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Abstract. We construct a sequence of combinatorial triangulations of the d- 
dimensional torus with 2 d+t- 1 vertices and with a vertex transitive group action. 
This generalizes well-known constructions in the cases d = 2 (7-vertex torus) and 
d=3.  

1. Introduction and Result 

Polyhedral tilings of  euclidean d-space have been studied from several points of  
view. In particular, the class o fpara i l e lohedra  provides tilings which are invariant 
under the action of a crystallographic group containing d linearly independent 
translations. It is clear that in this case the tiling may be regarded to live on a 
d - t o m s  T d which is defined to be the quotient of  d-space by a pure translation 
group, and some of the euclidean symmetries of the tiling may carry over to the 
torus. Strictly speaking, euclidean symmetries of E d will induce combinatorial 
automorphisms of the abstract complex T a. However, we also call these symmet r i e s  
of T a because they are actually metric symmetries of the fiat ( = locally euclidean) 
geometry living on T d. Of course, there might be more automorphisms than 
symmetries. 

For d = 2 it is easy to get triangulated tori with a flag transitive symmetry 
group (see [4]). However, the minimal 7-vertex triangulation has a symmetry 
group (and automorphism group) which is only half-flag transitive. Things are 
more complicated if we go to higher dimensions and look for simplicial decompo- 
sitions with a small number of vertices. First, there are no combinatorial d-tori 
(d -> 3) with a flag-transitive automorphism group because in the universal cover- 
ing this would induce a regular tiling of E d by simplices which do not exist. This 
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indicates that the best one can hope for is a partial transitivity of  the symmetry 
group. Secondly, the minimal number of  vertices of a combinatorial d-torus 
(d >- 3) is not known. For the cases d = 1 and d = 2 the minimal number of vertices 
of  a d-torus are n =3  and n = 7 ,  respectively. For d = 3  there is a 15-vertex 
triangulation (see [9]) and nothing smaller has been observed. In this paper  we 
continue this sequence and describe explicitly a quite symmetric simplicial 
decomposit ion of the d-dimensional torus by using n = 2 d + l -  1 vertices. This 
simplicial complex is a combinatorial manifold in the usual sense. 

Definition. A simplicial complex .is called a combinatorial d-manifold if its 
underlying set is homeomorphic  to a topological d-manifold and if each vertex 
link is a combinatorial  ( d -  1)-sphere. 

This definition may be understood as recursive because it refers to itself for 
the case of  a smaller dimension. For the dimension d -< 3, it is known that any 
simplicial decomposit ion of a d-manifold is combinatorial (cf. [14]). This is not 
true in higher dimensions. A "simple" counterexample is the famous Edwards 
double suspension of  a certain homology sphere (see [5]). It is also known that 
a combinatorial manifold admits a PL structure (cf. [15]). It is quite clear that 
the number  of  vertices must increase if the topology of the manifold becomes 
more complicated. However, the only precise statement of  that kind which has 
been made has been for d = 2. In this case the inequality n -> ½(7 + x/49 - 24x(M)) ,  
where n is the number  of  vertices, is easy to prove. Almost nothing is known for 
d = 3. The minimal number  n of  vertices has been shown to be n = 9 for the 
"3-dimensional Klein bottle," n = l0 for the sphere product S ~ x S 2, and n = l l  
for the real projective 3-space (see [1] and [16]). 

The possible automorphism groups in these three cases are quite small. The 
15-vertex 3-torus described in [9] has more symmetry but it is not known if this 
number,  n = 15, is minimal. 

Definition. A combinatorial  manifold with n vertices is called k-neighborly 
(1-< k -  < n -  1) if any k vertices determine a ( k - 1 ) - d i m e n s i o n a l  simplex which 
actually belongs to the triangulation. 

This definition is motivated by the cyclic polytopes and questions about the 
upper  bound conjecture (cf. [6] and [16]). It is quite clear that a k-neighborly 
manifold must be (k -2 ) - connec t ed  in the sense of  homotopy theory. This means 
in particular that we cannot expect to have k-neighborly combinatorial tori for 
k_>3. 

Theorem. For any natural number d there exists a 2-neighborly combinatorial 
d-torus with n = 2 a÷~ - 1 vertices and n . d ! d.dimensional simplices. I t  is a quotient 
o f  a simplicial tiling o f  euclidean d-space where each vertex star is a subdivided dual 
o f  the expanded simplex. Its symmetry  group o f  order 2(d + 1) • n acts transitively 

on the set o f  vertices. 
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Remark. Compare [9] for the particular case d = 3. 
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2. The Geometry of the Expanded Simplex 

We regard the euclidean n-space as the hyperplane X o + ' "  + xa = 0 of (d + 1)- 
space with coordinates x0 . . . .  , Xd. The projection of the d + 1 vectors 

E,:= (0,._:,0, 1, o , : . . ,o)  
i d - i  

onto this n-dimensional hyperplane is the key to the following observations. 
Following Coxeter [3] the expanded simplex eotd is defined to be the convex 

hull of  the d(d  + 1) points whose coordinates are permutations of  

( 1 , - 1 ,  0 , . . . , 0 )  

d ' - I  

Its dual is known to be a parallelohedron, meaning that there is a tiling of d-space 
by translated copies of it. It is also a zonotope with d + 1 components or families 
of parallel edges (cf. [13]). These edges are parallel to the direction of the d + 1 
projected standard basis vectors of (d + D-space. A description in terms of the 
configuration of  d + 1 hyperplanes in general position in real projective (d - 1)- 
space can be found in [2]. 

For our purpose we have to analyze the structure of  this dual of  the expanded 
simplex in more detail. Up to a homothety the projections of ±Ek (k = 0 , . . . ,  d) 
are just 

+ A k = ± ( : l , . . . , - ! ,  d, ~ l , . . . , - 1 )  
fc d ' - k  

Lemma I. 

(i) The vertices of eaa (and consequently the facets of its dual) are in (1-1)- 
correspondence with the unordered pairs (+Ak,--At) where k S  l, and 
+ A o , . . . ,  + Aa are vertices of  the dual of  ead (up to homothety). 

(ii) The facet of  the dual of  eae corresponding to the vertex ( -1 ,  l, 0 , . . . ,  0) is 
a parallelepiped spanned by the 2 a-I vertices -Ao ,  +Al and any A1 +~ Ak. 
where the sum ranges over any subset { k l , . . . ,  ki} of {2, 3 , . . . ,  d}. (Note 

d 
that ~k~l Ak = - A o . )  

Proof. (i) The sum Ak + ( -Ai )  is clearly a multiple of one of the vertices of  ead, 
and the pair (k, l) is uniquely determined by that property. The scalar product 
of  Ak with the vertices of  eaa obtains its maximum at the d + 1 vertices 

(S-I ,O, . . . ,O,  1, O , . . . r O ) , . . . , ( O , . . . , O ,  1,0, . . . .  0,--1). 

Ic d " k [c d L k 

These are exactly all the simpliciai facets of eotd and therefore special vertices 
of its dual (cf. [2]). 
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A 2 

Fig. 1 

(ii) Clearly, the scalar product of the vector ( -1 ,  1, 0 . . . . .  0) with -Ao and 
+A~ equals d + 1, and its scalar product with +A2, • • •, +Ad is zero and, therefore, 
all these 2 d-~ vertices above lie in a supporting hyperplane. Note that y, kd=o Ak = 0 
and that, therefore, the --Ak'S occur as sums of certain +Ak'S. Consequently there 
are no more vertices in the same hypersurface. The facet spanned by these 2 d-I 
vertices is, combinatorially, a (d - 1)-cube (see [13, 7C2]). See Fig. 1 for the case 
d = 3 .  [] 

Lemma 2. There is a simplicial decomposition of  the boundary complex o f  the dual 
of  ead into ( d + 1)! simplices which is invariant under the simplex-transitive action 
of  the full symmetric group Sd+l. 

Proof Clearly Sd+I acts on ead (and its dual) by permuting the d + 1 coordinates, 
i.e., permuting +Ao, +AI . . . .  , +Ad. In addition it is centrally symmetric (+A; 
-A;) .  Each facet of  the dual of ead is, combinatorially, a cube with the main 
diagonal (+Ak, -A;)  (k ~ l) by the preceding lemma. There is a standard triangula- 
tion of  the ( d -  1)-dimensional cube which has ( d ~  1)! simplices and which is 
invariant, under an Sd_~-action (see [11] and [12]). In the case k = 0 ,  l =  1 we 
introduce the simplex ( -Ao ,  AI, A~ + A2, A~ + A2 + A 3 ,  • • • , A~ +. • • + A d _ l ) .  The 
permutations of { A 2 , . . . ,  Ad} will lead to a collection of ( d - l ) !  simplices 
triangulating the facet whose main diagonal is ( -Ao,  A~). Then all permutations 
of  { A o , . . . ,  A d }  will lead to a triangulation of the dual of eold. [] 

3. Proof of the Theorem 

Let us take the tiling of euclidean d-space by translated duals of the expanded 
simplex ea d and assume that one of them is centered at the origin. Now introduce 
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the origin as an additional vertex and triangulate the central copy by using the 
triangulation of its boundary complex described in Lemma 2. More precisely, 
let us triangulate the central dual of ead by (d + 1)! d-dimensional simplices, all 
containing the origin. Then translate this triangulation to all the other copies. 
This will lead to a triangulation of euclidean d-space. By construction this is 
invariant under the reflection at the origin and under arbitrary permutations of 
the d + 1 coordinates of the ambient (d + 1)-space. 

In addition it is invariant under the d + 1 translations by the vectors Ao, . .  •, Ad. 

To see this apply an arbitrary Ak to the starting simplex (0 , -A0 .  A~, A1+ 
A 2 , . . . ,  A~ + . . .  + A d ~) according to Lemma 2. Observe that the Ak-translates 
of  the duals of eotd will overlap each other. The simplest example is the case 
d = 2 where the overlapping translates of  the hexagons of the tesselation {6, 3} 
will lead to the tesselation {3, 6}. 

Now let us introduce the group H generated by the translations by the following 
vectors Bo, • • •, Bd : 

Bk := 2Ak --Ak+l where Ad+I := Ao. 

Then the triangulation of  the d-torus will be defined by the tesselation above 
modulo H. First, this is a combinatorial manifold because each vertex star remains 
unchanged. (Note that the diameter of the dual of  eo~d is smaller than the length 
of any Bk.) 

Its topology is obviously that of the d-dimensional torus. The set of vertices 
is generated by the 2 d÷~ - 1 vertices 0, Ao, 2Ao, 3Ao . . . . .  (2 d÷~ -2 )Ao  according 
to the relation 

d - I  

(2 d+~- 1)Ak = Y. (2 d-' - 1)(2A~+k --A~+k+~) 
i = 0  

d - I  

= ~ (2 d - i -  1)B~+k 
i = 0  

-=0 m o d u l o H  for k = 0 , . . . , d .  

From this it follows that the triangulation is 2-neighborly: each vertex star contains 
all vertices. 

The normalizer G of  H in the large crystallographic group above is generated 
by the translations by Ao . . . .  , Ad, by the reflection at the origin, and by the cyclic 
shift of the coordinates. Therefore G / H  will have order (2 d+~- 1).  2.  (d + 1). 
G / H  clearly acts transitively on the set of vertices. It is easy to compute the 
number of  d-dimensional simplices: every vertex star contains (d + 1)! simplices, 
each containing d + 1 vertices, and there are 2 d + l -  1 vertices altogether. 

This completes the proof  of  the theorem. [] 
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4. An Alternative Description in Terms of  a Finite Afline Geometry 

The symmetry group G / H  of  the triangulated d-torus above admits a natural 
representation in the group of  affine transformations 

x r ' ~ a x + b  

over the ring Z, ,  n := 2 d+l - 1. (Of course this makes sense only if a is a unit of 
l:.3 

Let us first describe G~ H in terms of  three generators R, S, and T where R 
is the reflection at the origin, S is the cyclic shift of the d + 1 coordinates, and 
T is the translation by Ao. These satisfy the following relations: 

R 2= S d+l= T" = E, 

R S  = SR, 

R T  = T- I  R, 

S T  = T2S. 

We easily observe the same relations for the following transformations over Z,:  

R & (x r-~ - x ) ,  

S ~  (x r-~ 2x), 

T a=(x r'~ x + l) .  

Consequently, there is a natural labeling of  the n vertices by elements of Zn 
where 0 is the label of the origin. Then the translations by Ak correspond to 
translations in Z~ and the cyclic shift corresponds to the multiplication by 2. In 
particular, the vertices Ao, A~, A 2 , . . . ,  Ad correspond to the numbers 
1, 2, 4, 8 , . . . ,  2 d. The starting simplex is nothing but ( -1  0 2 6 14 • • • ~d-~ 2~) 
or after applying T (0 1 3 7 15 . . .  2 d - 1 ) .  

The complete list of the n • d ! d-simplices follows by application of the two 
procedures: 

(1) Permute the d distances in 

(0 1 3 7 15 . . . ) .  

(2) Take Z,-translations of  these d! simplices. 

There are other combinatorial manifolds with this kind of generation (cf. [8]). 
However, it is easy to see that our examples above have the maximal numbers 
of  vertices among those which are 2-neighborly and are generated by (1) and (2). 

Particular Cases 

d =  1: start with (0 1) and take the translates (1 2), (2 0). This leads to the 
boundary of  a triangle. 
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d =2:  start with (0 1 3}, interchange the distances (0 2 3} and take the 7/7- 
translates 

(0 1 3) (0 2 3) 
(1 2 4) (1 3 4) 
(2 3 5} (2 4 5} 
(3 4 6) (3 5 6) 
(4 5 o) (4 6 o) 
(5 6 1} (5 0 1} 
(6 0 2) (6 1 2). 

This is the well-known 7-vertex torus. 

d = 3: start with (0 2 3 7} and find the 6 = 3! many interchangings: 

(0 1 3 7} (0 1 5 7) (0 2 3 7} 

(0 2 6 7) (0 4 5 7) (0 4 6 7). 

Then apply the ~'~5-translation. The complete scheme of the 90 tetrahedra can 
be found in [9]. 
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