.6.6, we obtain an (almost) 4-approximation to the vertex cover of G.
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Chapter 5

Massively Parallel Algorithms for Matching and

Vertex Cover with Linear Memory Per Machine

In the previous chapter, we presented a new framework for designing efficient algorithms

for graph problems across different computational models such as streaming, distributed

communication, and the massively parallel computation (MPC) model. In this chapter, we

show further modifications of this framework that is tailored to the MPC model and allows

for even more efficient algorithms for maximum matching and minimum vertex cover in this

model. The materials in this chapter are based on two papers [26, 29].

The first MPC algorithms for matching and vertex cover are due to Lattanzi et al. [225]

and obtain 2-approximation in O(1) rounds and n1+Ω(1) space per machine. The approx-

imation guarantee for the matching problem was further improved to (1 + ε) by Ahn and

Guha [10, 9]. Our own algorithms from the previous chapter achieve a (3/2)-approximation

to maximum matching and 2-approximation to minimum vertex cover in at most two MPC

rounds and O(n
√
n) space per machine. However, when the space allocated to each machine

is Õ(n), the performance of all these algorithms degrade to Ω(log n) rounds.

Recently, Czumaj et al. [111] presented the first O(1)-approximation MPC algorithm

for maximum matching that uses O((log log n)2) rounds and O(n) space per-machine (even

O(n/polylog(n)) space). Nevertheless, several open problems left open by this work:

(i) Can we improve the round complexity of the algorithm for [111] for matching from

O((log log n)2) rounds to O(log log n) rounds?

It was conjectured by Czumaj et al. [111] that this is indeed possible.

(ii) Can we extend the result of [111] to the minimum vertex cover problem also?

The algorithm of [111] was specific to the maximum matching problem and did not

extend to the closely related minimum vertex cover problem due to different technical

challenges.

(iii) Can we achieve the result of [111] using a simpler algorithm and analysis?

The algorithm of [111] was quite intricate and required a complicated analysis.

These questions were all left open by [111] (see Section 1.4 of [111]). In this chapter, we

resolve all these questions in affirmative by designing considerably simpler MPC algorithms

(based on randomized composable coreset technique from the previous chapter) that achieve

a (1+ε)-approximation to maximum matching and O(1)-approximation to minimum vertex

cover in only O(log log n) MPC rounds on machines with O(n/polylog(n)) memory.
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HighLights of Our Contributions

In this chapter, we will establish new round-efficient MPC Algorithms for maximum match-

ing and minimum vertex cover, improving the state-of-the-art (Section 5.4).

5.1. Background

The early MPC algorithms for matching and vertex cover in [225, 10, 9, 30] were all at

their core based on partitioning of edges of the graph between different machines, process

each subgraph in parallel, and then use this information to repartition graph further again,

and continue until the final result is computed. While these algorithms were quite efficient,

namely only required O(1) rounds, when the memory per-machine was n1+Ω(1), these edge

sampling approaches all seemed insufficient to achieve better than O(log n) round algorithms

when the memory per machine became O(n) (see [111] for more detail).

Czumaj et al. [111] made a simple (in hindsight) but crucial observation that one

can bypass the limitations of these algorithm by performing a vertex partitioning of the

graph between the machines instead of edge partitioning. They further use a so-called

round compression approach that corresponds to compressing multiple rounds of a partic-

ular distributed algorithm (based on the Parnas-Ron algorithm [266] introduced earlier in

Section 4.4.2) into smaller number of MPC rounds by maintaining a consistent state across

the local algorithms computed on each subgraph using a highly non-trivial local algorithm

and analysis. We note that this idea of round compression was also implicit in our O(log n)-

approximation randomized coreset for vertex cover in Section 4.4.2 albeit there we applied

it on edge partitioned subgraphs rather than vertex partitioned subgraphs as in [111] (in-

deed, our approach in Section 4.4.2 can also be used on vertex sampled subgraphs with

proper modifications, resulting in an exteremly simple O(log log n)-round MPC algorithms

for O(log n)-approximating vertex cover on machines of memory O(n/polylog(n)); see [26]).

5.2. Our Results and Techniques

In this chapter, we show that one can entirely bypass the use of round compression ar-

guments (and hence the difficulties arising in maintaining a consistent local state across

the machines in parallel), by extending our second set of randomized composable coresets

based on edge-degree constrained subgraphs (EDCS) in Section 4.6 to vertex partitioned

subgraphs as well, resulting in the following algorithm.

Result 5.1. There exists an MPC algorithm that for any constant ε > 0, with high prob-

ability, gives a (1+ε)-approximation to maximum matching and O(1)-approximation to

minimum vertex cover in O(log log n) rounds using only O(n) or even O(n/polylog(n))

memory per machine.
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Given an existing black-box reduction [234], our Result 5.1 immediately implies a (2+ε)-

approximation algorithm for maximum weighted matching in the same O(log log(n)) rounds,

though with the memory per machine increased to O(n log(n)).

We note that Result 5.1 improves upon the results of Czumaj et al. [111] on several

fronts: (i) we improve the round complexity of the matching algorithm to O(log log n),

resolving a conjecture of [111] in the affirmative, (ii) we obtain an O(1) approximation

to vertex cover, answering another open question of [111], and (iii) we achieve all these

using a considerably simpler algorithm and analysis than [111], addressing yet another

open question in that work.

Techniques. We use the following recursive procedure, which crucially relies upon on the

robustness properties of the EDCS proved along the way of establishing EDCS as a ran-

domized composable coreset in Result 4.3 from previous chapter: we repeatedly compute

an EDCS of the underlying graph in a distributed fashion, redistribute it again amongst

multiple machines, and recursively solve the problem on this EDCS to compute an O(1)-

approximation to matching and vertex cover. We therefore limit the memory on each ma-

chine to only O(n) at the cost of increasing the number of rounds from O(1) to O(log log n).

Additional ideas are needed to ensure that the approximation ratio of the algorithm does

not increase beyond a fixed constant as a result of repeatedly computing an EDCS of the

current graph in O(log log n) iterations, as well as working with vertex-sampled subgraphs

instead of edge-sampled subgraphs. We note that interestingly our results in this part are

entirely based on the properties of EDCS that are established in this thesis and do not rely

on any of prior results for EDCS in [57, 58] (in particular, do not invoke Lemma 4.3.3 that

proves existence of large approximate matchings in an EDCS).

5.2.1. Subsequent Work

After our results in this chapter were published on arXiv [28], Ghaffari et al. [155] presented

a result very similar to our Result 5.1: their bounds are exactly the same for matching,

while for vertex cover they achieve a better approximation in the same asymptotic num-

ber of rounds: (2 + ε)-approximation vs. our O(1) approximation. Techniques-wise, our

approaches are entirely different: the algorithms in [155] are again based on the round

compression technique of [111] and hence suffer from the main drawback of round com-

pression approach which is the need for an intricate local algorithm and analysis to ensure

consistency between machines.

More recently, Ghaffari and Uitto [157] and Onak [262] used the round compression

technique to further reduce the per-machine memory of MPC algorithms for matching and

vertex cover to nΩ(1) albeit at a cost of increasing the number of rounds in the algorithm

to Õ(
√
log n) (which is still quadratically better than the benchmark of O(log n) rounds).
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Moreover, Behnezhad et al. [56] and Brandt et al. [65] studied MPC algorithms for matching

on bounded arboricity graphs (such as planar graphs) and devised an MPC algorithm that

uses O((log log n)2) rounds and only nΩ(1) memory per machine. Note that all these results

are incomparable to our Result 5.1 as they use a polynomially smaller memory per machine

than ours but their round complexity is either exponentially worse than our algorithm or

they only work for specific family of graphs (and even there, their round complexity is

quadratically worse than our bounds).

5.3. Preliminaries

EDCS in Vertex Sampled Subgraphs. As pointed out earlier, in this chapter we work

with vertex sampled partitions instead of edge partitions used by our coresets. As such,

we need analogue of Lemma 4.6.4 on robustness of EDCS under edge sampling for vertex

sampled subgraphs as well. The main difference here is that there will be a huge gap between

the degree of a vertex between the two EDCS if the vertex is sampled in one subgraph but

not the other one. However, we show that the degree of vertices that are sampled in both

subgraphs are almost the same across the two different (and arbitrarily chosen) EDCS for

the subgraphs. The proof is almost identical to Lemma 4.6.4 and is hence omitted here.

Lemma 5.3.1 (EDCS in Vertex Sampled Subgraphs). Fix any graph G(V,E) and p ∈ (0, 1).

Let G1 and G2 be two vertex sampled subgraphs of G with probability p (chosen not nec-

essarily independently). Let H1 and H2 be arbitrary EDCSs of G1 and G2 with parameters

(β, (1− λ)β). If β ≥ 750 · λ−2 · ln (n), then, with probability 1 − 4/n9, simultaneously for

all v ∈ G1 ∩G2:
∣∣degH1

(v)− degH2
(v)
∣∣ ≤ O(log n) · λ1/2 · β.

5.4. MPC Algorithms for Matching and Vertex Cover

In this section, we show that a careful adaptation of our coresets construction in Result 4.3

together with the structural results proven for EDCS in Section 4.6.1 can be used to obtain

MPC algorithms with much smaller memory while increasing the number of required rounds

to only O(log log n).

Theorem 5.2. There exists an MPC algorithm that given a graph G(V,E) with high prob-

ability computes an O(1) approximation to both maximum matching and minimum vertex

cover of G in O(log log n+ log
(
n
s

)
) MPC rounds on machines of memory s = nΩ(1).

By setting s = O(n/polylog(n)) in Theorem 5.2, we achieve an O(1)-approximation

algorithm to both matching and vertex cover in O(log log n) MPC rounds on machines of

memory O(n/polylog(n)), formalizing Result 5.1.

In the following, for the sake of clarity, we mostly focus on proving Theorem 5.2 for the
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natural case when memory per machine is s = Õ(n), and postpone the proof for all range

of parameter s to Section 5.4.4. The overall idea of our algorithm is as follows. Instead of

the edge sampled subgraphs used by our randomized coresets, we start by picking k = O(n)

vertex sampled subgraphs of G with sampling probability roughly 1/
√
n and send each

to a separate machine. Each machine then locally computes an EDCS of its input (with

parameters β = polylog(n) and β− ≈ β) with no coordination across the machines. By

Lemma 5.3.1, similar to edge-sampled subgraphs, in this case also the union of the EDCSes

computed on the machines is indeed an EDCS of the original graph. However, unlike the

MPC algorithm obtained by our randomized coreset approach (Corollary 4.5), where the

memory per machine was as large as Θ(n
√
n), here we cannot collect all these smaller

EDCSes on a single machine of memory Õ(n). Instead, we repartition them across the

machines again (and discard remaining edges) and repeat the previous process on this new

graph. The main observation is that after each step, the maximum degree of the remaining

graph (i.e., the union of all EDCSes) would drop quadratically (e.g., from potentially Ω(n)

to Õ(
√
n) in the first step). As such, in each subsequent step, we can pick a smaller number

of vertex sampled subgraphs, each with a higher sampling probability than previous step,

and still each graph fits into the memory of a single machine. Repeating this process for

O(log log n) steps reduces the maximum degree of the remaining graph to polylog(n). At

this point, we can store the final EDCS on a single machine and solve the problem locally.

Unfortunately this approach on its own would only yield a (3/2)O(log logn) = polylog(n)

approximation to matching, since by Lemma 4.3.3 each recursion onto an EDCS of the

graph could introduce a (3/2)-approximation. A similar problem exists for vertex cover. In

the proof of Lemma 4.6.6, computing a vertex cover of G from its EDCS H involves two

steps: we add to the vertex cover all vertices with high degree in H to cover the edges in

G \H, and then we separately compute a vertex cover for the edges in H. Since H cannot

fit into a single machine, the second computation is done recursively: in each round, we

find an EDCS of the current graph (which is partitioned amongst many machines), add to

the vertex cover all high degree vertices in this EDCS, and then recurse onto the sparser

EDCS. A straightforward analysis would only lead to an O(log log n) approximation.

We improve the approximation factor for both vertex cover and matching by showing

that they can serve as witnesses to each other. Every time we add high-degree vertices to

the vertex cover, we will also find a large matching incident to these vertices: we show that

this can be done in O(1) parallel rounds. We then argue that their sizes are always within

a constant factor of each other, so both are a constant approximation for the respective

problem (by Proposition 2.2.6).

The rest of this section is organized as follows. We first present our subroutine for

computing the EDCS of an input graph in parallel using vertex sampled subgraphs. Next,
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we present a simple randomized algorithm for finding a large matching incident on high

degree vertices of an input graph. Finally, we combine these two subroutines to provide

our main parallel algorithm for approximating matching and vertex cover. We refer the

interested reader to our paper [29] for minor details regarding the MPC implementation of

our parallel algorithm.

5.4.1. A Parallel Algorithm for EDCS

We now present our parallel algorithm for computing an EDCS via vertex sampling. In

this algorithm, the edges of the input graph as well as the output EDCS will be partitioned

across multiple machines. In the following, we use a slightly involved method of sampling

the vertices using limited independence. This is due to technical reasons in the MPC

implementation of this algorithm which we explain in Remark 5.4.1. To avoid repeating the

arguments, we present our algorithm for all range of memory s = nΩ(1), but encourage the

reader to consider the case of s = n for more intuition.

ParallelEDCS(G,∆, s). A parallel algorithm for EDCS of a graph G with maximum degree

∆ on machines of memory Õ(s).

1. Define p = (200 log n) ·
√

s
n·∆ and k = 800 logn

p2
.

2. Create k vertex sampled subgraphs G(1), . . . , G(k) on k different machines as follows:

(a) Let κ := (20 log n). Each vertex v in G independently picks a κ-wise indepen-

dent hash function hv : [k]→ [1/p].

(b) The graph G(i) is the induced subgraph of G on vertices v ∈ V with hv(i) = 0.

3. Define parameters λ := (2 · log n)−3 and β := 750 · λ−2 · ln (n).
4. For i = 1 to k in parallel: Compute C(i) = EDCS(G(i), β, (1− λ) · β) locally on

machine i.

5. Define the multi-graph C(V,EC) with EC :=
⋃k
i=1C

(i) (allowing for multiplicities).

Notice that this multi-graph is edge partitioned across the machines.

For any vertex v ∈ V , define I(v) ⊆ k as the set of indices of the subgraphs that

sampled vertex v. Notice that indices in I(v) are κ-wise independent random variables.

Additionally, it is easy to see that each graph G(i) is a vertex sampled subgraph of G with

sampling probability p.

Remark 5.4.1. As opposed to the previous vertex sampling approach of Czumaj et

al. [111] that resulted in a partitioning of vertices of G across different subgraphs, our

way of sampling subgraphs in ParallelEDCS results in each vertex appearing in Θ(p · k)
different subgraphs with high probability. This is necessary for our algorithm as we need

to ensure that every edge of the input graph is sampled in this process. However, this

124



property introduces new challenges in the MPC implementation of our algorithm as a naive

implementation of this idea requires communicating Θ(p · k) messages per each edge of the

graph which cannot be done within the memory restrictions of the MPC model. This is the

main reason that we sample these subgraphs in ParallelEDCS with limited independence as

opposed to truly independently to reduce the communication per each edge to O(log n).

We first prove some simple properties of ParallelEDCS.

Proposition 5.4.2. For ∆ ≥
(
n
s

)
·
(
400 · log12 (n)

)
, with probability 1− 2/n8,

1. For any vertex v ∈ V , |I(v)| = p · k ± λ · p · k.

2. For any edge e ∈ E, there exists at least one index i ∈ [k] such that e belongs to G(i).

Proof. Fix any vertex v ∈ V . Clearly, E |I(v)| = p · k. Moreover, |I(v)| is sum of zero-one

κ-wise independent random variables and hence by Chernoff bound with bounded indepen-

dence (Proposition 2.1.3)

Pr (||I(v)| − E |I(v)|| ≥ λ · E |I(v)|) ≤ 2 · exp
(
−κ
2

)
≤ 2 · exp (−10 log n) ≤ 1/n10.

Note that E |I(v)| = p · k = Θ

(√
n·∆
s

)
, λ = (2 · log n)−3 and hence by the bound on ∆, we

have λ2 · E |I(v)| /2 = Θ(log n) = κ, and hence we can indeed apply Proposition 2.1.3 here.

By a union bound on all n vertices, the first part holds w.p. ≥ 1− 1/n9.

We now prove the second part. Fix an edge e ∈ E and define the indicator random

variables X1, . . . , Xk where Xi = 1 iff e is contained in the graph G(i). Define X :=
∑k

i=1Xi

to denote the number of graphs the edge e belongs to. Clearly, E [Xi] = p2 for all i ∈ [k]

and hence E [X] = p2 · k. Moreover, the random variables Xi’s are κ-wise independent for

κ = 20 log n. Hence, by Chernoff bound with bounded independence (Proposition 2.1.3),

the probability that e belongs to no graph G(i), i.e., X = 0 is at most,

Pr (X = 0) ≤ Pr
(
|X − E [X]| ≥ E [X]

)
≤ 2 · exp

(
−κ
2

)
≤ 2 · exp (−10 log n) ≤ 1/n10.

Again, note that E |X| = p2 ·k = 800 log n = 2κ and hence we could apply Proposition 2.1.3.

By a union bound on all O(n2) edges, the second part also holds w.p. at least 1 − 1/n8.

Another union bound on this event and the event in the first part finalizes the proof.

We now prove that the graph C defined in the last line of ParallelEDCS is also an EDCS

of G with appropriate parameters. The proof is quite similar to that of Lemma 4.6.7 with

some additional care to handle the difference between vertex vs edges sampled subgraphs.
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Lemma 5.4.3. For ∆ ≥
(
n
s

)
·
(
400 · log12 (n)

)
, w.p. 1 − 5/n7, C is an EDCS(G, βC , β

−
C )

for parameters:

λC := λ1/2 ·Θ(log n) = o(1), βC := p · k · (1 + λC) · β, and β−C = p · k · (1− λC) · β.

Proof. Recall that each graph G(i) is a vertex sampled subgraph of G with sampling prob-

ability p. Hence, by Lemma 5.3.1 and a union bound, with probability 1 − 4/n7, for any

two subgraphs C(i) and C(j) for i, j ∈ [k], and any vertex v ∈ V (i) ∩ V (j), we have,

|degC(i)(v)− degC(j)(v)| ≤ O(log n) · λ1/2 · β. (5.1)

In the following, we condition on the events in Eq (5.1) and Proposition 5.4.2 which

happen together with probability at least 1− 5/n7.

We now prove that C is indeed an EDCS(G, βC , β
−
C ) for the given parameters. First,

consider an edge (u, v) ∈ C and let j ∈ [k] be such that (u, v) ∈ C(j) as well. We have,

degC(u) + degC(v)

=
∑

i∈I(u)
degC(i)(u) +

∑

i∈I(v)
degC(i)(v)

≤
Eq (5.1)

|I(u)| · degC(j)(u) + |I(v)| · degC(j)(v) + (|I(u)|+ |I(v)|) ·O(log n) · λ1/2 · β

≤
Proposition 5.4.2

p · k · β +O(λ) · p · k · β + p · k ·O(log n) · λ1/2 · β

(by Property (P1) of EDCS C(j) with parameter β)

≤ p · k · (1 + λC) · β = βC .

Hence, C satisfies Property (P1) of EDCS for parameter βC .

Now consider an edge (u, v) ∈ G \ C and let j ∈ [k] be such that (u, v) ∈ G(j) \ C(j)

(the existence of j follows from conditioning on the event in Proposition 5.4.2). We have,

degC(u) + degC(v)

=
∑

i∈I(u)
degC(i)(u) +

∑

i∈I(v)
degC(i)(v)

≥
Eq (5.1)

|I(u)| · degC(j)(u) + |I(v)| · degC(j)(v)− (|I(u)|+ |I(v)|) ·O(log n) · λ1/2 · β

≥
Proposition 5.4.2

p · k · (1− λ) · β −O(λ) · p · k · β − p · k ·O(log n) · λ1/2 · β

(by Property (P2) of EDCS C(j) with parameter β)

≥ p · k · (1− λC) · β = β−C .
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Hence, C also satisfies Property (P2) of EDCS for parameter β−C , finalizing the proof.

Before moving on, we prove a simple claim that ensures that the memory of Õ(s) per

machine in ParallelEDCS is enough for storing subgraph G(i) and computing C(i) locally.

Claim 5.4.4. With probability 1 − 1/n18, the total number of edges in each subgraph G(i)

of G in ParallelEDCS(G,∆, s) is O(s · log2 n).

Proof. Let v be a vertex inG(i). By the independent sampling of vertices in a vertex sampled

subgraph, we have that E [degG(i)(v)] = p · degG(v) ≤ p ·∆ = Θ(
√

s·∆
n · log n). By Chernoff

bound, with probability 1−1/n20, degree of v is O(
√

s·∆
n · log n). We can then take a union

bound on all vertices in G(i) and have that with probability 1−1/n19, the maximum degree

of G(i) is O(
√

s·∆
n · log n). At the same time, the expected number of vertices sampled in

G(i) is at most p · n = Θ(
√

s·n
∆ · log n). Another application of Chernoff bound ensures that

the total number of vertices sampled in G(i) is O(
√

s·n
∆ · log n) with probability 1−1/n19. As

a result, the total number of edges in G(i) is O(
√

s·∆
n · log n) ·O(

√
s·n
∆ · log n) = O(s · log2 n)

with probability at least 1− 1/n18.

5.4.2. Random Match Algorithm

In our main algorithm, we need a subroutine for finding a large matching incident on the

set of “high” degree vertices of a given graph G which its edges are initially partitioned

across many machines. In this section, we provide such an algorithm based on a simple

randomized procedure that is easily implementable in constant number of MPC rounds.

RandomMatch(G,S,∆). A parallel algorithm for finding a matching M incident on given

vertices S in a graph G with maximum degree ∆.

1. Sample each vertex in S with probability 1/2 independently to obtain a set S′.

2. For each vertex in S′ pick one of its incident edges to G \ S′ uniformly at random.

Let Esmpl be the set of these edges.

3. Let M be the matching in Esmpl consists of all edges with unique endpoints; these

are edges (u, v) ∈ Esmpl such that neither u nor v are incident on any other edge of

Esmpl.

We prove that if the set S consists of high degree vertices ofG, then RandomMatch(G,S,∆)

finds a large matching in S. Formally,

Lemma 5.4.5. Suppose G(V,E) is a graph with maximum degree ∆ ≥ 100 log n and

S ⊆ V is such that for all v ∈ S, degG(v) ≥ ∆/3. The size of the matching M :=
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RandomMatch(G,S,∆) is in expectation E |M | = Θ(|S|).

Proof. Fix any vertex v ∈ S′; we argue that with high probability, degree of v to vertices

in G \ S′ is at least ∆/7. This follows immediately as in expectation, at most half of the

neighbors of v belong to S′ and we can apply Chernoff bound as ∆ ≥ 100 log n. We apply

a union bound on all vertices in S′ and in the following we condition on the event that all

these vertices have at least ∆/7 edges to G \ S′, which happens with high probability.

By construction, any vertex in S′ has degree exactly one in Esmpl. As such, to lower

bound the size ofM , we only need to lower bound the number of vertices in G\S′ that have

degree exactly one in Esmpl. Fix a vertex v ∈ S′ and consider the neighbor u ∈ G\S′ of v in

Esmpl. We know that u has at most ∆−1 other neighbors in S′ and each of these neighbors

are choosing u with probability at most 7/∆ (as each of them has at least ∆/7 neighbors).

Hence, Pr (u has degree 1 in Esmpl) ≥
(
1− 7

∆

)∆−1
= Θ(1). As such, in expectation, Θ(S)

vertices in G \ S′ also have degree exactly one in Esmpl, which implies E |M | = Θ(|S|).

5.4.3. A Parallel Algorithm for Matching and Vertex Cover

We now present our main parallel algorithm. For sake of clarity, we present and analyze

our algorithm here for the case when the memory allowed per each machine is Õ(n). We

then show how to easily extend this algorithm to the case when memory per machine is

O(s) for any choice of s = nΩ(1).

ParallelAlgorithm(G,∆). A parallel algorithm for computing a vertex cover Valg and a

matching Malg of a given graph G with maximum degree at most ∆.

1. If ∆ ≤
(
400 · log12 n

)
send G to a single machine and run the following algorithm

locally: Compute a maximal matching Malg in G and let Valg be the set of vertices

matched by Malg. Return Valg and Malg.

2. If ∆ >
(
400 · log12 n

)
, we run the following algorithm.

3. Compute an EDCS C := ParallelEDCS(G,∆, n) in parallel. Let βC , β
−
C be the

parameters of this EDCS (as specified in Claim 5.4.6 below).

4. Define Vhigh :=
{
v ∈ V | degC(v) ≥ β−C/2

}
be the set of “high” degree vertices in

C.

5. Compute a matching Mhigh := RandomMatch(C, Vhigh, βC).

6. Define V − := V \
(
Vhigh ∪ V (Mhigh)

)
as the set of vertices that are neither high

degree in C nor matched by Mhigh. Let C− be the induced subgraph of C on

vertices V − with parallel edges removed.

7. Recursively compute (Vrec,Mrec) := ParallelAlgorithm(C−, βC).

8. Return Valg := Vhigh ∪ V (Mhigh) ∪ Vrec and Malg :=Mhigh ∪Mrec.
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We start by proving some simple properties of ParallelAlgorithm. The following claim is

a direct corollary of Lemma 5.4.3 by setting s = n.

Claim 5.4.6. The subgraph C := ParallelEDCS(G,∆, n) computed in ParallelAlgorithm(G,∆)

w.p. at least 1− 1/n5 is an EDCS(G, βC , β
−
C ) for parameters:

λC := o(1) βC :=
√
∆ ·O(log5 n) β−C := (1− λC) · βC

Similarly, the following claim follows easily from Lemma 5.4.5.

Claim 5.4.7. For C = EDCS(G, βC , β
−
C ), the matchingMhigh = RandomMatch(C, Vhigh, βC)

has expected size E |Mhigh| = Ω(|Vhigh|).

Proof. With this conditioning, the maximum degree of G is at most βC , while the degree

of vertices Vhigh is at least β−C/2 ≥ βC/3. Hence, we can apply Lemma 5.4.5.

Let T be the number of recursive calls made by ParallelAlgorithm(G,∆). We refer to any

t ∈ [T ] as a step of ParallelAlgorithm. We bound the number of steps in ParallelAlgorithm.

Claim 5.4.8. The total number of steps made by ParallelAlgorithm(G,∆) is T = O(log log∆).

Proof. Define a function F (∆) denoting the number of recursive calls made by ParallelAlgorithm

with maximum degree ∆. As ParallelAlgorithm(G,∆) runs ParallelAlgorithm(C−, βC) for

βC < ∆2/3, we have, F (∆) ≤ F (∆2/3) + 1 for ∆ >
(
400 · log12 n

)
and F (∆) = 1 otherwise.

It is now easy to see that F (∆) = O(log log∆), finalizing the proof.

In each step, ParallelAlgorithm runs the subroutines ParallelEDCS and RandomMatch

once. We say that a run of ParallelEDCS is valid in this step iff the high probability event

in Claim 5.4.6 happens. Roughly speaking, this means that ParallelEDCS is valid when it

returns the “correct” output. Additionally, we say that a step of ParallelAlgorithm is valid

if ParallelEDCS subroutine in this step is valid. We define E as the event that all T steps of

ParallelAlgorithm(G,∆) are valid. By Claims 5.4.6 each step of ParallelAlgorithm is valid with

probability at least 1− 1/n5. As there are in total T = O(log log n) steps by Claim 5.4.8, E
happens with probability at least 1 − 1/n4. We are now ready to prove the correctness of

ParallelAlgorithm.

Lemma 5.4.9. For any graph G(V,E), ParallelAlgorithm(G,n) with constant probability

outputs a matching Malg which is an O(1)-approximation to the maximum matching of G

and a vertex cover Valg which is an O(1)-approximation to the minimum vertex cover of G.

Proof. It is clear that the second parameter in ParallelAlgorithm(G,n) is an upper bound on
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the maximum degree of G and hence G satisfies the requirement of ParallelAlgorithm. In the

following, we condition on the event E which happens with high probability by the above

discussion. As such, we also have that any recursive call to ParallelAlgorithm(C−, βC) is

valid (i.e., βC is indeed an upper bound on degree of C−) simply because C− is a subgraph

of an EDCS and hence its maximum degree is bounded by βC .

We first argue that Valg andMalg are respectively a feasible vertex cover and a feasible

matching of G. The case for Malg is straightforward; the set of vertices matched by Mhigh

is disjoint from the vertices in Mrec as all vertices matched by Mhigh are removed in C−,

and hence (by induction) Malg = Mhigh ∪Mrec is a valid matching in G. Now consider

the set of vertices Valg. By conditioning on the event E , C is indeed an EDCS(G, βC , β
−
C ).

Hence, by Property (P2) of EDCS C, any edge e ∈ G \C has at least one neighbor in Vhigh

and is thus covered by Vhigh. Additionally, as we pick V (Mhigh) in the vertex cover, any

edge incident on these vertices are also covered. This implies that Vhigh ∪ V (Mhigh) plus

any vertex cover of the remaining graph C− is a feasible vertex cover of G. As Vrec is a

feasible vertex cover of C− by induction, we obtain that Valg is also a feasible vertex cover

of G (the base case in step 1 where a maximal matching is compute locally is trivial).

We now show that sizes ofMalg and Valg are within a constant factor of each other with

constant probability. By Proposition 2.2.6 this implies that both are an O(1)-approximation

to their respective problem. At each step, the set of vertices added to the Valg are of size

|V (Mhigh)| + |Vhigh| ≤ 3 |Vhigh| (as Mhigh is incident on Vhigh). The set of edges added to

matching Malg are of size Mhigh which is in expectation equal to Θ(|Vhigh|) by Claim 5.4.7.

As such, by induction and linearity of expectation, this implies that E |Malg| = Θ(|Valg|)
(the base case is again trivial). To conclude, we can apply a Markov bound (on size of

|Valg| − |Malg|) and obtain that with constant probability |Malg| = Θ(|Valg|).

We note that in Lemma 5.4.9, we only achieved a constant factor probability of success

for ParallelAlgorithm. We can however run this algorithm in parallel O(log n) times and pick

the best solution to achieve a high probability of success while still having Õ(n) memory

per machine and O(log log n) rounds.

5.4.4. Extension to Smaller Memory Requirement: Proof of Theorem 5.2

ParallelAlgorithm can be implemented in the MPC model with machines of memory Õ(n) and

O(log log n) MPC rounds. Combining this together with Lemma 5.4.9 on the correctness

of ParallelAlgorithm, we immediately obtain Theorem 5.2 for the case of s = Õ(n), i.e., an

MPC algorithm with O(1) approximation to both matching and vertex cover in O(log log n)

rounds with Õ(n) memory per machine.

We now show how to extend our algorithm to the case when memory per machine is
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s = nΩ(1). For simplicity, we assume the memory per each machine is Õ(s) as opposed to

O(s); rescaling the parameter s with a polylog(n) factor implies the final result. Recall that

there were only two places in ParallelAlgorithm that we needed Õ(n) memory per machine:

in subroutine ParallelEDCS and in step 1 of the algorithm, i.e., the base case of recursion.

Consequently, we only need to make the following two changes to ParallelAlgorithm(G,∆):

1. Firstly, in ParallelAlgorithm(G,∆), we now run the subroutine ParallelEDCS with mem-

ory per machine equal to O(s · polylog(n)), i.e., we run ParallelEDCS(G,∆, s).

2. Second, we change the base case of the algorithm. Whenever ∆ <
(
n
s

)
·
(
400 · log12 (n)

)
,

instead of sending all edges to a single machine and solve the problem locally, we

simply use any standard O(log∆)-round MPC algorithm for O(1)-approximation to

matching and vertex cover that works on machines with memory nΩ(1) (for example

by directly simulating the distributed peeling algorithm of [263] (see also [266]).

Previously with machines of memory Õ(n), the maximum degree of underlying graph

in each step of ParallelAlgorithm was (see Claim 5.4.6):

∆1 := n, ∆2 :=
√
n · polylog(n), . . . ∆i := n1/2

i · polylog(n), . . . ∆T := polylog(n),

where T = O(log log n) denotes the number of steps in ParallelAlgorithm. By switching to

machines of memory Õ(s), we instead have,

∆1 := n, . . . ∆i :=
n

s1−1/2i−1 · polylog(n), . . . ∆T :=
(n
s

)
· polylog(n),

before we reach the stopping condition of ParallelAlgorithm (this follows from Lemma 5.4.3

exactly as in Claim 5.4.6). After this step, we simply compute an O(1)-approximate match-

ing and vertex cover directly in the remaining graph.

The analysis of the correctness of this algorithm is exactly as before. It is also straight-

forward to verify that this algorithm now only needs machines of memory O(s · log2(n))
by choice of ParallelEDCS. Finally, the number of rounds needed by this algorithm is

O(log log n) (for reducing the maximum degree in the graph to ∆T ) plus O(log∆T ) =

O(log
(
n
s

)
+ log log n) (for running the distributed matching and vertex cover algorithm

directly when maximum degree is at most ∆T ). This concludes the proof of Theorem 5.2

for all range of parameter s = nΩ(1).

5.4.5. Further Improvements

We conclude this section by showing that using standard techniques, one can improve the

approximation ratio of our matching algorithm significantly. In particular,

Corollary 5.3. There exists an MPC algorithm that given a graph G and ε ∈ (0, 1), with
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high probability computes a (2+ε)-approximation to maximum matching of G in O(log (1/ε)·
log log n) MPC rounds and a (1 + ε)-approximation in (1/ε)O(1/ε) · (log log n) MPC rounds

using only O(n/polylog(n)) memory per machine.

In the following, we prove the first part of Corollary 5.3. The second part follows from an

adaptation of a reduction of McGregor [241] (see [29]).

Proof of Corollary 5.3 - Part (1). We simply run our MPC algorithm in Theorem 5.2, to

compute a matching Malg, remove all vertices matched by Malg from the graph G, and

repeat. Let α = O(1) be the approximation ratio of the algorithm in Theorem 5.2. Suppose

we repeat the above process for T := (α · log (1/ε)) steps. For any t ∈ [T ], let Mt be the

matching computed so far, i.e., the union of the all the matchings in the first t applications

of our α-approximation algorithm. Also let Gt+1 := G \ V (Mt), i.e., the graph remained

after removing vertices matched by Mt. Note that Mt+1 is an α-approximation to the

maximum matching of Gt+1. Moreover, MM(Gt+1) ≥ MM(G) − 2 |Mt| as each edge in Mt

can only match (and hence remove) two vertices of any maximum matching of G. This

implies that |Mt+1| ≥ |Mt|+ 1
α · (MM(G)− 2 |Mt|) for all t ∈ [T ]. We now have,

MM(G)− 2 |MT | ≤
(
1− 2

α

)
·MM(G)− 2 ·

(
1− 2

α

)
· |MT−1|

≤
(
1− 2

α

)2

(MM(G)− 2 · |MT−2|)

(by applying the second equation to MT−1)

≤
(
1− 2

α

)T
·MM(G) (by recursively applying the previous equation)

≤ exp

(
− 2

α
· α · log (1/ε)

)
·MM(G) ≤ ε ·MM(G).

Hence, after T = O(log 1/ε) steps, the matching computed by the above algorithm is of size

(2 + ε) ·MM(G), finalizing the proof.
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Chapter 6

Massively Parallel Algorithms for Connectivity on

Sparse Graphs

We now switch to studying another fundamental graph problem, namely the undirected

graph connectivity problem, in the massively parallel computation model. The materials in

this chapter are based on [36].

A fundamental question that shrouds the emergence of massively parallel computation

(MPC) platforms is how can the additional power of the MPC paradigm (more local storage

and computational power) be leveraged to achieve faster algorithms compared to classical

parallel models such as PRAM?

Previous research has identified the sparse graph connectivity problem as a major ob-

stacle to such improvement: While classical logarithmic-round PRAM algorithms for find-

ing connected components in any n-vertex graph have been known for more than three

decades [288, 273, 154, 106, 265, 212, 173], no o(log n)-round MPC algorithms are known

for this task with truly sublinear in n memory per machine. This problem arises when

processing massive yet sparse graphs with O(n) edges, for which the interesting setting of

parameters is n1−Ω(1) memory per machine. It is conjectured [23, 53, 271, 277] that achiev-

ing an o(log n)-round algorithm for connectivity on general sparse graphs with n1−Ω(1) per-

machine memory may not be possible, and this conjecture also forms the basis for multiple

conditional hardness results on the round complexity of other MPC problems.

In this chapter, we take an opportunistic approach towards the sparse graph connectivity

problem, by designing an algorithm with improved performance guarantees in terms of the

connectivity structure of the input graph. Formally, we design an MPC algorithm that finds

all connected components with spectral gap at least λ in a graph in O(log log n+ log (1/λ))

MPC rounds and nΩ(1) memory per machine. While this algorithm still requires Ω(log n)

rounds in the worst-case when components are “weakly” connected (i.e., λ ≈ 1/n), it

achieves an exponential round reduction on sparse “well-connected” components (i.e., λ ≥
1/polylog(n)) using only nΩ(1) memory per machine and Õ(n) total memory, and still

operates in o(log n) rounds even when λ = 1/no(1). To best of our knowledge, this is the

first non-trivial (and indeed exponential) improvement in the round complexity over PRAM

algorithms, for a natural class of sparse connectivity instances.

HighLights of Our Contributions

In this chapter, we will establish:
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• An MPC algorithm for the connectivity problem that uses strongly sublinear memory

per-machine and can find all well-connected components of a graph in exponentially

smaller number of rounds than state-of-the-art (Section 6.8)

• An MPC algorithm for the connectivity problem that uses mildly sublinear memory

per-machine and can find all connected components of a graph (instead of only well-

connected components in our main algorithm) in exponentially smaller number of

rounds that state-of-the-art (Section 6.9).

• An unconditional lower bound for MPC algorithms for the sparse connectivity problem

on well-connected graphs (Section 6.10).

6.1. Background

A fundamental question in the MPC model is:

How can the additional power of the MPC model (more local storage and com-

putational power) be leveraged to achieve faster algorithms compared to classical

parallel models such as PRAM algorithms?

The answer to this question turns to be highly dependent on the type of problems at

hand and the setting of parameters. For graph problems—the focus of this chapter— the

first improvement over PRAM algorithms was already achieved by Karloff et al. [213] who

developed algorithms for graph connectivity and MST in O(1) MPC rounds on machines

with local memory n1+Ω(1); here, n is the number of vertices in the graph. This is in

contrast to the Ω(log n) round needed in the standard PRAM model for these problems

(see, e.g., [288, 273, 154, 106, 265, 212, 173]). Since then, numerous algorithms have been

designed for various graph problems that achieve O(1) round-complexity with local memory

n1+Ω(1) on each machine (see, e.g., [225, 223, 9, 30] and references therein).

The next set of improvements reduced the memory per machine to O(n) (possibly at

the cost of a slight increase in the number of rounds). For example, an O(1) round algo-

rithm for MST and connectivity using only O(n) memory per machine has been proposed

in [197] building on previous work in [156, 178, 235] (see also [10, 55, 228] for related re-

sults). A recent set of results—including our results presented in Chapter 5—have also

achieved O(log log n)-round algorithms for different graph problems such as matching, ver-

tex cover, and MIS in the MPC model, when the memory per machine is O(n) or even

O(n/polylog(n)) [26, 29, 111].

Alas, this progress has came to a halt at the truly sublinear in n regime, i.e., n1−Ω(1)

space per-machine. This setting of parameter is particularly relevant to sparse graphs with

O(n) edges, as in this scenario, Ω(n) memory per-machine allows to fit the entire input on

a single machine, thereby trivializing the problem.
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The aforementioned line of research has identified a captivating algorithmic challenge

for breaking the linear-memory barrier in the MPC model: connectivity on sparse undi-

rected graphs. While classic O(log n)-round PRAM algorithms for connectivity in undi-

rected graphs have been known for more than three decades (see [288, 273, 154, 212, 173]

and references therein), no faster MPC algorithm with truly sublinear n1−Ω(1)-memory per

machine is known to date (see, e.g. [213, 218, 271]).

There are several substantial reasons for the lack of progress on this fascinating problem.

On one hand, Ω(log n) rounds are known to be necessary for a restricted class of (routing-

style) MPC algorithms [53], and in fact it has been conjectured that this logarithmic barrier

may be unavoidable for any MPC algorithm [23, 53, 271, 277]. This belief led to a series of

recent results that used sparse connectivity as a hardness assumption for proving conditional

lower bounds in the MPCmodel for other problems (see [23, 308] and references therein). On

the other hand, as we remarked in Section 1.1.3, it was observed by [277] that proving any

ω(1) lower bound on the round complexity of this problem would imply NC1 ( P, a major

breakthrough in complexity theory which seems beyond the reach of current techniques.

6.2. Our Results and Techniques

The spectral gap of a graph is defined to be the second eigenvalue of the normalized Lapla-

cian associated with this graph (see Section 6.3.1 for more details). We use spectral gap

as a measure of “connectedness” of a graph and design an opportunistic algorithm1 for

connectivity with improved performance guarantee depending on the spectral gap of the

underlying graph.

Result 6.1. There exists an MPC algorithm that with high probability identifies all

connected components of any given sparse undirected n-vertex graph G(V,E) with Õ(n)

edges and a lower bound of λ ∈ (0, 1) on the spectral gap of its connected components.

For constant δ > 0, the algorithm can be implemented with O( 1
λ2
· n1−δ · polylog(n))

machines each with O(nδ · polylog(n)) memory, and in O(log log n+ log (1/λ)) MPC

rounds.

Result 6.1 can be extended to the case when the algorithm is oblivious to the value

of λ and still manages to achieve an improved performance depending on this parameter

(see Section 6.8). Our result is most interesting in the case when spectral gap of (each

connected component) of the graph is lower bounded by a constant or even 1/polylog(n),

i.e., for graphs with “well-connected” components. Examples of such graphs include random

graphs2 and expanders (see also [239, 159] for real-life examples in social networks). In this

1We borrow the term of “opportunistic” algorithm from Farach-Colton and Thorup [133] which defined
it in the context of string matching.

2This means that in a probabilistic sense, this setting of parameter applies to almost all graphs.
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case, we obtain an algorithm with Õ(n) total memory and nΩ(1) memory per machine which

can identify all connected components in only O(log log n) rounds. To our knowledge, this

constitutes the first non-trivial improvement on the standard O(log n) round algorithms for

connectivity in the MPC model when the memory per machine is nΩ(1) for a general family

of input graphs.

Nevertheless, our algorithm in Result 6.1 still manages to achieve a non-trivial improve-

ment even when the spectral gap is as small as 1/no(1). Even in this case, the algorithm

requires o(log n) MPC rounds (and total memory which is larger than the input size by only

an no(1) factor). This means that the algorithm benefits from the extra power of the MPC

model (much more local computation power) compared to the classical parallel algorithms

in the PRAM model which require Ω(log n) rounds to solve connectivity (even on sparse

expanders; see below).

We also prove an unconditional Ω(logs n)-round lower bound for the promise problem

of connectivity on sparse expanders on machines with memory s. This implies that the “full

power” of the MPC model is indeed required to achieve our speedup, as with s = polylog(n)

memory, Ω(logs n) = Ω̃(log n) rounds are needed even on sparse expanders (this result, as

well as a lower bound for PRAM algorithms and further discussion are presented in Section

6.10). We remark that by a result of [277], our lower bound is the best possible unconditional

lower bound short of proving that NC1 ( P which would be a major breakthrough in

complexity theory.

Finally, we note that a simple application of the toolkit we develop in proving our

main result in Result 6.1 also implies that one can solve the connectivity problem in only

O(log log n) MPC rounds on any graph (with no assumption on spectral gap, etc.) when

the memory per-machine is mildly sublinear in n, i.e., is O(n/polylog(n)). Formally,

Theorem 6.2. There exists an MPC algorithm that given any arbitrary n-vertex graph

G(V,E) with high probability identifies all connected components of G in O(log log n +

log
(
n
s

)
) MPC rounds on machines of memory s = nΩ(1).

Theorem 6.2 is reminiscent of the recent set of results mentioned in Chapter 5 on

achieving similar guarantees for other graph problems such as maximum matching and

minimum vertex cover in the mildly sublinear in n per-machine memory regime. This

result emphasizes the truly sublinear in n regime, i.e., n1−Ω(1) per-machine memory, as

the “real” barrier to obtaining efficient algorithms for sparse connectivity with improved

performance compared to PRAM algorithms.

Techniques. The first main technical ingredient of this chapter is a distributed “data

structure” for performing and processing short independent random walks (proportional
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to the mixing time of each component) from all vertices of the graph simultaneously,

whose construction takes logarithmic number of rounds in length of the walk. While imple-

menting random walks in distributed and parallel settings is a well-studied problem (see,

e.g., [212, 173, 283, 284] and references therein), the guarantee of our algorithm in achieving

independent random walks across all vertices in a small number of rounds and total mem-

ory, departs from previous work (independence is crucial in the context of our algorithm).

Achieving this stronger guarantee requires different tools, in particular, a method for “reg-

ularizing” our graph using a parallel implementation of the replacement product operation

(see, e.g. [276]) that we design in this thesis.

Our second main technical ingredient is a novel leader-election based algorithm for find-

ing a spanning tree of a random graph. The key feature of this algorithm that distinguishes

it from previous MPC algorithms for sparse connectivity (see, e.g., [218, 271, 213]) is that on

random graphs, it provably requires only O(log log n) MPC rounds as opposed to Ω(log n)

(we point out that [218] also analyzed their algorithms on random graphs (see Lemma 9),

but even on random graphs their algorithm requires Θ(log2 n) rounds). Our algorithm

achieves this exponential speedup by contracting quadratically larger components to a sin-

gle vertex in each step, while “preserving the randomness” in the resulting contracted graph

to allow for recursion. We elaborate on our techniques in the streamlined overview of our

algorithm in Section 6.4.

6.2.1. Further Related Work

Finding connected components in undirected graphs has been studied extensively in the

MPC model [213, 225, 2, 10, 218, 271, 105, 203], and in the closely related distributed

model of Congested Clique [197, 156, 178, 235] (see, e.g., [55] for the formal connection

between the two models). In particular, for the sparse connectivity problem, [213, 218, 271]

devised algorithms that achieve O(log n) rounds using nΩ(1) memory per machine and O(n)

total memory. In the classical PRAM model, O(log n)-round algorithms have been known

for connectivity for over three decades now [288, 273, 154, 212, 173].

In the truly sublinear regime of n1−Ω(1) memory per-machine, o(log n)-round MPC al-

gorithm are only known for special cases. In [23], Andoni et al. developed an approximate

algorithms for approximating minimum spanning tree and Earth Mover distance for geo-

metric graphs (complete weighted graphs for points in geometric space). In [144], Fischer

and Uitto presented an O((log log n)2) rounds MPC algorithm for the maximal independent

set problem (MIS) on trees.

6.2.2. Subsequent Work

Independently and concurrently to our work, Andoni et al. [24] have also studied MPC

algorithms for the sparse connectivity problem with the goal of achieving improved per-
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formance on graphs with “better connectivity” structure by parametrizing based on the

diameter of each connected component (as opposed to spectral gap in our work). They

develop an algorithm with nΩ(1) memory per machine and O(logD · log logN/n (n)) rounds,
where D is the largest diameter of any connected component and N = Ω(m) is the total

memory. Our results and that of [24] are incomprable: while in any graph D = O(log n/λ),

the dependence on the number of rounds in [24] is O(logD log log n) for the main setting of

interest in sparse connectivity when the total memory is within logarithmic factors of input

size (the typical requirement of the MPC model3 [23, 53]). As such, our algorithm achieves

quadratically smaller round complexity when the spectral gap is large, i.e., is Ω(1) or even

Ω(1/polylog(n)) (as in random graphs and graphs with moderate expansion), while [24]

achieve better performance on graphs with small spectral gap but not too-large diameter

(an example is two disjoint expanders connected by an edge).

Furthermore, after our work in this chapter was published on arXiv [36], several au-

thors studied other graph problems in the MPC model with small, i.e., nΩ(1), memory

per-machine. In particular, Ghaffari and Uitto [157] and Onak [262] designed Õ(
√
log n)

MPC round algorithms for several graph problems such as matching, vertex cover, and

maximal independent set on machines of memory nΩ(1). Moreover, Behnezhad et al. [56]

and Brandt et al. [65] studied a different types parametrization for several graph problems

(similar to our spectral gap for connectivity), this time based on arboricity of the graph,

and devised MPC algorithms that use O((log log n)2) rounds and only nΩ(1) memory per

machine for these problems on bounded arboricity graphs. We should note that the sparse

connectivity problem is conjectured to require Ω(log n) rounds even on union of cycles and

hence in bounded arboricity graphs [23, 308].

6.3. Preliminaries

Notation. For a graph G(V,E), we say that a subset C ⊆ V (G) is a component of G if

the induced subgraph of G on C is connected. We say that a partition C = {C1, . . . , Ck} of
V (G) is a component-partition iff every Ci is a component of G.

Concise range notation. For simplicity of exposition, we use the following concise nota-

tion for representing ranges: for a value x and parameter δ ≥ 0, we use Jx± δK to denote the

range [x− δ, x+ δ]. We extend this notation to numerical expressions as follows: let E be a

numerical expression that apart from standard operations also contains one or more appli-

cations of the binary operator ±. Let E+ be the expression obtained from E by choosing

3Minimizing total memory is critical in the sparse connectivity problem in the MPC model. After all, the
straightforward algorithm that computes the transitive closure of the graph (e.g. by matrix multiplication;
see [213]) achieves O(logD) rounds, subsuming both our results and [24]; however, this algorithm requires
at least Ω(n2) total memory and hence does not adhere to restrictions of MPC model (or any of its more
relaxed variants such as [213]).
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assignment of − and + to replace different choices of the operator ± in order to maximize

E; similarly, define E− for minimizing E. We now define JEK := [E−, E+]. For example,

J(3± 2)2K = [1, 25] and J(2± 1)/(4± 2)K = [1/6, 3/2].

Almost regular graphs. Let ∆ ≥ 1 be an integer and ε > 0 be any parameter. We say

that a graph G(V,E) is J(1± ε)∆K-almost-regular iff degree of any vertex in V (G) belongs

to J(1± ε)∆K. We refer to ε as the discrepancy factor of the an almost-regular graph.

6.3.1. Spectral Gap

Let G(V,E) be an undirected graph on n vertices. We use An×n to denote the adjacency

matrix of G and Dn×n to denote the diagonal matrix of degrees of vertices in G. We further

denote the normalized Laplacian of G by L := I − (D−1/2 · A · D−1/2). L is a symmetric

matrix with n real eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 1. Throughout the chapter, we

use λi(G) to refer to the i-th smallest eigenvalue λi of normalized Laplacian L of G.

The quantity λ2(G) is referred to as the spectral gap of G, and is a quantitative measure

of how “well-connected” the graph G is. For example, it is well-known that λ2(G) > 0 iff G

is connected (see, e.g., [103] for a proof), and the larger λ2(G) is, the graph G is more “well-

connected” under various notions of connectedness. For instance, cliques and expanders,

two of the most well-connected graphs, have large spectral gap; see Cheeger’s inequality [92]

for another such connection. In this chapter, we also use λ2(G) as a measure of connectivity

of G and design algorithms with improved performance guarantee for graphs with larger

spectral gap.

6.3.2. Random Walk on Graphs

Let G(V,E) be an undirected graph. Consider the random process that starts from some

vertex v ∈ V , and repeatedly moves to a neighbor of the current vertex chosen uniformly at

random. We refer to this process as a random walk. In particular, a random walk of length

t corresponds to t step of the above process. We refer to the distribution of the vertex

reached by a random walk of length t from a vertex of v, as the distribution of this random

walk and denote it by DRW(v, t).

Define the random walk matrix W := D−1 ·A. For any vector vi ∈ V , let ev denote the

n-dimensional vector which is zero in all coordinates except for the i-th coordinate which

is one. It is easy to see that for any integer t ≥ 1, the vector W t · ev corresponds to the

distribution of a random walk of length t starting from v, i.e., DRW(v, t). We use π = π(G)

to denote the stationary distribution of a random walk on a graph G, where for any v ∈ V ,

πv :=
dv
2m . It is immediate to verify that W · π = π.

As random walks on arbitrary connected graphs do not necessarily converge to their

stationary distribution (i.e., when the underlying graph is bipartite), we further consider
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lazy random walks. In a lazy random walk of length t, starting from some vertex v ∈ V , for

t steps we either stay at the current vertex with probability half, or move to a neighbor of

the current vertex chosen uniformly at random. We define the lazy random walk matrix as

W := (I +W )/2 which is the transition matrix of a lazy random walk. It is easy to verify

that π is also the stationary distribution for a lazy random walk.

Mixing Time. For any γ > 0, we define the γ-mixing time of G, denoted by Tγ(G) to be

the smallest integer t ≥ 1, such that the distribution of a lazy random walk of length t on

G starting from any arbitrary vertex become γ-close to the stationary distribution in total

variation distance. Formally, Tγ(G) := mint≥1maxv∈V (G)

{∣∣∣W t · ev − π
∣∣∣
tvd
≤ γ

}
.

The following well-known proposition relates the mixing time of a graph G to its spectral

gap (see, e.g. [103] chapter 1.5 for a proof).

Proposition 6.3.1. For any connected graph G(V,E) and γ < 1, Tγ(G) = O
(
log (n/γ)
λ2(G)

)
.

6.3.3. Random Graphs

For any integers n, d ≥ 1, we use G(n, d) to denote the distribution on random undirected

graphs G on n vertices chosen by picking for each vertex v ∈ V (G), ⌊d/2⌋ outgoing edges

(u, v) for v chosen uniformly at random (with replacement) from V (G) and then removing

the direction of edges. Note that this notion of a random graph is related but not identical

to the more familiar family of Erdos-Renyi random graphs.

Throughout the chapter we use several properties of these random graphs that we

present in this section. The proofs of the following propositions are standard and follow

from similar arguments in Erdos-Renyi random graphs (we refer the reader to [64]).

Proposition 6.3.2 (Almost-regularity). Suppose d ≥ 4 log n/ε2 for some parameter

ε ∈ (0, 1). A graph G ∼ G(n, d) is an J(1± ε) dK-almost-regular with high probability.

Proposition 6.3.3 (Connectivity). A graph G ∼ G(n, d) for d ≥ c log n is connected

with probability at least 1− 1/n(c/4).

Proposition 6.3.4 (Expansion). Suppose G ∼ G(n, d) for d ≥ c log n. Then, with proba-

bility at least 1− 1/n(c/4):

1. For any set S ⊆ V (G), the neighborset N(S) of S in G has size

|N(S)| ≥ min {2n/3, d/12 · |S|} .

2. The mixing time of G is Tγ(G) = O(d2 · log (n/γ)) for any γ < 1.
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6.4. Technical Overview of Our Algorithm

In this section, we present a streamlined overview of our technical approach for proving

Result 6.1. For simplicity, we focus here mainly on the case λ = 1/polylog(n), i.e., the case

of graphs with moderate (spectral) expansion.

The general strategy behind our algorithm is the natural and familiar approach of

improving the connectivity of the underlying graph before finding its connected components

(see, e.g., the celebrated log-space connectivity algorithm of Reingold [274]). In particular,

we perform the following transformations on the original graph:

Step 1: Regularization. We first transform the original graph G into an O(1)-regular

graphG1 such that (i) there is a one to one correspondence between connected components

of G1 and G, and (ii) mixing time of every connected component of G1 is still polylog(n)

(using the fact that λ = 1/polylog(n) and Proposition 6.3.1).

Step 2: Randomization. Next, we transform every connected component of G1 to a

random graph chosen from distribution of random graphs G to obtain a graph G2. This

transformation (w.h.p) preserves all connected components of G1 and never merges two

separate components of G1 into G2. As it turns out, the structure of random graphs

(beyond their improved connectivity) makes them “easy to solve” for MPC algorithms

(more on this below).

Step 3: Connectivity in random graphs. Finally, we design a novel algorithm for

finding connected components of G2 which are each a random graph sampled from G.

This algorithm can be seen as yet another transformation that reduces the diameter of

each component to O(1) and then solve the problem on a low-diameter graph using a

simple broadcasting strategy.

We now elaborate more on each step of this algorithm.

Step 1: Regularization. The main steps of our algorithm heavily rely on the properties

of regular graphs, for several important reasons that will become evident shortly. Our first

goal is then to “regularize” the input while preserving its connected components, its spectral

gap and the number of edges (Lemma 6.5.1). The standard procedure for regularizing a

graph by adding self-loops to vertices (e.g., [274]) is too lossy for our purpose as it can

dramatically reduce the spectral gap4.

We instead use an approach based on the so-called replacement product (see, e.g., [276]):

The idea is to replace each vertex v of the original graph with degree dv, by a ∆-regular

expander on dv “copies of v”, and then connect these expanders across according to edges

of G to construct a (∆+1)-regular graph (see Section 6.5 for details). It is known that this

4Unlike vertex and edge expansion, spectral expansion is not a monotone property of edges of the graph.
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product (approximately) preserves the spectral gap in the new graph, hence the mixing time

of each component remains polylog(n) even after this transformation. Implementing this

approach in the MPC model has its unique challenges as the degree of some vertices in the

original graph can be as large as Ω(n) hence we need a parallel procedure for constructing

the expanders and performing the product, as no machine can do these tasks locally on its

nΩ(1)-size memory (see Lemmas 6.5.4 and 6.5.5).

We point out that replacement products have been used extensively in the context of

connectivity and expansion to reduce the degree of regular graphs [276, 274], but to best

of our knowledge, our (distributed) implementation of this technique for the regularization

purpose itself, while preserving its spectral gap, is nontrivial (yet admittedly quite antic-

ipated5). We believe this parallel regularization primitive itself will be a useful building

block in future MPC graph algorithms.

Step 2: Randomization. The goal of the second step is, morally speaking, to replace each

connected component of the regular graph G1 with a purely random graph sampled from

distribution G with degree O(log n) on the same connected component (which will indeed be

connected with high probability by Proposition 6.3.3); This is the content of Lemma 6.6.1.

In order to achieve the desired transformation, we need to connect every vertex v in

G1 to O(log n) uniformly random vertices in the same connected component as v. The

obvious challenge in this step is that the information about which vertices belong to the

same connected component is decentralized and each machine only has a “local” view of

the graph. To this end, we perform O(log n) lazy random walks of length T = polylog(n)

from every vertex of the graph G, where T is an upper bound on the mixing time of every

connected component of G1. This, together with the fact that G1 is regular, ensures that the

target of each random walk is (essentially) a uniformly random vertex in the corresponding

connected component of G1.

The main contribution in this step is an efficient parallel construction of a distributed

data-structure for performing and manipulating independent random walks of length T in

a regular graph, with only O(log T ) MPC rounds; see Theorem 6.4. This allows us to

perform the above transformation in O(log T ) = O(log log n) MPC rounds. Standard ideas

such as recursively computing random walks of certain length from every vertex in parallel

and then “stitching” these walks together to double the length of each walk can be used to

implement this step (see [15, 212, 173] for similar implementations in the PRAM model)6.

5This in fact requires us to extend the proof of expansion of replacement product to non-regular graphs
as all existing proofs of this result that we are aware of are assuming original graph is regular [276, 275, 278,
180, 291], while our sole purpose is to regularize the graph; see Section 6.5 for details.

6 This step is also similar-in-spirit to streaming and distributed implementations of random walks
in [283, 284], with the difference that we leverage the all-to-all communication of MPC model to achieve an
exponential speed up of O(log T ) rounds as opposed to O(

√
T ) achieved by these works, which is tight [255].
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The main challenge however, which is crucial for sampling from distribution G, is that in

all the aforementioned implementations, the random walks produced across vertices are not

independent of each other as different walks become correlated once they “hit” the same

vertex (the remainder of the walk would become the same for both walks).

A key observation that allows us to circumvent this difficulty is that in a regular graph,

no vertex can become a “hub” which many different random walks hit (contrast this with

a star-graph where every random walk almost surely hits the center); this is one of the

key reasons that we need to perform the regularization step first. As such, many of the

walks computed in the above procedure are indeed independent of each other. We use this

observation along with several additional ideas (e.g., having each vertex compute multiple

random walks and assign them randomly to different length walks in the recursive procedure

above) to implement this step.

Step 3: Connectivity in random graphs. The final and main step of the proof is an

algorithm for identifying all connected components of a graph which are each sampled from

G in only O(log log n) MPC rounds (Lemma 6.7.1). The centerpiece of this step is a leader-

election based algorithm for connectivity (similar to most algorithms for sparse connectivity

in the MPC model, e.g., [213, 218, 271]). A typical leader-election algorithm for connectivity

would pick some set of “leader vertices” in each round, and let other non-leader vertices

connect to some leader in their neighborhood. It then “contracts” every leader vertex and

all non-leader vertices that choose this leader to connect, to form a component of the input

graph. This way, components of the graph “grow” in each round as information propagates

through leaders, until all components of the graph are discovered. The rate of growth of

components in these algorithms is however typically only a constant as in general, it is hard

to find components of size beyond a constant in each round (consider for instance the case

when the underlying graph is a cycle). Consequently, Ω(log n) rounds are necessary to find

all connected components using these algorithms.

Our algorithm achieves an exponential speedup in rounds by crucially using the prop-

erties of the random graphs G to contract components which are quadratically larger after

each round, i.e., it grows a component of size x into a component of size x2 in each round.

The intuition behind the algorithm is as follows. LetH ∼ G(n, d). SinceH is essentially

d-regular (Proposition 6.3.2), sampling each vertex as a leader with probability Θ(1/d), we

expect each non-leader vertex to have a constant number of leader neighbors, say exactly

1 for simplicity. Since every vertex has d neighbors, contracting every leader vertex along

with all of its non-leader neighbors into a single “mega-vertex” will form components of size

d with total degree (roughly) d2 in the contracted graph (this follows from the randomness

in the distribution G as no single mega-vertex is likely to be the endpoint of more than one
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of these d2 edges). As such, the resulting graph after contraction is an almost d2-regular

random graph on n/d vertices. By continuing this process on the new graph, we can now

pick each leader with probability 1/d2 instead and contract components of size d2 (instead

of d). Repeating this process i steps creates components of size d2
i
which implies that

after O(log log n) iterations we would be done. We stress that this algorithm exploits the

“entropy” of the distribution G crucially, and not just the connectivity properties, e.g.,

expansion, of G, hence it is not clear (and unlikely) that this algorithm can be made to

work directly on expander graphs (i.e., without Step 2).

The outline above oversimplifies many details. Let us briefly mention two. Contracting

vertices in this process correlates the edges of G, impeding a recursive application. We

bypass this problem by partitioning the edges of the random graph into O(log log n) different

batches and running the algorithm (and analysis) in each round of the computation using

a “fresh random seed” (batch). This breaks the dependency between the choices made by

the algorithm in previous rounds, and the randomness of the underlying graph. Another

subtle issue is in the fact that the graphs in this process start “drifting” from regular to

almost-regular with larger and larger discrepancy factors, indeed exponentially larger after

each round. At some point, this discrepancy factor becomes so large that one cannot

anymore continue the previous argument. Fortunately however, as we are only performing

O(log log n) rounds of computation, this only happens when size of each component has

become nΩ(1). At this point, we can simply stop the algorithm and argue that the diameter

of the contracted graph is only O(1). This allows us to run a simple algorithm for a BFS

tree in this graph in O(1) rounds, by computing levels of the tree one round at a time

6.5. Step 1: Regularization

We now show how to “preprocess” our graph in order to prepare it for the main steps of our

algorithm, by turning it into a regular-graph without increasing its mixing time by much.

Lemma 6.5.1. There exists an MPC algorithm that given any graph G(V,E) computes

another graph H with the following properties with high probability:

1. |V (H)| = 2m and H is ∆-regular for some absolute constant ∆ = O(1).

2. There is a one-to-one correspondence between the connected components of G and

H.

3. Let Hi be a connected component of H corresponding to the connected component

Gi of graph G. For any γ < 1, Tγ(Hi) = O
(
log (n/γ)
λ2(Gi)

)
.

For any δ > 0, the algorithm can be implemented on O(m1−δ) machines each with

O(mδ) memory and in O(1δ ) MPC rounds.
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To prove Lemma 6.5.1, we use an approach based on the standard replacement product

described in the next section.

Replacement Product

Let G be a graph on n vertices v1, . . . , vn with degree dv for v ∈ V (G), and H be a family

of n d-regular graphs H1, . . . , Hn where Hv is supported on dv vertices (we assume dv ≥ d

for all v ∈ V (G)). We construct the replacement product G r H as follows:

• Replace the vertex v of G with a copy of Hv (henceforth referred to as a cloud). For

any i ∈ Hv, we use (v, i) to refer to the i-th vertex of the cloud Hv.

• Let (u, v) be such that the i-th neighbor of u is the j-th neighbor of v. Then there exists

an edge between vertices (u, i) and (v, j) in G r H. Additionally, for any v ∈ V (G),

if there exists an edge (i, j) ∈ Hv, then there exists an edge ((v, i), (v, j)) in G r H.

It is easy to see that the replacement product G r H is a (d + 1)-regular graph on 2m

vertices where m is the number of edges in G. The following proposition asserts that the

spectral gap is preserved under replacement product.

Proposition 6.5.2 (cf. [276, 275]). Suppose λ2(G) ≥ λG and all Hv ∈ H are d-regular

with λ2(Hv) ≥ λH . Then, λ2(G r H) = Ω
(
d−1 · λG · λ2H

)

Proposition 6.5.2 was first proved in [276] when G is also a D-regular graph and all

copies in H are the same d-regular graph on D vertices (in fact, all proofs of this proposition

that we are aware of, e.g., [276, 275, 278, 180, 291], are for this case). However, for our

application, we crucially need this proposition for non-regular graphs G (after all, our

ultimate goal is to “regularize” the graph). Nevertheless, extending these proofs to the

case of non-regular graph G as stated in Proposition 6.5.2 is not hard albeit being rather

technical and out of the scope of current thesis (see our paper [36] for this proof).

For our purpose, we only need Proposition 6.5.2 when every graph in H is a constant-

degree regular expander. In this case, since λH = Ω(1) and d = O(1), we obtain that the

resulting graph G r H has spectral gap at least λ2(G r H) = Ω(λ2(G)).

Parallel Expander Construction

To use Proposition 6.5.2, we need to be able to create a family of expanders H in parallel

over the set of vertices of the original graph G. This is a non-trivial task as degree of some

vertices in G can be as high as Ω(n) and hence we need to create an expander with Ω(n)

edges to replace them; at the same time, no single machine has Ω(n) memory to fit this

expander and hence it should be constructed in parallel and distributed across multiple

machines. We note that however, we can use a randomized algorithm for this task (i.e., we

do not need necessarily an “explicit” construction).
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Consider the following construction of a random d-regular undirected graph on n ver-

tices for positive even integer d (allowing self-loops and parallel edges): Let π1, . . . , πd/2 be

d/2 permutations on [n] which are independently and uniformly sampled from the set of all

permutations. The resulting graph is H with V (H) := [n] and

E(H) := {(i, πj(i)) : i ∈ [n], j ∈ [d/2]} (6.1)

for unordered pairs (i, πj(i)). Let Gn,d be the probability space of the d-regular n-vertex

graphs constructed in this way.

Proposition 6.5.3 (c.f. [149]). Given a postive constant δ > 0 and an positive even integer

d, there is a constant c such that PrH∼Gn,d

[
λ2(H) ≥ 1− 2

√
d−1+δ
d

]
≥ 1 − c

nτ , where τ =

⌈(
√
d− 1 + 1)/2⌉ − 1.

We choose d to be 100. By Proposition 6.5.3, we have

Corollary 6.3. Let d = 100. There is a constant c such that for any positive integer n

Pr
H∼Gn,d

[
λ2(H) ≥ 4

5

]
≥ 1− c

n5
.

In the remaining of this section, we present an MPC algorithm to construct random

d-degree graphs for a given sequence of positive integers n1, n2, . . . , nk satisfying
∑k

i=1 ni ≤
2m.

RegularGraphConstruction(mδ, n1, . . . , nk). An algorithm for constructing random d-

regular graphs with n1, n2, . . . , nk vertices for d = 100 on machines of memory O(mδ).

Output: d-regular graphs Hni for 1 ≤ i ≤ k.

1. For every ni ≤ mδ in parallel repeat the following process until the resulting graph

Hni satisfies λ2(Hni) ≥ 4/5: uniformly sample d/2 permutations π1, p2, . . . πd/2 on

[ni], and construct graph Hni by Eq. (6.1).

2. For every ni > mδ in parallel construct Hni on d · ⌈ni/mδ⌉ machines

(a) Independently and uniformly sample vni,j,k from [n10] for all j ∈ [ni], k ∈ [d/2].

(b) For every k ∈ [d/2], sort {vni,1,k, . . . , vni,ni,k}, and set πni,k(j) to be α if vj,k is

α-th largest number among {vni,1,k, . . . , vni,ni,k}.
(c) Construct graphHni using πni,1, . . . , πni,d/2 with edge set specified in Eq. (6.1).

We use RegularGraphConstruction to prove the following lemma.
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Lemma 6.5.4. There exists an MPC algorithm that given a sequence of positive integers

n1, n2, . . . , nk satisfying
∑k

i=1 ni ≤ 2m, with high probability, computes a set of graphs

Hn1 , Hn2 , . . . , Hnk
such that for every Hni for 1 ≤ i ≤ k, Hni is a d-degree regular graph

with λ2(Hni) ≥ 4/5.

For any δ > 0, the algorithm can be implemented with O(m1−δ) machines each with

O(mδ) memory, and in O(1/δ) MPC rounds.

Proof. We first show the correctness of the RegularGraphConstruction algorithm. By Propo-

sition 6.5.3, step 1 construct regular graphs with desirable spectral gap with high probability

for every ni ≤ mδ. Now we show that step 2 construct regular graphs with desirable spectral

gap with high probability for every ni > mδ as well. For every ni ≥ mδ and k ∈ [d/2], the

probablity that vni,1,k, . . . , vni,ni,k are distinct is at least

1 · 2 · . . .
(
1− ni − 1

n10

)
>
(
1− ni

n10

)ni ≥ 1− n2i
n10
≥ 1− 1

n8
.

If vni,1,k, . . . , vni,ni,k are distinct, then πni,k is a random permutation among all the permuta-

tions on [ni], since all the permutations are constructed with same probability. Conditioned

on this, Hni is a graph sampled from Gn,d. By union bound, with probability 1 − 1
n7 ,

step 2(c) obtain Hni ∼ Gni,d for every ni > mδ. By Corollary 6.3, if Hni ∼ Gni,d, then

λ2(Hni) ≥ 4/5 with probability 1 − c
n5
i
for some constant c ≥ 0. By union bound, all the

Hni constructed satisfying λ2(Hni) ≥ 4/5 with probability at least

1−
n∑

ℓ=nε

c

ℓ5
≥ 1−O

(
log n

n4

)
.

Hence, the algorithm gives us graphs with desirable spectral gap with probability at least

1− 1
n3 .

In the implementation of step 1, we assign every ni ≤ mδ to a single machine such that

for every machine, the sum of ni assigned to it is at most O(mδ). Hence, step 1 can be done

in O(1) MPC rounds.

In step 2, for each ni and k ∈ [d/2], we use ⌈ni/mδ⌉ machines to sample vni,j,k for all

the j ∈ [ni] in O(1) MPC rounds. Sorting {vni,1,k, . . . , vni,ni,k} can be done in O(1/δ) MPC

rounds on the same machines (see Section 1.1.3). Then πni,k(j) and thus edges of Hni can

be computed locally after sort. This concludes the proof.
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Parallel Replacement Product

We present an MPC implementation of replacement product G r H, where H = {Hv : v ∈
V } is defined as follows: For every v ∈ V , Hv is a copy of Hdv , where Hdv are the d-degree

regular graphs with dv vertices returned by RegularGraphConstruction(mδ, dv1 , . . . , dvn).

Lemma 6.5.5. Given a graph G(V,E) and Hdv for every v ∈ V , there is an MPC algorithm

to compute G r H, where H = {Hv : v ∈ V } such that Hv is a copy of Hdv for every v ∈ V .

The algorithm can be implemented with O(m1−δ) machines each with O(mδ) memory,

and in O(1/δ) MPC rounds.

Lemma 6.5.5 is obtained by the definition of replacement product and the following

algorithm.

ReplacementProduct(G,
{
Hdv for every v ∈ V (G)

}
). An algorithm for constructing

G r H.

Output: H := G r H.

1. For every v ∈ V (G) in parallel set Hv be a copy of Hdv , and let H be initially

∪v∈V (G)Hv.

2. For every edge (u, v) ∈ E in parallel where v is i-th neighbor of u and u is j-th

neighbor of v in G, add an edge to H between i-th vertex of Hu and j-th vertex of

Hv.

3. Return H

The proof of correctness of this algorithm is straightforward.

Proof of Lemma 6.5.1

Proof. By Lemma 6.5.4 and Lemma 6.5.5, we can compute the replacement product H :=

G r H where H is a family of graphs such that for all v ∈ V (G), λ2(Hv) ≥ 4/5. By

definition of replacement product and since d = O(1), we obtain that |V (H)| = 2m and H

is ∆-regular for ∆ = d+ 1 = O(1). This proves the first part of the lemma.

Consider any connected component Gi of G and define Hi := {Hv ∈ H : v ∈ V (Gi)}.
It is immediate to see that the subgraph of H induced on vertices of V (Gi) × V (Hv) for

v ∈ V (Gi) (informally speaking, the vertices added to H because of Gi) is exactly Gi r Hi
which we denote by Hi. As replacement product preserves connectivity, Hi is a connected

component of H, hence proving the second part of the lemma.

Finally, as Hi = Gi r Hi and λ2(Hv) = Ω(1) for all Hv ∈ Hi, by Proposition 6.5.2,
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λ2(Hi) = Ω(λ2(Gi)) (recall that d = O(1)). As such, by Proposition 6.3.1, mixing time

Tγ(Hi) = O
( log (n/γ)
λ2(Hi)

)
= O

( log (n/γ)
λ2(Gi)

)
,

for any γ < 1, concluding the proof of the third part. Implementation details of the

algorithm follow from Lemmas 6.5.4 and 6.5.5. Lemma 6.5.1

6.6. Step 2: Randomization

We present the second step of our algorithm in this section. Roughly speaking, this step

transforms each connected component of the graph into a “random graph” (according to

the definition of distribution G in Section 6.3) on the same set of vertices. Formally,

Lemma 6.6.1. Suppose G(V,E) is any n-vertex ∆-regular graph such that Tγ∗(Gi) ≤
T for γ∗ := n−10 and for all connected component Gi of G. There exists an MPC

algorithm that given G and integer T computes another graph H with the following

properties with high probability:

1. V (H) = V (G), |E(H)| = O(n) and each connected component Gi of G corre-

sponds to a connected component Hi of H on V (Hi) = V (Gi).

2. The connected component Hi of H is a random graph on ni = |V (Hi)| vertices
sampled from the distribution dist(Hi) such that |dist(Hi)−G(ni, 100 log n)|tvd =
n−8.

For any δ > 0, the algorithm can be implemented with O(T 2 · n1−δ ·∆ log2 n) machines

each with O(nδ) memory and in O(1δ · log T ) MPC rounds.

We point out that the choice of constant 100 in G(ni, 100 · log n) in Lemma 6.6.1 is

arbitrary and any sufficiently large constant (say larger than 8) suffices for our purpose

(similarly also for the exponent of n−1 in γ∗).

To prove Lemma 6.6.1, we design a general algorithm for performing independent ran-

dom walks in the MPC model which can be of independent of interest. Let G(V,E) be

a ∆-regular graph and W = ∆−1 · A be its random walk matrix (note that this is scalar

product with ∆−1 as G is ∆-regular). For any vertex u ∈ V , and integer t ≥ 1, the vector

W t · eu denotes the distribution of a random walk of length t starting from u where eu

is an n-dimensional vector which is all zero except for the entry u which is one. We use

DRW(u, t) =W t · eu to denote this distribution.

Theorem 6.4. There exists an MPC algorithm that given any ∆-regular graph G(V,E)

and integer t ≥ 1, outputs a vector (v1, . . . , vn) such that with high probability:
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1. For any i ∈ [n], vi is sampled from DRW(ui, t), where ui is the i-th vertex in V .

2. The choice of vi is independent of all other vertices vj. In other words, (v1, . . . , vn)

is sampled from the product distribution
⊗n

i=1DRW(ui, t)

For any δ > 0, the algorithm can be implemented with O(t2 · n1−δ ·∆ log n) machines each

with O(nδ) memory and in O(1δ · log t) MPC rounds.

6.6.1. Proof of Theorem 6.4: The Random Walk Algorithm

We start by presenting a parallel algorithm for proving Theorem 6.4 without getting into

the exact details of its implementation, and then present an MPC implementation of this

parallel algorithm. We start by introducing a key data structure in our algorithm.

Layered Graph

A key component of our algorithm in Theorem 6.4 is the notion of a layered graph which

we define in this section and present its main properties.

Definition 6.1 (Layered Graph). For a graph G(V,E) and integer t ≥ 1, the layered graph

G(G, t) of G is defined as the following directed graph:

1. Vertex-set: The vertex-set V of G is the set of all triples (u, i, j) ∈ V × [2t]× [t+1].

2. Edge-set: There is a directed edge (u, i, j) → (v, ℓ, k) in G whenever (u, v) ∈ E and

k = j + 1 for all choice of i and ℓ.

Throughout the chapter, we use greek letters to denote the vertices in the layered graph.

For any vertex α = (u, i, j) ∈ V, we define v(α) = u ∈ V . We partition the set of vertices V
into t+ 1 sets V1, . . . ,Vt+1 where the j-th set consists of all vertices (u, i, j) for u ∈ V and

i ∈ [2t]. We refer to each set Vj as a layer of the graph G. It is immediate to see that G
consists of t+1 layers and all edges in G are going from one layer to the next. Additionally,

any vertex u ∈ V , contains 2t “copies” in every layer. As such, any edge in E is mapped

to t directed bi-cliques on the 2 · 2t copies of its endpoints between every two consecutive

layers of G.

Paths and walks in G and G: The main property of the layered graph G that we use is

that any path starting from V1 and ending in Vt+1 in G corresponds to a walk of length t

(but not necessarily a path) in G. More formally, consider a path Pα = α1, α2, . . . , αt+1

where α = α1 belongs to V1. We can associate to Pα a walk of length t in G starting from

the vertex v = v(α), denoted by W (Pα), in a straightforward way by traversing the vertices

ui = v(αi) for αi ∈ Pα.

Sampled layered graph. In our algorithm, we work with a random subgraph of the
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layered graph defined as follows: For any vertex in G independently, we pick exactly one of

its outgoing edges uniformly at random to form a subgraph GS, referred to as the sampled

layered graph.

As the out-degree of any vertex in GS is exactly one, starting from any vertex α ∈ V1,
there is a unique path Pα of length t in GS from α to some vertex β ∈ Vt+1. It is easy

see that a path Pα in GS corresponds to a random walk of length t in G starting from the

vertex v(α) and ending in v(β) (the randomness comes from the choice of GS). We have the

following key observation.

Observation 6.6.2. Suppose Pα1 , . . . ,Pak are k vertex disjoint paths from V1 to Vt+1 in

GS. Then, the associated walks W (Pα1), . . . ,W (Pαk
) form k independent random walks of

length t in G.

The justification for Observation 6.6.2 is the simple fact that vertex disjoint paths in GS do

not share any randomness in choice of their neighbors.

In the rest of this section, we show that a sampled layered graph contains Ω(n) vertex

disjoint paths from the first layer to the last one with high probability. Intuitively, this

allows us to “extract” Ω(n) independent random walks from a sampled layered graph. We

then use this fact in the next section to design our algorithm for simulating independent

random walks in G.

Define V∗1 ⊆ V1 as the set of all vertices (v, 1, 1) ∈ V1 for v ∈ V . We prove that the Ω(n)

vertex disjoint paths mentioned above can all be starting from vertices in V∗1 . Formally,

Lemma 6.6.3. For any vertex α ∈ V∗1 , Pα in GS is vertex disjoint from Pβ for all β 6= α ∈
V∗1 , with probability at least 1/2.

We emphasize that in Lemma 6.6.3, the paths starting from V∗1 are only guaranteed to be

vertex disjoint with constant probability from other paths starting from V∗1 and not all of

V1. Before getting into the proof of Lemma 6.6.3, we prove the following auxiliary claim

regarding the number of paths of certain lengths in G (not in GS).

Claim 6.6.4. For any layer j ∈ [t + 1] and any vertex α ∈ Vj, the number of paths in G
that start from some vertex in V∗1 and end in vertex α is Pj =

(
∆j−1 · (2t)j−2

)
.

Proof. Let α = (v, i, j) be in layer j. Since G is ∆-regular, v ∈ V has exactly ∆ neighbors

in V . By construction of G, this means that v has ∆ ·(2t) neighbors in Vj−1 and hence there

are ∆ · (2t) paths of length 1 that end up in α. Similarly, the starting point of any of these

paths has exactly ∆ · (2t) neighbors in Vj−2 and hence there are (∆ · 2t)2 paths of length

2 that can end up in α. Continuing this inductively, we obtain that there are (∆ · (2t))j−1

151



paths of length j that can reach the vertex α. By the layered structure of the graph G, it
is clear that all these paths need to start from a vertex in V1.

Furthermore, if (u, i, 1) (for some u ∈ V and i ∈ [2t]) is starting point one of these

paths, then for all ℓ ∈ [2t], (u, ℓ, 1) would also be a starting point of one such path (this

is because neighborset of all vertices (u, ℓ, 1) is the same). As such, exactly 1/(2t) fraction

of these starting points belong to V∗1 and hence there are Pj :=
(
∆j−1 · (2t)j−2

)
paths in G

that start from a vertex in V∗1 and end in vertex α. Claim 6.6.4

Proof of Lemma 6.6.3. Let Pα = α1, α2, . . . , αt+1 where α1 = α and each αj belongs to Vj
for j > 1. We define the following t + 1 random variables X1, . . . , Xt+1, where Xj counts

the number of paths that start from a vertex β 6= α ∈ V∗1 and contain vertex αj (as their

j-th vertex). In other words, Xj counts the number of paths that “hit” Pα in layer Vj .

Clearly, X1 = 0. For any j > 1, we define indicator random variables Yj,1, Yj,2, . . . , Yj,Pj

where Pj (the quantity bounded in Claim 6.6.4) is the number of paths that start from V∗1
and end in αj in G: for all i ∈ [Pj ], Yj,i = 1 iff the i-th path (according to any arbitrary

ordering) is fully appearing in GS as well. Clearly, Xj =
∑

i Yj,i. Hence, by linearity of

expectation,

E [Xj ] =

Pj∑

i=1

Pr (Yj,i = 1) = |Pj | ·
(

1

∆ · (2t)

)j−1

=
Claim 6.6.4

1

2t
. (6.2)

The second equality above is because in GS, each edge in the path has probability of 1
∆·(2t)

to appear (as out-degree of any vertex in G is ∆ · (2t) and we are picking one of these edges

uniformly at random in GS; moreover, the edges of a path appear independently in GS).

Finally, notice that X :=
∑t+1

j=1Xj counts the total number of paths starting from

vertices in V∗1 that can ever “hit” Pα in any layer. Hence, E [X] = 1/2 by Eq (6.2) (recall

thatX1 = 0) and by Markov bound, Pr (X = 1) ≤ 1/2. This implies that with probability at

least 1/2, Pα is vertex disjoint from other paths starting from a vertex in V∗1 . Lemma 6.6.3

A Parallel Random Walk Algorithm

We now present a parallel algorithm for performing independent random walks of fixed

length from every vertex of the graph. We start by presenting an algorithm with a weaker

guarantee: in this algorithm only Ω(n) vertices are able to achieve a truly independent

random walk destination; moreover, these vertices are unknown to the algorithm. We

then present a subroutine for detecting these Ω(n) vertices. Finally, we combine these two

subroutines to obtain our final algorithm.

Recall that for any vertex u ∈ V (G) and integer t ≥ 1, DRW(u, t) is the distribution of
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a random walk of length t from u. We present the following algorithm.

SimpleRandomWalk(G, t). An algorithm for performing a random walk of length t from

every vertex in a given graph G.

Output: For any vertex ui ∈ V (G), a vertex vi ∈ V (G) such that vi ∼ DRW(ui, t).

1. Randomly sample a sampled subgraph GS from the layered graph G(G, t).
(a) Set V = V (G)× [2t]× [t+1], and distribute the vertices of V to all the machines

such that each machine contains O(nδ) vertices.

(b) For every vertex α = (v, i, j) ∈ V such that j ≤ t in parallel independently

and uniformly sample a number nα from [∆] and iα from [2t].

(c) Set GS to be empty initially.

(d) For every vertex α = (v, i, j) ∈ V such that j ≤ t in parallel set vα to be

nα-th neighbor of v in G, and add an edge from α to (vα, iα, j + 1) to GS.
2. For any vertex α ∈ GS, define N0(α) = β where (α, β) ∈ GS is the (only) outgoing

edge of α in GS (define β =⊥ if α belongs to Vt+1 and hence has no outgoing edge).

3. For i = 1 to log t phases: For every α ∈ GS in parallel let Ni(α) = Ni−1(Ni−1(α))

(assuming Ni−1(⊥) =⊥).
4. For any α ∈ V∗1 , return v = v(Nlog t(α)) as the target of the vertex u = v(α) (recall

that V∗1 is the set of all vertices (u, 1, 1) ∈ V for u ∈ V (G)).

We first have the following simple claim.

Claim 6.6.5. For any vertex α ∈ V∗1 of GS, Nlog t(α) is the endpoint of the path Pα in GS.

Proof. We prove by induction that Ni(α) is the vertex at distance 2i from α in Pα. The

base case for i = 0 is true as N0(α) = β where β is the endpoint of the outgoing edge of α.

For i > 0, by induction, Ni−1(α) is the vertex θ at distance 2i−1 from α and Ni−1(θ) is the

vertex at distance 2i−1 from θ. Hence Ni(α) = Ni−1(Ni−1(α)) is at distance 2i from α (as

GS is a directed acyclic graph with edges going only from one layer to the next). As such,

Nlog t(α) is at distance t from α and hence is the endpoint of the path Pα.

We say that SimpleRandomWalk(G, t) finds the vertex v for u if v is returned as the

target vertex of u. Claim 6.6.5 combined with Observation 6.6.2 already implies that for

any vertex u ∈ V (G), the vertex v found by SimpleRandomWalk is distributed according to

DRW(u, t). We further have,

Lemma 6.6.6. For any u ∈ G, SimpleRandomWalk(G, t) finds v ∼ DRW(u, t) such that

w.p. at least 1/2, v is independent of all other vertices found by SimpleRandomWalk.
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Proof. Follows immediately from Claim 6.6.5, Observation 6.6.2, and Lemma 6.6.3.

By Lemma 6.6.6, we are able to find Ω(n) independent random walks in G with high

probability. However, a-priori it is not obvious how to detect these walks. In the following,

we briefly describe a simple parallel procedure for this task.

Detecting independent random walks. The idea is to first find the path Pα for every

α ∈ V∗1 and then remove any v(α) from consideration if Pα intersects another path starting

from V∗1 . To do this, we need the following recursive “marking” procedure for marking all

vertices on a path Pα:

Mark(α, β, k) : An algorithm for marking all vertices in the path Pα recursively.

1. Mark the vertex β ∈ V with label α.

2. If k = 0 stop. Otherwise recurse on Mark(α, β, k − 1) and Mark(α,Nk−1(β), k − 1).

It is easy to see that by running Mark(α, α, log t) for every α ∈ V∗1 we can mark all

vertices across all paths Pα (this can be proven inductively using an argument similar to

Claim 6.6.5). We remove any path Pα which contains a vertex which is marked by more

than one vertex. This way, all remaining paths are going to be vertex disjoint from each

other and hence correspond to independent random walks.

We show that Mark algorithm can be implemented in parallel for all the vertices in V∗1 ,
and is used to identify all the independent random walks.

DetectIndependence : An algorithm for detecting independent random walks for V∗1 .

1. Set Slog t = ∅ initially.
2. For every α ∈ V∗1 in parallel add (α, α) to Slog t.

3. For k = log t, log t− 1, . . . , 1:

(a) Set Sk−1 = ∅ initially.
(b) For every (α, β) ∈ Sk in parallel add (α, β) to Sk−1, and add (α,Nk(β)) to

Sk−1 if Nk(β) 6=⊥.
4. Let T be the set of β such that there are α1 6= α2 such that both (α1, β) and (α2, β)

are in S0 (by sorting all the pairs in S0 according to the second coordinate).

5. Return the set {α : ∄β s.t. (α, β) ∈ S0, β ∈ T}.

By the description of Algorithm DetectIndependence and since sorting can be done in

O(1/δ) rounds if memory per machine is O(nδ), we obtain the following claim.
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Claim 6.6.7. Algorithm DetectIndependence returns a set of vertices in V∗1 such that α is

in the set iff Pα is an independent random walk for any α ∈ V∗1 .

Algorithm DetectIndependence requires O(t2 · n1−δ) machines each with O(nδ) memory and

O(1δ · log t) MPC rounds.

Proof of Theorem 6.4. We simply run SimpleRandomWalk(G, t) in parallel Θ(log n) times

and detect the independent random walks found by each run using the marking procedure

above. By Lemma 6.6.6, with probability 1/2 we are able to find an independent random

walk for any fixed vertex in each of the Θ(log n) trials. Hence, with high probability, we are

able to find an independent random walk for every vertex of G. This concludes the proof

of correctness of the algorithm.

We now briefly describe the MPC implementation details of this algorithm. To imple-

ment SimpleRandomWalk(G, t), we first create the vertex-set of the graph of G(G, t) which
consists of O(n · t2) vertices. We make every vertex responsible for maintaining the O(∆ · t)
of its neighbors and performing the random walks (the information needed by any single

vertex resides entirely on one machine). Sampling GS is then straightforward. The rest

of the algorithm can also be implemented in a straightforward way by spending O(1/δ)

rounds for each iteration of for-loop in Line (3) of SimpleRandomWalk. By Claim 6.6.7,

DetectIndependence also needs O(log t/δ) rounds. Hence, in total, we only need O(log t/δ)

MPC rounds to implement the algorithms.

As for the memory per machine, for any fixed vertex, we only need O(∆) (as opposed

to O(∆ · t)) on the machine this vertex resides to sample an edge from GS as the O(∆ · t)
neighbors of any vertex in G(G, t) can be described by only O(∆) edges (the rest are copies

of the same edge to multiple copies of the same vertex on the next layer). We further need

to store O(log t) intermediate vertices in N(·) and so each vertex needs O(∆+log t) memory

and we have O(n · t2 · log n) vertices in total (recall that we are performing O(log n) parallel

random walks), finalizing the proof.

6.6.2. Proof of Lemma 6.6.1: The Randomization Step

We now use Theorem 6.4 to prove Lemma 6.6.1. In Lemma 6.6.1, we need to perform lazy

random walks, while Theorem 6.4 is performing random walks. However, this is quite easy

to fix: we simply add ∆ self-loops to every vertex of G. This makes the graph 2∆ regular

while ensuring that the distribution of a random walk in the new graph corresponds to a

lazy random walk in the original graph. We use G̃ to refer to this new 2∆-regular graph.

Proof of Lemma 6.6.1. We construct the graph G̃ as specified and run algorithm in The-

orem 6.4 on G̃ for random walks of length T for k = 50 log n times in parallel. In the
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following, we condition on the high probability event that the random walk algorithm suc-

ceeds. The graph H is defined as follows: V (H) = V (G̃) = V (G); for any u ∈ V (H),

connect u to the k vertices vu,1, . . . , vu,k found by the random walk algorithm for u ∈ V (G̃).

We now establish the desired properties of H.

Let Gi be any connected component of G. Any vertex u ∈ V (Gi) in H is connected

to k vertices in V (Gi) in H: this is because a lazy random walk starting from a vertex in

V (Gi) cannot “escape” the component Gi. As such, any vertex u ∈ V (Gi) is connected

to k vertices in V (Gi). Hence, the distribution of Hi is a graph in which every vertex is

connected to k = 50 log n other vertices in V (Hi) chosen according to the distribution of a

lazy random walk of length T in graph Gi. The distribution G(ni, 100 log n) is a distribution

on which every vertex in V (Hi) is connected to (100 log n/2) = k vertices in V (Hi) chosen

uniformly at random. Since we are performing lazy random walks of length at least Tγ∗(Gi),

we expect these two distributions to be close to each other. Formally, let UV (Hi) denote the

uniform distribution on V (Hi). We have,

|dist(Hi)−G(ni, 100 log n)|tvd ≤
∑

u∈V (G̃i)

∣∣DRW(u, T )− UV (Hi)

∣∣
tvd
≤ ni · 1/n10 ≤ 1/n9.

This proves the second part of the lemma. To prove the first part of the lemma we need to

prove that each Hi is connected with high probability. This follows because Hi has a similar

distribution as G(ni, 100 log n) and a graph sampled from G(ni, 100 log n) is connected with

probability at least 1 − 1/n25 by Proposition 6.3.3 (by setting d = 100 log n ≥ 100 log ni

and assuming ni ≥ 2 as G contains no isolated vertices), and hence by Fact 2.6.7 Hi is also

connected with probability at least 1− 1/n25 − 1/n9, finalizing the proof of correctness.

The number of machines needed by this algorithm is O(log n) times the number of

machines in Theorem 6.4 for t = T and the memory per machine is the same.

6.7. Step 3: Connectivity in Random Graphs

In this section we present the final and paramount step of our algorithm, which involves

finding connected components of a collection of disjoint random graphs chosen from G.

Lemma 6.7.1. Let G(V,E) be a graph on n vertices such that any connected component

Gi of G with ni = |V (Gi)| is sampled from G(ni, 100 log n). There exists an MPC

algorithm which identifies all connected components of G with high probability (over

both the randomness of the algorithm and the distribution G).

For any δ > 0, the algorithm can be implemented with O(n1−δ) · polylog(n) machines

each with O(nδ) · polylog(n) memory and O(1δ · log log n) MPC rounds.
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During the course of our exposition in this section, we need to set many parameters

which we collect here for convenience.

ε := (100 · log n)−2 : used to bound the discrepancy factor of almost-regular graphs,

s :=
106 · log n

ε2
: a scaling factor on degree of almost-regular graphs,

∆ := 100s : used as a parameter to denote the degree of almost-regular graphs,

F := argmin
i

{
∆2i ≥ n1/100

}
: used to bound the number of phases in our algorithm.

(6.3)

Throughout this section, we typically define the degree of almost-regular graphs by

multiplicative factors of s; this is needed to simplify many concentration bounds used in

the proofs. We further point out that F = O(log log n) and ∆F ∈ [n1/100, n1/50] and hence

∆F = o(ε).

Preprocessing step. The first step in proving Lemma 6.7.1, is to make each connected

component Gi of G “more random”, i.e., turn it to a graph sampled from G with larger per-

vertex degree. This can be easily done using Lemma 6.6.1 in previous section, as the graph

Gi ∼ G(ni, 100 log n) has a small mixing time by Proposition 6.3.4 with high probability.

Now consider the following preprocessing process: Recall the parameters defined in

Eq (6.3). For (F ·∆ · s/(100 log n)) steps in parallel, we run the algorithm in Lemma 6.6.1

on the original graph G. For each connected component Gi of G, this results us in having

F graphs G̃i,1, . . . , G̃i,F which are (almost) sampled from the distribution G(ni,∆ · s) (the
distribution of these graphs is not exactly identical to this, but is rather close to this

distribution in total variation distance which is sufficient for our purpose). As such, we

now need to find the connected component of a graph G̃ which is the union of all G̃i,j for i

ranging over all connected components of G and j ∈ [F ].

In the following lemma, we design an algorithm for this task. For simplicity of expo-

sition, we state this lemma for the case of finding a spanning tree of one such connected

component (i.e., assuming G itself is sampled from G as opposed to having its connected

components sampled from this distribution); however, it would be evident that running

this algorithm on the original input results in finding a spanning tree of each connected

component separately.

Lemma 6.7.2. Let G̃ be a graph on n vertices such that G̃ = G̃1 ∪ . . . ∪ G̃F where G̃i ∼
G(n,∆ · s). There exists an MPC algorithm that can find a spanning tree of G̃ with high

probability (over both the randomness of the algorithm and the distribution G).
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For any δ > 0, the algorithm can be implemented with O(n1−δ) · polylog(n) machines each

with O(nδ) · polylog(n) memory, and in O(1δ · log log n) MPC rounds.

We note that in Lemma 6.7.2, the input to the algorithm is the collection of graphs

(G̃1, . . . , G̃F ) (i.e., the algorithm knows partitioning of G into its F subgraphs; think of

each input edge being labeled by the graph G̃i it belongs to). The rest of this section is

devoted to the proof of Lemma 6.7.2. At the end of the section, we use this lemma to prove

Lemma 6.7.1. In this section, n always refer to number of vertices in G̃.

6.7.1. Proof of Lemma 6.7.2: Connectivity on a Single Random Graph

We start by defining a natural operation on graphs in context of connectivity.

Definition 6.2 (Contraction Graph). For a graph G(V,E) and a partition C := {C1, . . . , Ck}
of V (G) (not necessarily a component-partition), we construct a contraction graph H of G

with respect to C as the following graph:

1. Vertex-set: The vertex-set V (H) of H is a collection of k vertices where wi ∈ V (H)

is labeled with the component Ci of C, denoted by C(wi).

2. Edge-set: For any w 6= z ∈ V (H), there exists an edge (w, z) ∈ E(H) iff there exists

vertices u ∈ C(w) and v ∈ C(z) where (u, v) ∈ E(G) (H contains no parallel edges

and no self-loops).

In other words, H is obtained by “contracting” the vertices of G inside each set of C into a

single vertex and removing parallel edges and self-loops.

Suppose C is a component-partition of G and H is a contraction graph of G with respect

to H. Then it is immediate to see that we can construct a spanning tree (or forest) of G

given only spanning trees of each component in C and a spanning tree of H.

Overview of the algorithm. The algorithm in Lemma 6.7.2 goes through F phases. In

each phase i ∈ [F ], it only considers the edges in G̃i and use them to “grow” the components

of G̃ found in the previous phases. This part is done using a new leader-election algorithm

that we design in this chapter. This algorithm takes the contraction graph of G̃i with respect

to the set of components found already, and merge these components further to build larger

components. The novelty of this leader-election algorithm is that starting from an (almost)

d-regular graph, it can grow each component by a factor of (almost) d (as opposed to typical

leader-election algorithms that only increase size of each component by a constant factor).

Our main algorithm is then obtained by successively applying this leader election al-

gorithm to contraction graph of G̃i to build relatively large components of G̃i and use

them to refine the components found for G. The main step of our proof is to argue that if
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contraction graph of G̃i was a random (almost) d-regular graph on n′ vertices, then the con-

traction graph of G̃i+1 in this process would be another random (almost) d2-regular graph

on roughly n′/d vertices. Having achieved this, we can argue that each component of the

graph G grows by a quadratic factor in each phase, and hence after only O(log log n) phase,

each component has size nΩ(1) (due to technical reasons, one cannot continue this argument

until just one connected component of size n remains). Finally, we prove that at this step,

the diameter of the remaining graph, i.e., contraction of G on the found components is only

O(1). A simple broadcasting algorithm can then be used to found a spanning tree of the

remaining graph in O(1) rounds.

A Leader Election Algorithm

We first introduce a simple leader election algorithm, called LeaderElection(H, d), which gets

as an input an (almost) (d · s)-regular graph and creates components of size (almost) d in

this graph. We note that the description of the algorithm itself does not depend on the fact

that H is almost-regular.

LeaderElection(H, d). A simple leader election algorithm for growing connected compo-

nents on an (almost) (d · s)-regular graph H.

1. Set L = ∅ initially.
2. For every vertex v ∈ V (H) in parallel independently sample p(v) from the

Bernoulli distribution with probability p := s/d and insert u to L iff p(v) = 1

(we refer to these vertices as leaders).

3. Let R := V (H) \ L.
4. For any vertex v ∈ R in parallel set NL(v) be the set of neighbors of v in L in

graph H.

5. For any vertex v ∈ R in parallel let M(v) be a vertex u ∈ R chosen uniformly at

random from NL(v) (we define M(v) =⊥ if NL(v) = ∅).
6. Return k := |L| sets Sv1 , . . . , Svk for v1, . . . , vk ∈ L such that Svi = {vi} ∪ {u ∈ R :

M(u) = vi} (vertices with M(u) =⊥ are ignored).

We have the following immediate claim.

Claim 6.7.3. Suppose in LeaderElection no vertex v ∈ R has M(v) =⊥. Then, the returned

collection S1, . . . , Sk is a component-partition of H.

Proof. The induced graph of H on any set Si contains a star with the leader in Si being the

its center. Hence, each Si is a component of H. Moreover, by definition, the sets Si’s are

disjoint. Finally, since for no vertex v ∈ R, M(v) =⊥, Si’s contain all vertices in H.
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The main property of LeaderElection is that when computed on almost regular graphs it

results in a component-partition with almost equal size components. In other words, ifH is a

J(1± ε)d · sK-almost-regular graph, then the resulting components are of size J(1±O(ε)) · dK
each.

Lemma 6.7.4 (Equipartition Lemma). Let ε ∈ (ε, 1/100) and H be a J(1± ε) d · sK-
almost-regular graph for d ≥ s. Then, with probability 1 − 1/n23, for (S1, . . . , Sk) =

LeaderElection(H, d):

1. For all i ∈ [k], |Si| ∈ J(1± 3ε) dK,

2. (S1, . . . , Sk) is a component-partition of V (H).

Proof. Define ε′ = ε/10 and so s ≥ 100 log n/ε′2 by Eq (6.3). Throughout the proof, we

repeatedly use the facts that J(1± ε′)−1K ⊆ J(1± 2ε′)K and J(1± ε′)2K ⊆ J(1± 3ε′)K as

ε′ = o(1).

Fix any vertex u ∈ R and let du ∈ J(1± 10ε′) d · sK be the degree of u in H. We define

du random variables X1, . . . , Xdu where Xi = 1 iff the i-th neighbor of u is chosen as a

leader in L and Xi = 0 otherwise. Let X =
∑

iXi denote the number of neighbors of u in

L. As the choice of any leader is independent of whether u belongs to L or not, we have

E [X] = du · p ∈ J(1± 10ε′)sK. Moreover, by Chernoff bound,

Pr
(
X /∈ J

(
1± ε′

)
E [X]K

)
≤ exp

(
−ε

′2 · du · p
2

)
≤ exp

(
−ε

′2(1− 10ε′) · s
2

)

≤ exp (−25 log n) ≤ 1

n25
. (as s ≥ 100 log n/ε′2 and ε′ = o(1))

Consequently, w.p. 1 − 1/n25, |NL(u)| ∈ J(1± ε′) · (1± 10ε′) · sK ⊆ J(1± 12ε′) · sK (as

ε′ = o(1)). By union bound, this event happens for all vertices in R w.p. 1− 1/n24. In the

following, we condition on this event. The second part of the lemma already follows from

this and Claim 6.7.3.

Now fix a vertex v ∈ L. Define NR(v) as the set of neighbors of v in set R in graph H.

The same exact argument as above implies that with probability 1− 1/n24, for all vertices

in L, |NR(v)| ∈ J(1± 12ε′) d · sK. We further condition on this event.

Consider again a vertex v ∈ L. For any vertex u ∈ NR(v), we define a random variable

Yu where Yu = 1 iff M(u) = v, i.e., u chooses v as its leader. Define Y =
∑

u Yu. We point

out that Y +1 is the size of component returned by LeaderElection which contains the leader
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v. Hence, it suffices to bound Y to finalize the proof. We have,

E [Y ] =
∑

u∈NR(v)

E [Yu] =
∑

u∈NR(v)

1

|NL(u)|
∈ J

(1± 12ε′) d · s
(1± 12ε′) s

K ⊆ J
(
1± 25ε′

)
· dK,

as |NR(v)| ∈ J(1± 12ε′) d · sK and |NL(u)| = J(1± 12ε′) · sK and ε′ = o(1). By Chernoff

bound,

Pr
(
Y /∈ J

(
1± ε′

)
E [Y ]K

)
≤ exp

(
−ε

′2 · (1− 25ε′) · d
2

)
≤ exp (−25 log n) ≤ 1

n25
.

A union bound on all vertices in L implies that |Si| ∈ J(1± 27ε′) dK ⊆ J(1± 30ε′) dK with

probability 1 − 1/n24. Taking another union bound on all the events conditioned on in

the proof, with probability 1 − 1/n23, we obtain that |Si| ∈ J(1± 30ε′) dK = J(1± 3ε) dK,

finalizing the proof.

We have the following claim by the definition of Algorithm LeaderElection.

Claim 6.7.5. Algorithm LeaderElection(H, d) requires O(|E(H)|/nδ) machines each with

O(nδ) memory and O(1/δ) MPC rounds.

Growing Connected Components

We now use LeaderElection algorithm from the previous section to design our main algorithm

which “grows” the size of connected components of G repeatedly over F phases.

GrowComponents(G̃,∆). An algorithm for “growing” connected components of size up to

nΩ(1) in a given graph G̃ = G̃1 ∪ . . . ∪ G̃F where G̃i ∼ G(n,∆ · s).

1. Let C1 be a partition of V (G̃) into singleton sets.

2. For i = 1 to F phases:

(a) Let ∆i := ∆2i−1
and pi = ∆−1

i · s.
(b) For every vertex v ∈ V (G̃i) in parallel let ci(v) = j for v ∈ Cj .
(c) Construct contraction graph Hi of G̃i (not G̃) with respect to Ci as follows:

i. Set Hi to be an empty set inititially.

ii. For every edge (u, v) ∈ E(G̃i) in parallel add (Cci(u), Cci(v)) to Hi.

(d) Compute (S1, . . . , Sk) = LeaderElection(Hi,∆i) (hence, each Sj ⊆ V (Hi)).

(e) For each Sj in parallel let Ci+1,j =
⋃
w∈Sj

Ci(w).

(f) Let Ci+1 = {Ci+1,1, . . . , Ci+1,k}.
3. Return the graph HF .
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The following claim is straightforward from GrowComponents and Claim 6.7.5.

Claim 6.7.6. Algorithm GrowComponents(G̃,∆) requires O(|E(G̃)|/nδ) machines each with

O(nδ) memory and O(F/δ) MPC rounds.

We prove that for each phase i ∈ [F ], the contraction graph Hi constructed in this phase

is an almost-regular graph with degree roughly ∆i · s and discrepancy factor εi :=
(
20i · ε

)
.

The following lemma is the heart of the proof.

Lemma 6.7.7. In GrowComponents(G̃,∆), with high probability, for any i ∈ [F ]:

(I) Ci is a component-partition of G̃ with |Ci,j | ∈ J(1± εi)∆i/∆K for all Ci,j ∈ Ci.

(II) Hi is a J(1± εi)∆i · sK-almost-regular graph on ni ∈ J(1± εi) · n∆/∆iK vertices.

Proof. We prove this lemma inductively.

Base case: C1 is clearly a component-partition of G̃ as it only consists of singleton sets and

|C1,j | = 1 for all C1,j ∈ C1. Since ∆1 = ∆, this proves the first part of the lemma in the base

case. For the second part, as C1 only consists of singleton sets, H1 = G̃1 and hence n1 = n.

Finally, H1 = G̃1 ∼ G(n,∆ · s) and hence by Proposition 6.3.2 (as s ≥ 100 log n/ε2), H1 is

a J(1± ε)∆ · sK-almost-regular graph, hence concluding the proof of the base case.

Induction step: Now suppose this is the case for some i > 1 and we prove it for

i + 1. By induction, we have that Hi is a J(1± εi)∆i · sK-almost-regular graph on ni ∈
J(1± εi) · n ·∆/∆iK vertices. In this phase, we compute (S1, . . . , Sk) = LeaderElection(Hi,∆i).

We can thus apply Lemma 6.7.4 with parameters d = ∆i, p = pi, and ε = εi < 1/100, and

obtain that with high probability,

|Si| ∈ J(1± 3ε) ·∆iK = J(1± 3εi) ·∆iK, (6.4)

and (S1, . . . , Sk) is a component-partition of Hi. In the following, we condition on this

event.

Proof of part (I): Since Ci is a component-partition of G̃ (by induction), we have that

vertices in Hi correspond to components of G̃, i.e., vertices in Ci(w) for all w ∈ V (Hi) are

connected in G̃. Moreover, by Lemma 6.7.4, (S1, . . . , Sk) is a component-partition of Hi

and hence vertices (of Hi) in each Sj for j ∈ [k] are connected to each other (in Hi). As

edges of Hi correspond to edges in G̃i ⊆ G̃, any Ci+1,j ∈ Ci+1 is a component of G̃, hence

Ci+1 is a component-partition of G̃.
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We now prove the bound on size of each Ci+1,j ∈ Ci+1. By definition,

|Ci+1,j | =
∑

w∈Sj

|Ci(w)| ∈ J|Sj | · (1± εi)∆i/∆K (by induction hypothesis on Ci(w) ∈ Ci)

⊆ J((1± 3εi) ·∆i) · ((1± εi)∆i/∆)K (by Eq (6.4))

⊆ J(1± 5εi) ·∆2
i /∆K = J(1± 5εi) ·∆i+1/∆K, (6.5)

as ∆2
i = ∆i+1. By the choice of εi+1 > 5εi, this finalizes the proof of the first part. We now

consider the second part.

Proof of part (II): Notice that ni+1 = |Ci+1| as each set in Ci+1 is contracted to a single

vertex in Hi+1. Since Ci+1 partitions V (G), and as by Eq (6.5) each set in Ci+1 has size in

J(1± 5εi) ·∆i+1/∆K, we have

ni+1 ∈ J
n

(1± 5εi) ·∆i+1/∆
K ⊆ J(1± 6εi)n ·∆/∆i+1K. (6.6)

As εi+1 > 6εi, this proves the bound on ni+1. It remains to proveHi+1 is an J(1± εi+1)∆i+1 · sK-
almost-regular graph. This is the main part of the argument.

Lemma 6.7.8. For any vertex w ∈ V (Hi+1), degree of w in Hi+1 is dw ∈ J(1± εi+1)∆i+1 · sK
with high probability.

Proof. Recall that Hi+1 is a contraction graph of G̃i+1 with respect to the partition Ci+1.

We define C = Ci+1(w) ∈ Ci+1. In Hi+1, w has an edge to another vertex z ∈ V (Hi+1) iff

there exists a vertex u ∈ C ⊆ V (G̃i+1) such that u has an edge to some vertex v ∈ Ci+1(z)

in the graph G̃i+1. As such, degree of w is equal to the number of sets Ci+1,j ⊆ V (G̃i+1)

such that there is an edge (u, v) ∈ E(G̃i+1) for u ∈ C and v ∈ Ci+1,j .

Now consider the process of generating G̃i+1 ∼ G(n,∆ · s) and notice that the edges

chosen in G̃i+1 are chosen independent of the choice of Ci+1 as Ci+1 is only a function of

the graphs G̃1, . . . , G̃i. Moreover, recall that in G(n,∆ · s) each vertex chooses ∆ · s/2 other

vertices uniformly at random to connect to (and then we remove the direction of edges).

For any two sets S, T ⊆ V (G̃i+1), we say that S “hits” T if there exists a vertex in S which

picks a directed edge to some vertex in T in the process of generating G̃i+1 (so it is possible

that S hits T but T does not hit S). Let K ⊆ [k] be such that for each j ∈ K, either C

hits Ci+1,j or vice versa. By the above argument dw ∈ J|K| ± 1K (to account for the fact

that C hitting C does not change the degree of w as we have no self-loops in Hi+1). In the

following two claims, we bound |K|.

Claim 6.7.9. Let K+ ⊆ [k] be the set of all indices j ∈ [k] such that C hits Ci+1,j. Then,

with high probability, |K+| ∈ J(1± εi+1)∆i+1 · s/2K.
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Proof. We model the number of sets hit by C as a balls and bins experiment (see Sec-

tion 2.1.2): “balls” are the edges going out of vertices in C in construction of G̃i+1 in G

and “bins” are the sets Ci+1,j for j ∈ [k]. Hence, non-empty bins are exactly the set K+

and thus it suffices to bound number of non-empty bins.

In G̃i+1, any vertex in C is choosing ∆ · s/2 directed edges. As such, the total number

of balls in this argument is N = |C| ·∆ · s/2 ∈ J(1± 5εi)∆i+1 · s/2K by the bound proven

on |C| in Eq (6.5).

The total number of bins in this argument is B = |Ci+1| = ni+1 ∈ J(1± 6εi)n ·∆/∆i+1K

as proven in Eq (6.6). Moreover, for any j ∈ [k], |Ci+1,j | ∈ J(1± 5εi)∆i+1/∆K (as

stated above for C). As such, the ratio between the largest and smallest set in Ci+1 is

in J(1± 10εi)K. Also, edges going out of C are chosen uniformly at random from, and hence

each bin in this argument is chosen with probability in J(1± 10εi) ·B−1K. Moreover,

B

N
∈ J

(1± 6εi)n ·∆/∆i+1

(1± 5εi)∆i+1 · s/2
K =⇒ B

N
≥ n ·∆

2∆2
F

≫ polylog(n)≫ 1

10εi
,

where the inequalities are by choice of F and ε because εF = o(1) and ∆F = ∆2F ≤ n1/50.

Let X be the number of non-empty bins in this process. By Proposition 2.1.5 for this

balls and bins experiment: Pr
(
X /∈ J(1± 20εi) ·NK

)
≤ exp

(
−100ε2i ·N

2

)
= 1/nω(1). Hence,

with high probability, the total number of non-empty bins is in J(1± 20εi)∆i+1 · s/2K, which
finalizes the proof as εi+1 = 20εi. Claim 6.7.9

An interpretation of Claim 6.7.9 is that that distribution of Hi+1 is G(ni+1,∆i+1 · s)
with the difference that the number of out-edges chosen in G is not exactly ∆i+1 · s (but

quite close to it for each vertex). As such, we would expect Hi+1 to still behave similarly

as G(ni+1,∆i+1 · s); in particular, be almost-regular with high probability. The following

claim is analog of Proposition 6.3.2 for the distribution of Hi+1.

Claim 6.7.10. Let K− ⊆ [k] be the set of all indices j ∈ [k] \K+ such that Ci+1,j hits C.

Then, with high probability, |K−| ∈ J(1± εi+1)∆i+1 · s/2K.

Proof. Fix j ∈ [k]\K+. As shown in Claim 6.7.9, cj := |Ci+1,j |·∆·s/2 ∈ J(1± 5εi)∆i+1 · s/2K
edges are going out of vertices in Ci+1,j . Any such edge, would hit the set C with probability

p := |C| /n. Let ε′ = (1/ log n)10 ≪ ε. We have,

Pr (Ci+1,j hits C) = 1− (1− p)cj ∈ J(1± cjp) · cjpK ⊆ J(1± ε′) · cjpK.
(as (1− x) ≤ e−x ≤ 1− x+ x2 and cj · p = Õ(∆2

F )/n = Õ(n2/50)/n≪ ε′)

Moreover, we have k = ni+1 ∈ J(1± 6εi)n ·∆/∆i+1K and |K+| = J(1± εi+1)∆i+1 · s/2K
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and since Õ(∆2
F )/n≪ ε′, we have that |[k] \K+| ∈ J(1± ε′) · |k|K.

Let X = |K−| denotes the number of sets Ci+1,j ∈ [k] \K+ that hit C. Consequently,

E [X] ∈ J(1± ε′) ·
∑

j∈[k]\K+

cjpK ⊆ J(1± ε′) · (1± ε′) · |k| · ((1± 6 · εi+1)∆i+1)
2 · s/2∆nK

(as p = |C| /n and |C| ∈ J(1± 5εi)∆i+1/∆K and cj ∈ J(1± 5εi)∆i+1 · s/2K)
⊆ J(1± 3ε′) · (1± 13 · εi)∆i+1 · s/2K.

Finally, X is a sum of independent random variables and hence by Chernoff bound,

Pr (X /∈ J(1± εi)E [X]K) ≤ exp

(
−ε

2 · s
4

)
≤ 1

n25
.

Thus, w.h.p. X ∈ J(1± 15εi)∆i+1 · s/2K. As εi+1 > 15εi, we are done. Claim 6.7.10

Lemma 6.7.8 now follows immediately from Claims 6.7.9 and 6.7.10. Lemma 6.7.8

To conclude the proof of Lemma 6.7.7, we simply take a union bound on all vertices w ∈
V (Hi+1) and by Lemma 6.7.8 obtain that with high probability dw ∈ J(1± εi+1)∆i+1 · sK.
This implies that Hi+1 is a J(1± εi+1)∆i+1 · sK-almost regular graph. Lemma 6.7.7

We also state the following corollary of Lemma 6.7.7 which states that each graph Hi

is sampled from a distribution which is in spirit of G(ni,∆i · s) (with additional “noise”).

Proposition 6.7.11. With high probability, distribution of each graph Hi in GrowComponents

is a graph on ni ∈ J(1± εi) · n∆/∆iK vertices in which we first pick J(1± εi)∆i · s/2K
many neighbors for each vertex where the other endpoint is chosen with probability in

J(1± 2εi) · n−1
i K and then remove the direction of edges.

The proof of this proposition is identical to the proof of Claim 6.7.9 using the fact that

Hi is almost-regular by Lemma 6.7.7 (see also the discussion after Claim 6.7.9).

Finally, we claim that GrowComponents also finds a spanning tree of components in CF .

Claim 6.7.12. Let T be the set of edges chosen in executions of LeaderElection (in defining

M(·) for each non-leader vertex) in the course of execution of GrowComponents(G̃,∆). With

high probability, the induced subgraph of T on each component in CF is a spanning tree.

Proof. Follows immediately from Claim 6.7.3 and the fact that each Ci+1 is formed by

merging already found components of G̃ (see also the discussion after Definition 6.2).
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Building the Spanning Tree

Recall that by the choice of F , ∆F ∈ [n1/100, n1/50] . By running GrowComponents(G̃,∆),

we obtain a graph HF which consists of nF ∈ J(1± o(1)) · n ·∆/∆F K vertices (as εF = o(1)

by Eq (6.3)). Additionally, by Proposition 6.7.11, with high probability, HF is a “random”

graph (in spirit of G) with J(1± o(1))∆F K “out-degree” before removing the direction of

edges. We use this to bound the diameter of HF .

Claim 6.7.13. Diameter of HF is D = O(1) with high probability.

Proof. We condition on the event that distribution of HF is as stated in Proposition 6.7.11.

We argue that for any set S ⊆ V (HF ), the neighborset N(S) of S in HF has size

|N(S)| ≥ min {2nF /3,∆F · |S| /20} .

The proof of this claim is exactly as in proof of Proposition 6.3.4, using the analogy between

G and distribution of HF (with a minor additional care to account for the “noise” in HF ).

We omit the details of this proof.

By the above equation, the k-hop neighborhood of any vertex in HF contains either

at least 2nF /3 or (∆F /20)
k vertices. In particular, for k′ = log(∆F /20) n, the k

′-hop neigh-

borhood of any vertex contains at least 2nF /3 vertices. This implies that the 2k′-hop

neighborhood of any vertex contains the whole graph, hence the diameter of HF is O(k′).

Since ∆F ∈ [n1/100, n1/50], we obtain that diameter of HF is O(1).

We use the above claim to design a very simple algorithm to build a spanning tree of

HF . We then combine this algorithm with GrowComponents to prove Lemma 6.7.2.

Claim 6.7.14. Let H be any graph with m edges, n vertices, and diameter D. A spanning

tree of H can be found in O(D/δ) MPC rounds with O(m1−δ) machines with memory O(mδ)

for any δ > 0.

Proof. We pick any arbitrary vertex v ∈ H. The algorithm proceeds in D iterations. In

the first iteration, v informs all its neighbors in H and add these edges to the underlying

spanning tree. In the next iteration, the neighbors of v inform all their neighbors; any

vertex informed which has already not chosen an edge in the spanning tree would pick one

of its incoming edges and add it to the spanning tree. We continue like this until after D

iterations all vertices have a neighboring edge in the spanning tree.

It is straightforward that one can implement this algorithm in O(D/δ) MPC rounds on

machines of memory O(mδ), hence finalizing the proof.
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We are now ready to conclude the proof of Lemma 6.7.2.

Proof of Lemma 6.7.2. By Claim 6.7.12, we can find a spanning tree of every component

of G̃ in CF . This step requires O(log log n/δ) MPC rounds on Õ(n1−δ) machines of memory

Õ(nδ) by Claim 6.7.6 (as
∣∣∣E(G̃)

∣∣∣ = Õ(n) by construction). Note that the components in

CF correspond to vertices of HF and hence by finding a spanning tree of HF we obtain a

spanning tree of G̃.

By Claim 6.7.13, diameter of HF is only O(1). Hence, by the algorithm in Claim 6.7.14,

we can find a spanning tree of HF in only O(1/δ) rounds on machines of memory O(nδ).

Combining these trees, we obtain a spanning tree of G̃, finalizing the proof.

6.7.2. Proof of Lemma 6.7.1: Connectivity in a Disjoint Union of Random

Graphs

Proof of Lemma 6.7.1. We perform the preprocessing step introduced in the beginning of

the section to create the graph G̃ that is a graph which consists of F copies of G(ni,∆ · s)
where ni is the number of vertices in the connected componentGi ofG. By Proposition 6.3.4,

with high probability every connected component ofG which is sampled from G (with degree

100 log n) has mixing time of polylog(n). We can thus apply Lemma 6.6.1 to implement

this step using Õ(n1−δ) machines and Õ(nδ) memory per machine in O(log log n/δ) rounds.

We then run the algorithm in Lemma 6.7.2 on the whole graph. We can now analyze

the algorithm in Lemma 6.7.2 on the set of vertices belonging to each connected component

G̃i of G̃ separately. It is immediate to verify that performance of algorithm in Lemma 6.7.2

on each G̃i is only a function of G̃i and hence the correctness of the algorithm follows

exactly as in Lemma 6.7.2. Hence, in O(log log n/δ) rounds, with high probability, we

obtain a spanning tree of each G̃i. We then assign a unique label to each spanning tree

found and mark the vertices based on which spanning tree they belong to. Each label

now corresponds to V (G̃i) = V (Gi), hence we can identify all connected components of

G, finalizing the proof. The bound on the memory requirement and number of machines

follows from Lemma 6.7.2.

6.8. Putting Everything Together

We now put all components of our algorithms in the previous three sections together and

prove the following theorem which formalize Result 6.1 in Section 6.1.

Theorem 6.5. There exists a randomized MPC algorithm that with high probability identi-

fies all connected components of any given undirected n-vertex graph G(V,E) with m edges

and a lower bound of λ ∈ (0, 1) on the spectral gap of any of its connected components.
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For any δ > 0, the algorithm can be implemented with O( 1
λ2
·m1−δ · polylog(n)) machines

each with O(mδ · polylog(n)) memory, and in O(1δ · (log log n+ log (1/λ))) MPC rounds.

Proof. We prove this theorem by applying the transformation steps to G.

Step 1. Let G1 := G with n1 := |V (G1)| and m1 := |E(G1)|. We apply Lemma 6.5.1 to

G1 to obtain a ∆-regular graph G2 with the following properties (with high probability):

there is a one-to-one correspondence between connected components of G1 and G2, and each

connected component of G2 has mixing time Tγ∗ = O(log n/λ) with γ∗ = n−10. Moreover,

n2 := |V (G2)| = O(m1) and ∆ = O(1). By identifying connected components of G2, we

immediately identify connected components of G1.

This step can be implemented in O(m1−δ) machines with O(mδ) memory in O(1/δ)

MPC rounds by Lemma 6.5.1 (as m1 = m).

Step 2. We apply Lemma 6.6.1 to G2 with T = Tγ∗ to (with high probability) obtain a

graph G3 such that V (G2) = V (G3) and for any connected component G2,i on n2,i vertices,

the induced subgraph of G3 on vertices V (G2,i), denoted by G3,i, is a connected component

of G3 with distribution dist(G3,i) where |dist(G3,i)−G(n2,i, 100 log n)|tvd ≤ n−10. Finding

connected components of G2 is equal to finding connected components of G3.

This step can be implemented with Õ(n1−δ2 ) machines with Õ(nδ2) memory in O(log T/δ)

rounds by Lemma 6.6.1. Plugging in these parameters, this step is implementable with

Õ(m1−δ) machines with Õ(mδ) memory in O(1δ (log log n+ log (1/λ))) rounds.

Step 3. Let n3 = n2 be the number of vertices in G3. We apply Lemma 6.7.1 to G3

to identify the connected components of G. The distribution of each connected component

G3,i of G3 is (n−8)-close in total variation distance to G(n2,i, 100 log n) (n2,i = |V (G3,i)|).
Hence, by the guarantee of Lemma 6.7.1 and Fact 2.6.7, with high probability we are able

to identify connected components of the graph G3. This allows us to identify connected

components of G2 and in turn G1 = G.

This step can be implemented in Õ(n1−δ3 ) machines with Õ(nδ3) memory inO(log log n3/δ)

rounds by Lemma 6.7.1. Plugging in the value of these parameters, we obtain that this

step is implementable with Õ(m1−δ) machines with Õ(mδ) memory in O(log log n/δ) MPC

rounds. This concludes the proof of the theorem.

Extension to Unknown Spectral Gaps

A simple modification of our algorithm in Theorem 6.5 allows for implementing it without

having a prior knowledge of the spectral gap of each underlying connected component at

the cost of slightly worse parameters.
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Corollary 6.6. There exists a randomized MPC algorithm that for any δ > 0, with

high probability identifies all connected components of any given undirected n-vertex graph

G(V,E) with m edges such that any connected component Gi with spectral gap λ2(Gi) (un-

known to the algorithm) would be identified by the algorithm after

O(
1

δ
·
(
log log n · log log ( 1

λ2(Gi)
) + log (

1

λ2(Gi)
)

)
)

MPC rounds.

The algorithm requires O( 1
λ2.1
·m1−δ ·polylog(n)) machines with O(mδ ·polylog(n)) memory,

where λ := mini λ2(Gi) is the minimum spectral gap of connected components of G.

Proof. We first choose λ′1 = 1/2 and run the algorithm in Theorem 6.5 on G with this

choice of λ′. Let C := {C1, . . . , Ck} be the sets identified as connected components of G by

this algorithm. We note that algorithm in Theorem 6.5 would always return a component-

partition of V (G) and hence if u and v belong to some Ci ∈ C, u and v also belong to the

same connected component in G. However, it is possible that there exists some u and v such

that u, v ∈ Gi (for some particular connected component) but C(u) 6= C(v) (as λ′ is not

necessarily as small as spectral gap of Gi). It is easy to see that without loss of generality

we can assume such u and v are neighbors in G. Hence, we can run a simple post-processing

step to mark all components in C which are a strict subset of some connected component of

G, i.e., are “growable”, and return the remaining components as connected components of

G. This step can be implemented in O(1/δ) MPC rounds on machines of memory O(mδ).

We then recursively perform the above procedure by setting λ′j = (λ′j−1)
1.1 in j-th recur-

sion step on the vertices in marked components. Fix any connected component Gi of G. It

is immediate that whenever λ′j ≤ λ2(Gi), the above procedure return this connected compo-

nent (and hence would not mark it further). This means that after j⋆ = O(log log ( 1
λ2(Gi)

))

recursion steps, we have λ′j⋆ ≤ λ2(Gi) and hence Gi would be returned as a connected

component. The total number of MPC rounds in these recursion steps is at most

O(
1

δ
) ·

j⋆∑

j=1

(
log log n+ log

1

λ′j

)
= O(

1

δ
) ·
(
log log n · j⋆ +

j⋆∑

j=1

(1.1)j
)

= O(
1

δ
·
(
log log n · log log ( 1

λ2(Gi)
) + log (

1

λ2(Gi)
)

)
).

Finally, it is easy to see that by the time Gi is output, the algorithm has used Õ( 1
(λ′

j∗
)2
m1−δ)

machines, each with Õ(mδ) memory; as λ′j∗ ≥ λ2(Gi)1.1, we obtain the final result.
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6.9. A Mildly Sublinear Space Algorithm for Connectivity

We now present a simple algorithm for solving the sparse connectivity problem (in general,

e.g., with no assumption on spectral gap, etc.) using o(n) memory per-machine,.

Theorem (Restatement of Theorem 6.2). There exists an MPC algorithm that given any

arbitrary graph G(V,E) with high probability identifies all connected components of G in

O(log log n+ log
(
n
s

)
) MPC rounds on machines of memory s = nΩ(1).

As a corollary of Theorem 6.2, O(log log n) rounds suffice to solve the connectivity

problem even when memory per-machine is mildly sublinear, i.e., is O(n/polylog(n)), and

that as long as the memory per machine is n1−o(1), we can always improve upon the O(log n)-

round classical PRAM algorithms for the connectivity problem on any arbitrary graph.

The algorithm in Theorem 6.2 is a simple application of the toolkit we developed for

proving our main result in Theorem 6.5, combined with the linear-sketching algorithm of

Ahn et al. [10] for graph connectivity. In particular, we use the following result from [10].

Proposition 6.9.1 ([10]). Let H be any graph partitioned between |V (H)| players such

that each player receives all edges incident on a unique vertex in V (H) (hence each edge is

received by exactly two players). There exists a randomized algorithm in which every player

sends a message of size O(log3 |V (H)|) bits to a central coordinator who can output all

connected components of H using only these messages with high probability. The algorithm

requires players to have access to polylog(|V (H)|) shared random bits.

We are now ready to present the algorithm in Theorem 6.2. We shall emphasize that

unlike in our main result in Theorem 6.5, to prove Theorem 6.2, we do not need the full

power of essentially any of the steps we developed earlier in the chapter and this result can

be achieved using much simpler techniques as we show below.

SublinearConn(G). A mildly sublinear space algorithm for connectivity on a given graph.

1. Set d := n·(logn)4
s and t :=

(
d3 · 100 log n

)
, and run SimpleRandomWalk(G, t).

2. Create a graph G̃ from G by connecting every vertex v ∈ V (G) to all distinct

vertices visited in the random walk starting from v computed in the previous step.

3. Run LeaderElection(G̃, d) and let H be the graph obtained by contracting any com-

ponent found by LeaderElection to a single vertex.

4. Remove self-loops and duplicate edges from H and run the algorithm in Proposi-

tion 6.9.1 on H by using a dedicated machine to simulate a single player.
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We are now ready to prove Theorem 6.2 using the SublinearConn algorithm.

Proof of Theorem 6.2. The correctness is based on the following observations:

1. Even though G is not a regular graph (as is needed in the statement of Theorem 6.4),

SimpleRandomWalk(G, t) still finds a random walk of length t from every vertex (by

the discussions before Observation 6.6.2 and Lemma 6.6.6). These walks are however

not independent of each other but we shall not need this property. We further note

that to actually find all vertices in the walk (and not only the final vertex) we use the

Mark procedure defined previously.

2. A random walk of length O(d3 log n) from any vertex would either visit all vertices

in its connected component or at least d distinct vertices with high probability. This

follows from a conjecture of Linial proven by Barnes and Feige in [47] that states that

the expected time to visit N distinct vertices by a random walk is O(N3).

3. It follows from the previous part that the minimum degree of graph G̃ is at least

d with high probability. Even though G̃ is not an almost-regular graph, it follows

immediately from Claim 6.7.3 and the proof of second part of Lemma 6.7.4 that

components found by LeaderElection contain all vertices of G̃ with high probability.

4. It follows from the previous part that |V (H)| = O(n log n/d) = O(s/ log3 n) with high

probability (we set sampling probability of leaders in LeaderElection to Θ(log n/d) for

this part as this parameter is already enough for the previous argument to work). The

correctness now follows from Proposition 6.9.1, as vertices in H are components of G.

To bound the number of rounds, we need O(log t) = O(log log n+log
(
n
s

)
) to implement

SimpleRandomWalk(G, t) by Claim 6.6.7, O(1) rounds for LeaderElection by Claim 6.7.5, and

O(1) rounds for final step by Proposition 6.9.1 and the fact that we can share polylog(n)

random bits as well as removing duplicate edges in O(1) rounds on machines with memory

nΩ(1). To bound the memory, we need nΩ(1) memory to implement SimpleRandomWalk and

LeaderElection and O(|V (H)| · log3 (n)) to implement the final step by Proposition 6.9.1. As

argued, |V (H)| = O(s/ log3(n)) and hence O(s) memory is sufficient here. Theorem 6.2

6.10. A Lower Bound on Well-Connected Graphs

Our algorithmic results in this chapter suggested that sparse connectivity is potentially

“much simpler” on graphs with moderate expansion (i.e., with spectral gap λ ≥ 1/polylog(n))

than on typical graphs. It is then natural, although perhaps too optimistic, to wonder

whether sparse connectivity on well-connected graphs is at all “hard” or not; for example,

can we achieve an O(log log n)-round algorithm for finding well-connected components of a

graph using only polylog(n) memory per machine in the MPC model, or perhaps directly
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in the PRAM model? Such a possibility would indeed imply that one does not need the

“full power” of MPC algorithms (more local storage and computational power) to solve the

sparse connectivity problem even on well-connected graphs. As we prove next, this is indeed

not the case. Our lower bound hence supports the main message of our work on achieving

truly improved algorithms in the MPC model using the full power of this model.

We prove an unconditional lower bound on the number of MPC rounds required to

solve the connectivity problem on sparse undirected graphs with a constant spectral gap.

More formally, we henceforth denote by ExpanderConnn the decision promise problem of

determining connectivity on n-vertex graphs G, where in both cases (each connected com-

ponent of) G is guaranteed to be a sparse expander (|E(G)| = O(n) and the spectral gap

of each component is λ2 = Ω(1)).

Theorem 6.7 (Lower bound for expander connectivity). Every MPC algorithm for the

problem of ExpanderConnn with s space per machine (and an arbitrary number of machines)

requires r = Ω(logs n) rounds of computation. This holds even against randomized MPC

protocols with constant error probability.

Theorem 6.7, for example, suggests that any MPC algorithm with polylog(n) memory

per machine for connectivity even on union of expanders requires Ω(log n/ log log n) MPC

rounds. In Remark 6.10.5, we also show a similar situation for (EREW) PRAM algorithms.

We remark that by a result of [277], the lower bound in Theorem 6.7 is asymptotically

the best possible unconditional lower bound short of proving that NC1 ( P which would

be a major breakthrough in complexity theory.

Our lower bound is an adaptation of the argument in [277], who showed the same

(asymptotic) lower bound for any (nontrivial) monotone graph property, albeit without the

spectral gap nor the sparsity restrictions. They prove a general relationship between the

round complexity of an MPC algorithm for computing a function f and the approximate

degree of f (see Theorem 3.5 and Proposition 2.7 in [277]). More formally, for a Boolean

function f : {0, 1}n → {0, 1}, let

d̃egε(f) := min
P :{0,1}n→R

{deg(P ) | |f(x)− P (x)| ≤ ε ∀ x ∈ {0, 1}n}

denote the ε-approximate degree, i.e., the lowest degree of an (n-variate) real polynomial

that uniformly ε-approximates f on the hypercube. The following proposition then follows

from Corollaries 3.6 and 3.8 and Proposition 2.7 in [277].

Proposition 6.10.1 ([277]). If f : {0, 1}n → {0, 1} is computable by an r-round randomized

ε-error MPC algorithm with space s per machine, then d̃egε(f) ≤ sΘ(r).
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By Proposition 6.10.1, proving Theorem 6.7 boils down to showing d̃egε(ExpanderConnn) =

nΩ(1), as this would imply an r = Ω(logs n) round lower bound for MPC algorithms for

ExpanderConnn with s memory per machine.

To prove such lower bounds on approximate degree of functions, [277] further observed

that it suffices to lower bound the deterministic decision tree complexity DT (f) (i.e., the

query complexity) of the underlying function, as it is known to imply a polynomially-related

lower bound on its approximate degree.

Proposition 6.10.2 (Decision-tree complexity vs. approximate polynomial degree, [52,

260]). For any Boolean function f : {0, 1}n → {0, 1}, it holds that d̃eg1/3(f) ≥ Ω
(
DT (f)1/6

)
.

We remark that the same bound applies to partial functions defined on D ⊆ {0, 1}n,
using a straightforward generalization of the block-sensitivity measure and approximate

degrees (see, e.g., Theorem 4.13 and the comment following it in [52]). It therefore remains

to prove a lower bound on the deterministic decision tree complexity of ExpanderConnn,

which is the content of the next lemma.

Lemma 6.10.3. DT (ExpanderConnn) = Ω(n/ log n).

We shall use the following claim to construct our hard instances in the proof the lower

bound in Lemma 6.10.3.

Claim 6.10.4. There exists a collection of k = Ω(n) graphs B := B1, . . . , Bk on the same

set V of n vertices such that:

1. Each Bi is a d-regular graph with some fixed d = O(1) and has spectral gap λ2(Bi) =

Ω(1).

2. Any edge e ∈ V × V appears in at most O(log n) different graphs Bi ∈ B.

Proof. We prove this claim using a probabilistic argument. Fix d = 100. Recall the defini-

tion of distribution Gn,d from Section 6.5, i.e., the uniform distribution on d-regular graphs

on n vertices. We pick k = n/100d graphs B := B1, . . . , Bk independently from Gn,d. By

Corollary 6.3 and a union bound, with high probability all these graphs are expanders with

λ2(Bi) = Ω(1).

Now consider any fixed edge e ∈ V × V . For i ∈ [k], define indicator random variables

Xi ∈ {0, 1} whereXi = 1 iff e ∈ Bi. DefineX :=
∑k

i=1Xi as the total number of graphs in B
to which e belongs to. We have, E [X] =

∑k
i=1 E [Xi] = k ·PrB∼Gn,d

(e ∈ B) = k · 2nd
n2 = 1

100 .

As such, by Chernoff bound, the probability that X ≥ 4 log n, i.e., e appears in more

than 4 log n graphs is at most 1/n3. Taking a union bound on all edges e ∈ V × V , implies
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that with high probability no edge appears in more than O(log n) different graphs in B.

Taking a union bound on the two events above, we obtain that with high probability,

B satisfies the requirement of the claim. This implies that in particular there should exists

such collection B, finalizing the proof. Claim 6.10.4

We now present the proof of Lemma 6.10.3, which completes the proof of Theorem 6.7.

Proof of of Lemma 6.10.3. Let S, T be two disjoint subsets of vertices of size n/2 each and

GS and GT be two d-regular expanders with λ2 = Ω(1) on vertices S and T , respectively.

Moreover, Let B := {Bi}ki=1 be the collection of k expanders in Claim 6.10.4. Note that

the collection B = {B1, . . . , Bk} is fixed in advance and known to the query algorithm

(or equivalently the decision tree). Our final graph G is going to contain at most one

of the graphs Bi, i.e., G will either be GS ∪ GT (in the disconnected case), and other

wise G = G(i) := (GS ∪ GT ∪ Bi) for some i ∈ [k] in the connected case. As such,

Claim 6.10.4 and the choice of d guarantees that G is a legitimate instance of the promise

problem ExpanderConnn, i.e., that it is both sparse and has a constant spectral gap for each

connected component as required.

We proceed with a standard adversarial argument. Without loss of generality, we

assume that the query algorithm only queries edges e ∈ ⋃k
i=1E(Bi). Whenever the query

algorithm queries an edge e that belongs to Bi, the adversary declares that Bi, as well as all

Bj’s for which e ∈ Bj are not present in G. Claim 6.10.4 guarantees that at most O(log n)

graphs Bjs are excluded for each one query. Therefore, the adversary can continue with the

aforementioned strategy for t = Ω(k/ log n) = Ω(n/d log n) = Ω(n/ log n) steps, and still

there will be at least one unqueried graph Bi∗ . Therefore, if the query algorithm makes

less than t queries to G, the adversary can either declare Bi∗ is present or not (determining

whether G is connected or not), contradicting the algorithm’s output. Lemma 6.10.3

Theorem 6.7 now follows immediately from Lemma 6.10.3, Proposition 6.10.2, and

Proposition 6.10.1.

Remark 6.10.5 (Extension to the PRAM model). In Theorem 6.7 we proved the lower

bound for ExpanderConnn in the MPC model as our main focus in this chapter is on this

model after all. However, our proof of Theorem 6.7 implies that ExpanderConnn requires

Ω(log n) rounds in the (EREW) PRAM model as well. The reason is that our proof implies

ExpanderConnn is a critical function of Ω(n/ log n) variables: its output depends on the

existence or non-existence of the k = Ω(n/ log n) expanders graphs B1, . . . , Bk. By results

of [106, 265] computing such a function requires Ω(log n) rounds in the (EREW) PRAM

model.
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Part II

Submodular Optimization on

Massive Datasets
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Chapter 7

Coverage Problems in the Streaming Model

Starting from this chapter, we switch to the second part of the thesis and focus on sub-

modular optimization problems over massive datasets. We begin with our results for two

canonical examples of submodular optimization problems, namely set cover and maximum

coverage problems, collectively referred to as coverage problems, in the streaming setting.

The materials in this chapter are based on [32, 27] with additional simplifications.

Introduced originally by Saha and Getoor [281], streaming coverage problems have

been studied extensively in the streaming literature [281, 108, 40, 128, 116, 187, 174, 90, 50,

129, 247], resulting in numerous efficient algorithms for these problems. However, several

fundamental questions regarding the complexity of these problems in the streaming setting

have remained unresolved. In particular,

(i) How well can we approximate the set cover problem in only a single-pass over the

stream? (cf. [187] and its follow-up version in [174])

A shortcoming of all previous streaming algorithms for the streaming set cover problem

was that they either required strictly more than one pass over the stream, or achieved

very large approximation ratio of O(
√
n) (where n is the number of elements in the

universe). As such, obtaining single-pass streaming algorithms for set cover with

sublinear space over the stream was a main open problem in this area.

(ii) What is the space-approximation tradeoff for set cover and maximum coverage in

multi-pass streams?

While numerous upper bounds were known on the space-approximation tradeoff for

coverage problems (see, e.g. [116, 187, 174, 90, 50, 247]), it was not clear what is the

“right” space-approximation tradeoff for these problems due to lack of essentially any

lower bounds.

We resolve both of these fascination questions in this chapter. In particular, we establish

tight bounds on the space-approximation tradeoff for single-pass streaming algorithms for

the set cover problem, hence settling the first question above. Our results rule out the

existence of any non-trivial single-pass algorithm for the streaming set cover problem and

hence provide a strong negative answer to the aforementioned open question. This also

suggests a strong separation between power of single-pass vs multi-pass (even only two-pass)

streaming algorithms for this problem. We further study the space-approximation tradeoff

for multi-pass streaming algorithms for both set cover and coverage problems. We (slightly)

improve the state-of-the-art algorithms for set cover that are allowed multiple passes over
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the stream and more importantly also prove that the space-approximation tradeoff achieved

by this algorithm is information-theoretically optimal, hence settling the second question

above for set cover as well. Qualitatively similar results for the maximum coverage problem

are also presented.

HighLights of Our Contributions

In this chapter, we will establish:

• Tight upper and lower bounds on the space complexity of single-pass streaming algo-

rithms for approximating the set cover problem (Section 7.4).

• Tight upper and lower bounds on the space-approximation tradeoff of multi-pass

streaming algorithms for set cover and maximum coverage (Sections 7.6 and 7.7).

7.1. Background

As we remarked in Section 2.4, coverage problems have been studied extensively in the

literature. However, these results typically focused on the tradeoff between approximation

guarantee and time complexity of the coverage problems. Nevertheless, in many settings,

space complexity of the algorithms is crucial to optimize. A canonical example is in appli-

cations in big data analysis such as data mining and information retrieval [22, 281], web

host analysis [99], operation research [164], and many others. In these settings, one would

like to design algorithms capable of processing massive datasets using only few passes over

the input and limited space. The well-established streaming model of computation [17, 254]

precisely captures this setting.

In the streaming set cover problem, originally introduced by Saha and Getoor [281],

the input sets are provided one by one in a stream and the algorithms are allowed to make

a small number of passes over the stream while maintaining a sublinear space o(mn) for

processing the stream. The streaming set cover problem and the closely related maximum

coverage problem have received quite a lot of attention in recent years [281, 108, 128, 116,

40, 187, 174, 90, 247, 50].

Particularly relevant to our work, Demaine et al. [116], have shown an α-approximation

algorithm that uses O(α) passes over the stream and needs Õ(mnΘ(1/ logα)) space. Recently,

Har-Peled et al. [174] provide a significant improvement over this algorithm: they developed

an α-approximation, O(α)-pass streaming algorithm that requires Õ(mnΘ(1/α)) space (see

also [50]). For semi-streaming algorithm with much lower space, i.e., Õ(n) space, Emek

and Rosen [128] presented an O(
√
n)-approximation single-pass streaming algorithm using

O(n) space. This result was further generalized to allow multiple passes by Chakrabarti

and Wirth [90] resulting in a p-pass streaming O(n1/(p+1))-approximation algorithm with
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O(n) space for set cover; the pass-approximation tradeoff of this algorithm was also proved

to be optimal by the same authors [90].

For maximum coverage, McGregor and Vu [247] and Bateni et al. [50] presented single-

pass (1+ ε)-approximation algorithms that use Õ(mk/ε2) and Õ(m/ε3) space, respectively.

Badanidiyuru et al. [40] also presented a single-pass semi-streaming algorithm for this

problem that achieves an almost 2-approximation using O(n) space.

7.2. Our Results and Techniques

We now formally define α-approximation streaming algorithms for coverage problems. For

brevity, we only formalize this notion for the set cover problem; the extension to maximum

coverage is straightforward.

Definition 7.1 (α-approximation). An algorithm ALG is said to α-approximate the set

cover problem iff on every input instance S, ALG outputs a collection of (the indices of) at

most α · opt sets that covers [n], along with a certificate of covering which, for each element

e ∈ [n], specifies the set used for covering e. If ALG is a randomized algorithm, we require

that the certificate corresponds to a valid set cover w.p. at least 2/3.

The requirement of returning a certificate of covering in the above definition is standard in

the literature (see, e.g., [128, 90, 174]).

7.2.1. Single-pass Streaming Complexity of Set Cover

We resolve the space complexity of the single-pass streaming set cover problem:

Result 7.1. For any α = o(
√
n/ log n) and any m = poly(n), there is a deterministic

single-pass streaming algorithm that α-approximates the set cover problem using space

Õ(mn/α) bits. Moreover, any single-pass streaming algorithm (possibly randomized)

that α-approximates the set cover problem must use Ω(mn/α) bits of space.

We should point out right away that in this chapter, we are not concerned with poly-

time computability. However, in all hard instances we consider in this chapter, the minimum

set cover size and the parameter k in maximum coverage) are small constants and hence

these instances are trivially solvable in polynomial time in the classical (offline) setting.

Our results hence establish the “hardness” of these instances under the space restrictions

of the streaming model, independent of the NP-hardness of approximating these problems.

An α-approximation using Õ(mn/α) bits of space can be simply achieved as follows.

Merge (i.e., take the union of) every α sets in the stream into a single set; at the end of the

stream, solve the set cover problem over the merged sets. To recover a certificate of covering,

we also record for each element e in each merged set, any set in the merge that covers e.
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It is an easy exercise to verify that this algorithm indeed achieves an α-approximation and

can be implemented in space Õ(mn/α) bits. Quite surprisingly, our Result 7.1 establishes

that this simple algorithm is essentially the best possible; any α-approximation algorithm

for the set cover problem requires Ω̃(mn/α) space.

Prior to our work, the best known lower bounds for single-pass streams ruled out

(3/2 − ε)-approximation using o(mn) space [187] (see also [174]), o(
√
n)-approximation in

o(m) space [128, 90], and O(1)-approximation in o(mn) space [116] (only for deterministic

algorithms). Note that these lower bound results leave open the possibility of a single-pass

randomized (3/2)-approximation or even a deterministic O(log n)-approximation algorithm

for the set cover problem using only Õ(m) space. Our Result 7.1 on the other hand, rules

out the possibility of having any non-trivial trade-off between the approximation factor

and the space requirement, answering an open question raised by Indyk et al. [187] (see

also [174]) in the strongest sense possible.

We should also point out that the bound of α = o(
√
n/ log n) in our lower bound is

tight up to an O(log n) factor since an O(
√
n)-approximation is known to be achievable in

Õ(n) space (essentially independent of m for m = poly(n)) [128, 90].

We note that our lower bound in Result 7.1 crucially exploits the fact that the algorithm

needs to output an actual set cover not only it size. In fact, in our paper [32], we show that

this later task is strictly easier by providing an Õ(mn/α2) space algorithm for α-estimating

the size of optimal set cover (without finding the actual sets) and prove that this bound is

also optimal, using a simpler variant of our lower bound for α-approximation algorithms.

For brevity, in this thesis, we only focus on the approximation algorithms for set cover and

refer the interested reader to [32] for more details on estimation algorithms for set cover.

Our Techniques for Single-pass Streaming Set Cover

As is typical in the streaming literature, our lower bound is obtained by establishing commu-

nication complexity lower bounds; in particular, in the one-way two-player communication

model (see Proposition 2.7.10). To prove this bound, we use the information complexity

paradigm, which allows one to reduce the problem, via a direct sum type argument, to

multiple instances of a simpler problem (see Sections 2.8 and 2.8.2 for a quick reminder of

these notions). For this purpose, we introduce and analyze a new intermediate problem

called the Trap problem

The Trap problem is a non-boolean problem defined as follows: Alice is given a set S,

Bob is given a set E such that all elements of E belong to S except for a special element

e∗, and the goal of the players is to “trap” this special element, i.e., to find a small subset

of E which contains e∗. For our purpose, Bob only needs to trap e∗ in a set of cardinality

|E| /2. To prove a lower bound for the Trap problem, we design a novel reduction from the
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well-known Index problem (again, see Section 2.7.2 for definition), which requires Alice and

Bob to use the protocol for the Trap problem over non-legal inputs (i.e., the ones for which

the Trap problem is not well-defined), while ensuring that they are not being “fooled” by

the output of the Trap protocol over these inputs.

7.2.2. Multi-pass Streaming Complexity of Coverage Problems

Our main result in this part is a tight resolution of the space-approximation tradeoff for the

streaming set cover problem:

Result 7.2. Any streaming α-approximation polylog(n)-pass algorithm for the set cover

problem requires Ω̃(mn1/α) space even on random arrival streams. This lower bound

holds even for algorithms that are only required to output the value of optimal solution.

Prior to our work, the best known lower bounds for randomized multi-pass streaming

algorithms ruled out the possibility of (log n/2)-approximation in p passes and o(m/p)

space [258], and exact solution in p passes and o(mn1/2p) space [174] (the later holds only if

m = O(n)). These results left open the possibility of obtaining, say, a 2-approximation in

two passes or even an exact answer in O(log n) passes and Õ(m) space. On the other hand,

Result 7.2 smoothly extends the bounds in [258] to the whole range of approximation factors

α = o(log n), proving the first super-linear in m lower bound for approximating set cover

in multi-pass streams. It also significantly improves the bounds in [174] to Ω̃(mn/p) (and

all range of m = poly(n)) for p pass streaming algorithms that recover an exact answer1.

As mentioned earlier, Har-Peled et al. [174] designed an α-approximation algorithm for

the set cover problem that requires Õ(mnΘ(1/α)) space (for some unspecified constant larger

than 2 in the Θ-notation in the exponent). We can show that with proper modifications,

this algorithm in fact only requires Õ(mn1/α) space (see Theorem 7.7), hence proving a tight

upper bound for Result 7.2 (up to logarithmic factors), even for α-approximation algorithms

(not only estimation). These results together resolve the space-approximation tradeoff for

streaming set cover problem in multi-pass streams.

Finally, we point out that the lower bound in Result 7.2 is quite robust in the sense that

it holds even when the sets are arriving in a random order. This is particularly relevant

to the streaming set cover problem as most known techniques for this problem are based

on element and set sampling and a-priori one may expect that random arrival streams can

facilitate the use of such techniques, resulting in better bounds than the ones achievable

in adversarial streams. We point that in general, many streaming problems are known

to be distinctly easier in random arrival streams compared to adversarial streams (see,

1Note that this result also implies that the “right” tradeoff between space and number of passes for
obtaining an exact solution to the streaming set cover is in fact linear as opposed to exponential, i.e., n/p
as opposed to n1/p, as was previously shown in [174].
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e.g., [168, 221, 205] as well as our own results in Chapter 4 for maximum matching).

We further show an application of our techniques in establishing Result 7.2 to the

streaming maximum coverage problem.

Result 7.3. Any streaming (1+ε)-estimation (and so (1+ε)-approximation) polylog(n)-

pass algorithm for the maximum coverage problem requires Ω̃(m/ε2) space even on ran-

dom arrival streams. This lower bound applies even for the case k = O(1).

Single-pass (1 + ε)-approximation algorithms for this problem that use, respectively,

Õ(mk/ε2) space and Õ(m/ε3) have been proposed recently in [247, 50], and [50]. Our

Result 7.3 is hence tight for any k = O(1) (up to logarithmic factors) and within an O(1/ε)

factor of the best upper bound for the larger values of k.

McGregor and Vu [247] have very recently proved an Ω̃(m) lower bound for polylog(n)-

pass streaming algorithms that approximate the maximum coverage problem to within a

factor better than ( e
e−1) (a single-pass streaming algorithm with the same approximation

guarantee in Õ(m) space is also developed in [247, 50]). The importance of Result 7.3 is

thus in establishing the tight dependence on the parameter ε for this problem. This is

important as (1 + ε)-approximation algorithms for this problem for very small values of ε,

i.e., ε = 1/nΩ(1), are typically used as a sub-routine in approximating the streaming set

cover problem in multiple passes [116, 174, 50] (see Section 7.6.4 for more details).

En route, we also obtain the following result which may be of independent interest:

the communication complexity of computing an exact solution to the set cover problem or

the maximum coverage problem in the two-player communication model is Ω̃(mn) bits (see

Theorems 7.6 and 7.10). This improves upon the previous Ω(m) lower bounds of Nisan [258]

(for set cover) and McGregor and Vu [247] (for maximum coverage).

Techniques. Our techniques in establishing results in this part are also based on commu-

nication complexity tools and in particular information complexity and direct sum results

(see Section 2.8.2). However, to prove multi-pass streaming lower bounds, we now need to

work with two-way communication complexity (see Proposition 2.7.9) which is significantly

more challenging. We elaborate on these challenges later in Section 7.5.

7.3. Preliminaries

Concentration Bounds. We use an extension of the Chernoff-Hoeffding bound for nega-

tively correlated random variables. Random variables X1, . . . ,Xn are negatively correlated if

for every set S ⊆ [n], Pr (∧i∈SXi = 1) ≤ ∏i∈S Pr (Xi = 1). It was first proved in [264] that

the Chernoff-Hoeffding bound (for the upper tail) continues to hold for the case of random

variables that satisfy this generalized version of negative correlation (see also [185]).
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Proposition 7.3.1 ([264]). Let X1, . . . , Xn be negatively correlated random variables taking

values in [0, 1] and let X :=
∑n

i=1Xi. Then, for any 0 < ε ≤ 1,

Pr (X ≥ (1 + ε)E [X]) ≤ exp

(
−ε

2 · E [X]

3

)
.

7.4. A Single-pass Lower bound for α-Approximate Set Cover

In this section, we prove that the simple α-approximation algorithm described in Section 7.1

is in fact optimal in terms of the space requirement. The following theorem formalizes the

second part of Result 7.1.

Theorem 7.4. For any α = o(
√
n

logn) and m = poly(n), any randomized single-pass stream-

ing algorithm that α-approximates the set cover problem with probability at least 2/3 requires

Ω(mn/α) bits of space.

Fix a (sufficiently large) value for n, m = poly(n) (also m = Ω(α log n)), and α =

o(
√
n

logn); throughout this section, SetCoverapx refers to the problem of α-approximating the

set cover problem for instances with m+1 sets2 defined over the universe [n] in the one-way

communication model, whereby the sets are partitioned between Alice and Bob.

Overview. We design a hard input distribution Dapx for SetCoverapx, whereby Alice is

provided with a collection of m sets S1, . . . , Sm, each of size (roughly) n/α and Bob is given

a single set T of size (roughly) n − 2α. The input to the players are correlated such that

there exists a set Si∗ in Alice’s collection (i∗ is unknown to Alice), such that Si∗ ∪ T covers

all elements in [n] except for a single special element. This in particular ensures that the

optimal set cover size in this distribution is at most 3 w.h.p.

On the other hand, we “hide” this special element among the 2α elements in T̄ in a way

that if Bob does not have (essentially) full information about Alice’s collection, he cannot

even identify a set of α elements from T̄ that contain this special element (w.p. strictly

more than half). This implies that in order for Bob to be sure that he returns a valid set

cover, he should additionally cover a majority of T̄ with sets other than Si∗ . We design the

distribution in a way that the sets in Alice’s collection are “far” from each other and hence

Bob is forced to use a distinct set for (roughly) each element in T̄ that he needs to cover

with sets other than Si∗ . This implies that Bob needs to output a set cover of size α (i.e.,

an (α/3)-approximation) to ensure that every element in [n] is covered.

A Hard Input Distribution for SetCoverapx

Consider the following distribution (see Figure 5).

2To simplify the exposition, we use m+ 1 instead of m as the number of sets.
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(a) Alice’s inputs is a collection of
near-orthogonal sets.

(b) Bob’s input is a single set contain-
ing all elements minus a small subset
from a single set Si∗ of Alice plus one
more element e∗.

Figure 5: Illustration of the hard distribution Dapx. Black dots are elements of the universe.

Distribution Dapx. A hard input distribution for SetCoverapx.

Notation. Let F be the collection of all subsets of [n] with size n
10α , and ℓ := 2α logm.

• Alice. The input of Alice is a collection of m sets S = (S1, . . . , Sm), where for any

i ∈ [m], Si is a set chosen independently and uniformly at random from F .
• Bob. Pick an i∗ ∈ [m] (called the special index ) uniformly at random; the input to

Bob is a set T = [n] \ E, where E is chosen uniformly at random from all subsets

of [n] with |E| = ℓ and |E \ Si∗ | = 1.a

aSince α = o(
√
n/ log n) and m = poly(n), the size of E is strictly smaller than the size of Si∗ .

The claims below summarize some useful properties of the distribution Dapx.

Claim 7.4.1. For any instance (S, T ) ∼ Dapx, w.p. 1− o(1), opt(S, T ) ≤ 3.

Proof. Let e∗ denote the element in E \ Si∗ . S−i∗ contains m− 1 random subsets of [n] of

size n/10α, drawn independent of the choice of e∗. Therefore, each set in S−i∗ covers e∗

with probability 1/10α. The probability that none of these m− 1 sets covers e∗ is at most

(1− 1/10α)m−1 ≤ (1− 1/10α)Ω(α logn) ≤ exp(−Ω(α log n)/10α). = o(1)

Hence, with probability 1− o(1), there is at least one set S ∈ S−i∗ that covers e∗. Now, it

is straightforward to verify that (Si∗ , T, S) form a valid set cover.

Lemma 7.4.2. With probability 1 − o(1), no collection of 3α sets from S−i∗ covers more
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than ℓ/2 elements of E.

Proof. Recall that the sets in S−i∗ and the set E are chosen independent of each other.

For each set S ∈ S−i∗ and for each element e ∈ E, we define an indicator binary random

variable Xe, where Xe = 1 iff e ∈ S. Let X :=
∑

e Xe, which is the number of elements in E

covered by S. We have,

E[X] =
∑

e

E[Xe] =
|E|
10α

=
logm

5
.

Moreover, the variables Xe are negatively correlated since for any set S′ ⊆ E,

Pr

(
∧

e∈S′

Xe = 1

)
=

( n−|S′|
n

10α
−|S′|

)
(
n
n

10α

) =

(
n

10α

)
·
(
n

10α − 1
)
. . .
(
n

10α − |S′|+ 1
)

(n) · (n− 1) . . . (n− |S′|+ 1)

≤
(

1

10α

)|S′|
=
∏

e∈S′

Pr (Xe = 1) .

Hence, by the extended Chernoff bound (see Proposition 7.3.1), Pr
(
X ≥ logm

3

)
= o( 1

m).

Therefore, using union bound over all m− 1 sets in S−i∗ , with probability 1− o(1), no
set in S−i∗ covers more than logm/3 elements in E, which implies that any collection of

3α sets can only cover up to 3α · logm/3 = ℓ/2 elements in E.

The Lower Bound for the Distribution Dapx

In order to prove our lower bound for SetCoverapx on Dapx, we define an intermediate com-

munication problem which we call the Trap problem.

Problem 7.4.3 (Trap problem). Alice is given a set S ⊆ [n] and Bob is given a set E ⊆ [n]

such that E \S = {e∗}; Bob needs to output a set L ⊆ E with |L| ≤ |E| /2 such that e∗ ∈ L.

In the following, we use Trap to refer to the trap problem with |S| = n/10α and

|E| = ℓ = 2α logm (notice the similarity to the parameters in Dapx). We define the following

distribution DTrap for Trap. Alice is given a set S ∈R F (recall that F is the collection of all

subsets of [n] of size n/10α) and Bob is given a set E chosen uniformly at random from all

sets that satisfy |E \ S| = 1 and |E| = 2α logm. We first use a direct sum style argument

to prove that under the distributions Dapx and DTrap, information complexity of solving

SetCoverapx is essentially equivalent to solving m copies of Trap. Formally,

Lemma 7.4.4. For any constant δ < 1/2, any δ-error protocol πSC on Dapx can be used to

obtain a (δ + o(1))-error protocol πTrap on DTrap such that ICext
DTrap

(πTrap) ≤ 1
m · ICext

Dapx
(πSC).

Proof. The protocol πTrap is as follows.
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Protocol πTrap. The protocol for solving Trap using a protocol πSC for SetCoverapx.

Input: An instance (S,E) ∼ DTrap.

Output: A set L with |L| ≤ |E| /2, such that e∗ ∈ L.

1. Using public randomness, the players sample an index i∗ ∈ [m] uniformly at random.

2. Alice creates a tuple S = (S1, . . . , Sm) by assigning Si∗ = S and sampling each

remaining set uniformly at random from F using private randomness. Bob creates

a set T := Ē.

3. The players run the protocol πSC over the input (S, T ).
4. Bob computes the set L of all elements in E = T̄ whose certificate (i.e., the set used

to cover them) is not Si∗ , and outputs L.

We first argue the correctness of πTrap and then bound its information cost. To argue

the correctness, notice that the distribution of instances of SetCoverapx constructed in the

reduction is exactly Dapx. Consequently, it follows from Claim 7.4.1 that, with probability

1 − o(1), any α-approximate set cover can have at most 3α sets. Let Ŝ be the set cover

computed by Bob minus the sets Si∗ and T . As e∗ ∈ E = T̄ and moreover is not in Si∗ , it

follows that e∗ should be covered by some set in Ŝ. This means that the set L that is output

by Bob contains e∗. Moreover, by Lemma 7.4.2, the number of elements in E covered by

the sets in Ŝ is at most ℓ/2 w.p. 1− o(1). Hence, |L| ≤ ℓ/2 = |E| /2. This implies that:

Pr
DTrap

(
πTrap errs

)
≤ Pr

Dapx

(
πSC errs

)
+ o(1) ≤ δ + o(1).

We now bound the information cost of πTrap. Let I be the random variable for the

choice of i∗ ∈ [m] in the protocol πTrap (which is uniform in [m]). By Proposition 2.8.4 on

information cost of one-way protocols, we have,

ICext
DTrap

(πTrap) = E
i∼I

[
I(ΠTrap ; S | I = i)

]
=

1

m
·
m∑

i=1

I(ΠSC ; Si | I = i) =
1

m
·
m∑

i=1

I(ΠSC ; Si),

where the last two equalities hold since (i) the joint distribution of ΠSC and Si conditioned

on I = i under DTrap is equivalent to the one under Dapx, and (ii) the random variables ΠSC

and Si are jointly independent of the event I = i (by the definition of Dapx) and hence we

can “drop” the conditioning on this event. We can further derive,

ICext
DTrap

(πTrap) =
1

m
·
m∑

i=1

I(ΠSC ; Si) ≤
1

m
·
m∑

i=1

I(ΠSC ; Si | S<i).
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The inequality holds since Si and S<i are independent and conditioning on independent

variables can only increase the mutual information (by Proposition 2.6.3). Finally,

ICext
DTrap

(πTrap) ≤
1

m
·
m∑

i=1

I(ΠSC ; Si | S<i) =
Fact 2.6.1-(6)

1

m
· IDapx

(
ΠSC; S

)
=

1

m
· ICext

Dapx
(πSC),

where the first equality is by the chain rule for mutual information.

Having established Lemma 7.4.4, our task now is to lower bound the information com-

plexity of Trap over the distribution DTrap. We prove this lower bound using a novel reduc-

tion from the well-known Index problem (see Section 2.7.2), denoted by Indexnk . In Indexnk

over the distribution DIndex, Alice is given a set A ⊆ [n] of size k chosen uniformly at random

and Bob is given an element a such that w.p. 1/2 a ∈R A and w.p. 1/2 a ∈R [n] \ A; Bob
needs to determine whether a ∈ A (the Yes case) or not (the No case).

We remark that similar distributions for Indexnk have been previously studied in the

literature (see, e.g., [280], Section 3.3). The proof of the following lemma is standard and

hence we omit it here (see, e.g., [32] for this proof).

Lemma 7.4.5. For any k < n/2 and constant δ′ < 1/2, any δ′-error protocol πIndex for

Indexnk on D has (external) information cost ICext
DIndex

(πIndex) = Ω(k).

Using Lemma 7.4.5, we prove the following lemma, which is the key part of the proof.

Lemma 7.4.6. For any constant δ < 1/2, any δ-error protocol πTrap for Trap on DTrap has

(external) information cost ICext
DTrap

(πTrap) = Ω(n/α).

Proof. Let k = n/10α; we design a δ′-error protocol πIndex for Indexnk using any δ-error

protocol πTrap (over DTrap) as a subroutine, for some constant δ′ < 1/2.

Protocol πIndex. The protocol for reducing Indexnk to Trap.

Input: An instance (A, a) ∼ DIndex.

Output: Yes if a ∈ A and No otherwise.

1. Alice picks a set B ⊆ A with |B| = ℓ − 1 uniformly at random using private

randomness.

2. To invoke the protocol πTrap, Alice creates a set S := A and sends the message

πTrap(S), along with the set B to Bob.

3. If a ∈ B, Bob outputs Yes and terminates the protocol.

4. Otherwise, Bob constructs a set E = B ∪ {a} and computes L := πTrap(S,E) using
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the message received from Alice.

5. If a ∈ L, Bob outputs No, and otherwise outputs Yes.

We should note right away that the distribution of instances for Trap defined in the

previous reduction does not match DTrap. Therefore, we need a more careful argument to

establish the correctness of the reduction.

We prove this lemma in two claims; the first claim establishes the correctness of the

reduction and the second one proves an upper bound on the information cost of πIndex based

on the information cost of πTrap.

Claim 7.4.7. πIndex is a δ
′-error protocol for Indexnk over DIndex for the parameter k = n/10α

and a constant δ′ < 1/2.

Proof. Let R denote the private coins used by Alice to construct the set B. Also, define

DY
Index (resp. DN

Index) as the distribution of Yes instances (resp. No instances) of DIndex. We

have,

Pr
DIndex,R

(
πIndex errs

)
=

1

2
· Pr
DY

Index
,R

(
πIndex errs

)
+

1

2
· Pr
DN

Index
,R

(
πIndex errs

)
. (7.1)

Note that we do not consider the randomness of the protocol πTrap (used in construction

of πIndex) as it is independent of the randomness of the distribution DIndex and the private

coins R. We now bound each term in Eq (7.1) separately. We first start with the easier case

which is the second term.

The distribution of instances (S,E) for Trap created in the reduction by the choice of

(A, a) ∼ DN
Index and the randomness of R, is the same as the distribution DTrap. Moreover,

in this case, the output of πIndex would be wrong iff a ∈ E \S (corresponding to the element

e∗ in Trap) does not belong to the set L output by πTrap. Hence,

Pr
DN

Index
,R

(
πIndex errs

)
= Pr

DTrap

(
πTrap errs

)
≤ δ. (7.2)

We now bound the first term in Equation (7.1). Note that when (A, a) ∼ DY
Index, there is a

small chance that πIndex is “lucky” and a belongs to the set B (see Line (3) of the protocol).

Let this event be E . Conditioned on E , Bob outputs the correct answer with probability 1;

however note that probability of E happening is only o(1). Now suppose E does not happen.

In this case, the distribution of instances (S,E) created by the choice of (A, a) ∼ DY
Index (and

randomness of R) does not match the distribution DTrap. However, we have the following

important property:
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Given that (S,E) is the instance of Trap created by choosing (A, a) from DY
Index

and sampling ℓ − 1 random elements of A (using R), the element a is uniform

over the set E.

In other words, knowing (S,E) does not reveal any information about the element a.

Note that since (S,E) is not chosen according to the distribution DTrap (actually it is

not even a “legal” input for Trap), it is possible that πTrap terminates, outputs a non-valid

set, or outputs a set L ⊆ E. Unless L ⊆ E (and satisfies the cardinality constraint), Bob is

always able to determine that πTrap is not functioning correctly and hence outputs Yes (and

errs with probability at most δ < 1/2). However, if L ⊆ E, Bob would not know whether

the input to πTrap is legal or not. In the following, we explicitly analyze this case.

In this case, L is a subset of E chosen by the (inner) randomness of πTrap for a fixed S

and E and moreover |L| ≤ |E| /2 (by definition of Trap). The probability that πIndex errs

in this case is exactly equal to the probability that a ∈ L. However, as stated before, for a

fixed (S,E), the choice of L is independent of the choice of a and moreover, a is uniform

over E; hence a ∈ L happens with probability at most 1/2. Formally, (here, RTrap denotes

the inner randomness of πTrap)

Pr
DY

Index
,R
(πIndex errs | Ē) = Pr

DY
Index

,R

(
a ∈ L = πTrap(S,E) | Ē

)

= E
(S,E)|Ē,RTrap

[
Pr
(
a ∈ L | S = S,E = E,RTrap = RTrap, Ē

)]

(L = πTrap(S,E) is a fixed set conditioned on (S,E,RTrap))

= E
(S,E)|Ē

E
RTrap

[ |L|
|E|
]
,

since a is uniform on E conditioned on (S,E,RTrap) and Ē . Hence, Pr(πIndex errs | Ē) ≤ 1
2 ,

since by definition, for any output set L, |L| ≤ |E| /2.

As stated earlier, whenever E happens, πIndex makes no error; hence,

Pr
DY

Index
,R
(πIndex errs) = Pr

DY
Index

,R
(Ē) · Pr

DY
Index

,R
(πIndex errs | Ē) ≤ 1− o(1)

2
. (7.3)

Finally, by plugging the bounds in Equations (7.2,7.3) in Equation (7.1) and assuming δ is

bounded away from 1/2, we have,

Pr
DIndex,R

(πIndex errs) ≤ 1

2
· 1− o(1)

2
+

1

2
· δ = 1− o(1)

4
+
δ

2
≤ 1

2
− ε,

for some constant ε bounded away from 0. Claim 7.4.7
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We now bound the information cost of πIndex under DIndex.

Claim 7.4.8. ICext
DIndex

(πIndex) ≤ ICext
DTrap

(πTrap) +O(ℓ log n).

Proof. We have,

ICext
DIndex

(πIndex) = I(ΠIndex(A) ;A)

= I(ΠTrap(S),B ;A)

= I(ΠTrap(S) ;A) + I(B ;A | ΠTrap(S))

(by chain rule of mutual information, Fact 2.6.1-(6))

≤ I(ΠTrap(S) ;A) +H(B | ΠTrap(S))

≤ I(ΠTrap(S) ;A) +O(ℓ log n) (|B| = O(ℓ log n) and Fact 2.6.1-(1))

= I(ΠTrap(S) ; S) +O(ℓ log n) (A = S as defined in πIndex)

= ICext
DTrap

(πTrap) +O(ℓ log n).

(the joint distribution of (ΠTrap(S), S) is identical under DIndex and DTrap)

Claim 7.4.8

The lower bound now follows from Claims 7.4.7 and 7.4.8, and Lemma 7.4.5 for the

parameters k = |S| = n
10α and δ′ < 1/2, and using the fact that α = o(

√
n/ log n), ℓ =

2α logm, and m = poly(n), and hence Ω(n/α) = ω(ℓ log n). Lemma 7.4.6

To conclude, by Lemma 7.4.4 and Lemma 7.4.6, for any set of parameters δ < 1/2,

α = o(
√
n

logn), and m = poly(n), external information complexity of SetCoverapx on Dapx

is Ω(mn/α). Since the information complexity is a lower bound on the communication

complexity (Proposition 2.8.3), we have the following theorem.

Theorem 7.5. For any constant δ < 1/2, α = o(
√
n

logn), and m = poly(n), the one-way

communication complexity of SetCoverapx is:

R
1-way
δ (SetCoverapx) = Ω(mn/α).

Finally, since one-way communication complexity is also a lower bound on the space

complexity of single-pass streaming algorithms (see Proposition 2.7.10), we obtain Theo-

rem 7.4 as a corollary of Theorem 7.5.

7.5. Technical Overview of Multi-pass Streaming Lower Bounds

We now switch to the second part of our results in this section on multi-pass lower bounds.

In this section, we focus on providing a technical overview of the proof of Result 7.2 - Re-

189



sult 7.3 is also proven along similar lines. The starting point of our work is our Result 7.1

in which we proved a tight space lower bound for single-pass streaming algorithms of set

cover by analyzing the one-way communication complexity of this problem. We extend our

approach to lower bound the two-way communication complexity of the set cover prob-

lem and ultimately obtain the desired lower bound in Result 7.2 for multi-pass streaming

algorithms. To do this, we need to address the following issues:

First, the type of distribution used in Result 7.1 is clearly not suitable for proving lower

bounds in the two-way model. In particular, we need a distribution with both Alice and

Bob having Ω(m) sets and additionally, no clear “signal” to either party as which of the

sets are more important, i.e., correspond to the sets Si∗ and T in the above distribution. To

achieve this, we first design a collection of sets Z1, . . . , Zm such that no collection of α sets

Zi’s can cover the universe [n] unless they contain a single set Zi∗ which is in fact equal to

[n] already (for remaining sets Zi, we have |Zi| ≈ n−n1−1/α). Next, we decompose each Zi

into two sets Si and Ti and provide Alice with Si, and Bob with Ti. This way, the sets Si∗

and Ti∗ form a set cover of size two and no other collection of α pairs (Si, Ti) can cover the

universe; we further prove that “mix and matching” the sets (i.e., picking Si but not Ti or

vice versa) in the solution is not helpful either, hence implying that any α-approximation

algorithm for set cover needs to find the sets Si∗ and Ti∗ .

The next step is to prove the lower bound for the above distribution. Unlike the lower

bound in the one-way model that was based on hiding the content of the set Si∗ , here we need

to argue that in fact the index i∗ itself is hidden from the players (as otherwise, one more

round of communication can reveal the content of the sets Si∗ and Ti∗ as well). We again

use the information complexity paradigm to prove the communication lower bound for this

distribution. We embed different instances of the well-known set disjointness problem (see

Section 2.7.2) in each pair (Si, Ti) such that all embedded instances are intersecting except

for the instance for Si∗ and Ti∗ which is disjoint. As we seek a direct-sum style argument

for two-way protocols, we need a more careful argument than our previous results that were

tailored for one-way protocols. In particular, we now use the notion of internal information

complexity (as opposed to external information complexity used in the last part; recall the

distinction between these two measures described in Section 2.8) that allows us to use the

powerful techniques developed in [46, 66, 74] to obtain the direct-sum result.

Finally, we need to lower bound the information complexity of the set disjointness

problem on the specific distribution induced by the set cover instances. The set cover

distribution is designed in a way to ensure that the distribution of underlying set disjointness

instances matches the known hard input distributions for this problem. However, there is

a subtlety here; known information complexity lower bounds for set disjointness (that we

are aware of) are all over distributions that are supported only on disjoint sets, i.e., Yes-
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instances of the problem (see, e.g., [44, 68, 298])3. However, for our purpose, we need

to lower bound the information cost of set disjointness protocols on distributions that are

intersecting. We achieve this using an application of the “information odometer” of [76]

(and subsequent work in [162]) to relate the information cost of the protocols on Yes and

No instances of the problem together and obtain the result.

We are not done though, as we seek a lower bound for random arrival streams and

for this, we we follow the approach of [86] in proving the communication complexity lower

bounds when the input data is randomly allocated between the players (as opposed to

adversarial partitions). However, the distributions and the problem considered in this paper

are different from the ones in [86].

7.6. Space-Approximation Tradeoff for Multi-Pass Set Cover

We prove our main result on the space-approximation tradeoff for the streaming set cover

problem in this section. Formally,

Theorem 7.6. For any α = o(log n/ log log n), m = poly(n), and p ≥ 1, any randomized

algorithm that can make p passes over any collection of m subsets of [n] presented in a ran-

dom order stream and outputs an α-estimation to the optimal value of the set cover problem

w.p. larger than 3/4 (over the randomness of both the stream order and the algorithm) must

use Ω̃(mn
1
α /p) space.

Theorem 7.6 formalizes Result 7.2. We further prove that the tradeoff achieved in

Theorem 7.6 is in fact tight up to logarithmic factors; this is achieved by performing some

proper modifications to the algorithm of [174]. Formally,

Theorem 7.7. There exists a streaming algorithm that for any integer α ≥ 1, and any

parameter ε > 0, with high probability, computes an (α + ε)-approximation to the stream-

ing set cover problem using (2α + 1) passes over the stream in adversarial order and

Õ(mn1/α/ε2 + n/ε) space.

We emphasize that the main contribution of this section is in proving Theorem 7.6; we

mainly present Theorem 7.7 to prove a matching upper bound on the bounds in Theorem 7.6,

hence establishing a tight space-approximation tradeoff for the streaming set cover problem.

The rest of this section is mainly devoted to the proof of Theorem 7.6. We start by

introducing some notation. In Section 7.6.1, we introduce a hard input distribution for the

set cover problem in adversarial streams. We prove a lower bound for this distribution in

Section 7.6.2. We extend this lower bound to random arrival streams in Section 7.6.3 and

3We remark that this is not just a coincidence and in fact is crucial for performing the typical reduction
to the AND problem used in proving the lower bound for set disjointness, see, e.g., [298] for more details.
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finish the proof of Theorem 7.6. Section 7.6.4 contains the proof of Theorem 7.7.

Notation. To prove Theorem 7.6, we prove a lower bound on the communication com-

plexity of the set cover problem: Fix a (sufficiently large) value for n, m = poly(n), and

α = o(log n/ log log n); in this section, SetCover refers to the problem of α-estimating the

optimal value of the set cover problem with 2m sets4 defined over the universe [n] in the

two-player communication model, whereby the sets are partitioned between Alice and Bob.

7.6.1. A Hard Input Distribution for SetCover

We shall use the well-known set-disjointness communication problem (denoted by Disj) in

proving Theorem 7.6. Fix an integer t ≥ 1; in Disjt, Alice and Bob are given two sets A ⊆ [t]

and B ⊆ [t], and their goal is to return Yes if A ∩B = ∅ and No otherwise.

The following is a known hard distribution for Disjt.

Distribution DDisj. A hard input distribution for Disjt.

• Start with A = B = [t].

• For each element e ∈ [t] independently: w.p. 1/3 drop e from both A and B, w.p.

1/3 drop e from A, and w.p. 1/3 drop e from B.

• Pick Z ∈R {0, 1} uniformly at random. If Z = 1, pick a uniformly at random

element e∗ ∈ [t] and let A and B both contain e∗ (if Z = 0, keep the sets as before).

We further use DY
Disj and DN

Disj to denote, respectively, the distribution of Yes and No in-

stances of Disj on DDisj; in other words, DY
Disj := (DDisj | Z = 0) and DN

Disj := (DDisj | Z = 1).

The following proposition on the (internal) information complexity of Disj is well-known.

Proposition 7.6.1 (cf. [44, 68]). For any δ < 1/2 and any δ-error protocol πDisj of Disjt

on the distribution DDisj, the internal information cost of πDisj is: ICint
DY

Disj

(πDisj) = Ω(t).

Let t be an integer to be determined later; we use the distribution DDisj for Disjt to

design a hard input distribution for SetCover. Before that, we need a couple of definition.

Definition 7.2 (Mapping-extension). For the two sets [t] and [n], we define a mapping-

extension of [t] to [n] as a function f : [t] 7→ 2[n], whereby for each i ∈ [t], f(i) ⊆ [n] is

mapped to n/t unique elements in [n]. Similarly, for any set A ⊆ [t], we abuse the notation

and define f(A) :=
⋃
i∈A f(i).

We are now ready to define our hard input distribution for SetCover.

4To simplify the exposition, we use 2m instead of m as the number of sets.
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Distribution DSC. A hard input distribution for SetCover.

Notation. Let t := 2−15 ·
(

n
logm

) 1
α
and F be the set of all mapping-extensions of [t] to

[n].

• For each i ∈ [m]:

– Let (Ai, Bi) ∼ DN
Disj for Disjt and pick fi ∈R F uniformly at random.

– Let Si = [n] \ fi(Ai) and Ti := [n] \ fi(Bi).
• Pick θ ∈R {0, 1} uniformly at random. If θ = 0, do nothing, otherwise:

– Sample i∗ ∈R [m] uniformly at random.

– Resample (Ai∗ , Bi∗) ∼ DY
Disj for Disjt and redefine Si∗ and Ti∗ as before using

the new pair (Ai∗ , Bi∗).

• Let the input to Alice and Bob be S := {Si}i∈[m] and T := {Ti}i∈[m], respectively.

In the following, we use Z to denote any set in S∪T , i.e., when it is not relevant whether

it belongs to S or T . For a collection of sets Z = {Z1, . . . , Zℓ}, we use C(Z) to denote the

set of elements that Z covers, i.e., C(Z) := ⋃ℓ
i=1 Zi. We say that Z is a singleton-collection,

if for any i ∈ [m], at least one of Si or Ti is not present in Z. In contrast, we say that Z is

a pair-collection, if for all i ∈ [m], Si ∈ Z iff Ti ∈ Z as well.

Remark 7.6.2. A few remarks are in order:

1. W.h.p., for any i ∈ [m], |Si| = 2n/3± o(n) and |Ti| = 2n/3± o(n).
(Proof. follows from the definition of the distribution DDisj and Chernoff bound).

2. For any i ∈ [m], conditioned on |Si| = ℓ, the set Si is chosen uniformly at random

from all ℓ-subsets of [n]; similarly for Ti

3. For any i ∈ [m], Si ∪ Ti = [n] \ fi(Ai ∩Bi). Moreover, whenever (Ai, Bi) ∼ DN
Disj, the

set fi(Ai ∩Bi) is a (n/t)-subset of [n] chosen uniformly at random.

(Proof. the first part follows from the fact that fi maps each j ∈ [t] to unique elements;

the second part is by the random choice of fi ∈R F and the fact that |Ai ∩Bi| = 1).

4. Whenever θ = 0, for any i 6= j, the sets Zi ∈ {Si, Ti} and Zj ∈ {Sj , Tj} are chosen

independent of each other (Zi ⊥ Zj).

Let opt(S, T ) denote the size of an optimal set cover in the instance (S, T ). It follows
from Remark 7.6.2-(3) that whenever θ = 1 in the distribution DSC, opt(S, T ) = 2; simply

take Si∗ and Ti∗ and since Ai∗ ∩Bi∗ = ∅, they cover the whole universe. In the following, we

prove that when θ = 0, opt(S, T ) is relatively large. This implies that any α-approximation

protocol for SetCover has to essentially determine the value of θ. In the next section, we
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prove that this task requires a large communication by the players.

Lemma 7.6.3. For (S, T ) ∼ DSC: Pr (opt(S, T ) > 2α | θ = 0) = 1− o(1).

For the proof of Lemma 7.6.3, we need the following auxiliary lemma that upper bounds

the number of elements that a collection of large random sets can cover. The proof is

standard and is omitted here (but can be found in our paper [27])

Lemma 7.6.4 ([27]). Let S = {S1, . . . , Sk} be a collection of (n − s)-subsets of [n] that

are chosen independently and uniformly at random. Suppose U ⊆ [n] is another set chosen

independent of S; if k = o(es), then,

Pr
(
|U \ (S1 ∪ . . . ∪ Sk)| <

|U |
2
·
( s

2n

)k )
< 2 · exp

(
−|U |

8
·
( s

2n

)k)
.

Proof of Lemma 7.6.3. Let C be any collection of 2α sets from (S, T ). We bound the

probability that C covers the universe [n] entirely, i.e., is a feasible set cover, and then use a

union bound on all possible choices for C to finalize the proof. In the following, we condition

on the event E1 that states that |Si| ≤ 3n/4 and |Ti| ≤ 3n/4 for all i ∈ [m] (which happens

with probability 1− o(1) by Remark 7.6.2-(1)).

Partition the collection C into a pair-collection CP , and a singleton-collection CS (this

partitioning is always possible and unique by definition). We first lower bound the number

of elements that are not covered by the singleton-collection:

Claim 7.6.5. Pr
(∣∣∣C(CS)

∣∣∣ ≤ n
26α+1 | E1

)
≤ 1− 1

mω(α) .

Proof. Let CS := {Z1, . . . , Zk}; clearly k = |CS | ≤ |C| = 2α. Without loss of generality,

we assume that k = 2α. By conditioning on the event E1 and Remark 7.6.2-(2), we know

that each Zi is an ℓi-subset of [n], for some ℓi ≤ 3n/4, chosen uniformly at random from

all ℓi-subsets of [n]. Again without loss of generality, we simply increase the size of each

Zi so that they all have size exactly 3n/4. Moreover, since no two sets Si and Ti are both

simultaneously present in CS , by Remark 7.6.2-(4), all sets in CS are chosen independently.

Consequently, by Lemma 7.6.4, for U = [n], s = n/4, and collection CS , we have,

Pr

(∣∣∣C(CS)
∣∣∣ < n

2
·
(
1

8

)2α

| E1
)
< 2 · exp

(
−n
8
·
(
1

8

)2α
)
.

A simplification of the above equation, plus using the fact that α = o(log n/ log log n), and

hence n/2Θ(α) = ω(α logm), proves the final result. Claim 7.6.5

Let E2 be the event that
∣∣∣C(CS)

∣∣∣ ≥ n
26α+1 ; in the following, we condition on this event.
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Now consider the sets in the pair-collection CP . For any pair (Si, Ti) ∈ CP , we define

Ci := Si∪Ti. Note that there are at most α different possible sets Ci. By Remark 7.6.2-(3),

the sets Ci’s are random sets of size (n − n/t), and by Remark 7.6.2-(4), they are chosen

independent of each other. By Lemma 7.6.4, for U = C(CS), s = n/t, and collection of sets

Ci’s, we have, Pr (U \ (C(CP )) = ∅ | E1, E2) ≤ 2 · exp
(
− n

26α+4 ·
(
1
2t

)α) ≤ 1
m3α . We conclude,

Pr (opt(S, T ) ≤ 2α) ≤ Pr
(
Ē1
)
+ Pr (∃ C that covers [n] | E1)

≤ Pr
(
Ē1
)
+
∑

C

(
Pr
(
Ē2 | E1

)
+ Pr (C(C) = [n] | E1, E2)

)

≤ o(1) +
(
m

2α

)
·
(

1

mω(α)
+

1

m3α

)
= o(1)

proving the lemma. Lemma 7.6.3

7.6.2. The Lower Bound for the Distribution DSC

Throughout this section, fix πSC as a δ-error protocol for SetCover on the distribution DSC.

We first show that protocol πSC is essentially solving m copies of the Disjt problem on the

distribution DDisj (for the parameter t in the distribution DSC) and then use a direct-sum

style argument (similar in spirit to the ones in [46, 66, 74] and Proposition 2.8.5) to argue

that the information cost of πSC shall be m times larger than the information complexity

of solving Disjt. However, to make the direct-sum argument work, we can only consider

πSC on the distribution DSC | θ = 0, i.e., when all underlying Disjt instances are sampled

from DN
Disj. Consequently, we can only lower bound the information cost of πSC based on

the information complexity of Disjt on the distribution DN
Disj.

Lemma 7.6.6. There exists a (δ + o(1))-protocol πDisj for Disjt on the distribution DDisj

such that:

1. ICint
DN

Disj

(πDisj) =
O(1)
m · ICint

DSC
(πSC).

2. ‖πDisj‖ = ‖πSC‖.

Proof. We design the protocol πDisj as follows:

Protocol πDisj. The protocol for solving Disjt using a protocol πSC for SetCover.

Input: An instance (A,B) ∼ DDisj. Output: Yes if A ∩B = ∅ and No otherwise.

1. Using public randomness, the players sample an index i∗ ∈R [m] and m mapping-

extensions f1, . . . , fm independently and uniformly at random from F .
2. Using public randomness, the players sample the sets A<i

∗

and B>i∗ each from DN
Disj
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independently.

3. Using private randomness, Alice samples the sets A>i
∗

such that (Aj , Bj) ∼ DN
Disj

(for all j > i∗); similarly Bob samples the sets B<i∗ .

4. The players construct the collections S := {S1, . . . , Sm} and T := {T1, . . . , Tm} by
setting Si := [n] \ fi(Ai) and Ti := [n] \ fi(Bi) (exactly as in distribution DSC).

5. The players solve the SetCover instance using πSC and output No iff πSC estimates

opt(S, T ) ≤ 2α and Yes otherwise.

It is easy to see that the distribution of instances (S, T ) created in the protocol πDisj

matches the distribution DSC for SetCover exactly. Moreover, by Lemma 7.6.3, opt(S, T ) >
2α w.p. 1 − o(1), whenever (A,B) ∼ DN

Disj and opt(S, T ) = 2 whenever (A,B) ∼ DY
Disj.

Consequently, since πSC is an α-approximation protocol,

Pr (πDisj errs) ≤ Pr (πSC errs) + o(1) ≤ δ + o(1),

and hence πDisj is indeed a (δ + o(1))-error protocol for Disj on the distribution DDisj. More-

over, it is clear that the communication cost of πDisj is at most the communication cost of

πSC. We now prove the bound on the information cost of this protocol.

Our goal is to bound the information cost of πDisj whenever the instance (A,B) is

sampled from DN
Disj. Let F be a random variable denoting the tuple (f1, . . . , fm), I be a

random variable for i∗ and R be the set of public randomness. By Proposition 2.8.2,

ICint
DN

Disj

(πDisj) = I(ΠDisj ;A | B,R) + I(ΠDisj ;B | A,R).

We now bound the first term in the RHS above (the second term is bounded the same).

I(ΠDisj ;A | B,R) = I(ΠDisj ;A | B,R, I) (I is chosen using public randomness)

= E
i∼I

[
I(ΠDisj ;Ai | Bi,A<i,B>i,F, I = i)

]
(R = (A<i,B>i,F, I))

=
1

m
·
m∑

i=1

I(ΠDisj ;Ai | Bi,A<i,B>i,F),

where the last equality is true since conditioned on (A,B) ∼ DN
Disj, all sets Aj , Bj (for

j ∈ [m]) are chosen from DN
Disj and hence are independent of the even “I = i”5.

5We point out that this is the exact reason we need to consider information cost of πDisj on DN
Disj (instead

of DDisj) as otherwise (Aj , Bj)’s are not independent of I = i and hence this equality would not hold.
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Define A := (A1, . . . ,Am) and B := (B1, . . . ,Bm); we can further derive,

I(ΠDisj ;A | B,R) =
1

m
·
m∑

i=1

I(ΠDisj ;Ai | Bi,A<i,B>i,F) ≤
1

m
·
m∑

i=1

I(ΠDisj ;Ai | A<i,B,F)

(Ai ⊥ B<i | B,F and hence we can apply Proposition 2.6.3)

=
1

m
· I(ΠDisj ;A | B,F) =

1

m
· I(ΠDisj ;S | T ,F)

(chain rule of mutual information, Fact 2.6.1-(6))

=
1

m
· I(ΠSC ;S | T , F, θ = 0)

where the second last equality is because A (resp. B) and S (resp. T ) determine each

other conditioned on F , and last equality is because the distribution of set cover instances

and the messages communicated by the players under DN
Disj and under DSC | θ = 0 exactly

matches. Moreover,

I(ΠDisj ;A | B,R) ≤
1

m
· I(ΠSC ;S | T ,F, θ = 0) ≤ 2

m
· I(ΠSC ;S | T ,F, θ)

(by definition of mutual information as Pr (θ = 0) = 1/2)

≤ 2

m
· (I(ΠSC ;S | T ,F) +H(θ)) = 2

m
· I(ΠSC ;S | T ,F) + 2

m
(by Proposition 2.6.5 and Fact 2.6.1-(1))

≤ 2

m
· I(ΠSC ;S | T ) + 2

m
(ΠSC ⊥ F | S, T and hence we can apply Proposition 2.6.4)

By performing the same exact calculation for I(ΠDisj ;B | A,R), we obtain that,

ICint
DN

Disj

(πDisj) ≤
2

m
· (I(ΠSC ;S | T ) + I(ΠSC ; T | S)) + 4

m
=
O(1)

m
· ICint

DSC
(πSC)

where in the last inequality we used the fact that information cost of πSC is at least 1. This

finalizes the proof of the lemma.

Recall that in Lemma 7.6.6, we bound the information cost of πDisj on the distribution

DN
Disj (as opposed to DDisj); in the following we prove that this weaker bound is still sufficient

for our purpose.

Lemma 7.6.7. For any δ < 1/2, any δ-error protocol πDisj for Disjt on DDisj with ‖πDisj‖ =
2o(t) has internal information cost ICint

DN

Disj

(πDisj) = Ω(t).

By Proposition 7.6.1, any δ-error protocol for Disjt on DDisj has IC
int
DY

Disj

(πDisj) = Ω(t) (notice

again that the information cost is measured on the distribution DY
Disj (and not DN

Disj needed
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in Lemma 7.6.7). From this, it is also easy to obtain that ICint
DDisj

(πDisj) = Ω(t). However, to

prove Lemma 7.6.7, we need to lower bound the information cost of πDisj under DN
Disj.

To achieve this, we can relate the information costs ICint
DY

Disj

(πDisj) and ICint
DN

Disj

(πDisj) to

each other. The goal is to argue that if there is a large discrepancy in the information cost

of πDisj on DY
Disj and DN

Disj, then the information cost of the protocol itself can be used to

distinguish between these two cases. We can achieve this goal using an elegant construction

of an “information odometer” by [76]; informally speaking, the odometer allows the players

to “keep track” of the amount of information revealed in a protocol (i.e., the information

cost of the protocol), while incurring a relatively small additional information cost overhead.

Intuitively, we can use the odometer to argue that ICint
DN

Disj

(πDisj) = Θ(ICint
DY

Disj

(πDisj)) as

follows: suppose towards a contradiction that ICint
DN

Disj

(πDisj) = τ for some τ = o(ICint
DY

Disj

(πDisj))

and consider a new protocol π′Disj for Disj on DDisj which runs πDisj and the information

odometer for πDisj in parallel. Whenever the odometer estimates the information cost of

πDisj to be larger than c · τ (for some sufficiently large constant c), the players terminate

the protocol and declare that the answer for Disj is No (as information cost of πDisj on DN
Disj

is typically not much more than τ , while its information cost on DY
Disj is ω(τ)). If the cost

is not estimated more than c · τ by the end of the protocol, the players output the same

answer as in πDisj. As the information cost of the information odometer itself is bounded

by O(τ), this results in protocol π′Disj to have ICint
DDisj

(π′Disj) = o(t), a contradiction. This

argument was first made explicit in [162].

Lemma 7.6.8 ([162]). Fix any function F , constants 0 < ε1 < ε2 < 1/2, input distribution

D, and define DN := D | F−1(No). For every ε1-error protocol π for F on D, there exists

an ε2-error protocol π′ for F on D such that: ICint
D (π′) = O

(
ICint

DN(π) + log ‖π‖
)
.

Equipped with this lemma, we can now prove Lemma 7.6.7 easily.

Proof of Lemma 7.6.7. Let π′Disj be any δ′-error protocol for Disj on DDisj for δ
′ < 1/2. We

first prove that ICint
DDisj

(π′Disj) = Ω(t) using the fact that ICint
DY

Disj

(π′Disj) = Ω(t) as follows:

ICint
DDisj

(π′Disj) = I(Π′
Disj ;A | B) + I(Π′

Disj ;B | A)
≥ I(Π′

Disj ;A | B, θ) + I(Π′
Disj ;B | A, θ)− 2H(θ) (by Proposition 2.6.5)

=
1

2
· ICint

DY
Disj

(π′Disj)− 2 (as DY
Disj = DDisj | θ = 0)

= Ω(t). (by Proposition 7.6.1)

Now suppose towards a contradiction that ICint
DN

Disj

(πDisj) is o(t). We can then apply
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Lemma 7.6.8 for the function F = Disj, ε1 = δ and ε2 = δ′ < 1/2 to obtain a protocol π′Disj

with ICint
DDisj

(π′Disj) = O
(
ICint

DN(πDisj) + log ‖πDisj‖
)
which is o(t); a contradiction.

Theorem 7.8. For any constant δ < 1/2, α = o( logn
log logn), and m = poly(n), the two-way

communication complexity of SetCover is Rδ(SetCover) = Ω̃(mn
1
α ).

Proof. Let t = Θ
(
( n
logm)

1
α

)
and suppose towards a contradiction that there exists a δ-error

protocol πSC for SetCover on the distribution DSC with ‖πSC‖ = o(mt); by Proposition 2.8.3,

ICint
DSC

(πSC) = o(mt) also. By Lemma 7.6.6, this implies that there exists a (δ + o(1))-error

protocol πDisj for Disj on the distribution DDisj such that ICint
DN

Disj

(πDisj) = o(t), and ‖πDisj‖ =
o(mt) ≤ 2o(t) (since m = poly(n) and α = o( logn

log logn)). However, this is in contradiction

with Lemma 7.6.7, implying that ‖πSC‖ = Ω(mt), hence proving the theorem.

As a corollary of Theorem 7.8 (combined with Proposition 2.7.9), we have that the space

complexity of any α-approximation streaming algorithm for set cover that uses polylog(n)

passes on adversarial streams is Ω̃(mn
1
α ). In the next section, we extend this result to

random arrival streams and complete the proof of Theorem 7.6.

7.6.3. Proof of Theorem 7.6

The distribution DSC used in the previous section is quite “adversarial” and as such is not

suitable for proving the lower bound for random arrival streams. In order to prove the

lower bound in Theorem 7.6 for random arrival streams, we need to relax the adversarial

partitioning of the sets in the distribution DSC to a randomized partition.

Distribution Drnd
SC . A random partitioning of the distribution DSC

• Sample the collections (S, T ) ∼ DSC.

• Assign each set in S ∪ T to Alice w.p. 1/2 and the remainings to Bob.

We show that even this seemingly easier distribution still captures all the “hardness”

of distribution DSC. Formally,

Lemma 7.6.9. For any constant δ < 1/4, α = o( logn
log logn), and m = poly(n), the distribu-

tional communication complexity of SetCover is DDrnd
SC
,δ(SetCover) = Ω̃(mn

1
α ).

Proof. Let S = {S1, . . . , Sm} and T = {T1, . . . , Tm} be the collections of sets sampled from

DSC in the distribution Drnd
SC . For a sampled instance in Drnd

SC , we say that the index i ∈ [m]

is good iff Si is given to one player and Ti to another. Let G ⊆ [m] be the collection of

all good indices. The index i∗ is chosen independent of the random partitioning in Drnd
SC ,

and hence the probability that i∗ ∈ G is exactly |G| /m. Let E denote the event that
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|G| ≥ m/2− o(m) and i ∈ G. We have,

Pr (E) = Pr (|G| ≥ m/2− o(m)) · Pr (i∗ ∈ G | |G| ≥ m/2− o(m))

≥ Pr (|G| ≥ (1− o(1)) · E [G]) · 1− o(1)
2

≥ (1− o(1)) · 1
2
,

where the last inequality is by Chernoff bound. Now fix a δ-error protocol πSC for SetCover

on the distribution Drnd
SC . Then,

Pr (πSC errs | E) ≤ Pr (πSC errs)

Pr (E) ≤ 2δ + o(1) (7.4)

This in particular implies that there exists a set G⋆ ⊆ [n] with |G⋆| ≥ m/2 − o(m),

such that conditioned on the set of good indices being G⋆ and conditioned on i∗ ∈ G⋆, the
probability that πSC errs is at most 2δ+ o(1). Note that conditioned on the aforementioned

events, the index i∗ is chosen from G⋆ uniformly at random. This implies that the distribu-

tion of the input given to Alice and Bob limited to the sets in G⋆ matches the distribution

DSC (with the number of the sets being 2 · |G⋆| instead of 2m). We can then use this to

embed an instance of SetCover over the distribution DSC into the sets G⋆ and obtain a

protocol π′SC for DSC.

More formally, the protocol π′SC works as follows: Given an instance (S ′, T ′) sampled

from DSC (with |S ′| = |T ′| = |G⋆|), Alice and Bob use public coins to complete their

input (i.e., increase the number of the sets to 2m) by sampling from the distribution Drnd
SC

conditioned on G⋆ (this is possible without any communication as the sets outside G⋆ are

sampled independent of the sets in G⋆). The players then run the protocol πSC on this new

instance and return the same answer as this protocol. As the distribution of the SetCover

instances sampled in the protocol π′SC matches the distribution Drnd
SC conditioned on G⋆ and

i∗ ∈ G⋆, by Eq (7.4), the probability that π′SC errs is at most 2δ + o(1). Since δ < 1/4,

we obtain a δ′-error protocol for SetCover on the distribution DSC with 2 |G⋆| = Θ(m) sets

and universe of size n, for a constant δ′ < 1/2. Consequently, by Theorem 7.8, ‖πSC‖ =

‖π′SC‖ = Ω̃(|G⋆| · n 1
α ) = Ω̃(mn

1
α ), proving the lemma.

Proof of Theorem 7.6. Fix a p-pass s-space streaming algorithm ALG for the set cover prob-

lem over random arrival streams that outputs an α-approximation w.p. at least 1 − δ for

δ < 1/4. One can easily turn ALG into a δ-error protocol for SetCover on the distribution

Drnd
SC : Alice and Bob take a random permutation of their inputs and then treat their com-

bined input as a set stream and run ALG on that. The random partitioning of the input

plus the random permutation taken by the players ensure that the constructed stream is a

random permutation of the input sets. Consequently, this protocol is a δ-error protocol for
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SetCover on Drnd
SC that uses O(p · s) bits of communication. Since δ < 1/4, by Lemma 7.6.9,

p · s = Ω̃(mn
1
α ), proving the theorem.

7.6.4. An α-Approximation Algorithm for Streaming Set Cover

In this section, we prove the optimality of the lower bound in Theorem 7.6 by establishing

a matching upper bound (i.e. Theorem 7.7). As stated earlier, our algorithm is a simple

modification of the algorithm of [174]. In particular, we obtain our improved algorithm by

using a one-shot pruning step as opposed to the iterative pruning of [174], and employing

a more careful element sampling (compare the bounds in Lemma 7.6.13 in this paper with

Lemma 2.5 in [174]).

In the following, we assume that we are given a value õpt which is a (1+ε)-approximation

of opt, i.e., the optimal solution size of the given instance. This is without loss of generality

as we can run the algorithm in parallel for O(log n/ε) guesses for õpt ∈ [1, n] and return

the smallest computed set cover among all parallel runs.

The general idea behind the algorithm is as follows: we know that õpt sets are enough

to cover the whole universe [n]; hence, if we find a (1− ρ)-approximate k-cover of the input

sets for the parameter k = õpt and ρ = 1/n1/α, we can reduce the number of uncovered

elements by a factor of n1/α. Repeating this process α times then results in a collection

of at most α · õpt sets that covers the whole universe, i.e., an α-approximate set cover. It

is worth mentioning that this is the general principle behind most (but not all) streaming

algorithms for set cover, see, e.g. [174, 50, 281, 116].

Notice that we can readily use the maximum coverage streaming algorithms of [247, 50]

as a sub-routine to find the approximate k-cover above; however, doing so would result

in a sub-optimal algorithm for set cover as these algorithms have space dependency of (at

least) Ω(m/ρ2) = Ω(mn2/α) (even ignoring the dependence on k, i.e., õpt). In fact, as we

prove in the next section (see Result 7.3), any (1− ρ)-approximate k-cover algorithm needs

Ω(m/ρ2) space in general. To bypass this, we crucially use the fact that the aforementioned

maximum coverage instances have the additional property that the optimal answer is the

whole universe and hence the element sampling technique of [174] (and similar ones in [247,

50]) can be improved for this special case. We now provide the algorithm.

Algorithm 1. An α-approximation algorithm for the streaming set cover problem.

Input. A stream S = (S1, . . . , Sm) of subsets of [n], and a (1 + ε)-approximation õpt of

opt(S).
Output. A collection of (1 + ε) · α · õpt sets that cover the universe.
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1. Let U ← [n] and SOL← ∅.
2. Make a single pass over the stream and if |Si ∩ U | ≥ n/(ε · õpt), then:

(a) SOL← SOL ∪ {i} and U ← U \ Si.
3. For j = 1 to α iterations:

(a) Let Usmpl be a subset of U chosen by picking each element independently and

w.p. p = 16 · õpt · logm/n1−1/α.

(b) Make a single pass over the stream and for all i ∈ [m], store S′
i = Si ∩Usmpl in

the memory.

(c) Find an optimal set cover opt
′ of the instance (S′

1, . . . , S
′
m) and let SOL ←

SOL ∪ opt
′.

(d) Make another pass over the stream and let Usmpl ← Usmpl \
⋃
i∈opt′ Si.

4. Return SOL as a set cover of the input instance.

We start by bounding the space requirement of Algorithm 1 .

Lemma 7.6.10. Algorithm 1 requires Õ(mn1/α/ε+ n) space w.p. at least 1− 1/m2.

Proof. It is easy to see that maintaining SOL and U requires, respectively, O(m) and O(n)

space. In the following, we analyze the space required for storing the sets (S′
1, . . . , S

′
m).

After the first pass of the algorithm, no set contains more than n/(ε · õpt) elements in U .

Fix a set Si ∈ S; we have,

E |Si ∩ Usmpl| = |Si| · p ≤ n/(ε · õpt) ·
(
16 · õpt · logm/n1−1/α

)
= 16 · n1/α · logm/ε

Hence, by Chernoff bound, w.p. 1− 1/m3, |Si ∩ Usmpl| = Õ(n1/α/ε). The final bound now

follows from this and a union bound on all m sets in S.

The following two lemmas establish the correctness of the algorithm.

Lemma 7.6.11. Algorithm 1 picks at most (α+ ε) · õpt sets in SOL.

Proof. It is immediate to see that in the first pass, the algorithm picks at most ε · õpt sets
as otherwise U would be empty. Moreover, in each subsequent α iterations, the algorithm

picks at most õpt sets since (S′
1, . . . , S

′
m) has a set cover of size at most õpt (as the original

instance had a set cover of size ≤ õpt).

Lemma 7.6.12. The set SOL in Algorithm 1 is a feasible set cover of [n] w.p. 1− 1/m.

To prove Lemma 7.6.12, we use the following property of element sampling that first

appeared in [116] (similar ideas also appear in [247, 174]); for completeness we provide a
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self-contained proof of this lemma here.

Lemma 7.6.13. Let 0 < ρ < 1 be a parameter and S = (S1, . . . , Sm) be a collection of m

subsets of [n] with opt(S) ≤ k. Suppose Usmpl is a subset of [n] obtained by picking each

element independently and w.p. p ≥ 16 ·k · logm/(ρ ·n); then, w.p. 1−1/m2, any collection

of k sets in S that covers Usmpl entirely also covers at least (1− ρ) · n elements in [n].

Proof. Fix a collection C of k subsets in S that covers less than (1− ρ) · n elements in [n].

The probability that this collection covers Usmpl entirely is equal to the probability that

none of the ρ · n elements in [n] that are not appearing in C are sampled in Usmpl. Hence,

Pr (C covers Usmpl) ≤ (1− p)ρ·n ≤ exp (− (16 · k · logm/(ρ · n)) · (ρ · n)) ≤ 1/m8k

Taking a union bound over all
(
m
k

)
≤ mk possible choices for C finalizes the result.

Proof of Lemma 7.6.12. In each of the α iterations, Algorithm 1 implements the sampling

in Lemma 7.6.13 with the parameters k = õpt, and ρ = n−1/α. Hence, after each iteration,

the number of uncovered elements in U reduces to |U | /n1/α w.p. 1− 1/m2. Consequently,

by taking a union bound over the α ≤ m iterations, after the α iterations, number of

uncovered elements reduces to less than 1, hence proving the lemma.

Proof of Theorem 7.7. We can run Algorithm 1 in parallel for O(log n/ε) possible guesses

for õpt. By Lemma 7.6.10, the space requirement of this algorithm is Õ(1/ε)·Õ(mn1/α/ε+n)

as desired. Moreover, consider the guess: opt ≤ õpt ≤ (1 + ε) · õpt. For this choice, we

can apply Lemma 7.6.11 and Lemma 7.6.12 and obtain that the returned solution is an

(α + O(ε))-approximation of the optimal set cover. Since the algorithm can make sure

that the returned solution is always feasible, returning the smallest set cover among all

guesses for õpt then ensures that the returned answer is an (α + O(ε)) approximation.

Re-parameterizing ε by a constant factor, finalizes the proof.

7.7. Space-Approximation Tradeoff for Multi-pass Coverage

We now prove a space-approximation tradeoff for maximum coverage, formalizing Result 7.3.

Theorem 7.9. For any ε = ω(1/
√
n), m = poly(n), and p ≥ 1, any randomized algorithm

that can make p passes over any collection of m subsets of [n] presented in a random order

stream and outputs a (1 + ε)-approximation to the optimal value of the maximum coverage

problem for k = 2 with a sufficiently large constant probability (over the randomness of both

the stream order and the algorithm) must use Ω̃(m/(ε2 · p)) space.

Similar to previous section, we prove Theorem 7.9 by considering the communication
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complexity of the maximum coverage problem: Fix a (sufficiently large) n, ε = ω(1/
√
n)

and m = poly(n); MaxCover refers to the communication problem of (1+ ε)-approximating

the optimal value of the maximum coverage problem with 2m sets defined over the universe

[n] and parameter k = 2, in the two-player communication model.

Our lower bound for MaxCover is obtained by reducing this problem to multiple in-

stances of the gap-hamming-distance problem via a similar distribution as DSC (using an

additional simple gadget).

The Gap-Hamming-Distance Problem. Recall the exact definition of the gap-hamming-

distance problem from Section 2.7.2. This problem was originally introduced by [188] and

has been studied extensively in the literature (see [88] and references therein). We use the

following result on the information complexity of this problem proven in [69].

Lemma 7.7.1 ([69]). Let U be the uniform distribution on pairs of subsets of [t] (chosen

independently); there exists an absolute constant δ > 0 such that for any δ-error protocol

πGHD ICint
U (πGHD) = Ω(t).

For our purpose, we need to consider the following distribution DGHD for GHD instead

of the uniform distribution. Let a, b ∈ [t] be two parameters to be determined later6. Define:

• DY
GHD: distribution of instances (A,B) ∼ U | ∆(A,B) ≥ t/2 +

√
t, |A| = a, |B| = b.

• DN
GHD: distribution of instances (A,B) ∼ U | ∆(A,B) ≤ t/2−

√
t, |A| = a, |B| = b.

• DGHD := 1
2 · DY

GHD + 1
2 · DN

GHD.

We use Lemma 7.7.1 to prove the following result on the information cost of δ-error

protocols on the distribution DGHD, which could be independently useful also. The following

lemma can be proven by combining standard ideas to find the values a and b and using the

same information odometer argument as Lemma 7.6.7 for disjointness. We omit the proof

here and instead refer the interested reader to our paper [27].

Lemma 7.7.2 ([27]). Let δ > 0 be a sufficiently small constant and πGHD be a δ-error

protocol for GHDt on DGHD with ‖πGHD‖ = 2o(t); then, ICint
DN

GHD

(πGHD) = Ω(t).

7.7.1. Communication Complexity of MaxCover

We are now ready to prove a lower bound on the communication complexity of theMaxCover

problem. To do so, we propose the following distribution.

6Exact values of a and b are not important and are hence only determined in the proof of Lemma 7.7.2.
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Distribution DMC. A hard input distribution for MaxCover.

Notation. Let t1 := 1/ε2, t2 := 10 · t1, U1 := [t1] and U2 := [t1 + 1, t1 + t2].

• For each i ∈ [m]:

– Let (Ai, Bi) ∼ DN
GHD for GHDt1 on the universe U1.

– Create Ci, Di ⊆ U2, by assigning each element in U2 w.p. 1/2 to Ci and o.w.

to Di.

– Let Si := Ai ∪ Ci and Ti := Bi ∪Di.

• Pick θ ∈R {0, 1} uniformly at random. If θ = 0, do nothing, otherwise:

– Sample i∗ ∈R [m] uniformly at random.

– Resample (Ai∗ , Bi∗) ∼ DY
GHD for GHDt1 and redefine Si∗ and Ti∗ as before using

the new pair (Ai∗ , Bi∗) (do not change Ci and Di).

• Let the input to Alice and Bob be S := {Si}i∈[m] and T := {Ti}i∈[m], respectively.

Define opt(S, T ) as the value of the optimal solution of the maximum coverage problem

(for the parameter k = 2) for the instance (S, T ). We argue that opt(S, T ) differs by a

(1± ε) factor depending on the choice of θ in the distribution.

Lemma 7.7.3. Assuming ε = o(1/ log n), there exists a fixed τ ∈ [n] such that for any

instance (S, T ) ∼ DMC:

Pr (opt(S, T ) ≥ (1 + Θ(ε)) · τ | θ = 1) = 1− o(1)
Pr (opt(S, T ) ≤ (1−Θ(ε)) · τ | θ = 0) = 1− o(1)

Proof. We first prove that, any (1+ε)-approximate 2-cover in this distribution always has to

pick a pair of (Si, Ti) sets (for some i ∈ [m]). This is achieved by considering the projection

of the sets on the universe U2.

Claim 7.7.4. W.p. 1− o(1):

1. For any i ∈ [m], |Si ∪ Ti| ≥ t2.

2. For any i 6= j ∈ [m], any Zi ∈ {Si, Ti}, and Zj ∈ {Sj , Tj}, |Zi ∪ Zj | ≤ (3/4+ 0.2) · t2.

Proof. Part (1) follows immediately from the fact that U2 is partitioned between Si and Ti,

and that |U2| = t2. We now prove Part (2). To do so, we prove that Zi ∪Zj can only cover

(essentially) 3/4 fraction of U2 w.h.p and since the rest of Zi ∪ Zj is a subset of U1 with

|U1| ≤ 0.1 · t2, we get the final result.

For any element e ∈ U2, define an indicator random variable Xe ∈ {0, 1} where Xe = 1

iff e ∈ Zi∪Zj . Since i 6= j, the elements in Zi and Zj that are in U2 are chosen independent of
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each other, and hence PrXe = 1 = 1−(1/2)2 = 3/4. Define X :=
∑

e∈U2
Xe; we have EX =

3/4 · t2 and since Xe variables are independent, by Chernoff bound, PrX ≥ EX + 0.1 · t2 ≤
exp (−c · t2) = o(1/m2) (as t2 = ω(log n) and m = poly(n)). The final result now follows

from a union bound over all possible (≤ (2m)2) pairs. Claim 7.7.4

Now consider a pair (Si, Ti) for some i ∈ [m] and note that |Si ∪ Ti| = |U2|+ |Ai ∪Bi| =
t2 + |Ai ∪Bi|; hence we can simply focus on Ai ∪ Bi ⊆ U1 part of Si ∪ Ti. Moreover, we

have that, |Ai ∪Bi| = 1
2 · (|Ai|+ |Bi|+∆(Ai, Bi)) =

1
2 · (a+ b+∆(Ai, Bi)) where we used

the fact that in the distribution DGHD, |Ai| = a and |Bi| = b always.

Consequently, whenever (Ai, Bi) ∼ DN
GHD, we have,

|Si ∪ Ti| = t2 + |Ai ∪Bi| ≤ t2 + (a+ b)/2 + t1/4−
√
t1/2 = (1−Θ(ε)) · τ

for τ := t2 + (a+ b)/2 + t1/4. Similarly, whenever (Ai, Bi) ∼ DY
GHD,

|Si ∪ Ti| ≥ t2 + |Ai ∪Bi| ≥ t2 + (a+ b)/2 + t1/4 +
√
t1/2 = (1 + Θ(ε)) · τ

Combining these bounds with Claim 7.7.4 finalizes the proof. Lemma 7.7.3

Having proved Lemma 7.7.3, we can use any (1+ε)-approximation protocol forMaxCover

to determine the parameter θ in the distribution DMC (by a simple re-parametrizing of the ε

by a constant factor). This allows us to prove the following lemma. The proof is essentially

identical to that of Lemma 7.6.6 in Section 7.6.2 and is hence omitted.

Lemma 7.7.5. Let πMC be a δ-error protocol for MaxCover on DMC. There exists a

(δ + o(1))-protocol πGHD for GHDt1 on the distribution DGHD such that:

1. ICint
DN

GHD

(πGHD) =
O(1)
m · ICint

DMC
(πMC).

2. ‖πGHD‖ = ‖πMC‖.

Theorem 7.10. For sufficiently small constant δ > 0, and ω(1/
√
n) ≤ ε ≤ o(1/ log n), and

m = poly(n), communication complexity of MaxCover is Rδ(MaxCover) = Ω(m/ε2).

Proof. Suppose there exists a δ-error protocol πMC for MaxCover on DMC for a sufficiently

small constant δ with ‖πGHD‖ = o(m/ε2); by Proposition 2.8.3, ICint
DMC

(πMC) = o(m/ε2) as

well. Hence, by Lemma 7.7.5, we obtain a (δ+o(1))-error protocol πGHD for GHDt1 on DGHD

with ‖πGHD‖ = o(m/ε2) and ICint
DN

GHD

(πGHD) = o(1/ε2) = o(t1). However, since ‖πGHD‖ =

o(m/ε2) = 2o(t1) as m = poly(n) and t1 = ω(log n), we can now apply Lemma 7.7.2 and

argue that ICint
DN

GHD

(πGHD) is Ω(t1) (by taking δ smaller than the bounds in the Lemma 7.7.2);

a contradiction with the information cost of πGHD obtained by Lemma 7.7.5.
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Chapter 8

Submodular Maximization in the Distributed

Communication Model

In this chapter, we study the general problem of submodular maximization subject to cardi-

nality constraint and its canonical example, the maximum coverage problem. Throughout

this section, we mostly focus on the maximum coverage problem in the distributed commu-

nication model but our results have several interesting ramifications for general submodular

maximization problems as well as streaming and MPC models studied in this thesis. Re-

call the definition of maximum coverage and the distributed communication model from

Sections 2.4 and 1.1.2, respectively. In order to avoid confusion, throughout this chapter,

we use k to denote the target number of sets in the maximum coverage problem and use p

(instead of the usual k) to denote the number of machines in the distributed model. The

materials in this chapter are based on [31].

Previous results for maximum coverage in the distributed model can be divided into

two main categories: one on hand, we have communication efficient protocols that only

need Õ(n) communication (n denotes the size of the universe) and achieve a constant factor

approximation, but require a large number of rounds of Ω(p) [40, 247]. On the other

hand, we have round efficient protocols that achieve a constant factor approximation in

O(1) rounds of communication, but incur a large communication cost k · mΩ(1) [223] (m

denotes the number of the sets). This state-of-the-affairs, namely, communication efficient

protocols that require a large number of rounds, or round efficient protocols that require a

large communication cost, raises the following natural question:

Does there exist a truly efficient distributed protocol for maximum coverage, that

is, a protocol that simultaneously achieves Õ(n) communication cost, O(1) round

complexity, and gives a constant factor approximation?

We refute the possibility of this optimistic scenario by presenting a tight tradeoff be-

tween the three main measures of efficiency for the distributed coverage problem: the ap-

proximation ratio, the communication cost, and the number of rounds. As a corollary of

our results, we also obtain the first multi-pass dynamic streaming lower bounds for any

optimization problem, as well as a simple MPC algorithm for submodular maximization

subject to cardinality constraint that matches the best known bounds in the literature.

HighLights of Our Contributions

In this chapter, we will establish:
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• A new framework for establishing communication complexity lower bounds for bounded-

round protocols in the multiparty communication model (Section 8.4).

• Tight upper and lower bounds on the round-complexity of the distributed maximum

coverage and submodular maximization subject to cardinality constraint (Sections 8.5

and 8.6).

• Dynamic streaming and MPC algorithms and lower bounds for maximum coverage

and submodular maximization subject to cardinality constraint (Section 8.7).

8.1. Background

A common paradigm for designing scalable algorithms for problems on massive data sets is to

distribute the computation by partitioning the data across multiple machines interconnected

via a communication network. The machines can then jointly compute a function on the

union of their inputs by exchanging messages. A well-studied and important case of this

paradigm is the distributed communication model we introduced in Section 1.1.2. In this

model, the computation proceeds in rounds, and in each round, all machines simultaneously

send a message to a central coordinator who then communicates back to all machines a

summary to guide the computation for the next round. At the end of the last round,

the coordinator outputs the answer. Main measures of efficiency in this model are the

communication cost and the round complexity.

The distributed coordinator model (and the closely related message-passing model1) has

been studied extensively in recent years (see, e.g., [268, 67, 302, 303, 304], and references

therein). Traditionally, the focus in this model has been on optimizing the communication

cost and round complexity issues have been ignored. However, in recent years, motivated

by application to big data analysis such as MapReduce computation, there have been a

growing interest in obtaining round efficient protocols for various problems in this model

(see, e.g., [10, 209, 186, 165, 249, 112, 35, 166, 30]).

Submodular maximization subject to cardinality constraint and its illustrative example,

maximum coverage, have been studied extensively in models of computation for massive

datasets including in distributed communication model [186, 250, 249, 112], MPC model [99,

63, 223, 113, 51], and the streaming model [281, 87, 40, 50, 247, 129, 261, 38, 50, 94, 247, 27]

(this is by no means a comprehensive list of previous results).

Prior to our work, the only known lower bound for distributed maximum coverage in

particular and submodular maximization in general was due to McGregor and Vu [247] who

showed an Ω(m) communication lower bound for any protocol that achieves a better than(
e
e−1

)
-approximation (regardless of number of rounds and even if the input is randomly

1In absence of any restriction on round complexity, these two models are equivalent; see Section 1.1.2.
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distributed) (see also our own results in Chapter 7). Indyk et al. [186] also showed that no

composable coreset (a restricted family of single round protocols) can achieve a better than

Ω̃(
√
k) approximation without communicating essentially the whole input (which is known

to be tight [112]). However, no super constant lower bounds on approximation ratio were

known for this problem for arbitrary protocols even for one round of communication.

In the dynamic (set) streaming model, at each step, either a new set is inserted or

a previously inserted set is deleted from the stream. The goal is to solve the maximum

coverage problem on the sets that are present at the end of the stream. A semi-streaming

algorithm is allowed to make one or a small number of passes over the stream and use

only O(n · poly {logm, log n}) space to process the stream and compute the answer. The

streaming setting for the maximum coverage problem and the closely related set cover

problem has been studied extensively in recent years [281, 108, 38, 87, 128, 116, 40, 174,

90, 32, 50, 94, 247, 27, 129] (see Chapter 7 for a summary of these works). Previous work

considered this problem in insertion-only streams and more recently in the sliding window

model, however, no non-trivial results were known for this problem in dynamic streams.

8.2. Our Results and Techniques

Our first result is a negative resolution of our motivating question on existence of commu-

nication, round, and approximation efficient distributed algorithms for maximum coverage.

In particular, we show that,

Result 8.1. For any integer r ≥ 1, any r-round protocol for distributed maximum

coverage either incurs k ·mΩ(1/r) communication per machine or has an approximation

factor of kΩ(1/r).

Prior to our work, no super constant lower bounds on approximation ratio were known

for this problem for arbitrary protocols even for one round of communication. Our result on

the other hand implies that to achieve any constant factor approximation with any O(nc)

communication protocol (for a fixed constant c > 0), Ω
(

log k
log log k

)
rounds of communication

are required.

In establishing Result 8.1, we introduce a general framework for proving communication

complexity lower bounds for bounded round protocols in the distributed coordinator model.

This framework, formally introduced in Section 8.4, captures many of the existing multi-

party communication complexity lower bounds in the literature for bounded-round proto-

cols including [119, 220, 35, 33] (for one round a.k.a simultaneous protocols), and [19, 25]

(for multi-round protocols), including our own lower bounds in Chapters 3. We believe

our framework will prove useful for establishing distributed lower bound results for other

problems, and is thus interesting in its own right.
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We complement Result 8.1 by giving protocols that show that its bounds are tight.

Result 8.2. For any integer r ≥ 1, there exist r-round protocols that achieve:

1. an (almost)
(

e
e−1

)
-approximation with k ·mO(1/r) communication per machine,

2. an O(r · k1/r+1)-approximation with Õ(n) communication per machine.

Results 8.1 and 8.2 together provide a near complete understanding of the tradeoff

between the approximation ratio, the communication cost, and the round complexity of

protocols for the distributed maximum coverage problem for any fixed number of rounds.

The first protocol in Result 8.2 is quite general in that it works for maximizing any

monotone submodular function subject to a cardinality constraint. Previously, it was known

how to achieve a 2-approximation distributed algorithm for this problem with mO(1/r)

communication and r rounds of communication [223]. However, the previous best
(

e
e−1

)
-

approximation distributed algorithm for this problem with sublinear in m communication

due to Kumar et al. [223] requires at least Ω(log n) rounds of communication. As noted

above, the
(

e
e−1

)
is information theoretically the best approximation ratio possible for any

protocol that uses sublinear in m communication [247].

The second protocol in Result 8.2 is however tailored heavily to the maximum coverage

problem. Previously, it was known that an O(
√
k) approximation can be achieved via

Õ(n) communication [112] per machine, but no better bounds were known for this problem

in multiple rounds under poly(n) communication cost. It is worth noting that since an

adversary may assign all sets to a single machine, a communication cost of Õ(n) is essentially

best possible bound. We now elaborate on some applications of our results.

Dynamic streams. Our Results 8.1 and 8.2 imply the first upper and lower bounds for

maximum coverage in dynamic streams. Result 8.1 together with the connection between

distributed lower bounds and dynamic streams [14] (Proposition 2.7.11) proves that any

semi-streaming algorithm for maximum coverage in dynamic streams that achieves any

constant approximation requires Ω
(

logn
log logn

)
passes over the stream. This is in sharp con-

trast with insertion-only streams in which semi-streaming algorithms can achieve (almost)

2-approximation in only a single pass [40] or (almost)
(

e
e−1

)
-approximation in a constant

number of passes [247] (constant factor approximations are also known in the sliding win-

dow model [94, 129]). To our knowledge, this is the first multi-pass dynamic streaming

lower bound that is based on the characterization of [14]. Moreover, as maximum coverage

is a special case of submodular maximization (subject to cardinality constraint), our lower

bound immediately extends to this problem and settles an open question of [129].

We complement this result by showing that one can implement the first algorithm in

Result 8.2 using proper linear sketches in dynamic streams, which imply an (almost)
(

e
e−1

)
-
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approximation semi-streaming algorithm for maximum coverage (and monotone submodular

maximization) in O(logm) passes. As a simple application of this result, we can also obtain

an O(log n)-approximation semi-streaming algorithm for the set cover problem in dynamic

stream that requires O(logm · log n) passes over the stream.

MPC model. Proving round complexity lower bounds in the MapReduce framework turns

out to be a challenging task (see Section 1.1.3) As a result, most previous work on lower

bounds concerns either communication cost (in a fixed number of rounds) or specific classes

of algorithms (for round lower bounds); see, e.g., [3, 53, 269, 189] (see [277] for more details).

Our results contribute to the latter line of work by characterizing the power of a large family

of MapReduce algorithms for maximum coverage.

Many existing techniques for MapReduce algorithms utilize the following paradigm

which we call the sketch-and-update approach: each machine sends a summary of its input,

i.e., a sketch, to a single designated machine which processes these sketches and computes

a single combined sketch; the original machines then receive this combined sketch and

update their sketch computation accordingly; this process is then continued on the updated

sketches. Popular algorithmic techniques belonging to this framework include composable

coresets (e.g., [40, 43, 49, 186]), the filtering method (e.g., [225]), linear-sketching algorithms

(e.g., [10, 209, 9]), and the sample-and-prune technique (e.g., [223, 184]), among many

others.

We use Result 8.1 to prove a lower bound on the power of this approach for solving

maximum coverage in the MapReduce model. We show that any MapReduce algorithm

for maximum coverage in the sketch-and-update framework that uses s = mδ memory per

machine requires Ω(1δ ) rounds of computation. Moreover, both our algorithms in Result 8.2

belong to the sketch-and-update framework and can be implemented in the MapReduce

model. In particular, the round complexity of our first algorithm for monotone submodular

maximization (subject to cardinality constraint) in Result 8.2 matches the best known

algorithm of [113] with the benefit of using sublinear communication (the algorithm of [113],

in each round, incurs a linear (in input size) communication cost). We remark that the

algorithm in [113] is however more general in that it supports a larger family of constraints

beside the cardinality constraint we study in this paper.

8.3. Technical Overview

Lower bounds (Result 8.1). Let us start by sketching our proof for simultaneous pro-

tocols. We provide each machine with a collection of sets from a family of sets with small

pairwise intersection such that locally, i.e., from the perspective of each machine, all these

sets look alike. At the same time, we ensure that globally, one set in each machine is special ;

think of a special set as covering a unique set of elements across the machines while all other
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sets are mostly covering a set of shared elements. The proof now consists of two parts: (i)

use the simultaneity of the communication to argue that as each machine is oblivious to

identity of its special set, it cannot convey enough information about this set using limited

communication, and (ii) use the bound on the size of the intersection between the sets to

show that this prevents the coordinator to find a good solution.

The strategy outlined above is in fact at the core of many existing lower bounds for

simultaneous protocols in the coordinator model including [119, 220, 35, 33] (a notable

exception is the lower bound of [33] on estimating matching size in sparse graphs). For

example, to obtain the hard input distributions in [220, 35] for the maximum matching

problem, we just need to switch the sets in the small intersecting family above with induced

matchings in a Ruzsa-Szemerédi graph [279] (see also [18] for more details on these graphs).

The first part of the proof that lower bounds the communication cost required for finding

the special induced matchings (corresponding to special sets above), remains quite similar;

however, we now need an entirely different argument for proving the second part, i.e., the

bound obtained on the approximation ratio. This observation raises the following question:

can we somehow “automate” the task of proving a communication lower bound in the

arguments above so that one can focus solely on the second part of the argument, i.e.,

proving the approximation lower bound subject to each machine not being able to find its

special entity, e.g., sets in the coverage problem and induced matchings in the maximum

matching problem?

We answer this question in the affirmative by designing a framework for proving com-

munication lower bounds of the aforementioned type. We design an abstract hard input

distribution using the ideas above and prove a general communication lower bound in this

abstraction. This reduces the task of proving a communication lower bound for any spe-

cific problem to designing suitable combinatorial objects that roughly speaking enforce the

importance of “special entities” discussed above. We emphasize that this second part may

still be a non-trivial challenge; for instance, lower bounds for matchings in [220, 35] rely on

Ruzsa-Szemerédi graphs to prove this part. Nevertheless, automating the task of proving a

communication lower bound in our framework allows one to focus solely on a combinatorial

problem and entirely bypass the communication lower bounds argument.

We further extend our framework to multi round protocols by building on the recent

multi-party round elimination technique of [19] and its extension in [25]. At a high level,

in the hard instances of r-round protocols, each machine is provided with a collection of

instances of the same problem but on a “lower dimension”, i.e., defined on a smaller number

of machines and input size. One of these instances is a special one in that it needs to be

solved by the machines in order to solve the original instance. Again, using the simultaneity

of the communication in one round, we show that the first round of communication cannot

212



reveal enough information about this special instance and hence the machines need to

solve the special instance in only r − 1 rounds of communication, which is proven to be

hard inductively. Using the abstraction in our framework allows us to solely focus on the

communication aspects of this argument, independent of the specifics of the problem at

hand. This allows us to provide a more direct and simpler proof than [19, 25], which is

also applicable to a wider range of problems (the results in [19, 25] are for the setting

of combinatorial auctions). However, although simpler than [19, 25], this proof is still

far from being simple - indeed, it requires a delicate information-theoretic argument (see

Section 8.4 for further details). This complexity of proving a multi-round lower bound in

this model is in fact another motivation for our framework. To our knowledge, the only

previous lower bounds specific to bounded round protocols in the coordinator model are

those of [19, 25]; we hope that our framework facilitates proving such lower bounds in this

model (understanding the power of bounded round protocols in this model is regarded as

an interesting open question in the literature; see, e.g., [303]).

Finally, we prove the lower bound for maximum coverage using this framework by

designing a family of sets which we call randomly nearly disjoint ; roughly speaking the

sets in this family have the property that any suitably small random subset of one set

is essentially disjoint from any other set in the family. A reader familiar with [90] may

realize that this definition is similar to the edifice set-system introduced in [90]; the main

difference here is that we need every random subsets of each set in the family to be disjoint

from other sets, as opposed to a pre-specified collection of sets as in edifices [90]. As a

result, the algebraic techniques of [90] do not seem suitable for our purpose and we prove

our results using different techniques. The lower bound then follows by instantiating the

hard distribution in our framework with this family for maximum coverage and proving the

approximation lower bound.

Upper bounds (Result 8.2). We achieve the first algorithm in Result 8.2, namely an(
e
e−1

)
-approximation algorithm for maximum coverage (and submodular maximization),

via an implementation of a thresholding greedy algorithm (see, e.g., [41, 90]) in the dis-

tributed setting using the sample-and-prune technique of [223] (a similar thresholding greedy

algorithm was used recently in [247] for streaming maximum coverage). The main idea in

the sample-and-prune technique is to sample a collection of sets from the machines in each

round and send them to the coordinator who can build a partial greedy solution on those

sets; the coordinator then communicates this partial solution to each machine and in the

next round the machines only sample from the sets that can have a substantial marginal

contribution to the partial greedy solution maintained by the coordinator. Using a differ-

ent greedy algorithm and a more careful choice of the threshold on the necessary marginal

contribution from each set, we show that an
(

e
e−1

)
-approximation can be obtained in con-
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stant number of rounds and sublinear communication (as opposed to the original approach

of [223] which requires Ω(log n) rounds).

The second algorithm in Result 8.2, namely a kO(1/r)-approximation algorithm for any

number of rounds r, however is more involved and is based on a new iterative sketching

method specific to the maximum coverage problem. Recall that in our previous algorithm

the machines are mainly “observers” and simply provide the coordinator with a sample of

their input; our second algorithm is in some sense on the other extreme. In this algorithm,

each machine is responsible for computing a suitable sketch of its input, which roughly

speaking, is a collection of sets that tries to “represent” each optimal set in the input of this

machine. The coordinator is also maintaining a greedy solution that is updated based on

the sketches received from each machine. The elements covered by this collection are shared

by the machines to guide them towards the sets that are “misrepresented” by the sketches

computed so far, and the machines update their sketches for the next round accordingly.

We show that either the greedy solution maintained by the coordinator is already a good

approximation or the final sketches computed by the machines are now a good representative

of the optimal sets and hence contain a good solution.

8.4. A Framework for Proving Distributed Lower Bounds

We introduce a general framework for proving communication complexity lower bounds

for bounded round protocols in the distributed coordinator model. Consider a decision

problem2 P defined by the family of functions Ps : {0, 1}s → {0, 1} for any integer s ≥ 1;

we refer to s as size of the problem and to {0, 1}s as its domain. Note that Ps can be a

partial function, i.e., not necessarily defined on its whole domain. An instance I of problem

Ps is simply a binary string of length s. We say that I is a Yes instance if Ps(I) = 1

and is a No instance if Ps(I) = 0. For example, Ps can denote the decision version of the

maximum coverage problem over m sets and n elements with parameter k (in which case s

would be a fixed function of m, n, and k depending on the representation of the input) such

that there is a relatively large gap (as a function of, say, k) between the value of optimal

solution in Yes and No instances. We can consider the problem Ps in the distributed model,

where we distribute each instance between the players. The distributed coverage problem

for instance, can be modeled by partitioning the sets in the instances of Ps across players.

To prove a communication lower bound for some problem P, one typically needs to

design a hard input distribution D on instances of the problem P, and then show that

distinguishing between the Yes and No cases in instances sampled from D, with some suf-

ficiently large probability, requires large communication. Such a distribution inevitably

depends on the specific problem P at hand. We would like to abstract out this dependence

2While we present our framework for decision problems, it also extends to search problems; see [31].
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to the underlying problem and design a template hard distribution for any problem P using

this abstraction. Then, to achieve a lower bound for a particular problem P, one only needs

to focus on the problem specific parts of this template and design them according to the

problem P at hand. We emphasize that obviously we are not going to prove a communica-

tion lower bound for every possible distributed problem; rather, our framework reduces the

problem of proving a communication lower bound for a problem P to designing appropriate

problem-specific gadgets for P, which determine the strength of the lower bound one can

ultimately prove using this framework. With this plan in mind, we now describe a high

level overview of our framework.

8.4.1. A High Level Overview of the Framework

Consider any decision problem P; we construct a recursive family of distributions D0,D1, . . .

where Dr is a hard input distribution for r-round protocols of Psr , i.e., for instances of size
sr of the problem P, when the input is partitioned between pr players. Each instance in Dr
is a careful “combination” of many sub-instances of problem Psr−1 over different subsets of

pr−1 players, which are sampled (essentially) from Dr−1. We ensure that a small number of

these sub-instances are “special” in that to solve the original instance of Psr , at least one

of these instances of Psr−1 (over pr−1 players) needs to be solved necessarily. We “hide”

the special sub-instances in the input of players in a way that locally, no player is able to

identify them and show that the first round of communication in any protocol with a small

communication is spent only in identifying these special sub-instances. We then inductively

show that as solving the special instance is hard for (r − 1)-round protocols, the original

instance must be hard for r-round protocols as well.

We now describe this distribution in more detail. The pr players in the instances

of distribution Dr are partitioned into gr groups P1, . . . , Pgr , each of size pr−1 (hence gr =

pr/pr−1). For every group i ∈ [gr] and every player q ∈ Pi, we create wr instances Ii1, . . . , I iwr

of the problem Psr−1 sampled from the distribution Dr−1. The domain of each instance Iij is

the same across all players in Pi and is different (i.e., disjoint) between any two j 6= j′ ∈ [wr];

we refer to wr as the width parameter. The next step is to pack all these instances into

a single instance Ii(q) for the player q; this is one of the places that we need a problem

specific gadget, namely a packing function3 that can pack wr instances of problem Psr−1

into a single instance of problem Ps′r for some s′r ≥ sr. We postpone the formal description

of the packing functions to the next section, but roughly speaking, we require each player

to be able to construct the instance Ii(q) from the instances Ii1, . . . , I
i
wr

and vice versa. As

3For a reader familiar with previous work in [33, 19, 25], we note that a similar notion to a packing
function is captured via a collection of disjoint blocks of vertices in [19] (for finding large matchings), Ruzsa-
Szemerédi graphs in [33] (for estimating maximum matching size), and a family of small-intersecting sets
in [25] (for finding good allocations in combinatorial auctions). In this work, we use the notion of randomly
nearly disjoint set-systems defined in Section 8.5.1.
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such, even though each player is given as input a single instance Ii, we can think of each

player as conceptually “playing” in wr different instances I
i
1, . . . , I

i
wr

of Psr−1 instead.

In each group i ∈ [gr], one of the instances, namely Iij∗ for j∗ ∈ [wr], is the special

instance of the group: if we combine the inputs of players in Pi on their special instance

Iij∗ , we obtain an instance which is sampled from the distribution Dr−1. On the other hand,

all other instances are fooling instances: if we combine the inputs of players in Pi on their

instance Iij for j 6= j∗, the resulting instance is not sampled from Dr−1; rather, it is an

instance created by picking the input of each player independently from the corresponding

marginal of Dr−1 ( Dr−1 is not a product distribution, thus these two distributions are

not identical). Nevertheless, by construction, each player is oblivious to this difference and

hence is unaware of which instance in the input is the special instance (since the marginal

distribution of a player’s input is identical under the two distributions above).

Finally, we need to combine the instances I1, . . . , Igr to create the final instance I. To

do this, we need another problem specific gadget, namely a relabeling function. Roughly

speaking, this function takes as input the index j∗, i.e., the index of the special instances,

and instances I1, . . . , Igr and create the final instance I, while “prioritizing” the role of

special instances in I. By prioritizing we mean that in this step, we need to ensure that the

value of Psr on I is the same as the value of Psr−1 on the special instances. At the same

time, we also need to ensure that this additional relabeling does not reveal the index of the

special instance to each individual player, which requires a careful design depending on the

problem at hand.

The above family of distributions is parameterized by the sequences {sr} (size of in-

stances), {pr} (number of players), and {wr} (the width parameters), plus the packing and

relabeling functions. Our main result in this section is that if these sequences and func-

tions satisfy some natural conditions (similar to what discussed above), then any r-round

protocol for the problem Psr on the distribution Dr requires Ωr(wr) communication.

We remark that while we state our communication lower bound only in terms of wr,

to obtain any interesting lower bound using this technique, one needs to ensure that the

width parameter wr is relatively large in the size of the instance sr; this is also achieved

by designing suitable packing and labeling functions (as well as a suitable representation of

the problem). However, as “relatively large” depends heavily on the problem at hand, we

do not add this requirement to the framework explicitly.

Further discussions on extensions of this framework and its connection to previous work

is also presented in our paper [31].
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8.4.2. The Formal Description of the Framework

We now describe our framework formally. As stated earlier, to use this framework for

proving a lower bound for any specific problem P, one needs to define appropriate problem-

specific gadgets. These gadgets are functions that map multiple instances of Ps to a single

instance Ps′ for some s′ ≥ s. The exact application of these gadgets would become clear

shortly in the description of our hard distribution for the problem P.

Definition 8.1 (Packing Function). For integers s′ ≥ s ≥ 1 and w ≥ 1, we refer to a

function σ which maps any tuple of instances (I1, . . . , Iw) of Ps to a single instance I of Ps′
as a packing function of width w.

Definition 8.2 (Labeling Family). For integers s′′ ≥ s′ ≥ 1 and g ≥ 1, we refer to a

family of functions Φ = {φi}, where each φi is a function that maps any tuple of instances

(I1, . . . , Ig) of Ps′ to a single instance I of Ps′′ as a g-labeling family, and to each function

in this family, as a labeling function.

We start by designing the following recursive family of hard distributions {Dr}r≥0,

parametrized by sequences {pr}r≥0, {sr}r≥0, and {wr}r≥0. We require {pr}r≥0 and {sr}r≥0

to be increasing sequences and {wr}r≥0 to be non-increasing. In two places marked in the

distribution, we require one to design the aforementioned problem-specific gadgets for the

distribution.

Distribution Dr: A template hard distribution for r-round protocols of P for any r ≥ 1.

Parameters: pr: number of players, sr: size of the instance, wr: width parameter, σr:

packing function, and Φr: labeling family.

1. Let P be the set of pr players and define gr :=
pr
pr−1

; partition the players in P into

gr groups P1, . . . , Pgr each containing pr−1 players.

2. Design a packing function σr of width wr which maps wr instances of Psr−1 to an

instance of Ps′r for some sr−1 ≤ s′r ≤ sr.
3. Pick an instance I⋆r ∼ Dr−1 over the set of players [pr−1] and domain of size sr−1.

4. For each group Pi for i ∈ [gr]:

(a) Pick an index j∗ ∈ [wr] uniformly at random and create wr instances I
i
1, . . . , I

i
wr

of problem Psr−1 as follows:

i. Each instance Iij for j ∈ [wr] is over the players Pi and domain Di
j =

{0, 1}sr−1 .

ii. For index j∗ ∈ [wr], I
i
j∗ = I⋆r by mapping (arbitrarily) [pr−1] to Pi and

domain of I⋆r to Di
j∗ .
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iii. For any other index j 6= j∗, Iij ∼ D′
r−1 := ⊗q∈PiDr−1(q), i.e., the product

of marginal distribution of the input to each player q ∈ Pi in Dr−1.

(b) Map all the instances Ii1, . . . , I
i
wr

to a single instance Ii using the function σr.

5. Design a gr-labeling family Φr which maps gr instances of Ps′r to a single instance

Psr .
6. Pick a labeling function φ from Φ uniformly at random and map the gr instances

I1, . . . , Igr of Ps′r to the output instance I of Psr using φ.

7. The input to each player q ∈ Pi in the instance I, for any i ∈ [gr], is the input of

player q in the instance I i, after applying the mapping φ to map I i to I.

We remark that in the above distribution, the “variables” in each instance sampled

from Dr are the instances Ii1, . . . , I iwr
for all groups i ∈ [gr], the index j

∗ ∈ [w], and both the

choice of labeling family Φr and the labeling function φ. On the other hand, the “constants”

across all instances of Dr are parameters pr, sr, and wr, the choice of grouping P1, . . . , Pgr ,

and the packing function σr.

To complete the description of this recursive family of distributions, we need to explicitly

define the distribution D0 between p0 players over {0, 1}s0 . We let D0 :=
1
2 · DYes

0 + 1
2 · DN

0 ,

where DYes
0 is a distribution over Yes instances of Ps0 and DN

0 is a distribution over No

instances. The choice of distributions DYes
0 and DN

0 are again problem-specific.

We start by describing the main properties of the packing and labeling functions that

are required for our lower bound. For any player q ∈ Pi, define Ii(q) := (Ii1(q), . . . , I
i
wr
(q)),

where for any j ∈ [wr], I
i
j(q) denotes the input of player q in the instance Iij . We require

the packing and labeling functions to be locally computable defined as follows.

Definition 8.3 (Locally computable). We say that the packing function σr and the labeling

family Φr are locally computable iff any player q ∈ Pi for i ∈ [gr], can compute the mapping

of Ii(q) to the final instance I, locally, i.e., only using σr, the sampled labeling function

φ ∈ Φr, and input Ii(q).

We use φq to denote the local mapping of player q ∈ Pi for mapping Ii(q) to I; since

σr is fixed in the distribution Dr, across different instances sampled from Dr, φq is only a

function of φ. Notice that the input to each player q ∈ Pi is uniquely determined by Ii(q)

and φq.

Inside each instance I sampled from Dr, there exists a unique embedded instance I⋆r

which is sampled from Dr−1. Moreover, this instance is essentially “copied” gr times, once

in each instance Iij∗ for each group Pi. We refer to the instance I⋆r as well as its copies
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I1j∗ , . . . , I
gr
j∗ as special instances and to all other instances as fooling instances. We require

the packing and labeling functions to be preserving, defined as,

Definition 8.4 (γ-Preserving). We say that the packing function and the labeling family

are γ-preserving for a parameter γ ∈ (0, 1), iff

Pr
I∼Dr

(
Psr(I) = Psr−1(I

⋆
r )
)
≥ 1− γ.

In other words, the value of Psr on an instance I should be equal to the value of Psr−1 on

the embedded special instance I⋆r of I w.p. 1− γ.

Recall that the packing function σr is a deterministic function that depends only on

the distribution Dr itself and not any specific instance (and hence the underlying special

instances); on the other hand, the preserving property requires the packing and labeling

functions to somehow “prioritize” the special instances over the fooling instances (in deter-

mining the value of the original instance). To achieve this property, the labeling family is

allowed to vary based on the specific instance sampled from the distribution Dr. However,
we need to limit the dependence of the labeling family to the underlying instance, which is

captured through the definition of obliviousness below.

Definition 8.5. We say that the labeling family Φr is oblivious iff it satisfies the following

properties:

1. The only variable in Dr which Φr can depend on is j∗ ∈ [wr] (it can depend arbitrarily

on the constants in Dr).

2. For any q ∈ P , the local mapping φq and j∗ are independent of each other in Dr.

Intuitively speaking, Condition (1) above implies that a function φ ∈ Φr can “prioritize”

the special instances based on the index j∗, but it cannot use any further knowledge about

the special or fooling instances. For example, one may be able to use φ to distinguish special

instances from other instances, i.e., determine j∗, but would not be able to infer whether the

special instance is a Yes instance or a No one only based on φ. Condition (2) on the other

hand implies that for each player q, no information about the special instance is revealed

by the local mapping φq. This means that given the function φq (and not φ as a whole),

one is not able to determine j∗.

Finally, we say that the family of distributions {Dr} is a γ-hard recursive family, iff

(i) it is parameterized by increasing sequences {pr} and {sr}, and non-increasing sequence

{wr}, and (ii), the packing and labeling functions in the family are locally computable,

γ-preserving, and oblivious. We are now ready to present our main theorem of this section.
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Theorem 8.3. Let R ≥ 1 be an integer and suppose {Dr}Rr=0 is a γ-hard recursive family

for some γ ∈ (0, 1); for any r ≤ R, any r-round protocol for Psr on Dr which errs w.p. at

most 1/3− r · γ requires Ω(wr/r
4) total communication.

8.4.3. Correctness of the Framework: Proof of Theorem 8.3

We first set up some notation. For any r-round protocol π and any ℓ ∈ [r], we use

Πℓ := (Πℓ,1, . . . ,Πℓ,pr) to denote the random variable for the transcript of the message

communicated by each player in round ℓ of π. We further use Φ (resp. Φq) to denote the

random variable for φ (resp. local mapping φq) and J to denote the random variable for

the index j∗. Finally, for any i ∈ [gr] and j ∈ [wr], I
i
j denotes the random variable for the

instance Iij . We start by stating a simple property of oblivious mapping functions.

Proposition 8.4.1. For any i ∈ [gr] and any player q ∈ Pi, conditioned on input (Ii(q), φq)

to player q, the index j∗ ∈ [wr] is chosen uniformly at random.

Proof. By Condition (2) of obliviousness in Definition 8.5, Φq ⊥ J, and hence J ⊥ Φq = φq.

Moreover, by Condition (1) of Definition 8.5, Φq cannot depend on Ii(q) and hence Ii(q) ⊥
Φq = φq also. Now notice that while the distribution of Iij and Iij∗ for j 6= j∗, i.e., D′

r−1 and

Dr−1 are different, the distribution of Iij(q) and Iij∗(q) are identical by definition of D′
r−1.

As such, Ii(q) and j∗ are also independent of each other conditioned on Φq = φq, finalizing

the proof.

We show that any protocol with a small communication cost cannot learn essentially

any useful information about the special instance I⋆r in its first round.

Lemma 8.4.2. For any deterministic protocol π for Dr, I(I⋆r ;Π1 | Φ, J) ≤ |Π1|/wr.

Proof. The first step is to show that the information revealed about I⋆r via Π1 can be

partitioned over the messages sent by each individual player about their own input in their

special instance.

Claim 8.4.3. I(I⋆r ;Π1 | Φ, J) ≤
∑

q∈P I(I⋆r(q) ;Π1,q | Φ, J).

Proof. Intuitively, the claim is true because after conditioning on Φ and J, the input of

players become independent of each other on all fooling instances, i.e., every instance except

for their copy of I⋆r . As a result, the messages communicated by one player do not add extra

information to messages of another one about I⋆r . Moreover, since each player q is observing

I⋆r (q), the information revealed by this player can only be about I⋆r (q) and not I⋆r . We now

provide the formal proof. Recall that Π1 = (Π1,1, . . . ,Π1,pr). By chain rule of mutual
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information,

I(I⋆r ;Π1 | Φ, J) =
Fact 2.6.1-(6)

∑

q∈P
I(I⋆r ;Π1,q | Π<q1 ,Φ, J).

We first show that for each q ∈ P ,

I(I⋆r ;Π1,q | Π<q1 ,Φ, J) ≤ I(I⋆r ;Π1,q | Φ, J). (8.1)

Recall that, for any player q, I(q) denotes the input to player q in all instances in

which q is participating, and define I(−q) as the collection of the inputs to all other players

across all instances. We argue that I(q) ⊥ I(−q) | I⋆r ,Φ, J. The reason is simply because

after conditioning on I⋆r , the only variables in I(q) and I(−q) are fooling instances that

are sampled from D′
r−1 which is a product distribution across players. This implies that

I(I(q) ; I(−q) | I⋆r ,Φ, J) = 0 (by Fact 2.6.1-(2)). Now, notice that the input to each player

q is uniquely identified by (I(q),Φ) (by locally computable property in Definition 8.3) and

hence conditioned on I⋆r ,Φ, J , the message Π1,q is a deterministic function of I(q). As such,

by the data processing inequality (Fact 2.6.1-(7)), we have that I(Π1,q ;Π<q1 | I⋆r ,Φ, J) = 0;

by Proposition 2.6.4, this implies Eq (8.1) (here, conditioning on Π<q1 in RHS of Eq (8.1)

can only decrease the mutual information).

Define I⋆r(−q) as the input to all players in I⋆r except for player q; hence I
⋆
r = (I⋆r(q), I

⋆
r(−q)).

By chain rule of mutual information (Fact 2.6.1-(6)),

I(I⋆r ;Π1,q | Φ, J) = I(I⋆r(q) ;Π1,q | Φ, J) + I(I⋆r(−q) ;Π1,q | I⋆r(q),Φ, J) = I(I⋆r(q) ;Π1,q | Φ, J)

since I(I⋆r(−q) ;Π1,q | I⋆r(q),Φ, J) = 0 as Π1,q is independent of I⋆r(−q) after conditioning on

I⋆r(q) (and Fact 2.6.1-(2)). The claim now follows from Eq (8.1) and above. Claim 8.4.3

Next, we use a direct-sum style argument to show that as each player is oblivious to the

identity of the special instance in the input, the message sent by this player cannot reveal

much information about the special instance, unless it is too large.

Claim 8.4.4. For any group Pi and player q ∈ Pi, I(I⋆r(q) ;Π1,q | Φ, J) ≤ |Π1,q| /wr.

Proof. We first argue that,

I(I⋆r(q) ;Π1,q | Φ, J) ≤ I(I⋆r(q) ;Π1,q | Φq, J). (8.2)

Let Φ = (Φq,Φ
−q) where Φ−q denotes the rest of the mapping function Φ beyond Φq.

We have, Π1,q ⊥ Φ−q | Φq, J, I⋆r(q) since after conditioning on J, Φ does not depend on any
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other variable in Dr (by obliviousness property in Definition 8.5), and hence the input to

player q and as a result Π1,q are independent of Φ−q after conditioning on both Φq and

J. Eq (8.2) now follows from the independence of Π1,q and Φ−q and Proposition 2.6.4 (as

conditioning on Φ<q in RHS of Eq (8.2) can only decrease the mutual information).

We can bound the RHS of Eq (8.2) as follows,

I(I⋆r(q) ;Π1,q | Φq, J) = E
j∈[wr]

[
I(I⋆r(q) ;Π1,q | Φq, J = j)

]
=

1

wr

wr∑

j=1

I(Iij(q) ;Π1,q | Φq, J = j).

(j∗ is chosen uniformly at random from [wr] and I⋆r = Iij conditioned on J = j)

Our goal now is to drop the conditioning on the event J = j. By Definition 8.5, Φq is

independent of J = j. Moreover, Iij(q) is sampled from Dr−1(q) (both in Dr−1 and in D′
r−1)

and hence is independent of J = j, even conditioned on Φq. Finally, by Proposition 8.4.1,

the input to player q is independent of J = j and as Π1,q is a deterministic function of the

input to player q, Π1,q is also independent of J = j, even conditioned on Φq and Iij(q). This

means that the joint distribution of Iij(q),Π1,q, and Φq is independent of the event J = j

and hence we can drop this conditioning in the above term, and obtain that,

1

wr

wr∑

j=1

I(Iij(q) ;Π1,q | Φi, J = j) =
1

wr

wr∑

j=1

I(Iij(q) ;Π1,q | Φi)

≤ 1

wr

wr∑

j=1

I(Iij(q) ;Π1,q | Ii,<j(q),Φi) =
1

wr
· I(Ii(q) ;Π1,q | Φi),

where the inequality holds since Iij(q) ⊥ Ii,<j(q) | Φi and hence conditioning on Ii,<j(q) can

only increase the mutual information by Proposition 2.6.3. Finally,

1

wr
· I(Ii(q) ;Π1,q | Φi) ≤

Fact 2.6.1-(1)

1

w1
· H(Π1,q | Φi)

≤
Fact 2.6.1-(3)

1

wr
· H(Π1,q) ≤

Fact 2.6.1-(1)

1

wr
· |Π1,q| ,

finalizing the proof. Claim 8.4.4

Lemma 8.4.2 now follows from the previous two claims:

I(I⋆r ;Π1 | Φ, J) ≤
Claim 8.4.3

∑

q∈P
I(I⋆r(q) ;Π1,q | Φ, J) ≤

Claim 8.4.4

1

wr
·
∑

q∈P
|Π1,q| =

1

wr
· |Π1| .

This concludes the proof. Lemma 8.4.2
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For any tuple (Π1, φ, j), we define the distribution ψ(Π1, φ, j) as the distribution of I⋆r

in Dr conditioned on Π1 = Π1, Φ = φ, and J = j. Recall that the original distribution of I⋆r

is Dr−1. In the following, we show that if the first message sent by the players is not too

large, and hence does not reveal much information by about I⋆r by Lemma 8.4.2, even after

the aforementioned conditioning, distribution of I⋆r does not change by much in average.

Lemma 8.4.5. If |Π1| = o(wr/r
4), then E(Π1,φ,j)

[
|ψ(Π1, φ, j)−Dr−1|tvd

]
= o(1/r2).

Proof. Since I⋆r is independent of φ and j∗ in Dr, we have Dr−1 = dist(I⋆r) = dist(I⋆r | Φ, J).
As such, it suffices to show that dist(I⋆r | Φ, J) is close to the distribution of dist(I⋆r |
Π1,Φ, J). By Lemma 8.4.2 and the assumption |Π1| = o(wr/r

4), we know that the in-

formation revealed about I⋆r by Π1, conditioned on Φ, J is quite small, i.e., o(1/r4). This

intuitively means that having an extra knowledge of Π1 would not be able to change the

distribution of I⋆r by much. We now formalizes this intuition.

E
(Π1,φ,j)

[
|ψ(Π1, φ, j)−Dr−1|tvd

]
= E

(Π1,φ,j)

[
|dist(I⋆r | Π1, φ, j)− dist(I⋆r | φ, j)|tvd

]

≤ E
(Π1,φ,j)

[√1

2
· D(dist(I⋆r | Π1, φ, j) || dist(I⋆r | φ, j))

]

(By Pinsker’s inequality (Fact 2.6.8); here D is the KL-divergence)

≤
√

1

2
· E
(Π1,φ,j)

[
D(dist(I⋆r | Π1, φ, j) || dist(I⋆r | φ, j))

]

(By concavity of
√· and Jensen’s inequality)

=
Fact 2.6.6

√
1

2
· I(I⋆r ;Π1 | Φ, J) ≤

Lemma 8.4.2

√
1

2
· 1

wr
· |Π1|,

which is o(1/r2) as |Π1| = o(wr/r
4). Lemma 8.4.5

Define the recursive function δ(r) := δ(r− 1)− o(1/r2)− γ with base δ(0) = 1/2. We have,

Lemma 8.4.6. For any deterministic δ(r)-error r-round protocol π for Dr, ‖π‖ = Ω(wr/r
4).

Proof. The proof is by induction on the number of rounds r.

Base case: The base case of this lemma refers to 0-round protocols for D0, i.e.,

protocols that are not allowed any communication. As in the distribution D0, Yes and No

instances happen w.p. 1/2 each and the coordinator has no input, any 0-round protocol

can only output the correct answer w.p. 1/2, proving the induction base.

Induction step: Suppose the lemma holds for all integers up to r and we prove it for

r round protocols. The proof is by contradiction. Given an r-round protocol πr violating

the induction hypothesis, we create an (r − 1)-round protocol πr−1 which also violates the
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induction hypothesis, a contradiction. Given an instance Ir−1 of Psr−1 over players P r−1

and domain Dr−1 = {0, 1}sr−1 , the protocol πr−1 works as follows:

1. Let P r = [pr] and partition P r into gr equal-size groups P1, . . . , Pgr as is done in

Dr. Create an instance Ir of Dr as follows:
2. Using public randomness, the players in P r−1 sample R := (Π1, φ, j

∗) ∼
(dist(πr),Dr), from the (joint) distribution of protocol πr over distribution Dr.

3. The q-th player in P r−1 (in instance Ir−1) mimics the role of the q-th player in each

group Pi for i ∈ [gr] in Ir, denoted by player (i, q), as follows:

(a) Set the input for (i, q) in the special instance Iij∗(q) of Ir as the original input

of q in Ir−1, i.e., Ir−1(q) mapped via σr and φ to I (as is done in Ir to the

domain Di
j∗). This is possible by the locally computable property of σr and φ

in Definition 8.3.

(b) Sample the input for (i, q) in all the fooling instances Iij(q) of Ir for any

j 6= j∗ using private randomness from the correlated distribution Dr |
(I⋆r = Ir−1, (Π1,Φ, J) = R). This sampling is possible by Proposition 8.4.7.

4. Run the protocol πr from the second round onwards on Ir assuming that in the first

round the communicated message was Π1 and output the same answer as πr.

Notice that in Line (3b), the distribution the players are sampling from depends on

Π1, φ, j
∗ which are public knowledge (through sampling via public randomness), as well

as I⋆r which is not a public information as each player q only knows I⋆r (q) and not all of

I⋆r . Moreover, while random variables Iij(q) (for j 6= j∗) are originally independent across

different players q (as they are sampled from the product distribution D′
r−1), conditioning

on the first message of the protocol, i.e., Π1 correlates them, and hence a-priori it is not

clear whether the sampling in Line (3b) can be done without any further communication.

Nevertheless, we can prove that this is the case and to sample from the distribution in

Line (3b), each player only needs to know I⋆r (q) and not I⋆r .

Proposition 8.4.7. Suppose I is the collection of all instances in the distribution Dr and

I(q) is the input to player q in instances in which q participates; then,

dist(I | I⋆r = Ir−1, (Π1,Φ, J) = R) = Xq∈P dist(I(q) | I⋆r(q) = Ir−1(q), (Π1,Φ, J) = R).

Proof. Fix any player q ∈ P , and recall that I(−q) is the collection of the inputs to all

players other than q across all instances (special and fooling). We prove that I(q) ⊥
I(−q) | (I⋆r(q),Π1,Φ, J) in Dr, which immediately implies the result. To prove this claim,

by Fact 2.6.1-(2), it suffices to show that I(I(q) ; I(−q) | I⋆r(q),Π1,Φ, J) = 0. Define Π
−q
1 as
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the set of all messages in Π1 except for the message of player q, i.e., Π1,q. We have,

I(I(q) ; I(−q) | I⋆r(q),Π1,Φ, J) ≤ I(I(q) ; I(−q) | I⋆r(q),Π1,q,Φ, J),

since I(q) ⊥ Π
−q
1 | I(−q), I⋆r(q),Π1,q,Φ, J as the input to players P \ {q} is uniquely deter-

mined by I(−q),Φ (by the locally computable property in Definition 8.3) and hence Π
−q
1

is deterministic after the conditioning; this independence means that conditioning on Π
−q
1

in the RHS above can only decrease the mutual information by Proposition 2.6.4. We can

further bound the RHS above by,

I(I(q) ; I(−q) | I⋆r(q),Π1,q,Φ, J) ≤ I(I(q) ; I(−q) | I⋆r(q),Φ, J),

since I(−q) ⊥ Π1,q | I(q), I⋆r(q),Φ, J as the input to player q is uniquely determined by I(q),Φ

(again by Definition 8.3) and hence after the conditioning, Π1,q is deterministic; this implies

that conditioning on Π1,q in RHS above can only decrease the mutual information by Propo-

sition 2.6.4. Finally, observe that I(I(q) ; I(−q) | I⋆r(q),Φ, J) = 0 by Fact 2.6.1-(2), since after

conditioning on I⋆r (q), the only remaining instances in I(q) are fooling instances which are

sampled from the distribution D′
r−1 which is independent across the players. This implies

that I(I(q) ; I(−q) | I⋆r(q),Π1,Φ, J) = 0 also which finalizes the proof. Proposition 8.4.7

Having proved Proposition 8.4.7, it is now easy to see that πr−1 is indeed a valid r− 1

round protocol for distribution Dr−1: each player q can perform the sampling in Line (3b)

without any communication as (I⋆(q),Π1,Φ, J) are all known to q; this allows the players

to simulate the first round of protocol πr without any communication and hence only need

r − 1 rounds of communication to compute the answer of πr. We can now prove that,

Claim 8.4.8. Assuming πr is a δ-error protocol for Dr, πr−1 would be a
(
δ + γ + o(1/r2)

)
-

error protocol for Dr−1.

Proof. Our goal is to calculate the probability that πr−1 errs on an instance Ir−1 ∼ Dr−1.

For the sake of analysis, suppose that Ir−1 is instead sampled from the distribution ψ

for a randomly chosen tuple (Π1, φ, j
∗) (defined before Lemma 8.4.5). Notice that by

Lemma 8.4.5, these two distributions are quite close to each other in total variation dis-

tance, and hence if πr−1 has a small error on distribution ψ it would necessarily has a small

error on Dr−1 as well (by Fact 2.6.7).

Using Proposition 8.4.7, it is easy to verify that if Ir−1 is sampled from ψ, then the

instance Ir constructed by πr−1 is sampled from Dr and moreover I⋆r = Ir−1. As such, since

(i) πr is a δ-error protocol for Dr, (ii) the answer to Ir and I⋆r = Ir−1 are the same w.p.

1− γ (by γ-preserving property in Definition 8.4), and (iii) πr−1 outputs the same answer
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as πr, protocol πr−1 is a (δ + γ)-error protocol for ψ. We now prove this claim formally.

Define Rpri and Rpub as, respectively, the private and public randomness used by πr−1.

Pr
Dr−1

(πr−1 errs) = E
Ir−1∼Dr−1

E
Rpub

[
Pr
Rpri

(
πr−1 errs | Rpub

) ]

= E
(Π1,φ,j∗)

E
Ir−1∼Dr−1|(Π1,φ,j∗)

[
Pr
Rpri

(πr−1 errs | Π1, φ, j
∗)
]

(as Rpub ⊥ Ir−1 and Rpub = (Π1, ψ, j
∗) in protocol πr−1)

≤ E
(Π1,φ,j∗)

[
E

Ir−1∼ψ(Π1,φ,j∗)

[
Pr
Rpri

(πr−1 errs | Π1, φ, j
∗)
]
+ |Dr−1 − ψ(Π1, φ, j

∗)|tvd
]

(by Fact 2.6.7 for distributions Dr−1 and ψ(Π1, φ, j
∗))

= E
(Π1,φ,j∗)

E
Ir−1∼ψ(Π1,φ,j∗)

[
Pr
Rpri

(πr−1 errs | Π1, φ, j
∗)
]
+ o(1/r2)

(by linearity of expectation and Lemma 8.4.5)

= E
(Π1,φ,j∗)

E
Ir−1∼ψ(Π1,φ,j∗)

[
Pr
Dr

(πr−1 errs | I⋆r = Ir−1,Π1, φ, j
∗)
]
+ o(1/r2)

(dist(Rpri) = Dr | I⋆r = Ir−1,Π1, φ, j
∗)

≤ E
(Π1,φ,j∗)

E
Ir−1∼ψ(Π1,φ,j∗)

[
Pr
Dr

(πr errs | I⋆r = Ir−1,Π1, φ, j
∗)
]
+ γ + o(1/r2)

(Psr(Ir) = Psr−1(Ir−1) w.p. 1− γ by Definition 8.4 and πr−1 outputs the same as πr)

= E
(I⋆r ,Π1,φ,j∗)∼Dr

[
Pr
Dr

(πr errs | I⋆r = Ir−1,Π1, φ, j
∗)
]
+ γ + o(1/r2)

(ψ(Π1, φ, j
∗) = dist(I⋆r | Π1, φ, j

∗) in Dr by definition)

= Pr
Dr

(πr errs) + o(1/r2) ≤ δ + γ + o(1/r2),

(as πr is a δr-error protocol for Dr by the assumption in the lemma statement)

finalizing the proof. Claim 8.4.8

We are now ready to finalize the proof of Lemma 8.4.6. Suppose πr is a deterministic

δ(r)-error protocol for Dr with communication cost ‖πr‖ = o(wr/r
4). By Claim 8.4.8,

πr−1 would be a randomized δ(r − 1)-error protocol for Dr−1 with ‖πr−1‖ ≤ ‖πr‖ (as

δ(r − 1) = δ(r) + γ + o(1/r2)). By an averaging argument, we can fix the randomness

in πr−1 to obtain a deterministic protocol π′r−1 over the distribution Dr−1 with the same

error δ(r − 1) and communication of ‖π′r−1‖ = o(wr/r
4) = o(wr−1/r

4) (as {wr}r≥0 is a

non-increasing sequence). But such a protocol contradicts the induction hypothesis for

(r − 1)-round protocols, finalizing the proof. Lemma 8.4.6

Proof of Theorem 8.3. By Lemma 8.4.6, any deterministic δ(r)-error r-round protocol for

Dr requires Ω(wr/r
4) total communication. This immediately extends to randomized pro-

tocols by an averaging argument, i.e., the easy direction of Yao’s minimax principle (Propo-
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sition 2.7.2). The statement in the theorem now follows from this since for any r ≥ 0,

δ(r) = δ(r− 1)− γ − o(1/r2) = δ(0)− r · γ −∑r
ℓ=1 o(1/ℓ

2) = 1/2− r · γ − o(1) > 1/3− r · γ
(as δ(0) = 1/2 and

∑r
ℓ=1 1/ℓ

2 is a converging series and hence is bounded by some absolute

constant independent of r).

8.5. A Distributed Lower Bound for Maximum Coverage

We prove our main lower bound for maximum coverage, formalizing Result 8.1.

Theorem 8.4. For integers 1 ≤ r, c ≤ o
(

log k
log log k

)
with c ≥ 4r, any r-round protocol for the

maximum coverage problem that can approximate the value of optimal solution to within a

factor of better than
(

1
2c · k

1/2r

log k

)
w.p. at least 3/4 requires Ω

(
k
r4
·m

c
(c+2)·4r

)
communication

per machine. The lower bound applies to instances with m sets, n = m1/Θ(c) elements, and

k = Θ(n2r/(2r+1)).

The proof is based on an application of Theorem 8.3. In the following, let c ≥ 1 be any

integer (as in Theorem 8.4) and N ≥ 12c2 be a sufficiently large integer which we use to

define the main parameters for our problem. To invoke Theorem 8.3, we need to instantiate

the recursive family of distributions {Dr}cr=0 in Section 8.4 with appropriate sequences and

gadgets for the maximum coverage problem. We first define sequences (for all 0 ≤ r ≤ c):

kr = pr = (N2 −N)r, nr = N2r+1, mr =
(
N c · (N2 −N)

)r
, wr = N c gr = (N2 −N)

Here, mr, nr, and kr, respectively represent the number of sets and elements and the

parameter k in the maximum coverage problem in the instances of each distribution Dr and
together can identify the size of each instance (i.e., the parameter sr defined in Section 8.4

for the distribution Dr). Moreover, pr, wr and gr represent the number of players, the

width parameter, and the number of groups in Dr, respectively (notice that gr = pr/pr−1

as needed in distribution Dr). Using the sequences above, we define:

coverage(N, r): the problem of deciding whether the optimal kr cover of universe [nr] with

mr input sets is at least (kr ·N) (Yes case), or at most
(
kr · 2c · log (N2r)

)
(No case).

There is a gap of roughly N ≈ k
1/2r
r (ignoring the lower order terms) between the

optimal solution in Yes and No cases of coverage(N, r). We prove a lower bound for deciding

between Yes and No instances of coverage(N, r), when the input sets are partitioned between

the players, which implies an identical lower bound for algorithms that can approximate

the value of optimal solution in maximum coverage to within a factor smaller than k
1/2r
r .
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Recall that to use the framework introduced in Section 8.4, one needs to define two

problem-specific gadgets, i.e., a packing function, and a labeling family. In the following

section, we design a crucial building block for our packing function.

RND Set-Systems. Our packing function is based on the following set-system.

Definition 8.6. For integers N, r, c ≥ 1, an (N, r, c)-randomly nearly disjoint (RND) set-

system over a universe X of N2r elements, is a collection S of subsets of X satisfying the

following properties:

1. Each set A ∈ S is of size N2r−1.

2. Fix any set B ∈ S and suppose CB is a collection of N c·r subsets of X whereby each

set in CB is chosen by picking an arbitrary set A 6= B in S, and then picking an

N -subset uniformly at random from A (we do not assume independence between the

sets in CB). Then,

Pr
(
∃ S ∈ CB s.t. |S ∩B| ≥ 2c · r · logN

)
= o(1/N3).

Intuitively, this means that any random N -subset of some set A ∈ S is essentially

disjoint from any other set B ∈ S w.h.p.

Existence of large RND set-systems follows from probabilistic method (see our paper [31]).

Lemma 8.5.1 ([31]). For integers 1 ≤ r ≤ c and sufficiently large integer N ≥ c, there

exists an (N, r, c)-RND set-system S of size N c over any universe X of size N2r.

8.5.1. Proof of Theorem 8.4

We parameterize the recursive family of distributions {Dr}cr=0 in our framework in Sec-

tion 8.4 for the coverage problem, i.e., coverage(N, r,), with the aforementioned sequences

plus the packing and labeling functions which we define below.

Packing function σr: Mapping instances Ii1, . . . , I
i
wr

each over nr−1 = N2r−1 elements

and mr−1 sets for any group i ∈ [gr] to a single instance I i on N2r elements and wr ·mr−1

sets.

1. Let A = {A1, . . . , Awr} be an (N, r, c)-RND system with wr = N c sets over some

universe Xi of N2r elements (guaranteed to exist by Lemma 8.5.1 since c < N). By

definition of A, for any set Aj ∈ A, |Aj | = N2r−1 = nr−1.

2. Return the instance I over the universe Xi with the collection of all sets in I i1, . . . , I
i
wr

after mapping the elements in Iij to Aj arbitrarily.
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We now define the labeling family Φr as a function of the index j∗ ∈ [wr] of special instances.

Labeling family Φr: Mapping instances I1, . . . , Igr over N2r elements to a single in-

stance I on nr = N2r+1 elements and mr sets.

1. Let j∗ ∈ [wr] be the index of the special instance in the distribution Dr. For each

permutation π of [N2r+1] we have a unique function φ(j∗, π) in the family.

2. For any instance Ii for i ∈ [gr], map the elements in Xi\Aj∗ to π(1, . . . , N2r−N2r−1)

and the elements in Aj∗ to π(N2r + (gr − 1) ·N2r−1) . . . π(N2r + gr ·N2r−1 − 1).

3. Return the instance I over the universe [N2r+1] which consists of the collection of

all sets in I1, . . . , Igr after the mapping above.

We define the base case distribution D0 of the recursive family {Dr}cr=0. By definition of

our sequences, this distribution is over p0 = 1 player, n0 = N elements, and m0 = 1 set.

Distribution D0: The base case of the recursive family of distributions {Dr}cr=0 .

1. W.p. 1/2, the player has a single set of size N covering the universe (the Yes case).

2. W.p. 1/2, the player has a single set {∅}, i.e., a set that covers no elements (the No

case).

To invoke Theorem 8.3, we prove that this family is a γ-hard recursive family for the

parameter γ = o(r/N). The sequences clearly satisfy the required monotonicity properties.

It is also straightforward to verify that σr and functions φ ∈ Φr are locally computable

(Definition 8.3): both functions are specifying a mapping of elements to the new instance

and hence each player can compute its final input by simply mapping the original input

sets according to σr and φ to the new universe. In other words, the local mapping of each

player q ∈ Pi only specifies which element in the instance I corresponds to which element

in Iij(q) for j ∈ [wr]. It thus remains to prove the preserving and obliviousness property of

the packing and labeling functions.

We start by showing that the labeling family Φr is oblivious. The first property of

Definition 8.5 is immediate to see as Φr is only a function of j∗ and σr. For the second

property, consider any group Pi and instance Ii; the labeling function never maps two

elements belonging to a single instance Ii to the same element in the final instance (there

are however overlaps between the elements across different groups). Moreover, picking a

uniformly at random labeling function φ from Φr (as is done is Dr) results in mapping the

elements in Ii according to a random permutation; as such, the set of elements in instance

Ii is mapped to a uniformly at random chosen subset of the elements in I, independent of

the choice of j∗. As the local mapping φq of each player q ∈ Pi is only a function of the set
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of elements to which elements in Ii are mapped to, φq is also independent of j∗, proving

that Φr is indeed oblivious.

The rest of this section is devoted to the proof of the preserving property of the packing

and labeling functions defined for maximum coverage. We first make some observations

about the instances created in Dr. Recall that the special instances in the distribution

are I1j∗ , . . . , I
gr
j∗ . After applying the packing function, each instance Iij∗ is supported on the

set of elements Aj∗ . After additionally applying the labeling function, Aj∗ is mapped to a

unique set of elements in I (according to the underlying permutation π in φ); as a result,

Observation 8.5.2. The elements in the special instances I1j∗ , . . . , I
gr
j∗ are mapped to dis-

joint set of elements in the final instance.

The input to each player q ∈ Pi in an instance of Dr is created by mapping the sets in

instances Ii1, . . . , I
i
wr

(which are all sampled from distributions Dr−1 or D′
r−1) to the final

instance I. As the packing and labeling functions, by construction, never map two elements

belonging to the same instance Iij to the same element in the final instance, the size of each

set in the input to player q is equal across any two distributions Dr and Dr′ for r 6= r′,

and thus is N by definition of D0 (we ignore empty sets in D0 as one can consider them as

not giving any set to the player instead; these sets are only added to simplify that math).

Moreover, as argued earlier, the elements are being mapped to the final instance according

to a random permutation and hence,

Observation 8.5.3. For any group Pi, any player q ∈ Pi, the distribution of any single

input set to player q in the final instance I ∼ Dr is uniform over all N -subsets of the

universe. This also holds for an instance I ∼ D′
r as marginal distribution of a player input

is identical.

We now prove the preserving property in the following two lemmas.

Lemma 8.5.4. For any instance I ∼ Dr; if I⋆r is a Yes instance, then I is a Yes instance.

Proof. Recall that the distribution of the special instance I⋆r is Dr−1. Since I⋆r is a Yes

instance, all Iij∗ for i ∈ [gr] are also Yes instances. By definition of coverage(N, r − 1) and

choice of kr−1, this means that opt(I ij∗) ≥ kr−1 · N . Moreover, by Observation 8.5.2, all

copies of the special instance I⋆r , i.e., I
1
j∗ , . . . , I

gr
j∗ are supported on disjoint set of elements

in I. As kr = kr−1 · gr, we can pick the optimal solution from each Iij∗ for i ∈ [gr] and cover

at least kr · N elements. By definition of coverage(N, r), this implies that I is also a Yes

instance.

Lemma 8.5.5. For any instance I ∼ Dr; if I⋆r is a No instance, then w.p. at least 1−1/N ,
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I is also a No instance.

Proof. Let U be the universe of elements in I and U⋆ ⊆ U be the set of elements to which

the elements in special instances I1j∗ , . . . , I
gr
j∗ are mapped to (these are all elements in U

except for the first N2r elements according to the permutation π in the labeling function

φ). In the following, we bound the contribution of each set in players inputs in covering U⋆

and then use the fact that |U \ U⋆| is rather small to finalize the proof.

For any group Pi for i ∈ [gr], let Ui be the set of all elements across instances in which

the players in Pi are participating in. Moreover, define U⋆i := U⋆ ∩ Ui; notice that U⋆i is

precisely the set of elements in the special instance Iij∗ . We first bound the contribution of

special instances.

Claim 8.5.6. If I⋆r is a No instance, then for any integer ℓ ≥ 0, any ℓ sets from the special

instances I1j∗ , . . . , I
gr
j∗ can cover at most kr + ℓ · (2c · logN2r−2) elements in U⋆.

Proof. By definition of coverage(N, r − 1), since I⋆r is a No instance, we have opt(I⋆r ) ≤
kr−1 · 2c · log (N2r−2). This implies that any collection of ℓ ≥ kr−1 sets from I⋆r can only

cover only ℓ · 2c · log (N2r−2) elements; otherwise, by picking the best kr−1 sets among this

collection, we can cover more that opt(I⋆r ), a contradiction. Now notice that since I⋆r is a No

instance, we know that all instances I1j∗ , . . . , I
gr
j∗ are also No instances. Thus, any collection

of ℓ ≥ kr−1 sets from each Iij∗ can cover at most ℓ · 2c · log (N2r−2) elements in U⋆.

Let C be any collection of ℓ sets from special instances and Ci be the sets in C that are

chosen from the instance Iij∗ . Finally, let ℓi = |Ci|. We have (recall that c(C) denotes the

set of covered elements by C),

|c(C) ∩ U⋆| =
∑

i∈[gr]
|c(Ci) ∩ U⋆i | ≤

∑

i∈[gr]
(kr−1 + ℓi) · 2c · log (N2r−2)

= gr · kr−1 + ℓ · 2c · log (N2r−2) ≤ kr + ℓ · 2c · log (N2r−2),

where the last inequality holds because gr · kr−1 = kr. Claim 8.5.6

We now bound the contribution of fooling instances using RND set-systems properties.

Claim 8.5.7. With probability 1− o(1/N) in the instance I, simultaneously for all integers

ℓ ≥ 0, any collection of ℓ sets from the fooling instances
{
Iij | i ∈ [gr], j ∈ [wr] \ {j∗}

}

can cover at most ℓ · r · (2c · logN) elements in U⋆.

Proof. Recall that for any group i ∈ [gr], any instance Iij is supported on the set of elements

Aj in A (before applying the labeling function φ). Similarly, U⋆i is the set Aj∗ (again before

applying φ). Define Ci as the collection of all input sets from all players in Pi except the
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sets coming from the special instance. By construction, |Ci| ≤ mr−1 ·wr ≤ N c·r (as c ≥ 4r).

Moreover, for any j ∈ [wr] \ {j∗}, since I ij ∼ D′
r−1, by Observation 8.5.3, any member of

Ci is a set of size N chosen uniformly at random from some Aj 6= Aj∗ . This implies that Ci
satisfies the Property (2) in Definition 8.6 (as A is an (N, r, c)-RND set-system and local

mappings of elements are one to one when restricted to the mapping of Xi to Ui). As such,
by definition of an RND set-system, w.p. 1 − o(1/N3), any set S ∈ C can cover at most

2c · r · logN elements from U⋆i and consequently U⋆ as S ∩ (U⋆ \ U⋆i ) = ∅.

We can take a union bound over the gr ≤ N2 different RND set-systems (one belonging

to each group) and the above bound holds w.p. 1 − o(1/N) for all groups simultaneously.

This means that any collection of ℓ sets across any instance Iij for i ∈ [gr] and j 6= j∗, can

cover at most ℓ · 2c · r · logN elements in U⋆. Claim 8.5.7

In the following, we condition on the event in Claim 8.5.7, which happens w.p. at least

1− 1/N . Let C = Cs ∪Cf be any collection of kr sets (i.e., a potential kr-cover) in the input

instance I such that Cs are Cf are chosen from the special instances and fooling instances,

respectively. Let ℓs = |Cs| and ℓf = |Cf |; we have,

|c(C)| = |c(C) ∩ U⋆|+ |c(C) ∩ (U \ U⋆)|
≤ |c(Cs) ∩ U⋆|+ |c(Cf ) ∩ U⋆|+ |U \ U⋆|
≤ kr + ℓs · (2r − 2) · 2c · logN + ℓf · r · 2c · logN +N2r

(by Claim 8.5.6 for the first term and Claim 8.5.7 for the second term)

≤ 4kr + kr · (2r − 2) · 2c · logN (2kr ≥ N2r)

≤ kr · 2r · 2c · logN ≤ kr · 2c · logN2r.

This means that w.p. at least 1− 1/N , I is also a No instance. Lemma 8.5.5

The following claim now follows immediately from Lemmas 8.5.4 and 8.5.5.

Claim 8.5.8. The packing function σr and labeling family Φr defined above are γ-preserving

for the parameter γ = 1/N .

We are now ready to prove Theorem 8.4.

Proof of Theorem 8.4. The results in this section and Claim 8.5.8 imply that the family of

distributions {Dr}cr=0 for the coverage(N, r,) are γ-hard for the parameter γ = 1/N , as long

as r ≤ 4c ≤ 4
√
N/12. Consequently, by Theorem 8.3, any r-round protocol that can com-

pute the value of coverage(N, r,) on Dr w.p. at least 2/3+ r · γ = 2/3+ r/N < 3/4 requires

Ω(wr/r
4) = Ω(N c/r4) total communication. Recall that the gap between the value of opti-
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mal solution between Yes and No instances of coverage(N, r) is at least N/
(
2c · log (N2r)

)
≥(

k
1/2r
r

2c·log kr

)
. As such, any r-round distributed algorithm that can approximate the value of

optimal solution to within a factor better than this w.p. at least 3/4 can distinguish between

Yes and No cases of this distribution, and hence requires Ω(N c−2r/r4) = Ω
(
kr
r4
·m

c
(c+2)·4r

)

per player communication. Finally, since N ≤ 2k
1/2r
r , the condition c ≤

√
N/12 holds as

long as c = o
(

log kr
log log kr

)
, finalizing the proof.

8.6. Distributed Algorithms for Maximum Coverage

In this section, we show that both the round-approximation tradeoff and the round-communication

tradeoff achieved by our lower bound in Theorem 8.4 are essentially tight, formalizing Re-

sult 8.2.

8.6.1. An O(r · k1/r)-Approximation Algorithm

Recall that Theorem 8.4 shows that getting better than kΩ(1/r) approximation in r rounds

requires a relatively large communication of mΩ(1/r), (potentially) larger than any poly(n).

In this section, we prove that this round-approximation tradeoff is essentially tight by

showing that one can always obtain a kO(1/r) approximation (with a slightly larger constant

in the exponent) in r rounds using a limited communication of nearly linear in n.

Theorem 8.5. There exists a deterministic distributed algorithm for the maximum coverage

problem that for any integer r ≥ 1 computes an O(r · k1/r+1) approximation in r rounds

and Õ(n) communication per each machine.

On a high level, our algorithm follows an iterative sketching method: in each round,

each machine computes a small collection Ci of its input sets Si as a sketch and sends it

to the coordinator. The coordinator is maintaining a collection of sets X and updates it

by iterating over the received sketches and picking any set that still has a relatively large

contribution to this partial solution. The coordinator then communicates the set of elements

covered by X to the machines and the machines update their inputs accordingly and repeat

this process. At the end, the coordinator returns (a constant approximation to) the optimal

k-cover over the collection of all received sets across different rounds.

In the following, we assume that our algorithm is given a value õpt such that opt ≤
õpt ≤ 2 · opt. We can remove this assumption by guessing the value of õpt in powers of two

(up to n) and solve the problem simultaneously for all of them and return the best solution,

which increases the communication cost by only an O(log n) factor.

We first introduce the algorithm for computing the sketch on each machine; the algo-

rithm is a simple thresholding version of the greedy algorithm for maximum coverage.
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GreedySketch(U,S, τ). An algorithm for computing the sketch of each machine’s input.

Input: A collection S of sets from [n], a target universe U ⊆ [n], and a threshold τ .

Output: A collection C of subsets of U .

1. Let C = ∅ initially.
2. Iterate over the sets in S in an arbitrary order and for each set S ∈ S, if

|(S ∩ U) \ c(C)| ≥ τ , then add (S ∩ U) \ c(C) to C.
3. Return C as the answer.

Notice that in the Line (2) of GreedySketch, we are adding the new contribution of the

set S and not the complete set itself. This way, we can bound the total representation size

of the output collection C by Õ(n) (as each element in U appears in at most one set). We

now present our algorithm in Theorem 8.5.

Algorithm 2: Iterative Sketching Greedy (ISGreedy).

Input: A collection Si of subsets of [n] for each machine i ∈ [p] and a value õpt ∈
[opt, 2 · opt].
Output: A k-cover from the sets in S :=

⋃
i∈[p] Si.

1. Let X 0 = ∅ and U0
i = [n], for each i ∈ [p] initially. Define τ := õpt/4r · k.

2. For j = 1 to r rounds:

(a) Each machine i computes Cji = GreedySketch(U j−1
i ,Si, τ) and sends it to coor-

dinator.

(b) The coordinator sets X j = X j−1 initially and iterates over the sets in
⋃
i∈[p] C

j
i , in decreasing order of

∣∣∣c(Cji )
∣∣∣ over i (and consistent with the or-

der in GreedySketch for each particular i), and adds each set S to X j if∣∣S \ c(X j)
∣∣ ≥ 1

k1/r+1 · |S|.
(c) The coordinator communicates c(X j) to each machine i and the machine up-

dates its input by setting U ji = c(Cji ) \ c(X j).
3. At the end, the coordinator returns the best k-cover among all sets in C :=
⋃
i∈[p],j∈[r] C

j
i sent by the machines over all rounds.

The round complexity of ISGreedy is trivially r. For its communication cost, notice

that at each round, each machine is communicating at most Õ(n) bits and the coordinator

communicates Õ(n) bits back to each machine. As the number of rounds never needs to be

more than O(log k), we obtain that ISGreedy requires Õ(n) communication per each ma-

chine. Therefore, it only remains to analyze the approximation guarantee of this algorithm.

To do so, it suffices to show that,
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Lemma 8.6.1. Define C :=
⋃
i∈[p],j∈[r] C

j
i . The optimal k-cover of C covers

(
opt

4r·k1/r+1

)

elements.

Proof. We prove Lemma 8.6.1 by analyzing multiple cases.

Claim 8.6.2. If |X r| ≥ k, then the optimal k-cover of X r ⊆ C covers
(

opt
4r·k1/r+1

)
elements.

Proof. Consider the first k sets added to the collection X r. Any set S that is added to X r
in (Line (2b) of ISGreedy) covers 1

k1/r+1 · |S| new elements. Moreover, |S| ≥ τ = õpt/4rk

(by Line (2) of the GreedySketch algorithm). Hence, the first k sets added to X r already

cover at least,

k · 1

k1/r+1
· õpt
4rk
≥ opt

4r · k1/r+1

elements, proving the claim. Claim 8.6.2

The more involved case is when |X r| < k, which we analyze below. Recall that Cji is

the collection computed by GreedySketch(U j−1
i ,Si, τ) on the machine i ∈ [p] in round j. We

can assume that each
∣∣∣Cji
∣∣∣ < k; otherwise consider the smallest value of j for which the for

the first time there exists an i ∈ [p] with
∣∣∣Cji
∣∣∣ ≥ k (if for this value of j, there are more than

one choice for i choose the one with the largest size of c(Cji )): in Line (2b), the coordinator

would add all the sets in Cji to X j making
∣∣X j

∣∣ ≥ k, a contradiction with the assumption

that |X r| < k.

By the argument above, if there exists a machine i ∈ [p], with
∣∣c(C1i )

∣∣ > opt/4k1/r+1,

we are already done. This is because the collection C1i contains at most k sets and hence C1i
is a valid k-cover in C that covers (opt/4k1/r+1) elements, proving the lemma in this case.

It remains to analyze the more involved case when none of the above happens.

Lemma 8.6.3. Suppose |X r| < k and
∣∣c(C1i )

∣∣ ≤ opt/4k1/r+1 for all i ∈ [p]; then, the

optimal k-cover of C covers
(

opt
4r·k1/r+1

)
elements.

Proof. Recall that in each round j ∈ [r], each machine i ∈ [p] first computes a collection Cji
from the universe U j−1

i as its sketch (using GreedySketch) and sends it to the coordinator;

at the end of the round also this machine i updates its target universe for the next round

to U ji ⊆ C
j
i . We first show that this target universe U ji shrinks in each round by a large

factor compared to Cji .

Claim 8.6.4. For any round j ∈ [r] and any machine i ∈ [p],
∣∣∣U ji
∣∣∣ ≤

(
1/k1/r+1

)
·
∣∣∣c(Cji )

∣∣∣.

Proof. Consider any i ∈ [p] and round j ∈ [r]; by Line (2c) of ISGreedy, we know U ji =

c(Cji )\c(X j). Hence, it suffices to show that X j covers (1−1/k1/r+1) fraction of c(Cji ). This
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is true because for any set S ∈ Cji that is not added to X j , we have,
∣∣S \ c(X j)

∣∣ < 1
k1/r+1 ·|S|,

meaning that at most 1/k1/r+1 fraction of any set S ∈ Cji can remain uncovered by X j at

the end of the round j. Claim 8.6.4

By Claim 8.6.4, and the assumption on size of
∣∣c(C1i )

∣∣ in the lemma statement, we have,

|c(Cri )| ≤
∣∣U r−1

i

∣∣ ≤
(

1

k1/r+1

)
·
∣∣c(Cr−1

i )
∣∣ ≤

(
1

k1/r+1

)
·
∣∣U r−2

i

∣∣

(since U ji ⊆ c(C
j
i ) ⊆ U

j−1
i by construction of ISGreedy and GreedySketch)

≤
(

1

k1/r+1

)r−1

·
∣∣c(C1i )

∣∣ ≤
(

1

k1/r+1

)r−1

· opt

4k1/r+1

(by expanding the bound on each
∣∣∣U ji
∣∣∣ recursively and using the bound on

∣∣c(C1
i )
∣∣)

≤ opt

4kr/r+1
. (8.3)

Fix any optimal solution opt. We make the sets in opt disjoint by arbitrarily assigning

each element in c(opt) to exactly one of the sets that contains it. Hence, a set O ∈ opt is

a subset of one of the original sets in S; we slightly abuse the notation and say O belongs

to S (or input of some machine) to mean that the corresponding super set belongs to S. In
the following, we use Eq (8.3) to argue that any set O ∈ opt has a “good representative” in

the collection C. This is the key part of the proof of Lemma 8.6.3 and the next two claims

are dedicated to its proof.

We first show that for any set O in the optimal solution that belonged to machine

i ∈ [p], if O was never picked in any X j during the algorithm, then the universe U ji at

any step covers a large portion of O. For any j ∈ [r] and i ∈ [p], define Xj := c(X j) and

Cji = c(Cji ). We have,

Claim 8.6.5. For any set O ∈ opt \ C and the parameter τ defined in ISGreedy, if O

appears in the input of machine i ∈ [p], then, for any j ∈ [r],
∣∣∣O ∩ U ji

∣∣∣ ≥
∣∣O \Xj

∣∣− j · τ .

Proof. The idea behind the proof is as follows. In each round j, among the elements

already in U j−1
i , at most τ elements of O can be left uncovered by the set Cji as otherwise

the GreedySketch algorithm should have picked O (a contradiction with O /∈ C). Moreover,

any element in Cji but not U ji is covered by c(X j) i.e., Xj and hence can be accounted for

in the term
∣∣O \Xj

∣∣.

We now formalize the proof. The proof is by induction. The base case for j =

0 is trivially true as U0
i = [n] and X0 = ∅ (as X 0 = ∅). Now assume inductively

that this is the case for integers smaller than j and we prove it for j. By Line (2) of

GreedySketch, we know
∣∣∣O ∩ U j−1

i \ Cji
∣∣∣ < τ as otherwise the set O would have been picked
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by GreedySketch(U j−1
i ,Si, τ) in ISGreedy, a contradiction with the fact that O /∈ C. Using

this plus the fact that Cji = c(Cji ) ⊆ U
j−1
i , we have,

∣∣∣O ∩ Cji
∣∣∣ =

∣∣∣O ∩ Cji ∩ U
j−1
i

∣∣∣ ≥
∣∣∣O ∩ U j−1

i

∣∣∣−
∣∣∣O ∩ U j−1

i \ Cji
∣∣∣ ≥

∣∣O \Xj−1
∣∣− j · τ, (8.4)

where the last inequality is by induction hypothesis on the first term and the bound of τ

on the second term.

To continue, define Y j = Xj \ Xj−1, i.e., the set of new elements covered by X j
compared to X j−1. By construction of the algorithm ISGreedy, U ji = Cji \Xj = Cji \ Y j as

U j−1
i and consequently Cji do not have any intersection with Xj−1. We now have,

∣∣∣O ∩ U ji
∣∣∣ =

∣∣∣O ∩
(
Cji \ Y j

)∣∣∣ ≥
∣∣∣O ∩ Cji

∣∣∣−
∣∣O ∩ Y j

∣∣

≥
Eq (8.4)

∣∣O \Xj−1
∣∣− j · τ −

∣∣O ∩ Y j
∣∣

=
∣∣O \

(
Xj \ Y j

)∣∣− j · τ −
∣∣O ∩ Y j

∣∣ (by definition of Y j = Xj \Xj−1)

=
∣∣O \Xj

∣∣− j · τ, (since Yj ⊆ Xj)

which proves the induction step. Claim 8.6.5

We next argue that since any set O ∈ opt that is located on machine i is “well

represented” in U ri by Claim 8.6.5 (if not already picked in X r), and since by Eq (8.3), size

of Cri and consequently the number of sets sent by machine i in Cri is small, there should

exists a set in Cri that also represents O rather closely. Formally,

Claim 8.6.6. For any set O ∈ opt, there exists a set SO ∈ C such that for the parameter

τ defined in ISGreedy, |O ∩ SO| ≥ |O\Xr|−r·τ
r·k1/r+1 .

Proof. Fix a set O ∈ opt and assume it appears in the input of machine i ∈ [p]. The

claim is trivially true if O ∈ C (as we can take SO = O). Hence, assume O ∈ opt \ C. By

Claim 8.6.5 and the fact that U ri ⊆ Cri , at the end of the last round r, we have,

|O ∩ Cri | ≥ |O ∩ U ri | ≥
Claim 8.6.5

|O \Xr| − r · τ .

Moreover, by Eq (8.3), |Cri | ≤ opt/4kr/r+1. Since any set added to Cri increases Cri = c(Cri )
by at least τ = opt/4kr elements (by construction of GreedySketch), we know that,

|Cri | ≤
|Cri |

opt/4kr
≤

Eq (8.3)
r · k1/r+1.

It is easy to see that there exists a set SO ∈ Cri that covers at least 1/ |Cri | fraction of O∩Cri ;
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combining this with the equations above, we obtain that,

|O ∩ SO| ≥
|O \Xr| − r · τ

r · k1/r+1
.

Claim 8.6.6

We are now ready to finalize the proof of Lemma 8.6.3. Define CO := {SO ∈ C | O ∈ opt}
for the sets SO defined in Claim 8.6.6. Clearly, CO ⊆ C and |CO| ≤ k. Additionally, recall

that |X | < k by the assumption in the lemma statement. Consequently, both CO and X
are k-covers in C. In the following, we show that the best of these two collections covers

(opt/4r · k1/r+1) elements.

|c(CO)|+ |c(X r)| =
∣∣∣∣∣
⋃

O∈opt
SO

∣∣∣∣∣+ |X
r| ≥

∣∣∣∣∣
⋃

O∈opt
(O ∩ SO)

∣∣∣∣∣+ |X
r|

=
∑

O∈opt
|O ∩ SO|+ |Xr|

(as by the discussion before Claim 8.6.5 we assume the sets in opt are disjoint)

≥
Claim 8.6.6

∑

O∈opt

( |O \Xr| − r · τ
r · k1/r+1

)
+ |Xr|

=

∣∣⋃
O∈optO \Xr

∣∣− k · r · τ
r · k1/r+1

+ |Xr|
(again by the assumption on the disjointness of the sets in opt and the fact that |opt| = k)

≥ |c(opt)| − |X
r| − õpt/4

r · k1/r+1
+ |Xr| (as τ = õpt/4kr)

≥ |c(opt)| − opt/2

r · k1/r+1
≥ opt

2r · k1/r+1
. (as |c(opt)| = opt and õpt ≤ 2 · opt)

As a result, at least one of CO or X r is a k-cover that covers (opt/4r · k1/r+1) elements,

finalizing the proof. Lemma 8.6.3

Lemma 8.6.1 now follows immediately from Claim 8.6.2 and Lemma 8.6.3. Lemma 8.6.1

Theorem 8.5 follows from Lemma 8.6.1 as the coordinator can simply run any constant

factor approximation algorithm for maximum coverage on the collection C and obtains the

final result.

8.6.2. An ( e
e−1

)-Approximation Algorithm

We now prove that the round-communication tradeoff for the distributed maximum coverage

problem proven in Theorem 8.4 is essentially tight. Theorem 8.4 shows that using k ·mO(1/r)

communication in r rounds only allows for a relatively large approximation factor of kΩ(1/r).
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Here, we show that we can always obtain an (almost)
(

e
e−1

)
-approximation (the optimal

approximation ratio with sublinear in m communication) in r rounds using k ·mΩ(1/r) (for

some larger constant in the exponent).

As stated in the introduction, our algorithm in this part is quite general and works

for maximizing any monotone submodular function subject to a cardinality constraint (see

Section 2.5.1 for definitions). Hence, in the following, we present our results in this more

general form.

Theorem 8.6. There exists a randomized distributed algorithm for submodular maximiza-

tion subject to cardinality constraint that for any ground set V of size m, any monotone

submodular function f : 2V → R+, and any integer r ≥ 1 and parameter ε ∈ (0, 1), with

high probability computes an
(

e
e−1 + ε

)
-approximation in r rounds while communicating

O(k ·mO(1/ε·r)) items from V .

We assume that the algorithm is given a value õpt such that opt ≤ õpt ≤ 2 · opt.
In general, one can guess õpt in powers of two in the range ∆ to k · ∆ in parallel and

solve the problem for all of them and return the best solution. This would increase the

communication cost by only a factor of Θ(log k) (and one extra round of communication

just to communicate ∆ if it is unknown). We now present our algorithm.

Algorithm 1: Sample and Prune Greedy (SPGreedy).

Input: A collection Vi ⊆ V of items for each machine i ∈ [p] and a value õpt ∈ [opt, 2·opt].
Output: A collection of k items from V .

1. Define the parameters ℓ :=
⌈
lg(1+ε) (2e)

⌉
(= Θ(1/ε)) and s = ⌈r/ℓ⌉. The algorithm

consists of ℓ iterations each with s steps.

2. For j = 1 to ℓ iterations:

(a) Let τj =
õpt
k ·

(
1

1+ε

)j−1
and Xj,0 = Xj−1,s initially (we assume X0,∗ = ∅).

(b) For t = 1 to s steps:

i. Define V j,t = {a ∈ V | fXj,(t−1)(a) ≥ τj}.
ii. Each machine i ∈ [p] samples each item in V j,t ∩ Vi independently and

with probability qt :=





4k logm
m1−(t/s) if t < s

1 if t = s
, and sends them to the co-

ordinator.

iii. The coordinator iterates over each received item a (in an arbitrary order)

and adds a to Xj,t iff fXj,t(a) ≥ τj .
iv. The coordinator communicates the set Xj,t to the machines.
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3. The coordinator returns Xℓ,s in the last step (if at any earlier point of the algorithm

size of some X∗,∗ is already k, the coordinator terminates the algorithm and outputs

this set as the answer).

SPGreedy requires ℓ = Θ(1/ε) iterations each consists of s = ⌈r/ℓ⌉ steps. Moreover, each

step can be implemented in one round of communication. As such, the round complexity

of this algorithm is simply O(r). In the following, we prove a bound on the communication

cost of this algorithm and then analyze its approximation guarantee. To do so, we need the

following auxiliary lemma on the size of each set V j,t in the algorithm.

Lemma 8.6.7. For any j ∈ [ℓ] and any t ∈ [s],
∣∣V j,t

∣∣ ≤ m1−(t−1)/s w.p. at least 1−1/m2k.

Proof. Fix any iteration j ∈ [ℓ] and observe that Xj,0 ⊆ . . . ⊆ Xj,s. By submodularity of

f(·), this means that for a ∈ V , fXj,0(a) ≥ . . . ≥ fXj,s(a) and so V j,1 ⊇ V j,2 ⊇ . . . ⊇ V j,s.

The bound in the lemma statement is trivially true for t = 1; hence, we prove it for any

t > 1. To do so, we show that the collection Xj,t−1, computed at the end of the (t− 1)-th

step in iteration j, has the property that the corresponding collection V j,t (which is uniquely

identified by Xj,t) has its size bounded as in the lemma statement.

Fix any set A of up to k items from V . We say that A is bad iff the set VA :=

{a ∈ V | fA(a) ≥ τj} has size more than m1−(t−1)/s. For the set Xj,t to be equal to A at the

end of the (t − 1)-th step (in iteration j), necessarily no item from VA should be sampled

by any of the machines in that round. As such, for any bad set A ⊆ V ,

Pr
(
Xj,t = A

)
≤ (1− qt−1)

|VA| ≤
(
1− 4k · logm

m1−(t−1)/s

)m1−(t−1)/s

≤ exp (−4k · logm) ≤ m−4k.

Taking a union bound over
∑k

i=1

(
m
i

)
= O(mk) possible choices for a bad set A, the prob-

ability that any bad set A is chosen as the set Xj,t is smaller than 1/m3k. Conditioned on

this event, the set VXj,t for the next round, i.e., the t-th round, has size at most m1−(t−1)/s.

Taking a union bound over all j ∈ [ℓ] and t ∈ [s] finalizes the proof.

It is now easy to bound the communication cost of this protocol.

Lemma 8.6.8. SPGreedy communicates O(r ·k ·m1/s · logm) items w.p. at least 1− 1/mk.

Proof. We condition on the event in Lemma 8.6.7. As such, for each iteration j ∈ [ℓ]

and each step t ∈ [s] in this iteration, V j,t is of size m1−(t−1)/s at most. Consequently,

the total number of items sampled by the machines in step t is in expectation at most
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m1−(t−1)/s · qt = m1/s · 4k logm. This means that, by Chernoff bound, w.p. at least

1− 1/m2k, at most O(m1/s · k logm) items are communicated by each machine in this step.

The coordinator also communicates at most k items to each machine in each step. The

bound now follows by taking a union bound over all O(r) iterations and steps.

Lemma 8.6.9. Suppose X is the set returned by SPGreedy; then, f(X) ≥ (1−1/e−ε) ·opt.

Proof. We first argue that if the set X has size < k then f(X) ≥ (1−1/e) ·opt already; note
that in this case, X = Xℓ,s. Let opt be an optimal solution and consider any item o ∈ opt

that was never picked by the coordinator to be added to X; this in particular means that

o was not added to Xℓ,s which implies,

fX(o) = fXℓ,s(o) < τℓ =
õpt

k
·
(

1

1 + ε

)ℓ
=

õpt

2e · k ≤
opt

e · k . (8.5)

The first inequality in Eq (8.5) holds because in step s of each iteration, every item a ∈
V with fXℓ,s−1(a) ≥ fXℓ,s(a) (by submodularity) is sent to the coordinator and hence if

fXℓ,s(o) ≥ τℓ the coordinator would be able to find it and add it to Xℓ,s. The next two

equalities are by the choices of τℓ and ℓ, respectively, and the last inequality is true since

õpt ≤ 2opt. Using this bound and the monotone submodularity of f(·), we can write,

f(opt) ≤
Fact 2.5.2

f(X) +
∑

o∈opt\X
fX(o) ≤

Eq (8.5)
f(X) + |opt| · opt

e · k = f(X) + opt/e

as |opt| = k, which finalizes the proof in this case.

We now consider the more involved case where the coordinator picks exactly k items in

X. To continue, we need the following definitions. Let x1, . . . , xk be the items added to X

by the coordinator in this particular order. For any i ∈ [k], define X<i = x1, . . . , xi−1, i.e.,

the first i− 1 items added to X (define X<1 = ∅). We have,

Claim 8.6.10. For any i ∈ [k], fX<i(xi) ≥ f(opt)−f(X<i)
(1+ε)·k .

Proof. For any item xi for i ∈ [k], by construction of SPGreedy, if i is added in iteration

j ∈ [ℓ] to X, then,

fX<i(xi) ≥ τj . (8.6)

Suppose first that the item xi is added toX in the first iteration. By the above equation,

fX<i(xi) ≥
Eq (8.6)

τ1 =
õpt

(1 + ε) · k ≥
opt

(1 + ε) · k ,
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by the bounds on τ1 and õpt. This proves the lemma for any item xi that is added to X in

the first iteration. Now suppose xi is added in the iteration j > 1.

Consider the item o∗ ∈ opt \X<i with the maximum marginal contribution to fX<i .

Recall that since f(·) is submodular, by Fact 2.5.3, fX<i(·) is subadditive. We have,

fX<i(o∗) = max
o∈opt\X<i

fX<i(o) ≥
Fact 2.5.3

1

k
·

∑

o∈opt\X<i

fX<i(o) ≥
Fact 2.5.2

1

k
·
(
f(opt)− f(X<i)

)

(8.7)

On the other hand, we also know that o∗ does not belong to X<i, meaning that it was not

added to X<i at least by end of iteration j − 1 (since xi is added to X<i in iteration j).

Hence, again by construction of SPGreedy, similar to the case in Eq (8.6),

fX<i(o∗) < τj−1. (8.8)

Finally,

fX<i(xi) ≥
Eq (8.6)

τj ≥
1

(1 + ε)
· τj−1 ≥

Eq (8.8)

1

(1 + ε)
· fX<i(o∗) ≥

Eq (8.7)

f(opt)− f(X<i)

(1 + ε) · k ,

finishing the proof. Claim 8.6.10

We can now finalize the proof of Lemma 8.6.9 as follows,

f(opt)− f(X) = f(opt)− f(X<k)− fX<k(xk) (by definition of fX<k(xk))

≤
Claim 8.6.10

f(opt)− f(X<k)− f(opt)− f(X<k)

(1 + ε) · k

=

(
1− 1

(1 + ε) · k

)
·
(
f(opt)− f(X<k)

)

≤
(
1− 1

(1 + ε) · k

)k
·
(
f(opt)− f(X<1)

)

(by applying Claim 8.6.10 recursively)

≤ (1/e+ ε) · f(opt)

as f(X<1) = 0 since X<1 = ∅ by definition. Thus, f(X) ≥ (1−1/e−ε)·opt. Lemma 8.6.9

Theorem 8.6 now follows immediately from Lemma 8.6.8 and Lemma 8.6.9.

We conclude this section by stating the following corollary of Theorem 8.6 for the

maximum coverage problem, which formalizes the first part of Result 8.2. The proof is a
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direct application of Theorem 8.6 plus the known sketching methods for coverage functions

in [247, 50] to further optimize the communication cost. Hence we omit the proof here and

refer the interested reader to our paper [31] for the proof.

Corollary 8.7. There exists a distributed algorithm for the maximum coverage problem

that for any integer r ≥ 1, and any parameter ε ∈ (0, 1), with high probability computes an(
e
e−1 + ε

)
-approximation in r rounds and Õ( k

ε4
·mO(1/ε·r) + n) total communication.

8.7. Applications to Other Models of Computation

We discuss the applications of our results to maximum coverage (and submodular maxi-

mization) in the dynamic streaming model and the MPC model. We finish the section by

making a remark about the role of partitioning of the input in the distributed model.

Maximum coverage in dynamic set streams. By applying the reduction of [14] to dy-

namic streaming algorithms (Proposition 2.7.11) for maximum coverage problem and using

our lower bound in Theorem 8.4 (which was proven in this more general communication

model), we obtain that,

Corollary 8.8. No p-pass semi-streaming algorithm for the maximum coverage problem in

the dynamic streaming model can approximate the value of optimal solution to a factor of

o( k
1/2p

p·log k ) with a sufficiently large probability.

We remark that one can obtain the same exact bounds in Theorem 8.4 for the space

complexity of dynamic streaming algorithms also; however, as our focus is on semi-streaming

algorithms we provide the above theorem which is qualitatively similar but is easier to

parse. Our upper bound in Theorem 8.6, i.e., the SPGreedy algorithm can be implemented

in dynamic streams using ℓ0-samplers (Lemma 3.3.1), implying the following corollary.

Corollary 8.9. There exists a randomized semi-streaming algorithm for the maximum cov-

erage problem that for any constant ε ∈ (0, 1), with high probability, computes an
(

e
e−1 + ε

)
-

approximation in O(logm/ε) passes over the stream.

Corollary 8.9 can also can be stated for dynamic streaming algorithms with different

space bounds corresponding to Corollary 8.7; however, for brevity, we only focused on

semi-streaming algorithms.

Maximum coverage in the MPC model. We now present our results for maximum

coverage and submodular maximization in the MPC model.

Recall that in the sketch-and-update approach (described in Section 8.2) in the MPC

model, in each round, every machine is sending a message directly to a designated central

243



machine for combining the sketches. By definition of the MPC model, the total messages

received by the central machine can only be proportional to its memory which is of size

O(s). This enforces an upper bound on the total communication of O(s) in each round

by the machines. It is thus easy to see that efficient MPC algorithms in the sketch-and-

update framework immediately imply communication efficient protocols in the distributed

coordinator model (note that this is in general is not true for every MapReduce algorithm).

As a result, we can interpret Theorem 8.4 as proving a lower bound for sketch-and-update

algorithms in the MapReduce framework.

Corollary 8.10. For any δ ∈ (0, 1), any MPC algorithm in the sketch-and-update frame-

work described in Section 8.2 that uses s = mδ space per machine and computes a constant

factor approximation to maximum coverage requires Ω(1δ ) rounds of communication.

Moreover, both algorithms in Result 8.2 can be implemented in the MapReduce model.

In particular, we state the following corollary of Theorem 8.6 for submodular maximization

which also subsumes the results for coverage maximization.

Corollary 8.11. Let V be a universe of m items and f : 2V → R+ be a monotone submod-

ular function. For any ε, δ ∈ (0, 1), there exists an
(

e
e−1 + ε

)
-approximation randomized

algorithm for maximizing f subject to a cardinality constraint in the MapReduce framework

that uses p = O(m1−δ/ε) machines each with s = O(mδ/ε) memory and computes the answer

in O( 1
ε·δ ) rounds.

Adversarial vs random partitions. We considered adversarial input partitions in this

work, meaning that the input across the machines is distributed adversarially. However,

recall that in Chapter 4, we saw that random partitioning of input can signficantly help in

some scenarios. This was in fact first observed for the submodular maximization problem

in [249, 112]. For maximum coverage (and submodular maximization), it was shown pre-

viously that under this assumption one can achieve a constant factor approximation using

Õ(n) communication per machine in only one round of communication [249, 112]. Com-

paring this with Theorem 8.4 implies that an approximation factor that can be achieved in

only one round of communication and Õ(n) communication under randomized partitions,

cannot be achieved in o( logn
log logn) rounds of communication and poly(n) communication in

adversarial partitions! This suggests a remarkable power of randomized composable coresets

(and hence our framework in Chapter 4) over adversarial partitions.
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Part III

Applications to Resource

Constrained Optimization

Problems
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Chapter 9

Interaction in Combinatorial Auctions

We now start the third and last part of our thesis. In this chapter and next one, we deviate

from our main theme of optimization on massive datasets and instead consider settings

where the goal is to perform computation over data which is not particularly large but still

imposes restrictions of similar nature. We use the toolkit developed in the first two parts of

the thesis to obtain several new results for problems of this nature, settling multiple open

questions in the literature. We start with studying the role of interaction between players in

a combinatorial auction. The materials in this part are based on [25] with a simplification

of using our framework in Chapter 8 instead of a direct argument to prove the main result.

The study of role of interaction in combinatorial auctions was originally introduced by

Dobzinski, Nisan, and Oren [119] as the following simple market scenario: m items are to

be allocated among n bidders in a distributed setting where bidders valuations are private

and hence communication is needed to obtain an efficient allocation. The communication

happens in rounds: in each round, each bidder, simultaneously with others, broadcasts a

message to all parties involved. At the end, the central planner computes an allocation

solely based on the communicated messages.

Dobzinski et al. [119] made the first progress on this problem by proving that no non-

interactive mechanism can solve this problem efficiently, while O(logm) rounds of interac-

tion suffices to do so. Later, Alon, Nisan, Raz, and Weinstein [19] studied the qualitatively

similar but technically disjoint setting of bidders with unit-demand valuations and proved

that Ω(log logm) rounds of interactions are necessary in this case. Both works posed the

following as an open question:

What is the “right” level of interaction needed to find an efficient allocation,

namely a constant or a poly-log approximation, in combinatorial auctions?

We resolve this fascinating question by providing an almost tight round-approximation

tradeoff for this problem, when the players are communicating only polynomially many bits

(in n and m). As a corollary, we prove that Ω( logm
log logm) rounds of interaction are necessary

for obtaining any efficient allocation (i.e., a constant or even a polylog(m)-approximation)

in these markets. Our proof of this result builds on the similarity between the setting of

this problem and the distributed communication model we study in this thesis and the

framework we provided in Chapter 8.

Highlights of Our Contributions

In this chapter, we will establish:
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• A tight lower bound on the tradeoff between the number of rounds of interaction com-

binatorial auctions and the welfare guarantee of the resulting allocation (Section 9.4).

Our lower bound in this chapter uses our framework for proving bounded-round com-

munication complexity lower bounds in the multi-party setting from Chapter 8.

9.1. Background

In a combinatorial auction, m items inM are to be allocated between n bidders (or players1)

in N with valuation functions vi : 2
M → R+. The goal is to find a collection of disjoint

bundles A1, . . . , An of items in M (an allocation), that maximizes social welfare defined as

the sum of bidder’s valuations for the allocated bundles, i.e.,
∑

i∈N vi(Ai). We study the

tradeoff between the amount of interaction between the bidders and the efficiency of the

allocation in combinatorial auctions.

In our model, each bidder i ∈ N only knows the valuation function vi and hence the

bidders need to communicate to obtain an efficient allocation. Communication happens

in rounds. In each round, each bidder i, simultaneously with others, broadcasts a mes-

sage to all parties involved, based on the valuation function vi and messages in previous

rounds. In the last round, the central planner outputs the allocation solely based on the

communicated messages. Notice that a “trivial solution” in this setting is for all players to

communicate their entire input to the central planner who can then compute an efficient

allocation; however, such a protocol is clearly infeasible in most settings as it has an enor-

mous communication cost. As such, we are interested in protocols with significantly less

communication cost, typically exponentially smaller than the input size.

This model was first introduced by Dobzinski, Nisan, and Oren [119] to address the

following fundamental question in economics:

“To what extent is interaction between individuals required in order to efficiently

allocate resources between themselves?”

They considered this problem for two different classes of valuation functions: unit-

demand valuations and subadditive valuations. For both settings, they showed that (at least

some) interaction is necessary to obtain an efficient allocation: non-interactive (aka 1-round

or simultaneous) protocols have enormous communication cost compared to interactive ones,

while even allowing a modest amount of interaction allows for finding an (approximately)

efficient allocation. We now elaborate more on these results.

For the case of matching markets with n unit-demand bidders and n items (and hence

input-size of n bits per each player), Dobzinski et al. [119] proved a lower bound of Ω(
√
n)

on the approximation ratio of any simultaneous protocol that communicates no(1) bits per

1Throughout the paper, we use the terms “bidder” and “player” interchangeably.
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each bidder. On the other hand, they showed that for any r ≥ 1, there exists an r-

round protocol that achieves an O(n1/r+1) approximation by sending O(log n) bits per

each bidder in each round. For the more general setting of combinatorial auctions with

n subadditive bidders and m items (and hence input-size of exp(m) bits per each player),

they showed that the best approximation ratio achievable by simultaneous protocols with

poly(m,n) communication is Ω(m1/4), while for any r ≥ 1, there exists r-round protocols

that achieve an approximation ratio of Õ(r · m1/r+1). These results imply that in such

markets, logarithmic rounds of interaction in the market size suffice to obtain an (almost)

efficient allocation, i.e., a polylog(m)-approximation.

A natural question left open by [119] was to identify the amount of interaction necessary

to obtain an efficient allocation in these markets. Recently, Alon, Nisan, Raz, and Wein-

stein [19] provided a partial answer to this question for matching markets: for any r ≥ 1,

any r-round protocol for unit-demand bidders in which each bidder sends at most no(1) bits

in each round can only achieve an Ω(n1/5
r+1

) approximation [19]. This implies that at least

Ω(log log n) rounds of interaction is necessary to achieve an efficient allocation in matching

markets. Alon et al. [19] further conjectured that the “correct” lower bound for the con-

vergence rate in this setting is Ω(log n); in other words, Ω(log n) rounds of interaction are

necessary for achieving an efficient allocation.

Despite this progress for matching markets, the best known lower bounds for the more

general setup of combinatorial auctions with subadditive bidders remained the aforemen-

tioned 1-round lower bound of [119], and a (2−ε)-approximation (for every constant ε > 0)

for any polynomial communication protocol with unrestricted number of rounds [120]. In-

deed, obtaining better lower bounds for r-round protocols was posed as an open problem

by Alon et al. [19] who also mentioned that: “from a communication complexity per-

spective, lower bounds in this setup are more compelling, since player valuations require

exponentially many bits to encode, hence interaction has the potential to reduce the overall

communication from exponential to polynomial.”.

9.2. Our Results and Techniques

We resolve the aforementioned open question of Dobzinski et al. [119] and Alon et al. [19]

by proving a tight round-approximation tradeoff for subadditive combinatorial auctions.

Result 9.1. For any r ≥ 1, any r-round protocol (deterministic or randomized) for

combinatorial auctions with subadditive bidders that uses polynomial communication

in m and n can only achieve an approximation ratio of Ω(1r · m1/Θ(r)) to the social

welfare.

We remark that this lower bound holds even when the bidders valuations are XOS
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functions, a strict subclass of subadditive valuations (see Section 2.5 for definition).

Our main result, combined with the upper bound result of [119], provides a near-

complete understanding of the power of each additional round in improving the quality of

the allocation in combinatorial auctions. Moreover, a corollary of our result is that in these

markets, Ω( logm
log logm) rounds of interaction are necessary to achieve any efficient allocation

(i.e., constant or poly-log approximation), which is tight up to an O(log logm) factor.

Our techniques. We use the framework developed in Chapter 8 to prove a communication

lower bound in the multi-party communication model with coordinator (which is essentially

the same model as the distributed model for combinatorial auctions in this chapter).

Remark 9.2.1. We shall note that even though in this thesis we use our framework in

Chapter 8 to prove our results, chronologically, our results in this part [25] predates our

framework in [31] and in fact had a crucial role in designing the framework itself.

9.2.1. Further Related Work

Communication complexity of combinatorial auctions has received quite a lot of attention

in the literature. It is known that for arbitrary valuations, exponential amount of com-

munication is needed to obtain an
(
m1/2−ε)-approximate allocation (for every constant

ε > 0) [259] (see also [258]), and this is also tight [6, 236, 78, 226]. For subadditive valua-

tions, a constant factor approximation to the social welfare can be achieved in our model

using only polynomial communication [120, 121, 136, 138, 227, 296, 124] (and polynomially

many rounds of interaction); in particular, Feige [136] developed a 2-approximation poly-

nomial communication protocol for this problem and Dobzinski, Nisan, and Schapira [120]

proved that obtaining (2− ε)-approximation (for any constant ε > 0) requires exponential

communication (regardless of the number of rounds).

9.2.2. Subsequent Work

Subsequent to the conference version of this paper [25], Braverman and Oshman [73] im-

proved the lower bounds of Alon et al. [19] for unit-demand markets to an Ω( logn
log logn) rounds

of interaction. While this result is qualitatively similar to our result in this paper for (sub-

additive) combinatorial auctions, our result and that of [73] are completely incomparable in

that neither implies or strengthens the other. We also point out that in terms of techniques,

our paper and [73] are almost completely disjoint.

9.3. Preliminaries

Intersecting families. We use the following combinatorial construction in our proofs.

Definition 9.1. A (p, q, t, ℓ)-intersecting family F is a collection of p subsets of [q] each of
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size t, such that for any two distinct sets S, T ∈ F , |S ∩ T | ≤ ℓ.

An existence of an exponentially large intersecting family with a small pair-wise inter-

section can be shown by a simple probabilistic argument.

Lemma 9.3.1. For any integer r ≥ 1, any parameter ε > 0, and any integer k ≥
(
2e2 · r2

) 1
ε ,

there exists a (p, q, t, ℓ)-intersecting family with p = exp
(
Θ(k2r−2+ε)

)
, q = k2r + r · k2r−1,

t = r · k2r−1, and ℓ = k2r−2+ε.

Proof. Let F be a family of p sets (for p to be determined later), each chosen independently

and uniformly at random from all t-subsets of [q]. Fix any pair of sets S, T ∈ F ; for each

element a ∈ S, define the random variable Xa ∈ {0, 1} which is 1 iff a ∈ T also. We have

E [Xa] ≤ r/k. Let X =
∑

a∈S Xa denotes |S ∩ T |; hence E [X] = r2 · k2r−2. Since Xa’s are

negatively correlated random variables, by Chernoff bound (Proposition 7.3.1),

Pr (|S ∩ T | > ℓ) = Pr
(
X > k2r−2+ε

)
= Pr

(
X > kε/r2 · E [X]

)
≤ exp

(
−Ω(k2r−2+ε)

)
.

By a union bound over all possible choices for S, T ∈ F ,

Pr (∃ S, T ∈ F : |S ∩ T | > ℓ) ≤
∑

S 6=T∈F
Pr (|S ∩ T | > ℓ) ≤

(
p

2

)
· exp

(
−Ω(k2r−2+ε)

)
.

Taking p = exp
(
Θ(k2r−2+ε)

)
ensures that with some non-zero probability, the set F is a

(p, q, t, ℓ)-intersecting family, implying the existence of such a family.

Approximation guarantee. We consider protocols that are required to estimate the

maximum value of social welfare in any instance I of a combinatorial auction (denoted by

sw(I)). More formally, a δ-error α-approximation protocol needs to, for each input instance

I sampled from D, output a number in the range [ 1α · sw(I), sw(I)] w.p. at least 1 − δ,

where the randomness is over the distribution D (and the randomness of protocol in case

of randomized protocols).

Any r-round protocol for finding an approximate allocation can be used to obtain

an (r + 1)-round protocol for estimating the value of social welfare with O(n) additional

communication; simply compute the approximate allocation in the first r rounds and spend

one additional round in which each player declares her value for the assigned bundle. It

was shown very recently in [71] that this loss of one round in the reduction is unavoidable.

However, this extra one round is negligible for our purpose as we are interested in the

asymptotic dependence of the approximation ratio and number of rounds.
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9.4. The Lower Bound

In this section, we establish our main result, formalizing Result 9.1.

Theorem 9.2. For any integer 1 ≤ r ≤ o
(

logm
log logm

)
, and any sufficiently small constant

ε > 0, any r-round protocol (possibly randomized) for combinatorial auctions with subad-

ditive (even XOS) bidders that can approximate the value of social welfare to a factor of(
1
r ·m

1−ε
2r+1

)
requires exp

(
mΩ( ε

r
)
)
bits of communication.

We start by introducing the recursive family of hard input distributions that we use in

proving Theorem 9.2 and then establish a lower bound for this distribution.

A hard input distribution for r-round protocols. Let k be an integer and consider

a set N of nr = k2r players and a set M of mr = (r + 1) · k2r+1 items. The players are

partitioned (arbitrarily) between k2 groups N1, . . . , Nk2 each of size nr−1. Fix a group Ng

and for any player i ∈ Ng, we create an exponentially large (in k) collection Ci of item-sets of

size mr−1 (over the universeM), such that the for any two sets S, T ∈ Ci, |S ∩ T | ≤ k2r−2+ε

(for any constant ε > 0).

The local view of player i ∈ Ng is as follows: over each set Sj ∈ Ci, we create an

(r − 1)-round instance of the problem, namely instance Ii,j , sampled from the distribution

Dr−1 with the set of players Ng and the set of items Sj , and then let the input of player

i be the collective input of the i-th player in all these instances. In other words, player i

finds herself “playing” in exponentially many “(r − 1)-round instances” of Dr−1.

On the group level, the input to players inside a group Ng are highly correlated: for

each player i ∈ Ng, one of the instances, namely Ii,j∗ , is an “special instance” in the sense

that all players in the group Ng has a “consistent” view of this instance, i.e., the collective

view of players 1, . . . , nr−1 in Ng on the instances I1,j∗ , . . . , Inr−1,j∗ forms a valid instance

sampled from Dr−1. However, for any other index j 6= j∗, the collective view of players in

Ng in the instances I1,j∗ , . . . , Inr−1,j∗ forms a “pseudo instance” that is not sampled from

Dr−1; these pseudo instances are created by sampling the input of each player independently

according to Dr−1. Note however that while the pseudo instances and the special instance

of a player are fundamentally different, each player is oblivious to this difference, i.e., cannot

determine (locally) which instance is the special instance.

Finally, the input to players across the groups, i.e., the global input, is further correlated:

the set of items in the special instances of players in a group Ng is a “unique” set of items

(across all groups), while all other instances, across all groups, are constructed over a set of

k2r “shared” items. This correlation makes the special instance of a player i, in some sense,

the only important instance: to obtain a large allocation, the players need to ultimately
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solve the problem for these special instances.

We now formally define distribution Dr. In the following, for simplicity of exposition,

we assume that the distribution Dr, in addition to the valuation function of players, also

outputs the private collections (defined similarly as in D1) of players that are used to define

these functions.

Distribution Dr(N,M). A hard input distribution for r-round protocols (for r ≥ 1).

Input: Collections N of nr = k2r players and M of mr = (r + 1) · k2r+1 items.

Output: A set of nr valuation functions (v1, . . . , vnr) for the players in N and nr private

collections (F1, . . . ,Fnr) used to define the valuation functions.

1. Let Sr = {S1, . . . , Sp} be a (pr, qr, tr, ℓr)-intersecting family with parameters pr =

p = exp (Θ(kε)), qr = k2r + r · k2r−1, tr = r · k2r−1, and ℓr = k2r−2+ε (guaranteed

to exist by Lemma 9.3.1 as k = mΩ(1/r) = ω(r2/ε) by the assumption that r =

o
(

logm
log logm

)
).

2. Arbitrary group the players into k2 groups N = (N1, . . . , Nk2), whereby each group

contains exactly nr−1 = k2r−2 players.

3. Pick an index j∗ ∈ [p] uniformly at random and sample an instance I⋆r ∼
Dr−1([nr−1], Sj∗).

4. For each group Ng ∈ N independently,

(a) Define I⋆Ng
as I⋆r by mapping the players in [nr−1] to Ng.

(b) For each player i ∈ Ng independently, create p instances I(i) := (Ii,1, . . . , Ii,p)

whereby for all j 6= j∗, Ii,j ∼ Dr−1(Ng, Sj), and Ii,j∗ = I⋆Ng
.

(c) For a player i ∈ Ng and index j ∈ [p], let Fi,j be the set of private collection

of that player in instance Ii,j and let Fi =
⋃
j∈[p]Fi,j .

5. Pick a random permutation σ of M . For each g ∈ [k2] and group Ng, map the k2r

items in [qr]\Sj∗ to σ(1), . . . , σ(k2r), and the tr items in Sj∗ to σ(k2r+(g−1) · tr+
1) . . . σ(g · tr) (and for each player i ∈ Ng, update the item set of Fi and underlying

instances Ii,1, . . . , Ii,p accordingly).

6. For any player i ∈ N , define the valuation function of player i as vi(S) =

maxT∈Fi |S ∩ T | (these valuation functions are XOS valuation; see Eq (2.2)).

The case of r = 0 only includes one player and a set of size N an either the player

values this set at N or has no value for the set.

We make several observations about the distribution Dr. Recall that Fi denotes the

private collection of player i ∈ N that is used to define the valuation function vi. By

construction, the size of the sets inside each private collection is equal across any two
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distributions Dr and Dr′ and hence is equal to k (by definition of distribution D1). A

simple property of these sets is that,

Observation 9.4.1. For any player i ∈ N , and any set T ∈ Fi, the set T is chosen

uniformly at random from all k-subsets of M .

Fix any group Ng ∈ N and any player i ∈ Ng. The input to player i can be seen as

the “view” of i in the p instances I(i) := (Ii,1, . . . , Ii,p), i.e., the input of the i-th player

(in Ng) in Ii,j (for all j ∈ [p]) and not the whole instance. However, in the following, we

slightly abuse the notation and use Ii,j to also denote the view of player i in the instance

Ii,j . Moreover, we point out that Ii,j is defined over the set of items Sj ; hence, the complete

input to player i is (I(i), φi) where φi is the labeling function to map the items Sj to M .

For any player i ∈ N , we refer to the instance Ii,j∗ of player i as the special instance

of player i, and to all other instances Ii,j for j 6= j∗ as fooling instances. We further define

I⋆r (i) as the input of player i in the special instance Ii,j∗ = I⋆r , and define I⋆r (−i) as the

input of all other players in I⋆r .

Observation 9.4.2. For any group Ng ∈ N , the joint input of all players i ∈ Ng in their

special instances Ii,j∗ form the instance I⋆Ng
that is sampled from the distribution Dr−1.

On the other hand, the fooling instances of players i ∈ Ng are sampled independently

and hence the joint distribution of the players on their instances Ii,j is not sampled from

Dr−1. Nevertheless, this difference is not evident to the player i.

Observation 9.4.3. For any player i ∈ N , conditioned on the input (I(i), φi) given to the

player i, the index j∗ is chosen uniformly at random from [p].

Observation 9.4.4. The distribution of collection of instances I := (I(1), . . . , I(nr)) ∼
Dr | I⋆r , σ, j∗ is a product distribution as instances in Line (4b) are sampled independently

(except for instances Ii,j∗ = I⋆r which are already conditioned on above).

Another important property of the special instances in distribution Dr is that,

Observation 9.4.5. The special instances I⋆N1
, . . . , I⋆Nk2

are supported on disjoint set of

items (according to the mapping σ).

Notice that we can trace the special instances into a unique path I⋆r → I⋆r−1 → . . .→ I⋆2 ,

whereby I⋆2 is sampled from the distribution D1. We use θ⋆ to denote the parameter θ (in

D1) in the instance I⋆2 in this path. The following lemma proves a key relation between θ⋆

and social welfare of the sampled instance.
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Lemma 9.4.6. For any instance I ∼ Dr:

Pr
(
sw(I) ≥ k2r+1 | θ⋆ = 1

)
= 1 (9.1)

Pr
(
sw(I) ≤ 2r · k2r+2ε | θ⋆ = 0

)
= 1− r · exp (−Ω(kε)) (9.2)

Proof. We start by the simpler case of Eq (9.1); the proof is by induction. The base

case for r = 0 is true trivially. Suppose this holds for all integers smaller than r. Now,

consider an instance I ∼ (Dr | θ⋆ = 1) and the k2 special instances IN1 , . . . , INk2
sampled

from (Dr−1 | θ⋆ = 1) in I. By induction, there is an allocation Ag for each g ∈ [k2] that

results in a welfare of at least k2r−1 in each I⋆Ng
. By Observation 9.4.5, the set of items

among special instances are disjoint, and hence the allocation A := (A1, . . . , Ak2) which

assigns the bundles in Ag to players in Ng for g ∈ [k2] is a valid allocation that results in a

welfare of k2 · k2r−1 = k2r+1, proving the induction step.

We now prove Eq (9.2) by induction. The base case of r = 0 is again true trivially.

Assume that the bounds hold for all integers smaller than r and consider an instance

I ∼ (Dr | θ⋆ = 0) and let I⋆N1
, . . . , I⋆Nk2

be the special instances of I, “copied” from the

instance I⋆r ∼ (Dr−1 | θ⋆ = 0) (as in Line (4a) of Dr). Let U be the set of items assigned to

these instances (by mapping σ) and ¬U be the set of remaining items assigned by σ, i.e.,

the items that have no value in the special instances; we have |U | = k2 · tr = r · k2r+1 and

|¬U | = k2r (notice that σ does not assign all the items in M ; in particular, k2r+1 − k2r
items are not assigned to any instance, i.e., have no value for any player; these extra items

are only added to simplify the math.). We have,

Claim 9.4.7. W.p. 1 − exp (−Ω(kε)), for any player i ∈ N and any set T ∈ Fi such that

T does not belong to a private collection of a special instance (i.e., T is not sampled from

Ii,j∗), |T ∩ U | ≤ k2ε.

Proof. Fix a group Ng ∈ N and fix a player i ∈ Ng and let Ii,j be an instance of Dr−1 for

some j 6= j∗, i.e., not a special instance. Recall that the set of items in Ii,j and Ii,j∗ are two

distinct sets Sj and Sj∗ from Sr on the universe [qr] (and hence |Sj ∩ Sj∗ | ≤ ℓr = k2r−2+ε by

definition of intersecting families), and since [qr] is entirely mapped by σ for player i ∈ Ng,

the intersection between item set of Ii,j and Ii,j∗ is at most k2r−2+ε; this in particular

means that at most k2r−2+ε items in Ii,j belong to U (Ii,j does not share any item with any

instance Ii′,j∗ for any i′ /∈ Ng).

Now consider the choice of a set T (in the private collection) for the player i in the

instance Ii,j . For each item a that belongs to both item-set of Ii,j and U , define an indicator

random variable Xa ∈ {0, 1}, which is one iff a is chosen in T . Then, X :=
∑

aXa denotes

|T ∩ U |. By Observation 9.4.1, T is a k-subset chosen uniformly at random from a universe
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of size tr = r · k2r−1, and hence, E [X] ≤ k2r−2+ε · 1/(r · k2r−2) ≤ kε/r. By Chernoff bound

for negatively correlated variables (Proposition 7.3.1), Pr
(
|S ∩ U | ≥ k2ε

)
≤ exp

(
−Ω(k2ε)

)
.

We can now apply a union bound over all possible choices for the set T (among all

players and instances), and the probability that even one set T violates this constraint is

(note that there are nr · pr different choices for T )

nr · pr · exp
(
−Ω(k2ε)

)
= exp (Θ(r · log k)) · exp (Θ(r · kε)) · exp

(
−Ω(k2ε)

)
= exp (−Ω(kε))

since r = o(kε) (by the assumption that r = o
(

logm
log logm

)
). Claim 9.4.7

In the following we condition on the event in Claim 9.4.7 (event E1) and the event that

sw(I⋆) ≤ 2(r− 1) · k2r−2+2ε (event E2). Note that by Claim 9.4.7 and induction hypothesis,

these two events happen (simultaneously) w.p. 1− r · exp (−Ω(kε)).

Now fix any allocation A = (A1, . . . , An). As size of ¬U is at most k2r, the items in ¬U
can only contribute k2r to the welfare in A. Next, let A∗ be the subset of A such that the

maximizing clause in each Ai ∈ A∗ (i.e., the set T ∈ Fi) belongs to some special instance,

and A′ be the remaining part of allocation A. We know, by E2, that the contribution of

A∗ to the welfare is at most k2 · 2(r − 1) · k2r−2+2ε = 2(r − 1) · k2r+2ε (counting the k2

special instances). Moreover, by E1 (in Claim 9.4.7), the contribution of A′ is at most

k2r · k2ε = k2r+2ε. To conclude, we obtain that the social welfare when θ⋆ = 0 is at most

k2r + 2(r − 1) · k2r+2ε + k2r+2ε ≤ 2r · k2r+2ε with the desired probability. Lemma 9.4.6

Proof of Theorem 9.2. By Lemma 9.4.6, any r-round protocol that outputs a

(
1
r ·m

1−2ε
2r+1
r

)
-

approximation to the social welfare of instances I ∼ Dr, w.p. of failure δ < 1/4, is also a

(δ + o(1))-error protocol for estimating the parameter θ⋆. We can hence invoke our frame-

work for proving multi-round lower bounds in Section 8.4 to finalize the proof.

It is straightforward to verify that the (pr, qr, tr, ℓr)-intersecting family forms a packing

function σr (according to Definition 8.1) and the labeling functions φi chosen in Dr are

indeed forming a labeling family (according to Definition 8.2). They are also clearly locally

computable (according to Definition 8.3). Lemma 9.4.6 also implies that these functions

are γ-preserving for parameter γ ≈ r · exp (−Ω(kε)) (according to Definition 8.4). As such,

the distributions {Dr} is a γ-hard family. Thus, by Theorem 8.3, we have ‖π‖ = Ω(p/r4) =

exp (Θ(kε)) /r4 = exp
(
mΩ(ε/r)

)
/r4 = exp

(
mΩ(ε/r)

)
, as k = mΩ(1/r) and r = o( logm

log logm).

Re-parametrizing ε by ε/2 in finalizes the proof. Theorem 9.2
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Chapter 10

Learning With Limited Rounds of Adaptivity

In this last technical chapter of our thesis, we study the power and limitations of adaptivity

in learning scenarios. The materials in this chapter are based on [4].

In many learning settings, active/adaptive querying is possible, but the number of

rounds of adaptivity—the number of rounds of interaction with the feedback generation

mechanism—is limited. For example, in crowdsourcing, one can actively request feedback

by sending queries to the crowd, but there is typically a waiting time before queries are

answered; if the overall task is to be completed within a certain time frame, this effectively

limits the number of rounds of interaction. Similarly, in marketing applications, one can ac-

tively request feedback by sending surveys to customers, but there is typically a waiting time

before survey responses are received; again, if the marketing campaign is to be completed

within a certain time frame, this effectively limits the number of rounds of interaction.

We study the relationship between query complexity and adaptivity in identifying the

k most biased coins among a set of n coins with unknown biases. This problem is a common

abstraction of many well-studied problems, including the problem of identifying the k best

arms in a stochastic multi-armed bandit, and the problem of top-k ranking from pairwise

comparisons. Our main result establishes an optimal lower bound on the number of rounds

adaptivity needed to achieve the optimal worst case query complexity for all these problems.

In particular, we show that, perhaps surprisingly, no constant number of rounds suffices for

this task, and the “correct” number of rounds of adaptivity is log∗ (n) (an upper bound of

log∗ (n) rounds is also established in our paper [4]).

Highlights of Our Contributions

In this chapter, we will establish:

• A tight tradeoff between the degree of adaptivity and the query complexity of algo-

rithms for finding the k-most biased coins (Section 10.4).

Our results also extend to the problems of finding k best arms in a stochastic multi-

armed bandit or top-k ranking from pairwise comparisons.

10.1. Background

In the classical probably approximately correct (PAC) model [293], the learner is a passive

observer who is given a collection of randomly sampled observations from which to learn.

In recent years, there has been growing interest in active learning models, where the learner

can actively request labels or feedback at specific data points; the hope is that, by adaptively
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guiding the data collection process, learning can be accomplished with fewer observations

than in the passive case. Most learning algorithms operate in one of these settings: learning

is either fully passive, or fully active.

We study active/adaptive learning with limited rounds of adaptivity, where the learner

can actively request feedback at specific data points, but can do so in only a small number

of rounds. Specifically, the learner is free to query any number of data points in each round;

however, all data points to be queried in a given round must be submitted simultaneously,

based only on feedback received in previous rounds. In this setting, we are interested not

only in bounding the overall query complexity of the learner, but rather in understanding

the tradeoff between the number of rounds and the overall query complexity: how many

queries are needed given a fixed number of rounds, and conversely, given a target number

of queries, how many rounds are necessary?

We study this question in the context of an abstract coin tossing problem, and discuss

how the results give us novel insights into the round vs. query complexity tradeoff for two

problems that have received increasing interest in the learning theory community in recent

years: multi-armed bandits, and ranking from pairwise comparisons1.

The abstract coin problem we study can be described as follows: say we are given n

coins with unknown biases, each of which can be ‘queried’ by tossing the coin and observing

the outcome of the toss. The goal is to find the k coins with highest biases. This problem is

a special case of the problem of finding the k best arms in a stochastic multi-armed bandit

(MAB), and has received considerable attention in recent years [132, 199, 37, 200, 150, 192,

79, 214, 95, 216, 196, 96]. In particular, it is known that O
(n log k

∆2
k

)
coin tosses suffice to

find the k most biased coins with arbitrarily high constant probability, where ∆k is the gap

between the k-th and (k + 1)-th largest biases [199, 132]. It is also known that this bound

is optimal in terms of the worst-case query complexity [200, 240]. However, the previous

best algorithms for this problem all required Ω(log n) rounds of adaptivity to achieve the

optimal worst-case query complexity. But are Ω(log n) rounds necessary for achieving this

optimal query complexity?

In our work in [4], we addressed this question by presenting an algorithm that signifi-

cantly improved upon the round complexity of state-of-the-art algorithms, yet still achieved

the optimal worst-case query complexity: given the gap parameter ∆k, the algorithm re-

turns the k most biased coins using O
(n log k

∆2
k

)
coin tosses with arbitrarily large constant

probability in only log∗ (n) rounds of adaptivity.

Considering our results in [4], the natural question at this point is that whether we

1In the MAB and ranking literature, the query complexity of an algorithm is often referred to as simply
its sample complexity. In this paper we use the two terms interchangeably.
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can further improve upon the round complexity of this algorithm, and perhaps achieve an

O(1) round algorithm with the optimal worst-case query complexity? In this chapter, we

refute this possibility by proving that the log∗ (n) bound achieved by our algorithm in [4]

is essentially the “right” number of rounds of adaptivity required for obtaining the optimal

worst-case query complexity, even when k is only a constant.

10.2. Our Results and Techniques

Our main result is a tight round vs query complexity tradeoff for the coin-tossing problem.

Result 10.1. For any integer r ≥ 1, any r-round algorithm that finds the k most biased

coins in a set of n coins w.p. at least 3/4 has query complexity Ω
(

n
∆2·r4 · ilog

(r)(nk )
)
.

Here ∆ is the gap between the k-th and (k + 1)-th largest biases and ilog(r)(·) denotes

the iterated logarithm of order r.

Our Result 10.1 combined with the algorithm of [4] provides a near complete under-

standing of the power of additional adaptivity rounds on reducing the query complexity of

algorithms for finding top-k most biased coins.

An important corollary of Result 10.1 is that achieving the optimal worst-case query

complexity requires (slightly) super-constant round complexity:

Corollary 10.2. Any algorithm that finds the k most biased coins among n coins w.p. at

least 3/4 using the optimal query complexity of O(n/∆2) requires (log∗ (n)− log∗ (Θ(log∗ n)))

rounds. Here ∆ is the gap between the k-th and (k + 1)-th largest biases

Our round-complexity bound in Corollary 10.2 matches the round-complexity of the

algorithm of [4] up to an extremely small additive factor of log∗ (Θ(log∗ n)) when k is a

constant, implying that log∗ n is indeed “right” number of rounds of adaptivity required for

obtaining the optimal worst-case query complexity, even when k is only a constant.

In addition to finding the k best arms in a stochastic multi-armed bandit (MAB),

our results for the above coin-tossing problem are also applicable to the problem of top-

k ranking from pairwise comparisons (see [4] for the reduction between two problems),

another problem that has received considerable interest in recent years [137, 84, 97, 287,

193, 177, 114, 70]. Most top-k ranking approaches we are aware of assume either a non-

adaptive setting or a fully adaptive setting; the main exceptions to this are [137, 114,

70], who considered the top-k ranking problem under limited rounds of adaptivity, but

under the restricted noisy permutation model of pairwise comparisons. Here, we make no

assumptions on the underlying pairwise comparison model. Our results for the abstract coin

problem imply that log∗ n rounds of adaptivity are required for achieving optimal number of

comparisons in top-k ranking from pairwise comparisons, matching the upper bound of [4].
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Our techniques. Our proof is based on analyzing a family of “hard” instances for the

problem which consists of k heavy coins and n− k light coins. Using information-theoretic

machinery, we show that any algorithm that uses small number of coin tosses in the first

round can only “trap” the heavy coins in a large pool of candidates. We then inductively

show that this forces the algorithm to still solve a “hard” problem on a large domain in the

subsequent rounds which we show is not possible due the limited budget of the algorithm.

10.3. Preliminaries

Notation. For a (multi-)set of numbers {a1, . . . , an}, we define a[i] as the i-th largest value

in this set (ties are broken arbitrarily). For any integer r ≥ 0, ilog(r)(a) denotes the iterated

logarithms of order r, i.e. ilog(r)(a) = max
{
log
(
ilog(r−1)(a)

)
, 1
}

and ilog(0)(a) = a. For

any p ∈ [0, 1], B(p) denotes the Bernoulli distribution with mean p.

Useful information-theory tools. Recall the definition of KL-divergence from Sec-

tion 2.6.2. We have the following property of KL-divergence (see, e.g., [158], Theorem 5).

Fact 10.3.1. For any two parameters 0 < p, q < 1, D(B(p) || B(q)) ≤ (p−q)2
q·(1−q) .

We also use the following auxiliary lemma that allows us to decompose the distribution

of any random variable with high entropy to a convex combination of a small number of

near uniform distributions plus a low probability “noise term”.

Lemma 10.3.2 ([33, 4]). Let A ∼ D be a random variable on [n] with H(A) ≥ log n − γ
for some γ ≥ 1. For any ε > exp (−γ), there exists ℓ + 1 distributions ψ0, ψ1, . . . , ψℓ on

[n] along with ℓ + 1 probabilities p0, p1, . . . , pℓ (
∑

i pi = 1) for some ℓ = O(γ/ε3) such that

D =
∑ℓ

i=1 pi · ψi, p0 = O(ε), and for any i ≥ 1,

1. log |supp(ψi)| ≥ log n− γ/ε.

2. |ψi − Ui|tvd = O(ε) where Ui denotes the uniform distribution on supp(ψi).

Coin-tossing problem. The specific problem we consider can be stated formally as fol-

lows: given n coins with unknown biases p1, . . . , pn, and an integer k ∈ [n], the goal is to

identify (via tosses of the n coins) the set of k most biased coins. An important parameter

in determining the query complexity of this problem is the gap parameter ∆k := p[k]−p[k+1],

i.e. the gap between the k-th and (k + 1)-th highest biases (recall that p[i] denotes the bias

of the i-th most biased coin). We also define ∆i = max{
∣∣p[i] − p[k+1]

∣∣ ,
∣∣p[i] − p[k]

∣∣}. For

our lower bound, we will also assume our algorithm is given a lower bound ∆ on the gap

parameter (∆k ≥ ∆ > 0).2 This can clearly only strengthens our lower bound.

2The assumption about knowledge of ∆ is also common in the MAB and ranking literature; see, e.g.,
[132, 199, 97, 287].
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We are interested here in algorithms that require limited rounds of adaptivity. In each

round, an algorithm can decide to query various coins by tossing them (with no limit on

the number of coins that can be tossed in a round or on the number of times any given

coin can be tossed in a round); however, all tosses to be conducted in a given round must

be chosen simultaneously, based only on the outcomes observed in previous rounds. We say

an algorithm is an r-round algorithm if it uses at most r rounds of adaptivity; the total

number of coin tosses it uses is termed its query complexity. For any δ ∈ [0, 1), we say an

algorithm is a δ-error algorithm for the above problem if it correctly returns the set of k

most biased coins with probability at least 1− δ.

10.4. A Tight Round-Query Tradeoff for Coin-tossing

In this section, we formalize Result 10.1 by proving the following theorem.

Theorem 10.3. For any parameter ∆ ∈ (0, 12) and any integers n, k ≥ 1, there exists

a distribution D on instances of the k most biased coins problem with n coins and gap

parameter ∆k = ∆ such that for any integer r ≥ 1, any r-round algorithm that finds the

k most biased coins in instances sampled from D w.p. at least 3/4 has query complexity

Ω
(

n
∆2·r4 · ilog

(r)(nk )
)
.

We first prove Theorem 10.3 for the case of k = 1, i.e., the case of finding the most

biased coin and then show that a simple reduction extends this result to all possible values

of k. Throughout this section, for any algorithm A, cost(A) denotes the query complexity

of A and deg(A) denotes the degree of adaptivity it uses, i.e., its round complexity.

Overview. Consider the following input for the best coins problem introduced earlier.

we have a collection of n − 1 light coins and single heavy coin with the difference of ∆

between the bias of the heavy coin and any light coin. A textbook result is that to classify

a single coin as heavy or light correctly with sufficiently large constant probability Ω(1/∆2)

coins tosses are needed (see, e.g., [98]). Using this, it is possible to argue that Ω(n/∆2)

coin tosses are needed in these instances to recover the heavy coin. However notice that

Theorem 10.3 is proving a stronger result on the query complexity of r-round algorithms

for any r ≤ log∗ n − log∗Θ(log∗ n). To achieve this stronger bound, we take on a different

approach as described below. For the purpose of the following discussion, it would be

convenient to see ∆ as some constant and hence suppress the bounds on ∆ in asymptotic

notation. We emphasize that this assumption is only for the purpose of following discussion.

Our starting point is the following key claim that we prove: if an algorithm only tosses

n · s coins in the first round, then it can only reduce the set of candidate coins to n− 2Θ(s)

possible coins. More formally, conditioned on the outcome of the first n · s coin tosses, the

heavy coin is still distributed (almost) uniformly over a set of n− 2Θ(s) possible coins.
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Having this result, it is then easy to argue that one needs to set s = Ω(log n) to

recover the heavy coin in one round, resulting in an Ω(n log n) lower bound on the query

complexity of 1-round algorithms. There is also a more important takeaway from this

discussion: any r-round algorithm that does not spend relatively large number of coin

tosses in its first round is forced to find the heavy coin from a large pool of candidates

(with essentially no further information) in the next (r − 1) rounds. Consequently, we can

prove Theorem 10.3 inductively, by showing that if the number of coin tosses of an r-round

algorithm is o(n · ilog(r−1)(n)), then by setting s = o(ilog(r)(n)) in the above argument, we

end up with ≈ n/
√

ilog(r−1)(n) possible choices for the heavy coin after the first round that

needs to be further pruned in the subsequent (r − 1) rounds. But by induction, we need ,

Ω(

(
n/

√
ilog(r−1)(n)

)
· ilog(r−1)(n) = Ω(n ·

√
ilog(r−1)(n)) = ω(n · ilog(r)(n))

many coin tosses to solve the problem in (r − 1) rounds (over n/

√
ilog(r−1)(n) coins), a

contradiction with the bounds on the query complexity of the r-round algorithm.

To make the latter intuition precise we use a “round elimination” argument (in spirit of

round eliminations in Chapters 8 and 9). We show that given any “good” r-round algorithm

(i.e., a one with better query complexity than the bound in Theorem 10.3), there should

exists a set of observed coins tosses outcome in the first round, such that conditioned

on these coin tosses two events simultaneously happen: (i) the algorithm still outputs a

correct answer with essentially the same probability even after this conditioning, and (ii),

the distribution of the heavy coin is close to uniform (in total variation distance) on a

“large” subset of coins. Having this, we create a “good” (r−1)-round algorithm (defined as

before) which “embed” its set of coins in the support of the distribution for heavy coin in

above discussion and simulates the “missing input” (on the larger domain) for the r-round

algorithm using independent randomness, which contradicts the induction step.

We now formalize the proof outlined above. Fix any arbitrary value ∆ ∈ (0, 1/2)

(possibly a function of n) and a constant p < 1−∆.

Distribution D∆,p
n . A hard input distribution on n coins for finding the most biased

coin with the gap parameter ∆1 = ∆.

• Sample an index i∗ ∈ [n] uniformly at random.

• Let pi∗ = p+∆ and pi = p for any i 6= i∗ in [n].

• Return the coins [n] with biases {pi}ni=1.

It is immediate to see that in any instance sampled from D∆,p
n , ∆1 = ∆. Moreover, one
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can see that finding the most biased coin in this family of instances is equivalent to finding

i∗. We use this fact to prove the lower bound.

Define the recursive function e(r) = e(r − 1) + o(1/r2) with e(1) = 0.

Lemma 10.4.1. Fix any integers n, r ≥ 1. Suppose Ar is an r-round algorithm that given

an instance sampled from D∆,p
n outputs the most biased coin correctly w.p. at least 2/3+e(r);

then, cost(Ar) = Ω( n
∆2·r4 · ilog

(r)(n)).

Fix n, r ≥ 1 and algorithm Ar as in Lemma 10.4.1. Note that by an averaging argu-

ment, we can assume w.l.o.g that Ar is deterministic (similar to the easy direction of Yao’s

minimax principle in Proposition 2.7.2). Indeed, for any randomized algorithm that errs

w.p. at most δ on the distribution D∆,p
n , there exists a choice of random bits (used by the

algorithm) that conditioned on, the error probability of algorithm is still at most δ where the

probability is taken over the randomness of the distribution and observed outcomes. Hence,

by conditioning on these random bits we obtain a deterministic algorithm with the same

performance guarantee. Consequently, we assume that the algorithm Ar is deterministic.

To continue, we need some notation. Recall that S1 denotes the multi-set of coins tossed

in the first round by Ar. Let s1 denote the size of S1 counting the multiplicities. We define

the outcome profile of S1 as the s1-dimensional tuple T = ((i1, θ1), (i2, θ2), . . . , (is1 , θs1)),

whereby for any j ∈ [s1], ij and θj , denote, respectively, the index of the j-th coin in S1 and

its value, i.e., heads or tails. We use I to denote the random variable for the index i∗ in D∆,p
n ,

and T to denote the random variable for the vector T . We further use Θj , for any j ∈ [s1],

to denote the random variable for parameter θj defined above. We let Θ := (Θ1, . . . ,Θs1).

Notice that random variables Θ1, . . . ,Θs1 are in general correlated in the distribution

D∆,p
n . However, we argue that for any j ∈ [s1], Θj and Θ−j are independent conditioned on

I. Indeed, conditioning on I fixes the distribution of the coins: Bernoulli B(p + ∆) for the

coin i∗ and Bernoulli B(p) for the remaining coins. Therefore, since for all j ∈ [s1], Θj is

sampled from the distribution of the coin ij , we have, Θj ⊥ Θ−j | I.

The following lemma bounds the “information” revealed about the index i∗ (i.e., the

most biased coin) in the first round based on coin tosses done by Ar in this round.

Lemma 10.4.2. I(I ;T) = O(s1 ·∆2/n).

Proof. Recall that Ar is a deterministic algorithm. This means that the multi-set S1 of the

coins being tossed in the first round by Ar is fixed a-priori. As such, the random variable
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T is only a function of the vector Θ = (Θ1, . . . ,Θs1). We have,

I(I ;T) = I(I ;Θ) =
Fact 2.6.1-(6)

s1∑

j=1

I(I ;Θj | Θ<j) ≤
Proposition 2.6.4

s1∑

j=1

I(I ;Θj) (10.1)

where the inequality is true since Θj ⊥ Θ<j | I and hence conditioning on Θ<j can only

decrease the mutual information by Proposition 2.6.4. We now bound each term I(I ;Θj)

in the above sum. In order to do this, we write,

I(I ;Θj) = E
i∗∼U([n])

[D(dist(Θj) || dist(Θj | I = i∗))] (10.2)

as i∗ is chosen uniformly at random from [n] in D∆,p
n . Here U([n]) denotes the uniform

distribution on [n] and D denotes the KL-divergence; see Section 2.6.2 for the definition and

Fact 2.6.6 for its connection to mutual information that leads to Eq (10.2). The following

claim bounds each term above individually.

Claim 10.4.3. For any j ∈ [s1], D(dist(Θj) || dist(Θj | I = i∗)) =




O(∆2) if ij = i∗

O(∆2/n2) otherwise
.

Proof. Fix any j ∈ [s1]. By definition of D∆,p
n , we have,

dist(Θj) = B(p+∆/n), dist(Θj | I = ij) = B(p+∆), and dist(Θj | I 6= ij) = B(p).

Suppose first ij = i∗. In this case,

D(dist(Θj) || dist(Θj | I = i∗)) = D(B(p+∆/n) || B(p+∆))

≤
Fact 10.3.1

(p+∆/n− (p+∆))2

(p+∆) · (1− (p+∆))
= O(∆2),

since p+∆ and (1− (p+∆)) are both constants larger than zero. Similarly, if ij 6= i∗,

D(dist(Θj) || dist(Θj | I = i∗)) = D(B(p+∆/n) || B(p))

≤
Fact 10.3.1

(p+∆/n− p)2
p · (1− p) = O(∆2/n2).

Claim 10.4.3

By plugging in the bounds established in Claim 10.4.3 to Eq (10.2), we have,

I(I ;Θj) =
1

n
· D(dist(Θj) || dist(Θj | I = ij)) +

n− 1

n
· D(dist(Θj) || dist(Θj | I 6= ij))
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=
Claim 10.4.3

O(∆2/n) +O(∆2/n2) = O(∆2/n).

Plugging in this in Eq (10.1) implies I(I ;T) ≤∑s1
j=1O(∆2/n) = O(s1·∆2/n). Lemma 10.4.2

We are now ready to prove Lemma 10.4.1. The proof is by induction (on the number

of rounds r). In the following claim, we prove the base case of this induction.

Claim 10.4.4. With the assumption of Lemma 10.4.1, cost(A1) = Ω( n
∆2 · log n).

Proof. We use Fano’s inequality (Fact 2.6.2) to prove this claim. Let δ = 1/3− e(1) = 1/3.

Recall that algorithm A1 tosses the coins S1 and given the value of these coin tosses in the

outcome profile T determines the most biased coin w.p. at least 1 − δ = 2/3. As argued

earlier, determining the most biased coin in distribution D∆,p
n is equivalent to determining

the value of index i∗. As such, T is an δ-error estimator for I. Hence,

δ · |I|+H2(δ) ≥
Fact 2.6.2

H(I | T) = H(I)− I(I ;T)

Now notice that |I| = H(I) = log n by Fact 2.6.1-(1) as I is uniform over [n]. Moreover,

by Lemma 10.4.2, I(I ;T) = O(s1 ·∆2/n). By reordering the terms above, we obtain that

s1 = Ω( n
∆2 · log n). Noting that cost(A1) = s1 finalizes the proof. Claim 10.4.4

Now assume inductively that Lemma 10.4.1 is true for all integers smaller than r and we

want to prove this for r-round algorithms. The proof of induction step is by contradiction.

We show that if there exists an algorithm Ar with smaller query complexity than the bounds

stated in Lemma 10.4.1 for D∆,p
n , then there also exists an (r − 1)-round algorithm Ar−1

with smaller query complexity on distribution D∆,p
m for some appropriately chosen m ≤ n,

which contradicts the induction hypothesis.

Lemma 10.4.2 essentially implies that if the number of coin tosses in the first round is

small, then the outcome profile T, on average, does not reveal much information about the

identity of the most biased coin, i.e., I. More formally, if we assume (by way of contradiction)

that cost(Ar) = o( n
∆2·r4 · ilog

(r)(n)), we have,

H(I | T) = H(I)− I(I ;T) =
Fact 2.6.1-(1)

log n− I(I ;T) =
Lemma 10.4.2

log n− o(ilog(r)(n)/r4),

(10.3)

where in the last part we used the fact that s1 ≤ cost(Ar). Now consider any fixed possible

outcome profile T for Ar in round one, i.e., any possible value for T. We say that T is

uninformative iff H(I | T = T ) = log n − o(ilog(r)(n)/r2). Roughly speaking, whenever

the outcome profile in the first round is uninformative, the algorithm is quite “uncertain”
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about the identity of the most biased coin, and hence needs to find it among a large pool

of candidate coins in the next (r− 1) rounds. This we argue is not possible as by induction

hypothesis the available budget is not large enough to solve the problem in (r − 1) rounds

on such a large domain (by induction hypothesis).

We start by showing that our assumption on query complexity of Ar implies that there

exists an uninformative outcome profile in the first round which still results in a good output

by Ar in the subsequent rounds.

Claim 10.4.5. There exists an uninformative outcome profile Tui of coin tosses in the first

round of Ar such that Pr (Ar errs | T = Tui) ≤ δ + o(1/r2).

Proof. Let C := log n−H(I | T). By Eq (10.3), C = o(ilog(r)(n)/r4). For any ε > 0,

Pr
T

(
log n−H(I | T = T ) ≥ r2

ε
· C
)
≤ ε · ET [log n−H(I | T = T )]

r2 · C

=
ε · (log n−H(I | T))

r2 · C =
ε

r2
.

(by the choice of C = log n−H(I | T))

This means that w.p. at least 1−ε/r2, H(I | T = T ) ≥ log n− 1
ε ·o(ilog(r)(n)/r2). By taking

ε small enough, we have that the probability that T is uninformative is 1− o(1/r2). Hence,

Pr (Ar errs | T is uninformative) ≤ Pr (Ar errs) + Pr (T is not uninformative) ≤ δ + o(1/r2).

The assertion of the claim now follows by an averaging argument. Claim 10.4.5

Let Tui be the uninformative profile in Claim 10.4.5 and define ψ := dist(I | T = Tui).

As H(I | T = Tui) = log n−o(ilog(r)(n)/r2), we can apply Lemma 10.3.2 on random variable

I | T = Tui with parameters γ = o(ilog(r)(n)/r2) and ε = o(1/r2) to express its distribution

ψ as a convex combination of distributions ψ0, ψ1, . . . , ψk, i.e., ψ =
∑

i qi ·ψi (for
∑

i qi = 1)

such that q0 = o(1/r2) and for all i ≥ 1,

|supp(ψi)| ≥ 2(logn−o(ilog
(r)(n))) ≥ n

(
ilog(r−1)(n)

)o(1) , (10.4)

|ψi − Ui|tvd = o(1/r2), (10.5)

where Ui is the uniform distribution on supp(ψi). With this notation,

δ + o(1/r2) ≥
Claim 10.4.5

Pr (Ar errs | T = Tui) =
∑

i

qi · Pr (Ar errs | T = Tui, I ∼ ψi) .
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As q0 = o(1/r2), by an averaging argument, we have that there exists a distribution ψi for

some i ≥ 1 such that Pr (Ar errs | T = Tui, I ∼ ψi) ≤ δ+ o(1/r2). Without loss of generality

let this distribution be ψ1 and define m := |supp(ψ1)|. We now use the fact that ψ1 is

close to a uniform distribution on supp(ψ1) (in total variation distance) together with an

embedding argument to show that,

Claim 10.4.6. There exists a deterministic (r−1)-round
(
δ + o(1/r2)

)
-error algorithm for

the best coins problem on D∆,p
m with query complexity at most equal to cost(Ar) on D∆,p

n .

Proof. Let Ar,Tui be an (r − 1)-round algorithm obtained by running Ar from the second

round onwards assuming that the outcome profile in the first round was Tui. We use Ar,Tui
to design a randomized algorithm A′ for D∆,p

m .

Given any instance sampled from D∆,p
m , A′ maps [m] to supp(ψ1) (using any arbitrary

bijection). Next, it runs Ar,Tui as follows: if Ar,Tui choose to toss a coin in supp(ψ1),

A′ also choose the corresponding coin in [m]; otherwise, if Ar,Tui choose to toss a coin in

[n] \ supp(ψ1), A′ simply toss a coin from the distribution B(p) and return the result to

Ar,Tui . Finally, if Ar,Tui outputs a coin from supp(ψ1), A′ returns the corresponding coin in

[m] and otherwise A′ simply return an arbitrary coin in [m] as the answer.

It is trivially true that cost(A′) ≤ cost(A). Hence, in the following we prove the

correctness of A′. Let D′ be the distribution of underlying instances on [n] created by

A′. Let U1 be the uniform distribution on supp(ψ1). It is straightforward to verify that

D′ = D∆,p
n | I ∼ U1, and that D′ is a deterministic function of I. As such,

Pr
D∆,p

m

(
A′ errs

)
= Pr

D′
(Ar,Tui errs) = Pr

D∆,p
n

(Ar,Tui errs | I ∼ U1)

≤
Fact 2.6.7

Pr
D∆,p

n

(Ar,Tui errs | I ∼ ψ1) + |ψ1 − U1|tvd

=
Eq (10.5)

Pr
D∆,p

n

(Ar errs | I ∼ ψ1,T = Tui) + o(1/r2)

≤ δ + o(1/r2).

To finalize the proof, note that by an averaging argument, there exists a fixing of the

randomness in A′ that results in the same error guarantee. This results in a deterministic

(r − 1)-round algorithm A′′ that errs on D∆,p
m w.p. at most δ + o(1/r2). Claim 10.4.6

We are now ready to conclude the proof of Lemma 10.4.1. By Claim 10.4.6, there exists

an (r−1)-round algorithm Ar−1 that errs w.p. at most δ+o(1/r2) = 1/3−e(r)+o(1/r2) =
1/3 − e(r − 1) on instances of D∆,p

m such that cost(Ar−1) ≤ cost(Ar). But by induction
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hypothesis (as Ar−1 is an (r − 1)-round algorithm), we know,

cost(Ar−1) = Ω

(
m

∆2 · (r − 1)4
· ilog(r−1)(m)

)

=
Eq (10.4)

Ω




1

∆2 · (r − 1)4
· n
(
ilog(r−1)(n)

)o(1) · ilog
(r−1)(n)




= Ω

(
n

∆2 · r4 ·
(
ilog(r−1)(n)

)1−o(1))

= Ω
( n

∆2 · r4 · ilog
(r)(n)

)
, (as ilog(r)(n) = log(ilog(r−1)(n)))

which is in contradiction with cost(Ar−1) ≤ cost(Ar) = o
(

n
∆2·r4 · ilog

(r)(n)
)
. This finalizes

the proof of Lemma 10.4.1.

We can now conclude the proof of Theorem 10.3.

Proof of Theorem 10.3. Fix parameters ∆ and integers n, k. For simplicity, we assume k

divides n. We further pick a constant p < 1−∆. Create distribution D as follows:

1. Partition the set [n] of coins into k equal size subsets N1, . . . , Nk each of size t := n/k.

2. For any j ∈ [k], we sample the bias of the coins in Nj from D∆,p
t .

Notice that in any instance sampled from distribution D, there are k coins with bias p+∆

and n − k coins with bias p, and hence ∆k = ∆. Additionally, each of the coins with

bias p+∆ belongs to a separate subset Nj . Hence, finding the top k most biased coins in

distribution D amounts to finding the most biased coins in k independent instances sampled

from D∆,p
t . We now use this to prove the lower bound.

Let A be a (1/4)-error r-round algorithm for finding the top k most biased coins in

D, and assume by contradiction that cost(A) = o
(
n
∆2 · ilog(r)(nk )

)
. This means that there

exists at least one index j ∈ [k], such that in expectation, only o( n
k·∆2 · ilog(r)(nk )) coins are

being tossed in the coins in Nj . By Markov inequality, we have that w.p. 1 − o(1), only
o( n
k·∆2 · ilog(r)(nk )) coins are being tossed in Nj ; for brevity, let E denote this event. We

have, Pr (A finds the most biased coin in Nj | E) ≥ 3/4− o(1).

This means that A when restricted to the coins in Nj , finds the top most biased coin

w.p. at least 3/4−o(1) using at most o( t
∆2 ·ilog(r)(t)) many coin tosses (recall that t = n/k).

On the other hand, by Lemma 10.4.1, any algorithm for finding the most biased coins in

instances sampled from D∆,p
t w.p. at least 2/3 + e(r) = 2/3 +

∑r
i=1 o(1/i

2) = 2/3 + o(1) <

3/4− o(1), requires Ω( t
∆2 · ilog(r)(t)) many coin tosses, a contradiction. Theorem 10.3
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