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Abstract

We investigate the complexity of various combinatorial theorems about lin-
ear and partial orders, from the points of view of computability theory and re-
verse mathematics. We focus in particular on the principles ADS (Ascending or
Descending Sequence), which states that every infinite linear order has either an
infinite descending sequence or an infinite ascending sequence, and CAC (Chain-
AntiChain), which states that every infinite partial order has either an infinite
chain or an infinite antichain. It is well-known that Ramsey’s Theorem for pairs
(RT2

2) splits into a stable version (SRT2
2) and a cohesive principle (COH). We show

that the same is true of ADS and CAC, and that in their cases the stable versions
are strictly weaker than the full ones (which is not known to be the case for RT2

2

and SRT2
2). We also analyze the relationships between these principles and other

systems and principles previously studied by reverse mathematics, such as WKL0,
DNR, and BΣ2. We show, for instance, that WKL0 is incomparable with all of the
systems we study. We also prove computability-theoretic and conservation results
for them. Among these results are a strengthening of the fact, proved by Cholak,
Jockusch, and Slaman, that COH is Π1

1-conservative over the base system RCA0.
We also prove that CAC does not imply DNR which, combined with a recent result
of Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman, shows that CAC does
not imply SRT2

2 (and so does not imply RT2
2). This answers a question of Cholak,

Jockusch, and Slaman.
Our proofs suggest that the essential distinction between ADS and CAC on the

one hand and RT2
2 on the other is that the colorings needed for our analysis are in

some way transitive. We formalize this intuition as the notions of transitive and
semitransitive colorings and show that the existence of homogeneous sets for such
colorings is equivalent to ADS and CAC, respectively. We finish with several open
questions.
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1 Introduction

In this paper we investigate the complexity of various combinatorial theorems about
linear and partial orders. We are interested in both computational (computability the-
oretic) and proof theoretic (reverse mathematical) calibrations and in the interplay be-
tween them. The theorems of interest in such investigations are typically of the form
∀A (Θ(A) → ∃B Φ(A,B)) where Θ and Φ are arithmetic and A,B ∈ 2ω. Thus, from
the computability theoretic point of view,we want to bound or characterize the compu-
tational complexity of B given an A satisfying Θ (typically in terms of Turing degree or
place in one of the standard arithmetic/analytic definability or jump hierarchies). From
the reverse mathematics point of view we want to determine the axiom systems in which
the theorem is provable (typically subsystems of second order arithmetic determined by
the amount of comprehension assumed). Here, characterizations correspond to reversals
in the sense that one proves (over some weak system) the axioms of one of the subsys-
tems of second order arithmetic from the statements of the mathematical theorems being
investigated.

We briefly review the five standard systems of reverse mathematics. For completeness,
we include systems stronger than arithmetical comprehension, but these will play no part
in this paper. Details, general background, and results, as well as many examples of
reversals, can be found in Simpson [1999], the standard text on reverse mathematics.
Each of the systems is given in the language of second order arithmetic, that is, the
usual first order language of arithmetic augmented by set variables and the membership
relation ∈. Each contains the standard basic axioms for +, ·, and < (which say that N is
an ordered semiring). In addition, they all include a form of induction that applies only
to sets (that happen to exist):

(I0) (0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X))→ ∀n (n ∈ X).

We call the system consisting of I0 and the basic axioms of ordered semirings P0. All
the five standard systems are defined by adding various types of set existence axioms to
P0. They also correspond to classical construction principles in computability theory.

(RCA0) Recursive Comprehension Axioms: This is a system just strong enough to
prove the existence of the computable sets but not of 0′ nor indeed of any noncomputable
set. In addition to P0 its axioms include the schemes of ∆0

1 comprehension and Σ0
1

induction:

(∆0
1-CA0) ∀n (ϕ(n)↔ ψ(n))→ ∃X ∀n (n ∈ X ↔ ϕ(n)) for all Σ0

1 formu-
las ϕ and Π0

1 formulas ψ in which X is not free.

(IΣ1) (ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n) for all Σ0
1 formulas ϕ.

The next system says that every infinite binary tree has an infinite path. It is con-
nected to the Low Basis Theorem (Jockusch and Soare [1972]) of computability theory,
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which says that every such tree has an infinite path whose jump is computable in that
of the tree itself.

(WKL0) Weak König’s Lemma: This system consists of RCA0 plus the statement
that every infinite subtree of 2<ω has an infinite path.

We next move up to arithmetic comprehension.

(ACA0) Arithmetic Comprehension Axioms: This system consists of RCA0 plus the
axioms ∃X ∀n (n ∈ X ↔ ϕ(n)) for every arithmetic formula ϕ in which X is not free.

In computability theoretic terms, ACA0 proves the existence of 0′ and by relativization
it proves, and in fact is equivalent to, the existence of X ′ for every set X.

The next system corresponds to the existence of all (relativized) H-sets, i.e. the
existence, for every set X, of the HX

e (and so the hyperarithmetic hierarchy up to e) for
each e ∈ OX , the hyperjump of X. It says that arithmetic comprehension can be iterated
along any countable well order.

(ATR0) Arithmetical Transfinite Recursion: This system consists of RCA0 plus the
following axiom. If X is a set coding a well order <X with domain D and Y is a code for
a set of arithmetic formulas ϕx(z, Z) (indexed by x ∈ D) each with one free set variable
and one free number variable, then there is a sequence 〈Kx | x ∈ D〉 of sets such that if
y is the immediate successor of x in <X , then ∀n (n ∈ Ky ↔ ϕx(n,Kx)), and if x is a
limit point in <X , then Kx is

⊕
{Ky | y <X x}.

The systems climbing up to full second order arithmetic (i.e. comprehension for all
formulas) are classified by the syntactic level of the second order formulas for which we
assume a comprehension axiom.

(Π1
n-CA0) Π1

n Comprehension Axioms: ∃X ∀k (k ∈ X ↔ ϕ(k)) for every Π1
n formula

ϕ in which X is not free.

The computability theoretic equivalent of the simplest of these systems, Π1
1-CA0, is

the existence of OX for every set X. Together with the four systems listed above, it
makes up the standard list of the axiomatic systems of reverse mathematics. Almost all
theorems of classical mathematics whose proof theoretic complexity has been determined
have turned out to be equivalent to one of them.

The early connections between computability theoretic ideas and methods on the one
hand and reverse mathematics in the other typically involved computable mathematics,
diagonalization or finite injury arguments, and coding. Consider, for example, a theorem
of the form ∀A (Θ(A)→ ∃B Φ(A,B)) where Θ and Φ are arithmetic. We call B a solution
for the instance of the theorem specified by A if Θ(A)→ Φ(A,B).

A construction of computable mathematics that shows that there is a solution B com-
putable in any given A generally shows that the theorem is provable in RCA0. One that
shows that B can be obtained arithmetically in A usually shows that the theorem is prov-
able in ACA0. Standard forms of applications of computability theoretic diagonalization
or finite injury results to reverse mathematical calibrations are as follows:
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1. If there is no solution B computable in some given A then the theorem is not
provable in RCA0.

2. If there is no solution B that is low over A, i.e. (B ⊕ A)′ ≡T A
′, then the theorem

is not provable in WKL0.

3. If there is no solution B arithmetic in A then the theorem is not provable in ACA0.

Coding methods tend to give reversals.

1. If, for any computable tree T , there is a computable instance of the theorem such
that any solution codes a path through T then the theorem usually implies WKL0.

2. If there is a computable instance of the theorem such that any solution computes
0′ then the theorem usually implies ACA0.

3. If there is a computable instance of the theorem such that any solution computes
O then the theorem usually implies Π1

1-CA0.

We are particularly interested in relations derived from more complex computability
theoretic results and constructions, and in theorems that do not correspond to any of the
standard systems. In this paper we deal with ones that are strictly below ACA0. A special
inspiration for our investigations here comes from the work of Cholak, Jockusch, and
Slaman [2001] (hereafter CJS). They deal with various versions of Ramsey’s Theorem and
some of their consequences. (Their paper is also a good source of background information
and history.) We will summarize some of their results to set the stage for ours, which
deal with other consequences of Ramsey’s Theorem applied to linear and partial orders.
We begin with the statements of some of the theorems they analyze and basic results
about their strength. We view each of these theorems as a subsystem of second order
arithmetic by adding it to RCA0. For a map f and a subset X of its domain, we denote
the image of X under f by f“X.

Definition 1.1. An n-coloring (partition) of [N]k, the unordered k-tuples (n1, . . . , nk)
of natural numbers (listed by convention in increasing order), is a map f : [N]k → n. A
subset H of N is homogeneous for the coloring f if H is infinite and |f“[H]k| = 1. Unless
otherwise stated all colorings will be 2-colorings of [N]2.

(RT2
2) Ramsey’s Theorem for pairs: Every 2-coloring of [N]2 has a homogeneous set.

It is easy to show that the number of colors does not matter, in the sense that for each
n > 2, Ramsey’s Theorem for 2-colorings of pairs is equivalent to Ramsey’s Theorem for
n-colorings of pairs. As we will see, however, the size of the tuples does matter.

Ramsey’s Theorem, its variants and their consequences have long been a subject of
great interest in terms of characterizing their complexity in both computability theoretic
and proof theoretic terms. Specker [1971] constructed a computable coloring of [N]2
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with no computable homogeneous set. Thus RCA0 0 RT2
2. A now classic early result

concerns the analog for colorings of triples. Jockusch [1972] constructed a computable
coloring of [N]3 such that every homogeneous set computes 0′. This construction can be
carried out in RCA0, and thus shows that Ramsey’s Theorem for triples implies ACA0.
(All such statements about implications will be understood to be over the base theory
RCA0 unless some other system is specifically mentioned.) In fact, one of the standard
proofs of Ramsey’s Theorem for k-tuples works in ACA0 (for any fixed k), and so for
each k > 2, Ramsey’s Theorem for k-tuples is equivalent to ACA0. Whether RT2

2 itself
also implies ACA0 remained open for twenty years. Seetapun (see Seetapun and Slaman
[1995]) proved a degree theoretic cone avoiding theorem (for every set Z, coloring f of
[N]2 computable in Z, and sets Ci 
T Z, there is a homogeneous set not computing any
Ci) that implies that RT2

2 does not imply ACA0 (even over WKL0).

Another view of the proof theoretic strength of such theorems and systems is provided
by the analysis of their first order consequences and conservativity results. For example,
even though WKL0 is strictly stronger than RCA0, the former is Π1

1-conservative over the
latter (Harrington, see Simpson [1999, §IX.2]), i.e. any Π1

1 sentence provable in WKL0

is already provable in RCA0. Thus, in particular, the first order consequences and con-
sistency strengths of the two systems are the same. While it is a major open question
whether RT2

2 actually implies WKL0, RT2
2 is known to be strictly stronger than WKL0 in

this proof theoretic sense. The relevant principle is Σ2-bounding. We state the bounding
principle as well as the related induction principle for an arbitrary class Γ of formulas.

(BΓ) (∀i < n)(∃x)ϕ(x)→ (∃u)(∀i < n)(∃x < u)ϕ(x) for every formula ϕ(x) ∈ Γ.

(IΓ) (ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n) for every formula ϕ(x) ∈ Γ.

Now these principles produce a strict hierarchy in both first and second order arith-
metic, with BΣn+1 caught strictly between IΣn and IΣn+1 (Paris and Kirby [1978], see
also Hájek and Pudlák [1998. IV]). Moreover, even in the first order case, BΣn+1 is not
Σ0
n+2-conservative over IΣn (Paris [1980, p. 331]). Thus, as Hirst [1987] showed that

RT2
2 implies BΣ2, RT2

2 is not even Σ0
3-conservative over RCA0. (By Friedman [1976], any

model M of IΣn can always be extended to a model of RCA0 + IΣn with the same first
order part by taking the sets to be those with ∆0

1 definitions over M .) On the other
hand, CJS show that RT2

2 is Π1
1-conservative over IΣ2 and so far weaker, in this sense,

than ACA0, which obviously implies IΣn for each n.

The more recent analyses of RT2
2, both computability theoretic and proof theoretic,

have crucially relied on splitting the theorem/system into two parts. One (COH) is used
to simplify the coloring and make it stable. The other (SRT2

2) restricts the assertion of
the existence of homogeneous sets to stable colorings.

Definition 1.2. A coloring f of [N]2 is stable if (∀x)(∃y)(∀z > y)[f(x, y) = f(x, z)].

Definition 1.3. If ~R = 〈Ri | i ∈ N〉 is a sequence of sets, an infinite set S is ~R-cohesive
if (∀i)(∃s)[(∀j > s)(j ∈ S → j ∈ Ri) ∨ (∀j > s)(j ∈ S → j /∈ Ri)].
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(SRT2
2) Stable Ramsey’s Theorem for pairs: Every stable coloring of [N]2 has a

homogeneous set.

(COH) Cohesive Principle: For every sequence ~R = 〈Ri | i ∈ N〉 there is an ~R-
cohesive set.

Note that COH easily implies the following principle, which asserts that for every
coloring of [N]2 there is a set such that the coloring restricted to that set is stable (in the
obvious sense).

(CRT2
2) Cohesive Ramsey’s Theorem for pairs: For every coloring f of [N]2 there is

an infinite set S such that (∀x ∈ S)(∃y)(∀z ∈ S)[z > y → f(x, y) = f(x, z)].

Proposition 1.4 (CJS). RCA0 ` COH → CRT2
2.

Proof. If f is a coloring of [N]2 and we set Ri = {j > i | f(i, j) = 0} then any ~R-cohesive
set S is as required in CRT2

2.

By the theorem and system RT2
2 splitting into SRT2

2 and COH we mean the fact that
RCA0 ` RT2

2 ↔ COH ∧ SRT2
2. It is immediate from the above proposition that COH ∧

SRT2
2 implies RT2

2, and RT2
2 obviously implies SRT2

2. The fact that RT2
2 implies COH is

harder to show. CJS provide (in the proof of Theorem 12.5) an easy proof that requires
IΣ2. Their proof in RCA0 (in Theorem 7.11) is not correct but a more complicated argu-
ment that dispenses with IΣ2 is given by Mileti [2004] (and was independently discovered
by Jockusch and Lempp). The converse of Proposition 1.4 is clearly related to this issue
as well as to alternate versions of other principles related to BΣ2 that we consider in
§4. For now we note that there are natural stronger forms of each of these principles
(StCRT2

2 and StCOH, respectively) that are equivalent to each other and to CRT2
2 +

BΣ2 and COH + BΣ2, respectively, and so CRT2
2 + BΣ2 implies COH (Proposition 4.8).

Principles lying below WKL0 have also been studied. A function f is diagonally
noncomputable relative to A if ∀e (f(e) 6= ΦA

e (e)), where Φe is the eth Turing functional.

(DNR) Diagonally Nonrecursive Principle: For every set A there is a function f that
is diagonally noncomputable relative to A.

Clearly, DNR fails in COMP, the ω-model of RCA0 whose sets are precisely the com-
putable sets. (An ω-model is a structure in the language of second order arithmetic
whose first order part is standard.) Giusto and Simpson [2000] showed that DNR follows
from the system WWKL0, which states that if a binary tree T has no infinite path then
limn |{σ ∈ T | |σ| = n}|/2n = 0, and has played a role in studying the proof theoretic
content of theorems from analysis, as it is strong enough to develop a fair amount of
measure theory. The system WWKL0 was shown to be strictly weaker than WKL0 by
Simpson and Yu [1990] but strictly stronger than DNR by Ambos-Spies, Kjos-Hanssen,
Lempp, and Slaman [2004]. Recently, Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and
Slaman [ta] have shown that DNR follows from SRT2

2 over RCA0.
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We now summarize the known degree theoretic results (primarily from CJS) about
the above principles related to Ramsey’s Theorem. Some of them directly give reverse
mathematical results and the proofs of others play a crucial role in conservativity results.
We also include previous results about WKL0 to help place it with respect to these
systems.

Definition 1.5. A degree a is PA over b, written a� b, if a computes a separating set
for any pair of disjoint sets c.e. in b; or, equivalently, an infinite path in any infinite tree
computable in b; or a total extension for any {0, 1}-valued function partial computable
in b. (See Simpson [1977, pp. 648-649] and CJS, §4.8.) In this case, if A ∈ a and B ∈ b,
we also write A� B.

COH: Every uniformly computable sequence ~R has a ∆0
2 cohesive set, but for some

such ~R the only ∆0
2 cohesive sets S are high, i.e. S ′ ≡T 0′′ (Cooper [1972], Jockusch and

Stephan [1993]). Moreover, for any degree d� 0′ every uniformly computable sequence
~R has a cohesive set S with S ′ 6T d. As there are d� 0′ with d′ = 0′′ we may always
take S to be low2, i.e. S ′′ ≡T 0′′. There is also a single such ~R (the sequence of primitive
recursive sets) such that for any S cohesive for it, S ′ � 0′ (Jockusch and Stephan [1993]).
COH is also Π1

1-conservative over RCA0 (CJS).

SRT2
2: It is easy to see that every computable stable coloring of [N]2 has a ∆0

2 ho-
mogeneous set, but there are such colorings that have no low homogeneous set (Downey,
Hirschfeldt, Lempp and Solomon [2001]). On the other hand, every such coloring has
a low2 homogeneous set (CJS). SRT2

2, like RT2
2, proves BΣ2 and so is not even Σ0

3-
conservative over RCA0 (CJS).

RT2
2: There are computable colorings of [N]2 with no ∆0

2 homogeneous sets (Jockusch
[1972]) but, by combining the above results for COH and SRT2

2, all have low2 ones (CJS).
Indeed, for any degree d� 0′ and any computable coloring of [N]2 there is a homogeneous
set H with H ′ 6T d (CJS). Moreover, there is a computable coloring of [N]2 such that
H ′ � 0′ for any homogeneous set H. As RT2

2 proves BΣ2, it is not Σ0
3-conservative over

RCA0.

WKL0: As mentioned before, WKL0 is Π1
1-conservative over RCA0 (Harrington).

The degree theoretic precursor to this conservation result is the Low Basis Theorem of
Jockusch and Soare [1972], which says that every infinite computable tree has a low
infinite path. Indeed, there is a single low degree d that computes an infinite path
through any computable infinite tree, i.e. a low d� 0 (this follows from the Low Basis
Theorem and the equivalence of various standard characterizations of a� 0 as in CJS,
Lemma 8.17).

The following diagram summarizes our state of knowledge about the relations among
these four systems (as well as DNR and BΣ2) as presented primarily in CJS. Double
arrows indicate a strict implication and single ones an implication that is not known to
be strict. Negated arrows indicate known nonimplications.
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The reasons for the nonimplications indicated here have all been described and attributed
above and are listed below. The implications are all easy except for the following: RT2

2 →
COH, which was shown by CJS in the presence of IΣ2 and in general by Mileti [2004] and
Jockusch and Lempp; SRT2

2 → BΣ2 (CJS); and SRT2
2 → DNR (Hirschfeldt, Jockusch,

Kjos-Hanssen, Lempp, and Slaman [ta]).

1. The degree theoretic cone avoiding argument of Seetapun (in Seetapun and Slaman
[1995]) or the conservation result over IΣ2 of CJS, Theorem 10.2.

2. COH is Π1
1-conservative over RCA0 (CJS, Theorem 9.1) but RT2

2 is not as it implies
BΣ2 (Hirst [1987]). In fact, even SRT2

2 implies BΣ2 (CJS).

3. WKL0, and hence DNR, have a model with only low sets but COH does not.

4. The results of Simpson and Yu [1990] and Giusto and Simpson [2000] mentioned
above.

5. That COH does not imply WKL0 is proved in CJS by a direct forcing argument.
(See CJS, §9.5 for both directions.) We supply a stronger, more general conservation
result along these lines in Theorem 2.20 and Proposition 2.21, which also applies
to DNR. Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [ta] have also
shown that COH does not imply DNR.

6. WKL0, and hence DNR, are Π1
1-conservative over RCA0 (Harrington, see Simpson

[1999, §IX.2]) and so do not imply BΣ2.
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7. None of the five principles RT2
2, SRT2

2, COH, WKL0, and DNR follow from RCA0

(even with full induction) as they all have computable instances without computable
solutions as described above. BΣ2 is not a consequence of RCA0 either (Paris and
Kirby [1978], see also Hájek and Pudlák [1998, Chapter IV]).

The primary combinatorial/reverse mathematical questions left open here are whether
SRT2

2 implies COH (and so RT2
2) and whether SRT2

2 or RT2
2 implies WKL0. The primary

purely proof theoretic one is whether SRT2
2 or RT2

2 is arithmetically conservative over
BΣ2. In addition, CJS raise the issue of a specific application of RT2

2 to partial orders
and ask about its relation to RT2

2.

(CAC) Chain-AntiChain: Every infinite partial order (P,6P ) has an infinite subset
S that is either a chain, i.e. (∀x, y ∈ S)(x 6P y ∨ y 6P x), or an antichain, i.e.
(∀x, y ∈ S)(x 6= y → (x 
P y ∧ y 
P x)).

It is easy to see that RT2
2 implies CAC just by coloring (x, y) 0 (red) if x and y are

comparable in 6P and 1 (blue) otherwise. Any homogeneous set is the required chain
or antichain. It was left as Question 13.8 in CJS whether CAC implies RT2

2. CAC is
degree theoretically similar to RT2

2, as by Herrmann [2001] there are computable partial
orders with no ∆0

2 infinite chains or antichains. However, we show (Corollary 3.11) that
CAC does not imply DNR (over RCA0). Combining this with the result of Hirschfeldt,
Jockusch, Kjos-Hanssen, Lempp, and Slaman [ta] mentioned above, we now know that
CAC does not imply even SRT2

2.

There is a well known analogous principle for linear orders. (We typically use 6
to denote the usual ordering on N, though in some cases we use 6N to avoid possible
confusion.)

(ADS) Ascending or Descending Sequence: Every infinite linear order (L,6L) has
an infinite subset S that is either an ascending sequence, i.e. (∀s < t)(s, t ∈ S → s <L t),
and so of order type ω, or a descending sequence, i.e. (∀s < t)(s, t ∈ S → t <L s), and
so of order type ω∗.

This principle also follows easily from RT2
2 by coloring (x, y) red if x <L y and blue

otherwise, i.e. x >L y. Here it is known that there is a computable linear order (even one
of type ω+ω∗) with no computable ascending or descending sequence (Tennenbaum (see
Rosenstein [1982]) and Denisov (see Goncharov and Nurtazin [1973])). Thus RCA0 0
ADS. On the other hand, every computable linear order has an ascending or descending
sequence computable in 0′, in fact one that is Π0

1 (Manaster; see Downey [1998, §5] for
this and all the results we mention about these issues).

Our goal is to analyze both CAC and ADS computability theoretically and in the
terms of reverse mathematics along the lines followed for RT2

2 in CJS. Each will be split
into a stable version (SCAC; SADS) and a cohesive principle (CCAC; CADS (or related
principles that work for both)). In these situations, however, along with various other
degree and proof theoretic results, we will be able to show that the splittings are strict
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(that is, SCAC and SADS do not imply CAC and ADS, respectively, nor do CADS,
COH, or CCAC). Moreover, none of these principles will imply DNR or be implied by
WKL0. We will also study the relationship between BΣ2 and these principles and prove
some conservation results extending those for COH over RCA0. Our methods will include
priority arguments, forcing constructions, and computable combinatorics.

Our proofs suggest that the essential distinction between ADS and CAC on the one
hand and RT2

2 on the other is that the colorings needed for our analysis are in some way
transitive. We formalize this intuition in §5 as the notions of transitive and semitransitive
colorings and show that the existence of homogeneous sets for such colorings is equivalent
to ADS and CAC, respectively.

We begin with linear orders and some classical computability theoretic results about
ADS which motivated our choice of principles and analysis. From now on, all linear or
partial orders and chains or antichains within them will be assumed to be infinite unless
otherwise stated. When we consider a linear order L, we denote its order relation by 6L.
Similarly, we denote the order relation of a partial order P by 6P .

2 Linear Orders and ADS

An infinite linear order is computable if it has domain N and its ordering relation is com-
putable. There are a number of interesting classical results of computable mathematics
about the existence and complexity types of suborders of, and embeddings into, an arbi-
trary computable linear order. A good reference including proofs is Downey [1998]. The
ones relevant to our investigations have to do with suborders of a given order L of order
type ω, ω∗, or ω+ω∗ (or embeddings of canonical representatives of these types into L).
We now state the ones we need.

Theorem 2.1. (Tennenbaum (see Rosenstein [1982]) and Denisov (see Goncharov and
Nurtazin [1973]); see also Downey [1998]) There is a computable linear order of type
ω + ω∗ with no computable suborder of type ω or ω∗.

The proof involves a finite injury priority argument.

Theorem 2.2. (Lerman [1981]) There is a computable linear order with no computable
suborder of type ω, ω∗, or ω + ω∗.

The proof here uses an infinite injury priority argument.

These theorems suggest principles that would be shown by them to be not provable
in RCA0. To state and analyze them in the setting of reverse mathematics we should
first be precise about what we mean by having order type ω, ω∗, and ω + ω∗ in RCA0.

Definition 2.3. An infinite linear order in which all nonfirst elements have immediate
predecessors and all nonlast ones have immediate successors has type
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• ω if every element has finitely many predecessors;.

• ω∗ if every element has finitely many successors;

• ω + ω∗ if it is not of type ω or ω∗ and every element has either finitely many
predecessors or finitely many successors.

Proposition 2.4. ADS is equivalent over RCA0 to the statement that every linear order
L has a suborder of type ω or ω∗.

Proof. An ascending or descending sequence in L is clearly a suborder of type ω or ω∗,
respectively. In the other direction, suppose we are given a subset R of L of order type
ω in the order inherited from L (the ω∗ case being symmetric). We can, in RCA0, define
by recursion a function that lists an infinite subset S = 〈si | i ∈ N〉 of R in increasing
natural order (the order of N). Having defined sn, we need only find an a ∈ R such that
a >L sn and a >N sn, which exists because R has order type ω, and define sn+1 = a,
so this recursion can be performed in RCA0. The range of S exists provably in RCA0,
because every element b of R has only finitely many predecessors, and hence there is an
i such that b <L si. If b 6= sj for j < i, then b is not in the range of S. The range of S is
the desired ascending sequence in L.

Corollary 2.5. RCA0 0 ADS.

Proof. By Theorem 2.1, COMP, the ω-model of RCA0 whose sets are precisely the com-
putable sets, is not a model of ADS.

Every linear order L of type ω+ω∗ is stable in a sense analogous to that for colorings,
i.e. (∀x)(∃y)(∀z > y)[x <L y ↔ x <L z]. Thus the analog of SRT2

2 is SADS:

(SADS) Stable ADS: Every linear order of type ω+ ω∗ has a subset of order type ω
or ω∗.

Similarly, reducing to an order of type ω + ω∗ corresponds to producing a cohesive
set, as in such an order S, we have (∀i ∈ S)(∃s)[(∀j > s)(j ∈ S → i <L j) ∨ (∀j >
s)(j ∈ S → i >L j)]. This gives us CADS as the analog of COH.

(CADS) Cohesive ADS: Every linear order has a subset S of order type ω, ω∗, or
ω + ω∗.

Of course, CADS says that every linear order has a stable suborder the same way
that CRT2

2 or COH say that for every coloring there is a set on which the coloring is
stable. Theorems 2.1 and 2.2 now prove that these principles do not hold in COMP and
so do not follow from RCA0.

Corollary 2.6. RCA0 0 SADS; RCA0 0 CADS.

As with RT2
2, it is immediate that these principle split ADS.
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Proposition 2.7. RCA0 ` ADS ↔ SADS + CADS.

We show that they also follow from SRT2
2 and COH, respectively.

Proposition 2.8. RCA0 ` SRT2
2 → SADS.

Proof. Given a linear order L of type ω + ω∗, color (m,n) blue if m <L n; otherwise,
i.e. if n <L m, color (m,n) red. This is a stable coloring by the definition of order type
ω + ω∗. A blue homogeneous set has order type ω. A red one has order type ω∗.

Proposition 2.9. RCA0 ` CRT2
2 → CADS and so RCA0 ` COH → CADS.

Proof. Given a linear ordering L, color (m,n) blue if m <L n; otherwise color (m,n)
red. Let S be a set given by CRT2

2 for this coloring. Then the coloring restricted to S is
stable, which means that each element of S has either finitely many <L-predecessors in
S or finitely many <L-successors in S, as required.

In addition, we have one more combinatorial connection between ADS and COH.

Proposition 2.10. RCA0 ` ADS → COH.

Proof. Given ~R = 〈Ri | i ∈ N〉 define a linear order L on N by setting x <L y ↔ 〈Ri(x) |
i 6 x〉 <lex 〈Ri(y) | i 6 y〉, where <lex is the lexicographic order on 2<ω. This order is
just the lexicographic order on a subset of 2<ω that contains exactly one string of each
length. We claim that any infinite ascending or descending sequence S in this order is
~R-cohesive. Suppose S is ascending (the descending case being symmetric) and consider
any j ∈ N. Let σ ∈ 2j+1 be the lexicographically largest element of 2j+1 such that
σ 6lex 〈Ri(x) | i 6 x〉 for some x ∈ S. (Such a σ exists by Σ0

1 induction.) Fix such an x.
Since S is ascending in L, for every element y >N x of S, we have σ 6lex 〈Ri(y) | i 6 j〉.
But no such sequence can be to the right of σ by our choice of σ. Thus 〈Ri(y) | i 6 j〉 = σ
for every y >N x in S. In particular, Rj(y) has the same value for cofinitely many y ∈ S,

and so S is ~R-cohesive as desired.

We now turn to a degree theoretic analysis of these principles that will provide proofs
that most of the above implications cannot be reversed. For the first one we provide
a priority argument here and a forcing one for a related result that could be adapted
to a proof of this theorem in Proposition 3.4. The forcing argument is simpler and
probably easier to understand than this one, so readers who prefer that kind of argument
may wish to skip this proof. On the other hand, this argument is relevant to issues of
conservativity, and in particular contrasts with a similar argument in an upcoming paper
by Hirschfeldt, Shore, and Slaman on the Atomic Model Theorem, in which a blocking
technique is employed that does not work in this case. See §6 for further discussion of
conservativity issues in relation to the following proof.

Theorem 2.11. Every X-computable linear order of type ω + ω∗ contains a suborder A
of type ω or ω∗ that is low over X, i.e. (A⊕X)′ 6T X

′.
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Proof. We consider the case that X is computable. The general one follows by rela-
tivization. Let ≺ be a computable linear order of type ω + ω∗. Let U be the ω part of
≺. Clearly, U is ∆0

2. We build an infinite ∆0
2 subset A of U such that if A is not low

then ≺ contains an infinite computable descending sequence. Of course, from A we can
computably obtain an infinite ascending sequence in ≺.

We have two kinds of requirements:

Pe : (∃n > e)(n ∈ A)

and
Ne : ∃∞s (ΦA

e (e)[s]↓)→ ΦA
e (e)↓ .

We assign priorities to these requirements in the usual way. We denote the use function
of Φe by ϕe.

The idea for satisfying Ne is that, whenever ΦA
e (e)[s] ↓, we try to preserve A[s] �

ϕAe (e)[s] to the extent allowed by the need to ensure that A ⊆ U . If we fail, then
U [s] � ϕAe (e)[s] must contain an element not in U . Because U is an initial segment of ≺,
this means that the ≺-last element of U [s] � ϕAe (e)[s] must be in U . So if ∃∞s (ΦA

e (e)[s]↓)
but ΦA

e (e)↑, which means that all our attempts at preservation fail, then we have a com-
putable list of elements of U , from which we can obtain a computable infinite descending
sequence in ≺.

We adopt the convention that if a computation changes then it becomes undefined for
at least one stage. We also assume we have speeded up the computable approximation
to U so that for any s there is an element of U [s] greater than every number mentioned
in the construction before stage s. We also assume that the approximation obeys the
order, i.e. if n ≺ m and m ∈ U [t] then n ∈ U [t].

At stage s, we say that Pe requires attention if the ≺-least element of U [s] larger (in
the N sense) than e and the restraints of stronger priority N -requirements is not in A.
We say that Ne requires attention if either

1. ΦA
e (e)[s− 1]↑ and ΦA

e (e)[s]↓, or

2. ΦA
e (e)[s]↑ and there is a t < s such that

(a) t is greater than the last stage before s at which a requirement stronger than
Ne required attention,

(b) ΦA
e (e)[t]↓,

(c) A[t] � ϕAe (e)[t] ⊆ U [s], and

(d) A[t] � ϕAe (e)[t] 6⊆ A[s].

We begin the stage by removing from A all elements not in U [s]. Then, for the
strongest requirement X that requires attention at stage s, we act as follows.
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If X = Pe then let n be the ≺-least element of U [s] larger (in the N sense) than e and
the restraints of stronger priority N -requirements and put n in A.

If X = Ne then there are two cases. If condition 1 above holds then declare the
restraint of Ne to be the maximum of its previous value (if any) and ϕAe (e)[s]. If condition
2 holds then let t be the least stage satisfying the condition. For every n ∈ A[t] �
ϕAe (e)[t] such that n is larger (in the N sense) than the restraints of stronger priority
N -requirements, put n in A.

This completes the construction. We now verify its correctness.

Assume by induction that all requirements stronger than Pe are satisfied and even-
tually stop requiring attention. Then each such N -requirement has a final restraint. Let
r be the maximum of these restraints, and let n be the ≺-least element of U larger (in
the N sense) than e and r. There is a stage s after which no requirement stronger than
Pe requires attention and n does not leave U . If there is a stage t > s such that n /∈ A[t]
then n enters A at stage t and never leaves A after that. So Pe is satisfied, and hence
eventually stops requiring attention.

Now assume by induction that all requirements stronger than Ne are satisfied and
eventually stop requiring attention. Let s be the least stage after which no such re-
quirement ever requires attention. Note that A is constant up to the maximum of the
restraints imposed by these requirements from stage s onward. There are three cases.

First suppose that for some t > s we have ΦA
e (e)[t] ↓ and A[t] � ϕAe (e)[t] ⊆ U . For

the least such t, there is a u such that for all v > u we have A[t] � ϕAe (e)[t] ⊆ U [v]. If
ΦA
e (e)[v]↓ for all v > u then by convention ΦA

e (e)↓, and hence Ne is satisfied. Otherwise,
at the least stage v > u such that ΦA

e (e)[v] ↑, the requirement Ne will act to put every
element of A[t] � ϕAe (e)[t] into A if this is not already the case. Furthermore, no such
number will ever leave A, and because of the restraint imposed by Ne, no number will
ever enter A � ϕAe (e)[t] after stage t. Thus A � ϕAe (e)[t] = A[t] � ϕAe (e)[t], which implies
that ΦA

e (e)↓, and hence that Ne is satisfied.

Otherwise, for every t > s such that ΦA
e (e)[t]↓, we have A[t] � ϕAe (e)[t] 6⊂ U . If there

are only finitely many such t then Ne is vacuously satisfied, and it is easy to check that
in this case Ne eventually stops requiring attention.

So we are left with the case in which ∃∞t (ΦA
e (e)[t] ↓), but for every t > s such that

ΦA
e (e)[t]↓, we have A[t] � ϕAe (e)[t] 6⊂ U . In this case we can define a computable infinite

descending sequence n0 � n1 � · · · by recursion as follows. Let n0 be the last element
of ≺. Assuming that we have defined nk so that nk /∈ U , search for a t > s such that
ΦA
e (e)[t] ↓ and every n ∈ A[t] � ϕAe (e)[t] is ≺-less than nk. Such a t must eventually be

found, since A[u] ⊆ U [u] for all u. Let nk+1 be the ≺-greatest element of A[t] � ϕAe (e)[t].
Since A[t] � ϕAe (e)[t] 6⊂ U , we must have nk+1 /∈ U , and thus the recursion can continue.
Since n0 � n1 � · · · and the sequence of nk’s is defined recursively, we are done.

Corollary 2.12. There is an ω-model of RCA0 + SADS consisting entirely of low sets.

Proof. Iterate and dovetail the construction of Theorem 2.11 to produce a sequence of
low sets X0, X1, . . . so that for each i, every linear order of type ω+ω∗ computable in Xi
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has a suborder of type ω or ω∗ computable in some Xj. The class of all sets computable
in Xi for some i forms the second order part of an ω-model of RCA0 + SADS.

On the other hand, Downey, Hirschfeldt, Lempp and Solomon [2001] have constructed
a computable stable coloring of [N]2 with no low homogeneous set, and so the model of
SADS constructed in Corollary 2.12 cannot be a model of SRT2

2.

Corollary 2.13. SADS 0 SRT2
2.

Carl Jockusch has pointed out a surprising, purely degree theoretic consequence of
Theorem 2.11:

Corollary 2.14. (Jockusch): Every c 6T 0′ is c.e. in a low degree.

Proof. By Harizanov [1998] there is a C ∈ c and a computable linear order L of type ω+ω∗

such that C is the ω part of L and C̄ is the ω∗ part. By the Theorem there is a low A which
is an infinite ascending (descending) sequence in L. Thus C = {n|(∃a ∈ A)(n 6L a)}
(C̄ = {n|(∃a ∈ A)(a 6L n)}) as required.

We next show that neither SADS nor WKL0 implies CADS, as each of them has an
ω-model with only low sets while CADS does not.

Proposition 2.15. There is a computable linear order with no low suborder of type ω,
ω∗, or ω + ω∗.

Proof. Start with a computable infinite partial order P of N with no chain or antichain
computable in 0′, as given by Herrmann [2001]. Extend P to a computable linear order
L, i.e. x 6P y → x 6L y. (That there is such an L is cited as a folklore version of the
classical theorem of Szpilrajn [1930] and proven in Downey [1998, Observation 6.1].) We
claim L is the desired linear order. Suppose not. Then, by Theorem 2.11, L has a low
ascending or descending sequence K = {ki | i ∈ N}. Suppose that K is ascending; the
other case is symmetric. We construct a chain or antichain in P computably in K′ = 0′

for the required contradiction. For each i < j, either ki <P kj or ki |P kj. Computably
in K′ build a series of subsequences li,n as follows. Let l0,0 = k0. Given li,n, let li,n+1 be
kj for the least j such that li,n <P kj if there is such a j; otherwise terminate the ith

subsequence with kni
= li,n and begin the (i+ 1)st with li+1,0 = kni+1. Note that if kni

is
defined then kni

≮P kj for any j > ni and so all the kni
are incomparable in P . Thus,

if one of the subsequences li,n is infinite it is the desired chain in P , and if not, then the
kni

form the desired antichain in P .

Corollary 2.16. SADS 0 CADS; WKL0 0 CADS.

We next show that WKL0 does not imply SADS, by proving two technical computabil-
ity theoretic theorems involving the following ad-hoc notion. We write X 6b

T Y ⊕ Z if
there is a functional Φ and a computable function f such that ΦY⊕Z = X and for each
n the computation of ΦY⊕Z(n) queries at most the first f(n) many bits of Y .
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Theorem 2.17. Let A and B be c.e. sets. There is a computable linear order of type
ω + ω∗ with the following property: For any ascending or descending suborder C, either
B 6b

T A⊕ C or A 6b
T B ⊕ C.

Proof. Let A and B be infinite, coinfinite c.e. sets. We make it a convention that at each
stage s at most one element k enters at most one of A or B, and k 6 s.

We build a computable linear order ≺ while simultaneously defining ∆0
2 sets U and

D. The idea is that ≺ will have order type ω + ω∗, with U being the elements in the ω
part and D those in the ω∗ part. We will also have movable markers Mi and Ni for i ∈ ω.
The positions of Mi and Ni at stage s of the construction will be denoted by ms

i and nsi ,
respectively, and the limits mi = limsm

s
i and ni = lims n

s
i will exist. Furthermore, mi

will be computable from B � i + 1 and A � i, and ni will be computable from A � i + 1
and B � i. Let s be the least stage such that B � i + 1 and A � i have settled. Then we
will have i ∈ A if and only if either i ∈ A[s] or mi ∈ D. Similarly, letting s be the least
stage such that A � i+ 1 and B � i have settled, we will have i ∈ B if and only if either
i ∈ B[s] or ni ∈ U . As we will argue below, these facts will be enough to establish the
theorem.

At stage s, we proceed as follows. First we provide the needed positions for markers:

1. Let j0 < · · · < jn be all numbers j 6 s such that Mj does not currently have a
position. Let c0, . . . , cn be fresh large numbers. Declare l ≺ c0 ≺ · · · ≺ cn for all l
currently in U , put each ci in U , and give each Mji the position ms

ji
= ci.

2. Let j0 < · · · < jn be all numbers j 6 s such that Nj does not currently have a
position. Let c0, . . . , cn be fresh large numbers. Declare cn ≺ · · · ≺ c0 ≺ r for all r
currently in D, put each ci in D, and give each Nji the position nsji = ci.

If a number k (by convention unique) enters A or B (again, necessarily only one of
them) at this stage, then we act to reflect this enumeration. (If not, we proceed to the
next stage.)

1. If k enters A then for each l ∈ U that is equal to, or to the right of, ms
k, put l in D.

Cancel the position of all markers Ni with i > k and all markers Mi with i > k.

2. If k enters B then for each r ∈ D that is equal to, or to the left of, nsk, put r in U .
Cancel the position of all markers Mi with i > k and all markers Ni with i > k.

This completes the construction. Clearly ≺ is a computable linear order. We now
verify that it has the desired properties.

An element x of U [s] can move to D at a stage t > s only if it is equal to, or to the
right of, mt

k for k entering A at stage t. If this happens then x will henceforth be to the
right of every marker Ni with i > k, so it will return to U at a stage u > t only if an
element k′ < k enters B. Repeating this argument, we see that x will once again move
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to D only if an element k′′ < k′ enters A, and so forth. So x can shift between U and D
only finitely often. Thus U and D are ∆0

2, and the domain of ≺ is U ∪D.

Let j /∈ A and k /∈ B, and let l = max(j, k). If s is a stage such that A � l + 1 and
B � l+1 have settled then ms

j is permanently in U and nsk is permanently in D. So U and
D are infinite, and hence, by the way elements are put into the order, (U,≺) and (D,≺)
have order types ω and ω∗, respectively, and every element of U is ≺ every element of
D. So ≺ has order type ω + ω∗.

Let s be the least stage such that A � j + 1 = A[s] � j + 1 and B � j = B[s] � j.
Then Nj is never moved from its position nsj at a later stage, so nj = limt n

t
j exists and

is computable from A � j + 1 and B � j. If j enters B after stage s then nj is put into
U , and it cannot be moved to D, since that would require either that a number less than
or equal to j enter A or that a number less than j enter B. On the other hand, if j /∈ B
then nj is initially put into D, and cannot be moved to U , since that would require a
number less than or equal to j to enter either A or B. Thus we have j ∈ B if and only
if either j ∈ B[s] or nj ∈ U (or both).

Similarly, let s be the least stage such that B � j+1 = B[s] � j+1 and A � j = A[s] � j.
The same argument as in the previous paragraph shows that mj = limtm

t
j exists and is

computable from B � j + 1 and A � j, and j ∈ A if and only if either j ∈ A[s] or mj ∈ D
(or both).

Now let C be a descending suborder of ≺ (the ascending case being symmetric). We
show that B 6b

T A ⊕ C by induction. Suppose that we have already computed B � j
using A � j and C. To compute B(j) using A � j + 1 and C, find the least stage s such
that A � j + 1 = A[s] � j + 1 and B � j = B[s] � j. If j ∈ B[s] then we are done.
Otherwise, we can use A � j + 1 and B � j to compute nj, and we know that j ∈ B if
and only if nj ∈ U . But x ∈ D if and only if x is to the right of some element of C, so
D is c.e. in C. Thus, to compute B(j), we simultaneously enumerate B and D. Either
j enters B or nj enters D, in which case j /∈ B.

Theorem 2.18. Given any low set X there are c.e. sets A0 and A1 such that A0 
b
T

A1 ⊕X and A1 
b
T A0 ⊕X.

Proof. We have requirements

Re,i,k : ΦAk⊕X
e total ∧ Φi total ∧ ∀n (the computation ΦAk⊕X

e (n) queries at most

the first Φi(n) many bits of Ak)→ ∃n (ΦAk⊕X
e (n) 6= A1−k(n)),

arranged in a priority order in the usual way.

To each Re,i,k we associate a number ne,i,k ∈ N[〈e,i,k〉], a set Ne,i,k (containing values
of ne,i,k) and a c.e. set of binary strings We,i,k, into which we enumerate strings during
the construction. Each time Re,i,k is initialized, a fresh new value is picked for ne,i,k,
the set Ne,i,k is redefined to be {ne,i,k}, and We,i,k is redefined to be a new, currently
empty, set. By the Recursion Theorem and the lowness of X, there is a computable
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approximation we,i,k(t) (which is uniformly computable over all requirements) such that
if Re,i,k is initialized only finitely often then limtwe,i,k(t) = we,i,k exists, and we,i,k = 1 if
and only if, for the final version of We,i,k, there is a σ ∈ We,i,k such that σ is an initial
segment of X.

At stage 0, set the restraint imposed by each requirement to 0, pick values for the
ne,i,k, and let each Ne,i,k = {ne,i,k}.

At stage s > 0, proceed as follows. For each Re,i,k, let re,i,k[s] be the maximum of the
union of all sets {Φi′(n)[s] | n ∈ Ne′,i′,k′} taken over all Re′,i′,k′ stronger than Re,i,k. If
min(Ne,i,k) < re,i,k[s] then initialize Re,i,k.

Say that Re,i,k requires attention at stage s if we,i,k(s) = 0 and for all n ∈ Ne,i,k, it
is the case that Φi(n)[s] ↓, that ΦAk⊕X

e (n)[s] ↓= A1−k(n)[s], and that the computation
ΦAk⊕X
e (n)[s] queries at most Φi(n) many bits of Ak.

For each Re,i,k requiring attention (if any), proceed as follows. Enumerate X �
ϕAk⊕X
e (ne,i,k)[s] into We,i,k and wait until either we,i,k(t) = 1 for some t > s or X changes

below ϕAk⊕X
e (ne,i,k)[s]. One of these must happen by the choice of we,i,k. In the first case,

enumerate ne,i,k into A1−k, choose a fresh new value for ne,i,k, and enumerate this value
into Ne,i,k. This completes the construction. We now verify its correctness.

Assume by induction that for all strategies Re′,i′,k′ stronger than Re,i,k, the value of
ne′,i′,k′ eventually settles, so that lims re,i,k[s] exists and hence Re,i,k eventually stops being
initialized, say by stage u, which implies that Ne,i,k and We,i,k have final versions. Every
time ne,i,k gets redefined at a stage s > u we must have we,i,k(s) = 0 and we,i,k(t) = 1 for
some t > s. Since we,i,k = limswe,i,k(s) exists, this means that ne,i,k eventually settles to
a final value.

Now suppose that ΦAk⊕X
e and Φi are total and for all n, the computation ΦAk⊕X

e (n)
queries at most Φi(n) many bits of Ak. Then Φi(ne,i,k)↓ and ΦAk⊕X

e (n)↓ for all n ∈ Ne,i,k.
We claim ΦAk⊕X

e (n)↓6= A1−k(n) for some n ∈ Ne,i,k.

First suppose that we,i,k = 0. Then there is a stage u after which we,i,k has settled
and Re,i,k always requires attention. But then at each stage s > u we see X change
below ϕAk⊕X

e (ne,i,k)[s] (since otherwise we would have t > s with we,i,k(t) = 1). This
contradicts the totality of ΦAk⊕X

e .

Now suppose we,i,k = 1. Then there is a σ ∈ We,i,k such that σ is an initial segment
of X. But by the definition of We,i,k, at the stage s at which σ enters We,i,k, we have
ΦAk⊕σ
e (n)[s] ↓= 0, where n is the value of ne,i,k at that stage, and we put n into A1−k.

Furthermore, the computation ΦAk⊕σ
e (n)[s] queries at most Φi(n) many bits of Ak, and

Ak � Φi(n) never changes after stage s, so in fact ΦAk⊕σ
e (n) ↓= 0, whence ΦAk⊕X

e (n) ↓=
0 6= A1−k(n).

Corollary 2.19. WKL0 0 SADS.

Proof. By Theorems 2.17 and 2.18, no low set can bound (in Turing degree) the sets of
an ω-model of SADS. As there are low sets that bound the sets of an ω-model of WKL0

(see Simpson [1999, proof of Theorem VIII.2.17]), WKL0 does not imply SADS.
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We remark that Theorem 2.18 cannot be extended by replacing our ad-hoc reducibility
6b

T with Turing reducibility. This is because Downey (see Arslanov, Cooper, and Li
[2004]) has shown that there is a low degree that cups all nonzero c.e. degrees to 0′.

Another consequence of Theorems 2.17 and 2.18 is that there is no universal instance
of SADS. That is, there is no computable linear order L of type ω+ω∗ such that for every
infinite ascending or descending suborder C of L and every computable linear order L′
of type ω+ω∗, there is an infinite ascending or descending suborder of L′ computable in
C.

The next series of results will all be of the form that one can add a solution for an
arbitrary instance of one problem by forcing without adding a solution to an instance of
another problem that does not have one in the original model. These types of results
give various nonimplications among the relevant systems even for ω-models. When it
is possible to implement them over arbitrary models, they yield conservation results as
well. The basic situation here is that we start with a countable model M of RCA0

and a notion of forcing P defined over M. Moreover, if G is sufficiently generic over
P (usually 1-generic plus satisfying a specific list of requirements that guarantee that if
we force an instance of a Σ0

1 (or Π0
1) formula then there is a least instance that can be

forced and we do so), we can show that IΣ1 holds for formulas over M with G as an
added set parameter. (This typically relies on a sufficiently simple definition of forcing
for one quantifier sentences.) In this situation, M is an ω-submodel of the model M[G]
gotten by adding on to the sets of M all sets definable over M by ∆0

1 formulas with G
as an added set parameter, and M[G] is itself a model of RCA0 (Friedman [1976], or
see Simpson [1999] or CJS §6). (Warning: in CJS, M[G] is first officially defined as the
model of IΣ1 gotten by adding on just G to the sets of M. What we generally want,
however, is its extension to a model of RCA0.)

We begin with COH and Mathias forcing as in CJS §9; see CJS for more on Mathias
forcing (including the formal definition of the forcing relation). Conditions are pairs
(D,L) where D is M-finite, L is M-infinite and maxD < minL. We say that (D′, L′)
extends (D,L), and write (D′, L′) 6 (D,L), if D ⊆ D′ ⊆ D ∪ L and L′ ⊆ L. CJS show
that if G is Mathias 1-generic (i.e. every Π0

1 formula or its negation is forced and the
conditions specific to forcing IΣ1 are met) then adding G to M preserves IΣ1 and so
M[G] � RCA0 and every sequence 〈Ai〉 coded by an A ∈M has a cohesive set inM[G].
They note that, by iteration, this proves that COH is Π1

1-conservative over RCA0. We
strengthen their results to a stronger conservation result that shows that none of the
principles that we have discussed follow from COH, except those already shown to follow
from it.1

Theorem 2.20. LetM be a countable model of RCA0 and let Φ(A,B) be a Σ0
3 predicate

of two set variables such that for some fixed A ∈ M there is no B ∈ M with M �

1In the aforementioned upcoming joint paper with Slaman, we prove the analogous theorem about
Cohen forcing and so conservation and nonimplication results for the principle AMT which says that
every atomic theory has an atomic model.
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Φ(A,B). If G is Mathias 2-generic over M then there is no B ∈ M[G] with M[G] �
Φ(A,B).

Proof. Suppose that Φ(A,B) = ∃x∀y ∃z ϕ(A,B, x, y, z) where ϕ is ∆0
0 and, for the sake

of a contradiction, that there is a B ∈ M[G] such that M[G] � Φ(A,B). Now M is an
ω-submodel of M[G], and B is of the form ΦG⊕C

e for some Turing functional Φe and set
C in M, so for some x ∈M,

M[G] � ΦG⊕C
e is a total characteristic function and ∀y ∃z ϕ(A,ΦG⊕C

e , x, y, z).

As this whole formula is equivalent (even in RCA0) to a Π0
2(G) (over M) formula

∀y ∃zΨ(G,C,A, x, y, z) and G is 2-generic, there is a condition (D,L) ∈ M such that
(D,L) 
 ∀y ∃zΨ(G,C,A, x, y, z).

By the general definition of forcing this means that for every y in M and every con-
dition (D′, L′) 6 (D,L), there is a z ∈ M and a condition (D′′, L′′) 6 (D′, L′) such
that (D′′, L′′) 
 Ψ(G,C,A, x, y, z). By the definition of Mathias forcing for ∆0

0-formulas,
however, this last assertion depends on only a finite part of the forcing condition. More
precisely, it depends on certain numbers being in D′′ and certain numbers being out
of L′′. Thus, for every y ∈ M and every D′ ⊇ D with D′ − D ⊆ L, there is a fi-
nite set Fy(D

′) ⊇ D′ of M and a number z ∈ M such that Fy(D
′) − D′ ⊆ L and

M � Ψ(Fy(D
′), C, A, x, y, z). We can now define by recursion the function f such that

f(0) = D and f(n + 1) = Fn(f(n)). As M is a model of RCA0, this function is an
element of M and so gives the characteristic function of a set H ∈ M which by con-
struction satisfies ∀y ∃zΨ(H,C,A, x, y, z). Finally, if B′ = ΦH⊕C

e then B′ ∈ M and
M � ∀y ∃z ϕ(A,B′, x, y, z) for the desired contradiction.

We now have our conservation and nonimplication results. In the terminology of
Simpson [1999, Definition VII.2.28], a model M is a restricted β-submodel of a model
M′ ifM is an ω-submodel ofM′ and for every sentence of the form ∃X ψ where ψ is Π0

2

with parameters in M, we have M � ∃X ψ if and only if M′ � ∃X ψ. (This condition
says that a subtree of ω<ω in M has a path in M if and only if it has a path in M′,
whence the terminology.)

Corollary 2.21. COH is conservative over RCA0 for sentences of the form ∀A (Θ(A)→
∃B Φ(A,B)) where Θ is arithmetic and Φ is Σ0

3. Furthermore, every model of RCA0 is
a restricted β-submodel of a model of COH.

Proof. Consider any sentence of the specified form and any model M of RCA0 not
satisfying the sentence. Thus there is a set A ofM such thatM � Θ(A) for which there
is no B inM such thatM � Φ(A,B). Construct a sequence 〈Gi | i ∈ ω〉 of subsets of NM
such that Gi+1 is Mathias 2-generic overM[G1] . . . [Gi]. LetM′ =

⋃
{M[G0] . . . [Gi] | i ∈

ω}. By the results of CJS mentioned above,M[G0] . . . [Gi] � RCA0 for each i, and every

sequence ~R inM[G0] . . . [Gi] has a cohesive set inM[G0] . . . [Gi][Gi+1]. ThusM′ �RCA0

+ COH as the first order part of every element of this ascending sequence of models is
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the same. By induction (on ω) our theorem shows that there is no B ∈ M[G0] . . . [Gi]
such that M[G0] . . . [Gi] � Φ(A,B). Again, as each successive model in this list is an ω-
extension of the preceding one andM′ is just their union, we see that whileM′ � Θ(A),
there is no B ∈M′ such thatM′ � Φ(A,B). Thus our original sentence is not a theorem
of RCA0 + COH, as required.

The version of the corollary in terms of restricted β-extensions follows by taking Θ
to be empty and Φ to be Π0

2. Our argument shows that if M′ � ∃B Φ then M � ∃B Φ.
The other direction follows from the fact that M is an ω-submodel of M′.

We note that this result also literally extends the one of CJS for Π1
1 sentences by

taking Φ to be any vacuously true sentence. Moreover, the result is the best possible one
of this form as COH itself is a sentence of the form ∀A (Θ(A) → ∃B Φ(A,B)) with Θ
arithmetic and Φ a Π0

3 formula. It is, however, strong enough to show that any principle
that asserts, for example, the existence of an infinite set satisfying some computable
condition such as being homogeneous, a path through a tree, or a chain or antichain in
a linear or partial order cannot be implied by COH, as all of these statements are ones
in which Φ is Π0

2.

Corollary 2.22. None of the following principles are implied by COH (nor CADS, which
follows from it): RT2

2, SRT2
2, WKL0, DNR, CAC, ADS, SADS.

Of course, as discussed above, this result was already known for RT2
2, SRT2

2, and WKL0.
For DNR, it has also been proved by Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and
Slaman [ta].

By Corollary 2.16 we now have the desired independence for our splittings of ADS.

Corollary 2.23. CADS and SADS are incomparable over RCA0 and both are strictly
weaker than ADS.

We now investigate the relationships with WKL0 by first showing that adding it to
COH does not yield any of the other principles mentioned in Corollary 2.22, except for
DNR, of course. It suffices to prove this for SADS as it is implied by all the principles
other than WKL0 and DNR on this list. We then show that ADS does not imply WKL0

or even DNR. CAC is considered in the next section.

Proposition 2.24. For any set X, if L is a linear order computable in X with no ascend-
ing or descending sequence computable in X and T is an infinite binary tree computable
in X, then there is a path f in T such that no ascending or descending sequence in L is
computable in f ⊕X.

Proof. We consider the case that X is computable. The full proposition then holds by
relativization. We use forcing (in standard arithmetic) with infinite computable subtrees
S of T . Of course, any 1-generic G gives us a path P = PG through T as the union of
the roots of the trees S ∈ G. Suppose G is 2-generic and ΦP

e is total and an ascending
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sequence in L. (The case of a descending sequence is symmetric.) Thus we have a tree
S ⊆ T with P ∈ [S] such that S 
 (ΦP

e is total and (∀m)(∀n < m)(ΦP
e (n) <L ΦP

e (m))).

As S 
 (ΦP
e is total), for each n there is an s such that Φσ

e � n is defined for every σ
on level s of S. (Otherwise, {τ ∈ S | (∃i < n) Φτ

e(i)↑} is infinite and, in fact, a subtree of
S that forces ΦP

e not to be defined on some i < n, contrary to our choice of S.) Consider
now the computable subtree Ŝ of S consisting of all σ such that (∀i < |σ|)(Φσ

e (i) ↓
∧Φσ

e (i+ 1)↓→ Φσ
e (i) <L Φσ

e (i+ 1)). If this Ŝ were not infinite, then the subtree S̃ of S
consisting of the downward closure of the nodes where this condition fails would be an
infinite computable subtree of S that forces ΦP

e not to be an ascending sequence in L,
contrary to our assumption on S.

We now define an ascending sequence 〈ai | i ∈ ω〉 in L computably in Ŝ for our
contradiction. To find ai find the least si such that Φσ

e � (i + 1)↓ for every σ on level si
of Ŝ. Let ai be the L-least member of {Φσ

e (i) | σ ∈ Ŝ ∧ |σ| = si}. (All of these values
must be in the domain of L by our definition of Ŝ.) We claim that 〈ai〉 is ascending in
L, i.e. ai <L ai+1 for every i. Consider any ai and ai+1. They were chosen L-least from
among the values of Φσ

e (i) and Φτ
e(i + 1) for σ on level si and τ on level si+1 of Ŝ. Say

ai+1 = Φτ
e(i+ 1) for some τ on level si+1. There must be a σ on level si such that σ ⊆ τ .

By our definition of Ŝ and choice of si, we have Φσ
e (i) ↓= Φτ

e(i) <L Φτ
e(i + 1). On the

other hand, our definition of ai makes ai 6L Φσ
e (i) <L Φτ

e(i+ 1) = ai+1 as required.

Corollary 2.25. COH + WKL0 0 SADS.

Proof. Start with the standard model COMP with second order part consisting of all
computable sets, and a computable linear order L of type ω + ω∗ with no computable
ascending or descending sequence. Iterate and dovetail the forcing constructions of The-
orem 2.20 and Proposition 2.24 to produce an ω-model of COH and WKL0 in which L
still has no ascending or descending sequence.

We next work at showing that ADS does not imply WKL0, or even DNR. We begin
with SADS.

Proposition 2.26. Let L be a linear order of type ω+ω∗ computable in a set X such that
there is no diagonally noncomputable function computable in X. There is then a subset
G of L of order type ω or ω∗ with no diagonally noncomputable function computable in
G⊕X.

Proof. We again treat the case that X is computable and note that the general case holds
by relativization. If there is a computable subset G of L of order type ω∗ we are done,
so suppose not. Let U be the subset of L consisting of all elements in the ω part of L,
i.e. all elements with only finitely many predecessors in L.

We consider the notion of forcing F in which conditions are finite sequences σ ∈ ω<ω
that are strictly ascending in both natural order (<N) and the order of L (<L), with all
elements in U (or equivalently with last element in U). Extension is as usual for finite
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sequences: σ extends τ if τ ⊇ σ. Let G be 2-generic for this forcing. Then G is obviously
an ascending sequence in L. We claim that no ΦG

e is a diagonally noncomputable function.
If one were then there would be a condition σ 
 (ΦG

e is total ∧ ∀k (Φk(k) ↓→ ΦG
e (k) 6=

Φk(k))). Fix such a σ to argue for a contradiction.

For each k let τ(k) be the first string ρ found in a computable search through ω<ω

that is increasing in both <N and <L such that ρ ⊇ σ and Φρ
e(k) ↓. We do not assume

here that ρ(|ρ|) ∈ U and so τ is a partial computable function. In fact, τ is total as
σ 
 (ΦG

e is total) and so for any k there is actually a ρ ⊇ σ in F such that Φρ
e(k) ↓.

If there are infinitely many k such that Φk(k) ↓ and Φ
τ(k)
e (k) = Φk(k) then we can

computably find infinitely many such k. If for such k, τ(k) ∈ F then τ(k) extends σ
and τ(k) 
 ΦG

e (k) ↓= Φk(k) ↓, contradicting our choice of σ. By standard conventions
|τ(k)| > k. Thus for each of these k we have effectively produced an element, τ(k)(|τ(k)|)
of Ū (the ω∗ part of L) larger (in natural order) than k. Thus we can produce an infinite
computable subset of Ū . We can then computably thin out this set to require that the
elements be descending in 6L and ascending in 6N, as for each ai there are only finitely
many aj that are above it in 6L, since ai is in the ω∗ part of L. This contradicts our
assumption that there is no computable descending sequence in L. Thus there are only
finitely many k such that Φk(k) ↓ and Φ

τ(k)
e (k) = Φk(k) and so a finite variation of the

computable function taking k to Φ
τ(k)
e (k) would be DNR for the desired contradiction.

Corollary 2.27. SADS 0 DNR.

Proof. By the usual iteration and dovetail argument we can use Proposition 2.26 to build
an ω-model of SADS in which there is no diagonally noncomputable function and so DNR
fails.

Corollary 2.28. ADS 0 DNR.

Proof. We can combine the forcing of Proposition 2.26 with that of Theorem 2.20 to
get an ω-model in which both SADS and COH hold but in which there is no diagonally
noncomputable function and so DNR fails. By Propositions 2.7 and 2.9 this model is
also one of ADS.

Corollary 2.29. ADS 0 SRT2
2 and so ADS 0 RT2

2.

Proof. Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [ta] show that SRT2
2 `

DNR and so neither SRT2
2 nor RT2

2 can be a consequence of ADS.

It is interesting to note that we can use the forcing notion of Proposition 2.26 to
provide an alternate proof of Theorem 2.11. We provide a stronger version in Theorem
3.4 as part of our analysis of CAC.

We have now shown that ADS does not imply WKL0, or even DNR, and also does
not imply RT2

2, or even SRT2
2. We have also shown that it splits into two incomparable

principles, SADS (implied by SRT2
2 but with low solutions) and CADS (implied by COH
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and almost equivalent to it as will be shown in Theorem 4.4). Moreover, neither of these
principles is implied by WKL0. The results of this section are summarized and depicted
in the diagram below, which uses the same notation as the diagram in the previous
section. We proceed to do a similar analysis for CAC in the next section.

RT2
2

xx
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�&
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v~
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Diagram 2

The references for these results are as follows: (1) Hirschfeldt, Jockusch, Kjos-Hanssen,
Lempp, and Slaman [ta]; (2) Corollary 2.28; (3) Proposition 2.8 and Corollary 2.13;
(4) Proposition 2.7 and Corollary 2.16; (5) Proposition 2.10 and Corollary 2.22; (6)
Corollaries 2.19 and 2.25; (7) Corollary 2.6; (8) Proposition 2.9; (9) Corollary 2.16.

3 Partial Orders and CAC

In this section we will analyze CAC. We begin with a connection to ADS.

Proposition 3.1. RCA0 + CAC ` ADS.

Proof. Let L be a linear order on N. We define a partial order P on N by setting m 6P n
if and only if m 6L n ∧ m 6N n. If C is a chain in P and we list it in increasing natural
order, then it is an ascending sequence in L, as if x <N y the only way x and y can be
comparable in P is if x <L y. On the other hand, if A is an antichain in P and we list
it in increasing natural order, then it is a descending sequence in L, as if x <N y and
x <L y then x <P y.

We next define the appropriate notion of stability for CAC.
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Definition 3.2. A partial order P is stable if either

(1) (∀i ∈ P )(∃s)[(∀j > s)(j ∈ P → i <P j) ∨ (∀j > s)(j ∈ P → i |P j)]

or

(2) (∀i ∈ P )(∃s)[(∀j > s)(j ∈ P → i >P j) ∨ (∀j > s)(j ∈ P → i |P j)].

Now for the associated principle and system:

(SCAC) Stable CAC: Every infinite stable partial order has an infinite chain or
antichain.

While this might not be one’s first guess at the right notion of stability for a partial
order, our analysis (especially Proposition 5.4) will bear out the analogy with the previous
notions of stability. We begin with a couple of easy combinatorial facts that place SCAC
between SRT2

2 and SADS.

Proposition 3.3. RCA0 ` SRT2
2 → SCAC → SADS.

Proof. For the first implication, let P be a stable partial order with domain N. Define a
coloring f by f(x, y) = 0 if x and y are comparable in P and f(x, y) = 1 if x |P y. By
the definition of stability for a partial order, f is a stable coloring. If H is homogeneous
to 0 then it is a chain in P and if H is homogeneous to 1 then it is an antichain in P .

For the second, given a linear order L on N of type ω + ω∗ we define a partial order
P on N as in Proposition 3.1. Consider any m. If m is in the ω part of L, then almost
every n is larger than m in both the natural order and that of L, and so above it in P . If
m is in the ω∗ part of L, then almost every n is above it in the natural order but below
it in the order of L. Thus almost every n is incomparable with m in P . So P is a stable
partial order. As shown in Proposition 3.1, a chain in P is an ascending sequence in L
and an antichain in P is a descending sequence in L.

We next show that SCAC has low solutions and does not imply DNR, as we did for
SADS in Theorem 2.11, Proposition 2.26, and Corollary 2.27, but now entirely by forcing
arguments.

Theorem 3.4. Every stable partial order P computable in X has a chain or antichain
S that is low over X, i.e. (S ⊕X)′ 6T X

′.

Proof. As usual, we assume that X is computable and that the domain of P is N. We
also assume that P satisfies (1) in the definition of a stable partial order. (The argument
if P satisfies (2) is symmetric.) If P has a computable antichain, we are done, so we
assume not and construct a low chain in P . Let U = {i | (∃s)(∀j > s)(i <P j)}. Note
that by the definition of stability U and its complement are both Σ0

2 and so computable
in 0′. We use the same notion of forcing F as in Proposition 2.26 with P replacing L.
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Thus conditions are sequences σ ∈ ω<ω that are ascending in both natural order and in
<P and all of whose elements are in U (or equivalently, whose last elements are in U).
Extension is defined as usual.

We construct the low generic G as the union of a sequence 〈σi〉 in F computable in
0′. For each i, let Ci be the set of ρ ∈ ω<ω such that ρ is strictly ascending in both 6N
and 6P , and Φρ

i (i) ↓. We want to define the σi so that for every i either Φσi
i (i) ↓ (and

so i ∈ G′) or there is no ρ ⊇ σi in Ci (and so σi 
 ΦG
i (i) ↑ and i /∈ G′). Given σi we

can clearly search computably in 0′ for a τ ⊃ σi in F with the properties desired for
σi+1. Assume for a contradiction that there is no such τ . Then there are infinitely many
ρ ⊇ σi in Ci+1 (as there are infinitely many τ ⊃ σ in F and for each such τ there is a
ρ ⊇ τ in Ci+1). For each such ρ, we have ρ(|ρ|) ∈ U as otherwise ρ would be a witness
for convergence in F , and hence could be taken as σi+1. As the required property for
ρ is computable, we can computably enumerate an infinite increasing (in <N) sequence
〈bi〉 with all bi ∈ U = {i | (∃s)(∀j > s)(i |P j)}. We can now computably thin out this
sequence to get a computable antichain in P , contrary to our original assumption. More
precisely, we define the subsequence 〈bij〉 constituting the antichain by induction so that
bij+1

is the first bi with i > ij and bi |P bik for all k 6 j. Such an i exists since each bik is
comparable with only finitely many elements of P .

Note that a similar argument for linear orders of type ω+ω∗ in which U is taken to be
the ω part provides low solutions for SADS and so an alternate proof of Theorem 2.11. As
for SADS, the existence of low solutions for SCAC establishes various nonimplications.

Corollary 3.5. There is an ω-model of SCAC consisting entirely of low sets.

Proof. Iterate and dovetail as usual.

Corollary 3.6. SCAC 0 SRT2
2; SCAC 0 CADS and so SCAC 0 COH; SCAC 0 ADS.

Proof. Neither SRT2
2 nor CADS have ω-models consisting of low sets by Downey, Hirsch-

feldt, Lempp and Solomon [2001] and Proposition 2.15, respectively. The second pair of
nonimplications then follows by Propositions 2.9 and 2.10.

We now turn to the question of what is needed on the side of the cohesiveness principle
to join SCAC up to CAC. An obvious first choice is the following:

(CCAC) Cohesive CAC: Every partial order has a stable suborder.

This principle, however, is equivalent to ADS.

Proposition 3.7. RCA0 ` CCAC ↔ ADS.

Proof. If L is a linear order and we view it as a partial order then by definition any
stable suborder is of type ω or ω∗ (depending on whether it satisfies (1) or (2) in the
definition of stability). For the other direction assume ADS and consider a partial order
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P . Let L be a linearization of P (as mentioned in the proof of Proposition 2.15, L can
be obtained computably, and it is easy to see that the proof of its existence works in
RCA0). Now apply ADS to get an ascending or descending sequence S = 〈si〉 in L.
Assume that S is ascending in L. Thus (∀i)(∀j > i)(si <P sj ∨ si |P sj). Now apply
COH (which follows from ADS by Proposition 2.10) to S and the sequence 〈Ri〉 where

Ri = {sj | si <P sj}. Any ~R-cohesive subset of S with the order of P is a suborder
satisfying (1) in the definition of stability. If S is a descending sequence in L then a
similar argument provides a suborder satisfying (2) in the definition of stability.

Thus we drop the notation CCAC. We can now use our previous results to split CAC
into SCAC and various other principles. The strongest version is the splitting into SCAC
and CADS, but COH itself works as well.

Proposition 3.8. RCA0 ` CAC↔ SCAC + ADS↔ SCAC + COH↔ SCAC + CADS.

Proof. CAC trivially implies SCAC. It implies ADS by Proposition 3.1. ADS implies
COH by Proposition 2.10 and COH implies CADS by Proposition 2.9. SCAC implies
SADS by Proposition 3.3 and this plus CADS implies ADS by Propositions 2.7. Finally,
SCAC plus ADS implies CAC by Proposition 3.7.

Our final result of this section is the analog of Proposition 2.26 and its corollaries
leading up to the result that even CAC does not imply DNR and so, by the results of
Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [ta], it implies neither SRT2

2

nor RT2
2.

Proposition 3.9. Let P be a stable partial order computable in a set X such that there
is no diagonally noncomputable function computable in X. There is then a chain or
antichain G in P such that no diagonally noncomputable function is computable in G⊕X.

Proof. As usual we assume X is computable. If there is a computable antichain in P we
are done, so assume not. Let F be the forcing relation defined in the proof of Theorem
3.4 from P (again assuming P satisfies (1) in the definition of stability). Let G be any
2-generic for F . Then G is obviously an ascending chain in P so suppose for the sake
of a contradiction that some ΦG

e is a diagonally noncomputable function. Now argue
as in Proposition 2.26 that we can computably produce infinitely many elements 〈bi〉 of
U = {i | (∃s)(∀j > s)(i |P j)}. We can now thin out this set as in the proof of Theorem
3.4 to get a computable antichain in P as required.

Corollary 3.10. SCAC 0 DNR and hence SCAC 0 WKL0.

Proof. By the usual iteration and dovetail argument we can use Proposition 3.9 to build
an ω-model of SADS in which there is no diagonally noncomputable function, and which
is therefore not a model of DNR.

Corollary 3.11. CAC 0 DNR and hence CAC 0 WKL0.
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Proof. We can combine the forcing of Proposition 3.9 with those used to prove Corollary
2.28 to get an ω-model in which both SCAC and ADS hold but in which there is no
diagonally noncomputable function, and which is therefore not a model of DNR. By
Proposition 3.8 this model is also a model of CAC.

Corollary 3.12. CAC 0 SRT2
2 and so CAC 0 RT2

2.

Proof. Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [ta] show that SRT2
2 `

DNR and so neither SRT2
2 nor RT2

2 can be a consequence of CAC.

This result answers Question 3.18 of CJS.

We can now add to Diagram 2 as follows:
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Diagram 3

The references for these results are as follows: (1) Hirschfeldt, Jockusch, Kjos-Hanssen,
Lempp, and Slaman [ta]; (2) Corollary 3.11; (3) Proposition 3.3 and Corollary 3.6; (4)
Proposition 3.8 and Corollary 3.6; (5) Proposition 3.1; (6) Corollary 3.6; (7) Proposition
3.3; (8) Proposition 2.7 and Corollary 2.16; (9) Proposition 2.10 and Corollary 2.22; (10)
Corollary 2.25; (11) Proposition 2.9; (12) Corollary 2.16; (13) Corollary 2.6.
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4 BΣ2

As we mentioned in §1, CJS show that SRT2
2 ` BΣ2 and so SRT2

2 is not conservative over
RCA0 (even for Σ0

3 sentences). This shows that COH does not imply SRT2
2 as COH is

conservative over RCA0 for even more than Π1
1 sentences (CJS and Corollary 2.21). In

this section we show that both SCAC and ADS imply BΣ2 and that there are alternate
versions StCOH and StCADS of COH and CADS, respectively, which imply BΣ2 and are
equivalent to each other. Each is also equivalent to the original version plus BΣ2. We
also show that SADS is not Π1

1-conservative over RCA0. It is convenient to work with
the following Ramsey type principle, which by Hirst [1987, Theorem 6.4] (or see CJS
Theorem 2.10) is equivalent to BΣ2 over RCA0.

(RT1
<∞) For every n ∈ N and every map f : N→n there is an infinite set H such

that |f“H| = 1.

Proposition 4.1. RCA0 ` SCAC → BΣ2.

Proof. We prove RT1
<∞ using SCAC. Suppose f : N → n. Define a partial order P by

x <P y if and only if x < y and f(x) = f(y). If there is an i such that f−1“{i} is infinite,
we are done. If each such set is finite, then for every x almost every y is P-incomparable
with x, as for any x, y ∈ N, if f(x) 6= f(y) then x |P y. Thus P is stable. A chain
in P would be a subset of a single f−1“{i} and so homogeneous for f . An antichain A
would be an infinite set every element of which has a different color, and so restricting
f to A would yield a one-to-one map from an infinite set into n, which is not possible in
RCA0.

We now introduce alternative versions of COH and CADS that might have been
equally plausible principles to consider instead of the original versions.

Definition 4.2. If ~R = 〈Ri | i ∈ N〉 is a sequence of sets, an infinite set S is strongly
~R-cohesive if (∀n)(∃s)(∀i 6 n)[(∀j > s)(j ∈ S → j ∈ Ri) ∨ (∀j > s)(j ∈ S → j /∈ Ri)].

(StCOH) For every sequence ~R of sets there is a strongly ~R-cohesive set.

Definition 4.3. An infinite linear order L with first and last elements (0 and 1, respec-
tively) in which all nonfirst elements have immediate predecessors and all nonlast ones
have immediate successors is strongly of type ω+ω∗ if, for every finite ascending sequence
0 = x0 <L x1 <L · · · <L xn = 1, there is exactly one infinite subinterval [xi, xi+1), and
both [x0, xi] and [xi, xn] are finite.

(StCADS) Every infinite linear order has a suborder that is either of type ω or ω∗,
or strongly of type ω + ω∗.

Each of these strong principles clearly implies the usual version. In the presence of
BΣ2 the notions of strongly cohesive and strongly of type ω + ω∗ coincide with those
of cohesive and of type ω + ω∗, respectively, so the converses also hold in this context.
Furthermore, using the strong versions of our principles makes them actually imply BΣ2.
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Proposition 4.4. RCA0 ` COH + BΣ2 ↔ CADS + BΣ2 ↔ StCADS ↔ StCOH.

Proof. COH + BΣ2 implies CADS + BΣ2 by Proposition 2.9.

To see that CADS + BΣ2 implies StCADS we just have to show that the two notions
of being of type ω + ω∗ are equivalent given BΣ2. Let L be of type ω + ω∗, with first
element 0 and last element 1. If 0 = x0 <L x1 <L · · · <L xn = 1 is a finite sequence then
define f : N→n by f(x) = i where i is least such that x 6L xi. (Such an i exists for
every x by IΣ1 and f then exists by ∆0

1-CA.) By BΣ2 in the form of RT1
<∞, there is an i

such that f(x) = i for infinitely many x. Thus [xi−1, xi) is infinite. Now xi has infinitely
many predecessors and so only finitely many successors, while xi−1 has infinitely many
successors and so only finitely many predecessors. Thus L is strongly of type ω + ω∗.

Next we assume StCADS and prove StCOH. Consider the proof in Proposition 2.10
that ADS → COH. Given a sequence ~R of sets, it defines a linear order L and actually
shows that any ascending or descending sequence in L is a strongly ~R-cohesive set. All
that remains is to show that we can also get such a set from a suborder S of L that is
strongly of order type ω + ω∗. Given n ∈ N, we define an ascending sequence in S with
at most 2n+1 + 1 many elements. We first get the set F of σ ∈ 2n+1 such that there is an
x ∈ S with σ = 〈Ri(x) | i 6 n〉. For each σ ∈ F we let xσ be the N-least x ∈ S witnessing
that σ ∈ F . Our ascending sequence in S is given by listing {xσ | σ ∈ F} in increasing
L-order (i.e. increasing lexicographic order on the σ ∈ F ) adding on if necessary the last
element of S. Thus, by the assumption that S is strongly of type ω+ω∗, there is a unique
infinite interval [xσ, xτ ) and there are only finitely many elements of S that are L-below
xσ or L-above xτ . Thus 〈Ri(x) | i 6 n〉 = σ for all but finitely many x ∈ S, and so S is

strongly ~R-cohesive.

Finally, we assume StCOH and prove RT1
<∞. (StCOH obviously implies COH.) Let

f : N→n and define a sequence of sets Ri for i < n by Ri = {x | f(x) = i}. Let S be
strongly cohesive for this sequence. Thus there is an s such that (∀i < n)[(∀j > s)(j ∈
S → j ∈ Ri) ∨ (∀j > s)(j ∈ S → j /∈ Ri)]. As f is total, there is no j for which the
second disjunct can hold for every i < n. Thus there must be an i < n for which the first
disjunct holds. This Ri is cofinite in S and so infinite as required.

Proposition 4.5. RCA0 ` ADS → StCOH and so RCA0 ` ADS → BΣ2.

Proof. The proof of Proposition 2.10 that (in RCA0) ADS → COH actually shows that
ADS → StCOH.

Finally, although we do not know whether SADS implies BΣ2, we do know that it
is not Π1

1-conservative over RCA0. To prove this, we introduce the following principle,
which follows from BΣ2 by the proof of Proposition 4.4.

(PART) Every linear order of type ω + ω∗ is strongly of type ω + ω∗.

Proposition 4.6. RCA0 ` SADS → PART.
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Proof. Let L be a linear order of type ω + ω∗ with first element 0 and last element 1.
Let 0 = x0 <L x1 <L · · · <L xn = 1 for some n ∈ N be a finite sequence. By SADS there
is an ascending or descending sequence S in L. Suppose it is ascending. By IΠ1 (which
is equivalent to IΣ1) there is a least i 6 n such that all elements of S are below xi. The
interval [xi−1, xi) then contains infinitely many elements (a final segment, actually) of
S. As in the proof of Proposition 4.4, we see that there are only finitely many elements
below xi−1 or above xi as required in the definition of L being strongly of type ω + ω∗.
The argument for a descending sequence S is symmetric.

Corollary 4.7. RCA0 0 PART and so SADS is not Π1
1-conservative over RCA0.

Proof. PART is a Π1
1 consequence of SADS by Proposition 4.6. If it were a theorem of

RCA0 then in RCA0 we would have that CADS implies StCADS, which implies BΣ2 by
Proposition 4.4. This would contradict the fact that, as it is a consequence of COH,
CADS is Π1

1-conservative over RCA0.

We conclude this section by considering the principle CRT2
2, introduced in §1, which

states that every 2-coloring of pairs has a set on which it is stable, and the following
stronger version analogous to those considered above.

(StCRT2
2) Strongly Cohesive Ramsey’s Theorem for pairs: For every coloring f of

[N]2 there is an infinite set S on which f is strongly stable, i.e. such that (∀n)(∃y)(∀x ∈
S)(x < n→ (∀z ∈ S)[z > y → f(x, y) = f(x, z)]).

Proposition 4.8. RCA0 ` StCRT2
2 ↔ CRT2

2 + BΣ2 ↔ StCOH.

Proof. To see that StCRT2
2 → BΣ2 first note that StCRT2

2 clearly implies StCRT2
3 (the

same principle for 3-colorings) by the usual argument considering first the 2-coloring
gotten by taking as the first color the union of the first two of the given three colors
and then if necessary applying StCRT2

2 again to a set homogeneous to this union. Next,
consider any counterexample f : N→ n to RT1

<∞. As usual, define a coloring by letting
C(x, y) be 0 if f(x) = f(y), letting it be 1 if f(x) < f(y), and letting it be 2 if f(x) > f(y).
Let S be a set on which C is strongly stable. No x can be stable within S to 0 as each
f−1[i] is finite. Let F = {i < n | (∃s ∈ S)(f(s) = i)}. This set is finite by IΣ1. Let
A = {ai | i ∈ F and ai is the least a ∈ S such that f(a) = i}. Again A is finite and so
by assumption there is a y ∈ S such that (∀z ∈ S)[z > y → C(ai, y) = C(ai, z)] for every
i ∈ F . If C(ai, y) = 1 or 2 then f(y) = j 6= i for some j ∈ F and so C(aj, y) = 0 for the
desired contradiction.

Next we assume CRT2
2 + BΣ2 and consider any sequence of sets R0, R1, . . . (with

the aim of constructing a cohesive set for the sequence). We appeal to the proof that
RCA0 ` RT2

2 → COH in Mileti [2004]. Let d(a, b) be the least i such that Ri(a) 6= Ri(b).
Since we can always add more sets to the Ri, without loss of generality the function d
is total, and we define a coloring C by C(a, b) = Rd(a,b)(a). Mileti [2004] shows in RCA0

that any set homogenous for C is cohesive for the Ri. Let S be such that C is stable
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on S. If S is not cohesive for the Ri then there is a k for which there are infinitely
many s ∈ S such that s ∈ Rk and infinitely many t ∈ S such that t /∈ Rk. By BΣ2

there are finite strings ρ0 and ρ1 of length k + 1 with ρi(k) = i for i = 0, 1 such that
there are infinitely many t ∈ S for which t ∈ Rj ⇔ ρ0(j) = 1 for j 6 k and infinitely
many s ∈ S for which s ∈ Rj ⇔ ρ1(j) = 1 for j 6 k. Let l 6 k be least such that
ρ0(j) 6= ρ1(j). Consider now the sets A = {t ∈ S | (∀j 6 k)(t ∈ Rj ⇔ ρ0(j) = 1)} and
B = {s ∈ S | (∀j 6 k)(s ∈ Rj ⇔ ρ1(j) = 1)}. Both sets are infinite and if a ∈ A and
b ∈ B with a < b then C(a, b) = Rl(a) = ρ0(l). Thus every a ∈ A is stable within S to
ρ0(l). The usual construction of a homogeneous set H for C from a set whose elements
are all stable to the same color can now be carried out using BΣ2. (Define a sequence ai
by recursion where ai+1 is the least element a of A such that C(aj, a) = ρ0(l) for j < i.
There is such an a by BΣ2 and the recursion is then ∆0

1.) As mentioned above, H is
cohesive for the Ri.

Finally, note that StCOH → CRT2
2 + BΣ2 by Propositions 1.4 and 4.4, while these

two together clearly imply StCRT2
2.

We summarize our results in the following diagram. We list here only those references
not given after Diagram 3: (1) Proposition 4.1; (2) Proposition 4.5; (3) proof of Proposi-
tion 4.4; (4) Proposition 4.6; (5) Proposition 4.4; (6) Corollary 4.7; (7) Proposition 4.4;
(8) Proposition 4.4 and Corollary 2.21; (9) Corollary 2.21; (10) Corollary 2.6 (since the
proof of that corollary shows that COMP is not a model of CADS); (11) Proposition 4.8;
(12) Proposition 1.4; (13) Proposition 2.9.
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5 Transitive and Semitransitive Colorings

In this section we will try to isolate the properties of colorings that allow us to prove that
ADS or CAC is weak in some way that RT2

2 is not or is not known to be. In particular,
each of ADS and CAC can be split into a stable version that has low solutions and
the cohesive principle COH that does not, but is conservative over RCA0. Moreover,
neither implies WKL0 nor even DNR. If we examine the proofs of these results the
primary issue is seen to be one of some transitivity of the coloring. We isolate the
required properties in the definitions of transitive and semitransitive colorings below.
The existence of homogeneous sets for such colorings clearly implies ADS and CAC,
respectively. We will prove that the implications can be reversed and so provide classes
of colorings corresponding to ADS and CAC. We also examine the relation between the
stable versions of the coloring principles and SCAC and SADS.
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Definition 5.1. An n-coloring of [N]2 (as in Definition 1.1) is transitive if each f−1[i]
(i.e. the set Ci of pairs in the natural ordering of N with color i) is a transitive relation,
i.e. Ci(x, y) ∧ Ci(y, z) → Ci(x, z). (With this view we identify the coloring with the

sequence ~C.) An n-coloring is semitransitive if each Ci is a transitive relation, except
possibly for one i. Homogeneity and stability for such colorings is as usual.

Thus, for example, if L is a linear order (on N) then C0(x, y) ↔ x <N y ∧ x <L y
and C1(x, y) ↔ x <N y ∧ x >L y define a transitive 2-coloring. Moreover, any H
homogeneous for this coloring is an ascending or descending sequence in L (depending
on whether H is homogeneous to C0 or C1, respectively). Similarly, if P is a partial
order (on N), let C0(x, y) ↔ x <N y ∧ x |P y, let C1(x, y) ↔ x <N y ∧ x <P y,
and let C2(x, y) ↔ x <N y ∧ x >P y; this defines a semitransitive 3-coloring. If H is
homogeneous, then H is an antichain in P (if homogeneous to C0), an ascending sequence
(if homogeneous to C1), or a descending sequence (if homogeneous to C2). Thus the
assumptions that there are always homogeneous sets for transitive 2-colorings and for
semitransitive 3-colorings imply ADS and CAC, respectively.

Now for semitransitive n-colorings an inductive argument shows that the principle of
existence of homogeneous sets for n-colorings is equivalent to that for 2-colorings: Given
an n-coloring ~C with n > 2 and C0 not transitive define a semitransitive 2-coloring ~D
by setting D0 = C0 ∪ · · · ∪ Cn−2 and D1 = Cn−1. A homogeneous set for ~D is either
homogeneous to D1 = Cn−1, and so is a homogeneous set for ~C, or to D0. In the latter
case we define a new 2-coloring ~E with E0 = C0∪· · ·∪Cn−3 and E1 = Cn−2 and consider
a homogeneous set for ~E. Iterating at most n− 1 times we arrive at a set homogeneous
for the original n-coloring ~C. The same argument works for the principles limited to
stable colorings, as the union operation preserves stability. Such considerations lead to
the usual situation that, in a context with limited induction, we have a difference between
the assertions of the instances of some principle for each standard n and the assertion
that the principle holds for every n. We leave these issues aside and turn to the proofs
that CAC and ADS imply the existence of homogeneous sets for the appropriate types
of colorings.

Theorem 5.2. For each n ∈ ω, we can prove in RCA0 that CAC implies the principle
that every semitransitive n-coloring has a homogeneous set, and so for n > 2, each such
principle is equivalent to CAC.

Proof. Consider first the case that n = 2 and assume that C0 is not necessarily transitive,
but C1 is transitive. Define a relation P on N by x <P y ↔ x < y ∧ C1(x, y). As C1

is transitive, P is a partial order. A chain in P is homogeneous to C1. An antichain
is homogeneous to C0. We now proceed by induction (on ω) as above to deduce the
principle for n > 2.

Theorem 5.3. In RCA0, we can prove that ADS implies that every transitive 2-coloring
has a homogeneous set, and so this principle is equivalent to ADS.
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Proof. Suppose that C0, C1 define a transitive 2-coloring of N. We define a linear order L
on N by recursion. Begin by putting 0 into the domain of L. Suppose at stage n we have
ordered the numbers less than n in L. Find the L-largest k <N n such that C0(k, n). If
there is no such k, declare n to be L-below every number less than n. Otherwise, insert
n into the L order L-above k and L-below the L-immediate successor of k among the
numbers less than n. This defines the linear order L on N. Let H be an ascending or
descending sequence in L.

If H is a descending sequence in L, we may take it to also be ascending in natural
order as it is infinite. We then claim that H is homogeneous to C1. If not then there are
s <N t in H such that C0(s, t). By the definition of L, when t is put into the order, it is
put in L-above s, which contradicts the fact that H is a descending sequence.

If H is ascending, we may again take it to be ascending in natural order. We claim
H is then homogeneous to C0. In fact, we claim that if s <N t and s <L t then C0(s, t).
If not, let s be N-least such that there is a t greater than s in both natural and L order
such that C1(s, t) and then let t be the N-least such number for this s. (This pair exists
by Σ1 induction.) Consider the situation when t is added to L. As s <L t, there must
be some t0 <N t that is greater than or equal to s in the L order such that C0(t0, t). We
cannot have s = t0 by our assumption that C1(s, t). If t0 <N s then, by the definition
of the order construction at s, we have C1(t0, s), as otherwise we would have put s in
L-above t0. As we also have by assumption that C1(s, t), transitivity of C1 gives C1(t0, t)
for a contradiction. Finally we cannot have s <N t0 by our leastness assumption on t.

We next consider the stable versions of these principles. Our first result provides
the final evidence that SCAC is the correct stable version of CAC. The others deal with
SADS and stable transitive partitions.

Proposition 5.4. RCA0 ` SCAC ↔ every stable semitransitive 2-coloring has a homo-
geneous set.

Proof. Suppose C is a stable semitransitive 2-coloring. Let P be as defined in the proof
of Theorem 5.2. If x is stable to C1 then for almost every y, we have C1(x, y) and so
x <P y. On the other hand, if x is stable to C0 then for almost every y, we have x |P y.
So P is stable. Thus the proof of Theorem 5.2 provides our desired homogeneous set.
For the other direction, suppose that P is stable. The standard 3-coloring as defined
above to show that this implication works for arbitrary partial orders and colorings is
stable and the same proof as in the general case shows that a homogeneous set gives the
desired chain or antichain.

Proposition 5.5. RCA0 ` every stable transitive 2-coloring has a homogeneous set →
SADS.

Proof. The proof of Proposition 2.8 works here as well, as the coloring used there is
transitive.

35



Proposition 5.6. RCA0 + BΣ2 ` SADS → every stable transitive 2-coloring has a
homogeneous set.

Proof. Consider the proof of Theorem 5.3. We only have to show that the linear order
L defined there is of type ω + ω∗ if the coloring is stable. Consider any n. If there is an
m >L n that is stable to C0 then by definition x >L n for almost every x. Otherwise,
consider the construction of L at stage n. There are some numbers x1, . . . , xk 6N n that
are L-above or equal to n. We claim by Σ1 induction that, for m >N n, we have m >L n if
and only if the following condition holds: there is a finite chain m = y0 >L · · · >L yj = xi
for some i 6 k such that the yl are also descending in natural order, and for each l < j,
we have C0(yl+1, yl). To establish this claim, we argue as follows. When m is put into the
ordering and is placed above n it must be placed above some z >L n with z <N m and
C0(z,m). The claim now follows by the transitivity of the coloring (and Σ1 induction).
Now, by BΣ2 and our case assumption there is an s after which all the xi are stable to
1 and so there are only finitely many m >L n as required.

Note that we can run through the versions of these principles and their connections
with BΣ2 as in §4. As an example, we note that an examination of the preceding two
proofs shows that, in RCA0, SADS for orders strongly of type ω+ω∗ is equivalent to the
principle stating that every strongly stable transitive 2-coloring has a homogeneous set.

6 Questions

From our point of view, the main combinational/reverse mathematics questions left open
in CJS are whether SRT2

2 implies COH and so RT2
2, whether CAC implies RT2

2 and
whether RT2

2 implies WKL0 (all over RCA0). We have answered the analogous questions
for CAC and ADS negatively (and on the positive side have shown that CAC and ADS
do imply COH and BΣ2). In addition, we have shown (in conjunction with Hirschfeldt,
Jockusch, Kjos-Hanssen, Lempp, and Slaman [ta]) that CAC does not imply RT2

2. The
other questions for RT2

2 remain open. To these we add the following:

Question 6.1. Does ADS imply CAC?

Question 6.2. Does SADS imply SCAC?

Of course a positive answer to Question 6.2 would imply a positive one to Question
6.1.

One obvious question is raised by our results on (semi)transitive colorings:

Question 6.3. Are there m > n > 2 such that the existence of homogeneous sets for all
transitive n-colorings implies the same for m-colorings?
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If, for example, there are no such m and n then we would have a whole hierarchy of
Ramsey type principles intermediate between ADS and CAC as, by Theorem 5.2, CAC
implies that every transitive m-coloring has a homogeneous set for every m.

There are also two obvious combinatorial/reverse mathematics questions raised by
our analysis of the relationships between BΣ2, StCADS, and StCOH.

Question 6.4. Does CRT2
2 or even CADS imply COH?

Question 6.5. Does SADS or even PART imply BΣ2?

Next, we see the primary proof theoretic question left open in CJS as whether SRT2
2

or even RT2
2 is conservative over BΣ2. The problem of proving conservativity over BΣ2

seems difficult. External forcing arguments of the sort used in CJS and in our proof of
Theorem 2.20 and Corollary 2.21 can at times be used to get conservation results over
IΣ2 (or more) when the forcing relation for Σ2 (or Π2) sentences is Σ0

2 (Π0
2, respectively).

This is done in CJS to prove that even RT2
2 is Π1

1-conservative over RCA0 + IΣ2. The
problem at the level of BΣ2 is that what one would want to do is consider each sentence
of the form (∀i < n)(∃s)(∀t)ϕ(i, s, t) that is true in the forcing extension and so forced
by a condition p. Of course, for each i < n there is an s and a condition q 
 ∀t ϕ(i, s, t)
with q 6 p. As long as this assertion about i is Σ0

2 in the ground model one might hope
to apply BΣ2 in the ground model to get a single condition forcing everything and so
the desired bound in the extension. The problem is that producing such a condition
seems to require a recursive construction of n many successive conditions rather than
a bounding argument. Unfortunately, the existence of n many recursive iterations of
even Π0

1 functions for each n ∈ N implies IΣ2 over RCA0 (indeed, over just I∆0
1, which

follows from P0 + ∆0
1-CA) and so cannot be applied in arbitrary models of BΣ2 to get

such a conservation result. We can make this statement more precise by considering the
following family of principles:

(PRECn) If ϕ(x, y) ∈ Πn−1 defines a total function then (∀z)(∀m)(∃σ)[|σ| = m ∧
σ(0) = z ∧ (∀i < m)ϕ(σ(i), σ(i+ 1))].

In the presence of ∆0
1-CA (even without IΣ1), this principle for n = 1 is easily seen

to be equivalent to the following:

(PREC) ∀z ∀f ∃g [g(0) = z ∧ ∀n (g(n+1) = f(g(n))] where we use f and g to range
over functions (with the understanding that this is an abbreviation for the translation
into formulas with variables over sets).

Proposition 6.6. For each n > 1, we have P0 + I∆0
1 ` PRECn ↔ IΣn.

Proof. To see that IΣn implies PRECn, fix z and prove the assertion of PRECn by Σn-
induction on m.

For the other direction, we proceed by induction on n. We begin with PREC1.
Consider a Σ0

1 formula ∃xψ(i, x) such that ∃xψ(0, x) ∧ ∀k (∃xψ(k, x)→ ∃xψ(k+1, x)).
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We must show that ∀k ∃xψ(k, x). Define the formula ϕ(〈i, x〉, 〈n, z〉) by

[¬ψ(i, x) ∧ n = z = 0] ∨ [ψ(i, x) ∧ n = i+ 1 ∧ ψ(i+ 1, z) ∧ (∀z′ < z)¬ψ(i+ 1, z′)].

This formula is Π0
0 and defines a total function by I∆0

1 and our assumptions on ψ. To
prove ∀k ∃xψ(k, x), consider any k. By PREC1 there is a σ of length k + 2 such that
σ(0) is a witness that ∃xψ(0, x) and ϕ(σ(i), σ(i+ 1)) holds for i < k. Using I∆0

1, we can
now prove that ψ(i, σ(i)) holds for every i 6 k and so ∃xψ(k, x) as required.

Next, assume PRECn−1 for n > 1, which by induction implies IΣn−1. Consider any
Σ0
n formula ρ = ∃x ∀y θ(k, x, y) and assume that ρ(0) ∧ ∀k (ρ(k) → ρ(k + 1)). We wish

to prove ∀k ρ(k). The proof is like that in the n = 1 case with one added layer of
uniformization. Let ϕ(〈i, x0, x1〉, 〈m, z0, z1〉) be

[¬θ(i, x0, z0) ∧ (∀w < z0)θ(i, x0, w) ∧ m = z1 = 0] ∨
[∀y θ(i, x0, y) ∧ m = i+ 1 ∧ ∀y θ(i+ 1, z0, y) ∧ z1 is a sequence of length z0 ∧
(∀w < z0)¬θ(i+ 1, w, z1(w)) ∧ (∀z′ < z1)(if z

′ is a sequence of length z0 then

¬(∀w < z0)¬θ(i+ 1, w, z′(w)) ].

This formula is Πn−1 and, by our assumptions (including IΠn−1, which is equivalent
to IΣn−1), defines a total function. Iterating it for n many steps starting at 〈0, x0, 0〉
for an x0 such that ∀y θ(0, x0, y) produces the sequence of witnesses needed to show
that (∀i 6 n)ρ(i). Thus PRECn proves ∀n ρ(n) by reducing the induction needed one
quantifier level as in the n = 1 case.

We note that PREC or PREC1 give a comprehension axiom that could be adopted
in place of IΣ1 in the definition of RCA0 (given by Simpson [1999]). These axioms assert
only the existence of (even just finite) iterations of given functions and make no additional
induction assumptions. This is the route followed by Friedman [1976] to define his EFT
(elementary theory of functions) as the base theory to which ∆0

1-CA is added to get
RCA0.

Returning now to BΣ2, we note that the only conservation results at this level of which
we are aware are by Hájek [1993] and Avigad [2002] for WKL0.

2 Hájek uses a priority
argument in RCA0 (and so one that is carried out internally in each model of BΣ2) to
produce a definable universal solution G to all instances of WKL0 computable in a fixed
set X such that the verification of BΣ2 for sentences involving G can be reduced to ones
for sentences with X but without G. (Computability theoretically, what he proves is that
the construction of the Jockusch-Soare Low Basis Theorem can be used to produce a
path P such that P ′ 6tt 0′ and that this suffices.) Following this outline one might hope
to prove that SADS, for example, is conservative over BΣ2. The idea would be to use
the priority argument in the proof of Theorem 2.11 to produce low solutions for SADS
in an arbitrary models of BΣ2. As G is low, Σ0

2(G) ∈ Σ0
2 and so BΣ2 would hold in the

2Chong, Slaman, and Yang have recently announced a proof that COH is Π1
1-conservative over BΣ2.
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extension generated by G. One would then iterate as in Hájek [1993] to get a model of
SADS + BΣ2 with the same first order part as the original model. (This could then be
extended to get Π1

1-conservativity by relativizing.)

Unfortunately, it does not seem as if the priority argument of Theorem 2.11 can be
carried out in BΣ2 as it is a Sacks type argument with unbounded injuries rather than a
Friedberg-Muchnik one where the number of injuries is computably bounded. Also, the
iteration used in Hájek [1993] is done through a cut (a (typically) proper initial segment
of the first order part or the given model). Unfortunately, this means that the proof that
all instances of the problem at hand get solutions added on during the iteration relies
on the generic G being a universal solution, i.e. on there being a solution computable in
G for every computable instance of the problem. (In the case of WKL0 an instance of
the problem is an infinite binary tree and the solution an infinite path in the tree. In
the case of SADS an instance of the problem is a linear order of type ω + ω∗ and the
solution a suborder of type ω or ω∗.) Theorem 2.18, however, shows that there is no such
universal instance of SADS. (If there were one then it would have a low solution S by
Theorem 2.11, but by Theorem 2.18 there would be another instance of SADS that has
no solution computable in S.)

On the other path in our diagrams of implications and nonimplications the weakest
principle is CADS, which, in the presence of BΣ2, is equivalent to COH. Here we seem to
have a sufficiently universal instance of the problem given by the sequence of primitive
recursive sets. Our problem for COH is that no internal argument in BΣ2 produces even
a low2 solution. It is true that CJS prove that there always is a low2 solution (and so, in
particular, a low2 p-cohesive set) but the proof does not work in BΣ2. Indeed, it seems
likely that by using and extending the ideas of Mourad [1988, Ch. II] as well as some
further computability theoretic information about solutions to COH one could show that
it is not possible to produce low2 solutions for COH in BΣ2 in the desired way. Indeed,
it seems that if, provably in BΣ2, there is a formula that for every sequence ~R uniformly
defines an ~R-cohesive set S such that the complete Σ0

1 set in S is ∆0
3 in ~R, then IΣ2 holds.3

Nonetheless, as mentioned above Chong, Slaman, and Yang have recently announced a
proof that COH is Π1

1-conservative over BΣ2. Perhaps their methods can be extended to
other principles considered here.

Thus we close with an open-ended question about conservativity over BΣ2.

Question 6.7. Are any of the principles weaker than ACA0 that we have considered
(other than those following from WKL0 or COH) Π1

1- or even just arithmetically conser-
vative over BΣ2?

4

3We thank Carl Jockusch for some useful conversations and Chi Tat Chong for some useful corre-
spondence about this point.

4As mentioned above, Hirschfeldt, Shore, and Slaman have recently studied another principle, AMT.
It asserts that every complete atomic theory has an atomic model. This principle lies strictly between
SADS and RCA0 but is Π1

1-conservative over BΣ2 as well as RCA0.
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