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Combinatorial-State Automata and Models of

Computation

Curtis Brown

Trinity University

cbrown@trinity.edu

Abstract

David Chalmers has defended an account of what it is for a physical system to imple-

ment a computation. The account appeals to the idea of a “combinatorial-state automaton”

or CSA. It is not entirely clear whether Chalmers intends the CSA to be a full-blown com-

putational model, or merely a convenient formalism into which instances of other models

can be translated. I argue that the CSA is not a computational model in the usual sense

because CSAs do not perspicuously represent algorithms, and because they are too pow-

erful both in that they can perform any computation in a single step and in that without so

far unspecified restrictions they can “compute” the uncomputable. In addition, I suggest

that finite, inputless CSAs have trivial implementations very similar to those they were

introduced to avoid.

keywords: Combinatorial-state automaton, computational model, implementation, Tur-

ing machine
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1 Introduction

It is a commonly held view in the cognitive sciences that cognition is essentially computation.

If this idea is to be explanatorily useful, however, there must be an objective account of when

a physical process implements a particular computation. Philosophers such as Hilary Putnam

(1988) and John R. Searle (1991) have questioned whether such an account is possible. Searle

and Putnam have both claimed that, on a standard understanding of implementation, any rea-

sonably complex physical system implements virtually any computation.1 Chalmers’s account

of implementation is specifically intended to refute such claims.

I will argue first that the abstract conception of computation that Chalmers introduces,

the combinatorial-state automaton or CSA, cannot be regarded as a full-blown computational

model. Although Chalmers may well never have intended it to be regarded in this way, it would

provide a more satisfying foundation for an account of implementation if it truly were a general

model of computation. I will also argue, second, that the account of implementation in terms of

CSAs does in fact allow for trivial implementations similar to those it was introduced to avoid.

2 Chalmers on Implementation

2.1 Implementation of Finite-State Automata

Let us begin with Chalmers’s definition of implementation for a finite-state automaton, or FSA.

An FSA with input and output has the following characteristics: A set of internal states S, one

of which is the “start state”; a set of inputs I; a set of outputs O; and a function from pairs of

an input and an internal state to another internal state and an output.2 Chalmers writes:

1Searle writes: “For any program and any sufficiently complex object, there is some description of the object
under which it is implementing the program. Thus for example the wall behind my back is right now implementing
the Wordstar program, because there is some pattern of molecule movements that is isomorphic with the formal
structure of Wordstar” (Searle 1991, pp. 208-209).

2Sometimes this is treated as a pair of functions, one from pairs of an input state and an internal state to the
succeeding internal state, and one from internal states to outputs.
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A physical system P implements an FSA M if there is a mapping f that maps

internal states of P to internal states of M , inputs to P to input states of M , and

outputs of P to output states of M , such that: for every state-transition relation

(S, I) → (S ′, O′) of M , the following conditional holds: if P is in internal state s

and receiving input i where f(s) = S and f(i) = I , this reliably causes it to enter

internal state s′ and produce output o′ such that f(s′) = S ′ and f(o) = O′.

The state-transition function for an FSA determines how the FSA moves from state to state.

This definition of implementation requires the corresponding transitions from physical state to

physical state in the physical system to be reliably caused. This means not only that a given state

does cause the relevant next state every time it occurs, but also that, even if a state never actually

occurs, it would cause the appropriate next state if it were to occur. By requiring this sort of

reliable causation between physical states, Chalmers’s definition of implementation constrains

physical implementations more tightly than Putnam’s does, and in a clearly appropriate way.

However, Chalmers shows in detail that a more restricted version of Putnam’s and Searle’s

conclusion can still be established. I will consider Chalmers’s discussion of this point in the

special case of a finite-state automaton without input or output, in part because this is the

simplest case and in part because I will make use of this result in my criticism of Chalmers’s

own model.

In the case of an FSA without input or output, the state-transition function is simply a

function from states to states. Chalmers shows that for any suitably complex physical system

that satisfies two simple conditions, we can find a mapping function from states of the physical

system to states of the FSA such that the causal relations between the physical states mirror the

formal relations between the abstract states of the FSA. The first condition is that the physical

system must include what Chalmers calls a “clock.” By this he means simply that a part of

the physical system changes reliably from state to state in a non-repeating way, so that each

total state of the physical system causes the succeeding state, and no later state is identical with
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any earlier state. The second condition is that the system has what Chalmers calls a “dial,”

which simply means that the system has a component that can be in many different states such

that when the dial is in a particular state it tends to remain in that state, and the dial states do

not affect the operation of the clock. This could be a literal dial or counter (unconnected to

anything else), or we could simply treat a system as including marks we could draw on it, for

example tally marks.

Suppose we now want to construct a physical implementation of the following simple FSA.3

1

2

34

5

For vividness, our implementation will consist of an actual digital clock with a manually ad-

justable dial attached to the top. We will set the dial to 1, start the clock at 12:00, and let it

run for a few minutes. (For simplicity I assume that time progresses digitally in one-minute

increments.) We obtain the following sequence of total physical states of our clock-dial com-

bination:

12:00, 1 12:01, 1 12:02, 1 12:03, 1

Now, we also know that, if we had set the dial to 2 or 3 instead of 1, the system would have

gone through a sequence of states exactly the same as the sequence it did go through, except

for the dial setting. So we also have the following counterfactual dependencies:
3To give us something other than a simple straight-line FSA, I have allowed the FSA to have multiple starting

states.
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12:00, 3 12:01, 3 12:02, 3 12:03, 3

12:00, 2 12:01, 2 12:02, 2 12:03, 2

We can now apply Chalmers’s strategy for constructing a trivial implementation as follows.

We will associate each state of the FSA with a set of physical states. We begin with the starting

state of the actual run of our physical system, namely the state [12:00, 1], and one of the starting

states of our FSA, let’s say state 1. We associate abstract state 1 with physical state [12:00, 1].

According to the state transition function for the FSA, state 1 is followed by state 2, while in

the physical system, state [12:00, 1] is followed by state [12:01, 1]. So state 2 is associated

with [12:01, 1] and state 3 with [12:03, 1]. We still do not have physical states associated with

FSA states 4 or 5. But we want the physical system to have possible states corresponding to

these abstract states, and we want counterfactual causal dependencies in the physical system to

correspond to the paths through the FSA starting with states 4 or 5. So we next consider what

would have happened if the dial had been set to 2. We associate abstract state 4 with physical

state [12:00, 2]. Abstract state 4 is followed by state 2, and physical state [12:00, 2] is followed

by physical state [12:01, 2], so we need to associate state 2 with [12:01, 2]. State 2 now has two

associated physical states: [12:01, 1] and [12:01, 2]. Moreover, as before, state 2 is followed by

state 3, so we need to associate state 3 with [12:02, 2]. This second path through the FSA still

has left us without a physical state to associate with starting state 5, which leads to state 3, so

we associate 5 with [12:00, 3] and 3 with [12:01, 3]. We now have the following associations:
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abstract state physical states

1 {[12:00, 1]}

2 {[12:01, 1], [12:01, 2]}

3 {[12:02, 1], [12:02, 2], [12:01, 3]}

4 {[12:00, 2]}

5 {[12:00, 3]}

The mapping f from physical states to abstract states thus determined is many-to-one, since

e.g. f([12:02,1]) = f([12:02,2]) = f([12:01,3]). We could simply leave matters like this,

but it is natural to take a further step. Let R(s, s′) be the relation physical state s bears to

physical state s′ if and only if f(s) = f(s′). Clearly R is an equivalence relation, and we

can regard the equivalence class [s]R as a more abstract physical state type: the state type that

the system is in if and only if it is in any one of the more specific states in the equivalence

class. This is what Chalmers means when he discusses “a grouping of physical states of the

system into state-types” (Chalmers 2011, p. 328), and it is clearly these “grouped state-types”

he has in mind when he writes that “the relation between an implemented computation and an

implementing system is one of isomorphism between the formal structure of the former and the

causal structure of the latter” (Chalmers 2011, p. 333).

Given the mapping from physical states to abstract ones, the clock-and-dial physical system

meets Chalmers’s criterion for being an implementation of the FSA with which we began.

2.2 Combinatorial-State Automata

It seems obvious that something has gone wrong; it should not be this easy for a physical sys-

tem to implement a computation. But what exactly is the problem? Chalmers’s suggestion is

that an inputless FSA is too simple to provide a model of the kind of computation that underlies

cognition. He points out that an FSA with input and output will be somewhat more difficult to

implement, but shows that implementations will still be easier to come by than one would like.
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Again his conclusion is that the model is too simple and unstructured. Chalmers writes: “The

real moral . . . is that even simple FSAs with inputs and outputs are not constrained enough

to capture the kind of complex structure that computation and cognition involve. The trouble

is that the internal states of these FSAs are monadic, lacking any internal structure, whereas

the internal states of most computational and cognitive systems have all sorts of complex struc-

ture” (Chalmers 1996a, p. 324). Chalmers then introduces a model to attempt to capture this

internal structure, the model of the “combinatorial-state automaton,” or CSA. The CSA can be

described in exactly the same way as an FSA, except that all input states, internal states, and

output states are described as vectors rather than structureless states; that is, each state is re-

garded as having substates. A given internal state S will be viewed as a vector [S1, S2, . . . Sn],

and similarly for input and output states.4 And the account of implementation is also a straight-

forward generalization of that for FSAs: for a physical system to implement a CSA, it must

have states with substates that map to substates of the CSA, and state-transition rules in the

CSA must correspond to reliable causal dependencies in the physical system. More precisely,

to again quote Chalmers,

A physical system P implements a CSA M if there is a vectorization of internal

states of P into components [s1, s2, . . .], and a mapping f from the substates sj into

corresponding substates Sj of M , along with similar vectorizations and mappings

for inputs and outputs, such that for every state-transition rule ([I1, . . . Ik], [S1, S2, . . .]) −→

([S ′1, S ′2, . . .], [O1, . . . , Ol]) of M : if P is in internal state [s1, s2, . . .] and receiving

input [i1, . . . , ik] which map to formal state and input [S1, S2, . . .] and [I1, . . . , Ik]

respectively, this reliably causes it to enter an internal state and produce an output

that map to [S ′1, S ′n, . . .] and [O1, . . . , Ol] respectively (Chalmers 2011, p. 331,

one small typo corrected).

4To capture the full power of a Turing machine, the internal states must be allowed to have infinitely many
components, but Chalmers considers primarily the finite case.
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Chalmers offers this as a general account of implementation: any abstract computation can

be redescribed in terms of CSA state-transitions, so that the above definition of implementation

can be applied to any abstract computation whatsoever. Moreover, he argues that the new model

avoids the triviality proofs for implementations of finite-state automata.

3 Against the CSA as a Computational Model

There are two ways one might interpret the CSA model. First, it could be intended to be a

general model of computation, in the same way that Turing machines or register machines are

models of computation. Second, it could be intended, not as a computational model in its own

right, but as a convenient formalism for redescribing computations from a variety of specific

models, in order to be able to state conditions on implementation in a way that will apply to all

of them. I will argue that the CSA cannot play the former role, and that, although it may be

able to serve the latter, more modest role, this may not be as advantageous as it first appears.

In many ways the former interpretation of the CSA, as a full-fledged computational model,

is a very attractive one. There have been many proposals for making the abstract idea of a

computation precise, including Turing machines, register machines, abacus machines, Post

production systems, and more. All of these have turned out to be equivalent, in the sense that

they can compute exactly the same functions. In another sense, though, they are not equiva-

lent: although a Turing machine and a register machine can each compute, say, f(x) = x!, the

procedures used to compute the function will be quite different in the two cases. Each specific

model of computation suggests a fairly restrictive physical implementation; for example, a Tur-

ing machine is thought of as having a read/write head that travels back and forth on a tape that

is divided into squares. The idea of a CSA could be seen as abstracting away from such details,

offering a completely general account of computation that is not restricted to any particular

kind of physical implementation. On this interpretation, the CSA would have two important

characteristics: (a) it would respect the differences between different computational models:
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the CSA transcription of a TM that computes a given function will be different from the CSA

transcription of a register machine that computes the same function. But, unlike the familiar

models, (b) it would be general enough to encompass them all. A TM cannot in any natural

way be represented as a register machine (although it can be simulated by one), but either can

be represented as a CSA. So the CSA seems to provide an attractive way of expressing the core

of computation without commitment to any specific kind of physical implementation.

Models of computation typically have two aspects. First, there is an intuitive picture of the

essential features of computing, which includes an account of the basic capacities and activities

involved in carrying out a computation. These are quite different from one model to the next:

the basic capacities in the Turing machine model involve such activities as writing or erasing a

symbol and moving to the right or left; the Markov model involves basic activities such as pat-

tern matching and substitution, and so on. Second, the intuitive picture guides the construction

of a formal mathematical model. These are quite different from one computational model to

the next, but each of them construes a model as a kind of set-theoretic construction, a sequence

of parameters whose values must satisfy certain constraints.5 The CSA certainly counts as a

model in the sense of a set-theoretic construction. But there is no intuitive conception of com-

putation underlying it. As a result, I will suggest in section 3.1, it does not offer a perspicuous

way of explaining or understanding computations. The lack of an intuitive picture underlying

the set-theoretic construction may also be the reason that the constraints placed on the model

do not yet rule out “computing” the uncomputable, as I will suggest in section 3.2.

3.1 First Problem: Lack of Perspicuity

If we consider how to translate a TM description into a CSA description, we may begin to

wonder whether something has gone wrong. Consider the following very simple two-state

5I am drawing here on R. Gregory Taylor’s helpful section “What is a Model of Computation?” (Taylor 1998,
pp. 342-344). Taylor suggests that the existing models of computation are so varied that there is no core of
essential features common to them all: “the most that can be said is that the various models . . . exhibit certain
family resemblances” (Taylor 1998, p. 344).

9



Turing machine. If started on the leftmost of a string of 0 or more 1’s, it will move to the

right, add a 1, and then move back to the left to halt on the first blank space before the 1’s. We

could think of it as computing the function f(n) = n + 1. (For simplicity I ignore the usual

convention that the head must halt on the leftmost stroke of the resulting block.)

1

1:R

2
B:1

1:L

How should this Turing machine be described in the CSA formalism? A state of the CSA

will be a vector with components for each square of the TM and a component for the internal

state of the TM. To keep things simple, let us restrict our TM to a tape with only three squares.

Each square will either be blank or contain a 1, and any combination of blanks and 1s will be

a possible state of the tape. This gives us eight possible states so far. States must also have a

component to represent the internal state of the TM; since our TM has two possible internal

states, we now have 8× 2 = 16 states. Finally, a CSA state needs to indicate the position of the

TM’s read/write head. The head must be on one and only one square of the tape, so we have a

grand total of 16× 3 = 48 distinct states the CSA can be in.6

In the general case, CSAs may have inputs and outputs as well as internal states. But this is

not required to represent a Turing machine. There is no output aside from the final state of the

tape. Chalmers suggests that the TM be regarded as having input only once, when it starts, but

we can equally well regard it as having no input at all if we treat every state as a starting state,

6The simplest way to represent the position of the head would be to add another component to the state vector
and use it to indicate the number of the square on which the head is located. But this would not work if we allowed
infinite vectors, which we need to fully represent a TM. Chalmers suggests letting the components for squares of
the tape be ordered pairs of a symbol and a yes/no value indicating whether the head is on the square. If we do this
we need to add a restriction specifying that only one square can have the value “yes.” In my state-transition table
below I depict the position of the head pictorially without worrying about the precise set-theoretic representation
of this information.
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since the input is also simply a distribution of symbols on the tape.

Finally, in addition to state vectors (and input and output vectors if necessary), a CSA

must have a state-transition function. Since we do not need inputs and outputs for our TM

representation, we can regard this function as simply a function from state vectors to state

vectors. A function is simply a set of ordered pairs, so the most obvious way to represent

such a function is to list every such pair. Equivalently, we can regard each ordered pair as a

state-transition rule stating that its first member must be followed by its second member. Call

a description of a CSA by means of such a complete list an exhaustive listing. In the present

case we will have 48 such rules, one for each state of the CSA. Table 1 is the exhaustive listing

for the Turing machine we are discussing.

The first thing to notice about this listing is that it seems rather long as a way of character-

izing a Turing machine that we could describe very briefly and simply! And of course this is

the description for a machine with a tape only three squares long; every additional square of

tape will double the number of possible states, so that to represent a machine with a tape of,

say, 1000 squares, we will need more than 21000 states, or around 10300, and the same number

of state-transition rules in an exhaustive listing.

Another way to get a visual impression of the decrease in perspicuity that results from

redescription as a CSA is to consider a state-transition diagram. Notice that our CSA transcrip-

tion of the simple Turing machine has absorbed the Turing machine’s tape into its internal state,

so that the CSA has no input or output.7 But this means that in a sense the CSA just is a giant

inputless FSA. We can give the same sort of state-transition diagram for the CSA that we can

for an FSA, treating the vectors that constitute the internal states as a way of labeling states of

the FSA. The state-transition diagram of the machine we are considering consists of a number

of non-intersecting diagrams. Many of these are one- or two-state dead ends; these are shown

7We saw earlier that we do not even need input at the first step if we regard the CSA as having multiple starting
states.
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Table 1: CSA Transcription of Simple Turing Machine

[ 1 1 1 1 ] −→ [ 1 1 1 1 ]

[ B 1 1 1 ] −→ [ 1 1 1 2 ]

[ 1 1 B 1 ] −→ [ 1 1 B 1 ]

[ B 1 B 1 ] −→ [ 1 1 B 2 ]

[ 1 B 1 1 ] −→ [ 1 B 1 1 ]

[ B B 1 1 ] −→ [ 1 B 1 2 ]

[ 1 B B 1 ] −→ [ 1 B B 1 ]

[ B B B 1 ] −→ [ 1 B B 2 ]

[ 1 1 1 2 ] −→ [ 1 1 1 2 ]

[ B 1 1 2 ] −→ [ B 1 1 2 ]

[ 1 1 B 2 ] −→ [ 1 1 B 2 ]

[ B 1 B 2 ] −→ [ B 1 B 2 ]

[ 1 B 1 2 ] −→ [ 1 B 1 2 ]

[ B B 1 2 ] −→ [ B B 1 2 ]

[ 1 B B 2 ] −→ [ 1 B B 2 ]

[ B B B 2 ] −→ [ B B B 2 ]

[ 1 1 1 1 ] −→ [ 1 1 1 1 ]

[ B 1 1 1 ] −→ [ B 1 1 1 ]

[ 1 1 B 1 ] −→ [ 1 1 B 1 ]

[ B 1 B 1 ] −→ [ B 1 B 1 ]

[ 1 B 1 1 ] −→ [ 1 1 1 2 ]

[ B B 1 1 ] −→ [ B 1 1 2 ]

[ 1 B B 1 ] −→ [ 1 1 B 2 ]

[ B B B 1 ] −→ [ B 1 B 2 ]

[ 1 1 1 2 ] −→ [ 1 1 1 2 ]

[ B 1 1 2 ] −→ [ B 1 1 2 ]

[ 1 1 B 2 ] −→ [ 1 1 B 2 ]

[ B 1 B 2 ] −→ [ B 1 B 2 ]

[ 1 B 1 2 ] −→ [ 1 B 1 2 ]

[ B B 1 2 ] −→ [ B B 1 2 ]

[ 1 B B 2 ] −→ [ 1 B B 2 ]

[ B B B 2 ] −→ [ B B B 2 ]

[ 1 1 1 1 ] −→ [ 1 1 1 1 ]

[ B 1 1 1 ] −→ [ B 1 1 1 ]

[ 1 1 B 1 ] −→ [ 1 1 1 2 ]

[ B 1 B 1 ] −→ [ B 1 1 2 ]

[ 1 B 1 1 ] −→ [ 1 B 1 1 ]

[ B B 1 1 ] −→ [ B B 1 1 ]

[ 1 B B 1 ] −→ [ 1 B 1 2 ]

[ B B B 1 ] −→ [ B B 1 2 ]

[ 1 1 1 2 ] −→ [ 1 1 1 2 ]

[ B 1 1 2 ] −→ [ B 1 1 2 ]

[ 1 1 B 2 ] −→ [ 1 1 B 2 ]

[ B 1 B 2 ] −→ [ B 1 B 2 ]

[ 1 B 1 2 ] −→ [ 1 B 1 2 ]

[ B B 1 2 ] −→ [ B B 1 2 ]

[ 1 B B 2 ] −→ [ 1 B B 2 ]

[ B B B 2 ] −→ [ B B B 2 ]
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in Figure 1.8 Figure 2 shows the rest of the diagram, with paths extending to as many as six

states.

Now, what is the significance of this example? Let us consider two cases, first the case of

a finite CSA such as the example we have been considering, and second, an infinite CSA that

represents the same TM with an infinite tape. In the finite case it is tempting to say that the CSA

does not represent a general algorithm at all in the way that the TM does, because information

is actually lost in the redescription of a TM as a CSA. If you extend the tape of the TM, the

very same TM description will now characterize a machine that computes the same function

over a larger domain. But you cannot deduce from the state-transition function of a CSA how

it should behave if we add more substates to represent additional squares of tape. We could say

that the state-transition function of the CSA does not determine what mathematical function the

CSA is computing. We could try to find the simplest description of the general principles the

CSA is applying, and then use those general principles to project how the CSA should behave

if extended to represent a larger tape. But the state-transition function itself does not determine

this.

If we have an infinite CSA representing our TM with an infinite tape, then we will have

all the information we need to determine what mathematical function is being computed. In

this case, it may still be reasonable to say that the CSA does not represent an algorithm at all;

certainly it does not represent one perspicuously. The information about the TM algorithm

is present only in the same way that the laws of motion and gravitation would be present in

a complete description of all the possible trajectories of objects in the universe. We have a

complete listing of what the TM will do under every possible circumstance, but we have no

easy or automatic way to determine the general principles that underlie these actions.

8The node labels require some explanation. Each digit represents a separate component of the CSA state. The
first three digits represent the three squares on the tape. For these digits, ‘1’ means there is a one on the square and
the head is not in that position; ‘2’ means there is a one on the square and the head is positioned at that square; ‘5’
and ‘6’ represent a blank without and with the head, respectively.
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Figure 1: CSA Diagram, One- and Two-State Paths

5562

1562

1162

5521

1521

5121

5652

6552

6512

5211

6551 2552

6511 2512

5162

1652

14



Figure 2: CSA Diagram, Longer Paths
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A closely related way to look at the matter is to notice that a state of the CSA that de-

scribes the Turing machine represents what Turing called a “complete configuration” of the

machine, and what is now often called the state of a computation. The state transition rules

relate complete computational states, and taken as a whole they specify every possible course

the computation could take. So the state transition function in a sense gives us the results of

applying an algorithm rather than the algorithm itself.

3.2 Second Problem: Excessive Power

Without unspecified restrictions, CSAs are too powerful to count as a computational model.

There are at least two ways to see this point.

First, recall that Turing machines and other computational models were originally intro-

duced to try to provide a precise interpretation of the idea of an effective procedure or algorithm

for computing a function. Turing machines (and other models) have the following property: if

we can find a Turing machine that computes a given function, then we have found an effective

procedure for computing the function, and the TM description is a description of this proce-

dure. But this is simply not true for CSAs in general. There will always be a CSA which finds

the value of a function for any argument in some finite range in a single step. For instance, in

the case of the function f(x) = x + 1, which our simple Turing machine computes, we could

dispense with the component that lists the position of the TM head, keeping the n components

that represent squares of the tape and the component for the TM state. For every CSA state in

which the TM state component is 1 and m consecutive tape components contain ones while the

rest contain blanks, we will simply have a state-transition rule stating that the subsequent state

of the CSA has m+ 1 ones on an otherwise blank tape and the TM-state component is 2. Thus

all the work is done in state 1; state 2 is simply a halting state. The resulting CSA is no longer a

Turing machine, since we have dispensed with the head and can change more than one square

of the tape at a time. But it still satisfies the definition of a CSA, even though what it is doing
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hardly seems to count as computation at all. (It amounts to looking up the answer in a lookup

table, except that the lookup table is stored in the state-transition rules rather than in memory.)

Second, consider the case of a CSA whose states have an infinite number of components.

Chalmers explicitly allows this, as indeed he must if it is to be possible to have a CSA tran-

scription of a TM with an infinite tape.9 But now the state-transition function will need to be

able to take infinitely many arguments (so that an exhaustive listing would have infinitely many

state-transition rules). But once we allow the state-transition function to have infinitely many

arguments, it is hard to see how to prevent CSAs from being able to “compute” functions that

are in fact not computable! And clearly a model that permits “computation” of uncomputable

functions is not a good candidate for a model of computation.10

I hesitate to place too much weight on this point, since Chalmers only briefly mentions infi-

nite CSAs, and he does state that “restrictions have to be placed on the vectors and dependency

rules, so that these do not encode an infinite amount of information” (Chalmers 2011, p. 330).

Chalmers does not state what these restrictions might be, however. Clearly one way to specify

such restrictions would be to require that the CSA conform to the limitations of a Turing ma-

chine: the only square that can change is the one the head is on, and the position of the head

can only change by one square at a time. But we certainly do not want to impose the constraints

specific to Turing machines on the general notion of a CSA, since this would deprive it of its

ability to transcribe computational models other than Turing machines.

In some ways the most natural way to limit the class of CSAs to those that compute func-

tions that are “computable” in the usual sense might be to require that there be a way to give a

finite specification of the state-transition function. More precisely, it would be natural to require

that the state-transition function be effectively computable. But this solution would seem to rob
9It is often pointed out that a TM tape need not actually be infinite, but may only be unbounded. But it won’t do

to simply give a CSA an unbounded number of states, since this would make the state-transition rules impossible
to specify. This is another symptom of the fact that TM rules are general in a way that CSA state-transition rules
need not be.

10A closely related observation is that without further restrictions, a diagonalization argument will show that
the CSA has nondenumerably many possible states.
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the CSA formalism itself of interest as a computational model, since the work of guaranteeing

that what the CSA is doing is computable would in fact be done by an independent conception

of computability.

The problem of excessive power can be put in another way. Traditional computational

models begin with a highly restricted set of abilities, and then show that more and more complex

tasks can be performed by combinations of these basic abilities. It is precisely the fact that

complex tasks can be accomplished by complex applications of simple abilities that shows that

the tasks are computable. However, the CSA model in a sense moves in the exact opposite

direction. It begins with the ability to move from absolutely any state to absolutely any other

state, so that to guarantee that only computable functions can be captured, we have to impose

restrictions.

3.3 Third Problem: Trivial Implementations

The principal advantage of the CSA over the FSA is intended to be that CSAs are not similarly

susceptible of trivial implementations, such as the implementations consisting of a clock and a

dial considered earlier. Of course, a finite CSA is equivalent to an FSA, as Chalmers himself

points out. In fact the state-transition diagram displayed earlier can be construed as that of

an inputless FSA. Chalmers’s own argument, reviewed earlier, shows that there is a trivial

implementation of this inputless FSA by means of a clock and a dial. However, as Chalmers

points out, “the implementation conditions on a CSA are much more constrained than those

of the corresponding FSA. An implementation of a CSA is required to consist in a complex

causal interaction among a number of separate parts; a CSA description can therefore capture

the causal organization of a system to a much finer grain” (Chalmers 2011, p. 331).

However, if we adopt Chalmers’s official definition of implementation for a CSA, without

any additional restrictions, it is possible to implement a finite, inputless CSA in a physical

system in which there is almost no causal interaction at all between the subcomponents of
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the system. Consider the following simple modification of Chalmers’s technique for finding

trivial FSA implementations. Instead of implementing the CSA with a single clock and dial,

we will implement a CSA whose states have n components by means of a physical system

containing n clocks and n dials. Each component of the overall physical system will include

three subcomponents. The first two are the dial and the clock; for each component i from 1

to n the third subcomponent is simply an indicator that displays the numeral i, to distinguish

the state of this particular component from that of the other components, which otherwise will

be exactly similar. All of the clocks and dials will be linked in such a way that it is physically

necessary that they have the same reading; having different readings on different clocks or

dials will be physically impossible. One way to achieve this for the clocks, assuming they are

sufficiently accurate, is to simply synchronize them before running the system. A crude way to

achieve it for the dials, if they were literal dials with a round face and a hand, would be to link

all n of the hands with a bar which keeps them synchronized. Obviously more sophisticated

means would also be possible. Since each clock-plus-dial-plus-indicator state reliably causes

its successor state (a state with the same dial reading, the same state-indicator reading, and an

incremented clock reading), it will also be true that each overall state of the n-clocks-dials-

and-indicators will reliably cause its successor. We first focus on total states of the physical

system, using Chalmers’s procedure described in section 2.1 to construct an equivalence class

of physical states to correspond to each overall CSA state.

This gives us physical implementations for total states of the CSA, but we have not yet

specified physical implementations for the individual components of those states. Indeed, it

may seem backward to find implementations of the total state first, since the total abstract state

is a vector of abstract substates, and we would like its physical implementation to similarly

be a vector of physical states. However, once we have the physical implementations of total

CSA states, we can easily construct the implementations of their substates. We can specify

the grouped physical state type which implements (maps to) Si
j of CSA M , where this is a
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component that appears in many different total states of M , as follows. For every possible total

state S of M , if the ith component of that state has value j, we find the equivalence class of

physical states [p] which corresponds to S. For each pk in this equivalence class, the physical

state of the ith component of pk is one of the physical states which map to Si
j .

Of course, this mapping of physical states to substates of the CSA generates a lot of new

theoretical ways to physically implement a given CSA state. However, given the physical im-

possibility of the clock and dial settings of the physical substates differing from one another,

only a small number of the many theoretically possible implementations of a given total CSA

state will actually be physically possible. Indeed, every physical implementation of Si
j (that

is, every state in the equivalence class which implements Si
j) uniquely determines not only the

abstract state of the abstract component Si, but a total state of M , because knowing the clock

and dial readings of any physical component at a time suffices to determine the clock and dial

readings of all the other components at that time (since they are all required to be the same).

In some ways the basic idea here is similar to one that Chalmers considers (Chalmers 1996a,

p. 327). That strategy is to make the state of each component of an implementing system at a

time depend on the states of all of the components at the preceding time. Chalmers points out

that this strategy leads to a combinatorial explosion that would quickly require implementing

systems to become larger than the known universe. Despite the practical impossibility of such

trivial implementations, in the end Chalmers holds that additional (unspecified) constraints on

implementation are needed to rule them out (Chalmers 1996a, p. 329). If the trivial imple-

mentations proposed here do in fact meet Chalmers’s official definition of implementations of

CSAs, however, then the need for such additional constraints is even more pressing than he sug-

gests, since they would appear to be possible in systems that are not wildly large, and whose

histories are even more boringly uneventful than those of the systems he considers. It seems

quite clear that the physical systems involved are small enough and simple enough to be easily

constructed, and that they should not count as an implementations of interesting computations.
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What makes such trivial implementations possible is in part the fact that Chalmers’s official

definition of implementation appeals only to transition rules that link total states, not to more

local or general rules; and in part the fact that in the physical system I propose it is impossible

for the dial and clock readings of the various physical substates to differ from one another. One

might wonder whether this latter point somehow disqualifies the implementation. But there

doesn’t seem to be anything in the official definition of CSA implementation which rules out

this sort of causal connection between the physical substates of the overall system, and it is not

clear what constraint one might add to rule it out. There cannot be a general prohibition on

causal connections between subcomponents, since we want the various components of a TM

implementation, for example, to interact. Nor can there be a prohibition on causal connections

that are not required by the nature of the abstract machine being implemented; for instance, in a

crude physical implementation of a TM, there can surely be no objection to the read-write head

compressing the square of the tape it rests on, even though this is not required by the abstract

specification of the TM. We might wonder whether we should require that any of the physical

states that map to S1
1 should be combinable with any of the physical states that map to S2

1 ,

and so on. But this seems far too strong a requirement. Perhaps we could implement a Turing

machine on a PC in such a way that the contents of the tape can be stored either in RAM or on

the hard drive. Then for every square there would be two ways to implement the state in which

the square contains a stroke. But it might be impossible to combine the first implementation of

square 1 containing a stroke with the second implementation of square 2 containing a stroke:

perhaps the contents of the entire tape must be stored in the same location.

My first two criticisms of the CSA model focused on the abstract model itself, emphasizing

the need for additional constraints on this abstract model. My guess is that the way to avoid

trivial implementations, however, is different. Chalmers describes the root idea of his account

of implementation as the idea that there is an isomorphism between “the formal structure” of

the abstract computation, and “the causal structure” of the physical system that implements it.11

11As Cocos (2002, p. 44) stresses, the definite description “the causal structure” is misleading, since (as
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We normally think of implementation as a relation between abstract structures and concrete

physical processes. But of course isomorphism is a relation between abstract set-theoretic

structures. The “causal structure” of a physical system is still a set-theoretic structure, a set of

states or equivalence classes of states together with relations on those states. I wonder whether

the most difficult part of the relation between abstract computations and concrete processes

may turn out to be, not the relation between formal structures and causal structures, but rather

the relation between causal structures and concrete physical processes. I also wonder whether,

once an adequate account of when a physical system has a given causal structure has been

developed, it will rule out even the simple clock-dial implementations of FSAs with which we

began.

4 The CSA as a Transcription Device

I have argued that the CSA does not constitute a computational model in its own right, at

least as presently described. (It is possible that a revised version with restrictions imposed

on the allowable states and transitions might be.) It is entirely possible, however, that it was

not Chalmers’s intention to provide such an account. It may be that he intends the second

interpretation mentioned above, construing the CSA merely as a convenient formalism into

which more specific abstract machines can be translated.

If this were the case, then, since each TM state-transition rule (for instance) corresponds

to a large number of CSA state-transitions (in fact an infinite number if we are representing a

TM with an infinite tape), we could abandon the exhaustive listing as a way of characterizing a

CSA, and translate each TM rule by a universal quantification over CSA states. Some sentences

in “Rock” appear to suggest something like this: Chalmers mentions that “often the state-

transitions of a CSA will be defined in terms of local dependencies, as when a substate depends

only on a few neighboring substates and perhaps on a few inputs rather than on the entire

Chalmers recognizes) the same physical system will have many causal structures.
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previous state and input vectors,” and goes on to note that in such a case “we can require that the

appropriate restricted conditional holds: that is, if the physical system is in the (few) specified

previous substates and receiving the specified inputs, this causes it to transit appropriately”

(Chalmers 1996a, p. 325).

For the example we have been considering, we could say that the function that maps a state

S onto its successor S ′ is the unique function such that:

1. (∀i : 1 ≤ i ≤ n)((Si = ‘B’∧Sn+1 = i∧Sn+2 = 1) → (S ′i = ‘1’∧S ′n+1 = i∧S ′n+2 =

2))

2. (∀i : 1 ≤ i < n)((Si = ‘1’ ∧ Sn+1 = i ∧ Sn+2 = 1) → (S ′n+1 = i+ 1 ∧ S ′n+2 = 1))

3. (∀i : 1 < i ≤ n)((Si = ‘1’ ∧ Sn+1 = i ∧ Sn+2 = 2) → (S ′n+1 = i− 1 ∧ S ′n+2 = 2))

4. In all other respects, S ′ is identical to S.12

If we took this approach, then constructing informative descriptions of rules underlying

the state transition function would be straightforward, since they would simply transcribe the

general rules guiding the more specific abstract machine. We could be sure that we were con-

sidering only CSAs representing computable functions, since they would all be transcribed

from models which guarantee computability. But we would entirely lose the attractive idea of

the CSA as a model that represents the concept of computability in a completely general way.

Moreover, once we lose the idea that a physical system implements a computation if and

only if there is a CSA that implements it, it becomes less clear what the advantage of using

CSAs to define implementation is. For on this more limited understanding of the significance

of the CSA, we will need to decide how to translate each more specific computational model

into a CSA, a task which may prove to be just as difficult as defining implementation directly

for each specific model.

12n is the number of squares on the TM tape — three, in the case we have been considering. This description
treats the first n components of the state vector as representing the states of the tape’s n squares, the next compo-
nent as representing the index of the square the head is currently over, and the final component as representing the
current internal state of the TM.
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5 Conclusion

It would be satisfying to have a general account of computation, an account fine-grained enough

to distinguish between different kinds of implementation of computations of the same function,

and general enough that it can describe any abstract computation.13 It is possible that when

Chalmers provides details that were only hinted at in his earlier papers, in particular about the

restrictions that need to be placed on allowable CSA states, the CSA will in fact turn out to be

such a model. But it cannot yet be regarded in that light.14

13One proposed model of this sort is Yuri Gurevich’s Abstract State Machine: see e.g. Dershowitz and Gurevich
(2008).

14This paper is a revised and expanded descendant of “Implementation and Indeterminacy,” in J. Weckert and
Y. Al-Saggaf, eds., Conferences in Research and Practice in Information Technology, Vol. 37 (2004).
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