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A combinatorial quantitative structur@ctivity relationships (Combi-QSAR) approach has been developed
and applied to a data set of 98 ambergris fragrance compounds with complex stereochemistry. The Combi-
QSAR approach explores all possible combinations of different independent descriptor collections and various
individual correlation methods to obtain statistically significant models with high internal (for the training
set) and external (for the test set) accuracy. Seven different descriptor collections were generated with
commercially available MOE, CoMFA, CoMMA, Dragon, VolSurf, and MolconnZ programs; we also
included chirality topological descriptors recently developed in our laboratory (Golbraikh, A.; Bonchev, D.;
Tropsha, AJ. Chem. Inf. Comput. S@001, 41, 147-158). CoOMMA descriptors were used in combination

with MOE descriptors. MolconnZ descriptors were used in combination with chirality descriptors. Each
descriptor collection was combined individually with four correlation methods, includimegrest neighbors

(kNN) classification, Support Vector Machines (SVM), decision trees, and binary QSAR, giving rise to 28
different types of QSAR models. Multiple diverse and representative training and test sets were generated
by the divisions of the original data set in two. Each model with high values of leave-one-out cross-validated
correct classification rate for the training set was subjected to extensive internal and external validation to
avoid overfitting and achieve reliable predictive power. Two validation techniques were employed, i.e., the
randomization of the target property (in this case, odor intensity) also known as the Y-randomization test
and the assessment of external prediction accuracy using test sets. We demonstrate that not every combination
of the data modeling technique and the descriptor collection yields a validated and predictive QSAR model.
kNN classification in combination with CoMFA descriptors was found to be the best QSAR approach overall
since predictive models with correct classification rates for both training and test sets of 0.7 and higher
were obtained for all divisions of the ambergris data set into the training and test sets. Many predictive
QSAR models were also found using a combinatioRNN classification method with other collections of
descriptors. The combinatorial QSAR affords automation, computational efficiency, and higher probability
of identifying significant QSAR models for experimental data sets than the traditional approaches that rely
on a single QSAR method.

INTRODUCTION food. It can be found in fragments of various weights

the surface of the seawater after storms. Assuming that the
real fragrance compounds are products of autooxidation of
the principal ambergris’ ingredient ambrein (Figure 1) which

is odorless, Lederémwas the first to explain observations
that the longer the fragments are floating in the water, the
finer is the ambergris odor.

The commercial importance of the ambergris scent has
timulated the search for synthetic fragrance chemicle
synthesis of new odorants has been supported by several SAR

The ambergris scent has been highly prized in the perfume
industry due to its delicate note and good fixative properties.
Originally, it has been extracted from ambergris, the natural
product, which is released in the intestinal tract of the sperm
whale Physeter macrocephalus)LAccording to the most
popular theory,ambergris is the pathological concretion of
abscesses which arises from injures by incompletely digestedS
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S Tareaca ) vorh Carolina at Chapel il sensatiorf. According to this rule, ambergris fragrance
I'Elj Lilly and Company. compounds should havet@ans-decalin skeleton with axial
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Chapel Hill. should be a functional group with an oxygen atom. However
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ceptor function (HBAY” and four hydrophobic functions. The
hypothesis was able to explain the presence of the ambergris
odor of these compounds very successfully. To improve the
discrimination capacity of the hypothesis an additional search
of excluded volumes was performed.

The olfactory response for different chemical classes was
Ambrein Principal oxidation products found to be sensitive to the compound stereochemistry. The
response can change between stereomers from the presence
to the absence of the ambergris odor, different level of odor
intensity, or quality. Stereochemistry is a crucial factor which
the “triaxial rule” of odor sensation was postulated for the affects not only fragrancé&s!® but also many classes of
group oftrans-decalin derivatives solely and did not explain biologically active compounds such as amino acids, carbo-
the absence of the ambergris scent for other molecules whichhydrates, lipid€°-23 many pharmaceuticat,?® etc. There-
correspond to the structural requirements of the “triaxial rule” fore, there is a challenge in the pharmaceutical, biochemical,
(Table 1, compound80, 60, 67, etc.) or the presence of and theoretical chemistry to develop predictive QSAR models
ambergris odor for molecules with @s-decalin skeleton  for stereoisomer¥—2°

(Table 1, compound$4, 77, 78, etc.) or a skeleton of a Herein, we report on the development of robust QSAR
different structural type (Table 1, compourty$1, etc.)*® models of 98 ambergris-type compounds of different struc-
In the follow-up studies structural requirements were tyral types with known stereochemistry (Table 1). In the
established for several chemical groups of ambergris odor-majority of previously reported studies the QSAR models
ants. Vlad et al.found that in decalin systems the “ambergris are typ|ca||y generated with a Sing|e mode“ng technique,
triangle” formed by an oxygen atom and two hydrogen atoms frequently lacking external validatiol.To achieve QSAR
should contribute to the lowest unoccupied molecular orbitals models of the highest quality, meaning both internal, and
(LUMO) of the ambergris chemicals. They suggested that most importantly, external accuracy, we have developed and
the LUMO takes part in the “orbital controlled electronic applied to the ambergris compounds a combinatorial QSAR
charge transfer” between the active molecules and theapproach, which exp|ores all possib]e combinations of
odorant receptor site. various collections of descriptors and optimization methods
The theory about the presence of certain structural frag- along with external model validation.

ments which are responsible for the odor of ambergris was  pjtferent collections of descriptors were generated using
further advanced by Dimoglband Gorbachov and Rossifer,  \OE 31 CoMFA 32 CoMMA 33 Dragon® MolconnZ35 and
who applied an electronic-topological approdti.Dimoglo Volsurf® programs as well as an in-house program that
defined two characteristic structural fragments. The first -5iculates chirality topological descripté/sCoMMA de-
fragment included certain carbon atoms and an oxygen atomscriptors were used in combination with MOE descriptors.
bound to a secondary or tertiary carbon. The second fragmeniyjo|connz descriptors were used in combination with chiral-
consisted of two methyl groups with the same stereochemicaliyy, gescriptors. Optimization methods includéehearest
orientation which are attached to a quaternary carbon atom-neighbors KNN) classification, decision tred binary clas-
These two fragments could explain the disappearance of thesification?lmand Support Vector Machines (SVNPEvery
ambergris odor when the five-member ring of compoand  gescriptor collection was explored individually in combina-
(Figure 2) is replaced by the six-member ring in compound o with every modeling technique resulting in 28 different
2 (Figure 2). o _ types of QSAR models. Multiple predictive models with a
However, the same rule was insufficient to explain the cqrrect classification rate for both the training set (GGR
presence of odor for compoud(Figure 2). Consequently, — anq the test set (CGR) of at least 0.7 were found using
the already known correlation between the steric accessibility the NN classification method with different collections of
(SA) of the funclt3|ona| group (hydroxyl, ethe.r,' ester) and the descriptors. Several predictive models were found using other
ambergris od6r'®was appended by an additional term, SA  methods as well; however, not every combination of a

of the oxygen atom? This term helped to explain this  gescriptor set and the modeling technique afforded validated
particular case. For compounds with more complex structuresg 4 predictive models.

the SA of the oxygen atom was appended by SA of a certain
methyl group'®
As mentioned above, the presence or absence of the DATA SET
ambergris odor was correlated successfully only to the SA 98 compounds were selected from several publications
of the functional ether group in bicyclic ether derivatives of (Table 1). The data set was compiled according to the
Ambrox®13 Thus, the attempt to find additional structural following criteria: (i) diversity of the chemical structures
fragments in combination with the SA terms was undertaken and (ii) comprehensive data about the stereochemical con-
for compounds of particular structural tyg&$.Due to the figuration of each compound. The compounds were selected
complexity and diversity of the ambergris odorants this with respect to both their structural features and the qualita-
methodology was insufficient to cover all compounds tive description of the ambergris scent. Ambergris odor has
included in the data sets. been described as earthy, woody, camphor, fruity, rosy,
Recently Bajgrowicz et dft synthesized six new camphor- marine, sandalwood, musky, cedarwood, ambergris with
derived stereoisomers which were found with the help of almond top notes, etc. Since the availability of quantitative
the olfactophore hypothe$tgenerated using CATALYST data on the ambergris scent is very poor, only the presence
This hypothesis included one oriented hydrogen bond ac-or absence of the ambergris odor could be used to assign

Figure 1. Ambrein (odorless) and two of its principal oxidation
products with ambergris-like odor.
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Table 1. Data Set of 98 Ambergris Fragrance Compodnds
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1%[14] 2[14] 3*[14] 4[14] 5*[14] 6*[14] 7*[90] 8*[90] 9*[90] 10%[90]

1490]  12%[91] \ 13*[91]\ 14*[91] 15*[91] 16*[91] 17485]  18%[91] 19491]  20[91]

21*[91] 22*[91] 23[91] 24*[92] 25%[92] 26[92] _27%[92] 28[92] 29%[92] 30[92]

31%[92] 32%[92] 33[92] 34[92] 35+[92] 36[92] 37+[92] 38[92] 39%[92]

45[92] 46[92] 47[92]

40[92] 41#[92] 42[92] 43[92]

48[92] 49[92] 50[92] 51[92] 52[92] 53%[92] 54*[92] 55[92]

56%[92] 57+[93] 58%[93] 59[93] 60[93] 61[93] 62%[93] 63*[93] 64*[93] 65[93]

66*[93] 67[93] 68[93] 69[93] 70[93] 71[93] 72[93] 73%[93] 74[93] 75[93]

76[93] %7*[94] 78%[94] 75*[94] 80:“[94]
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Table 1. (Continued)
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81#[8] 82*[8]  83*[8] 84*[8]  85(8]  86[8]  87[8] 88[8]

89’;[95] 50[95] ) o1/6]  92*[6]  93*[6]  94*[6] \95[6] ~96[6] :97[6] :98*[6]

a Compounds marked with an asterisk have ambergris odor. Atoms used for CoMFA alignment are marked by a letter.

region occupied by the molecules in each direction. Steric
and electrostatic fields were calculated at each grid point
using a carbon Spprobe atom with charge-1. The resulting
field values were extracted from Sybyl6.9. Pairwise correla-
tion analysis (see below) was performed on the field values,
and 150 of them with pairwise correlation coefficients below
Figure 2. Structure and odor characteristics of several ambergris o 7 \were selected and used as descriptors in combination
compounds. with each of the modeling techniques.

Chirality Descriptors (CMTD). Chirality molecular
topological descriptors (CMTD) defined in ref 27 included
modified overall Zagreb indic€8;*%4*molecular connectivity

(1) odiferous (2) odorless (3) odiferous

the value of the odor intensity as the dependent variable for
QSAR studies. Furthermore, only the ambergris feature was
take'n' into acc‘?“r?t when assigning the odor intensity. indices? 44 extended connectivity indiceé8,and overall
Additional qualitative descriptions were neglected. All L 4647 g,

. . connectivity indiceg®4” All of the indices make use of the
compounds which had at least some ambergris odor were

so-called chirality correction, which can be a real or
given the value of odor intensity 1. Odorless compounds were;

imaginary number added to or subtracted from vertex degrees
given the value of 0.

Molecular Representation.Three-dimensional (3D) struc- of a hydrogen depleteq mol'ecular graph corresponding to
. . . atoms in R- and S-configurations, respectlvely For example,
tures of molecules were built, and their geometries were

-~ ; . the conventional indexXy is defined asly = 3 ailedgesi
optimized using Sybyl6.% Molecular mechanics calcula- 05 ges
tions were performed using the Tripos force field with the (@)™ wherea anda are the vertex degrees of adjacent

Gasteiger-Huckel atomic charges. The optimized structures atomsi andj. The chirality index’y is defined asty =
g ges. pur > Al edgesij (& £ ) g £ ¢)°5, whereg; is the chirality
were then used for the descriptor generation. . . S . 2
correction for atom. The plus sign is used, if the atom is in

the R-configuration, and the minus sign is used, if the atom
DESCRIPTORS is in the S-configuration. For achiral atoms, the chirality

CoMFA Descriptors. COMFA descriptors were calculated correction is zero. Additional details can be found else-

after all molecules were aligned using carbon atarasdb where?’28

and oxygen atont (Table 1). Since structures and 15 Chirality descriptors were used along with conventional

(Table 1) show the most distinct ambergris odor, they were chirality-insensitive overall Zagreb indicés!*4'molecular

used as templates for the spatial alignment of all other connectivity indiced? ** extended connectivity indicésand

molecules. First, moleculs was superimposed on molecule overall connectivity indice3’4¢ The chirality correctionc

1. For the remaining molecules the distance constraints werewas equal to 2. After applying complete correlation analysis

imposed as follows. In molecul@s-12, 26—32, 81—-88, and (see below), the total number of descriptors was equal to

91-98 optimal distances between atorash, andc were 53. The descriptors were normalized by range-scaling, so

set to be equal to those in molecdleln moleculesl3—25, that they had values within the interval [0,1].

33—54, 55—80, 89, and90 optimal distances between atoms MolconnZ Descriptors. MolconnZ®® descriptors were

a, b, andc were set to be equal to those in molecife The used along with chirality descriptors (MolconnZ/CMTD
force constank was equal to 200. Molecul&s-14 and16— descriptors). Recently this combination of descriptors was

98 were subjected to 10 fs molecular dynamics simulations successfully used in QSAR studies of several data sets
with T = 300 K with subsequent minimization. Then containing chiral compoundd.MolconnZ descriptors in-
molecules2—12, 26—32, 81—88, and 91—-98 were super- cluded valence, path, cluster, path/cluster, and chain molec-
imposed on molecul&, and molecule43—25, 33—54, 55— ular connectivity indice4?-#* kappa molecular shape indi-
80, 89, and90 were superimposed on moleculé. ces®*topologicat® and electrotopologic#>* state indices,

A rectangular grid with st@ 2 A was built around the  differential connectivity indice®>® graph’s radius and
aligned molecules; it was protrudingrfd A outside of the diameter*>¢ WieneP’ and Platt® indices, Shanno?f, and
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Bonchev-Trinajsfit® information indices, counts of different DESCRIPTOR REDUCTION
vertices?® and counts of paths and edges between different
types of verticeg® In this case, after applying complete
correlation analysis (see below), the total number of the
MolconnZ/CMTDdescriptors was equal to 64. Descriptors

were normalized by range-scaling, so that they had valuesthe modulus of the correlation coefficient higher than a

within the mterva_ll [0.1]. ) ) predefined valudRn. The procedure must be carried out
VolSurf Descriptors. VolSurf descriptors are obtained \yith care. Indeed, leR; = R(d,d) be the correlation

from 3D interaction energy grid mags.Calculation of  coefficient between descriptods andd,. Then fromR; >
VolSurf descriptors includes the following steps. (i) Building g ang Ri > Rmax does not follow thaRy > Raax SO in

a grid around a molecule. (ii) Calculation of an interaction pig case, ifd; is eliminated,d, must be retained.

field (with a water probe, or hydrophobic probe, etc.) ineach |, this work, we have used the following algorithm of the

grid point. (iii) Eight or more energy values are assigned, nainyise correlation analysis. (i) Sort descriptors by variance

and for each energy value, the number of grid points inside 5nq exclude all descriptors with the variance lower than the
the surface corresponding to this energy (volume descr'ptors)predefined value. Leb be the descriptor with the highest

or belonging to this surface (surface descriptors) is calculated.,, 5 iance. (i) Calculate correlation coefficients betwezn
The main advantage of VolSurf descriptors is that they and all other descriptors. (iii) Exclude descriptors having the
are alignment-freé VolSurf descriptors include size and modulus of the correlation coefficient with higher than
shape descriptors, hydrophilic and hydrophobic regions R, (iv) Let D be the next descriptor with the highest
descriptors, interaction energy moments, and other descrip-variance. Go to step (ii). If there are no descriptors left, stop.
tors® The total number oWolSurfdescriptors was 96. Complete Correlation Analysis.The complete correlation
MOE Descriptors. MOE descriptord include both 2D analysis is used to select a subset of linearly independent
and 3D molecular descriptors. 2D descriptors include physi- descriptors. Descriptors are considered as vectorsl-in
cal properties, subdivided surface areas, atom counts andlimensional space, whei¢ is the number of compounds.
bond counts, Kier and Hall connectivity* and kappa shape  Here we used the procedure similar to that described in ref
indices®*°adjacency and distance matrix descriptpss* 63 79. (i) Select a pair of descriptors with the lowest absolute
pharmacophore feature descriptors, and partial charge devalue of the correlation coefficient. (i) Select the next
scriptorst64 3D molecular descriptors include potential descriptor which has the lowest maximum correlation coef-
energy descriptors, surface area, volume and shape descripficient with all linear combinations of descriptors selected

The following descriptor exclusion methods were used to
reduce the collinearity and correlation between descriptors.
Pairwise Correlation Analysis. The procedure consists
of elimination of one of the descriptors from each pair with

tors, and conformation-dependent charge descrigtéPén Rumin. It can be done by projecting the next descriptor onto a
total, 191MOE descriptors were calculated. subspace defined by the descriptors seled®g. is equal
Comparative Molecular Moment Analysis (COMMA) to the ratio between the length of this projection and the

Descriptors. Thirteen alignment-independent COMMA de- 1ength of the descriptor vector. (iii) Repeat (i) until the
scriptor€3 were used in this study including three principal Maximum correlation coefficient with all linear combinations

moments of inertialy, Iy, and I, dipole and quadrupole of descriptors selected would reach a predefined vRjug

momentsp andQ, three dipolar componentp,, py, andp;, In this work, Rmax = 0.99.
and three components of displacement between the center
of mass and center of dipol#, d,, andd, as well as two DIVISION OF A DATA SET INTO TRAINING AND

quadrupole momen®,, andQy,. All descriptors, except for TEST SETS

the last two are calculated with respect to the principal axes A set of procedures for the division of a data set into
of inertia. The last two descriptors are calculated with respecttraining and test sets has been developed rec&#fhese

to the frame with the origin in the center of the dipole and procedures are based on sphere-exclusion algorithms (Figure
with the axes having the same directions as the inertia®ixes. 3).

Descriptors were calculated onliffeAll CoOMMA descriptors The procedure implemented in this study starts with the

were used in combination with the 191 MOE descriptors (see calculation of the distance matriX between representative
above). This collection of descriptors will be referred to as points in the descriptor space. LBy, and Dmax be the

CoMMA/MOE descriptors minimum and maximum elements Bf respectivelyN probe
Dragon Descriptors. Dragon descripto?$ include dif- sphere radii are defined by the following formul&,i, =
ferent group$? constitutional descriptors, topological indices, R; = Dmin, Rnax= Ry = Dmaf4, R = Ry + (i—1)*(Rv—Ry)/
molecular walk count$}%® BCUT descriptor$} Galvez (N—1), wherei = 2,...N—1. Each probe sphere radius
topological charge indice$, 2D autocorrelations, charge corresponds to one division into the training and the test set.
indices, aromaticity indice¥, Randic molecular profile&, A sphere-exclusion algorithm used in this study consisted

geometrical descriptors, RDF descript6t$! 3D-MoRSE of the following steps. (i) Select randomly a compound. (ii)
descriptorg® Weighted Holistic Invariant Molecular (WHIM)  Include it in the training set. (iii) Construct a probe sphere
descriptorg®’” empirical descriptors, GETAWAY descrip- around this compound. (iv) Select compounds from this
tors/8 functional groups, atom-centered fragments, empirical sphere and include them alternatively into the test and the
descriptors, and properties. The total number of descriptorstraining sets. (v) Exclude all compounds from within this
was 641. Identical descriptors were discarded. For the sphere from further consideration. (vi) If no more compounds
remaining descriptors pairwise correlation analysis (see are left, stop. Otherwise let be the number of probe spheres
below) was performed. Thus, the number BRAGON constructed and be the number of remaining compounds.
descriptors used in our calculations was reduced to 148. Let d; (i=1,...m; j=1,...n) be the distances between the
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The procedure starts with the calculation of the similarity
between each pair of classes. Ingtandn, be the number
of compounds in classesandb, respectively, andh be the
number of descriptors selected by thiN classification
procedure. The Tanimoto coefficiéhtvas used as a similar-
ity measure between two classes

m

b? B
T = ———— o

;®W+§®W—fﬁw

where D? and D” are average values of descriptorfor
classes andb, respectively

TRAINING SET TEST SET
Figure 3. Sphere-exclusion algorithm. i a > b
o 3o
remaining compounds and the probe sphere centers. Select pa="_ andDP = =
a compound corresponding to the lowdgtalue and go to ' n, ' Ny

step (ii).
For each collection of deSCI’iptOI‘S, the data set was diVidedwhereD? is the descriptor value for Compoum@f classa.
into 50 training and test sets of different relative sizes. Then EvidentIJy, T(a,@ = 1. Then weighted similaritiesSc

three training and test sets were selected randomly for eachyetween each compoumdnd each class (a, orb, orc...)

collection of descriptors (Table 2); the number of compounds are calculated. Let be the number of nearest neighbors of
ranged between 58 and 91 for the training sets and betweenzompound.

40 and 7 for the corresponding test sets. For COMMA/MOE

descriptors, two divisions were selected because of the small k
number of CoOMMA descriptors. ’ exp(-od;/ Z diy)
p=1
METHODS FOR QSAR ANALYSIS Sc= Z ) » T(a,,C) ()
p=
The flowchart of the Combinatorial QSAR is given in Z exp(—adiq/Zdip,)
Figure 4. 0= p=1 |

We describe briefly several data modeling algorithms that . .
were employed in th%s work. 949 Then whereg, in T(a,,C) is the class of compoung ando
kNN-Classification Algorithm. This approach has been Iti a 3§1rtametert,) V‘t’h'Ch in this Stqu W%S .?et tt?] 2, d.gdst
implemented in our laboratory based on our earlier develop- e hlI)S ance between compoundand 1ts pth neares
ments of thekNN QSAR methodology?8 Let N be the neighbor. —
number of compounds in a data set, and each compound In the leave-one-out cross-validation procedure, every
belongs to one of several classes c, Classification compound of the training set is classified according to the
KNN QSAR is a stochastic variable s’eléc.t.ilén procedure basegclasses of its nearest neighbors as follows. First, the similarity
on the simulated annealing approach. The procedure is aimecf,ﬁ between compountand each clase is calculated as
at the development of a model with the highest fitness Oliows.

[correct classification rate (CCR) for the training set]. The

parameters of the procedure are as follows: (1) the number _ X eXp(_dii)

of descriptorsnvar to be selected from the entire set of Sc= 2| « —Sc (3)
descriptors; (2) the maximum numbeof nearest neighbors; a Zl exp(—d..)

(3) the number of descriptodl that are changed at each i= :

step of the stochastic descriptor sampling procedure; (4) the

starting Tmax and endingTmin Values of the simulation  Then compound is assigned the class which corresponds
annealing “temperatureT, and the factod < 1 to decrease  to the highest value 0§ .. The CCR is equal tdN/N,

T (Thex=d* Tprevioud at each step; (5) the number of timis whereN and N, are the total number of compounds and

the calculations must be performed before loweiing the the number of compounds classified correctly, respectively.
CCR is not improved. ClassificationkNN algorithm works as follows.

In all calculations reported in this work, = 5, Thax = 1. SetT = Thax
100, Tmin = 1079, d = 0.95, andM = 3. For all descriptor 2. Select randomly a subset Bf descriptors.

collections,D was varied from 10 to 50 with step 5. For 3. For each compound, predict its activity using expression
eachD, 10 models were built. Thus, the total number of 1.

models built for one division into the training and test set 4. Select the number of nearest neighbors, which gives
was 90. the highest CCR.
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Table 2. Size of the Training and Test Sets Generated with the Sphere Exclusion Algorithm

division 1 division 2 division 3
no. of no. of no. of no. of no. of no. of no. of no. of no. of
compds active/ active/ compds active/ active/ compds active/ active/
inthe inactive inactive in the inactive inactive in the inactive inactive
collection of train./ compds compds train./ compds compds train./ compds compds
descriptors testset  (train.set)  (test set) testset  (train.set) (testset) testset (train. set)  (test set)
Dragon 70/28 36/34 16/12 76/22 40/36 12/10 73/25 39/34 13/12
CMTD 67/31 37/30 15/16 72126 39/33 13/13 58/40 30/28 22/18
MolconnZ/CMTD 73/25 41/32 11/14 68/30 32/36 20/10 78120 41/37 11/9
MOE 61/37 38/23 14/23 91/7 49/42 3/4 70/28 36/34 16/12
CoMFA 82/16 43/39 9/7 77/21 41/36 11/10 71/27 38/33 14/13
VolSurf 80/18 44/36 8/10 73125 40/33 12/13 68/30 37/31 15/15
CoMMA/MOE 66/32 36/30 16/16 73/25 39/34 13/12 - - -

Classification accuracy of the model is estimated usin
Structures DATASET Activities the test set. y 9
1. For each compound of the test dehearest neighbors
—’I Collections of descriptors 1,2...., M | from the tralnmg set are found. X .
2. All compounds of the test set, the distances of which
to their closest nearest neighbor are within the defined

Division into training and test sets (multiple times for each collection of descriptors) |

Z-cutoff, are selected.
1_‘_1 3. Similarity of each compound chosen in step 2 to each
Multiple training sets Multiple test sets | class is calculated using expression (3). The compound is
assigned a class, to which it has higher similarity.
4. Classification accuracy of the model is characterized
OSAR methods 1.2... | OSAR methods 1.2.. by theCCR for the test set (CQR .
In this study,Z was equal to 2 by default. The maximum
il Z-cutoff value, for which a reliable prediction of new
Models Models compounds can be obtained, is a characteristic of the
applicability domaif® of a QSAR model. As we shall see,
Acﬁ'viww usingZ = 2, high CCR.s values have been obtained for
several descriptor collections. We also searched for the lowest
possible Z value by decreasing Z below 2 with step 0.1 until
[ Validated redictive models | at least one test set compound was found outside the
Figure 4. The flowchart of the combinatorial QSAR methodology ~corresponding applicability domain.
including validation. Binary Tree Classification. We have used a binary tree

classification algorithm as implemented in the Molecular
5. Change numbeM < D of descriptors to the same Operating Environment (MOE) packagfe.The method
number of descriptors selected randomly out of all descrip- consists of two parts: tree growing and tree pruning. Tree

tors. growing is carried out by splitting the nodes according to
6. Repeat steps 3 and 4 with the modified descriptor subsetthe rules in the formx < c (if descriptorx is a continuous
obtained in step 5. variable) orx = c (if it is a categorical data), wheeis the

7. If the new CCR (CCRy) is higher than the previous best value for splitting the node. Splitting is based on the
one (CCRyy), accept the new set of descriptors and go to Gini index of diversity®
step 5. Otherwise, accept it with the probability= exp[— )
(CCRyis — CCRiew)/T] and go to step 5, or reject it with the G(t)=1- >Rt (4)
probability (1-p), and go to step 8. =

8. If CCR does not change after step 5 is performé&d  whereP(t) are the fractions of compounds of each class
times for the currenT, and if T > T, decreas@ and go (i=1,...K) in nodet. G(t) is used as the nodeimpurity
to step 5, and il < Tn Stop. If step 5 has been performed measure. The goodness of a split is measured by the change
less thanN times for the current CCR, go to step 5. C of the impurity of the node by splitting it

Thus, the output from the procedure is a QSAR model, _ _ _
which is characterized by the set Bfdescriptors selected, C =G0~ PLGt) ~ PG ®)
the numberk of nearest neighbors, and the value of CCR whereP, andPx are the proportions of cases going to the
for the training set (CCRy). left t. and righttr child nodes In each step of the tree

Z-cutoff value characterizes the maximum distance be- growing, the node is split which gives the greatest decrease
tween a compound for which the prediction is made and its of impurity. A node cannot be split, if all compounds in it
closest nearest neighbor of the training set in the descriptorbelong to the same class or if the number of compounds in
space. The square of this distance can be represented as iais lower than a predefined lim#
sum of the average distance square between nearest neighbors Each leaf in the tree is assigned to a class maximally
within the training set and a number @fof this distance represented in this leaf. The misclassification rate in rnode
variance: D%max = DZrearneight I+ Z*Varearneighb is calculated as(t) = 1 — n/n,, wheren; is the number of

K
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compounds of clasg, and n; is the total number of
compounds in the node. The total misclassification R{ii§
= NmisclaséNiot, WhereNmisciassaNd Nt are the total number

of misclassified compounds and the total number of com-
pounds in the data set, respectively. If classes have differen
sizes, the misclassification rate is multiplied by weights

defined asv; = N/ N;, whereN; is the number of compounds
in classj.3!
An initially grown tree is very large and has a very high

correct classification rate for the training set. However,

usually it performs poorly for the test s&tTree pruning is

J. Chem. Inf. Comput. Sci., Vol. 44, No. 2, 20&B9

B, = ; S 06— x)dx

can be smoothed by approximating eaefunction with a

tGaussian with variance?®3”

1 m bk — X
= o2

o is referred to as the smoothing parameter. Findily)

a procedure used to decrease the size of the tree and increag@n be estimated #s

its classification accuracy for the test set. This procedure
was performed using the test set. By pruning branches of
the tree, the accuracy of classification for the training set
and the size of the tree are decreased. A modified tree

misclassification rat®,(T) = R(T) + aL(T) is defined, where
L(T) is the number of leaves in the tree, aad> 0O is a

parameter. According to this equation, the size of the tree

and the misclassification rate are balanéeBy increasing
a, smaller trees can be found for whid®i(T) = R(T).

Pruning is performed by finding a sequence of successively

smaller treedT;, starting from the initially grown tree. The
smallest tre€ly is just the root node. The misclassification

rate for each; is calculated using this test set. The output

of the procedure is the tree witR(T) within a specified

number of standard errors of the minimum of all subtree

R(T) values. The standard error is defined as =
A/ P(1—p)N,es; Wherep is the proportion of correctly classi-

B B, + 1/c

f() = kZl—C " B/C[Ek ~ Bl ()

where

B
c= Zin
=

In the same way, alff(x;,0) andfi(x;,1) can be estimated
and

my+ 1 n f(x,0)] 2
m, + 1Hfj(><j,l)

p() =1+ (8)

Thus, the whole binary QSAR procedure consists of the
following steps?’ (i) The principal component analysis of

fied cases. This subtree is referred to as the best subtree. {he descriptor matrix to produce a variance-covariance matrix
The class of a new compound is predicted by assigning it of x = Q(d—u) equal to the identity matrix, where are

to the class of a leaf this compound belongs to. Classesprincipa| components and, = (di,..., d,) are descriptor

assigned to compounds of the external test set (obtained with,51es for compound (i) Estimate the binary QSAR model

the sphere-exclusion algorithm) were used for the estimation p(x) parameters. The probability that a compound with

of the model classification accuracy. The following param- descriptord™"is active can be estimated p(d""~u)).

eters have been used: minimum node split size 10, ordered Support Vector Machines (SVM). The SVM method was

threshold 6, and best tree threshold 0.5. , developed by V. Vapnik® The application of SVM to the
Binary QSAR. Binary QSAR is a new technique devel- 51y classification problem was implemented in our group

oped by P. Labuféand implemented in the MOE packaie. 5 follows. Letm be a number of representative points of

This approach can be applied, if the activitigsof com- 5 55unds scattered in ardimensional descriptor space.
pounds take only two values, zero and one, which correspondc,mnaunds can be active (activity is equal to 1) or inactive
to inactive and active compounds, respectively. Binary QSAR u‘a

. S X =Y activity is equal to—1). The problem is to divide active
is baseq on the Bayesian mferenc_e tech_nlqug, which is use nd inactive compounds by a hyperplane in the descriptor
to classify a compound as an active or inactive one.rhet

space. If the solution of this problem is possible, the data
be the total number of compounds, amg and my are the P P P

. . . set is referred to as separable. Otherwise it is nonseparable.
number of inactive and active compounds{mo+my). Then 5 4at4 set is separable, the solution can be found as follows.
if descriptors Xy, X,..., Xo are not correlated, then the

conditional probability that a com_poun_d Wi_th descriptor Irquurggggtgg agsw)y pﬁarglzin%fnvvtrr]leerg\(,avsicsrﬁtgrrms;atcoet(r:gn be
valuesX; = xi, Xz = Xz, ... Xo = X, Is active, i.e.p(x) = hyperplanex is a vector with the beginning in the origin
PrY=1X:=x1,X;=%z... X;=X) can be estimated &s and end on the hyperplane, anx{ is the dot product ofv

and x. Let it be the dividing hyperplane. Without loss of
generality, we can assume that for any poinvith activity

yi =1 (wxj)) + b > +1, and for all pointsg with y; = —1
(wx;) + b < —1. These two inequalities can be combined in
one:

M+ 1 n f(x,0)]
my + 1120 (x, 1)

p(x) =1+ (6)

wheref(x,y) = Pr(Xj=x]|Y=y). Without loss of generality, it
is assumed that descriptofg Xa,..., X, have the mean value
of zero and variance one.

Each functionf(X) can be estimated by considering a
histogram of observed descriptor values on a sd bins
(bobs], ..., (bs-1bs), whereby = —c and bg = +o. The
number of compounds within bik

yil(wx;) +b] —1=0 €)
The distance between the hyperplane and the closest to it
data set points is equal to|[W/||, where||w]|| is the norm of
w. Thus, by minimizing|w/|| or ||w]||?> with constraints (9),
the optimal dividing hyperplane can be found. This optimi-
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zation problem can be solved by minimizing the Lagrangian Table 3. a. 2 x 2 Confusion Matrix and b. Normalized 2 2
Confusion Matrix

m

1 Section a
L=211w|> = S oyly((wx;) +b) — 1 10
JWIF = J ey +0) -1 (10) o
) o predicted active inactive total
Whe_reai z 00 are the Lz_igra_lnge multipliers. Me_thods_ of aciive — Fp ——
solving this problem and findingv andb are described in  j5ctive  EN N EN-+ TN
ref 86. For ally[(wx)+b]—1 > 0, o; = 0, and for ally;- total Naet=TP+FN  Ninao= FP+ TN N = Nacrt Ninact
[(wx)+b] — 1 =0, oy > 0. Points for whicho; > 0 are ,
i Section b
called support vectors. These points belong to hyperplanes
yil(wx;)-++b] — 1= 0. In fact, only these points are necessary _ : observed
to build the optimal dividing hyperplane. Assigning com- predicted active inactive total
pounds to a class of actives or inactives can be carried outactive TPNaot FPNinact TPMNaot+ FPNinact
by f|nd|ng Vi from inequa“ty (9) inactive FNNagt TN/Ninact FN/Nact + TN/Ninact
total Nac/Nact= 1 Ninac{Ninact= 1 2

In practice, if the number of points is lower than the
number of descriptors minus one andk®2 points belong
to a K-dimensional hyperplane, the data set is always Nact and Ninact are the number of active and inactive
separable. So if the number of descriptors is higher than thecompounds in the data set, TP, TN, FP, and FN are the
number of compounds minus one, there is a high risk of number of true positives, true negatives, false positives, and
overfitting. The hyperplane will perfectly separate points of false negatives. The following classification accuracy char-
the training set while there will be poor separation of the acteristics associated with confusion matrices are widely used
test set. In this case the same approach is applied as in thén QSAR studies: sensitivity (STPNao), specificity (S”=TN/
case when the solution does not exist, namely, such aNnac), and enrichmenE = TP*N/[(TP+FP)*Ny{. For all
hyperplane is sought, which divides active and inactive QSAR models developed in this project, CCR was defined
compounds with the classification error minimized. Con- aSNcor/N = (TP+TN)/N, whereN and Neor were the total

straints (9) are replaced by the inequalities number of compounds and the number of correctly classified
compounds.
yil(wx) +b] =1—-§,5=0 (11) In this paper, we have employed normalized confusion

) ) ) matrices (Table 3b). A normalized confusion matrix can be
whereg; (i=1,...m) are slack variables. The optimal hyper- gptained from the nonnormalized one by dividing the first

plane can be found by minimizing the Lagrangian column byN,¢and the second column B¥ae. Normalized
1 m enrichment is defined in the same waytabut is calculated
L=2wl2= S alv((wx)+b) —1+ &1+ using a normalized confusion matrixg, = 2TP*Ninac/
2|| ! = [yi((an) = b) s [TP*NinacttFP*Nac]. En takes values within the interval [0,
m m 2].
Cf(;gi) B ;ﬂ & (12) Y-RANDOMIZATION

. . Y-randomization (randomization of response, i.e., in our
where 0= a; 5_ C Ui andy; are the Lagrang?nmulu.phers case, activities) is a widely used approach to establish the
for the constraint; > 0. A penalty functionf(3;-, &) is a model robustnes¥.It consists of rebuilding the models using
positive monotonically increasing fu_nctl_on of each p_arameter randomized activities of the training set and subsequent
&i. We have used the penalty function in the following form  555essment of the model statistics. It is expected that models
m obtained for the training set with randomized activities should
0.ifSE<e have significantly lower values of CCR for the test set than
’ Z§| . . .. . Y e
. = the models built using the training set with real activities. If
F={m m (13) this condition is not satisfied, real models built for this
E—€if Y& >e€ training set are not reliable and should be discarded.
i= i= The Y-randomization test was performed for training sets
which afforded the models with the highest CCR values. The
calculations were performed five times for each collection
of descriptors and each optimization method, with the input
parameters identical to those used for building models with
real activities. Models built with randomized activities were
used to predict activities of the corresponding test set.
CCRyain and CCR.st Values for models built with real and
randomized activities were compared with each other. Using
CONFUSAICC:)CI:\IU'\FAQEF\{(I%%SQASI\,IA%CI\/II_SSEII_FSICATION kNN classification QSAR, multiple mgde[s were built. To
estimate the robustness of the classification QSAR models
Confusion matrices are used to estimate the classificationwe used the following criterion. LéMlea and Niang be the
accuracy of a QSAR model. In the case when compoundstotal number of models built with real and randomized
belong to two classes (active and inactive compounds), a 2activities, respectively, antles andn.angbe the corresponding
x 2 confusion matrix can be defined as in Table 3a, where number of models with CCR- 0.7 (which we considered

wheree is a parameter. Support vectors are defined by the
conditionyi[(wx;))+b] — 1+ & = 0.

The hyperplane parameters depend @rmand e. These
parameters are also varied to reduce the overfitting. Thus
the SVM procedure was run multiple times to find the
optimum values ofC ande.
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Table 4. Combinatorial QSAR

method
kNN decision tree binary QSAR SVM

deSCFipt0f§ CCRyain® CCRest CCRyain CCReest CCReain CCReest CCReain CCRest
Dragon (148) 0.70 (45) 0.86 0.70 0.78 0.72 0.76 0.83 0.68
CMTD (53) 0.72 (25) 0.65 0.67 0.74 0.76 0.50 0.81 0.58
MolconnZ/CMTD (64) 0.67 (50) 0.60 0.62 0.53 0.85 0.47 0.87 0.53
MOE (191) 0.79 (35) 0.65 0.74 0.71 0.74 0.86 0.77 0.65
CoMFA (150) 0.76 (15) 0.89 0.75 0.62 0.71 0.65 0.83 0.75
Volsurf (96) 0.77 (25) 0.85 0.77 0.60 0.74 0.70 0.94 0.53
COMMA/MOE (204) 0.77 (15) 0.75 0.74 0.72 0.73 0.70 0.73 0.69

a Correct classification rate (CCR) for models with the highest prediction accuracy for each combination of the method and collection of descriptors.
CCR values for the best models (when both training and test sets have these values greater than 0.7) are shown in bold. Although some models have
higher CCR.st values for the test set (see Table 6: MolconnZ/CMTD, MOE), they did not pass the Y-randomization test and were not accepted.

b The total number of descriptors is given in parenthes&se number of descriptors selected by the variable selekhidhclassification procedure
is given in parentheses.

100

acceptable). The fractions of models with CGR0.7 are
Freal = NrealNreal @Nd Frang = NrandNrang respectively. The
robustness of predictive models (i.e., with CER7) built

with real activities of the training set was definedrRis= 1
— FrandFrear R takes values from minus infinity to 1. R >
0.9, predictive models are considered reliable. Rhalues
were calculated for the fithess function, i.e., GgiRobtained

CCR %

60

40

20 +

in the LOO cross-validation procedure incorporated in the
kNN classification QSAR, and for prediction of activities
of the test set (CCR).

RESULTS AND DISCUSSION &

The best models for all possible combinations of descriptor
collections and QSAR analysis methods are shown in Table
4. We discuss below the results for every QSAR method in
detail.

KNN Modeling. For each descriptor collection and each
division into the training and the test set, 90 variable selection
QSAR models were built. The number of descriptors selected
by kNN classification procedure varied from 10 to 50 with
step 5. All models with CCRy, = 0.70 were validated using
Y-randomization and external prediction for the correspond-
ing test sets.

The Y-randomization tests were carried out for all models.
For each collection of descriptors, activities of training sets
co_rr_e_spondlng to models with the_ h'gh.ESt C_;g;[R/aIues different descriptors. Highest CGR, values for models built with
(division 1, Table 2) were randomized five times, and all rea| (gray) and randomized (white) activities of the training sets
calculations were repeated for each randomization. Thus, for(division 1) for all collections of descriptors are shown.kbIN
each training set the number of all models built with classification modeling of the test sets with different descriptors.
randomized aciies was 450. Highest Cigvalues for  HOnes, SR uaues o ool bt e ee () s
models b_uH'F with real an_d randomized activities appeared all collections of descriptors are shown. 9
to have similar values (Figure 5a).

This phenomenon can be explained as follows. RegardlesgResults for division 1 are presented in Table 5a.) These
of the number of active (1) and inactive (0) compounds in results give a deeper insight into this problem. The robustness
the data set, if we randomly assign 1 and 0 to each compoundof a model with a high CCR value can be estimated by the
with a probability of 0.5, the expected CCR value will be robustness paramet®& introduced above. The robustness
equal to 0.5. If the model is trained to “correctly” predict of all models with high CCRun values was very low (Table
even randomized activities, the CGR for the training set 5a). In some cases, the highest G&Ralues obtained with
can significantly exceed 0.5. This is exactly what we observe. models built with real and randomized activities of the
Thus a CCRui, is not a good characteristic of a binary training sets also have similar values (Figure 5b) demonstrat-
classification QSAR model. We will demonstrate this ing the low robustness of such models (Table 5b).
conclusion on the models built with other methods considered However, the robustness of those models with high GER
in this paper. We have also calculated the number and thevalues was also high (Table 5b). All models with GGR:
fraction of models with CCR,» = 0.7 for the training sets. 0.7 appeared to have CGR = 0.7, but the opposite was

CCR %

5
4\.—_?"

Figure 5. a.kNN classification modeling of the training sets with



592 J. Chem. Inf. Comput. Sci., Vol. 44, No. 2, 2004

3 0.9 =
2 * o 0 .
@
s 08 * o o o @
s LI T I I S
£ L I I N 1
5 . * o0
& . .
g 06 O T
L]
c .
]
2 05 .
=
£
o *
0.4
0.65 07 0.75 0.8 0.85 0.9

Fitness: CCR for the training set
Figure 6. CCRestversus CCRain 0f 90 kNN classification models
built with CoMFA descriptors (division 1).

Table 5. a. RobustnesR of Models with CCRain = 0.72 and b.
Robustnes® of Models with CCRain = 0.7 and CCRg > 0.7°

Frea= Frana= R=
Nreal nrea/Nreal Nrand nranc/ Nrand 1- Francl Freal
a.
CMTD 18 0.20 337 0.75 —2.75
CoMFA 90 1.00 437 0.97 0.03
CoMMA/MOE 84 0.93 249 0.55 0.41
Dragon 78 0.87 298 0.66 0.24
MOE 90 1.00 339 0.75 0.25
MolconnZ/CMTD 47 0.52 295 0.66 —-0.27
VolSurf 90 1.00 338 0.75 0.25
b.
CMTD 0 0 0 0
CoMFA 50 0.56 13 0.029 0.95
CoMMA/MOE 9 0.10 23 0.051 0.49
Dragon 33 0.37 0 0 1.00
MOE
MolconnZ/CMTD 0O 0 12 0.027
VolSurf 30 0.33 15 0.033 0.9

@Nreat @and Nang are the number of models built with real and
randomized activities of the training s@tes andnang are the number
of corresponding models with CGR = 0.7.° Nieay @and Nrang are the

number of models built with real and randomized activities of the

training set, respectivelyley andniang are the number of models with
CCRyain = 0.7 and CCRst = 0.7, respectively.

not true. Thus, the models with high values of both GGR

KOVATCHEVA ET AL.

CoMFA descriptors, 48 models built with Dragon descriptors,
and 3 models built with MOE descriptors had both G&GR
and CCRtequal or exceeding 0.7. For all these sets, except
for division 2 of the data set using Dragon descriptors, the
models had robustne&s> 0.9. Statistical characteristics of
predictive models with the highest CgRobtained with the
kNN classification method are given in Table 6. For all
descriptor collections, except for VolSurf descriptors, all
compounds of the test set were within the cutoff distance
with Z = 2 (seekNN classification section above). For
VolSurf descriptors, five compounds of the test set of division
1 and four compounds of the test sets of divisions 2 and 3
were outside of the cutoff distance with= 2 threshold
from compounds of the training set and were not classified.
Lowest Z values characterizing the applicability domain are
given in Table 6.

DECISION TREE

Decision trees were built using the MOE packéye.
Complete descriptor collections were used in all calculations
because the package does not provide the option of automatic
variable selection. The following predictive models were
obtained using Dragon descriptors for division 1 (Table 2):
CCRyain = 0.74, CCR.s;= 0.75 (S=0.56, SP=1.0,E=1.75,
and E,=2.0); Dragon descriptors for division 2 CGR =
0.70, CCRs = 0.78 (S=0.67, SP=0.90, E=1.63 and
E,=1.74), MOE descriptors (division 2) CGR, = 0.74,
CCRest= 0.71 (S=0.67, SP=0.75,E=1.55 andE,=1.45),
and CoMMA/MOE descriptors (division 2, Table 2) CGR
= 0.74, CCRst= 0.72 (SE=0.62, SP-0.83,E=1.54, and
E,=1.57). The Y-randomization test performed five times
for each of these divisions into training and test sets gave
the following results. Only for two models built with Dragon
descriptors (division 2) and MOE descriptors (division 2)
both CCR..in and CCR.svalues were higher than 0.7. Only
one model built with Dragon descriptors (division 1) had
both CCR.i, and CCR.st higher than 0.7. For that reason,
these models cannot be regarded as accurate.

BINARY QSAR

Binary QSAR calculations were carried out using M&E.
Calculations were performed using complete descriptor

and CCR.stand a high robustness of the test set predictions collections because the package does not provide the option

were considered acceptable.

of automated selection of variables. The maximum number

We shall emphasize that there exists no correlation of principal components was 10, the smoothing parameter

between CCRin and CCR; values (Figure 6). Thus, the

was equal to 0.25, and the binary threshold was set to 0.5.

validation of a classification QSAR model must include The following predictive models were obtained using MOE
comparison of predicted and observed activities for the descriptors (division 2, Table 2) CGR = 0.74, CCR.st=
external test set (i.e., compounds which were not used in0.86 (S=0.67, SP=1, E=2.33, andE,=2), Dragon descrip-
model building). This conclusion was made previously by tors (division 3, Table 2) CCRi, = 0.72, CCR« = 0.76
several authors who reported QSAR models with the (S=0.69, SP=0.82, E=1.57, andE,=1.61), and VolSurf

continuous dependent variatSf#® Figure 6 is the classifica-
tion QSAR analogue of the so-called Kubinyi parad®$
Despite a high value of CGR, many models in Figure 6
have a low prediction accuracy (CR<0.7).

descriptors (division 3, Table 2) CGR, = 0.74, CCRst=
0.70 ($=0.60, SP=0.80, E=1.50, andE,=1.50). The Y-
randomization test performed five times for these divisions
into training and test sets gave CeR< 0.6, except for

Similar results have been obtained for divisions 2 and 3 one value of CCRs:= 0.86 for MOE descriptors (division

(Table 2). For division 2, 21 models built with CoMFA

descriptors, 5 models built with CoOMMA/MOE descriptors,

2). CCRyain for this model was equal to 0.7. The test set in
this division contains only seven compounds. If the activities

75 models built with MOE descriptors, and 20 models built of 0 and 1 are assigned randomly with a probability of 0.5,

with Dragon descriptors had both C&iRand CCR.icequal

the probability that for six out of seven compounds the

or exceeding 0.7. For division 3, 66 models built with activities will be predicted correctly and CGR= 0.86 is
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Table 6. kNN Classification Models with Highest CGR Values for All Divisions into Training and Test Sets and All Collections of
Descriptors: TP-True Positive, TN-True Negative, FP-False Positive, FN-False Negative, S-Sensitivity, SP-Specificity, E-EnigHireent,
normalized Enrichment, CGRorrect Classification Rate

collection of confusion matrix (test set) statistics for the test set applicability domain
descriptors divisions TP TN FP FN S SP E En CCR G&R  Lowest Z values
Dragon 1 13 11 1 3 081 092 163 181 0.86 0.70 1.9
8 10 0 4 0.67 1.00 183 2.00 0.82 0.76 0.9

3 11 10 2 2 085 0.83 163 167 0.84 0.77 0.4
CMTD 1 9 12 4 6 060 0.75 143 141 0.68 0.66 1.4

2 6 11 2 7 0.46 0.85 150 150 0.65 0.72 13

3 13 10 8 9 059 056 113 114 058 0.78 1.4
MolconnZ/CMTD 1 9 8 6 2 081 057 136 131 068 0.74 1.6

2 9 9 1 11 045 090 135 164 0.60 0.67 11

3 7 6 3 4 0.64 067 127 131 065 0.73 1.2
MOE 1 12 12 10 3 0.80 055 135 128 0.65 0.77 0.2

2 3 4 0 0 1.00 100 233 200 1.00 0.70 0.1

3 11 12 11 3 0.63 067 125 130 0.64 0.79 0.3
CoMFA 1 9 5 2 0 1.00 071 145 156 0.88 0.81 0.6

2 10 6 4 0 1.00 060 143 143 0.80 0.84 2

3 12 12 1 2 0.86 092 178 184 0.89 0.76 0.7
VolSurf 1 4 7 1 1 0.80 0.86 208 173 0.85 0.77 2

2 6 7 5 3 0.67 058 127 123 0.62 0.86 2

3 8 11 3 4 0.67 0.79 158 152 0.73 0.76 2
CoMMA/MOE 1 12 12 4 4 075 075 150 150 0.75 0.77 0.4

2 8 10 2 5 062 083 154 157 0.72 0.74 0.2

a Statistics for acceptable predictive models are printed in Bdfive compounds of test set of division 1 and four compounds of test sets of
divisions 2 and 3 were beyond the applicability domain with the cutoff distance Zvith2 from compounds of the training set and were not
classified.

7/128= 0.055. Nevertheless, we cannot consider this model This methodology became feasible due to the rapid
acceptable. At the same time, CGRvalues were equal or  development of computer technologies, which resulted in a
higher than 0.7 two times for MOE descriptors, three times dramatic increase of the speed of calculations. The following
for VolSurf descriptors, and five times for Dragon descrip- four QSAR methods have been included: classificakish
tors. Thus, again we can make a conclusion that &R  QSAR, decision tre&, binary QSAR3-3"and Support Vector
alone is not a good characteristic of the classification Machines (SVM)® Currently,kNN classification QSAR is
accuracy. the only method which is fully automated in our laboratory.
The following seven collections of descriptors have been
SUPPORT VECTOR MACHINES calculated: CoMFA&2 CoMMA,32 MOE 2! chirality descrip-

In this study we have used SVM with a linear kernel as tors?’ MolcoonZ?* Dragoni* and VolSurf® CoMMA
described above. As in the previous cases, for models builtdescriptors were used in combination with MOE descriptors.
with real and randomized activities most CCR values for MolconnZ descriptors were used in combination with chiral-
the training sets were similar and high. At the same time, ity descriptors. A sphere exclusion algorithm was used to
all CCR values for the test sets were lower than 0.7, exceptdivide a data set into diverse and representative training and
for division 2 for COMFA descriptors (Table 2) for which ~ test sets. QSAR models were built using all possible
CCRest= 0.75 (S=0.67, SP=0.86,E=1.52, andE,=1.65). combinations of data modeling techniques, collections of
For this model, CCRi» = 0.83. The Y-randomization test descriptors, and corresponding training and test sets. It was

performed five times gave the highest GGR= 0.56. found that not all combinations of modeling methods and
However, for one of the randomizations CGR= 0.84. descriptor collections produce valid QSAR models. This fact
Again, in this case, CCRi, was not a good characteristic itself corroborates the necessity for an automated combina-
of the classification accuracy. torial QSAR procedure in order to generate and mine the
space of QSAR models to identify all validated models.
CONCLUSIONS Using the combi-QSAR approach, we were able to obtain

The objective of this work was to conduct the most several predictive QSAR models for this data set.

comprehensive QSAR analysis of a data set of 98 ambergris KNN classification method in combination with CoMFA
fragrance compounds with complex stereochemistry. This descriptors gave predictive models for all divisions of a data
data set consists of compounds of several structural typesSet into training and test sets (Table 6). Thus, for our data
Within each group, all compounds have almost identical Set, the combination okNN classification with CoMFA
structures, with only differences in chiralities of some atoms. descriptors is the best combination of a QSAR method and
As we have shown, a standard approach to QSAR studies the descriptor collection. Multiple predictive QSAR models
when only one method and one collection of descriptors is have been obtained using tkiéN classification with Dragon,
used, has a high chance to fail. Herein we have investigatedMOE, VolSurf, and CoOMMA/MOE descriptors but only for

a combinatorial QSAR approach, which considers all possible one or two of the divisions of a data set into training and
independent models that can be built with various optimiza- test sets. We showed that statistical significance of QSAR
tion methods and different descriptor collections. classification models can be evaluated by a robustness
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parameter, which was defined in the Y-randomization (12) Shvets, N. Applied program system for the prognosis of biological

: ; ; activity of chemical compounds: development and @emput. J.
section. We suggest that this simple parameter should be Moldova (Kishine) 1993 1, 101110,

used in classification QSAR studies. (13) Winter, B. INQSAR: Quantitatie Structure Actiity Relationships in
Several predictive models were obtained for one of the Drug Design (QSAR in olfaction: Ambergris type odorantgan R.

L . . . Liss, Inc.: 1989; pp 401405.
divisions into training and test sets using other methods. (14) Bajgrowicz, J. A.. Frank, I. Camphor-derived ambergrisiwoody

Thus, a combination of SVM with CoMFA descriptors gave odorants: 1,7,7-trimethyl*dso-propylspiro [bicyclo[2.2.1]heptane-
one predictive model; binary QSAR gave predictive models 2,4-(1,3-dioxanes)|Tetrahedron: Asymmeti001, 12, 2049-2057.

. S . - . PR (15) Bajgrowicz, J. A.; Broger, QMolecular Modelling in the Design of
in combination with Dragon descriptors and in combination New Odorants: Scope and Limitation8aser, K. H. C., Ed.:

with VolSurf descriptors. The Decision Tree gave one Proceedings of the 13th International Congress of Flavours, Fragrances
predictive model in combination with COMMA/MOE de- and Essential Oils; AREP: Istanbul, 1995; Vol. 3, pp1b.

scriptors. The Decision tree and Binary QSAR were used aS(16) gﬁT%_&)ST 4.6; Molecular Simulations Inc. (Accelrys): San Diego,

implemented in the MOE package. Relative failure of these (17) Greene, J.; Kahn, S.; Savoj, H.; Sprague, P.; Teig, S. Chemical
methods can be partially explained by the fact that their direct ~ Function Queries for 3D Database SeacttChem. Inf. Comput. Sci.

: . : 1994 34, 1297-1308.
use does not allow variable selection. In the future, we will (18) Bilke, S.; Mosandl, A. Enantioselective analysis of 2-methyl-4-(2,2,3-

develop automatic variable selection procedures for these ° trimethylcyclopent-3-en-1-yl)-but-2-enol, 2-methyl-4-(2,2,3-trimeth-
methods, similar to those used kINN. Low prediction yleyclopent-3-en-1-yl)-but-2-enal and-campholene aldehyde by

. capillary gas chromatography. Sep. Sci2001, 24 (10), 819-822.
accuracy of almost all SVM models is prObably the 19) Buchbauer, G.; Lebada, Ph.; Wiesinger, L.; Weiss-Greiler, P.;

consequence of using its linear version. Low prediction Wolschann, P. On the odor of the enantiomers of MadEbiirality
accuracy of all models built with CMTD descriptors can be 1997 9, 380-385.

: : : : (20) Horton, H. R.; Moran, L. A;; Ochs, R. S.; Rawn, J. D.; Scrimgeour,
explained by the fact that they require exhaustive calculations K. G. Principles of BiochemistryNeil Patterson Publishers Prentice

with different chirality correction values and different Hall: Englewood Cliffs, NJ, 2002.
subclasses of descriptors, as it was described in our previoug21) Potapov, V. M.StereochemistryKhimia, Moscow, 1988. )
paper§7v28 (22) Solms_, J.; Vuataz, L.; Egli, R. H. The taste of L- and D-amino acids.
: Experiential965 21, 692—694.
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