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While recent literature on circuit layout addresses large-scale standard-cell placement, the authors
typically assume that all macros are fixed. Floorplanning techniques are very good at handling
macros, but do not scale to hundreds of thousands of placeable objects. Therefore we combine
floorplanning techniques with placement techniques to solve the more general placement problem.
Our work shows how to place macros consistently with large numbers of small standard cells.
Proposed techniques can also be used to guide circuit designers who prefer to place macros by
hand.

We address the computational difficulty of layout problems involving large macros and numerous
small logic cells at the same time. Proposed algorithms are evaluated in the context of wirelength
minimization because a computational method that is not scalable in optimizing wirelength is
unlikely to be successful for more complex objectives (congestion, delay, power, etc.)

We propose several different design flows to place mixed-size placement instances. The first
flow relies on an arbitrary black-box standard-cell placer to obtain an initial placement and then
removes possible overlaps using a fixed-outline floorplanner. This results in valid placements for
macros, which are considered fixed. Remaining standard cells are then placed by another call to the
standard-cell placer. In the second flow a standard-cell placer generates an initial placement and
a force-directed placer is used in the ECO mode to generate an overlap-free placement. Empirical
evaluations on ibm benchmarks show that in most cases our proposed flows compare favorably
with previously published mixed-size placers Kraftwerk, mixed-size floor-placer proposed at DATE
2003 and are competitive with mPG-MS.

Categories and Subject Descriptors: B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: VLSI, Placement, Floorplanning

1. INTRODUCTION

During the last few decades, academia and industry have invested considerable effort in re-

search on Physical Design for VLSI [Sherwani 1999]. Through the integration of multiple

optimization techniques, design methods and high-performance CAD software for inte-

grated circuits (ICs) were developed. However, the growing size of ICs lead to frequent

changes to common design flows. Recently, design reuse was introduced as a way to (i)
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tame the complexity of circuit design for deep sub-micron technologies, and (ii) improve

time-to-market. This trend is further accelerated with the use of hardware description

languages and high-level synthesis. Indeed, several current industrial initiatives provide

infrastructure and training for the reuse of Intellectual Property (IP), and also facilitate

business models based on IP reuse.

Reuse of design IP is important for multi-million-gate ASICs and considered an integral

part of the System-On-Chip (SoC) design style, that is critical for graphics cards, commu-

nication chips, etc. Design IP blocks may implement algorithms or signal transforms, and

may contain “canned” table look-ups or embedded RAM.

During Physical Design, IP design blocks appear as black-box macros, i.e., blocks of

logic with known function and a known geometric and electrical properties, but no struc-

tural description of their inner workings. Such macros may or may not have flexible ge-

ometries, but in any case are considered parts of design. In classical Physical Design flows

a circuit is fi rst partitioned, then floorplanned, and fi nally, standard-cell placement is per-

formed in each partition. This was necessary primarily because older placers, e.g., those

based on Simulated Annealing, did not scale very well. However the scalability of min-

cut placers dramatically improved after the multi-level partitioning breakthrough in 1997

[Alpert et al. 1997; Karypis et al. 1997; Caldwell et al. 2000a]. In addition to having near-

linear runtime, placers based on recursive bisection perform circuit partitioning and, if the

cut-lines are allowed to move, also perform floorplanning. Yet, macro-placement is not

supported in these placers, mainly because large macros, that contain more than several

percent of layout area, introduce considerable discreteness in the solution space and may

be diffi cult to handle within standard recursive min-cut bisection.

Reusing black-box macros in Physical Design still remains a challenge and existing

commercial tools often require help from human designers. For example, the Cadence

QPlace manual [Cadence ] mentions that the addition of macros may slow down otherwise

fairly effi cient placement of standard cells and the results may be inferior to what human

designers can achieve. Cadence Silicon Ensemble (SEDSM) recommends the following

flow for circuits with macros.

— Do block placement to place macros. Macros may have overlaps and may not fi t in

layout area.

— Human designer manually removes any overlaps between macros.

— Macros are now considered fi xed.

— QPlace is called to place standard cells.

Figure 1 (A) shows the placement of the ibm02 design (see Section 5), produced with

the Cadence SEDSM flow recommended for circuits with large number of macros. As seen

there is a large amount of overlaps between macros and the designer is expected to remove

these overlaps manually. If the design is given directly to SEDSM placer, QPlace, a legal

placement is produced, but the run-times and solution quality suffer. However, a new ver-

sion of SEDSM is currently in beta-testing and implements a different macro-placement

flow, achieving better results [Varadrajan and DeLendonck 2002]. Recently acquired by

Cadence, Silicon Perspective developed the First Encounter tool which performs System-

on-Chip Physical-Prototyping and Hierarchical Physical Design. First Encounter allows

full-chip physical prototyping and emphasizes early floorplanning. Figure 1 (B) shows

the placement of the same ibm02 design produced by the force-directed placer Kraftwerk
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Fig. 1. Figure (A) shows a design with 19601 cells (ibm02) design placed by Cadence SEDSM

recommended flow for designs with large number of macros. There are overlaps between

macros which the designer is expected to remove manually. Figure (B) shows the Kraftwerk

placement for the same design. Again there are significant overlaps, which have to be re-

moved. Figure (C) shows the Kraftwerk placement for a design with 23136 cells (ibm03). The

overlaps between macros is much smaller than (B) and can probably be removed by simple

techniques.

[Eisenmann and Johannes 1998]. This placement also has a large amount of overlaps be-

tween macros. Figure 1 (C) shows a Kraftwerk placement for design ibm03. As seen there

are no signifi cant overlaps between macros in this placement and relatively simple tech-

niques should be able to legalize such a placement. However, Kraftwerk does not always

produce such non-overlapping placements and more sophisticated legalization techniques

are required.

In addition to Physical Design with IP blocks, mixed-size placement techniques are

relevant in the context of Physical Synthesis, where layout starts before the netlist is fully

synthesized. While our work does not address synthesis, the proposed techniques may be

useful in Physical Synthesis tools that operate at the chip level.

Previous published work on mixed-size placement can be broadly classifi ed into two ap-

proaches, continuous optimization techniques and combinatorial optimization techniques.

Continuous optimization techniques like force-directed approaches work well with less

constrained designs having relatively large amount of white-space [Eisenmann and Jo-

hannes 1998; Mo et al. 2000]. On the other hand combinatorial techniques are particu-

larly promising on constrained designs with less white-space [Nag and Chaudhary 1999].

Published works [Nag and Chaudhary 1999; Vijayan 1991] focus on overlap removal for

macros only and did not consider mixed-size placement. An entirely different approach is

pursued in [Chang et al. 2003]. Their placer mPG-MS is based on an earlier tool mPG,

which recursively clusters the netlist to build a hierarchy. The top-level netlist of approxi-

mately 500 clusters is placed using Simulated Annealing (SA), and then the placement is

gradually refi ned by unclustering the netlist and improving the placement of smaller clus-

ters by SA. mPG-MS contributes a structure of bins, in which large and small blocks are

placed during course placement. The coarse placement is necessarily overlap-free for big

objects, but small objects must be further re-placed by a detail placer. A signifi cant effort

is expended to check for overlap during refi nement and legalize possible violations. A re-

cent work [Choi and Bazargan 2003] also deals with the mixed-size placement problem.

The authors of [Choi and Bazargan 2003] proposed a mixed-size placement flow which
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combines a hierarchical simulated annealing based floorplanner with partitioning based

placement techniques to handles mixed-size placement problem. Their method starts with

a netlist and a fi xed-floorplan area. At each level of partitioning, ”large” hard macros are

extracted from the netlist and the rest of the standard-cells and small macros are parti-

tioned into a number of ”soft” modules using a min-cut partitioner. The mixed hard/soft

modules are floorplanned using a slicing floorplanner. This is performed recursively until

the modules contain less than 30 gates. The method employs area migration techniques to

satisfy the fi xed-outline constraints. However, this method does not produce completely

legal placements with large overlaps remaining between macros. The reader is referred

to the book [Sarrafzadeh et al. 2002] for a detailed background discussion of mixed-size

placement.

The main contribution of our work is a methodology to place designs with numerous

macros by combining floorplanning and standard-cell techniques. The proposed design

flow is as follows:

— An arbitrary black-box (no access to source code required) standard-cell placer gener-

ates an initial placement.

— To remove overlaps between macros, a physical clustering algorithm constructs a fi xed-

outline floorplanning instance.

— A fi xed-outline floorplanner [Adya and Markov 2001], generates valid locations of

macros.

— With macros considered fi xed, the black-box standard-cell placer is called again to place

small cells.

This design flow provides a somewhat new “killer-application” for the many floorplan-

ning techniques developed in the last fi ve years, e.g., [Lin and Chang 2001]. Indeed, we do

not insist on using a particular floorplan representation, but rather emphasize floorplanning

as a step in large-scale placement with macros.

We also propose a second design flow combining a black box standard-cell placer and a

force-directed placer. The proposed design flow is as follows:

— An arbitrary black-box (no access to source code required) standard-cell placer gener-

ates an initial placement.

— A force-directed placer [Eisenmann and Johannes 1998] is used in ECO mode to remove

the overlaps while changing the initial placement minimally.

Depending upon the design requirements and characteristics of the design, either of our

flows can be used to produce high quality placements of mixed-size designs.

We notice that existing academic placers Capo [Caldwell et al. 2000a], Dragon 2000

[M. Wang and Sarrafzadeh 2000], Feng Shui[Yildiz and Madden 2001] and Spade [Dutt

2000] cannot process movable macros. In fact, all macros are removed in the placement

benchmarks described in [M. Wang and Sarrafzadeh 2000] (produced from the ISPD 98

circuit benchmarks), and all cells are artifi cially made 1-by-1. Therefore, we derived new

placement benchmarks from the original ISPD 98 circuits, preserving macros and the areas

of all cells. Having converted the benchmarks into Cadence LEF/DEF format, we com-

pared the performance of our methods to Cadence commercial placer, QPlace, Kraftwerk,

mPG-MS and and the mixed-size placement flow proposed in [Choi and Bazargan 2003].
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The remaining part of the paper is organized as follows. Section 2 covers previous work

relevant to force-directed placement and fi xed-outline floorplanning. Two new design flows

for macro placement are proposed in Sections 3 and 4. Section 5 presents empirical vali-

dation of our work, and future directions are discussed in Section 6. Section 7 concludes

our work.

2. PREVIOUS WORK

In this section we outline the relevant background for our study. We briefly describe the

top-down recursive bisection based placement framework, a generic force-directed place-

ment and floorplanning algorithm, and a fi xed-outline floorplanning algorithm. All these

algorithms are used in our proposed mixed-size placement flows.

2.1 Top-down, Recursive Bisection Based Placement

Top-down placement algorithms seek to decompose a given placement instance into smaller

instances by sub-dividing the placement region, assigning modules to subregions, reformu-

lating constraints, and cutting the netlist hypergraph [Caldwell et al. 2000a]. Such a netlist

decomposition is typically done with the min-cut objective. Each hypergraph partitioning

instance is induced from a rectangular region, or block in the layout. A block corresponds

to (i) placement region with allowed locations, (ii) a collection of cells to be placed in

this region, (iii) all nets incident to the modules in the region, and (iv) fi xed-terminals

which are cells outside the region. The top-down placement process can be viewed as

a sequence of passes where each pass examines all blocks and if required, divides them

into two smaller blocks using min-cut partitioning. In our work we use the top-down re-

cursive bisection based placer Capo [Caldwell et al. 2000a]. Capo uniformly distributes

the available whitespace [Caldwell et al. 2003] around the core. However, if non-uniform

distribution is required, fake unconnected fi ller cells [Adya et al. 2003] can be used.

2.2 Kraftwerk: Generic Global Placement and Floorplanning

A force-directed method for global placement was introduced in [Eisenmann and Johannes

1998]. Their global placer is called Kraftwerk. In addition to the well known wirelength

dependent forces, Kraftwerk uses additional forces to reduce cell-overlaps and to consider

the placement area. The wirelength dependent quadratic objective function to minimize is

described as follows. Let n be the number of movable cells in the circuit and (xi,yi), the

coordinates of cell i. A placement of the circuit can be described by the 2n-dimensional

vector ~p = (x1, ..,xi, ..xn,y1, ..,yi, ..,yn)
T . The circuit connectivity is modeled as a graph.

Cells are modeled as vertices and nets are modeled as edges. Hyperedges are modeled

as cliques. The cost of an edge is modeled as the squared Euclidean distance between its

adjacent vertices multiplied with the weights of the edges. The squared Euclidean distance

between cells i and j is (xi − x j)
2 +(yi − y j)

2. The objective function sums up the cost of

all edges and can be written in matrix notation as

1

2
~pTC~p+ ~dT~p+ const

This objective function is minimized by solving the linear equation system

C~p+ ~d = 0

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.
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Additional constant forces are introduced in [Eisenmann and Johannes 1998] to distribute

the cells more evenly in the layout region.

C~p+ ~d +~e = 0

The force vector ~e contains additional forces working on each cell in the x and y direc-

tion. These additional forces try to move the cells from high density regions to low density

regions in the layout, thus attempting to reduce the overlaps. The algorithm described in

[Eisenmann and Johannes 1998] is iterative which determines the additional forces accord-

ing to the current placement. In each iteration the forces acting on the cells are assumed

constant and are used to calculate a new placement. The new placement is base for the next

iteration step and so on. Each step of the algorithm is called a placement transformation.

The transformation step can be applied to fully overlapping placements as well as nearly

legal placements. Thus, the algorithm renders itself very elegantly to ECO style placement

requirements.

It is argued in [Eisenmann and Johannes 1998] that their algorithm is able to handle

large mixed-size placement problems without treating macros and standard cells differ-

ently. However, from our experiments, we conclude that if applied from scratch on con-

strained mixed-size designs with less whitespace, this algorithm frequently produces place-

ments with large overlaps.

2.3 Fixed-outline Floorplanning

A fi xed-outline floorplanner was proposed in [Adya and Markov 2001; 2003]. We describe

the work briefly here.

A typical floorplanning formulation includes a set of blocks, that may represent circuit

partitions in applications. Each block is characterized by area (typically fi xed) and shape-

type, e.g., fi xed rectangle, rectangle with varying aspect ratio, etc. Multiple aspect ratios

can be implied by an IP block available in several shapes as well as by a hierarchical

partitioning-driven design flow for ASICs [Sherwani 1999; Kahng 2000] where only the

number of standard cells in a block (and thus the total area) is known in advance. A solution

to such a problem, i.e., a floorplan, specifi es a selection of block shapes and overlap-

free placements of blocks. Classical floorplanning minimizes a linear combination of area

and wirelength. Among measures of circuit wirelength, the popularity of Half-Perimeter

Wirelength (HPWL) function is due to its simplicity and relative accuracy before routing is

performed. The HPWL objective gained relevance with the advent of multi-layer over-the-

cell routing, where more nets are routed with shortest paths [Kahng 2000]. In floorplanners

based on Simulated Annealing (e.g., with the Sequence-Pair representation [Murata et al.

1996]) the typical choice of moves is straightforward.

As pointed out in [Kahng 2000; Caldwell et al. 2000a], modern hierarchical ASIC design

flows based on multi-layer over-the-cell routing naturally imply fixed-die placement and

floorplanning, rather than the older variable-die style [Sherwani 1999], associated with

channel routing, two layers of metal and feedthroughs. In such a flow, each top-down step

may start with a floorplan of prescribed aspect ratio and with blocks of bounded (but not

fi xed) aspect ratios. The modern floorplanning formulation proposed in [Kahng 2000] is

an inside-out version of the classical outline-free floorplanning formulation — the aspect

ratio of the floorplan is fi xed, but the aspect ratios of the blocks may vary.
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Fig. 2. Two sequence-pairs with edges of the horizontal (dashed) and vertical (solid) constraint

graphs.

2.3.1 Sequence-Pair Floorplan Representation. An overwhelming majority of floor-

planners rely on the Simulated Annealing framework [Sherwani 1999] but differ by inter-

nal floorplan representations.
The sequence-pair representation for classical floorplans consists of two permutations

(orderings) of the N blocks [Murata et al. 1996]. The two permutations capture geometric
relations between each pair of blocks. Recall that since blocks cannot overlap, one of them
must be to the left or below from the other, or both. In sequence-pair

(< .. . ,a, . . . ,b, . . . >,< . . . ,a, . . . ,b, . . . >) ⇒ a is to the left of b (1)

(< .. . ,a, . . . ,b, . . . >,< . . . ,b, . . . ,a, . . . >) ⇒ a is above b (2)

In other words, every two blocks constrain each other in either vertical or horizontal di-

rection. The sequence-pair representation is shift-invariant since it only encodes pairwise

relative placements. Therefore, placements produced from sequence-pairs must be aligned

to given horizontal and vertical axes, e.g., x = 0 and y = 0.

The original work on sequence-pair [Murata et al. 1996] proposed an algorithm to com-

pute placements from a sequence-pair by constructing horizontal (H) and vertical (V) con-

straint graphs. The H and V graphs have N + 2 vertices each — one for each of N block,

plus two additional vertices :“the source” and “the sink”. For every pair of blocks a and

b there is a directed edge a → b in the H graph if a is to the left from b according to the

sequence-pair (Formula 1). Similarly there is a directed edge a → b in the V graph if a is

above b according to the sequence-pair (Formula 2) — exactly one of the two cases must

take place. Vertices that do not have outgoing edges are connected to the sink, and vertices

that do not have incoming edges are connected to the source. Both graphs are considered

vertex-weighted, the weights in the H graph represent horizontal sizes of blocks, and the

weights in the V graph represent vertical sizes of blocks. Sources and sinks have zero

weights.

Block locations are the locations of block’s lower left corners. The x locations are com-

puted from the H graph, and y locations are computed from the V graph independently.

Therefore, we will only discuss the computation of the x locations. One starts by assigning

location x = 0 to the source. Then, the H graph is traversed in a topological order. To fi nd

the location of a vertex, one iterates over all incoming edges and maximizes the sum of the

source location and source width. Figure 2 illustrates the algorithm on two examples. The

worst-case and average-case complexity of this algorithm is Θ(n2), since the two graphs,

together, have a fi xed Θ(n2) number of edges, and topological traversals take linear time

in the number of edges.

Sequence-pairs can be used to floorplan hard rectangular blocks by Simulated Annealing
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Fig. 3. Slack Computation. In (a) the floorplan is evaluated left-to-right and bottom-to-top. In

(b) the floorplan is evaluated right-to-left and top-to-bottom. The slacks for each block is the

difference between its positions in the two evaluations.

[Murata et al. 1996; Murata and Kuh 1998; Tang et al. 2000; Tang and Wong 2001]. The

moves are (i) random swaps of blocks in one of the two sequence-pairs, and (ii) rotations

of single blocks. Sequence-pairs are modifi ed in constant time, but need to be re-evaluated

after each move. No incremental evaluation algorithms have been reported, therefore, the

annealer spends most of the time evaluating sequence-pairs.

The sequence-pair representation and necessary algorithms have been extended to han-

dle fi xed blocks [Murata and Kuh 1998] as well as arbitrary convex and concave rectilinear

blocks [Fujuyoshi and Murata 1999]. Recently, the original O(n2)-time evaluation algo-

rithm [Murata et al. 1996], has been simplifi ed and sped up to O(n log(n)) in by Tang et al.

[Tang et al. 2000], and then to O(n log(log(n))) [Tang and Wong 2001]. Importantly, those

algorithms do not change the semantics of evaluation — they only improve runtime, and

lead to better solution quality by enabling a larger number of iterations during the same

period of time. While O-trees [Pang et al. 2000] and corner block lists [Hong et al. 2000]

can be evaluated in linear time, the difference in complexity is dwarfed by implementa-

tion variations and tuning, e.g., the annealing schedule. The implementation reported by

Tang et al. [Tang and Wong 2001] seems to outperform most known implementations,

suggesting that the sequence-pair is a competitive floorplan representation.

All three sequence-pair evaluation algorithms are based on the following theorem [Tang

et al. 2000]: The x-span of the floorplan to which sequence pair (S1,S2) evaluates is equal

to the length of the longest common weighted subsequence of S1 and S2, where weights

are copied from block widths. An analogous statement about the y-span deals with the

longest common subsequence of SR
1 and S2 , where R denotes the “reversed” sequence and

weights are copied from block heights. Moreover, the computations of x and y locations of

all blocks can be integrated into the longest common subsequence computations.

2.3.2 Floorplan Slacks. The notion of slack can be used with any of above mentioned

sequence pair evaluation algorithms and potentially other floorplan representations[Adya

and Markov 2003]. Each block in a floorplan has two types of slacks: horizontal slack

and vertical slack. Slack of a block in a floorplanning instance represents the distance (in

a particular dimension) at which this block can be moved without changing the outline of

the current floorplan. Blocks with zero slacks in a particular dimension must lie on critical

paths in the relevant constraint graph.

We will base our discussion on the horizontal slack. The discussion on vertical slack is

analogous. As shown in Figure 3, horizontal slacks can be computed with any floorplan
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representation that can be evaluated left-to-right and right-to-left. Once the X-size of the

floorplan is computed by packing left-to-right, one can re-pack it right-to-left. The hori-

zontal slack of a block is the difference between the block’s locations produced by those

two packings. The floorplanner Parquet [Adya and Markov 2001] uses the Sequence-Pair

representation because of the simplicity of the representation.

Once slacks for each block are known, they can be used in move selection. The rationale

here is to reduce the floorplan size in a given dimension (X or Y) without impairing the

hill-climbing abilities of Simulated Annealing. The new mechanism is combined with pair-

wise swaps and block rotations that are typically used in Sequence-Pair based annealers.

If a move (such as pairwise swap) does not involve at least one block with zero slack in a

given dimension, then the floorplan size in that dimension cannot decrease after the move.

This is because such a move cannot improve critical paths or, equivalently, longest common

subsequences [Tang et al. 2000; Tang and Wong 2001]. Therefore move selection is biased

towards blocks having zero slack in at least one dimension. Of those blocks, the ones

with large slack in the other dimension are often good candidates for single-block moves,

such as rotations and gradual (discrete or continuous) changes of aspect ratio. Blocks with

zero slack in both the directions, especially small blocks, are good candidates for a new

type of move, in which a block is moved simultaneously in both sequence pairs to become

a neighbor of another block (in both sequences, and, thus in placement). One possible

heuristic is to move a critical block C next to a block L with as large a slack as possible,

since large slacks imply that whitespace can be created around L.

2.3.3 Handling Soft Blocks. We can also use slack-based move types to change aspect

ratios of soft blocks [Adya and Markov 2003]. During annealing, at regular intervals, a

block with low (preferably zero) slack in one dimension and large slack in the other di-

mension are chosen. The height and the width of such a block is changed within allowable

limits so that its size in the dimension of smaller slack is reduced (to increase the slack).

Such moves are greedily applied to all soft blocks in the design.

2.3.4 Wirelength Minimization. In classical floorplanning, the global objective is to

minimize wirelength and total area of the design. This implies multi-objective minimiza-

tion. Typically, most simulated annealing based floorplanners use a linear combination of

area and wirelength as an objective for the annealer.

Additional moves can be designed to improve the wirelength [Adya and Markov 2003].

For a given block a, we calculate, using analytical techniques, its “ideal” location that

would minimize quadratic wirelength of its incident wires N. We determine the ideal loca-

tion (xa,ya) of block a which minimizes the following function.

∑
N∈a

∑
v∈N

(xv − xa)
2 +(yv − ya)

2

The ideal location (xa,ya) of block a is simply the average of the position of all modules

connected to block a. We then identify the block b closest to the ideal location. This is

done by expanding a circle centered at the ideal location and identifying the closest block

b. We then attempt to move block a in the sequence pair so that in both sequences it is

located next to b. As explained earlier, we evaluate the four possible ways to do that, and

choose the best. Thus an attempt is made to move a close to its ideal location to minimize

quadratic wirelength.
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Current Outline

Required Outline
Success

Failure

Restart

y−violation

x−violation

(Initial)
(1000 moves)

(End of annealing)

Fig. 4. Snap-shots from fixed-outline floorplanning. The number of annealing moves is fixed,

but if the evolving floorplan fits within the required fixed-outline, annealing is stopped earlier.

If at the end of annealing the fixed-outline constraints are not satisfied, it is considered a

failure and a fresh attempt is made.

2.3.5 Fixed-outline Floorplanning. Fixed-outline floorplanning can be performed us-

ing Simulated Annealing, taking advantage of new types of moves that are based on the

notion of floorplan slack [Adya and Markov 2001]. The following notation will be used in

the floorplanning formulations. For a given collection of blocks with total area A and given

maximum percent of white-space γ, we construct a fi xed outline with aspect ratio α ≥ 1.1

H∗ =
√

(1 + γ)Aα W∗ =
√

(1 + γ)A/α

Aside from driving the annealer by area minimization, we can consider the following
objective functions: (i) the sum of the excessive length and width of the floorplan, (ii) the
greater of the two. Denoting the current height and width of the floorplan by H and W , we
defi ne these functions as

(i) max{H −H∗,0}+max{W −W∗,0} (ii) max{H −H∗,W −W∗}

The choice of these functions is explained by the fact that the fi xed-outline constraint is

satisfi ed when each of those functions takes value 0 or less. For this reason we cannot

consider the product of fi xed outline violations.

Figure 4 shows the evolution of the fi xed-outline floorplan during Simulated Annealing

with slack-based moves. The scheme works as follows. At regular time intervals (during

area-minimizing Simulated Annealing) the current aspect ratio is compared to the aspect

ratio of the desired outline. If the two are suffi ciently different, then the slack-based moves

described earlier are applied to bias the current aspect ratio in the needed direction. For

example, if the width needs to be reduced, then choose the blocks in the floorplan with

smallest slack in the X dimension and insert them above or below the blocks with largest

slack in the Y dimension. These moves have better chances of reducing the area and im-

proving the aspect ratio of the current floorplan at the same time. Using such repeated

corrections, the structure of the floorplan is biased towards the aspect ratio of the fi xed

outline.

While a number of works on floorplanning discuss floorplan constraints, the results in

[Adya and Markov 2003][Adya and Markov 2001] empirically demonstrate high ratios of

1The restriction of α≥ 1 is imposed without loss of generality since our floorplanner can change orientations of

individual blocks.
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Fig. 5. Map of cell sites for the ibm02 design with all the macros marked as fixed. Sites under

the macros are removed.

successes to failures in the flow from Figure 4.

3. MIXED-SIZE PLACEMENT FLOW 1

Our fi rst proposed flow for mixed-size placement requires a black-box standard-cell placer

that can place cells of equal height in rows that consist of cell sites, along the lines of the

data-model implied by Cadence LEF/DEF. We also require that the placer can handle fi xed

cells/pins and can handle rows consisting of contiguous sub-rows. By removing cell sites

from a sub-row and splitting the sub-row into two sub-rows, one can model the effect of

fi xed macros (because pins of fi xed macros are fi xed as well). For example, the site map

in Figure 5 corresponds to the placement in Figure 10 (c). Our flow also uses a fi xed-

outline floorplanner described in Section 2.3. While our floorplanner uses the sequence-

pair representation, a variety of other floorplan representations can be used.

3.1 Shredding Macro Cells

A hierarchical recursive bisection based placer has trouble handling mixed-size netlists

[Sarrafzadeh et al. 2002] because of the large variations in the cell sizes. We get around

this inherent problem by shredding all the macros to make the netlist more homogeneous

in terms of cell sizes. The DOMINO detailed placer introduced the idea of shredding large

cells to simplify placement [Doll et al. 1994]. To apply this technique in global placement,

one must additionally handle cell orientations and remove cell overlaps (other than by left-

to-right packing).

Our flow starts with a pre-processing step during which all macros are shredded into a

number of smaller cells of minimal height. The number of these cells is determined by the

area of the macro and the width of sub-cells. A macro shredded into sub-cells is shown in

Figure 6. A sub-cell with row index i and column index j may be identifi ed as ai, j, and

its immediate neighbors are ai−1, j, ai+1, j, ai, j−1 and ai, j+1. Fake two-pin nets are added

between neighboring sub-cells to ensure that sub-cells are placed close to each other when

wirelength is minimized. The number of fake nets added between each pair of sub-cells

determine how strongly the sub-cells are tied to each other. We add three fake nets between

each connected, neighboring sub-cells. The total number of faked wires depends on the

width of sub-cells. A cleverly implemented placer could handle the faked wires implicitly,

e.g., using net weights. In any case, a large-scale global placer with near-linear runtime

(e.g., a fast min-cut placer) should be able to handle the increased number of wires. The

Capo placer [Caldwell et al. 2000a] we use is scalable enough. The shredding procedure
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case:
Va ↑ Vr → : orient = N
Va ↓ Vr ← : orient = S
Va← Vr ↑ : orient = W
Va→ Vr ↓ : orient = E
Va ↑ Vr ← : orient = FN
Va ↓ Vr → : orient = FS
Va→Vr ↑ : orient = FW
Va← Vr ↓ : orient = FE
end case;

(a) (b)

Fig. 6. A macro is shredded into cells of minimal height, connected by fake wires. To find

the orientation of the macro from locations of sub-cells, the relative locations of sub-cells ai, j ,

ai+1, j and ai, j+1 are analyzed for every eligible (i, j). Figure (b) shows the case analysis in

terms of vectors Va and Vr in final placement. “N”,”S”,”W”,”E” stand for “North”, “South”,

“West” and “East” respectively. “F” stands for “Flipped”. Any net connected to a macro pin

is propagated to the respective sub-cell as shown.
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Fig. 7. A design with only 1 macro and 4 terminals. Fig (a) shows the macro shredded into

sub-cells. The sub-cells are placed at ideal locations. The fake nets connecting them form a

regular grid structure. Fig (b) shows the shredded design placed by Capo followed by detailed

placement. The sub-cells are placed close to each other and also maintain the initial grid

structure( in (a)) on average.

can be viewed as the equivalent of descending one level of hierarchy in a hierarchical

design by flattening the macro. If the sub-cells of the macro are not placed close to each

other in the placement of the flattened design then it implies that the macro was not formed

properly, i.e. the clustering technique employed to form the macro did not work very well.

Artifi cially shredding the macro makes the new placement problem more homogeneous

and thus a fi nely tuned min-cut based placer can handle the shredded design better than

handling the original placement problem with macros.

The shredded design with the fake nets is placed using the global placer Capo. The

resulting placement does not immediately imply the locations of the original macros, be-

cause the macros are shredded. The center-location of a given macro is determined by

averaging the locations of all sub-cells of that macro. Since the sub-cells of a macro are

connected in a regular grid structure, a good placer will ensure that the sub-cells are placed
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close to each other and in the original grid like structure. Determining the orientation of

the macros which is globally consistent with the placement is very important. A top-down

global placement methodology that handles large macros by fi xing macros in partitions as

soon as the macros become too large for the partition, has problems determining the orien-

tation of individual macros. We developed a heuristic to determine the orientation of the

macro using the initial placement information. The heuristic is based on the relative place-

ment of each sub-cell with respect to its immediate neighbors. Namely, the placement of

sub-cell ai, j is compared with the placements of ai+1, j and ai, j+1. This is illustrated in Fig-

ure 6, where two vectors are computed for a given cell and then analyzed to produce one of

eight possible orientation types. For each macro, a score table is maintained which records

the number of sub-cells placed in a particular orientation. The orientation of the macro is

chosen according to the highest score (if several orientations have comparably high scores,

then we cannot conclude the orientation with certainty). The rationale is that the extra nets

added while shredding will, in many cases, help the macro to approximately maintain its

shape. Figure 7 shows an example design with only one macro and four terminals. Figure

7 (a) shows the macro shredded into sub-cells and connected in a regular grid-like fashion

by fake wires. The sub-cells are placed at ideal locations. Figure 7 (b) is the shredded

design placed by Capo followed by detailed placement. The sub-cells are placed close to

each other and maintain the initial grid structure on average. From the placement of the

shredded design we deduce that the macro is placed in the north orientation.

Thus, a crude placement (with orientations) is obtained by placing the shredded design.

Since the standard cells were placed by using wirelength-minimization, highly connected

cells will be close to each other, but macros may overlap with each other and may not be

placed entirely inside the layout region. Figure 10 (a) shows the placement of the ibm02

circuit produced as explained above.

While our technique allows one to deduce the prevailing orientation of a macro or ob-

serve that there is no prevailing orientation, some macros may only be placeable in one

orientation. Such a constraint can be ensured by tying the corners of the macro (i.e., the

respective sub-cells after shredding) to the corners of the layout by strong (heavy) faked

wires, as shown in Figures 8 (a) and (b). During the minimization of HPWL, e.g., by re-

cursive min-cut bisection, the orientation of the macro will be preserved, and the quality

of placement will not be affected. A formalization follows.

Lemma: Placements that minimize HPWL in the original design subject to orientation

constraints are in a one-to-one correspondence with unconstrained placements that mini-

mize HPWL, including the fake wires that tie the corners of macros to the corners of the

layout region (assuming suffi ciently strong wires).

The lemma can be proven along the lines of Figure 8, where fi ve out of eight possible

orientations of a macro tied to the four corners of the layout region are shown. Note that

this result does not apply to quadratic placement, and in that case all tied macros will be

attracted to the center of the layout.

3.1.1 Better Placement of Regular Netlists . Observe that placement of the shredded

netlists calls for placement of grid-graphs embedded into random-logic netlists. However,

we discovered that Capo 8.5 placer used in [Adya and Markov 2002] performs poorly on

grid-graphs, as shown in Figure 9 which illustrates an optimal and a sub-optimal place-

ment of a 10×10 grid with four fi xed cells in the corners. This is hardly a surprise because

generic standard-cell placers are known to perform badly on regular, data-path style de-
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(f)

Orientation : W
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HPWL = 2(W+H)−2(w+h) HPWL = 2(W+H)−2w+2h

HPWL = 2(W+H+w+h)

Orientation : FS

Orientation : S

Fig. 8. Five out of eight orientations of a macro whose corners are tied to the corners of the

layout region; the orientation is N in (a) and (b). The [linear] length of faked wires depends

only on the orientation and not on the location of the macro, as long as the macro is placed

entirely within the layout region. The desired orientation (N in this example) is found by

wirelength minimization.

signs [Dally and Chang 2000]. Our improvements Capo allow it to better handle regular

netlists without the loss of performance on random-logic netlists. These improvements are

described below, and their implementation was contributed to Capo 8.6.

During each partitioning step with a vertical cut line, Capo 8.5 with default parameters

uses a fairly large tolerance (of the order of 10-20%) in order to fi nd better cuts. After a

good cut is found, the geometric cut line is adjusted according to the sizes of partitions,

with an equal distribution of whitespace among the partitions. However, if no whitespace

is available in the block, this technique can cause cell overlaps. Namely, since cut-lines

cannot cut through cell sites and since no “jagged” cut-lines are allowed, the set of partition

balances that can be realized with a straight vertical cut-line and zero whitespace is fairly

discrete. Capo 8.5 simply rounds the current balance to the closest realizable and sets the

geometric cut-line accordingly. When whitespace is scarce, one of the resulting partitions

may be overfull and the other may have artifi cially-created whitespace. Only a relatively

small number of cell overlaps can be created this way, but they can be spread through

the whole core area. When used in the MetaPlacer shell, Capo 8.5 removes overlaps af-

ter global placement by a simple and very fast greedy heuristic. However, this heuristic

increases wirelength.

In an attempt to reduce the number of overlaps, we revised the partitioning process in

Capo. When a placement block is partitioned with a vertical cut-line, at fi rst the tolerance

is fairly large. As described previously, this allows Capo to determine the location of the

geometric cut-line by rounding to the nearest site. Furthermore, if the block has very little

whitespace, we then repartition it with a small tolerance in an attempt to re-balance the

current partitions according to the newly defi ned geometric cut-line.

Another modifi cation we implemented is related to terminal propagation. Normally, if

a projection of a terminal’s location is too close to the expected cut-line, the terminal is

ignored by Capo in an attempt to avoid excessively speculative decisions. The proximity

threshold is defi ned in percent of the current block size, and this parameter is called “par-

tition fuzziness”. For example, suppose that the y location of a terminal is within 9% of

the tentative location of the horizontal cut-line. Then, with partition fuzziness of 10%, this
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Fig. 9. Capo placements for designs with regular grid connectivity. Capo 8.5 produces sub-

optimal placements. Capo 8.6 produces the optimal placement for this design. There are 4

terminals connected to the 4 corner cells to anchor the design.

Circuit #Nodes #Nets WS % Optimal Dragon Kraftwerk Capo default Capo + repart
HPWL HPWL HPWL HPWL HPWL

10x10 100 184 0 184 293 202 267 184
95x95 9025 17864 5 17884 39687 18302 21828 22764

100x100 10000 19804 0 19804 46066 20519 38352 21314
190x190 36100 71824 5 71864 175623 75384 90665 89814
200x200 40000 79604 0 79604 198182 82335 193167 100041

Table I. Wirelength achieved by several placers on regular grids of varying size and with vary-

ing whitespace. While Kraftwerk produces small wirelength on n× n grids, it often fails to

converge to a solution on random-logic netlists with embedded grids.

Circuit Original Netlist Connectivity Based Physical
Clustering Clustering

#Nodes #Nets #Nodes #Nets Time #Nodes #Nets Time

ibm01 12752 14111 196 8732 15.79s 282 4689 0.24s
ibm02 19601 19584 168 14017 42.26s 297 6478 0.39s
ibm03 23136 27401 272 17069 63.83s 332 8723 0.54s
ibm04 27507 31970 216 20886 84.05s 327 9519 0.58s
ibm05 29347 28446 28 17280 89.23s 37 11630 0.57s

Table II. Two different clustering schemes to form floorplanning instances. Connectivity based

greedy scheme groups highly connected objects together. Physical clustering groups objects,

placed close to each other. In the clustered design, nets which connect only objects within

a certain group are collapsed. The metric used to compare is the number of nets in the fi-

nal clustered design. Physical clustering is more successful in reducing the number of nets

crossing the groups compared to connectivity based clustering.

terminal will be ignored during partitioning. Our studies of Capo performance on grids

suggest that partition fuzziness should be tuned up, particularly for small blocks. For ex-

ample, if a placement block has only three cell rows, then possible tentative locations of

horizontal cut-lines are relatively far from the center. In a neighboring block that has not

been partitioned yet, all cells are “located” at the center of the block, causing all connected

terminals to propagate into one partition in the current block. To avoid this, we increased

partition fuzziness to 33%.

The two changes described above improve the performance of Capo on the grid designs

with 0% whitespace by a factor of two. The results for performance of various placers on

grid graphs [Adya et al. 2003][Adya et al. 2004] are reported in Table I.
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Fig. 10. Mixed-size placement Flow 1 explained in Section 3. Figure (a) is the placement (illegal)

obtained after running Capo on ibm02 design with macros shredded into small cells. The

locations of macros are determined by averaging the locations of sub-cells. Note that macro

Z is not placed entirely within the layout region. Also, macro B overlaps with macro Y and

standard cells. Figure (b) shows a possible final fixed-outline floorplan of the same design. The

floorplanning is done from scratch and no attempt is made to preserve the original locations

of macros. Macros are marked with M and clusters of standard cells with C. Aspect ratios of

macros are fixed and those of cell clusters vary between 1/2 and 2. Observe that the vertical

coordinates of three (A, X and Y) out of five large macros are similar to those in Figure (a).

Figure(c) is the final placement of ibm02. The locations of all macros are taken from the

floorplan in Figure (b).
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Fig. 11. Same mixed-size placement flow as that described in figure 10. However, during the

floorplanning stage (b), low-temperature annealing is used in an attempt to preserve the initial

locations of macros obtained by placing the shredded netlist. The initial sequence-pair for

floorplanning is constructed from the existing placement (a). As seen from (a), (b) and (c)

positions of macros A,B,X,Y,Z are close to their original locations. However runtimes for the

floorplanning stage increase because of larger number of tries required to satisfy the fixed-

outline constraints when using low-temperature annealing.

3.2 Physical Clustering

The crude placement obtained from the above step may have overlapping macros as well

as macros placed outside the layout region (Figure 10 (a)). Such violations must be cor-

rected without affecting the placement quality considerably. This can, in principle, be

done by fi xed-outline floorplanning, but the number of movable objects is unrealistically

large (every standard cell is movable). We therefore construct a fi xed-outline floorplanning

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.



Combinatorial Techniques for Mixed-size Placement · 17

instance through physical clustering based on locations of standard cells. Cells that are

placed together are merged into soft clusters (i.e., the aspect ratio may vary). This is done

by gridding the layout region and putting all the standard cells that physically fall within

a grid region into a cluster. We recommend computing the dimensions of the grid based

on the number of standard cells and macros in the design. However, in our experiments

we used a grid of size 6 x 6 in order to speed up floorplanning. This grid worked well for

smaller benchmarks, but appeared too coarse for larger benchmarks. The original macros

are not clustered to anything, and their aspect ratio is allowed to change just as in the orig-

inal placement formulation. For each cluster, the nets connecting only blocks within the

cluster are discarded.

Since the design has been initially placed with small wirelength, the generated clusters

contain strongly connected cells. Alternatively, one could use connectivity-based clus-

tering algorithms [Alpert et al. 1997; Karypis et al. 1997]. We compared the physical

clustering scheme with one such simple greedy clustering scheme that consists of a series

of passes. Each pass identifi es pairs of connected vertices (the more connections between a

pair of vertices, the more likely it is to be selected). Each pair is substituted with a cluster.

The clustered vertices are removed, and all incident nets are connected to the new cluster.

All nets whose pins are inside a single cluster are removed. Every such pass results in the

reduction of the nodes in the netlist approximately by a factor of two. The next pass is

applied to the clustered netlist, and passes are continued until the desired reduction in size

is achieved.

We compare this greedy connectivity-based clustering with physical clustering by the

number of nets assuming approximately equal number of clusters (which is somewhat

more rigorous than comparing the nets-to-clusters ratio). The results in Table II suggest

that the physical clustering scheme is more successful in reducing the number of nets

because even for larger numbers of clustered nodes it has lower numbers of nets. Of

course, one could use more involved clustering schemes based on connectivity such as

those using multi-way min-cut partitioning. On the other hand, our physical clustering

implicitly includes those algorithms. Another advantage is that our physical clustering

based on the initial placement accounts for both netlist connectivity and the shapes of

macros. Moreover, the initial placement can give the exact pin locations of the pins in the

clustered cell. The initial placement is additionally used to construct an initial floorplan for

Simulated Annealing. The blocks in this floorplan do not overlap, but may not fi t into the

desired outline. The initial placement run thus gives us information about macro locations,

desired macro orientations and highly connected cells to be clustered.

3.3 Fixed-outline Floorplanning With Macros

The placement of macros obtained by placing the shredded netlist may have some overlaps

and is in general not legal. We need to remove the overlaps between macros and ensure that

they are all placed within the layout boundary. There are several possible options like using

the approach in [Nag and Chaudhary 1999] for post-placement residual-overlap removal

or force-directed approaches [Eisenmann and Johannes 1998]. However such approaches

work well in less constrained designs with relatively large white-space.

As explained in Section 2.3.5, we use the fi xed-outline floorplanner Parquet [Adya and

Markov 2001] to satisfy the fi xed-outline constraints imposed by fi xed-die paradigm. This

new version of Parquet is used to floorplan hard macros together with soft clusters of

standard cells. The outline of the required floorplan is derived from the layout region
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and is used as a constraint, with wirelength as the objective function. We confi gure the

floorplanner to make multiple tries until it satisfi es the fi xed-outline constraint. In our

experiments, the floorplanner typically succeeded on the fi rst try, but the ratio of successes

to failures may depend on the amount of whitespace in the design.

In our experiments the annealer found good floorplans where some macros were moved

from their locations in the initial floorplan (see Figure 10 (b)). We therefore believe that

closely following the initial floorplan is not necessary for wirelength minimization and that

the necessary information from the initial placement is captured by the physical clustering.

However, if other design concerns encourage the preservation of macro placements, one

could use more incremental force-directed macro placers [Mo et al. 2000]. Alternatively,

one could tie those macros with faked wires to faked pins placed in strategic locations.

We tried a variant of our flow in which we employed low-temperature annealing in the

floorplanning stage in an attempt to preserve the initial locations of macros. The initial

sequence pair for floorplanning is constructed from the placed shredded design. Low-

temperature annealing is employed with slack-based moves to satisfy the fi xed-outline

constraints. Snapshots of different stages of the flow with low temperature annealing are

illustrated in Figure 11. Note that the relative and absolute positions of macros in Figure

11 (c) are close to the initial macro positions in Figure 11 (a).

There are a number of factors and choices at the floorplanning stage that can affect the

fi nal placement. We list them below:

— Whitespace available in the design. Fixed-outline constraints can be easily satisfi ed

for designs with large amount of whitespace. However, for constrained designs the floor-

planner can take a large amount of time in trying to satisfy the fi xed-outline constraints.

— Area assigned to the soft clustered blocks of standard cells. The area assigned to the

clustered block is the sum of the areas of the standard cells forming the cluster. However,

for constrained designs with limited whitespace one can try to reduce the areas of these

clustered macros to make it easier for the floorplanner to fi nd a solution satisfying the

outline constraints. However, floorplanning using sequence-pairs compacts blocks down

and leftwards. Therefore, if you have a large amount of whitespace in the design, area-

minimization will ensure that no macro is placed in the top-right corner. This may harm

the solution quality if achieving minimum wirelength requires placing a particular macro

in the top-right corner. Therefore, for large whitespace designs reducing the area of the

clustered block can hurt wirelength optimization.

— Try to preserve the original locations of macros. One might want to preserve the

initial locations of the macros provided by the placement of the shredded netlist. In this

case the purpose of floorplanner is to only remove the overlaps.

We study the effect of these choices on the fi nal placements in Section 5.2.1.

3.4 Final Standard-cell Placement with Fixed Macros

The fi nal locations of the macros are taken from successful fi xed-outline floorplans, and

the macros are fi xed in the original layout. All cell sites below the macros are removed,

and cell rows may need to be split into sub-rows. This enables the standard-cell placer to

place the remaining movable standard cells without overlaps with the macros. In our exper-

iments, we used the Capo min-cut placer [Caldwell et al. 2000a], followed by two passes
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Fig. 12. Mixed-size placement Flow 2 as that described in Section 4. Figure (a) shows the

placement obtained after placing the shredded netlist. This is the same as in the first flow.

Figure (b) shows the overlap free placement obtained after running Kraftwerk in ECO mode

on the placement in (a). Sometimes Kraftwerk is not successful in removing all the overlaps.

of window-based branch-and-bound placement.2 Figure 10 (c) shows the fi nal placement

generated by our proposed flow for the ibm02 design.

Min-cut placers that uniformly distribute whitespace [Caldwell et al. 2000a][Caldwell

et al. 2003] tend to produce excessive wirelength when large amounts of whitespace are

present [Alpert et al. 2002]. In our flow, during the fi nal placement of standard cells around

the macros, the whitespace available in the designs (20% for ibm benchmarks) is dis-

tributed uniformly around the design with routability in mind. However, if the placement

objective is only to minimize wirelength (as in this study), one can use more intelligent

whitespace allocation techniques [Alpert et al. 2002]. As a variant of our original flow, in

the fi nal stage of our flow we add unconnected fi ller cells to the design to represent the

excessive whitespace and reduce the whitespace available to the placer to 10%. Thus the

standard cells are placed more compactly with the fi ller cells occupying vacant areas of the

chip. The effect of fi ller cells on the fi nal placement is studied in Section 5.2.1. However,

we also point out that reducing HPWL may result in worsening the routability of a design.

4. MIXED-SIZE PLACEMENT FLOW 2

Our second proposed flow for mixed-size placement combines a black-box standard cell

placer and a force-directed placer [Eisenmann and Johannes 1998]. The flow is described

as follows.

4.1 Shredding Macro Cells

This step is identical to that in Section 3.1. The netlist is fi rst pre-processed and all the

macros in the design are decomposed into tightly connected smaller sub-cells of minimal

height. For each macro the sub-cells are connected in a grid-like fashion. The shredded

design with fake sub-cells and nets is placed using the Capo placer. The locations and

orientation of the macros is determined from the placement of the shredded netlist. This

initial placement can have overlaps between macros. The second step attempts to make the

placement overlap-free. The fi rst step entails placing a random logic netlist with embedded

2As the detailed placement step, we apply branch-and-bound end-case placers [Caldwell et al. 2000b] using

sliding windows.
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grid graphs. Standard cell placers Capo, Dragon and Cadence QPlace have no diffi culties in

placing these netlists. However the force-directed placer Kraftwerk often fails to converge

to a solution on such netlists.

4.2 Overlap Removal Using Force-Directed Techniques

We employ the ECO capabilities of the force-directed placer Kraftwerk [Eisenmann and

Johannes 1998] to remove the overlaps from the initial placement while disturbing the

initial placement as little as possible. As explained in Section 2.2, Kraftwerk can take an

initial placement and work in an ECO mode. In the ECO mode, Kraftwerk starts from the

given placement and introduces additional forces according to density deviations arising

because of the existing overlaps. The additional forces move the surroundings slightly in

order to remove the overlaps. The algorithm tries to preserve the relative placement of cells.

If the overlaps in the initial placements are small the additional forces are small resulting

in small changes for the placement. However, if the overlaps in the initial placement are

large this procedure can result in large changes to the initial placement and in some cases

may also produce placement with large overlaps. Kraftwerk stops its placement iterations

once the placement density in each region is below a certain threshold. However, this

may result in small overlaps between the macros. From our experiments we conclude

that the percentage of these overlaps with respect to the total layout area is fairly small.

Alternatively one could employ other techniques [Mo et al. 2000] [Nag and Chaudhary

1999] [Vijayan 1991] to attempt and remove the overlaps. Figure 12 shows the placement

obtained after running this flow on design ibm02. As seen the fi nal placement corresponds

very accurately to the initial seed placement.

5. RESULTS

Our proposed flow is implemented in C++ and compiled by g++ 2.95.4 -O3. Run-

times are measured on a 2 GHz PC/Intel system running Linux. We compare our results

against QPlace v.5.1.67 from Cadence, whose runtimes are measured on a 500 MHz Sun

Blade-100 system running Solaris. We also compare our results against force-directed

placer, Kraftwerk [Eisenmann and Johannes 1998] and mPG-MS [Chang et al. 2003].

Runtimes for Kraftwerk are measured on a 2 GHz PC/Intel system and for mPG-MS are

observed on a 750 MHz Sun Blade-1000 system running Solaris.

5.1 Benchmarks

The benchmarks used in our experiments are derived from the ISPD-98 (IBM) circuit

benchmarks [Alpert 1998]. We converted the netlists into the Bookshelf placement for-

mat [Caldwell et al. ], added placement-related information and made the new benchmarks

available on the Web. 3 The original descriptions specify cell areas, but not their dimen-

sions. Since in the ibm benchmarks, all areas are divisible by 16, we defi ne rows of height

16. Cell sites in all rows have width 1. Cell widths were computed by dividing cell areas by

row height (16). When the width of a cell exceeded a threshold number of sites (100 in our

case), we upgraded such a cell to the status of a multi-row macro with aspect ratio 1. The

height of such a macro is computed by rounding the square-root of the area to the closest

integer multiple of row height (16). The width is computed by dividing cell area by cell

height and rounding the result to the closest integer number of cell sites. All designs have

3at http://vlsicad.eecs.umich.edu/BK/ISPD02bench/
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Circuit #Nodes #Nets #Macros Ab
m ΣAm Ab

m : As
m : As

c

ibm01 12752 14111 246 6.37% 67.13% 8416:252:1
ibm02 19601 19584 280 11.36% 76.89% 30042:240:1
ibm03 23136 27401 290 10.75% 70.75% 33088:240:1
ibm04 27507 31970 608 9.15% 59.82% 26593:240:1
ibm05 29347 28446 0 N/A N/A N/A
ibm06 32498 34826 178 3.95% 72.90% 36347:175:1
ibm07 45926 48117 507 4.75% 52.56% 17578:240:1
ibm08 51309 50513 309 12.10% 67.35% 50880:240:1
ibm09 53395 60902 253 5.42% 52.42% 29707:240:1
ibm10 69429 75196 786 4.79% 81.37% 71299:252:1
ibm11 70558 81454 373 4.47% 49.76% 29707:240:1
ibm12 71076 77240 651 6.42% 73.00% 74256:152:1
ibm13 84199 99666 424 4.22% 47.64% 33088:240:1
ibm14 147605 152772 614 1.98% 26.72% 17860:144:1
ibm15 161570 186608 393 10.99% 43.34% 125562:240:1
ibm16 183484 190048 458 1.89% 48.71% 31093:252:1
ibm17 185495 189581 760 0.94% 23.78% 12441:252:1
ibm18 210613 201920 285 0.96% 11.96% 10152:243:1

Table III. Benchmark characteristics. Column Ab
m shows the area of the largest macro in the

design as % of the total cell area. Column ΣAm shows the total area of the macros as % of

the total cell area. Column Ab
m : As

m : As
c shows the ratios of areas of the biggest macro to the

smallest macro to the smallest standard-cell in the design.

a whitespace of 20% and their pads (marked in the original IBM netlists) were randomly

placed near the perimeter of the core area. We converted the newly created benchmarks to

the Cadence LEF/DEF format and applied Cadence’s standard-cell placer QPlace to them.

5.2 Flow 1

Statistics for the new benchmarks are given in Table III, together with performance re-

sults of our Flow 1 with the Capo placer [Caldwell et al. 2000a] and Parquet fi xed-outline

floorplanner [Adya and Markov 2001]. 4 We detail runtimes of each step in our proposed

design flow. The performance of the industry placer QPlace is given in the same table for

comparison. Our flow improves wirelength by 10-50% on most benchmarks.

The complexity of the problem increases with the number of macros and their relative

size. According to Table IV, the benchmarks with relatively large macros (ibm02, ibm03,

ibm04, ibm08 and ibm15) are diffi cult for QPlace.5

In our Flow 1 the bottleneck is the fi xed-outline floorplanning stage, namely in the wire-

length computation that is performed independently for every move within the Simulated

Annealing framework. While the number of nets in large netlists is typically proportional

to the number of cells, many of those nets are not internal to physical clusters which serve

as blocks during fi xed-outline floorplanning. In other words, physical clustering reduces

the number of movable objects much more than the number of nets. Since the relative

white-space in the designs that we created was fairly small (20%), the fi xed-outline floor-

planner take more time to satisfy the fi xed-outline constraints. For less constrained designs

with more white-space the run-times for the floorplanning stage can be signifi cantly im-

proved.

For benchmarks ibm01, ibm17 and ibm18, QPlace results are superior to our flow

in terms of runtime. We believe that this is because the macros in these benchmarks are

4The C++ source code of Parquet is available on the Web at http://vlsicad.eecs.umich.edu/BK/parquet/
5We hope that extending QPlace with our proposed techniques can improve results for some circuits.
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Ckt QPlace Flow 1 = Capo+ Parquet + Capo Improved Flow 1 = Capo + Parquet + Capo
(ver. 5.1.67) (High-Temperature Annealing) %Final Overlap=0 (Low-Temperature Annealing) %Final Overlap=0

A B C D
(Uniform WS) (Uniform WS) (Filler Cells+Uniform WS)

Final Total Final Total Shred FP Final Final Total #FP Final Total #FP
WL Time WL Time Place # Place WL Time Tries WL Time Tries
(e6) (e6) Time Time Tries Time (e6) (e6)

ibm01 3.41 5m 3.66 15m 4m 10m 1 1m 3.36 13m 1 3.05 20m 4
ibm02 10.27 1hr13m 8.73 21m 8m 11m 1 2m 8.23 4hr0m 15 6.83 11m 1
ibm03 19.61 2hr23m 12.50 27m 7m 17m 1 3m 11.53 22m 1 10.38 59m 6
ibm04 37.31 6hr31m 12.99 31m 10m 18m 1 3m 11.93 25m 1 10.11 15m 1
ibm05 12.09 8m 11.20 5m - - - 5m 11.20 5m - 11.1 5m -
ibm06 16.03 1hr16m 9.96 24m 10m 9m 1 5m 9.63 19m 1 9.94 18m 1
ibm07 22.04 1hr4m 16.37 47m 16m 23m 1 8m 15.80 39m 1 15.25 25m 1
ibm08 24.69 2hr36m 19.57 48m 16m 24m 1 8m 18.85 1hr51m 3 17.91 29m 1
ibm09 36.28 4hr10m 19.45 3hr23m 21m 2hr53m 5 9m 17.52 2hr58m 6 19.88 29m 1
ibm10 61.07 6hr21m 59.73 3hr21m 54m 2hr11m 1 16m 53.58 8hr10m 3 45.46 1hr56m 1
ibm11 42.73 3hr34m 29.43 1hr24m 28m 41m 1 15m 26.47 1hr9m 1 29.4 45m 1
ibm12 71.69 7hr5m 59.16 2hr31m 42m 1hr33m 1 16m 55.12 1hr59m 1 51.1 1hr35m 1
ibm13 59.80 5hr20m 36.08 3hr24m 35m 2hr31m 2 18m 33.56 1hr28m 1 37.73 53m 1
ibm14 52.06 1hr32m 58.49 3hr21m 53m 1hr52m 1 36m 52.67 5hr33m 2 50.26 2hr35m 1
ibm15 126.26 15hr49m 69.05 3hr51m 65m 1hr56m 1 50m 64.69 4hr24m 2 65.0 3hr15m 1
ibm16 216.16 44hr46m 93.45 4hr14m 1hr53m 1hr29m 1 52m 83.14 9hr40m 4 82.9 2hr42m 2
ibm17 89.13 1hr36m 98.23 6hr1m 1hr40m 3hr18m 1 1hr3m 91.50 4hr9m 1 89.17 3hr8m 1
ibm18 58.11 1hr32m 53.70 3hr0m 1hr13m 50m 1 57m 54.11 6hr37m 5 51.84 2hr7m 1

Table IV. Our Flow 1 (Capo+Parquet+Capo) versus the industry placer QPlace v. 5.1.67.

Run-times for QPlace are measured on a 500 MHz Sun Blade 100 system with UltraSPARC-

IIe processor; for Capo and Parquet on a 2 GHz Pentium Xeon. Parquet runtime includes

all attempts to satisfy the given outline constraints, the number of attempts is shown as well.

ibm05 does not require a floorplanning stage (no macros). In Tables IV (C) and (D) we re-

port results for Flow 1, with the floorplanner running in low-temperature annealing mode to

preserve initial macro locations. Comparing with results from Table B, we note that for some

benchmarks the runtimes increase because of larger number of attempts required to satisfy

the fixed-outline constraints. The solution quality for most benchmarks improves with this

flow. Table IV (C) shows results for the final placement of standard cells with uniform whites-

pace distribution. Table IV (D) shows the results for final placement of standard cells along

with filler cells for better whitespace handling. Also, in Table IV (D), the areas of clustered

macros of standard cells during floorplanning stage is reduced by 10% to make it easier for

the floorplanner to satisfy the fixed-outline constraints. Our comparison to QPlace is mostly

a sanity check because QPlace is not designed to solve mixed-size placement instances.

relatively small, and a standard-cell placer may handle them well enough. On the other

hand, ibm17 and ibm18 are big enough to expose the coarseness of the 6x6 grid used

in our experiments. Aside from increasing the grid size, it is possible to extend Capo to

handle small macros, and thus entirely avoid running a floorplanner on those benchmarks.

5.2.1 Sensitivities in Flow 1. We study the various sensitivities in our flows. In our

original Flow 1 the information about the initial locations of macros is not useful and

placing the clustered netlist serves as a means to generate high quality clusters. Also, fi xed-

outline floorplanning stage is a bottleneck in terms of runtime. The results in Table IV B

are for the flow in which the floorplanning is done from scratch with random initial solution

and no attempt is made to preserve the initial positions of macros. We tried a variant of

this flow to in an attempt to maintain the initial macro locations obtained by placing the

shredded netlist. We do this by forming a sequence pair from the illegal placement obtained

from Step 1 of the flow and then employing low-temperature annealing. The results for
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Ckt Flow 2 = Capo + Kraftwerk ECO mPG Kraftwerk
[Chang et al. 2003] [Eisenmann and Johannes 1998] [Choi and Bazargan 2003]

A B C D
Final Total % Over Final Total Final Total % Over Final Total % Over

WL(e6) Time lap WL(e6) Time WL(e6) Time lap WL(e6) Time lap

ibm01 2.92 5m 0.87 3.01 18m 3.01 2m 3.5 2.78 2m 6.31
ibm02 6.5 11m 0.19 7.42 32m 7.58 9m 6.4 6.64 3m 5.52
ibm03 9.63 14m 0.96 11.2 32m 11.4 10m 1.29 10.4 5m 7.62
ibm04 11.2 14m 0.47 10.5 42m 12.1 12m 1.31 11.7 6m 7.85
ibm05 11.2 5m 0.00 10.9 36m 12.9 3m 0.03 13.1 5m 1.72
ibm06 7.9 17m 0.41 9.2 45m 10.2 12m 0.9 9.89 9m 5.46
ibm07 13.6 55m 0.56 13.7 1hr8m 17.1 19m 0.75 16.2 14m 7.04
ibm08 17.2 22m 0.73 16.4 1hr22m 18.2 21m 7.43 18.0 15m 8.06
ibm09 17.8 31m 0.70 18.6 1hr24m 19.1 28m 0.49 20.2 16m 7.91
ibm10 47.5 1hr8m 2.1 43.6 2hr52m 51.5 35m 7.1 42.3 27m 4.29
ibm11 25.1 41m 0.67 26.5 1hr52m 26.6 36m 0.82 27.6 23m 9.69
ibm12 47.5 51m 0.38 44.3 1hr33m 52.6 43m 10.8 48.0 27m 7.06
ibm13 33.4 1hr8m 0.80 37.7 1hr31m 35.9 55m 0.69 35.4 33m 10.11
ibm14 47.9 1hr57m 0.43 43.5 4hr36m 47.4 1hr14m 0.4 - - -
ibm15 66.8 2hr2m 0.34 65.5 6hr25m 73.7 1hr33m 0.6 - - -
ibm16 86.7 2hr46m 0.45 72.4 7hr16m 82.4 1hr34m 13.1 - - -
ibm17 87.6 2hr16m 0.38 78.5 10hr6m 92.2 1hr47m 0.35 - - -
ibm18 57.2 2hr38m 0.08 50.7 7hr17m 54.9 1hr50m 0.09 - - -

Table V. Results for our Flow 2. On average the results are better than Flow 1 in Table IV.

However some overlaps remain in the final placement. The % overlaps is shown. We compare

our results with mPG, Kraftwerk and a mixed-size placement flow. Runtimes for Flow 2(A)

and Kraftwerk (C) are observed on 2 GHz Linux/Pentium machine. Runtimes for mPG (B)

are observed on Sun Blade 1000 workstations running at 750 MHz. Runtimes for the mixed-

size placement Flow (D) are observed on 900MHz Linux/Pentium machine.

this flow is presented in Table IV C. For some benchmarks (ibm02, ibm09 and ibm10),

the floorplanner requires more tries to satisfy the fi xed-outline constraints because in the

low-temperature annealing mode it is trying to massage an existing solution and the hill

climbing capabilities of simulated annealing do not work as effi ciently. As a result the

total runtimes for these designs increase. The fi nal HPWL for most designs improve, but

not signifi cantly. We conclude that it is useful to preserve the initial positions of macros,

especially in less area-constrained designs.

We try another variant of the low-temperature annealing flow in an attempt to reduce

the floorplanning overhead. When forming soft clusters of standard cells using physical

clustering, we reduce the area of the clustered soft block by 10%. Thus the area of the

clustered block is 0.9 * (sum of areas of sub-cells). This helps the fi xed-outline floorplanner

to fi nd a solution that satisfi es fi xed-outline constraints faster. However, reducing the area

of the clustered cells might affect the optimization in some cases. Step 4 of the flow fi xes

the macro locations to the ones provided by the floorplanner and replaces standard-cells

around the macros. The standard cells are placed around the macros and the whitespace in

the design is allocated uniformly around the chip. However we can improve the wirelength

of the design by improved whitespace allocation. We introduce unconnected fi ller cells in

the design to represent the excessive whitespace and reduce the whitespace available to the

placer to 10%. The design is then replaced with the macros being fi xed. Thus the standard

cells are placed more compactly, resulting in improved wirelength. The results for this

variant of the flow are presented in Table IV D. As seen, wirelength and runtimes improve

for most designs.
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5.3 Flow 2

Table V shows the results for our Flow 2 which places the shredded netlist using Capo to

create an initial placement and then uses Kraftwerk in ECO mode to remove the overlaps

while changing the initial seed placement as little as possible. For these results we also

report the overlap remaining in the placement as a percent of the layout area. This is be-

cause, the Flow 2 does not produce completely overlap free placements. The results for

this flow are on average better than our Flow 1, but Flow 1 is guaranteed to produce com-

pletely overlap free placements. We also compare our results with placements generated by

Kraftwerk [Eisenmann and Johannes 1998] from scratch. As seen in Table V, Kraftwerk

frequently produces placements with large overlaps. Our proposed Flow 2 produces much

better placements in terms of wirelength and overlaps than Kraftwerk run from scratch.

We also compare our results to mPG [Chang et al. 2003] and the mixed-size placement

flow [Choi and Bazargan 2003]. Note that the flow in [Choi and Bazargan 2003] produces

placements with large overlaps.

The problem with Flow 1 is that some of its steps ignore information produced by pre-

vious steps. The macro locations generated by placing the shredded netlist of step 1 are

discarded. Also the soft macro locations obtained by the floorplanning stage are discarded

in the fi nal placement. Flow 2, which uses force-directed techniques to legalize place-

ments obtained from step 1 overcomes this problem. An up-coming work [Khatkhate et al.

2004] studies legalization of such mixed-size placements with minimal movement from

the original locations. However, the methods proposed in [Khatkhate et al. 2004] produce

a placement that is packed to the left side.

6. ONGOING WORK

We are currently working on tight integration of floorplanning and placement techniques

to handle mixed-size designs. We have integrated the fi xed-outline floorplanner Parquet

[Adya and Markov 2003] [Adya and Markov 2001] with the top-down placer Capo [Cald-

well et al. 2000a] based on recursive bisection, seeking to improve scalability when han-

dling mixed-size designs. Capo’s framework is briefly described in Section 2.1. We mod-

ify this framework to handle mixed-size designs as follows. The large macros are initially

treated as normal placeable cells and the placement block is processed in the regular fash-

ion. Fixed-outline floorplanning is employed to place the macros at legal locations inside

the placement block if atleast one of the following conditions is satisfi ed.

— The placement block has atleast one large macro whose height/width is greater than a

certain fraction (in our case 1/4) of the block’s height/width.

— The total area of the macros in the placement block is greater than a certain threshold

(80% in our case) of the total cell area and the number of macros in the placement block

is less than 100.

In order to use the floorplanner, a floorplanning instance is formed by clustering the stan-

dard cells with highest connectivity in a bottom-up fashion as explained in Section 3.2.

The macros identifi ed before are not clustered. The fi xed-outline constraints are derived

from the placement block’s dimensions. If the fi xed-outline floorplanning is successful

the macros are fi xed at legal locations provided by the floorplanner, the sites are removed

below the fi xed macros and the macros are removed from the block. From now on the

placement block is processed as a normal placement block which has only standard-cells.
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Fig. 13. ibm02 placement by our integrated placement and floorplanning flow. The macros are

marked by double lines.

In theory, this proposed flow is a correct-by-construction approach and will produce a le-

gal placement assuming that fi xed-outline floorplanning succeeds in all cases. However, in

our current implementation the fi xed-outline floorplanning sometimes fails to fi nd a legal

solution satisfying the fi xed-outline constraints. We believe that this is due to the diffi -

culties in integrating recursive bisection and fi xed-outline floorplanning. Figure 13 shows

the placement of ibm02 design obtained using this strategy. We present preliminary re-

sults for this flow in Figure VI. Comparing with Tables IV and V, we see that, in most

cases, this flow produces better HPWL placements and requires less run-time. In some

cases fi nal placements have overlaps. Since these overlaps tend to be extremely small, they

can be removed by techniques from [Khatkhate et al. 2004]. However, [Khatkhate et al.

2004] requires left-packing of the placement which we would like to avoid [Adya et al.

2003], because from our experience it is likely to cause routability problems. The fact that

[Khatkhate et al. 2004] also uses the recursive partitioning approach and achieves lower

wirelength than reported in this paper suggests that more work is needed on mixed-size

placement.

7. CONCLUSIONS

Modern SoC designs entail placement instances with numerous design IP blocks. Handling

such layout problems has become important, and our work addresses this problem. Floor-

planning techniques handle designs with macros, but do not scale to a hundred thousand

standard cells. On the other hand, standard-cell placers handle large numbers of small,

fi xed-height cells, but do not handle macros very well. Therefore, we attempt to combine

the strengths of both techniques.

We propose two design flows to place macro cells consistently with large numbers of

standard cells. The fi rst flow uses a combination of techniques from standard-cell place-

ment and fi xed-outline floorplanning. In particular, a number of existing placers can be

used without source code modifi cations. Our proposed Flow 1 can be summarized as fol-

lows:

— Shred the original netlist. Use a standard-cell placer to generate an initial placement.

— Construct a floorplanning instance using a physical clustering algorithm.

— Generate valid locations of macros with an improved fi xed-outline floorplanner.

— Fix the macros and place the remaining standard cells.
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Ckt Flow 3(Capo)
WL(e6) Time %Overlap

ibm01 2.96 1.8m 0
ibm02 5.93 4.6m 0
ibm03 9.74 6.8m 0
ibm04 10.6 8.0m 0
ibm05 11.0 4.6m 0
ibm06 7.35 7.1m 0
ibm07 12.5 17.4m 0.0002
ibm08 15.6 2hr26m 0
ibm09 17.1 12m 0.007
ibm10 37.4 2hr13m 0.006
ibm11 23.6 16m 0.0001
ibm12 44.5 58.8m 0.14
ibm13 31.0 22m 0
ibm14 44.5 38.5m 0.005
ibm15 61.1 56.9m 0
ibm16 70.5 60.2m 0.03
ibm17 80.6 45.9m 0.01
ibm18 50.9 44.6m 0.0005

Table VI. Results for integrated placement and floorplanning flow. We report HPWL, run-times

and the final overlap between macros as a percentage of the total layout area. Run-times are

observed on 2 GHz Linux/Pentium machine. Designs ibm08 and ibm10 take relatively longer

times because of multiple floorplanning attempts to satisfy fixed-outline constraints during

the placement flow.

This flow can be modifi ed to include a human designer who uses the initial placement

as a hint when manually placing macros. Alternatively, variants of this flow can better

preserve the initial placement.

Our proposed Flow 2 combines a standard cell placer with force-directed techniques and

can be summarized as follows:

— Shred the original netlist. Use a standard-cell placer to generate an initial placement.

— Use a force-directed placer in ECO mode to remove the overlaps while trying to mini-

mize the change in existing placement.

Our Flow 1 produces completely overlap-free placements with reasonably good wire-

lengths. Our Flow 2 produces high quality wirelength placements with potentially some

overlaps. However, these overlaps are generally very small and can be removed by simple

techniques. Either of our flows can be applied for mixed-size design placement depending

upon the requirements and characteristics of the design. Our empirical results for mixed-

size placement are signifi cantly better than those produced by the Cadence placer QPlace.

Our results also compare favorably to those in [Chang et al. 2003] and [Choi and Bazargan

2003]. It should be noted however, that the multi-level techniques in [Chang et al. 2003]

are very different from those used by other researchers and can, in principle, be combined

with ours or even applied to placements produced by our methods.

Our experiments show that the proposed flows scale up to at least a thousand macros in

addition to hundreds of thousands standard cells. However, in Flow 1, floorplanning in-

stances with a thousand blocks is a bottleneck and may be improved further. Our on-going

work focuses on techniques for incremental wirelength computation as well as multi-level

techniques for floorplanning that can handle greater numbers of macros. We have not ex-

plicitly considered timing and congestion, but the signifi cant improvements in wirelength

obtained suggest that those metrics can also improve. Moreover, if an objective function
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can be quickly computed (e.g., circuit delay without false paths can be computed by static

timing analysis in linear time), its optimization can be quickly added to simulated an-

nealing that we use for floorplanning. Alternatively, one could use a previously reported

force-directed macro block placer [Mo et al. 2000] that handles congestion. Congestion

and timing can also be addressed at the second call to a black-box placer, assuming that

the placer has relevant functionalities [M. Wang and Sarrafzadeh 2000; Kahng et al. 2002].

Our focus on half-perimeter wirelength is also due to our belief that any large-scale lay-

out tool that cannot successfully optimize wirelength is not going to successfully optimize

more complex objectives. Our work can be considered a fi rst step in this direction.
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