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Abstract A special function is a function either of special form or with a special property.

Special functions have interesting applications in coding theory and combinatorial t-designs.

The main objective of this paper is to survey t-designs constructed from special functions,

including quadratic functions, almost perfect nonlinear functions, almost bent functions,

bent functions, bent vectorial functions, and planar functions. These combinatorial designs

are not constructed directly from such functions, but come from linear codes which are

constructed with such functions. As a byproduct, this paper also surveys linear codes from

certain special functions.

Keywords Cyclic code · design · linear code · special function

1 Introduction

Let P be a set of v ≥ 1 elements, and let B be a set of k-subsets of P , where k is a positive

integer with 1≤ k ≤ v. Let t be a positive integer with t ≤ k. The pair D=(P ,B) is called a t-

(v,k,λ) design, or simply t-design, if every t-subset of P is contained in exactly λ elements

of B . The elements of P are called points, and those of B are referred to as blocks. We

usually use b to denote the number of blocks in B . A t-design is called simple if B does

not contain repeated blocks. In this survey, we consider only simple t-designs. A t-design

is called symmetric if v = b. It is clear that t-designs with k = t or k = v always exist. Such

t-designs are trivial. In this survey, we consider only t-designs with v > k > t. A t-(v,k,λ)
design is referred to as a Steiner system if t ≥ 2 and λ = 1, and is denoted by S(t,k,v).
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We assume that the reader is familiar with the basics of linear codes and cyclic codes,

and proceed to introduce the classical construction of t-designs from codes directly. Let C be

a [v,κ,d] linear code over GF(q). Let Ai := Ai(C), which denotes the number of codewords

with Hamming weight i in C, where 0 ≤ i ≤ v. The sequence (A0,A1, · · · ,Av) is called the

weight distribution of C, and ∑v
i=0 Aiz

i is referred to as the weight enumerator of C. For

each k with Ak 6= 0, let Bk denote the set of the supports of all codewords with Hamming

weight k in C, where the coordinates of a codeword are indexed by (0,1,2, · · · ,v−1). Let

P = {0,1,2, · · · ,v−1}. The pair (P ,Bk) may be a t-(v,k,λ) design for some positive integer

λ, which is called a support design of the code. In such a case, we say that the code C holds

a t-(v,k,λ) design. Throughout this paper, we denote the dual code of C by C
⊥, and the

extended code of C by C.

The following theorem, developed by Assumus and Mattson, shows that the pair (P ,Bk)
defined by a linear code is a t-design under certain conditions [1], [22, p. 303].

Theorem 1 (Assmus-Mattson Theorem) Let C be a [v,k,d] code over GF(q). Let d⊥ de-

note the minimum distance of C⊥. Let w be the largest integer satisfying w ≤ v and

w−

⌊

w+q−2

q−1

⌋

< d.

Define w⊥ analogously using d⊥. Let (Ai)
v
i=0 and (A⊥

i )
v
i=0 denote the weight distribution of

C and C
⊥, respectively. Fix a positive integer t with t < d, and let s be the number of i with

A⊥
i 6= 0 for 0 ≤ i ≤ v− t. Suppose s ≤ d − t. Then

– the codewords of weight i in C hold a t-design provided Ai 6= 0 and d ≤ i ≤ w, and

– the codewords of weight i in C
⊥ hold a t-design provided A⊥

i 6= 0 and d⊥ ≤ i ≤ min{v−
t,w⊥}.

The Assmus-Mattson Theorem is a very useful tool in constructing t-designs from linear

codes, and has been recently employed to construct infinitely many 2-designs and 3-designs

in [15], [13] and [14].

The automorphism group of a linear code may show that a linear code holds t-designs.

To introduce this approach, we have to define the automorphism group of linear codes.

The set of coordinate permutations that map a code C to itself forms a group, which is

referred to as the permutation automorphism group of C and denoted by PAut(C). If C is a

code of length n, then PAut(C) is a subgroup of the symmetric group Symn.

A monomial matrix over GF(q) is a square matrix having exactly one nonzero element

of GF(q) in each row and column. A monomial matrix M can be written either in the form

DP or the form PD1, where D and D1 are diagonal matrices and P is a permutation matrix.

The set of monomial matrices that map C to itself forms the group MAut(C), which is

called the monomial automorphism group of C. Clearly, we have

PAut(C)⊆ MAut(C).

The automorphism group of C, denoted by Aut(C), is the set of maps of the form Mγ,

where M is a monomial matrix and γ is a field automorphism, that map C to itself. In the

binary case, PAut(C), MAut(C) and Aut(C) are the same. If q is a prime, MAut(C) and

Aut(C) are identical. In general, we have

PAut(C)⊆ MAut(C)⊆ Aut(C).
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By definition, every element in Aut(C) is of the form DPγ, where D is a diagonal matrix,

P is a permutation matrix, and γ is an automorphism of GF(q). The automorphism group

Aut(C) is said to be t-transitive if for every pair of t-element ordered sets of coordinates,

there is an element DPγ of the automorphism group Aut(C) such that its permutation part P

sends the first set to the second set.

A proof of the following theorem can be found in [22, p. 308].

Theorem 2 Let C be a linear code of length n over GF(q) where Aut(C) is t-transitive.

Then the codewords of any weight i ≥ t of C hold a t-design.

This theorem gives another sufficient condition for a linear code to hold t-designs. To

apply Theorem 2, we have to determine the automorphism group of C and show that it is

t-transitive. It is in general very hard to find out the automorphism group of a linear code.

Even if we know that a linear code holds t-(v,k,λ) designs, determining the parameters k

and λ could be extremely difficult.

Most t-designs held in linear codes have been proved either by the Assmus-Mattson

Theorem or the automorphism groups of the codes. However, the support designs of some

linear codes are proved with other approaches, and cannot be proved with any of the two

approaches above. We will see such designs in the sequel.

Special functions can be employed in different ways to construct codes, which hold t-

designs. The main objective of this paper is to survey support designs of linear codes from

special functions such as quadratic functions, almost bent functions, almost perfect nonlin-

ear function, bent functions, bent vectorial functions, and planar functions. As a byproduct,

this paper also summarises linear codes which are constructed with such functions. Some

new results are also presented in this paper.

Let D = (P ,B) be a t-(v,k,λ) design with b ≥ 1 blocks. The points of P are usually

indexed with p1, p2, · · · , pv, and the blocks of B are normally denoted by B1,B2, · · · ,Bb. The

incidence matrix MD = (mi j) of D is a b× v matrix where mi j = 1 if p j is on Bi and mi j = 0

otherwise. The binary matrix MD is viewed as a matrix over GF(q) for any prime power q,

and its row vectors span a linear code of length v over GF(q), which is denoted by Cq(D)
and called the classical code of D over GF(q). It is clear that the code Cq(D) depends on the

labelling of the points and blocks of D, but is unique up to row and column permutations.

In this survey, we start with a special function f , then construct a linear code C f over

GF(q), and consider a support design D of C f , and finally consider the linear code of the

support design D over GF(r), i.e.,

f −→ C f −→ D−→ Cr(D).

When r = q, the two codes C f and Cr(D) are closely related. In particular, when r = q = 2,

the code Cr(D) is a subcode of the original code C f . When r = q > 2, the two codes may

be related in a complex way. In this survey, we will also provide information on the code

Cq(D) if this is possible.

2 Auxiliary results

The next theorem will be employed later and is a very useful and general result [28, p. 165].

Theorem 3 Let C be an [n,k,d] binary linear code with k > 1, such that for each weight

w > 0 the supports of the codewords of weight w form a t-design, where t < d. Then the

supports of the codewords of each nonzero weight in C
⊥ also form a t-design.
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To determine the parameters of some t-designs, we will need the following lemma,

which is a variant of the MacWilliams Identity [33, p. 41].

Theorem 4 Let C be a [v,κ,d] code over GF(q) with weight enumerator A(z) = ∑
v
i=0 Aiz

i

and let A⊥(z) be the weight enumerator of C⊥. Then

A⊥(z) = q−κ
(

1+(q−1)z
)v

A

( 1− z

1+(q−1)z

)

.

We will need the following lemma whose proof is easy.

Theorem 5 Let C be an [n,κ,d] code over GF(q) with generator matrix G. Let H denote a

generator matrix of its dual C⊥ with parameters [n,n−κ,d⊥]. Then we have the following:

– The code C⊥
⊥

has parameters [n+1,κ+1] and generator matrix
[

1 1

G 0

]

,

where 1=(111 · · ·1) is the all-one vector of length n, 0=(000 · · ·0)T , which is a column

vector of length κ.

– The code C
⊥

has parameters [n+1,n+1−κ] and generator matrix
[

1 1

H 0

]

,

where 1=(111 · · ·1) is the all-one vector of length n, 0=(000 · · ·0)T , which is a column

vector of length n−κ.

Let f = f (x) be a Boolean function from GF(2m) to GF(2). The support D f of f is

defined as

D f = {x ∈ GF(2m) : f (x) = 1} ⊆ GF(2m).

The (0,1) incidence vector of D f , having its coordinates labelled by the elements of GF(2m),
is called the truth table of f .

The Walsh transform of f is defined by

f̂ (w) = ∑
x∈GF(2m)

(−1) f (x)+Tr2m/2(wx) (1)

where w ∈ GF(2m).
Two Boolean functions f and g from GF(2m) to GF(2) are called weakly affinely equiv-

alent or EA-equivalent if there are an automorphism A of (GF(2m),+), a homomorphism L

from (GF(2m),+) to (GF(2),+), an element a ∈ GF(2m) and an element b ∈ GF(2) such

that

g(x) = f (A(x)+a)+L(x)+b

for all x ∈ GF(2m).
A Boolean function f from GF(2m) to GF(2) is called a bent function if | f̂ (w)|= 2m/2

for every w ∈ GF(2m). It is well known that a function f from GF(2m) to GF(2) is bent if

and only if D f is a difference set in (GF(2m),+) with parameters

(2m, 2m−1 ±2(m−2)/2, 2m−2 ±2(m−2)/2). (2)

It follows that

|D f |= 2m−1 ±2(m−2)/2. (3)

There are many constructions of bent functions. The reader is referred to [6] and [30]

for detailed information about bent functions.
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3 Affine-invariant codes from quadratic functions and their designs

In this section, we introduce a family of affine-invariant linear codes which are also extended

cyclic codes. We order the elements of GF(qm) and GF(qm)∗ as

{1,α,α2, . . . ,αqm−2,0}

and

{1,α,α2, . . . ,αqm−2},

respectively, where α is a primitive element of GF(qm). Throughout this section, let Tr(x)
be the trace function from GF(qm) to GF(q).

Let t be a positive integer, and let fi be a polynomial over GF(qm) with fi(0) = 0 and

1 ≤ deg( fi) ≤ qm −2 for 1 ≤ i ≤ t. For f = ( f1, · · · , ft), we define two related linear codes

over GF(q) by

Cf =







(

Tr

(

t

∑
i=1

ai fi(x)

)

+h

)

x∈GF(qm)

: ai ∈ GF(qm), h ∈ GF(q)







(4)

and

C
∗
f =







(

Tr

(

t

∑
i=1

ai fi(x)

))

x∈GF(qm)∗

: ai ∈ GF(qm)







. (5)

By definition, Cf and C
∗
f are a linear code over GF(q) with length qm and qm−1, respectively.

Their dimensions satisfy dim(Cf)≤ tm+1 and dim(C∗
f )≤ tm. The two codes Cf and C

∗
f are

related in the following way.

Theorem 6 Let notation be the same as before. Then Cf = (C∗
f )

⊥
⊥

. Further, dim(Cf) =
dim(C∗

f )+1, and C
∗
f is a subcode of Cf.

Proof Define

G =



































Tr(α0 f1(α
0)) Tr(α0 f1(α

1)) · · · Tr(α0 f1(α
qm−2))

Tr(α1 f1(α
0)) Tr(α1 f1(α

1)) · · · Tr(α1 f1(α
qm−2))

...
...

...
...

Tr(αm−1 f1(α
0)) Tr(αm−1 f1(α

1)) · · · Tr(αm−1 f1(α
qm−2))

...
...

...
...

Tr(α0 ft(α
0)) Tr(α0 ft(α

1)) · · · Tr(α0 ft(α
qm−2))

Tr(α1 ft(α
0)) Tr(α1 ft(α

1)) · · · Tr(α1 ft(α
qm−2))

...
...

...
...

Tr(αm−1 ft(α
0)) Tr(αm−1 ft(α

1)) · · · Tr(αm−1 ft(α
qm−2))



































.

Then G is a generator matrix of C∗
f , though the rank of G could be less than tm.

Notice that fi(0) = 0 for 1 ≤ i ≤ t. By the ordering of the elements in GF(qm) and

GF(qm)∗ and the definition of the two codes C
∗
f and Cf in (4) and (5), Cf has the following

generator matrix

[

1 1

G 0

]

,
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where 1 = (111 · · ·1) is the all-one vector of length qm − 1, 0 = (000 · · ·0)T , which is a

column vector of length tm. It follows from Theorem 5 that Cf = (C∗
f )

⊥
⊥

and dim(Cf) =
dim(C∗

f )+1.

Finally, we are in a position to prove the last conclusion. We first prove that ∑x∈GF(qm)∗ x j =

0 for each j with 1 ≤ j ≤ qm−2. Let i = gcd( j,qm−1). Set β =αi. Then β(qm−1)/i = 1. Con-

sequently,

∑
x∈GF(qm)∗

x j = ∑
x∈GF(qm)∗

xi =
qm−2

∑
ℓ=0

αi j = i

qm−1

i
−1

∑
ℓ=0

βℓ = 0.

It then follows from fi(0) = 0 that

∑
x∈GF(qm)∗

fi(x) = 0.

As a result, C∗
f has the generator matrix

[

G 0
]

.

The last desired conclusion then follows. Notice that C∗
f is a trivial extension.

When each fi is a monomial, the codes C∗
f and (C∗

f )
⊥ are cyclic, and Cf is the dual of an

extended cyclic code by Theorem 6. In general, C∗
f and (C∗

f )
⊥ may not be cyclic, and Cf is

not an extended cyclic code. The code Cf is obtained from C
∗
f in the following order:

C
∗
f −→ (C∗

f )
⊥ −→ (C∗

f )
⊥ −→ (C∗

f )
⊥
⊥
= Cf.

Let the coordinates of the code Cf be indexed by the elements in the ordered set GF(qm).
Any σ(u,v)(y) = uy+ v ∈ GA1(GF(qm)) maps Cf into the following code







(

Tr

(

t

∑
i=1

ai fi(ux+ v)

)

+h

)

x∈GF(qm)

: ai ∈ GF(qm), h ∈ GF(q)







.

In general, the code Cf may not be affine-invariant. In some special cases, Cf is affine-

invariant.

Let t ≥ 2 be an integer. For any set of integers {i2, · · · , it} with 0≤ i2 < · · ·< it ≤ ⌊m/2⌋,

we consider the following code

C(1, i2, · · · , it) = {c(h,a1,...,at ) : h ∈ GF(q), ai ∈ GF(qm)} (6)

where

c(h,a1,...,at) =

(

h+Tr

(

a1x+
t

∑
ℓ=2

aℓx
1+qiℓ

))

x∈GF(qm)

. (7)

We now prove that C(1, i2, · · · , it) and its dual are affine-invariant and hold support 2-designs.

Theorem 7 The code C(1, i2, · · · , it) defined in (6) is affine-invariant and the supports of all

codewords of any fixed weight in the code form a 2-design. The same conclusions hold for

the dual code C(1, i2, · · · , it)
⊥.
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Proof Define

f (x) = h+Tr

(

a1x+
t

∑
ℓ=2

aℓx
1+qiℓ

)

.

For u ∈ GF(qm)∗ and v ∈ GF(qm), we have

f (ux+ v) = h+Tr

(

a1(ux+ v)+
t

∑
ℓ=2

aℓ(ux+ v)1+qiℓ

)

= h+Tr

(

a1v+
t

∑
ℓ=2

aℓv
1+qiℓ

)

+

Tr

(

u

(

a1 +
t

∑
ℓ=2

[

aℓv
qiℓ
+(aℓv)

qm−iℓ
]

)

x

)

+Tr

(

t

∑
ℓ=2

aℓu
1+qiℓ

x1+qiℓ

)

. (8)

Let σ(u,v)(x) = ux+v, where u ∈ GF(qm)∗ and v ∈ GF(qm). It then follows from (8) that

σ(u,v)(c(h,a1,...,at )) = c(h′,a′1,...,a′t) ∈ C(1, i2, . . . , it),

where

h′ = f (v),

a′1 = u

(

a1 +
t

∑
ℓ=2

[

aℓv
qiℓ
+(aℓv)

qm−iℓ
]

)

,

a′ℓ = aℓu
1+q1+q

iℓ

for 2 ≤ ℓ≤ t.

Hence, C(1, i2, . . . , it) is affine-invariant. Since the group GA1(GF(qm)) acts on GF(qm) dou-

bly transitively, the conclusion on the support designs of C(1, i2, . . . , it) holds.

It is well known that the permutation automorphism groups of any code C and its dual

are the same. The desired conclusions on C(1, i2, . . . , it)
⊥ follow from those of C(1, i2, . . . , it).

It is easily seen that C(1, i2, . . . , it) is an extended cyclic code, as the permutation σ(x) =
αx fixes the code. In fact, it is the extended code of the cyclic code over GF(q) with length

qm −1 and check polynomial

h(x) = LCM
(

(x−1),Mα−1(x),M
α−(1+qi2 )(x), · · · ,Mα−(1+qit )(x)

)

,

where α is a generator of GF(qm), Mαℓ(x) (2 ≤ ℓ ≤ t) denotes the minimal polynomial

of αℓ over GF(q), and LCM denotes the least common multiple of the polynomials. The

dimension of the code C(1, i2, . . . , it) in Theorem 7 depends on the degree of the polynomial

h(x). The weight distribution of the code C(1, i2, . . . , it) is known in some special cases.

The determination of the parameters of the support designs of the codes C(1, i2, . . . , it) and

C(1, i2, . . . , it)
⊥ is difficult in general, but can be done in some special cases.

Theorem 7 says that the code C(1, i2, . . . , it) and its dual hold 2-designs. It will be soon

demonstrated below that the two codes hold 3-designs in some special cases.

3.1 The special case q = 2

When q = 2, the codes C(1, i2, . . . , it) and C(1, i2, . . . , it)
⊥ become the affine-invariant binary

codes treated in [12], where a class of Steiner systems S(2,4,2m) was obtained. Notice that

these codes were treated as extended cyclic codes in [12].
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3.2 Several special cases of 3-designs

In this section, we show a few cases in which C(1, i2, . . . , it) and its dual hold 3-designs. The

results presented in this section are from [13].

Theorem 8 . Let m ≥ 5 and (i2, i3) = (1,2) or (i2, i3) = (1,(m + 1)/2). Then the code

C(1, i2, i3) has parameters [2m,3m+1,2m−1 −2(m+1)/2] and weight enumerator

A(z) = 1+uz2m−1−2
m+1

2 + vz2m−1−2
m−1

2 +wz2m−1

+ vz2m−1+2
m−1

2 +uz2m−1+2
m+1

2 + z2m

, (9)

where

u =
23m−4 −3×22m−4 +2m−3

3
,

v =
5×23m−2 +3×22m−2 −2m+1

3
,

w = 2(2m −1)(9×22m−4 +3×2m−3 +1).

The dual code C(1, i2, i3)
⊥ has parameters [2m,2m −1−3m,8], and its weight distribution

is given by

23m+1A⊥
k =

(

1+(−1)k
)

(

2m

k

)

+wE0(k)+uE1(k)+ vE2(k), (10)

where

E0(k) =
1+(−1)k

2
(−1)⌊k/2⌋

(

2m−1

⌊k/2⌋

)

,

E1(k) = ∑
0≤i≤2m−1−2(m+1)/2

0≤ j≤2m−1+2(m+1)/2

i+ j=k

[(−1)i +(−1) j]

(

2m−1 −2(m+1)/2

i

)(

2m−1 +2(m+1)/2

j

)

,

E2(k) = ∑
0≤i≤2m−1−2(m−1)/2

0≤ j≤2m−1+2(m−1)/2

i+ j=k

[(−1)i +(−1) j]

(

2m−1 −2(m−1)/2

i

)(

2m−1 +2(m−1)/2

j

)

,

where 0 ≤ k ≤ 2m.

The 3-designs held in C(1, i2, i3) and its dual are documented below.

Theorem 9 Let m ≥ 5 be an odd integer and (i2, i3) = (1,2) or (i2, i3) = (1,(m+1)/2). Let

P = {0,1,2, · · · ,2m−1}, and let Bk be the set of the supports of the codewords of C(1, i2, i3)
with weight k, where Ak 6= 0. Then (P ,Bk) is a 3-(2m,k,λ) design, where

λ =
Ak

(

k

3

)

(

2m

3

) ,

where Ak is given in Theorem 8.
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Let P = {0,1,2, · · · ,2m −1}, and let B
⊥
k be the set of the supports of the codewords of

C(1, i2, i3)
⊥ with weight k and A⊥

k 6= 0. Then (P ,B⊥
k ) is a 3-(2m,k,λ⊥) design, where

λ⊥ =
A⊥

k

(

k

3

)

(

2m

3

) ,

where A⊥
k is given in Theorem 8.

Experimental data shows that the support 3-designs in Theorem 9 are not 4-designs. So

far, no infinite family of 4-designs has been directly constructed from nonlinear or linear

codes in the literature. The following is an important question in combinatorics and coding

theory.

Open Problem 1 Is there a special family of codes C(1, i2, . . . , it) holding 4-designs?

3.3 Other cases

Other recent developments can be found in [17–19], where the designs are from affine-

invariant codes that are derived from special functions.

4 Designs from almost bent functions

For any function g from GF(2m) to GF(2m), we define

λg(a,b) = ∑
x∈GF(2m)

(−1)Tr2m/2(ag(x)+bx), a, b ∈ GF(2m).

A function g from GF(2m) to GF(2m) is called almost bent if λg(a,b) = 0, or ±2(m+1)/2 for

every pair (a,b) with a 6= 0. By definition, almost bent functions over GF(2m) exist only for

odd m.

The following is a list of almost bent functions on GF(2m), where m is odd.

1. g(x) = x2i+1, gcd(i,m) = 1.

2. g(x) = x22i−2i+1, gcd(i,m) = 1.

3. g(x) = x2(m−1)/2+3.

4. g(x) = x2(m−1)/2+2(m−1)/4−1, m ≡ 1 (mod 4).

5. g(x) = x2(m−1)/2+2(3m−1)/4−1, m ≡ 3 (mod 4).
6. g(x) = x2i+1 +(x2i

+ x)Tr2m/2(x
2i+1 + x), m > 3 and gcd(i,m) = 1.

More known families of almost bent functions can be found in [31].

For any function g from GF(2m) to GF(2m) with g(0) = 0, we define the following linear

code

Cg = {
(

Tr2m/2(ag(x)+bx)+h
)

x∈GF(2m)
, a, b ∈ GF(2m),h ∈ GF(2)}. (11)

Theorem 10 Let m ≥ 5. The code Cg of (11) has parameters [2m,2m+1,2m−1 −2(m−1)/2]
and weight enumerator

A(z) = 1+uz2m−1−2(m−1)/2

+ vz2m−1

+uz2m−1+2(m−1)/2

+ z2m

, (12)
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where

u = 22m−1 −2m−1 and v = 22m +2m −2.

The dual code C
⊥
g has parameters [2m,2m −m−1,6] and its weight distribution is given by

22m+1A⊥
k = (1+(−1)k)

(

2m

k

)

+
1+(−1)k

2
(−1)⌊k/2⌋

(

2m−1

⌊k/2⌋

)

v+

u ∑
0≤i≤2m−1−2

m−1
2

0≤ j≤2m−1+2
m−1

2

i+ j=k

[(−1)i +(−1) j]

(

2m−1 −2
m−1

2

i

)(

2m−1 +2
m−1

2

j

)

for 0 ≤ k ≤ 2m.

The parameters and weight enumerator of the code Cg were stated specifically in [35].

The conclusions on the dual code C
⊥
g were proved in [15]. It is open who first studied the

code Cg. But related cyclic codes were studied in [2,3,8].

The following theorem follows from Theorem 10 and the Assmus-Mattson Theorem

(see [15]).

Theorem 11 Let m ≥ 5 be odd. Let P = {0,1,2, · · · ,2m − 1}, and let Bk be the set of the

supports of the codewords of Cg with weight k, where Ak 6= 0. Then (P ,Bk) is a 3-(2m,k,λ)
design, where

λ =
Ak

(

k

3

)

(

2m

3

) ,

and Ak is given in (12).

Let P = {0,1,2, · · · ,2m −1}, and let B
⊥
k be the set of the supports of the codewords of

C
⊥
g with weight k and A⊥

k 6= 0. Then (P ,B⊥
k ) is a 3-(2m,k,λ⊥) design, where

λ⊥ =
A⊥

k

(

k

3

)

(

2m

3

) ,

and A⊥
k is given in Theorem 10.

As shown above, every almost bent function on GF(2m) yields two families of 3-designs.

Hence, this is a general construction of 3-designs. The designs from almost bent monomials

were pointed out in [15], where the codes Cg were treated as the extended codes of the

corresponding cyclic codes. The treatment here is more general, as the designs from all

almost bent functions are included.

Conjecture 12 The code Cg of Theorem 10 is spanned by its minimum weight codes.
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5 Designs from planar functions

Throughout this section, let q be an odd prime. A function f from GF(qm) to itself is called

a planar function if the difference function fa(x) = f (x+a)− f (x) is a one-to-one function

from GF(qm) to itself for every a ∈ GF(qm)∗.
The following is a list of planar functions on GF(qm):

1. f (x) = x2.

2. f (x) = xqk+1, where m/gcd(m,k) is odd (Dembowski-Ostrom).

3. f (x) = x(3
k+1)/2, where q = 3, k is odd, and gcd(m,k) = 1 (Coulter-Matthews).

4. fu(x) = x10 − ux6 − u2x2, where q = 3, m is odd, and u ∈ GF(3m) (Coulter-Matthews-

Ding-Yuan).

More planar functions could be found in [31,30].

For any planar function f from GF(qm) to GF(qm) with f (0) = 0, define the following

linear code

C f = {
(

Trqm/q(a f (x)+bx)+h
)

x∈GF(qm)
, a, b ∈ GF(qm),h ∈ GF(q)}. (13)

The code C f from specific planar functions was studied in [4] and [36]. The related

subcode was investigated also in [20]. There is no general formula for the weight enumerator

of C f from planar functions. Hence, we have to treat the support designs of the codes C f for

specific families of planar functions.

Theorem 13 Let m ≥ 3 be odd. Let f (x) be the Coulter-Matthews or a Coulter-Matthews-

Ding-Yuan planar function on GF(3m). Then C f has parameters [3m,2m + 1,2× 3m−1 −
3(m−1)/2] and weight enumerator

1+(qm −1)qmz(q−1)qm−1−q(m−1)/2

+((q−2)q2m +2qm −q)z(q−1)qm−1

+

(qm −1)qmz(q−1)qm−1+q(m−1)/2

+(q−1)zqm

, (14)

where q = 3. The dual code C
⊥
f has minimum distance 5. The code C f holds a support

2-design for each nonzero weight.

Proof The desired weight distribution can be proved by refining the proofs of Theorems 18

and 14 in [36]. The desired conclusion on the minimum distance of C⊥
f was proved in [4].

The last desired conclusion follows from the Assmus-Mattson Theorem.

The parameters of the support 2-designs of the code C f in Theorem 13 can be worked

out. The details are left to the reader. The dual code C
⊥
f holds also 2-designs.

Theorem 14 Let m ≥ 3 be an integer. Let f (x) be x2 or the Dembowski-Ostrom planar

function on GF(qm). Then C f and C
⊥
f hold a support 2-design for every nonzero weight.

Proof It follows from Theorem 7.

It was proved in [4] that the code C
⊥
f in Theorem 14 has minimum distance 4 if q > 3

and 5 if q = 3. When m is odd, the code C f in Theorem 14 has the weight enumerator in

(14). When m is even, C f has six nonzero weights. The parameters of the support 2-designs

of the code C f in Theorem 14 could be settled. The details are left to the reader.

We remark that the classical codes Cq(D) of the support designs D in Theorems 13

and 14 are very different from the original codes C f . For example, when (m,q) = (3,3)
and f (x) = x2, the code C f has parameters [27,7,15], and C3(D) has parameters [27,19,6],
which is optimal. It would be interesting to study these codes Cq(D).
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6 Designs from bent vectorial functions

A symmetric 2-design is said to have the symmetric difference property, or to be a symmetric

SDP design, if the symmetric difference of any three blocks is either a block or the comple-

ment of a block. Kantor introduced and demonstrated a lot of symmetric SDP designs [24,

25]. It is known that any symmetric SDP design has the following parameters

(2m, 2m−1 ±2(m−2)/2, 2m−2 ±2(m−2)/2) (15)

for some positive integer m. Dillion and Schatz proved that each symmetric SDP design is a

support design of a linear code of length 2m from a bent function on GF(2m) [9]. Recently,

the construction of Dillion and Schatz was generalized by using bent vectorial functions in

[16]. The objective of this section is to introduce this generalised construction in [16].

6.1 Bent vectorial functions

Let ℓ be a positive integer, and let f1(x), · · · , fℓ(x) be Boolean functions from GF(2m) to

GF(2). The function F(x) = ( f1(x), · · · , fℓ(x)) from GF(2m) to GF(2)ℓ is called an (m, ℓ)
vectorial Boolean function.

An (m, ℓ) vectorial Boolean function F(x) = ( f1(x), · · · , fℓ(x)) is called a bent vecto-

rial function if ∑ℓ
j=1 a j f j(x) is a bent function for each nonzero (a1, · · · ,aℓ) ∈ GF(2)ℓ. For

another equivalent definition of bent vectorial functions, see [30, Chapter 12].

Bent vectorial functions exist only when ℓ ≤ m/2 (cf. [30, Chapter 12]). There are a

number of known constructions of bent vectorial functions. The reader is referred to [5] and

[30, Chapter 12] for detailed information. Below we present a specific construction of bent

vectorial functions from [5].

Example 1 [5]. Let m/2 ≥ 1 be an odd integer, β1,β2, · · · ,βm/2 be a basis of GF(2m/2) over

GF(2), and let u ∈ GF(2m)\GF(2m/2). Let i be a positive integer with gcd(m, i) = 1. Then

(

Tr2m/2(β1ux2i+1),Tr2m/2(β2ux2i+1), · · · ,Tr2m/2(βm/2ux2i+1)
)

(16)

is an (m,m/2) bent vectorial function.

Under a basis of GF(2ℓ) over GF(2), (GF(2ℓ),+) and (GF(2)ℓ,+) are isomorphic.

Hence, any vectorial function F(x) = ( f1(x), · · · , fℓ(x)) from GF(2m) to GF(2)ℓ can be

viewed as a function from GF(2m) to GF(2ℓ).
It is known that a function F from GF(2m) to GF(2ℓ) is bent if and only if Tr2ℓ/2(aF(x))

is a bent Boolean function for all a ∈ GF(2ℓ)∗. Any such vectorial function F can be ex-

pressed as Tr2m/2ℓ( f (x)), where f is a univariate polynomial. This presentation of bent vec-

torial functions is more compact. We give two examples of bent vectorial functions in this

form.

Example 2 (cf. [30, Chapter 12]). Let m/2> 1 and i≥ 1 be integers such that m/gcd(i,m) is

even. Then Tr2m/2m/2(ax2i+1) is bent if and only if gcd(2i+1,2m/2+1) 6= 1 and a∈GF(2m)∗\

〈αgcd(2i+1,2m/2+1)〉, where α is a generator of GF(2m)∗.

Example 3 (cf. [30, Chapter 12]). Let m/2 > 1 and i ≥ 1 be integers such that gcd(i,m) = 1.

Let d = 22i−2i +1. Let m/2 be odd. Then Tr2m/2m/2(axd) is bent if and only if a ∈ GF(2m)∗ \

〈α3〉, where α is a generator of GF(2m)∗.
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6.2 A construction of binary codes from bent vectorial functions

Let m be even and r = 2m. Let GF(r) = {u1,u2, · · · ,ur}, and let w be a generator of GF(r)∗.
We use the following generator matrix of the binary [2m,m+1,2m−1] first-order Reed-Muller

code RM2(1,m):

G0 =











1 1 · · · 1

Tr2m/2(w
0u1) Tr2m/2(w

0u2) · · · Tr2m/2(w
0ur)

...
...

. . .
...

Tr2m/2(w
m−1u1) Tr2m/2(w

m−1u2) · · · Tr2m/2(w
m−1ur)











. (17)

The weight enumerator of RM2(1,m) is

1+(2m+1 −2)z2m−1

+ z2m

. (18)

Up to equivalence, RM2(1,m) is the unique linear binary code with parameters [2m,m+
1,2m−1]. Its dual code is the [2m,2m − 1−m,4] Reed-Muller code of order m − 2. Both

codes hold 3-designs since they are invariant under a 3-transitive affine group. Note that

RM2(1,m)⊥ is the unique, up to equivalence, binary linear code for the given parameters,

hence it is equivalent to the extended binary linear Hamming code.

Let F(x)= ( f1(x), f2(x), · · · , fℓ(x)) be an (m, ℓ) vectorial function from GF(2m) to GF(2)ℓ.
For each i, 1 ≤ i ≤ ℓ, we define a binary vector

Fi = ( fi(u1), fi(u2), · · · , fi(ur)) ∈ GF(2)2m

, (19)

which is the truth table of the Boolean function fi(x).
Let ℓ be an integer in the range 1 ≤ ℓ≤ m/2. We now define an (m+1+ ℓ)×2m matrix

G = G( f1, · · · , fℓ) =











G0

F1

...

Fℓ











, (20)

where G0 is the generator matrix of RM2(1,m). Let C( f1, · · · , fℓ) denote the binary code of

length 2m with generator matrix G( f1, · · · , fℓ) given by (20). The dimension of the code has

the following lower and upper bounds:

m+1 ≤ dim(C( f1, · · · , fℓ))≤ m+1+ ℓ.

The next theorem gives a coding-theoretical characterization of bent vectorial functions.

In the case ℓ= 1, it gives a coding-theoretical characterization of bent functions.

Theorem 15 An (m, ℓ) vectorial function F(x) = ( f1(x), f2(x), · · · , fℓ(x)) from GF(2m) to

GF(2)ℓ is a bent vectorial function if and only if the code C( f1, · · · , fℓ) with generator matrix

G given by (20) has weight enumerator

1+(2ℓ−1)2mz2m−1−2(m−2)/2

+2(2m −1)z2m−1

+(2ℓ−1)2mz2m−1+2(m−2)/2

+ z2m

. (21)

Theorem 16 The code C = C( f1, · · · , fℓ) from Theorem 17 is spanned by the set of code-

words of minimum weight.



14 Cunsheng Ding, Chunming Tang

6.3 A construction of 2-designs from bent vectorial functions

The following theorem documents the support designs of the code C= C( f1, · · · , fℓ) from a

bent vectorial function.

Theorem 17 Let F(x) = ( f1(x), f2(x), · · · , fℓ(x)) be a bent vectorial function from GF(2m)
to GF(2)ℓ, where m/2 ≥ 2 and 1 ≤ ℓ≤ m/2. Let C= C( f1, · · · , fℓ) be the binary linear code

with parameters [2m,m+1+ ℓ,2m−1 −2(m−2)/2] defined in Theorem 15.

(a) The codewords of C of minimum weight hold a 2-design D with parameters

2− (2m,2m−1 −2(m−2)/2,(2ℓ−1)(2m−2 −2(m−2)/2)). (22)

Further, C2(D) is equal to C.

(b) The codewords of C of weight 2m−1 +2(m−2)/2 hold a 2-design D with parameters

2− (2m,2m−1 +2(m−2)/2,(2ℓ−1)(2m−2 +2(m−2)/2)). (23)

Further, C2(D) equals C.

We remark that Theorem 17 cannot be proved by the Assmus-Mattson Theorem or the

automorphism group of the code C. It is clear that the supports of all codewords of weight

2m−1 in the code C( f1, · · · , fℓ) of Theorem 17 form a 2-design. It then follows from The-

orem 3 that the supports of all codewords of any fixed nonzero weight in the dual code

C( f1, · · · , fℓ)
⊥ form a 2-design. The weight distribution of C( f1, · · · , fℓ)

⊥ can be obtained

via Theorem 4.

The special case ℓ= 1 Theorem 17 implies as a corollary the following result of Dillon

and Schatz [9].

Theorem 18 Let f (x) be a bent function from GF(2m) to GF(2). Then the code C( f ) has

parameters [2m,m+2,2m−1 −2(m−2)/2] and weight enumerator

1+2mz2m−1−2(m−2)/2

+2(2m −1)z2m−1

+2mz2m−1+2(m−2)/2

+ z2m

. (24)

The minimum weight codewords form a symmetric SDP design with parameters

2− (2m, 2m−1 −2(m−2)/2, 2m−2 −2(m−2)/2). (25)

Dillion and Schatz showed that every symmetric SDP design with the parameters of (25)

is a support design of C( f ) for some bent function f from GF(2m) to GF(2) [9].

Corollary 1 Two codes C f = C( f1, · · · , fs), Cg = C(g1, · · · ,gs) obtained from bent vectorial

functions ( f1, · · · , fs), (g1, · · · ,gs) are equivalent if and only if the designs supported by their

minimum weight vectors are isomorphic.

By Theorem 18, the codes based on single bent functions support symmetric 2-designs.

The next theorem determines the block intersection numbers of the design D( f1, · · · , fℓ)
supported by the minimum weight vectors in the code C( f1, · · · , fℓ) from Theorem 17.
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Theorem 19 Let D= D( f1, . . . , fℓ), (1 ≤ ℓ≤ m/2), be a 2-design with parameters

2− (2m,2m−1 −2(m−2)/2,(2ℓ−1)(2m−2 −2(m−2)/2))

supported by the minimum weight codewords of a code C= C( f1, . . . , fℓ) defined as in The-

orem 17.

(a) If ℓ = 1, D is a symmetric SDP design, with block intersection number λ = 2m−2 −
2(m−2)/2.

(b) If 2 ≤ ℓ≤ m/2, D has the following three block intersection numbers:

s1 = 2m−2 −2(m−4)/2, s2 = 2m−2 −2(m−2)/2, s3 = 2m−2 −3 ·2(m−4)/2. (26)

For every block D, these intersection numbers occur with multiplicities

n1 = 2m/2(2m/2 +1)(2ℓ−1 −1), n2 = 2m −1, n3 = 2m/2(2m/2 −1)(2ℓ−1 −1). (27)

7 Quasisymmetric designs from bent functions

A 2-design is quasi-symmetric with intersection numbers x and y if any two distinct blocks

intersect in either x and y points. A nonsymmetric 2-design is said to have the symmetric

difference property, or to be an SDP design, if the symmetric difference of any two blocks

is either a block or the complement of a block. In this section, we present a construction of

all quasisymmetric designs from bent functions. This is also a coding-theoretic construction

of designs.

7.1 A general construction of linear codes with bent functions

Let f be a Boolean function from GF(2m) to GF(2), and let D f be the support of f . Denote

D f = {d1, d2, . . . , dn f
} ⊆GF(2m). Let Tr denote the trace function from GF(2m) onto GF(2)

throughout this section. We define a binary linear code of length n f by

CD f
= {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn f

)) : x ∈ GF(2m)}, (28)

and call D f the defining set of this code CD f
. This is a special case of a general construction

of linear codes, which has been intensively and extensively investigated recently [11].

A proof of the following theorem can be found in [10]. The construction of the codes

with bent functions is euqivalent to that of [34].

Table 1 The weight distribution of the codes of Theorem 20

Weight w Multiplicity Aw

0 1

n f

2
−2

m−4
2

2m−1−n f 2
− m−2

2

2

n f

2
+2

m−4
2

2m−1+n f 2
− m−2

2

2
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Theorem 20 Let f be a bent function from GF(2m) to GF(2), where m≥ 4 and is even. Then

CD f
is an [n f , m, (n f −2(m−2)/2)/2] two-weight binary code with the weight distribution in

Table 1, where n f is defined in (3).

It is easy to see that the dual code C
⊥
D f

has minimum distance at least 3. Unfortunately,

the code CD f
and its dual C

⊥
D f

do not hold 2-designs. However, it was observed in [14,

Chapter 14] that their augmented codes hold infinite families of 2-designs.

Let f be a bent function from GF(2m) to GF(2), and let D f be the support of f . Denote

D f = {d1, d2, . . . , dn f
} ⊆ GF(2m). We define a binary linear code of length n f by

C̃D f
= {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn f

))+ y1 : x ∈ GF(2m), y ∈ GF(2)}, (29)

where 1 denote the vector (1,1, · · · ,1) ∈ GF(2)n f . This code C̃D f
is the augmented code of

CD f
.

Table 2 The weight distribution of the codes of Theorem 21

Weight w Multiplicity Aw

0 1
n f

2
−2

m−4
2 2m −1

n f

2
+2

m−4
2 2m −1

n f 1

Theorem 21 Let f be a bent function from GF(2m) to GF(2), where m≥ 6 and is even. Then

C̃D f
is an [n f , m+1, (n f −2(m−2)/2)/2] three-weight binary code with the weight distribution

in Table 2, where n f is defined in (3).

Notice that the code C̃D f
meets the Grey-Rankin bound, and is optimal. This shows the

importance of bent functions in coding theory. The next theorem was proved in [14, Chapter

14].

Theorem 22 Let f be a bent function from GF(2m) to GF(2), where m ≥ 6 and is even.

When n f = 2m−1 − 2(m−2)/2, the dual code C̃
⊥
D f

has parameters [2m−1 − 2(m−2)/2, 2m−1 −

2(m−2)/2 −m−1, 4] and weight distribution

A⊥
2ℓ = 2

(

2m−1 −2
m−2

2

2ℓ

)

+(2m −1) ∑
i+ j=ℓ

0≤i≤2m−2−2
m−4

2

0≤ j≤2
m−4

2

(−1)i2

(

2m−2 −2
m−2

2

i

)(

2
m−2

2

2 j

)

(30)

for 2 ≤ ℓ≤ 2m−2 −2(m−4)/2 and A⊥
i = 0 for other i, where A⊥

i denotes the number of code-

words of weight i in C̃
⊥
D f

.

When n f = 2m−1+2(m−2)/2, C̃⊥
D f

has parameters [2m−1 +2(m−2)/2, 2m−1+2(m−2)/2 −m−

1, 4] and weight distribution

A⊥
2ℓ = 2

(

2m−1 +2
m−2

2

2ℓ

)

+(2m −1) ∑
i+ j=ℓ

0≤i≤2m−2

0≤ j≤2
m−4

2

(−1)i2

(

2m−2

i

)(

2
m−2

2

2 j

)

(31)

for 2 ≤ ℓ≤ 2m−2 +2(m−4)/2 and A⊥
i = 0 for other i.
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7.2 Infinite families of 2-designs from bent functions

It is known that binary codes with the weight distribution of Table 2 and their duals hold

2-designs [32,29]. A proof of the next two theorems can be found in [14, Chapter 14].

Theorem 23 Let f be a bent function from GF(2m) to GF(2), where m ≥ 6 and is even.

When

n f = 2m−1 −2(m−2)/2,

the supports of codewords of weight 2m−2 − 2
m−2

2 in the code C̃D f
of Theorem 21 form a

quasi-symmetric SDP design D with the following parameters:

2−
(

2m−1 −2
m−2

2 , 2m−2 −2
m−2

2 , 2m−2 −2
m−2

2 −1
)

.

Further, the code C2(D) is equal to C̃D f
.

When

n f = 2m−1 +2(m−2)/2,

the supports of codewords of weight 2m−2 in the code C̃D f
of Theorem 21 form a quasi-

symmetric SDP design D with the following parameters:

2−
(

2m−1 +2
m−2

2 , 2m−2, 2m−2 −2
m−2

2

)

.

Further, the code C2(D) is equal to C̃D f
.

It was shown in [14, Chapter 14] that every quasisymmetric SDP design is a support

design of the code C̃D f
for a suitable bent function f . This demonstrates the important of

bent functions in combinatorial designs.

Theorem 24 Let f be a bent function from GF(2m) to GF(2), where m ≥ 6 and is even.

When

n f = 2m−1 −2(m−2)/2,

for each 2 ≤ ℓ≤ 2m−2 −2(m−4)/2 with A⊥
2ℓ 6= 0, the supports of all codewords of weight 2ℓ in

the code C̃
⊥
D f

form a 2-(2m−1 −2(m−2)/2, 2ℓ,λ⊥) design, where

λ⊥ =
A⊥

2ℓ

(

2ℓ
2

)

(

2m−1−2(m−2)/2

2

)

and A⊥
2ℓ is given in (30).

When

n f = 2m−1 +2(m−2)/2,

for each 2 ≤ ℓ≤ 2m−2 +2(m−4)/2 with A⊥
2ℓ 6= 0, the supports of all codewords of weight 2ℓ in

the code C̃
⊥
D f

form a 2-(2m−1 +2(m−2)/2, 2ℓ,λ⊥) design, where

λ⊥ =
A⊥

2ℓ

(

2ℓ
2

)

(

2m−1+2(m−2)/2

2

)

and A⊥
2ℓ is given in (31).

The next result was presented in [32].



18 Cunsheng Ding, Chunming Tang

Corollary 2 Let f be a bent function from GF(2m) to GF(2), where m ≥ 6 and is even.

When

n f = 2m−1 −2(m−2)/2,

the supports of all codewords of weight 4 in C̃
⊥
D f

form a 2-(2m−1 −2(m−2)/2, 4,λ⊥) design

D, where

λ⊥ = (2(m−4)/2 −1)(2(m−2)/2 +1).

Further, C2(D) is equal to C̃
⊥
D f

.

When

n f = 2m−1 +2(m−2)/2,

the supports of all codewords of weight 4 in C̃
⊥
D f

form a 2-(2m−1 +2(m−2)/2, 4,λ⊥) design

D, where

λ⊥ = (2(m−4)/2 +1)(2(m−2)/2 −1).

Further, C2(D) is equal to C̃
⊥
D f

.

The following was proved in [14, Chapter 14].

Corollary 3 Let f be a bent function from GF(2m) to GF(2), where m ≥ 6 and is even.

When

n f = 2m−1 −2(m−2)/2,

the supports of all codewords of weight 6 in C̃
⊥
D f

form a 2-(2m−1 −2(m−2)/2, 6,λ⊥) design,

where

λ⊥ =
1

6
(2

m−2
2 +1)(2

5m−10
2 −3×22m−4 −5×2

3m−8
2 +25×2m−3 +2

m
2 −16).

When

n f = 2m−1 +2(m−2)/2,

the supports of all codewords of weight 6 in C̃
⊥
D f

form a 2-(2m−1 +2(m−2)/2, 6,λ⊥) design,

where

λ⊥ =
1

6
(2

m−2
2 −1)(2

5m−10
2 +3×22m−4 −5×2

3m−8
2 −25×2m−3 +2

m
2 +16).

Let D = {P , B} be a 2-(v,k,λ) symmetric design, where B = {B1, B2, · · · , Bb} and

b ≥ 2. Then

– (B1, {B2 ∩B1, B3 ∩B1, · · · , Bb ∩B1}) is a 2-(k, λ, λ−1) design, and called the derived

design of D with respect to B1;

– (B̄1, {B2 ∩ B̄1, B3 ∩ B̄1, · · · ,Bb ∩ B̄1}) is a 2-(v− k, k −λ, λ) design, and referred to as

the residual design of D with respect to B1, where B̄1 = P \B1.

The b derived designs may be isomorphic or not. However, they have the same parameters.

Consequently, we call them collectively the derived design. For the same reason, all the b

residual designs are collectively called the residual design of D.

If a symmetric design D has parameters

2− (2m, 2m−1 −2(m−2)/2, 2m−2 −2(m−2)/2),

its derived design has parameters

2− (2m−1 −2(m−2)/2, 2m−2 −2(m−2)/2, 2m−2 −2(m−2)/2 −1),

and its residual design has parameters

2− (2m−1 +2(m−2)/2, 2m−2, 2m−2 −2(m−2)/2).

It is known that the quasisymmetric designs of Theorem 23 are derived designs of those

symmetric designs of Theorem 18 [14, Chapter 14].
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8 Designs from semibent functions on GF(2m) for even m

Throughout this section, let m ≥ 4 be even unless otherwise stated, and let Tr(x) denote the

absolute trace function on GF(2m). A function from GF(2m) to GF(2) is called semibent if

f̂ (w) ∈ {0,±2(m+2)/2} for all w ∈ GF(2m). We are much interested in semibent functions of

the form f (x) = Tr(xe). The following is list of such semibent functions Tr(xe):

1. e = 2h +1, where m/gcd(m,h) is odd and 1 ≤ h ≤ m/2 (Gold exponent) [21].

2. e = 22h −2h +1, where m/gcd(m,h) is odd (Kasami exponent) ([26], [27]).

3. e = 2m/2 +2(m+2)/4 +1, where m ≡ 2 (mod 4) (Niho exponent) [7].

4. e = 2(m+2)/2 +3, where m ≡ 2 (mod 4) (Niho exponent) [7].

In this section, we summarise semibent functions of the form Tr(xe) that can be employed

to obtain 2-designs in a way. To this end, we introduce two families of binary linear codes

as follows.

Let e be an odd integer with 1 < e < 2m − 1 and gcd(e,2m − 1) = 1. Assume that the

smallest positive integer ℓ such that 2ℓe ≡ e (mod 2m −1) is m. Define

C
∗
e = {(Tr(axe +bx))x∈GF(2m)∗ : a,b ∈ GF(2m)} (32)

and

Ce = {(Tr(axe +bx)+h)x∈GF(2m) : a,b ∈ GF(2m), h ∈ GF(2)}. (33)

By definition, C∗
e is isomorphic to the primitive cyclic code with parity-check polynomial

Mα−eMα−1(x), where α is a generator of GF(2m)∗ and Mα j is the minimal polynomial of α j

over GF(2).
The parameters and the weight distribution of the code C

∗
e are given in the next theorem.

Theorem 25 Let notation and assumptions be as before. Then the code C
∗
e has parameters

[2m −1,2m] and its weight distribution is given by the following multiset union

{{

(2m − f̂ (w))/2 : w ∈ GF(2m),v ∈ GF(2m)∗
}}

∪
{{

2m−1 : w ∈ GF(2m)∗
}}

∪{{0}},

where f (x) = Tr(xe).

Proof Since e > 1 and e is odd, e and 1 are in different cyclotomic cosets modulo 2m −1.

By assumption, the cyclotomic coset containing e has size m. It then follows that the code

C
∗
e has dimension 2m.

Since gcd(e,2m −1) = 1, ye is a permutation of GF(2m). Define

c(a,b) = (Tr(axe +bx))x∈GF(2m), a,b ∈ GF(2m).

Let a 6= 0. Then axe =(a
1
e x)e. Consequently, c(a,b) has the same Hamming weight as c

(1,a−
1
e b)

.

Note that

wt(c
(1,a−

1
e b)

) =
2m − f̂ (a−

1
e b)

2
.

The desired conclusion on the weight distribution of the code then follows.

The following theorem follows from Theorem 25.
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Theorem 26 Let notation and assumptions be as before. Then the code Ce has parameters

[2m,2m+1] and its weight distribution is given by the following multiset union

{{

(2m − f̂ (w))/2 : w ∈ GF(2m),v ∈ GF(2m)∗
}}

∪
{{

(2m + f̂ (w))/2 : w ∈ GF(2m),v ∈ GF(2m)∗
}}

∪
{{

2m−1 : w ∈ GF(2m)∗,u ∈ GF(2)
}}

∪{{0}}∪{{2m}},

where f (x) = Tr(xe).

We point out that Theorems 25 and 26 work for both even and odd m. In addition,

Theorems 25 and 26 can be modified into more general results without restricting the size

of the cyclotomic coset modulo 2m −1 containing e.

Theorem 27 Let e be the Gold, or Kasami or Niho exponent introduced before. Then the

code Ce has parameters [2m,2m+1,2m−1 −2m/2] and weight enumerator

1+(2m −1)2m−2z2m−1−2m/2

+(2m −1)(3×2m−1 +2)z2m−1

+(2m −1)2m−2z2m−1+2m/2

+ z2m

.

The dual code C
⊥
e has parameters [2m,2m −2m−1,4].

Proof It is easily verified that e > 1 is odd and gcd(e,2m − 1) = 1. Notice that Tr(xe) is

semibent. It then follows from Theorem 26 that the code Ce has the four nonzero weights

given in the weight enumerator above. One can easily deduce that the dual code (C∗
e)

⊥

has minimum weight at least 3. As a result, C
⊥
e has minimum distance at least 4. The

first four Pless power moments then give the desired weight distribution of Ce. Using the

MacWilliams identity and the weight enumerator of Ce, one can prove that the minimum

distance of C⊥
e equals 4.

The Assmus-Mattson Theorem says that the code Ce of Theorem 27 hold 1-designs. For

the two Niho exonents e, Ce does not hold 2-designs according to Magma experiments. This

means that the automorphism group of the code Ce for the two Niho exponents is in general

not 2-homogeneous and 2-transitive.

Since Tr(x2h+1) is a quadratic form, the code C2h+1 is affine-invariant and holds 2-

designs. Note that the Boolean function Tr(x22h−2h+1) is not quadratic, and, in general, is

not 2-transitive or 2-homogeneous. But our Magma program suggests the following conjec-

ture.

Conjecture 28 For the Kasami exponent e = 22h −2h +1, the code Ce holds 2-designs.

For any semibent function Tr(xe), the code Ce and its dual C⊥
e has the fixed parameters

and weight enumerator in Theorem 27. However, some of these codes hold 2-designs, while

others do not. This is due to the fact that the weight enumerator in Theorem 27 is not regular

enough so that 2-designs are guaranteed.

9 Concluding remarks

In this survey, we summarized constructions of 2-designs and 3-designs held only in linear

codes that are constructed with special types of functions. Special functions can also be

employed to construct nonlinear codes which hold also designs. For example, the famous
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Kerdock codes are nonlinear and are constructed with a set of bent functions such that the

sum of any two of sum is still bent [28, Chapter 15].

As observed, the linear codes from special functions presented in this survey have very

good parameters and some of them are optimal. It is very fascinating to search for special

functions and their applications in coding theory and combinatorics. Hopefully, this survey

could stimulate research in this direction.
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