
Combinatorial Proofs of Various q-Pell Identities

via Tilings

Karen S. Briggs

Department of Mathematics

North Georgia College and State University

Dahlonega, GA 30597

Email: kbriggs@ngcsu.edu

David P. Little

Department of Mathematics

Penn State University

University Park, PA 16802

Email: dlittle@math.psu.edu

James A. Sellers

Department of Mathematics

Penn State University

University Park, PA 16802

Email: sellersj@math.psu.edu

February 18, 2008

Abstract

Recently, Benjamin, Plott, and Sellers proved a variety of identities

involving sums of Pell numbers combinatorially by interpreting both sides

of a given identity as enumerators of certain sets of tilings using white

squares, black squares, and gray dominoes. In this article, we state and

prove q–analogues of several Pell identities via weighted tilings.
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1 Introduction

In a recent work by Benjamin, Plott, and Sellers [2], a combinatorial interpreta-
tion of the Pell numbers was introduced. The nth Pell number, denoted by pn,
is defined recursively by p0 = 1, p1 = 2, and pn = 2pn−1 + pn−2 for all n ≥ 2.

As shown in [2], pn can be interpreted as the number of Pell tilings of length n,
that is to say, the number of tilings of a 1× n board using white squares, black
squares, and gray dominoes. So, for example, p2 = 5 since a board of length 2,
or a 2–board, can be covered by two white squares or two black squares or one
white square and one black square (in either order) or one gray domino. Using
this interpretation, Benjamin, Plott and Sellers were able to prove a variety of
identities involving sums of Pell numbers.

For the purposes of this paper, we will focus on the following Pell identities.

Theorem 1 [2, Lemma 5] For all n ≥ 0,

p2n+1 = 2

n∑

k=0

p2k.

Theorem 2 For all n ≥ 0,

p2n = p2
n + p2

n−1.

Theorem 3 For all n ≥ 0,

p2n+1 = 2

(
p2

n + 2
n−1∑

k=0

p2
k

)
.

Theorem 4 [2, Lemma 7] For all n ≥ 0,

pn =

⌊n
2 ⌋∑

k=0

(
n − k

k

)
2n−2k.

Theorem 5 [2, Theorem 8] For all n ≥ 2,

pn−2 + pn =

⌊n
2 ⌋∑

k=0

n

n − k

(
n − k

k

)
2n−2k.

A natural question to ask is whether q–analogues for such identities as those
above exist. We have answered this question in the affirmative for each of these
identities. Our primary goal in this work is to state and prove these q–analogues,
mimicking the combinatorial techniques of Benjamin, Plott, and Sellers as much
as possible by considering weighted Pell tilings.
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2 The q-Pell Numbers

In a recent work by Santos and Sills [3], the q–Pell numbers Pn(q) were defined
by

Pn+1(q) = (1 + qn+1)Pn(q) + qnPn−1(q), P0(q) = 1, P1(q) = 1 + q. (1)

Clearly, these q–Pell numbers specialize to the values pn studied in [2] whenever
q = 1. That is, pn = Pn(1) for each n ≥ 0. Thus, the recursion in (1) suggests
that we can generalize the combinatorial interpretation of the values pn in [2]
by q–counting the white squares, black squares, and gray dominoes. To begin,
we define the weight of tile t as follows:

w(t) =






i t is a gray domino at position (i, i + 1)
i t is a black square at position i

0 t is a white square at position i

Let Tn be the set of all tilings of an n–board with white squares, black squares,
and gray dominoes. Then, for any tiling T ∈ Tn, we define the q-weight of T by

wq(T ) =
∏

t∈T

qw(t),

and define
P̃n(q) =

∑

T∈Tn

wq(T ).

From this definition, it clearly follows that

Pn(q) = P̃n(q).

To see this note that there is only one empty tiling of q–weight 1, so that
P̃0(q) = 1. Likewise, there are clearly two tilings of length one with q–weights

1 (a white square) and q (a black square). As such, P̃1(q) = 1 + q. For n ≥ 1,
we note that each Pell tiling of an (n + 1)–board can be classified by its last

tile. In particular, the contribution to P̃n+1(q) of all tilings whose last tile is a

gray domino is qnP̃n−1(q), the contribution to P̃n+1(q) of all tilings whose last

tile is a black square is qn+1P̃n(q), and the contribution to P̃n+1(q) of all tilings

whose last tile is a white square is P̃n(q). Thus,

P̃n+1(q) = qnP̃n−1(q) + (1 + qn+1)P̃n(q),

and hence the P̃n(q) yields a combinatorial interpretation for Pn(q). For exam-
ple, all possible Pell tilings of a 3–board are illustrated in Figure 1. According
to the q-weight of each such tiling, we find that

P3(q) = 1 + 2q + 2q2 + 3q3 + 2q4 + q5 + q6.
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Figure 1: The q-enumeration of Pell tilings of a 3–board.

3 The q–Pell Identities

Given the definition of the q–Pell numbers Pn(q) above, we now state and prove
q–analogues of Theorems 1 through 5 via these weighted tilings. We begin with
Theorem 1.

3.1 An Analogue of Theorem 1

For our first q-analogue, we focus on Pell tilings of an odd length. Clearly, any
such tiling must contain at least one square. If the right–most square occurs
in position 2i + 1 for 0 ≤ i ≤ n, then the first 2i positions are covered by a
Pell tiling of length 2i and the last 2n − 2i positions are covered by n − i gray
dominoes. Therefore the q–weight of all such Pell tilings is given by

qn(n+1)−i(i+1)(1 + q2i+1)P2i(q)

where the factor of qn(n+1)−i(i+1) accounts for the weight of the n− i dominoes
and the factor of (1 + q2i+1) accounts for the choice of white square or black
square in position 2i + 1. Summing over all values of i produces our first result.

Theorem 6 For all n ≥ 0,

P2n+1(q) =

n∑

i=0

qn(n+1)−i(i+1)(1 + q2i+1)P2i(q). (2)

3.2 Analogues of Theorems 2 and 3

In order to state our q–analogues of Theorems 2 and 3, we must first introduce
the notion of a shifted q–Pell number. If we think of Pn(q) as the generating
function for weighted Pell tilings covering positions 1 through n, then for any

m ≥ 0, let P
(m)
n (q) denote the generating function for weighted Pell tilings

covering only positions m + 1 through m + n. We will refer to P
(m)
n (q) as an
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m–shifted q–Pell number. Using the same reasoning as in Section 2, we see that

P
(m)
n (q) satisfies the recursion

P
(m)
n+1(q) = (1 + qm+n+1)P (m)

n (q) + qm+nP
(m)
n−1(q),

with initial conditions P
(m)
0 (q) = 1 and P

(m)
1 (q) = 1 + qm+1. Furthermore,

notice that P
(0)
n (q) = Pn(q) and P

(m)
n (1) = pn for all m, n ≥ 0.

We are now ready to state our q–analogues. We begin with an analogue of
a generalization of Theorem 2.

Theorem 7 For all n ≥ 2 and 1 ≤ i ≤ n − 1,

Pn(q) = Pi(q)P
(i)
n−i(q) + qiPi−1(q)P

(i+1)
n−i−1(q).

Proof: Clearly we can partition the collection of all Pell tilings of an n-board
based on whether or not a tiling has a gray domino at position (i, i + 1). If
there is a gray domino at this position, then the first i− 1 positions are covered
by a tiling of length i − 1 and the last n − i − 1 positions are covered by an
(i + 1)–shifted tiling of length n − i − 1. All tilings of this form are counted by

qiPi−1(q)P
(i+1)
n−i−1(q)

where the factor of qi accounts for the weight of the domino at position (i, i+1).
On the other hand, if there is no domino at position (i, i + 1), the first i

positions are covered by a tiling of length i and the last n − i positions are
covered by an i–shifted tiling of length n− i. All tilings of this form are counted
by

Pi(q)P
(i)
n−i(q),

as required. �

In particular, applying Theorem 7 to Pell tilings of length 2n with i = n

produces

P2n(q) = Pn(q)P (n)
n (q) + qnPn−1(q)P

(n+1)
n−1 (q)

which is a natural q–analogue of Theorem 2.
We finish this section with another q-analogue for Pell tilings of odd length.

Theorem 8 For all n ≥ 0,

P2n+1(q) = (1 + qn+1)

(
Pn(q)P (n+1)

n (q) +

n∑

i=1

qin(1 + qi)Pn−i(q)P
(n+i+1)
n−i (q)

)
.

Proof: We begin our proof by again pointing out that any Pell tiling of odd
length must contain at least one square. But instead of grouping these tilings
according to the right–most square (as in the proof of Theorem 6), we will now
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group tilings according to the square closest to position n+1. This square must
be unique since there cannot be squares in positions n + 1 − i and n + 1 + i

that are both considered closest to the center. If there were squares in these
two positions, the region of the board from position n + 2 − i to position n + i

is a board of length 2i + 1 and must contain a square that is even closer to the
center.

If a tiling has a square in position n+1, then the first n positions are covered
by a tiling of length n and the last n positions are covered by an (n+1)–shifted
tiling of length n. Thus, all tilings that have a square in position n + 1 are
counted by

(1 + qn+1)Pn(q)P (n+1)
n (q), (3)

where the factor of (1 + qn+1) represents the choice of color for the square in
position n + 1.

Now suppose that the square closest to position n+1 is in position n+1− i

for 1 ≤ i ≤ n. Note that this means positions n + 2 − i through n + 1 + i must
be covered with i gray dominoes. The total weight of these gray dominoes is
given by

(n + 2 − i) + (n + 4 − i) + · · · + (n + 2i − i) = in + i.

Furthermore, all tilings of this form have the first n − i positions covered by a
tiling of length n− i and the last n− i tilings covered by an (n + 1 + i)–shifted
tiling of length n − i. Therefore, all tilings of this form are counted by

qin+i(1 + qn+1−i)Pn−i(q)P
(n+1+i)
n−i (q)

where the factor of (1 + qn+1−i) represents the choice of color for the square in
position n + 1 − i.

The only possibility left is that the square closest to position n + 1 is in
position n + 1 + i for 1 ≤ i ≤ n. This means positions n + 1 − i through n + i

must be covered with i gray dominoes. The total weight of these gray dominoes
is given by

(n + 1 − i) + (n + 3 − i) + · · · + (n + 2i − 1 − i) = in.

Similarly, all tilings of this form are counted by

qin(1 + qn+1+i)Pn−i(q)P
(n+1+i)
n−i (q)

where the factor of (1 + qn+1+i) represents the choice of color for the square in
position n + 1 + i.

Combining the last two cases and summing over all values of i produces

n∑

i=1

qin(1 + qn+1)(1 + qi)Pn−i(q)P
(n+1+i)
n−i (q). (4)

Finally, adding together (3) and (4) completes the proof. �
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3.3 An Analogue of Theorem 4

In preparation for stating and proving our q–analogue of Theorem 4, we provide
an important lemma which involves the q-multinomial coefficients which are
defined by [

n

n1, n2, . . . , nr

]

q

=
[n]q!

[n1]q![n2]q! · · · [nr]q!

where n1 +n2 + · · ·+nr = n. Here [n]q = 1−qn

1−q
and [n]q! =

∏n

i=1[i]q respectively
denote the usual q-analogues of n and n!.

Lemma 9 The generating function for tilings with exactly j black squares, k

gray dominoes and l white squares is given by

qk2+(j+1
2 )+kj

[
j + k + l

j, k, l

]

q

.

Proof: Let Tj,k,l represent the collection of tilings of an n-board using exactly
j black squares, k gray dominoes and l white squares where n = j + 2k + l.
To each tiling T ∈ Tj,k,l, we will associate a sequence, σT , by replacing each
black square with a zero, each gray domino with a one and each white square
with a two. Thus σT is really just an element of R(0j1k2l), the collection of all
rearrangements of j zeros, k ones and l twos. For any σ ∈ R(0j1k2l), let Tσ

represent the corresponding tiling.
For a given σ = (σ1, . . . , σn) ∈ R(0j1k2l), we say that (σi, σj) is an inversion

of σ if i < j and σi > σj . Let inv(σ) represent the total number of inversions
of σ. In other words,

inv(σ) = |{i < j | σi > σj}|.

With these definitions in mind, we begin the process of calculating the weight
of a generic tiling T ∈ Tj,k,l. First, note that the tiling of minimum weight, Tmin,
corresponds to the rearrangement σmin, where

σmin = 000...00︸ ︷︷ ︸
j

111...11︸ ︷︷ ︸
k

222...22︸ ︷︷ ︸
l

.

This is a simple consequence of the following facts:

1. the weight of a black square followed by a gray domino is less than that
of a gray domino followed by a black square,

2. the weight of a black square followed by a white square is less than that
of a white square followed by a black square, and

3. the weight of a gray domino followed by a white square is less than that
of a white square followed by a gray domino.

7



Furthermore, the weight of Tmin is given by

j∑

r=1

r +

k∑

s=1

(j + 2s − 1) =

(
j + 1

2

)
+ kj + k2.

Next, we consider how much the weight of T differs from the weight of Tmin.
First, pick 1 ≤ r ≤ j and consider the change in weight of the rth black square,
from left to right. The weight of this tile in Tmin is r. In T , the weight of
this tile is increased by one for each white square to its left and by two for
each gray domino to its left. In other words, the change in position of this tile
is the number of inversions in σT of the form (2, 0r) plus twice the number of
inversions of the form (1, 0r), where 0r represents the rth zero. Summing over
all r, the total increase in weight of the black squares is

|{i < j | σi = 2, σj = 0}|+ 2|{i < j | σi = 1, σj = 0}|.

Now select 1 ≤ s ≤ k and consider the change in weight of the sth gray
domino, from left to right. The weight of this tile in Tmin is j + 2s − 1. In T ,
the weight of this tile is increased by one for each white square to its left and
decreased by one for each black square to its right. In other words, the change
in position of this tile is the number of inversions in σT of the form (2, 1s) minus
the number of inversions of the form (1s, 0), where 1s represents the sth one.
Summing over all s, the total increase in weight of the gray dominoes is

|{i < j | σi = 2, σj = 1}| − |{i < j | σi = 1, σj = 0}|.

Therefore the net change in weight from Tmin to T , is precisely the number of
inversions in σT . In other words, the q-weight of Tσ is given by

wq(Tσ) = qinv(σ)wq(Tmin)

= qk2+(j+1
2 )+kj+inv(σ)

and therefore
∑

T∈Tj,k,l

wq(T ) =
∑

σ∈R(0j1k2l)

wq(Tσ)

=
∑

σ∈R(0j1k2l)

qk2+(j+1
2 )+kj+inv(σ)

= qk2+(j+1
2 )+kj

∑

σ∈R(0j1k2l)

qinv(σ)

= qk2+(j+1
2 )+kj

[
j + k + l

j, k, l

]

q

The last line follows from the classic result of MacMahon. (See [1, page 41] for
more on this result.) �

We can now prove the following q–analogue of Theorem 4.
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Theorem 10 For all n ≥ 0,

Pn(q) =

⌊n
2 ⌋∑

k=0

qk2

[
n − k

k

]

q

n−2k∏

j=1

(1 + qj+k)

Proof: Clearly, the left–hand side q-counts the set of all Pell tilings of an n–
board. Note that any Pell tiling of length n that has k gray dominoes, for
0 ≤ k ≤ ⌊n

2 ⌋, must have n − 2k squares, for a total of n − k tiles. Applying
Lemma 9, we have that the sum of all q-weighted tilings with k gray dominoes,
j black squares for 0 ≤ j ≤ n − 2k, and n − j − 2k white squares is given by

qk2+(j+1
2 )+kj

[
n − k

j, k, n − j − 2k

]

q

.

Summing over all possible j and k yields

Pn(q) =

⌊n
2 ⌋∑

k=0

n−2k∑

j=0

qk2+(j+1
2 )+kj

[
n − k

j, k, n − j − 2k

]

q

=

⌊n
2 ⌋∑

k=0

qk2

[
n − k

k

]

q

n−2k∑

j=0

q(
j+1
2 )+kj

[
n − 2k

j

]

q

=

⌊n
2 ⌋∑

k=0

qk2

[
n − k

k

]

q

n−2k∏

j=1

(1 + qj+k)

where the last step follows from the q–analogue of the binomial theorem (see
[1]). �

3.4 An Analogue of Theorem 5

In order to present an analogue of Theorem 5, it will be necessary to first
consider the following m–shifted version of Lemma 9.

Lemma 11 The generating function for m–shifted tilings with exactly j black
squares, k gray dominoes and l white squares is given by

qm(k+j)+k2+(j+1
2 )+kj

[
j + k + l

j, k, l

]

q

.

Proof: To construct any m–shifted tiling of length n, simply take a tiling of
length n and move each tile m positions to the right. Thus, the weight of each
black square and gray domino increases by m. In our case, there are a total
of j + k black squares and gray dominoes, so this process of constructing an
m–shifted Pell tiling increases the q–weight by a factor of qm(k+j). Applying
Lemma 9 completes the proof. �

We are now in position to prove the following q–analogue of Theorem 5.
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Domino at position (n, 1)
1

2

3

n − 1
n

2 3 4 · · · n − 1

No domino at position (n, 1)
1

2

3

n − 1
n

1 2 3 · · · n

Figure 2: Two types of bracelets.

Theorem 12 For all n ≥ 2,

Pn(q) + qnP
(1)
n−2(q) =

⌊n
2 ⌋∑

k=0

qk2 [n]q
[n − k]q

[
n − k

k

]

q

n−2k∏

j=1

(1 + qj+k) (5)

Proof: As in the proof of Theorem 8 in [2], we will consider the sum of weighted
Pell tilings of a bracelet of length n. In other words, we introduce a gray
domino that simultaneously covers positions n and 1. Such a domino will have
a q–weight of qn.

We will now show that both sides of (5) q–count Pell tilings of a bracelet of
length n. To begin, note that either a bracelet has a gray domino at position
(n, 1) or not, as illustrated in Figure 2. In the first case, the gray domino at
position (n, 1) contributes a factor of qn to the q–weight of the tiling. Removing
this domino leaves us with a 1–shifted Pell tiling of length n− 2 (see Figure 2).
In the second case, note that each tiling can be broken between positions n and
1 to produce a straight Pell tiling of length n with the same q-weight (again,
see Figure 2). As such, we find that the sum of the q-weights of all Pell tilings

of a bracelet of length n is given by Pn(q) + qnP
(1)
n−2(q).

Next, for 0 ≤ k ≤ ⌊n
2 ⌋ and 0 ≤ j ≤ n − 2k, we determine the sum of the

q–weights of the tilings of a bracelet of length n with exactly k gray dominoes
and j black squares. By Lemma 9, it is clear that the sum of the q–weights of
the bracelets that do not have a domino at position (n, 1) is given by

qk2+(j+1
2 )+kj

[
n − k

j, k, n − j − 2k

]

q

.
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Similarly, applying Lemma 11 with m = 1, we find that the sum of the q–weights
of the bracelets with a domino at position (n, 1) is

qn+(k−1+j)+(k−1)2+(j+1
2 )+(k−1)j

[
n − k − 1

j, k − 1, n− j − 2k

]

q

= qk2+(j+1
2 )+kj+(n−k)

[
n − k − 1

j, k − 1, n− j − 2k

]

q

.

Noting that
[

n − k − 1

j, k − 1, n− j − 2k

]

q

=
[k]q

[n − k]q

[
n − k

j, k, n − j − 2k

]

q

,

we find

qk2+(j+1
2 )+kj

[
n − k

j, k, n − j − 2k

]

q

+ qk2+(j+1
2 )+kj+(n−k)

[
n − k − 1

j, k − 1, n− j − 2k

]

q

= qk2+(j+1
2 )+kj

[
n − k

j, k, n−j−2k

]

q

(
1 +

qn−k[k]q
[n − k]q

)

= qk2+(j+1
2 )+kj

[
n − k

j, k, n−j−2k

]

q

(
[n − k]q + qn−k[k]q

[n − k]q

)

= qk2+(j+1
2 )+kj [n]q

[n − k]q

[
n − k

j, k, n−j−2k

]

q

.

Summing over all 0 ≤ k ≤ ⌊n
2 ⌋ and 0 ≤ j ≤ n − 2k yields

Pn(q) + qnP
(1)
n−2(q) =

⌊n
2 ⌋∑

k=0

n−2k∑

j=0

qk2+(j+1
2 )+kj [n]q

[n − k]q

[
n − k

j, k, n − j − 2k

]

q

=

⌊n
2 ⌋∑

k=0

qk2 [n]q
[n − k]q

[
n − k

k

]

q

n−2k∑

j=0

q(
j+1
2 )+kj

[
n − 2k

j

]

q

=

⌊n
2 ⌋∑

k=0

qk2 [n]q
[n − k]q

[
n − k

k

]

q

n−2k∏

j=1

(1 + qj+k)

where again, the last step follows from the q–analogue of the binomial theorem.
�

4 Generalizations

In this final section, we ask a very natural question: Can any of the above q–
analogues be generalized to arbitrary numbers of colors of squares and dominoes
(as in the closing remarks in [2])? It is clear that the answer is yes, and we
provide some of the more “obvious” generalizations below.
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Suppose that there are a ≥ 1 different colors of squares, s1, s2, s3, . . . , sa

and b ≥ 1 different colors of dominoes, d1, d2, . . . , db. We define the q–weight of
these colored tiles as follows:

wq(t) =

{
qij if t is a dj colored domino at position (i, i + 1)

qi(j−1) if t is an sj colored square at position i.

Note that s1 corresponds to a white square, s2 corresponds to a black square,
and d1 corresponds to a gray domino of the previous sections. Letting Pn(a, b; q)
denote the corresponding generating function for Pell tilings of an n–board, we
have

Pn+1(a, b; q) = (1 + qn+1 + · · · + q(a−1)(n+1))Pn(a, b; q)

+ (qn + q2n + · · · + qbn)Pn−1(a, b; q)

=
1 − qa(n+1)

1 − qn+1
Pn(a, b; q) + qn 1 − qbn

1 − qn
Pn−1(a, b; q)

with initial conditions P0(a, b; q) = 1 and P1(a, b; q) = 1−qa

1−q
. Furthermore,

letting P
(m)
n (a, b; q) denote the generating function for m–shifted Pell tilings of

an n–board, we also have

P
(m)
n+1(a, b; q) =

1 − qa(m+n+1)

1 − qn+1
P (m)

n (a, b; q) + qm+n 1 − qbn

1 − qn
P

(m)
n−1(a, b; q)

with initial conditions P
(m)
0 (a, b; q) = 1 and P

(m)
1 (a, b; q) = 1−qa(m+1)

1−qm+1 .
With these definitions in mind, we close with the following theorems, which

can be easily proven using the same techniques described in Sections 3.1 and
3.2.

Theorem 13 Generalization of Theorem 6: For all n ≥ 0,

P2n+1(a, b; q) =

n∑

i=0

qn(n+1)−i(i+1) 1 − qa(2i+1)

1 − q2i+1

n∏

j=i+1

1 − q2bj

1 − q2j
P2i(q).

Theorem 14 Generalization of Theorem 7: For all n ≥ 2 and 1 ≤ i ≤ n − 1,

Pn(a, b; q) = Pi(a, b; q)P
(i)
n−i(a, b, q) + qi 1 − qbi

1 − qi
Pi−1(a, b; q)P

(i+1)
n−i−1(a, b; q).

Theorem 15 Generalization of Theorem 8: For all n ≥ 0,

P2n+1(a, b; q) =
1 − qa(n+1)

1 − qn+1
Pn(a, b; q)P (n+1)

n (a, b, q)

+

n∑

i=1

An,i(q)Pn−i(a, b; q)P
(n+i+1)
n−i (a, b; q)

12



where

An,i(q) = qin+i 1 − qa(n+1−i)

1 − qn+1−i

i∏

j=1

1 − qb(n−i+2j)

1 − qn−i+2j

+ qin 1 − qa(n+1+i)

1 − qn+1+i

i∏

j=1

1 − qb(n−i+2j−1)

1 − qn−i+2j−1
.
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