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Abstract

We describe the theoretical and computational framework for the Dynamic Signatures for Genetic 

Regulatory Network ( DSGRN) database. The motivation stems from urgent need to understand the 

global dynamics of biologically relevant signal transduction/gene regulatory networks that have at 

least 5 to 10 nodes, involve multiple interactions, and decades of parameters.

The input to the database computations is a regulatory network, i.e. a directed graph with edges 

indicating up or down regulation. A computational model based on switching networks is 

generated from the regulatory network. The phase space dimension of this model equals the 

number of nodes and the associated parameter space consists of one parameter for each node (a 

decay rate), and three parameters for each edge (low level of expression, high level of expression, 

and threshold at which expression levels change). Since the nonlinearities of switching systems are 

piece-wise constant, there is a natural decomposition of phase space into cells from which the 

dynamics can be described combinatorially in terms of a state transition graph. This in turn leads 

to a compact representation of the global dynamics called an annotated Morse graph that identifies 

recurrent and nonrecurrent dynamics. The focus of this paper is on the construction of a natural 

computable finite decomposition of parameter space into domains where the annotated Morse 

graph description of dynamics is constant.

We use this decomposition to construct an SQL database that can be effectively searched for 

dynamical signatures such as bistability, stable or unstable oscillations, and stable equilibria. We 

include two simple 3-node networks to provide small explicit examples of the type of information 

stored in the DSGRN database. To demonstrate the computational capabilities of this system we 

consider a simple network associated with p53 that involves 5 nodes and a 29-dimensional 

parameter space.

1. Introduction

Though the method presented in this paper is general, our primary motivation arises from the 

need to understand the global dynamics of signal transduction/gene regulatory networks, e.g. 

[35]. Our mathematical abstraction of a regulatory network RN is a directed graph where the 

nodes (vertices) V = {1, …, N} indicate the species and the edges E indicate the activation 

or repression of production of one species by another (this is made precise in Definition 2.1). 
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There are at least three fundamental challenges in determining if a given regulatory network 

provides a biologically relevant model; determining completeness, authentication, and 

nonlinear interaction. As discussed in [36] completeness and authentication are concerned 

with whether the relevant species are included in the regulatory network and whether the 

proposed interactions are correct. Genomic sequencing data informs completeness, while 

biochemical knowledge is required for authentication. While the quantity of genomic data is 

rapidly increasing, detailed biochemical information is still sparse. Since the interaction 

between species is typically governed by multiscale processes determining appropriate 

explicit nonlinearities let alone realistic physical parameters is extremely difficult.

We propose to address these challenges by employing a crude, compact, robust, 

mathematically rigorous, finitely presented description of dynamics that allows for a 

combinatorial representation of parameter space. As a consequence, given a regulatory 

network RN, we are able to build the associated Database of Dynamic Signatures which 

codifies the global dynamics over all of parameter space. The underlying theoretical ideas 

have already been exploited to study a variety of mathematical and biological models [4, 8, 

9, 7]. However, to effectively use these ideas in the context of moderately sized gene 

regulatory networks where completeness and authentication are in question, we require order 

of magnitudes greater efficiency for approximating the dynamics and the ability to work 

with much higher dimensional parameter spaces. This paper describes and justifies a revised 

approach that achieves the desired efficiency and provides a natural decomposition of 

parameter space.

Our starting point has much in common with an approach often referred to as logical 

networks [2]. The difficulties, alluded to above, in determining and then parameterizing 

appropriate interactions and nonlinearities has lead to the widespread use of relatively 

simple models that aim to capture qualitative features of the dynamics. The simplest ones 

are the Boolean models, where each node is represented as either on or off; the dynamics of 

the i-th node consist of evaluation of a logical function defined by this binary representation 

of the state of the system. The evolution of the network proceeds in discrete steps in time 

which can either synchronously evaluate all functions Λi [3, 13], or do so asynchronously 

[10, 45, 38].

Our approach is most closely associated with asynchronous logical networks. Given a 

regulatory network RN with N nodes, the associated switching system [27, 28, 29, 30, 17, 

18, 19, 16] is an N-dimensional system of ordinary differential equations of the form

ẋ = − Γx + Λ x (1)

where Γ is a diagonal matrix with positive entries, and Λ is a piecewise constant function 

(see Definition 2.4).

There are a variety of parameters associated with switching networks. To each variable xi 

there is a decay rate γi > 0 (the diagonal terms in Γ). To each edge in RN, corresponding to 

the impact of species i on j, we associate two positive expression levels, low lj,i and high uj,i, 
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and a threshold θj,i for xi at which the expression levels switch. The values of the function Λ 
are determined by sums and products of the parameters l and u where the particular formula 

is generated by logical rules that indicate how different nodes interact. Thus given a 

regulatory network the set of parameters lies in [0, ∞)D where D = N + 3 · #(E), where N is 

the number of nodes, and #(E) is the number of edges. Our goal is to characterize the global 

dynamics for every point in parameter space.

We hasten to add (this is made clear in the sections that follow) that we do not view (1) as a 

mathematical model for the biological process; rather (1) is only used to motivate the 

combinatorial computations that are the focus of this paper. To emphasize this point we 

make two comments. First, Λ is piecewise constant (and not even defined when xi = θj,i), 

thus classical trajectories to (1) do not exist. Second, the main result of [25] is that applying 

the methods described in this paper to 2-dimensional switching systems results in a 

representation of the global dynamics that is valid for a much wider family of nonlinearities, 

i.e. for a system of the form

ẋ = − Γx + f x (2)

where f is a Lipschitz continuous function. Algebraic topological tools such as the Conley 

index [39] can be applied to this representation to extract information concerning the 

structure of invariant sets for dynamics of (2). We also note that for a typical parameter value 

one can obtain explicit a priori estimates in terms of parameters of the system (see [25]) for 

how much the nonlinearity f can differ from the switching nonlinearity Λ. It is in this sense 

that we view (1) as a computational tool, rather than the mathematical model of biological 

reality. An important implication is that we can obtain rigorous results about the dynamics 

without explicit/detailed knowledge of the appropriate nonlinearity for the biological 

problem of interest. It is worth contrasting our approach to more classical methods for 

relating the dynamics of smoothed systems (2) with the discontinuous switching systems (1) 

[21, 33, 47].

To approximate the dynamics of the switching system at a fixed parameter value we use the 

thresholds θ to decompose phase space. These decompositions are then used to determine 

state transition diagrams (see Section 3). In this format the dynamics is represented by a 

sparse directed graph ℱ with roughly ∏n = 1
N

O n + 1  vertices where O(n) is the number of 

out-edges at node n. Given the size of the regulatory networks that we are interested in 

analyzing, storing all the state transition graphs that arise as one sweeps through parameter 

space is impractical. With this in mind we focus on the essential dynamical structures: the 

recurrent dynamics, i.e. the nontrivial strongly connected components of ℱ; and the 

gradient-like dynamics, i.e. the reachability, defined by paths in ℱ. between the recurrent 

components. There are efficient (both in time and memory) graph algorithms that allow one 

to identify strongly connected components (see [4, 8] and references therein, and [6] for an 

application of these techniques in the context of regulatory networks). For many networks of 

interest this step can be performed rapidly enough so that it is tractable to repeat it over 

many parameter values. We encode this information in the form of an annotated Morse 
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graph �� ℱ . The Morse graph is the minimal directed acyclic graph such that each 

nontrivial strongly connected component is represented by a distinct node and the edges 

indicate the reachability information inherited from ℱ between the nodes (see Section 3.3). 

The annotations consist of optional information, typically problem specific, that allow for 

easier identification between the dynamics captured by our approach and the dynamics of 

biological interest.

The computational steps described above are valid for individual parameter values. A 

fundamental contribution of this paper is the identification of a natural decomposition of 

parameter space into regions, called parameter cells, over which the transition graphs and 

hence Morse graphs are constant. The cells are given in terms of explicit polynomial 

inequalities in the parameter values and hence take the form of semi-algebraic sets. Since the 

global dynamics of switching networks is parameter dependent and we are working with 

high dimensional parameter spaces it should come as no surprise that understanding the 

geometry and organizing the structure of all parameter cells is nontrivial. With this in mind 

we introduce the parameter graph (see Section 4), an undirected graph where each node is 

identified with a parameter cell and the edges provide information about how the parameter 

cells are related. In fact, we make use of two parameter graphs. The first, called the 

geometric parameter graph ( GPG) is based on the topology of parameter space as a subset of 

[0, ∞)D. This provides a description of the decomposition of parameter space in a language 

familiar to researchers in the field of dynamical systems. The second, called the 

combinatorial parameter graph ( CPG) is what is actually computed. We prove that there is a 

graph homomorphism h: GPG → CPG and conjecture that the geometric and combinatorial 

parameter graphs are equivalent, but only have a proof, see Theorem 4.18, for regulatory 

networks whose nodes have at most 3 in-edges and out-edges.

Our construction of the CPG for RN is based on two facts. First, that the graph structure is 

actually a canonical graph product over factor graphs CPGn which depend only on the local 

structure of RN around each network node n. Second, that each CPGn is a connected 

subgraph of a larger graph of combinatorial parameters, and may be constructed via a graph 

traversal search for realizable combinatorial parameters, i.e. those that are realized by some 

geometric parameter of RN. In particular, for each node n in RN we compute the set of 

possible combinatorial parameters, which is determined by the number of out-edges at n, the 

number of in-edges at n, and the logic that determines how the information from the in-

edges is processed. To identify whether a particular combinatorial parameter is realizable we 

make use of cylindrical algebraic decompositions (CAD) [14] to determine if there exists a 

solution to an associated the set of inequalities. Recall that a cylindrical algebraic 

decomposition of a semi-algebraic set is a recursive set of inequalities that defines the 

elements of the set. As is discussed in Remark 4.16, CAD computations are expensive. 

However, once done they can be re-used at a constant cost. Thus our strategy is to perform 

the CAD computations and store them. A list of the node structures for which CAD 

computations have been performed is given in Table 1.

Our inability to prove that h: GPG → CPG is always an isomorphism, stems from our lack of 

general understanding of the geometry of individual and pairs of regions on which transition 
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graphs are constant. However, the CAD computations, once performed, provide sufficient 

information to check the conjecture. This is the essence of the proof of Theorem 4.18.

The concepts and techniques introduced in this paper have allowed us to develop the DSGRN 

(Dynamic Signatures of Genetic Regulatory Networks) software [32] that has the following 

features and capabilities:

• It can compute the size of parameter graphs (number of parameter nodes) for any 

regulatory network constructed using components found in Table 1. In particular 

we supply a web-based program to design such networks which automatically 

tabulates the size of the parameter graph.

• It can access a database of cylindrical algebraic decompositions (CAD) of 

parameter cells corresponding to parameter nodes for regulatory networks 

constructed using components found in Table 1.

• It can compute annotated Morse graphs given a parameter (cell) and a regulatory 

network.

• It can compute databases of annotated Morse graphs over an entire 

(combinatorial) parameter graph given a regulatory network. These databases are 

designed using SQL and support a range of queries over Morse graph attributes 

and annotations.

• We supply a web-interface to interact with databases that can filter parameter 

graphs to show only nodes which satisfy certain queries.

• We supply a command line interface which allows access to phase space 

information for the associated switching system of a regulatory network given a 

particular parameter of interest.

• We have supplied documentation of the program along with tutorial materials.

To provide the reader with intuition concerning the output in Section 5 we consider three 

regulatory networks. The first two, the repressilator and the bistable repressilator, consist of 

3 nodes and 3 and 4 edges respectively. For these examples the parameter graphs are 

sufficiently small that they can be easily visualized. In general, the output of DSGRN grows 

rapidly as a function of the size of the regulatory network and thus can only be accessed 

efficiently through queries. To give a sense of the computational capabilities of DSGRN for 

problems of biological interest we consider a subnetwork associated with p53 and report the 

computational times and costs. The parameter graph information can be accessed at [32].

Before concluding this introduction we return to the challenge of determining completeness 

and authentication where we believe DSGRN can be a useful tool. These challenges imply 

that in early stages of modeling one cannot necessarily assume that a proposed regulatory 

network is ‘correct.’ By allowing one to compare the output of the model dynamics against 

experimental data, Boolean models provide a computationally tractable means to attempt to 

identify the existence of missing species and interaction and/or to exclude non existent 

interactions and unnecessary species (see for example [12, 11, 31, 40]). Because the 

computations that we perform to identify the dynamics is purely combinatorial, the cost of 
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our computations are similar to that of pure Boolean models. However, because we model 

using real numbers and ordinary differential equations, DSGRN can capture finer dynamical 

structures that presumably can be more readily identified with experimental values. More 

significantly, the fact that DSGRN provides a complete description of the dynamics over all of 

parameter space opens up new opportunities for deciding upon the plausibility of or 

comparison of different models, e.g. how stable is the desired dynamic phenotype to changes 

in parameters, and for control of the dynamics, e.g. which changes in parameters result in a 

desired dynamic phenotype. We leave the implementation of these ideas to future works.

2. Switching Networks

We review the essential concepts of switching networks. In Section 2.1 we define regulatory 

networks and their associated switching systems. In Section 2.2 we discuss the interpretation 

of the nonlinearities in the switching system as performing logical operations on the inputs. 

In Section 2.3 we use the discontinuities of the nonlinearity of (1) to impose a natural 

decomposition of phase space.

2.1. Regulatory Networks

Definition 2.1—A regulatory network RN = (V, E) is an annotated finite directed graph 

with vertices V = {1, …, N} called network nodes and annotated directed edges E ⊂ V × V 

×{→, ⊣} called interactions. An → annotated edge referred to as an activation and an ⊣ 
annotated edge is called a repression. We indicate that either i → j or i ⊣ j without 

specifying which by writing (i, j) ∈ E. An → annotated edge is referred to as an activation 

and an ⊣ annotated edge is called a repression. We allow for self edges, but admit at most 

one edge between any two nodes, e.g. we cannot have both i → j and i ⊣ j simultaneously. 

The set of sources and targets of a node n are denoted by

S n : = i | i, n ∈ E and T n : = j | n, j ∈ E .

The cardinality of S(n) and T(n) are denoted by #(S(n)) and #(T(n)). Each node is equipped 

with a multilinear function Mi : ℝS(i) → ℝ, called the logic of node i (a detailed description 

of its derivation is presented in Section 2.2).

For convenience we abuse notation and occasionally write a network node as xi instead of i. 

For instance, we may write (i, j, →) ∈ E and (i, j, ⊣) ∈ E respectively as xi → xj and xi ⊣ 
xj.

Remark 2.2—Throughout this paper we assume that the regulatory network RN does not 

have any direct negative self-regulation i ⊣ i for any i. This is done for technical reasons 

related to the code (see Remark 3.9). This is not a serious restriction. In biological systems 

negative self-regulation is often mediated by an intermediary, e.g. xi → Xi ⊣ xi [20, 23]. 

Furthermore, future planned developments of the code will allow the user to remove this 

restriction.

Definition 2.3—Given a regulatory network RN = (V, E), for each edge (i, j) ∈ E (i.e. i → 
j or i ⊣ j) we associate three parameters: lj,i, uj,i, and θj,i. (Note the matrix-style subscript 
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order convention.) Additionally, to each node i ∈ V we associate a decay rate γi. Each of 

these parameters are real numbers, so we may regard the collection of all these parameters as 

a tuple (l, u, θ, γ) ∈ ℝD. We call this collection of numbers a parameter for RN.

Definition 2.4—Given a regulatory network RN the associated switching system at 

parameter (l, u, θ, γ) ∈ ℝD, where D = N + 3 · #(E), is given by

ẋ j = − γ jx j + Λ j x , j = 1, …, N (3)

where

Λ j: = M j ∘ σ j . (4)

Here σj : ℝN → ℝS(j) is a multi-dimensional step function defined componentwise (i.e. by 

its coordinate projections πi(σj)) for each i ∈ S(j) as

σ j, i = πi(σ j(x)): =

l j, i if i j and xi < θ j, i or if i ⊣ j and xi > θ j, i

u j, i if i j and xi > θ j, i or if i ⊣ j and xi < θ j, i

undefined otherwise.

(5)

Remark 2.5—Switching systems written in the form (3) are equivalent to (1) where Γ is 

the diagonal matrix with diagonal entries Γii := γi and the i-th coordinate of Λ is Λi.

The dependence on x of the right-hand-side of (3) involves the expression σj(x). Since σj is a 

multidimensional step function which compares variables to thresholds, a grid-like structure 

is imposed upon phase space.

Definition 2.6—Let z = (u, l, θ, γ) be a parameter for the regulatory network RN. For each 

i ∈ V, we adopt the convention that θ−∞,i = 0 and θ∞,i = ∞. For all i ∈ V, j1, j2 ∈ V ∪ 
{−∞, ∞}, we say θ

j1, i
 and θ

j2, i
 are consecutive thresholds if θ

j1, i
< θ

j2, i
 and there does not 

exist θj,i such that θ
j1, i

< θ
j, i

< θ
j2, i

. For each i = 1, 2, ⋯, N, suppose θ
a

i
, i

 and θ
b
i
, i

 are 

consecutive thresholds. Then we say that the product of open intervals

κ: = ∏
i = 1

N

θ
a

i
, i

, θ
b
i
, i

is a cell of the regulatory network. We denote the collection of cells as � z . If aj ∈ V then 

we say that the bounded hyperplane
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κ
j
−: = ∏

i = 1

j − 1
θ
a

i
, i

, θ
b
i
, i

× {θ
a

j
, j

} × ∏
i = j + 1

N

θ
a

i
, i

, θ
b
i
, i

is a left face of κ with projection index j and switching index aj. Similarly, if bj ∈ V then we 

say the bounded hyperplane

κ
j
+: = ∏

i = 1

j − 1
θ
a

i
, i

, θ
b
i
, i

× {θ
b

j
, j

} × ∏
i = j + 1

N

θ
a

i
, i

, θ
b
i
, i

is a right face of κ with projection index j and switching index bj. A face of a cell κ is either 

a left or right face of κ.

We restrict our focus to non-negative parameters Z ⊂ 0, ∞ D ⊂ ℝD for which we interpret 

the l and u values as the lower and upper values that may be taken, respectively. This 

imposes the additional requirement that lj,i ≤ uj,i.

Definition 2.7—Given a switching network RN the associated parameter space Z is 

defined to be the collection of all parameters (l, u, θ, γ) ∈ [0, ∞)D for which lj,i ≤ uj,i for all 

(i, j) ∈ E. A parameter z = l, u, θ, γ ∈ Z is regular if

1. the inequalities are satisfied strictly, i.e. 0 < lj,i < uj,i, 0 < γi, and 0 < θj,i,

2. for each fixed i the threshold values θj,i are distinct, and

3. for each κ ∈ � z  the value Λi(κ) ≠ γiθj,i for each threshold θj,i that defines κ.

We denote the collection of regular parameters by Z. Notice that Z is (as the notation 

suggests) the topological closure of Z in ℝD and the set Z is generic in Z. For a regular 

parameter z ∈ Z the thresholds {θj,i : j ∈ T(i)} occur in some definite (total) order Oi(z) for 

each i ∈ V. We denote by O(z) := (O1(z), …, ON(z)) the collection of these orders over all 

nodes and the collection of all orderings O(z) over all of parameter space as

O Z : = ∪
z ∈ Z

O z .

2.2. Network Node Logics

Definition 2.4 does not specify the nonlinear functions Mj. As indicated in the introduction 

our approach is associated with the interpretation of regulatory networks as logical 

networks. To be more precise, a logical expression involving truth variables vi, logical 

conjunctives ∧ (i.e. ANDs), and logical disjunctives ∨ (i.e. ORs) leads to an analogous 

arithmetic expression by replacing ∧ with · and ∨ with +. For example, (a ∨ b) ∧ c becomes 

(a + b)c. Observe that given truth variables vi, a logical expression L(v1, v2,⋯, vn) (without 

negations) leads unambiguously to the multilinear arithmetic expression M(x1, x2,⋯,xn) 

given by
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M x1, x2, ⋯, x
n

: = ∑
� v1, ⋯, v

n
= T

∏
v
i

= F

1 − x
i ∏

v
i

= T

x
i
,

where xi ∈ ℝ.

Note that for every logical expression where each variable occurs at most once the recipe of 

replacing ∧ with · and ∨ with + produces an arithmetic expression which is equivalent to this 

multilinear expression.

For the purposes of this paper our focus is on regulatory networks where one considers a 

logic for each network node j consisting of a logical expression involving each of the 

variables xi ∈ S(j) precisely once. The multilinear functions Mj appearing in (4) are obtained 

from these logical expressions.

Remark 2.8—These assumptions on the structure of the terms in Mj imply that Λj can 

always be expressed in the form of a sum of monomials involving the step functions σj,i(x) 

where the degree of σj,i(x) is either zero or one, (see also [5]) and thus this is a proper subset 

of the set of multilinear functions.

2.3. Cells and Vector Fields

If we restrict to a cell then (3) reduces to a much simpler linear form. In particular, observe 

that given a cell κ, if x, x′ ∈ κ then Λ(x) = Λ(x′), and therefore Λ(κ) is well-defined. In 

accordance with this observation we make the following definitions:

Definition 2.9—A regulatory network RN and a choice of parameter values z ∈ Z leads to 

a uniquely defined switching system (1) and set of cells � z . The κ-cell vector field for a 

cell κ ∈ � z  is given by

f
κ

x : = − Γx + Λ κ . (6)

Observe that

Φ κ : = Γ−1Λ κ

is a global attracting fixed point for (6). Accordingly we say that a cell κ is an attracting cell 

if

Γ−1Λ κ ∈ κ .

3. State Transition Diagrams

As indicated in the introduction we capture the dynamics of (3) via state transition diagrams, 

directed graphs where the vertices correspond to regions of phase space, and the edges 

Cummins et al. Page 9

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2019 February 15.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



indicate how regions are related by the dynamics. To aid the reader the concepts of this 

section are illustrated in Figure 1 using a simple example of a RN with two nodes and three 

edges (see Figure 1(a)). The associated switching system is shown in Figure 1(b) based on 

the logical expression L(x1, x2) = x1 ∧ x2. We begin in Section 3.1 by defining wall-

labelings that encapsulate combinatorial information derived from the κ-cell vector fields 

(6). In Section 3.2 we give three different constructions of state transition diagrams. In 

Section 3.3 we show that these three constructions are equivalent in the sense that they lead 

to equivalent dynamical information.

3.1. Wall labelings

Faces of cells play a key role in our combinatorial representation of the dynamical system 

(3). However each such face has two adjacent cells and the κ-cell vector fields on either side 

may differ. Accordingly we refine our concept of face to make reference to one of the 

adjacent cells.

Definition 3.1—A wall is a pair (τ, κ) where κ is a cell and τ is a face of κ. Each wall 

inherits the projection and switching indexes from the corresponding face τ of κ. We say the 

sign of the wall (τ, κ) is 1 (and write sgn(τ, κ) = 1) if τ is a left face of κ and we say the sign 

of the wall is −1 if τ is a right face of κ (and write sgn(τ, κ) = −1). For a fixed parameter 

value z we denote the collection of walls by � z .

Observe that given a wall (τ, κ) there are three possibilities with respect to the κ-cell vector 

field fκ: it is everywhere tangential to τ; it points out of κ everywhere on τ; or it points into 

κ everywhere on τ. If the projection index of τ is i, then these three cases are determined by 

the sign of the expression f
i
κ

τ  and whether the wall corresponds to a left or right face (i.e. 

the sign of the wall) which in turn can be determined as a function of parameters. We 

summarize this in the following definition.

Definition 3.2—Consider a switching network at a parameter value z ∈ Z. The wall-

labeling of � z  is the function ℓ:� z −1, 0, 1  defined as follows. Let τ, κ ∈ � z  have 

projection index i and switching index j. Then define

ℓ((τ, κ)): = sgn(τ, κ) ⋅ sgn( f i
κ(τ)) = sgn(τ, κ) ⋅ sgn(−γiθ j, i + Λi(κ)) . (7)

Note the last equality follows since if x ∈ τ then xi = θj,i.

Remark 3.3—As (7) makes clear the wall-labeling function depends explicitly on the 

choice of parameters for the switching network. However, given any two parameter values 

for which the ordering of the thresholds is the same there is an obvious identification of the 

cells and walls. Using this identification, the wall labelling is completely determined by the 

values of sgn( f
i
κ(τ)) over the collection of cells. As such we can define equivalence classes of 

parameter values over which wall-labelings are constant.
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Definition 3.4—A wall (τ, κ) is an outgoing wall if ℓ (τ, κ) = −1, an incoming wall if ℓ(τ, 

κ) = 1, and a tangential wall if ℓ(τ, κ) = 0.

For parameters in the set Z (i.e. regular parameters) we will have only outgoing and 

incoming walls.

Proposition 3.5—Given a switching system with parameter z ∈ Z, there are no tangential 

walls. That is, the wall-labeling function ℓ satisfies

ℓ τ, κ ≠ 0

for all τ, κ ∈ � z .

The classification of walls according to the value of the wall-labeling function arises from 

geometric considerations of the flows on the cells. We leave the proof of the following to the 

reader:

Proposition 3.6—A cell κ is attracting if and only if every wall τ, κ ∈ � is an incoming 

wall.

In Figure 1(c) there are six cells along with a schematic representation of the direction of the 

flow in each cell is shown. The only attracting cell is the left-most cell on the bottom, 

marked with a red dot in center.

A stronger relation between the labeling of walls and the dynamics of the κ-equation is as 

follows. Again the proof is left to the reader.

Proposition 3.7—Let x ∈ κ ∈ � z  where z ∈ Z is a regular parameter value and let ψκ 
denote the flow generated by (6). If κ is an attracting cell, then there exists a unique time 

t
x
− < 0 such that ψ

κ
t
x
−, ∞ , x ⊂ κ and ψ

κ
t
x
−, x ∈ τ where (τ, κ) is an incoming wall and τ

denotes closure of τ. If κ is not an attracting cell, then there exist unique times t
x
− < 0 < t

x
+

such that ψ
κ

t
x
−, t

x
+ , x ⊂ κ, ψ

κ
t
x
−, x ∈ τ where (τ, κ) is an incoming wall, and ψ

κ
t
x
+, x ∈ τ′

where (τ′, κ) is an outgoing wall.

3.2. State Transition Diagram Constructions

Recall that a state transition diagram is a directed graph. To emphasize that we employ this 

as a means of representing information about dynamics we adopt an equivalent perspective: 

a state transition diagram is a combinatorial multivalued map ℱ:� � (where � is the 

collection of vertices) such that ν′ ∈ ℱ ν  if and only if there is a directed edge ν → ν′ in 

the state transition diagram. Using the multivalued map notation the existence of a path from 

ν to ν′ is expressed by ν′ ∈ ℱk
ν  for some positive integer k.

Let ℓ be the wall-labeling for a switching network at a fixed parameter. We give three 

constructions for state transition diagrams. In each case, note that the state transition 

diagrams depends only on ℓ, and hence it is through the wall-labelling that the state transition 
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diagrams inherit their dependence on parameters. In fact, as indicated by Remark 3.3, this 

inheritance remains constant on equivalence classes of parameter values.

Definition 3.8—The wall graph ℱ:� � induced by a fixed wall-labeling is defined as 

follows. The set of vertices � is in 1-1 correspondence with the set of attracting cells and 

faces of all cells. For each pair of faces τ, τ′ admitting a cell κ such that (τ, κ) is an 

incoming wall and (τ′, κ) is an outgoing wall, there is an edge τ → τ′, or equivalently 

τ′ ∈ ℱ τ . For each attracting domain κ, κ ∈ ℱ κ  and κ ∈ ℱ τ  for each wall (τ, κ).

Remark 3.9—A consequence of the assumption that the regulatory network does not have 

any direct negative self-regulation (see Remark 2.2) is that every node in the wall graph has 

an out-edge.

The wall graph for system in 1(b) in shown in 1(d). Each dark vertex corresponds to a 

transparent wall, while the green vertex correspond to a white wall. The red vertex with a 

self-edge represents an attracting cell.

Definition 3.10—The domain graph ℱ:� � induced by a fixed wall-labeling ℓ is 

defined as follows. The set of vertices � is in 1-1 correspondence with the collection of 

fundamental domains � κ . If some cell κ is an attracting domain, then κ ∈ ℱ κ . 

Furthermore, κ′ ∈ ℱ κ  whenever there exists a face τ such that (τ, κ) and (τ, κ′) are walls 

such that ℓ((τ, κ)) = −1 (indicating an outgoing wall of κ) and ℓ((τ, κ′)) = 1 (indicating an 

incoming wall of κ′).

The domain graph for system in Figure 1(b) in shown in Figure 1(e). Again, the red vertex 

with a self-edge represents an attracting cell and teal vertices are non-attracting cells.

Definition 3.11—The wall-domain graph ℱ:� � induced by a given wall-labeling is 

defined as follows. The set of vertices � is in 1-1 correspondence with the collection of all 

cells and the faces of all cells. There are three types of edges. If (τ, κ) is outgoing wall, then 

τ ∈ ℱ κ . If (τ, κ) is an incoming wall, then κ ∈ ℱ τ . Finally, if κ is an attracting cell, then 

κ ∈ ℱ κ .

The wall-domain graph for system in Figure 1(b) is shown in Figure 1(f). The vertices of this 

graph are the union of vertices of the wall graph (Figure 1(d)), and the domain graph (Figure 

1(e)) and their color matches their color in the original graphs. Except for the self-edge on 

the vertex corresponding to attracting cell the graph is bipartite; edges connect wall vertices 

to domain vertices and domain vertices to wall vertices.

3.3. Dynamical Signatures

As indicated in the introduction, to store the dynamics we make use of a more compact 

representation.

Definition 3.12—A recurrent component (also referred to as a strongly connected path 

component) of a directed graph ℱ is a maximal collection � of vertices such that for any u, 

v ∈ � there exists a non-empty path from u to v in �. In the context of dynamical systems 
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we refer to a recurrent component of ℱ as a Morse set of ℱ and denote it by ℳ ⊂ �. The 

collection of all recurrent components of ℱ is denoted by

�� ℱ : = ℳ p ⊂ � | p ∈ P

and is called a Morse decomposition of ℱ. Here P is an index set. Recurrent components 

inherit a well-defined partial order by the reachability relation in the directed graph ℱ. 

Specifically, we may write the partial order on the indexing set P of �� ℱ  by defining

q ≤ p if there exists a path in ℱ from an element of ℳ p to an element of ℳ q .

Primarily for clarity we note the following facts regarding recurrent components:

Proposition 3.13—Two elements ν, ν′ ∈ � belong to the same recurrent component of ℱ

if and only if there exist positive integers k, k′ such that ν′ ∈ ℱk
ν  and ν ∈ ℱk′(ν′). Distinct 

recurrent components are disjoint. Not every vertex need belong to some recurrent 

component. Recurrent components are strongly connected components. The only strongly 

connected components that are not recurrent components are singleton sets that do not have 

a self-edge.

Definition 3.14—The Morse graph of ℱ. denoted �� ℱ . is the Hasse diagram of the 

poset ( P, ≤). We refer to the elements of P as the Morse nodes of the graph.

In Figure 1(g) shows the strongly connected components of either of the three graphs (wall 

graph, domain graph and wall-domain graph) in Figure 1(d),(e) and (f) respectively. The 

Morse graph representation of the strongly connected components is in Figure 1(g) (h). The 

two Morse sets are not comparable and so the partial order P is empty.

We note that the computation of Morse graphs is feasible and can be accomplished via well-

known algorithms for strongly connected components [43] and transitive reduction [1]. In 

particular, for a directed graph with E vertices and V edges, we may compute strongly 

connected components in O(E) time and the reachability relation among strongly connected 

components in O(EV) time. In our setting, the number of edges is proportional to the 

number of vertices (i.e. E < 2dV). For the worst case of O(V) recurrent components this 

results in quadratic performance. However if the number of recurrent components is small 

(as we frequently observe) this becomes a linear time procedure.

Proposition 3.15—The Morse graphs induced by the wall graph, the wall-domain graph, 

and the domain graph are isomorphic.

Proof: In the wall graph, every incoming face maps to every outgoing face. Meanwhile in 

the wall-domain graph every incoming face maps to the cell which then maps to each of its 

exit faces. It follows that the reachability between faces in the wall graph and the wall-

domain graph is the same. What is more, every recurrent component in the wall graph either 

contains a face or else is an attracting domain. From this one may establish the isomorphism 
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between the Morse graph of a wall graph and the Morse graph of the wall-domain graph. 

Establishing the isomorphism of Morse graphs induced by the wall-domain graph and the 

domain graph is similar: we observe that the reachability between fundamental domains is 

the same in either and that each recurrent component must contain at least one domain. 

Combining these two isomorphisms gives the isomorphism from wall graph to domain 

graph. ■

In light of the previous result and the simplicity of the domain graph one might wonder why 

we should bother with the wall graph or wall-domain graph at all. The answer is two-fold. 

First, it is possible to refine our analysis so that in the wall graph not every incoming face (τ, 

κ) is mapped to every outgoing face (τ′, κ) for a cell κ. For example, consider Figure 2. In 

(a), we see the wall graph obtained in the present work in the situation of a 2D cell with two 

incoming and two exit faces arranged as indicated. However, for a particular parameter the 

actual trajectories would be captured to the diagrams sketched in (b) and (c). To achieve 

combinatorial descriptions capturing the additional information in (b) or (c) the domain 

graph is inadequate and it will be necessary to use notions such as the wall graph. We leave 

this to future work.

The idea of using symbolic representation of the dynamics of switching systems motivated 

the introduction of these systems in the 70’s [27, 28]. Our concept of a domain graph is 

analogous to the state transition diagram in these papers. The representation of dynamics by 

maps between walls, in a different context, has been used before [29, 17, 21, 16, 24].

Second, via more sophisticated constructions of the directed graph we can obtain 

information about unstable dynamics from the Morse graph. These constructions involve 

using lower-dimensional cells such as faces as vertices and will be detailed in a future work.

3.4. Annotation of Morse Nodes

In addition to recording the Morse graph for a parameter z ∈ Z it is possible to produce extra 

information in the form of annotations we associate with the Morse nodes of the Morse 

graph. We refer to this information, Morse graphs plus annotations, as a dynamical 

signature. Presently, we compute annotations for each Morse node based on the vertices 

present in the associated Morse set. We briefly describe these annotations. First, we say that 

a Morse set makes an xd transition if it contains vertices corresponding to cells with 

differing xd coordinates. We make annotations according to the set of transitions. In the 

simplest case, there are no transitions (we have only a single attracting cell) and we annotate 

the Morse set as a fixed point but respecting three subcases: (a) if the cell is located to the 

left of each threshold in all dimensions the Morse node is marked FP OFF (fixed point off); 

(b) if the cell is located to the right of at least one threshold in each dimension it is marked 

FP ON (fixed point on); (c) otherwise it is marked just FP. In the other extreme case every 

transition is made (i.e. x1, x2, …, xN). In this case we annotate the Morse node FC (for full 

cycle). Otherwise we annotate the Morse node according to the subset of variables for which 

there is a transition.
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4. Parameter Graph

The content of Sections 2 and 3 implies that given a regulatory network RN and a parameter 

z ∈ Z for the associated switching system (3) it is possible to create an annotated Morse 

graph.

Since two parameters z, z′ ∈ Z give rise to the same annotated Morse graph provided they 

give rise to the same wall-labeling (up to the equivalence indicated in Remark 3.3) it is 

natural to discretize parameter space according to regions that are guaranteed to give the 

same wall-labeling. How to accomplish this is the topic of this section. As indicated in the 

introduction, the final results are parameter graphs that are defined below.

The nodes of a parameter graph, which we denote by °. are meant to correspond to regions 

in parameter space and the edges are meant to indicate geometric relations between the 

regions. The resulting database of dynamic signatures can be viewed as a map

�µ:° ¾ÀÀ��,

where AnnMG denotes the collection of annotated Morse graphs. As indicated in Section 5, in 

applications queries to the database are often concerned with finding the set of nodes which 

correspond to a particular annotated Morse graph.

We remark that the parameter space Z ⊂ [0, ∞)D, as defined in Definition 2.7, is a semi-

algebraic set, i.e. it is expressed in terms of polynomial inequalities. To see this note that by 

Definition 2.3, Z is a semi-algebraic set and Z is the complement in Z of the set of 

parameters that satisfy any one of the equalities

0 = l j, i − u j, i, 0 = γi, 0 = θ j, i, 0 = l j, i, 0 = u j, i, 0 = θ j, i − θ j′, i for distinct j, j′ ∈ T i , or 0

= γiθ j, i − Λi κ where θ j, i defines a face of κ;

(8)

where κ ∈ � z  and by Remark 2.8 Λi(κ) can be expressed as a sum of monomials involving 

parameters.

We propose two conceptually different means of identifying Z with °. In Section 4.1 we 

describe an approach based on topological considerations; the basic elements are connected 

components of Z and their adjacency structure is defined in terms of closures of these sets. 

This gives rise to the Geometric Parameter Graph ( GPG).

In Section 4.2 we describe an approach that is explicitly computable; we consider subsets of 

Z described by systems of strict inequalities. We define an adjacency structure by 

considering reversing the direction of these inequalities one at a time. This gives rise to the 

Combinatorial Parameter Graph ( CPG).
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In Section 4.3 we present a decomposition of the geometric and combinatorial parameter 

graphs as a product of smaller graphs in a way which corresponds to the structure of the 

regulatory network. In Section 4.5 we compare the GPG and CPG graphs. There is a canonical 

graph homomorphism h : GPG → CPG induced from inclusion, but it is an open question 

whether or not this homomorphism is in fact always an isomorphism (i.e. we have not 

proven in general that these two approaches are equivalent). We are, however, able to give a 

class of networks for which GPG and CPG are known to be the same. Finally, in Section 4.4 

we will discuss the computation of combinatorial parameter graphs.

4.1. Geometric Parameter Graph

Because we are using the domain graph the state transition diagram ℱ ⋅ , z :� � is 

defined for each z ∈ Z and is completely determined by the wall-labeling (7). The ordering 

O and the wall-labeling is constant on connected components of Z. This motivates a 

combinatorialization of parameter space via the connected components, which we label by 

°. With this in mind we define the parameter nodes of the Geometric Parameter Graph 

( GPG) to be °. To complete the definition of the GPG we require a notion of adjacency for 

parameter nodes.

Definition 4.1—We say that a parameter value z ∈ Z is k-deficient if exactly k of the 

equalities of (8) are satisfied. Given a switching network (1) the associated geometric 

parameter graph GPG has vertices ° and edges (ζ, ζ′) if there exists z ∈ cl(ζ) ∩ cl(ζ′) such 

that z is 1-deficient. Here the closures cl(ζ) and cl(ζ′) are taken in Z.

Open Question 4.2—Does the concept of k-deficient parameter values naturally generate 

a regular CW-decomposition of Z where the elements of ° represent the cells of dimension 

D?

Adjacency in the GPG is meant to correspond to cells that share a D − 1 dimensional face. 

Extending this construction would provide a means of understanding the topology of regions 

of parameter space that are associated with specified dynamic phenotypes.

The following example illustrates the concept of the geometric parameter graph.

Example 4.3—Consider the simplest regulatory network RN = (V, E) where V = {1}, 1 → 
1, and M1(x) = x. The regulatory network is shown in Figure 3(a). Since the 1 → 1 edge is 

activating, the associated switching network takes the form

ẋ = − γx +
l if x < θ,

u if x > θ .
(9)

The associated phase space and subdivision is shown in Figure 3(b).

In particular, there are two cells κ1 := (0, θ) and κ2 := (θ, ∞). The dimension of the 

associated parameter space is D = 1 + 3 = 4 and
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Z = l, u, θ, γ | l < u, γθ ∉ l, u ⊂ 0, ∞ 4 .

Because of the simplicity of the problem, it is easy to enumerate all the state transition 

diagrams and compute the associated Morse graphs. Figure 3(c) indicates the annotated 

Morse graphs. Without the annotations Morse graphs MG(1) and MG(3) are equivalent and 

consist of a single node. However, in the process of the computation we can identify that the 

fixed point is in κ1 is less than the threshold, thus the node x is in an ‘off’ state. We denote 

this information by FP OFF. The annotated Morse graph includes this information at the 

node. Similarly, the annotated Morse graph MG(3) indicates that the fixed point is in κ2. We 

denote this information by FP ON. The Morse graph MG(2) has two minimal nodes generated 

by two attracting cells in one of which the fixed point is less than the threshold and in the 

other the fixed point is greater than the threshold. Again these fixed points are annotated FP 

OFF and FP ON, respectively.

The associated regions of parameter space, i.e. their defining inequalities, are indicated in 

Figure 3(d). Observe that there is a straight line in PN(i) from any point in PN(i) to the 

origin. Thus one can show that each region PN(i) is connected. Thus, the GPG contains 3 

nodes. Observe that if z ∈ Z satisfies γθ − u = 0, then z ∈ cl(PN(1)) ∩ cl(PN(2)) and 

similarly, if z ∈ Z satisfies γθ − l = 0, then z ∈ cl(PN(2)) ∩ cl(PN(3)). Thus, we have an edge 

between the nodes corresponding to PN(1) and PN(2) and an edge between the nodes 

corresponding to PN(2) and PN(3). Therefore, Figure 3(d) is the GPG for this example.

How to extend these arguments in Example 4.3 to more complicated regulatory networks is 

not obvious. However, consider Z′ := {(l, u, θ) ∈ [0, ∞)3 | (l, u, θ, 1) ∈ Z} ⊂ [0, ∞)3 and 

observe that characterizing Z′ is equivalent to characterizing the complement of the 

degenerate finite hyperplane arrangement [41]

{{v ∈ 0, ∞ 3|a ⋅ v = 0} |a ∈ A}

where

A = 1, 0, 0 , 0, 1, 0 , 0, 0, 1 , 1, − 1, 0 , 1, 0, − 1 , 0, 1, − 1 .

In this setting it is fairly easy to determine that Z′ consists of three unbounded connected 

components for which the origin is contained in their closures. However, we are interested in 

characterizing all of Z, which implies that we need to consider complements of the nonlinear 

equations −γθ + l = 0 and −γθ + u = 0. For a general regulatory network the dimension D 

grows linearly in the number of vertices and edges and the terms of Λ, while multilinear, 

may consist of higher dimensional products of the parameters. This implies that the problem 

of understanding Z is at least as challenging as that of determining the cells in a degenerate 

finite hyperplane arrangement. To deal with these complications, in the next subsections we 

turn to techniques from computational algebraic geometry. For now we content ourselves 

with the following result.

Cummins et al. Page 17

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2019 February 15.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Proposition 4.4—The GPG is a connected graph.

Proof: Our proof is based on finding a straight line path between points in any two 

parameter nodes from which we can prove the existence of a corresponding path in the GPG. 

The burden is to show we can avoid pathologies where (a) the straight line path passes 

through an accumulation of parameter nodes, or (b) passes from one parameter node to 

another through a point which is not 1-deficient. Since the parameter nodes are all in the 

strictly positive orthant, we only need to consider deficiencies arising from one of the 

following equalities being satisfied (the other equalities of (8) do not intersect the strictly 

positive orthant and need not be considered):

0 = l j, i − u j, i, 0 = θ j, i − θ j′, i for distinct j, j′ ∈ T i , or 0 = γiθ j, i − Λi κ where θ j, i

defines a face of κ;

(10)

Each of the equalities in (10) has a solution set in (0, ∞)D (for D := N + 3 · #(E)) which we 

show is a codimension-1 submanifold. To see this, let f1, f2,⋯, fk : (0, ∞)D→ℝ be the 

functions such that the equalities of (10) may be written fi = 0 for i = 1, 2,⋯, k, where k is 

the number of equalities in (10). We leave it to the reader to inspect (10) and see that the 

gradient of each fi (for each i = 1, 2, ⋯, k) is non-vanishing, i.e. 0 is a regular value of fi. By 

the Regular Value Theorem, the varieties f
i
−1 0  are thus codimension-1 submanifolds Si of 

(0, ∞)D for i = 1, 2, ⋯, k.

We consider a collection of line segments ℒ = ℒa ⋃ ℒb where ℒa denotes the collection of 

line segments which intersect ⋃i = 1
k

S
i
 infinitely often, and ℒb denotes the collection of line 

segments which intersect ⋃i≠j Si ⋂ Sj (i.e. any two of the submanifolds at the same point). 

Describing line segments by their endpoints we regard ℒ as a subset of (0, ∞)2D. We make 

the following technical claim: ℒ is a set of zero measure. We show this by proving both ℒa 

and ℒb have zero measure. Note this corresponds to showing the pathologies (a) and (b) are 

rare.

To see that ℒa has zero measure, observe first that the union of finitely many codimension-1 

submanifolds ⋃i = 1
k

S
i
 has measure zero. It follows that the collection of line segments with 

either endpoint in ⋃i = 1
k

S
i
 has measure zero. For any line segment with endpoints p and q 

which are both not in ⋃i = 1
k

S
i
, we consider its parameterization s : [0,1] → (0, ∞)D 

defined by s(t) := (1 − t)p + tq. The compositions fi(s(t)) are polynomials in t which are not 

identically zero. By the Fundamental Theorem of Algebra they each have a finite number of 

zeroes. Since the zeros correspond to the intersections of the segment with the submanifolds, 

the segments are not in ℒa. It follows that ℒa has measure zero.

To see that ℒb has zero measure, define fij : (0, ∞)D → ℝ2 via fij(x) := (fi(x), fj(x)) for i ≠ j. 

We leave to the reader to inspect (10) and verify that since for i ≠ j the set of variables 

appearing in the expressions for fi(x) and fj(x) are not the same, the gradients ∇fi|p and ∇fj|p 

are linearly independent for any p ∈ (0, ∞)D, i.e. the Jacobian Dfij|p has full rank. Thus 0 is 
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a regular value of fij. By the Regular Value Theorem, S
i
∩ S

j
= f

i j
−1(0) is a codimension-2 

submanifold of (0, ∞)D. It follows that the set of line segments intersecting Si ∩ Sj for some 

i ≠ j is measure zero. Hence ℒb has measure zero.

Consequently, we may always perturb a line segment by making arbitrarily small 

adjustments to the location of its endpoints so that it intersects the submanifolds defined by 

(8) finitely often, and never intersects two submanifolds at the same point. Now choose ζ, ζ′ 
∈ GPG and let p: [0, 1] Z be a straight-line path such that p(0) ∈ ζ and p(1) ∈ ζ′. Since ζ 
and ζ′ are open, there exist neighborhoods in which we may perturb p(0) ∈ ζ and p(1) ∈ ζ′; 

we use this freedom so we can assume without loss that the line segment p([0,1]) satisfies 

this technical property. By the first technical condition p(t) ∈ Z for all but finitely many t ∈ 
[0, 1] so there exists a finite sequence (ζ0 = ζ, ζ1, ζ2, ⋯, ζn = ζ′) through GPG 

corresponding to a finite sequence of intervals [t0 = 0, t1), (t1, t2), ⋯, (tn, tn+1 = 1] in [0, 1] 

for which p((ti, ti+1)) = ζn. By the second technical condition, p(t) only intersects one 

submanifold at a time, hence for each i = 1, ⋯, n the point p(ti) is a 1-deficient point in the 

intersection of the closures of ζi−1 and ζi. These facts together yield a path ζ = ζ0 → ζ1 → 
ζ2 → ⋯→ ζn = ζ′. Hence GPG is connected. ■

4.2. Combinatorial Parameter Graph

In this section we show how to assign to each parameter z ∈ Z a combinatorial description ϕ 
which is sufficient to construct the wall-labeling (and hence state transition diagrams) 

induced by z. We call this combinatorial description a combinatorial parameter and we 

denote the collection of combinatorial parameters by Φ. Importantly, we show that for every 

parameter node ζ ∈ °. for any z, z′ ∈ ζ, both z and z′ have the same associated 

combinatorial parameter ϕ ∈ Φ.

Our definition of combinatorial parameters is unfortunately somewhat technical. Overall it 

amounts to a bookkeeping system to keep track of the directions of the inequalities involving 

parameters which determine the threshold order and wall-labeling function. The threshold 

orderings give rise to inequalities comparing θ parameters. To determine the wall-labeling 

function requires comparing the various Λi to γiθj,i (which gives the signs in (7)). For a 

given regulatory network there are a fixed number of such comparisons required; our 

definition of a combinatorial parameter provides an organizational framework to speak of 

this collection of inequalities in a rigorous way.

Definition 4.5—Define the input combinations of the node xi to be the Cartesian product

ÒÀ
j
: = ∏

i ∈ S j

off,on .

Define the indicator function Ó
j
: 0, ∞ N

ÒÀ
j
 such that
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Ó
j, i

x =

off if i j and x
i

< θ
j, i

or if i ⊣ j and x
i

> θ
j, i

on if i j and x
i

> θ
j, i

or if i ⊣ j and x
i

< θ
j, i

undefined otherwise.

Define the valuation function v
j
:ÒÀ

j
ℝ

S
j via

v
j, i

A =

l
j, i

whenever A
i

= off

u
j, i

whenever A
i

= on

undefined otherwise.

Note that σ
j

= v
j
∘ Ó

j
. where σj is defined in (5).

Define the output combinations of the node i to be the set

ÔÕÖ
i
: = T i

where recall from Definition 2.1 that T(i) is the set of target nodes of i in the regulatory 

network RN.

Definition 4.6—A logic parameter is a function

L: ∐
i = 1

N

ÒÀ
i
× ÔÕÖ

i
−1, 1 .

We denote the restriction of L onto Ini × Outi as Li. An order parameter O is a collection of 

total orderings Oi of T(i) for each i ∈ X. A combinatorial parameter is a pair ϕ = (L, O) 

where L is a logic parameter and O is an order parameter. We denote the collection of 

combinatorial parameters as Φ. The combinatorial assignment function ω : Z → Φ is given 

by ω(z) := (L, O) where O = O(z) and

Li(A, B) = sgn(Mi ∘ vi(A) − γiθB, i) for all 1 ≤ i ≤ N . (11)

For all z ∈ Z, we say that ω(z) is the combinatorial parameter associated to the parameter z.

The parameter region associated with the combinatorial parameter ϕ is given by ω−1(ϕ) ⊂ Z 

and denoted by |ϕ|. A combinatorial parameter ϕ ∈ Φ is realizable if there exists z ∈ Z such 

that ϕ = ω(z).

Definition 4.7—Let ϕ = (L, O) ∈ Φ be a combinatorial parameter. Suppose z ∈ Z such that 

O = O(z). We may induce a wall-labeling on � z  as follows. Let (τ, κ) be a wall with 
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projection index i and switching index j. We say (τ, κ) is an outgoing wall with respect to ϕ 
if L

i
Ó

i
κ , j = − sgn τ, κ  and an incoming wall if L

i
Ó

i
κ , j = sgn τ, κ .

The next result shows we have successfully given a combinatorial description ϕ = ω(z) for 

each z ∈ Z.

Proposition 4.8—Let z ∈ Z. Define ϕ ∈ Φ such that ϕ = ω(z). Then the wall-labeling 

induced by z and the wall-labeling induced by ϕ are the same.

Proof: It suffices to show ϕ and z induce the same wall-labeling, which then in turn will 

induce the same wall graph. To this end it suffices to show for each wall (τ, κ) with 

projection index i and switching index j that (1) Li(χi(κ), j) = +1 is equivalent to Mi(σi(κ)) > 

γiθj,i, and (2) Li(σi(κ), j) = −1 is equivalent to Mi(σi(κ)) < γiθj,i. This follows from the 

definitions and (11). ■

We supplement combinatorial parameters with a notion of adjacency. To understand this 

notion of adjacency it helps to remember that a combinatorial parameter is nothing more 

than a bookkeeping system giving the direction of the inequality for a set of inequalities 

describing a region of parameter space. Our notion of adjacency corresponds to reversing a 

single one of these inequalities.

Definition 4.9—Let ϕ = (L, O), ϕ′ = (L′, O′) ∈ Φ be distinct combinatorial parameters. 

Denote the domains of L and L′ by Ø: = ∐i = 1
N

ÒÀ
i
× ÔÕÖ

i
. We say ϕ and ϕ′ are adjacent if 

either (1) O = O′ and there exists x ∈ Ø such that ϕ and ϕ′ are equal on all of Ø except x, or 

(2) L = L′, O
i

= O
i
′ for i ∈ V \ i∗, and the total orders O

i ∗ and O
i ∗′  differ only by a single 

swap of the ordering of consecutive thresholds.

The previous definition renders Φ into a large graph of combinatorial parameters. Since not 

every combinatorial parameter is realizable (i.e. in the image of ω) we are interested only in 

a subgraph.

Definition 4.10—The combinatorial parameter graph CPG is the undirected graph on the 

realizable combinatorial parameters with an edge between two parameter nodes ϕ and ϕ′ if 
and only if they are adjacent in the sense of Definition 4.9.

Example 4.11—To illustrate the idea of the combinatorial parameter graph, we return to 

the one node regulatory network, indicated in Figure 3(a), of Example 4.3. Recall that the 

switching network is (9); the phase space is indicated in Figure 3(b); and Figure 3(c) 

indicates the annotated Morse graphs. For the purposes of this example it is instructive to 

construct the collection of combinatorial parameters Φ and see which ones are realizable. 

There is only a single node, so

ÒÀ = off,on and ÔÕÖ = 1

and the order parameter is similarly trivial O = {θ}. The set of logic parameters are
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off, 1 − 1 and on, 1 − 1 (12)

off, 1 1 and on, 1 − 1 (13)

off, 1 − 1 and on, 1 1 (14)

off, 1 1 and on, 1 1 (15)

and therefore Φ contains four elements.

To determine the realizable combinatorial parameters we note that the indicator function 

Ó: 0, ∞ ÒÀ is

Ó x =

off if x < θ

on if θ < x

undefined otherwise

and the valuation function v : In → ℝ is

v A =
l if A = off

u if A = on .

Note that M is the identity and thus to understand the image of the combinatorial assignment 

function ω : Z → Φ we only need to consider

L A, B = sgn v A − γθ .

Observe that if A = off, then

L(off, 1) = sgn(l − γθ) =
−1 if l < γθ

1 if γθ < l

and if A = on, then

L(on, 1) = sgn(u − γθ) =
−1 if u < γθ

1 if γθ < u

Observe that if l < u < γθ, l < γθ < u, and γθ < l < u, then we obtain the combinatorial 

parameters with logic parameters (12), (14), and (15), respectively. Notice that the 
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combinatorial parameter with logic parameter (13) is not realizable since it would require 

γθ < l and u < γθ, which contradicts l < u. Thus CPG has three nodes. The edges are as 

indicated in Figure 3(d), since these correspond to the switching of a single inequality. Thus, 

as promised (see Theorem 4.18) the CPG agrees with the GPG of Example 4.3.

4.3. Product Structure of Parameter Graph

Both GPG and CPG have a product structure. To describe this structure we need to define 

what is meant by a product of graphs.

Definition 4.12—Given a collection of graphs {Gα}α∈J the graph product ∏α ∈ J
G

α
 is 

the graph with nodes which are J-tuples x such that xα ∈ Gα for α ∈ J and two J-tuples x 

and y are adjacent if and only if xα = yα for all but possibly one exceptional value α∗ ∈ J, 

and for that exceptional α∗, x
α

∗ and y
α

∗ are adjacent in G
α

∗.

Definition 4.13—For each i ∈ V, define the geometric factor graph GPGi to be the 

connected components of the complement of the solutions of the equalities

0 = l
j, i

− u
i, j

, 0 = γ
i
, 0 = θ

j, i
, 0 = l

j, i
, 0 = u

j, i
, 0 = θ

j, i
− θ

j′, i
for distinct j, j′ ∈ T(i), or 0 = γ

i
θ

j, i
− Λ

i
(κ)

where θ
j, i

defines a face of κ;

in

Z
i
: = {(l, u, θ, γ) ∈ [0, ∞ )1 + 3#T(i)} .

Two connected components are considered to be adjacent if they admit a 1-deficient point in 

the intersection of their closures.

Definition 4.14—Let i ∈ V. Define Φi to be the collection of pairs (Li, Oi) where Oi is an 

ordering of T(i) and Li is a function

L
i
:ÒÀ

i
× ÔÕÖ

i
− 1, 1 .

Define a function ωi : Zi → Φi via ω(z) := ϕi = (Li, Oi) whenever

Li(A, B) = sgn(Mi ∘ vi(A) − γiθB, i) . (16)

We say two elements ϕi, ϕi
′ ∈ Φ

i
 are adjacent if they differ in only one value. We say ϕi is 

realizable if ω
i
−1(ϕ

i
) is non-empty. We denote the subgraph of realizable elements in Φi as 

CPGi and call it the combinatorial factor graph.
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Theorem 4.15—For either PG = GPG or PG = CPG, we have the following factor 

decomposition:

Ú� = ∏
i = 1

N

Ú�
i
.

Proof: We show it first for the geometric parameter graph. First we demonstrate a one-to-

one correspondence between the vertices of ∏�Ú�
i
 and GPG. Observe that Z = ∏Z

i
. By 

straightforward topological arguments a connected component in Z is a product of connected 

components of Zi and vice-versa. This establishes a one-to-one correspondence of vertices 

between ∏�Ú�
i
 and GPG. Now we show that vertices ζ, ζ′ are adjacent in GPG if and only 

if they are adjacent in ∏�Ú�
i
. Assume first that ζ and ζ′ are adjacent in GPG. Then there 

exists a 1-deficient point in the intersection of their closure. At all such 1-deficient points 

there is a single equality of (8) which is satisfied; it involves parameters corresponding to a 

definite factor GPGi for some i. For all but a single exceptional i = i* we have πi(ζ) = πi(ζ′) 

and in the exceptional case π
i
∗(ζ) and π

i
∗(ζ′) are adjacent in �Ú�

i
∗. By Definition 4.12 this 

means ζ and ζ′ are adjacent in ∏�Ú�
i
. The converse more or less runs this argument in 

reverse. Hence �Ú� = ∏�Ú�
i
.

Next we show ÛÚ� = ∏ÛÚ�
i
. In this case it follows very immediately from the definitions; 

Φ = ∏Φ
i
 and the definition of adjacency in Definition 4.9 is compatible with Definition 

4.12. What remains is to see that a combinatorial parameter ϕ is realizable only if ϕi is 

realizable for all i ∈ V. To this end we leave it to the reader to verify from the definitions 

that ω−1(ϕ) = ∏ω
i
−1(ϕ

i
) from which the result follows. ■

The utility of this decomposition theorem is that it allows us a way of understanding 

parameter space piecewise; given a network we can consider a single node i that has n = 

#S(i) inputs, m = #T(i) outputs, and an associated logic function Mi. Given these three things 

we may construct the factor graph. Thus, we can store a library of such factor graphs once 

and for all, and given a network we can immediately understand the combinatorial 

decomposition of parameter space by assembling this product structure.

4.4. Computation of Parameter Graph

Theorem 4.15 allows us to construct parameter graphs as products of factor graphs, so the 

problem of computing a parameter graph reduces to the problem of constructing the factor 

graphs. In light of Proposition 4.4 the factor graph is connected so we may explore it, and 

hence construct it, via any graph traversal technique, e.g. breadth-first-search, depth-first-

search. To use this approach we require two ingredients: we must have a starting point, and 

we must be able construct the list of adjacent parameters.

For a starting point we may choose the combinatorial parameter ϕ = (L, O) where L ≡ −1 

and O may be chosen freely. This is guaranteed to be realizable: we obtain a realization if 
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we choose u, l, and γ values freely and then choose θ values in the desired ordering and 

sufficiently large so that Λi < γiθj,i for all (i, j) ∈ E.

To compute adjacency lists we first obtain from Definition 4.9 a list of candidate adjacent 

combinatorial parameters in Φ. Not every candidate adjacency is in CPG since not every 

combinatorial parameter is realizable. To obtain the adjacencies we filter the list of 

candidates in search of the realizable combinatorial parameters. In particular, we employ the 

computational algebra technique known as cylindrical algebraic decomposition (CAD) [14] 

which provides a finite, recursive description of the geometric region ζ′ associated with 

each candidate adjacent combinatorial parameter ϕ′ (i.e. ζ′ = ω−1(ϕ′)). Since ζ′ is given in 

terms of strict inequalities, we use the algorithm of [42] as implemented in Mathematica.

These algorithms can be quite expensive (worst case bounds are doubly-exponential in the 

number of variables) but are tractable for networks built out of components given in Table 1. 

From a CAD description of ζ′ we can determine if it is empty and hence if ϕ′ is realizable. 

If it is then ζ′ is added into list of adjacent vertices of CPG.

In this manner we can traverse the graph and construct the factor graphs, and hence the 

graph. Note that given a network component there is an #T(i)!-fold symmetry due to the 

number of possible rearrangements of the θ variable orderings; this can be used to reduce 

the number of CAD calculations; in particular we can compute the parameter graph only for 

a single ordering of thresholds and from this we can extrapolate the rest of the factor graph 

via symmetry in a straightforward manner. In particular, we can make a disjoint union of 

#T(i)! independent copies of the graph and then connect them together via adjacencies 

corresponding to swapping threshold orderings whenever none of the Λ values are between 

them.

Remark 4.16—As noted above CAD computations can be quite expensive. Currently we 

know of no general way of constructing a CPG graph without using CAD unless we are 

content with performing computations for combinatorial parameters which are not 

realizable, i.e. do not correspond to some actual parameter z ∈ Z. This may seem like a 

defect of this approach but we should emphasize that these CAD computations do not need 

to be repeated for each network we analyze. Rather, we construct a library of CAD results 

corresponding to each single node in a network with a given number of inputs, number of 

outputs, and logic. From this library of CAD computations we may analyze any network 

which may be built up from these components without doing any further computational 

algebraic geometry. Because this library has been constructed for all nodes of the form in 

Table 1, we may analyze any network built out of components with these node types without 

performing any additional CAD computations. The Mathematica scripts we executed to 

produce our library of CAD results may be found in the DSGRN software package [32].

4.5. Relationship between Geometric and Combinatorial Parameter Graphs

For all z, z′ ∈ ζ ∈ GPG, ω(z) = ω(z′), there is a well-defined map

h:�Ú� ÛÚ�
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such that ζ ↦ ω(ζ). Moreover, the existence of a 1-deficient point in the intersection of the 

closures of the connected components ζ, ζ′ ∈ Ƶ immediately implies h(ζ) and h(ζ′) are 

described by sets of inequalities which differ by only a single inequality reversal and hence 

are adjacent in CPG. This renders h into a graph homomorphism as it maps vertices to 

vertices and edges to edges. Note that h behaves nicely with the product structure indicated 

in the previous section.

Open Question 4.17—Is h in general an isomorphism?

An answer to the question ultimately comes down to two issues: (1) Are the geometric 

regions associated with the realizable combinatorial parameters connected? (2) Do the 

geometric regions associated with adjacent vertices of CPG always admit a 1-deficient point 

in the intersection of their closures? While we cannot at this time answer these questions in 

complete generality, we do have the following result and a method for checking specific 

cases.

Theorem 4.18—The homomorphism h is an isomorphism for regulatory networks for 

which each node in the regulatory network is described by an entry of Table 1.

Proof: By Theorem 4.15 it suffices to consider only the factor graphs; all that we must show 

is that

�Ú�
i

≃ ÛÚ�
i
.

This in turn becomes a finite computation for each entry of Table 1. In particular we use 

CAD to show the following:

1. For each ϕi ∈ CPGi, the associated geometric region is connected.

2. For each pair of adjacent ϕi, ϕi
′ ∈ ÛÚ�

i
. the associated geometric regions admit a 

1-deficient point in the intersection of their closures.

For (1), observe each node ϕi in CPGi is associated with a parameter region |ϕi| in Z defined 

by a collection of polynomial inequalities. These inequalities are obtained by writing 

threshold inequalities θ
j1, i

< θ
j2, i

 according to the threshold ordering Oi and by writing 

either Mi ○ vi(A) < γiθB,i or Mi ○ vi(A) < γiθB,i for each (A, B) ∈ Ini × Outi according to 

the sign of Li(A, B).

For (2), we consider the inequalities associated with adjacent parameters ϕi and with ϕ
i
′ in 

CPGi. These two sets of inequalities are identical apart from a single inequality with its sign 

flipped. Dropping this inconsistent inequality yields a set of inequalities ℐ describing a 

region in Z
i
 which contains the union of |ϕi| and |ϕ

i
′|. Since all the inequalities are strict, the 

solutions of ℐ comprise an open set. If this open set is connected, then as an open subset of 

Euclidean space it is also path-connected; in particular take any path from a point in |ϕi| to a 

point in |ϕ
i
′| in |ℐ|. By the intermediate value theorem it must pass through a point where 
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equality is obtained on the inequality ϕi and ϕ
i
′ disagree on (but on none of the other 

inequalities). Thus we have identified a 1-deficient point on the intersection of the closures 

of |ϕi| and |ϕ
i
′|.

Using Mathematica, we have performed these connectedness computations and verified (1) 

for each vertex and (2) for each adjacency of the factor graphs corresponding to network 

components indicated in the rows of Table 1. The scripts which accomplish these 

computations may be found in the DSGRN software package [32]. ■

5. Applications

We demonstrate the use of the DSGRN database with two elementary three-node networks, 

the repressilator and bistable repressilator models, and an example associated with the p53 

network. These databases, along with a growing number of other examples, can be found at 

the DSGRN database [32].

5.1. The Repressilator

We begin with the repressilator as shown in Figure 4(a) for two reasons: first, it is of 

biological interest in that it has been constructed in E. coli by [22]; and second, it is 

extremely simple as it consists of three genes that repress each other in a cycle and thus we 

can draw the entire parameter graph (see Figure 5).

Applying Definition 2.4 the switching equations for the repressilator take the form

ẋ1 = − γ1x1 + σ1, 3
− (x3)

ẋ2 = − γ2x2 + σ2, 1
− (x1) (17)

ẋ3 = − γ3x3 + σ3, 2
− (x2),

where the notation for the nonlinearities σ follows the notation of (5). We write σ− as a 

reminder that the interaction represents repression; the second choice in (5).

The repressilator model has a single regulatory threshold for each variable, dividing the 

phase space (which is the positive orthant of ℝ3) into 8 cells and 12 walls. The domain and 

wall graphs from Section 3.2 vary with parameter choice and therefore we start with 

discussion of the space of parameters and the parameter graph.

For each i the function σ
i + 1, i
−  representing the edge i → i + 1 is parameterized by three 

parameters ui+1,i, li+1,i and θi+1,i (i is taken mod 3). In addition there are three decay 

constants γ1, γ2, γ3. Therefore the parameter space Z ⊂ Z ⊂ ℝ12. To determine the 
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parameter graph we first construct the combinatorial parameter graph CPG using Factor 

Decomposition Theorem 4.15. For each factor of the CPG we use the Table 1. Since the 

repressilator model has a single threshold for each variable, the threshold orders Oi as in 

Definition 4.14 are trivial. The choice of logic Mi, see (4), is also trivial. Therefore for each i 

= 1, 2, 3 we consider the network node component in the first row in Table 1. The last 

column of the Table shows that #PGi = 3 for each variable xi. To make this explicit, for 

variable x2 these choices correspond to

l2, 1 < u2, 1 < γ1θ2, 1, l2, 1 < γ1θ2, 1 < u2, 1, and γ1θ2, 1 < l2, 1 < u2, 1 .

By the Factor Decomposition Theorem 4.15, the combinatorial parameter graph CPG has 33 

= 27 nodes and edges as shown in Figure 5 (left). Finally, by Theorem 4.18 the 

combinatorial and geometrical parameter graphs are the same and therefore Figure 5 (left) 

also indicates the geometric parameter graph GPG.

As indicated in Section 3.2 the domain and wall graphs and hence the the Morse graph 

(Definition 3.14) are potentially different at each of the 27 parameter nodes. However, for 

the repressilator there is a single Morse graph each consisting of a single node. This 

emphasizes the value of annotating the nodes of the Morse graph. As described in Section 

3.4 this annotation indicates whether or not the variables transition in the associated Morse 

set, and, if not, whether their values are high or low. As shown in Figure 6 in the 

repressilator the Morse graph can assume four different annotations: a fixed point, FP; a 

fixed point where all variables are above the threshold, FP ON; a fixed point where all 

variables are below the threshold, FP OFF; and a full cycle FC where all variables pass 

through their threshold. In Figure 6, the number of parameters associated to each Morse 

graph is listed, with 24 of the 27 exhibiting the Morse graph FP.

Returning to Figure 5 (left), which shows the entire parameter graph for the repressilator, 

each node is color-coded according to the associated Morse graph. We note that a single 

parameter node gives rise to this Morse graph FC indicating a periodic orbit. To further 

investigate the parameter set R FC ⊂ Z which is represented by this parameter node, the 

DSGRN database provides us with the set of inequalities that define R FC:

l1, 3 < γ1θ2, 1 < u1, 3

l2, 1 < γ2θ3, 2 < u2, 1 (18)

l3, 2 < γ3θ1, 3 < u3, 2 .

While this unique combination of parameters is represented by a single parameter graph 

node, R FC is clearly a substantial and unbounded component in the parameter space Z ⊂ 
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ℝ12. To see if R FC predicts well oscillations for a smooth repressilator model, we replace 

the switching model by a model that uses Hill function nonlinearities, which are closely 

related to the switching nonlinearities. Observe that for each z ∈ |ζ|, where ζ is a node in the 

parameter graph, there is a natural one parameter family of Hill functions. For an activating 

step function σ+(x) this takes the form

hn
+(x) = l + (u − l)

x
n

θ
n + x

n
, (19)

and for a repressing step function σ−(x) it takes the form

hn
−(x) = l + (u − l)

θ
n

θ
n + x

n
(20)

where the undetermined parameter is the Hill exponent n. Note that

lim
n ∞

h
n
±(x) = σ

±(x)

pointwise for all x ≠ θ.

We sample a point from R FC that satisfies the inequalities (18), select a Hill exponent, and 

simulate a Hill function model with these parameters.

ẋ1 = − x1 + 0.5 +
1

1 + x3
n

= − x1 + g3(x3)

ẋ2 = − x2 + 0.5 +
1

1 + x1
n

= − x2 + g1(x1) (21)

ẋ3 = − x3 + 0.5 +
1

1 + x2
n

= − x3 + g2(x2)

The choice of n will affect the dynamics, and so it is important to choose an n large enough 

so that the Hill function model (21) is reasonably representative of the switching model (3). 

For the repressilator, there is analysis available that allows us to suggest the minimum 

allowable n, which we calculate below. Tyson and Othmer [46] proved a necessary secant 

condition for stability of a global fixed point E in an I-dimensional cyclic feedback system 

(see also Thron [44]), given by
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|g1′ (E)⋯g
I
′ (E)|

γ1⋯γ
I

< sec
π

I

I
,

where the Jacobian of the system is

−γ1 0 0 … 0 g
I
′ (E)

g1′ (E) −γ2 0 … 0 0

0 g2′ (E) −γ3 … 0 0

…          

0 0 0 … g
I − 1′ (E) −γ

I

.

This condition is sharp when all of the decay rates are equal which is the case here.

Applying this condition to (21), we see that for the equilibrium is E = (1, 1, 1) the secant 

formula becomes

|g1′ (1)g2′ (1)g3′ (1) | < sec
π

3

3
. (22)

It is readily verified that g
i
′(1) = − n/4 so that (22) takes the form

n
3 < 4323

and therefore E = (1, 1, 1) is stable when n < 8. Since the condition is sharp, it is easy to 

show that at n = 8 there is a Hopf bifurcation at which the equilibrium destabilizes and a 

stable periodic orbit is born. So for n > 8 in (21), there is a stable periodic orbit. In Figure 5 

(right) we show a periodic orbit for n = 9.

5.2. The Bistable Repressilator

The bistable repressilator is slightly more complicated than the repressilator in that it has an 

additional negative feedback. Figure 4 represents these regulatory networks in graphical 

form. Because of the double feedback loop we expect that for appropriate parameter values 

this system may exhibit bistability, hence the name. The associated switching system is 

given by

ẋ1 = − γ1x1 + σ1, 2
− (x2)σ1, 3

− (x3)

ẋ2 = − γ2x2 + σ2, 1
− (x1) (23)
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ẋ3 = − γ3x3 + σ3, 2
− (x2) .

The logic Mi for each node is trivial except for the first equation, where we have chosen 

AND logic, i.e. the negative influences of x2 and x3 are multiplicative.

In the bistable repressilator the variable x2 represses both x3 and x1, and so there are two 

choices for O2, θ3,2 < θ1,2 or θ1,2 < θ3,2. Because of the extra threshold in the bistable 

repressilator, there are 12 cells and 20 walls dividing the phase space.

The parameter space Z ⊂ ℝ15 and we seek to understand the geometric parameter graph GPG 

that represents arrangement of components of Z. To construct the combinatorial parameter 

graph CPG we again consult the Table 1. The variable x1 has 2 inputs, 1 output and the logic 

is multiplication; this corresponds to row 6 in the Table and hence #PG1 = 6. The variable x2 

has 1 input and 2 outputs and so it correspond to row two. However, since the last column in 

Table 1 lists #PGi divided by all possible permutations of output variable thresholds, #PG2 = 

12. Finally, the variable x3 has one input and one output, which corresponds to the first row 

and thus #PG3 = 3. By the Factor Decomposition Theorem 4.15, the CPG has 6∗12∗3 = 216 

parameter nodes and by Theorem 4.18 the CPG and geometrical parameter graphs GPG are 

the same. Since the parameter graph is sizable we only show in Figure 7 half of the 

parameter graph corresponding to one of the two orders of the thresholds in O2 (θ3,2 < θ1,2).

Using very similar annotation to the repressilator, there are seven distinct classes indicated in 

Figure 8. For simplicity in Figure 7 we group the annotations FP, FP ON, and FP OFF 

together and call this group FP. We further group the parameter nodes based on the 

following four annotations: type A nodes have Morse graph with a single fixed point FP; 

nodes in class B have a Morse graph with two fixed points FP, and hence signal the presence 

of bistability; nodes of type C have Morse graph FC; and nodes of type D have the Morse 

graph with the lower Morse set FP and the upper Morse set FC.

The collection of Morse graphs immediately signal the presence of richer dynamics across 

parameter space than for the repressilator system. In addition to the four Morse graphs seen 

in the repressilator example, there are two new dynamical signatures present: bistability (the 

existence of two stable fixed points, Type B) and an unstable full cycle with an attracting 

fixed point (type D). The comparison of Figures 6 and 8 shows that the addition of a single 

edge to a regulatory network RN can radically change the dynamical signature of RN across 

parameter space.

From Figure 8, we see that there are six parameter vertices with the Morse graph FC, which 

suggest a presence of a stable periodic oscillation. The DSGRN database provides us with the 

inequalities that define these regions in the parameter Z. For the purpose of illustration, we 

select one of them (parameter 151), which represents a region in Z ⊂ ℝ15 given by

l1, 2l1, 3 <
u1, 2l1, 3
l1, 2u1, 3

< γ1θ2, 1 < u1, 2u1, 3
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l2, 1 < γ2θ3, 2 < u2, 1 < γ2θ1, 2 (24)

l3, 2 < γ3θ1, 3 < u3, 2, .

The curly braces denote an undetermined (arbitrary) order: the relative order of u1,2l1,3 and 

l1,2u1,3 does not change the wall graph and hence the Morse graph as long as both remain 

below γ1θ2,1.

We sample this parameter region at the values γ1 = γ2 = γ3 = 1, li,j = 1, θ1,3 = 2, θ3,2 = 3, 

θ2,1 = 4, θ1,2 = 6, u1,2 = 2, u1,3 = 3, u3,2 = 4, and u2,1 = 5. Substituting these values into (20), 

we have the following system of smooth equations:

ẋ1 = − x1 + 1 +
6n

6n + x2
n

1 +
2n + 1

2n + x3
n

ẋ2 = − x2 + 1 +
4n + 1

4n + x1
n

(25)

ẋ3 = − x3 + 1 +
3n + 1

3n + x2
n

.

Results of the simulations are shown in Figure 9 for n = 10. There is no condition analogous 

to the secant condition that would provide an estimate for n that would produce a stable 

periodic orbit. Numerically, we found that at these parameter values n = 7 is sufficient for 

periodicity and n = 6 is not.

We want to finish this section with an important observation about a relationship between 

the parameter graph for the repressilator and the parameter graph for the bistable 

repressilator. Since the repressilator network is a subnetwork of the bistable repressilator, a 

natural question is whether there is a similar correspondence between their parameter 

graphs. To begin to answer this question we investigate the parameter node given by (24) in 

the bistable repressilator. We first note that because l2,1 < u2,1 < γ2θ1,2 the second 

component of any target point in the system 
σ2, 1

− ( ⋅ )

γ2
< θ1, 2. Therefore, perhaps after a 

transient, x2(t) < θ1,2 for all t ≥ T and some T > 0. Consequently, the value of the function 

σ1, 2
− (x2) will be u1,2 for all t ≥ T and x2 will effectively cease regulation of x1. Therefore the 

network that is effectively represented by this parameter node is not bistable repressilator, 
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but a repressilator where the edge from x2 to x1 is erased. This brings up a set of interesting 

questions about how to recognize subnetworks that are effectively represented by each node 

in the parameter graph, and whether it is possible to build parameter graphs of larger 

networks from parameter graphs of their subnetworks. The answers to these questions are 

beyond the scope of this paper but will be addressed in the near future.

5.3. p53 network

While the first two examples of this section were aimed at illustrating the main concepts of 

the paper on small networks, DSGRN is being used on larger and more complicated networks 

with greater biological urgency. We briefly comment on simulations of a subnetwork of the 

p53 signaling network from [37]. The point of including this model in this paper is to 

indicate the ease with which DSGRN handles a network of this size and then allows the 

dynamics to be interrogated.

As indicated in Figure 10 this network has 5 nodes and 8 edges and thus the parameter space 

Z ⊂ Z ⊂ ℝ29. As in the previous cases we construct the geometric parameter graph GPG by 

first computing the CPG using the factors listed in Table 1. This results in a GPG with 

803,520 nodes. Next we construct a DSGRN database over this parameter graph. This 

problem is quite tractable and the database construction took only 37 seconds on a Mid-2014 

Macbook Pro laptop (Intel Core i7-4870HQ CPU @ 2.50GHz). We note that for larger 

parameter graphs, our software can scale to HPC cluster environments, but in this case this is 

clearly not necessary.

We remark that there is interest in the question of stable oscillations in this system [26]. 

Given the size of the GPG, visualization is impractical. However, as indicated in the 

introduction DSGRN produces an SQL database. The query for a Morse graph with a minimal 

node annotated by FC identifies parameter nodes associated with stable recurrent dynamics 

where all the species pass thresholds. There are 6904 nodes in the GPG which satisfy this 

query, of which 3204 are associated with a Morse graph consisting of a single node.

Similar to the previous example we sample a parameter from the parameter region 

corresponding to one of these combinatorial parameters and perform a numerical simulation. 

But unlike the previous example, it is less obvious how to obtain such a sample. The 

parameter region is a semialgebraic set defined by a collection of strict inequalities which do 

not have an obvious solution technique. However as discussed in Section 4.4 we have 

computed cylindrical algebraic decompositions (CAD) of the semialgebraic sets describing 

combinatorial parameters. These descriptions give a more convenient representation of the 

semialgebraic set which allow us to readily produce solutions. For a rigorous account of 

cylindrical algebraic decompositions we refer the reader to [15] and [34], but we give a brief 

explanation as follows. First, the notion of cylindrical algebraic decomposition requires we 

impose an ordering on variables. With respect to an imposed variable ordering, a cylindrical 

component is a semialgebraic set described by a sequence of inequalities providing lower 

and upper bounds (either strict or non-strict) for each variable in sequence according to the 

imposed ordering. The lower and upper bounds for each variable are algebraic functions of 

the preceding variables, and the crucial property is that given valid choices for the preceding 
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variables the lower bound cannot exceed the upper bound (and hence there is always a 

choice for the next variable given choices of previous variables). This gives rise to a simple 

procedure for finding solutions points whereby we find a value for each variable in turn and 

substitute the variables we have chosen so far into the lower and upper bounds of the next 

inequality in order to choose the next variable. A cylindrical algebraic decomposition of an 

algebraic set S represents the set S as a disjoint union of cylindrical components. Applying 

this to the present situation, we present a CAD description of the semialgebraic set 

corresponding to a combinatorial parameter (which is indexed by our algorithms as node 

40535) in the p53 parameter graph. This description is given in Table 2. Notice we 

simplified the subscript notation. Each edge in the graph k → j is now associated to a single 

index, i, and each edge has three numerical values associated to it: Ui := uj,k, Li := lj,k, and 

Ti := γjθj,k. From this table we see there are three cylindrical components comprising the 

semialgebraic set in ℝ29. We remark that it is possible from CAD to decide connectedness 

[34] of the semialgebraic set though we omit details on how this is done. Choosing any 

column, numerical values U, L, and T can be iteratively chosen. For example in the top 

section, T7, L1, and L2 are chosen to be completely independent values. Then L3 is chosen to 

be less than an algebraic combination of those three values, followed by U1 dependent on 

the previous four values, and so forth. An acceptable geometric parameter will be found by 

iteratively choosing values from any one of the three columns (or connected components). 

The property that these are cylindrical components means this procedure cannot fail (i.e. no 

matter what choices are made, one cannot reach an inequality where the lower bound 

exceeds the upper bound and it is impossible to continue). A solution which can be found 

using this technique is given in Table 3. We also remark that the factorization of the GPG 

discussed in Section 4.3 is visible in the CAD description of Table 2. We have indicated this 

by partitioning the inequalities into sections with horizontal lines. For example, the top 

section describes the parameter for the factor graph of node p53, the second for node Chk2, 

etc.

As in the previous examples we perform a numerical simulation of this system using Hill 

functions. Using the CAD description of Table 2 we choose decay rates γi = 1 and the 

remaining parameters of the switching system as presented in Table 3. It remains to choose 

the Hill exponent n for each nonlinearity i.e. one exponent for each edge in the network. 

Setting all Hill exponents to be 8 the solution exhibits the oscillations depicted in Figure 11. 

The uniform choice of n = 6 does not produce oscillations, but many other choices, e.g. 

setting n = 2 for the connections Mdm2 → p53 and p53 → Mdm2 and n = 10 for all other 

nonlinearities also produces oscillations. It is worth noting that the peaks of p53 in Figure 11 

come slightly ahead of the peaks of Mdm2 which agrees with one of the key experimental 

observations in [37].

This last example is meant to indicate the usefulness of the CAD description of the nodes in 

parameter space. It provides a scheme for efficiently sampling parameter points with specific 

combinatorial properties. This opens the possibility for efficiently studying numerical 

simulations to understand finer structure of the dynamics that satisfies the local and global 

properties of the annotated Morse graph.
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Figure 1. 

(a) Regulatory Network (RN); (b) a set of equations with a particular choice of parameters 

for RN; (c) phase space; (d) wall graph; (e) domain graph; (f) wall-domain graph; (g) a set 

of strongly connected components of either of the wall, domain or wall-domain graph; (h) 

Morse graph representing strongly connected components.
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Figure 2. 

(a) Coarse wall graph where all incoming faces map to all exit faces. (b) Finer wall graph 

with a disallowed incoming-exit arrow from bottom to top. (c) Finer wall graph with 

disallowed arrow from left to right.
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Figure 3. 

(a) A self activating one node network. (b) Phase plane for switching network. (c) Annotated 

Morse graphs: MG(1) has a single node generated by an attracting cell for which the fixed 

point is less than the threshold and annotated by FP OFF; MG(3) has a single node generated 

by an attracting cell for which the fixed point is greater than the threshold and annotated by 

FP ON; and MG(2) has two minimal nodes generated by attracting cells in one of which the 

fixed point is less than the threshold and in the other the fixed point is greater than the 

threshold. (d) Parameter graph.
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Figure 4. 

Left: Repressilator. Right: Bistable repressilator.
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Figure 5. 

Left: Repressilator parameter graph with same-colored parameter nodes corresponding to 

the same Morse graph. Right: Hill function simulation for the repressilator satisfying the 

inequalities of parameter node 13 with li,j = 0.5, θi,j = 1.0, ui,j = 1.5 (see Equation (21)). The 

Hill exponent is n = 9.
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Figure 6. 

DSGRN Morse graphs for the repressilator and the number of parameter regions at which 

each Morse graph is realized.
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Figure 7. 

Bistable repressilator parameter graph with colors corresponding to partitioned Morse graph 

continuation classes. Class A: single stable fixed points; Class B: bistability; Class C: stable 

cycle; Class D: unstable cycle with a stable fixed point.
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Figure 8. 

DSGRN Morse graphs for the bistable repressilator.
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Figure 9. 

Hill function simulation for the bistable repressilator at parameter node 151. See the text for 

parameter choices. The Hill exponent is n = 10.
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Figure 10. 

Subnetwork of key species of the p53 signaling network.
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Figure 11. 

Hill function simulation for the p53 model at parameter node 40535. See the text for 

parameter choices. The Hill exponent for every nonlinearity is n = 8.

Cummins et al. Page 48

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2019 February 15.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Cummins et al. Page 49

Table 1

Network Node Components

#S(i) #T(i) Mi # PGi/#T(i)!

1 1 x 3

1 2 x 6

1 3 x 10

2 1 x + y 6

2 1 xy 6

2 2 x + y 20

2 2 xy 20

2 3 x + y 50

2 3 xy 50

3 1 x + y + z 20

3 1 xyz 20

3 1 x(y + z) 20

3 2 x + y + z 150

3 2 xyz 150

3 2 x(y + z) 155

3 3 x + y + z 707

3 3 xyz 707

3 3 x(y + z) 756
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Table 2

CAD description of a parameter node for the p53 Network.

Component 1 Component 2 Component 3

0 < T7 0 < T7 0 < T7

0 < L1 0 < L1 0 < L1

0 < L2 0 < L2 0 < L2

0 < L3 <
T7

L1 + L2
0 < L3 <

T7
L1 + L2

0 < L3 <
T7

L1 + L2

L1 < U1 ≤
L3(L1 − L2) + T7

2L3

L3(L1 − L2) + T7
2L3

< U1 <
T7 − L2L3

L3

L3(L1 − L2) + T7
2L3

< U1 <
T7 − L2L3

L3

T7 − L3U1
L3

< U2 <
T7 − L1L3

L3

T7 − L3U1
L3

< U2 < L2 − L1 + U1 L2 + U1 − L1 ≤ U2 <
T7 − L1L3

L3

L3 < U3 <
T7

L1 + U2
L3 < U3 <

T7
L2 + U1

L3 < U3 <
T7

L1 + U2

T7 < T8 < L3(U1 + U2) T7 < T8 < L3(U1 + U2) T7 < T8 < L3(U1 + U2)

0 < T2 0 < T2 0 < T2

0 < L5 0 < L5 0 < L5

0 < L6 <
T2
L5

0 < L6 <
T2
L5

0 < L6 <
T2
L5

L5 < U5 <
T2
L6

L5 < U5 <
T2
L6

L5 < U5 <
T2
L6

T2
U5

< U6 <
T2
L5

T2
U5

< U6 <
T2
L5

T2
U5

< U6 <
T2
L5

0 < T6 0 < T6 0 < T6

0 < U7 < T6 0 < U7 < T6 0 < U7 < T6

0 < L7 < U7 0 < L7 < U7 0 < L7 < U7

L7 < T4 < U7 L7 < T4 < U7 L7 < T4 < U7

0 < L4 0 < L4 0 < L4

L4 < U4 L4 < U4 L4 < U4

L4 < T1 < U4 L4 < T1 < U4 L4 < T1 < U4

T1 < T5 < U4 T1 < T5 < U4 T1 < T5 < U4

0 < T3 0 < T3 0 < T3

0 < L8 < T3 0 < L8 < T3 0 < L8 < T3
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Component 1 Component 2 Component 3

T3 < U8 T3 < U8 T3 < U8

We use the following numeric scheme to identify the edges: 1 = (ATM → p53), 2 = (Chk2 → p53), 3 = (Mdm2 → p53), 4 = (Wip1 → ATM), 5 = 

(ATM → Chk2), 6 = (Wip1 → Chk2), 7 = (p53 → Wip1), 8 = (p53 → Mdm2).

The upper values, lower values, and the thresholds (or product of threshold and decay rate) for each edge correspond to Ui, Li, and Ti respectively.

Example: The upper value associated with the edge (ATM → Chk2) corresponds to U5.
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Table 3

p53 Network parameters

Edge u-value l-value θ-value

ATM → Chk2 1 1/2 1/2

ATM → p53 7/8 7/32 1/4

Chk2 → p53 7/8 7/32 3/4

MdM2 → p53 7/8 21/32 1

Wipl → ATM 1 1/2 1/2

Wipl → Chk2 2 1/2 2

p53 → Mdm2 2 1/2 1127/1024

p53 → Wilpl 1 1/4 539/512
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